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Overview

Introduction into Ollivier's coarse Ricci curvature
Ollivier Ricci curvature on graphs and idleness
Some classical results: Bonnet-Myers and Lichnerowicz
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Our Main Result: “p +— K, has three linear pieces”

Abstract: Ollivier proposed in 2009 a curavture notion of Markov chains
on metric spaces, based on optimal transport of probability measures
associated to a random walk. In the special setting of graphs, this
concept provides a curvature on the edges and depends on an idleness
parameter of the random walk. Lin, Lu, and Yau modified this notion in
2011. In this talk, | will recall this curvature notion and present some
specific results, which are based on joint work with D. Bourne, D.
Cushing, R. Kangaslampi, Sh. Liu, and F. Muench.



Introduction into Ollivier's coarse Ricci curvature

Based on moving “dirt” from here to there...



Motivation from Riemannian Geometry

(M, g) a complete, connected Riemannian manifold, n = dim(M).

Ollivier: If Ric, > 0, the average distance of corresponding points in
nearby balls of small radius r > 0 is smaller than the distance between
their centers:

d(x,y") = 6(1 — SK(v,w) + O(e* + €26))

d=d(x,y)

B:(x)

where v, w € SxM, K(v,w) = (R(v,w)w, v), and taking average over
the ball B,(x). (R(X,Y)Z = VxVyZ — VyVxZ — Vix.y|Z)



Transport of balls and Ricci curvature
A C M gives rise to a (probability) distribution

ial) = oo XAIavolg ().

Integrating d(x’,y’") = 6(1 — éK(v, w) + O(e® + €26)) over B,(x) yields:
Minimal cost Wi (g, (x), 148,(y)) to transport the distribution jg, (x) to
1B,y is given by

r2
=] 1—-—Ri .
Wl (,LLB,(x)a ,UB,(y)) d(Xa )/) ( 2”(” ¥ 2)R1C(V)>

(Wi (u, v) called 1-Wasserstein distance between distributions p, v.)
Definition (Ollivier's coarse Ricci curvature, JFA 2009)
X,y € M nearby, r > 0 small. Then x(x,y) is defined as
Wi (18, x): 18,(1)) r’

=1- - - ~ Ri .
k(X y) dx.y) n(n 5 2) ic(v)




Bringing in general context: Ricci curvature generalizations

Wi (1, (x), 148,(y))
d(x,y)
Advantage: Can be defined on arbitrary complete metric space (X, d).

Ollivier(JFA2009) : k(x,y)=1-

Comparison with Sturm/Lott-Villani's definition: They define lower
Ricci curvature bounds via convexity properties of certain entropy
functions along Wasserstein geodesics (displacement convexity) in the
associated 2-Wasserstein space.

Our Aim for rest of the talk: Investigate Ollivier's coarse Ricci
curvature in the discrete setting of graphs. Other interesting curvature
notions for discrete spaces and graphs: Bakry-Emery’s CD-condition,
CDE, CDE’ (S.T. Yau and co-authors), CDvy (F. Miinch), Erbar-Maas

curvature.



Ollivier Ricci curvature on graphs and idleness

The importance of being idle...



Random walk on graph with idleness

Given: G = (V, E) locally finite, connected, simple (= w/o loops and
multiple edges) graph, d, = degree of vertex x € V, idleness parameter
p € [0,1].

Let d: V x V — NU {0} be the combinatorial distance function.

We replace the distributions fip () in the smooth setting by the
probability measures

p, if z=x,
1— .

p(z) = 452, iz x,
0, otherwise,

for each x € V. They represent a (lazy) simple random walk on G with
idleness p to stay at a vertex.

Next: Define 1-Wasserstein distance Wi (1£, 1)) and k,(x, y) properly in
this setting.



1-Wasserstein distance in the graph case

m:V xV —[0,00) is a transport plan for probability measures p; — po

if
Z 7(z,w) = p1(z) and Z m(z, w) = p(2),

wev zeV
where 7(z, w) = mass transported from z to w. The cost to do this is
m(z, w)d(z, w).
Set of all transport plans: M(g1, p2).
Then

Z w(z,w)d(z, w),

z,weV

Wilkn )= _ ot
T x>kby

where any 7 realising the infimum is called an optimal transport plan.



Ollivier's Ricci curvature for graphs

Wi (pa, ) = inf Z w(z, w)d(z, w),

M(pr,
m€N(m H2)27W€V

is a distance function on the set of probability measures and

Wl(/“x’,ﬂﬁ)

d(x,y)
for any pair x,y € V. If x ~ y, k(x,y) =1 — Wi(pf, f) can also
considered as curvature of the edge {x,y} € E.

Example (Lin/Lu/Yau, Tohoku MJ 2011): We have for the
n-dimensional hypercube Q" = (V, E) and {x,y} € E:

(. y) = 2p, if p €0, ﬁ],
e %(1_P), prE[%,l]

kp(x,y)=1-—



Lin/Lu/Yau's modification of Ollivier's curvature

> ri(x,y) =0,
> p > Kp(x,y) is concave,

HP(Xv)’) 2
> 15 Sd(><,y)'

KJP(X’}/)

NI

Definition (Lin/Lu/Yau, Tohoku MJ 2011):

L Kp(x,
() = fim 550

Then kp(x,y) < kiry(x,y) for all p € [0,1]. For the hypercube Q™
2

HLLY(XJ) = n



Curvature signs of kg and k;y

A graph G = (V,E) is regular if there exists D such that dx = D for all
x e V.

Theorem (Kangaslampi, 2017)
Assume G = (V/, E) is regular. Then we have, for every edge {x,y} € E:

Kry(x,y) > 0= ko(x,y) > 0.

This is no longer true for non-regular graphs:

o o467 05 0:167
N\ ols

0167 — . 0.167 .

Ko KLLY



Curvature calculator tool by D.Cushing/G. Stagg

Graph curvature calculator [Toggle Labels]
Written by George Stagg and David Cushing [Autolayou
Graph viz with cytoscape js

052

Controls
‘Add naw verlex -Click vertex,then click emply space
‘Gonnectverties - Glick vertex, then click another
Remove verlex - Right click (ap-and-hold) a verlex
Remove edge - Right-lck (ap-and-hold) an edge
Zoom infout - Serol wheel (pinch-and-zoom)

Pan - Ciick emply space and drag
Move vertex -Click @ vertex and drag

[Hide]

Olliver-Ricci Curvature with Idieness (o5 ]

Adjacency Matrix [Hide]
[10,1,0,1.1,1,0,00.0,01[1,0,1,0,0,0,0,1,0,0,01[0.1,0,1,00,
10.0,0,0.00,1,0,00,0]

0.0,0,011.0.1,0,1,0.0.0.0,0,01[1.0,0.1,0,0,0.0,0,0,0},1.0,0.0.0,0.1.0,0,0,0},[0.0.0,0.0.1,0,1.1.1.,110.1.0,0.0.0,1,0,0,0.0},{0.0.0.0.0.0.1.0.0.,0,010.0.0.0.0.0,1,0.0,0,0],

[Undo] [Load]



Web Link

This tool is freely available at

http://teggers.eu/graph/

Easy to use and very helpful to make lots of discoveries!!

Alternatively, it can also be installed locally on your computer. For
installation details, see

https://mas-gitlab.ncl.ac.uk/graph-curvature



Some articles with various idleness assumptions...

> Ollivier (JFA 2009) considered o (Examples 5, 15) and r,
(Example 8).

» Lin/Lu/Yau (Tohoku MJ 2011) considered ky.

» For D-regular graphs, Ollivier-Villani (SIAM J. Discr. M. 2012, Q)
considered [

» Jost/Liu (Disc Comp Geom 2014) considered kg (lower curvature
estimate in terms of triangles).



Some classical results: Bonnet-Myers and
Lichnerowicz

Not 2000 years old (like this Greek mosaic) but important!



Discrete Bonnet-Myers

Theorem (Discrete Bonnet-Myers, Ollivier, JFA 2009)
Forany z, w e V:

p p _
d(z, W) < Wl((szvﬂz) + Wl(/‘w’(sw) _ 2(1 P)

= oz W) Folz W)’

Moreover, if, for all edges {x,y} € E, kp(x,y) > K >0, then

aiam(G) < 2L2P) 1)

Finally, if, for all edges {x,y} € E, ki1y(x,y) > K > 0, then

diam(G) < % (2)

For hypercube Q": (2) is sharp and (1) is sharp for idleness p € [37,1].

At idleness p = 0, Q" has zero curvature, so Theorem not applicable!



Graphs with positive curvature
Bonnet-Myers is sharp for Q" for idleness p € [ﬁ, 1] and, in the smooth
setting, Bonnet-Myers is sharp for round spheres S".
General philosophy: Hypercubes can be viewed as discrete analogues of
round spheres.

Question: Are there infinite graphs with ro(x, y) > 0 along all edges?



Graphs with positive curvature
Bonnet-Myers is sharp for Q" for idleness p € [ﬁ, 1] and, in the smooth
setting, Bonnet-Myers is sharp for round spheres S".
General philosophy: Hypercubes can be viewed as discrete analogues of
round spheres.
Question: Are there infinite graphs with ro(x, y) > 0 along all edges?

Answer: YES! Anti-tree AT ((j)):



Curvature of anti-trees

Theorem (Cushing, Liu, Minch, Peyerimhoff, 2017)

Let (aj)jen be monotone increasing, a1 = 1. Then, for the anti-tree

AT ((a;)), we have the following curvature results:
a—1 __ a+l1
322+a3 >0, Ky = 322+a3 >0,

» For radial inner edges from K, to Ky, (i > 2):

2a; + aj41 — 1 2a;_ i—1
o= (5o sl Y-

» For radial root edges: ko =

ait+ajitae—1 a1t+a+ap—1

ai_1taitai;1—2
aj—1+ai+aj1—1

» For spherical edges in K, (i > 2): ko = >0,

— _ai-itaitain
RLLY = 3 fatami—1 > 0.

Corollary

Anti-trees have strictly positive curvature kp, p € [0,1), for arithmetic
and geometric progressions (e.g., AT ((j)) or AT((271))).



Discrete Lichnerowicz

Normalized Laplacian is defined as Af(x) = d% 2y (f(x) = £(y))-
Self-adjoint operator with eigenvalues (respecting multiplicities)

O=X<M <A< .. < N\y-1 <22,

provided G = (V, E) is finite and connected.

Theorem (Discrete Lichnerowicz, Lin/Lu/Yau, Tohoku MJ
2011)

Let G = (V, E) to be finite and connected. Assume for all edges
{x,y} € E, kuiy(x,y) > K > 0. Then

A > K.

For hypercube Q": Eigenvalues 28 with multiplicity (7), k € {0,...,n}.
Therefore, A\1 = 2/n and k11y(x,y) = 2/n for all edges. So Discrete
Lichnerowicz is sharp. Lichnerowicz also sharp for complete graphs K,

()\1 - ,121)-




Our Main Result: “p — K, has three linear pieces”

Based on detailed and thorough investigations...



Our main result

Theorem (Bourne, Cushing, Liu, Miinch, Peyerimhoff, 2017)

Let G =(V,E) be a simple graph and {x,y} € E an edge. Then the
function p — kp(x, y) is concave and piecewise linear over [0, 1] with
at most 3 linear pieces. Furthermore, kp(x,y) is linear on the intervals

1 1
_— d |——F————,1
0 lem(dy, d,) + 1] an {max(dx, dy)+1’

Thus, if we have dy = d,, then p — kp(x,y) has at most two linear
pieces with only possible change of slope at p =

de+1°

Important consequence: This result allows us to relate curvatures of
egdes for different values of idleness: for example, r1(x,y), £Lvy(x,y),

/{D;H(x,y) (for D-regular graphs):

D+1
) nﬁ(x,y) for {x,y} € E.

KLy (x,y) = 2H%(X,Y) =



Very few words about the proof...

Fundamental tool is “Duality”: Let {x,y} € E. Then

inf > w(z,w)d(z,w) = sup D> d(x)(pa(x) — p2(x)).

weﬂ(ui,/tﬁ)zywev ¢€1-Lip oy

=Wi(p1,p2) (%)

Since d : V x V — NU{0} is integer-valued, it suffices to choose
integer-values 1-Lipschitz functions ¢ on the RHS. Moreover, expression
(*) does not change by replacing ¢ by ¢ + constant. The considered
1-Lipschitz functions ¢ can therefore be divided into three classes:

> ¢(x) =1and ¢(y) =0,
> ¢(x) =0and ¢(y) =0,
> ¢(x) = —1and ¢(y) = 0.
This indicates that we will have at most 3 linear pieces of p — kp(x, y).

The estimates for the lengths of the first and last linear piece require
further detailed investigations...



Some applications

Corollary (of Main Result and Lin/Lu/Yau, Tohoku MJ 2011)
G and H two regular graphs, {x1,x2} € Eg, y € Viy. Then

de
GxH —
K:p ((ley)v(XQa.y)) - dG+dH

Kp(x1, X2) + du(kiry (x1, x2) — ko(x1, x2))p, if p € [0, 7dc+¢1m+1]’
kiry(xi, x)(1 — p), ifp € [_dG+zle+17 1].

X

Theorem (Cushing, Kangaslampi, Liu, Peyerimhoff 2017)

G = (V, E) strongly regular. Let {x,y} € E.
> If girth is 4, we have ro(x,y) = 0 and k1 1y(x,y) = 2 (same as Q7).
> If girth is 5, we have ko(x,y) = 2 — 1 and kiy(x,y) = 3 — 1.

Main Result implies explicit curvature for all idleness (since 2 linear
pieces).



A final conjecture

S-cycle graph Petersen graph Clebsch graph
Hoffinan-Singleion graph Gewirtz graph

Conjecture (Cushing, Kangaslampi, Liu, Peyerimhoff)
All strongly regular graphs of girth 3 have non-negative Ollivier Ricci
curvature Ko.

We checked many known examples, including those given in

http://mathworld.wolfram.com/StronglyRegularGraph.html



Thank you for your attention!




