Some recent results for Ollivier Ricci curvature on graphs

David Cushing and Norbert Peyerimhoff

Workshop "Analysis and Geometry on Graphs and Manifolds" 31 July – 4 August 2017, Universität Potsdam

Overview

- Introduction into Ollivier's coarse Ricci curvature
- Ollivier Ricci curvature on graphs and idleness
- Some classical results: Bonnet-Myers and Lichnerowicz
- Our Main Result: " $p \mapsto \kappa_p$ has three linear pieces"

Abstract: Ollivier proposed in 2009 a curavture notion of Markov chains on metric spaces, based on optimal transport of probability measures associated to a random walk. In the special setting of graphs, this concept provides a curvature on the edges and depends on an idleness parameter of the random walk. Lin, Lu, and Yau modified this notion in 2011. In this talk, I will recall this curvature notion and present some specific results, which are based on joint work with D. Bourne, D. Cushing, R. Kangaslampi, Sh. Liu, and F. Muench.

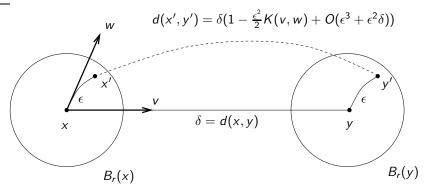
Introduction into Ollivier's coarse Ricci curvature

Based on moving "dirt" from here to there ...

Motivation from Riemannian Geometry

(M,g) a complete, connected Riemannian manifold, $n = \dim(M)$.

Ollivier: If $\operatorname{Ric}_x > 0$, the average distance of corresponding points in nearby balls of small radius r > 0 is smaller than the distance between their centers:



where $v, w \in S_x M$, $K(v, w) = \langle R(v, w)w, v \rangle$, and taking average over the ball $B_r(x)$. $(R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z)$

Transport of balls and Ricci curvature

 $A \subset M$ gives rise to a (probability) distribution

$$\mu_A(x) = \frac{1}{\operatorname{vol}_g(A)} \chi_A(x) d\operatorname{vol}_g(x).$$

Integrating $d(x', y') = \delta(1 - \frac{\epsilon^2}{2}K(v, w) + O(\epsilon^3 + \epsilon^2\delta))$ over $B_r(x)$ yields: Minimal cost $W_1(\mu_{B_r(x)}, \mu_{B_r(y)})$ to transport the distribution $\mu_{B_r(x)}$ to μ_{B_ry} is given by

$$W_1(\mu_{B_r(x)},\mu_{B_r(y)}) \approx d(x,y) \left(1-\frac{r^2}{2n(n+2)}\operatorname{Ric}(v)\right)$$

 $(W_1(\mu, \nu) \text{ called } 1\text{-}Wasserstein \ distance \ between \ distributions \ \mu, \nu.)$ Definition (Ollivier's coarse Ricci curvature, JFA 2009) $x, y \in M$ nearby, r > 0 small. Then $\kappa(x, y)$ is defined as

$$\kappa(x,y) = 1 - \frac{W_1(\mu_{B_r(x)},\mu_{B_r(y)})}{d(x,y)} \approx \frac{r^2}{2n(n+2)} \operatorname{Ric}(v).$$

Bringing in general context: Ricci curvature generalizations

Ollivier(JFA2009):
$$\kappa(x, y) = 1 - \frac{W_1(\mu_{B_r(x)}, \mu_{B_r(y)})}{d(x, y)}$$

Advantage: Can be defined on arbitrary complete metric space (X, d).

Comparison with Sturm/Lott-Villani's definition: They define lower Ricci curvature bounds via convexity properties of certain entropy functions along Wasserstein geodesics (displacement convexity) in the associated 2-Wasserstein space.

Our Aim for rest of the talk: Investigate Ollivier's coarse Ricci curvature in the discrete setting of graphs. Other interesting curvature notions for discrete spaces and graphs: Bakry-Émery's *CD*-condition, *CDE*, *CDE'* (S.T. Yau and co-authors), *CD* ψ (F. Münch), Erbar-Maas curvature.

Ollivier Ricci curvature on graphs and idleness

The importance of being idle...

Random walk on graph with idleness

Given: G = (V, E) locally finite, connected, simple (= w/o loops and multiple edges) graph, d_x = degree of vertex $x \in V$, idleness parameter $p \in [0, 1]$.

Let $d: V \times V \to \mathbb{N} \cup \{0\}$ be the combinatorial distance function.

We replace the distributions $\mu_{B_r(x)}$ in the smooth setting by the probability measures

$$\mu_x^p(z) = \begin{cases} p, & \text{if } z = x, \\ \frac{1-p}{d_x}, & \text{if } z \sim x, \\ 0, & \text{otherwise,} \end{cases}$$

for each $x \in V$. They represent a (lazy) simple random walk on G with idleness p to stay at a vertex.

Next: Define 1-Wasserstein distance $W_1(\mu_x^p, \mu_y^p)$ and $\kappa_p(x, y)$ properly in this setting.

1-Wasserstein distance in the graph case

 $\pi:V\times V\to [0,\infty)$ is a *transport plan* for probability measures $\mu_1\to\mu_2$ if

$$\sum_{w \in V} \pi(z, w) = \mu_1(z)$$
 and $\sum_{z \in V} \pi(z, w) = \mu_2(z)$

where $\pi(z, w) =$ mass transported from z to w. The cost to do this is $\pi(z, w)d(z, w)$.

Set of all transport plans: $\Pi(\mu_1, \mu_2)$.

Then

$$W_1(\mu_1, \mu_2) = \inf_{\pi \in \Pi(\mu_x, \mu_y)} \sum_{z, w \in V} \pi(z, w) d(z, w),$$

where any π realising the infimum is called an *optimal transport plan*.

Ollivier's Ricci curvature for graphs

$$W_1(\mu_1,\mu_2) = \inf_{\pi \in \Pi(\mu_1,\mu_2)} \sum_{z,w \in V} \pi(z,w) d(z,w),$$

is a distance function on the set of probability measures and

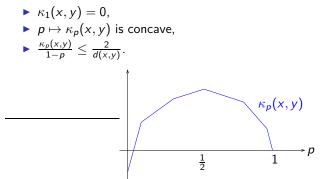
$$\kappa_p(x,y) = 1 - \frac{W_1(\mu_x^p, \mu_y^p)}{d(x,y)}.$$

for any pair $x, y \in V$. If $x \sim y$, $\kappa(x, y) = 1 - W_1(\mu_x^p, \mu_y^p)$ can also considered as curvature of the edge $\{x, y\} \in E$.

Example (Lin/Lu/Yau, Tohoku MJ 2011): We have for the *n*-dimensional hypercube $Q^n = (V, E)$ and $\{x, y\} \in E$:

$$\kappa_p(x, y) = \begin{cases} 2p, & \text{if } p \in [0, \frac{1}{n+1}], \\ \frac{2}{n}(1-p), & \text{if } p \in [\frac{1}{n+1}, 1]. \end{cases}$$

Lin/Lu/Yau's modification of Ollivier's curvature



Definition (Lin/Lu/Yau, Tohoku MJ 2011):

$$\kappa_{LLY}(x,y) = \lim_{p \to 1} \frac{\kappa_p(x,y)}{1-p}$$

Then $\kappa_p(x, y) \leq \kappa_{LLY}(x, y)$ for all $p \in [0, 1]$. For the hypercube Q^n :

$$\kappa_{LLY}(x,y)=\frac{2}{n}.$$

Curvature signs of κ_0 and κ_{LLY}

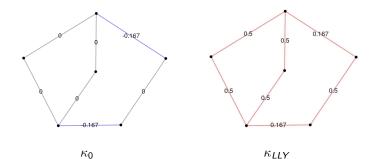
A graph G = (V, E) is *regular* if there exists D such that $d_X = D$ for all $x \in V$.

Theorem (Kangaslampi, 2017)

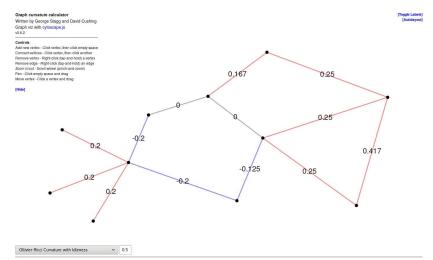
Assume G = (V, E) is regular. Then we have, for every edge $\{x, y\} \in E$:

$$\kappa_{LLY}(x,y) > 0 \Rightarrow \kappa_0(x,y) \ge 0.$$

This is no longer true for non-regular graphs:



Curvature calculator tool by D.Cushing/G. Stagg



Adjacency Matrix [Hide]

Web Link

This tool is freely available at

```
http://teggers.eu/graph/
```

Easy to use and very helpful to make lots of discoveries!!

Alternatively, it can also be installed locally on your computer. For installation details, see

https://mas-gitlab.ncl.ac.uk/graph-curvature

Some articles with various idleness assumptions...

- Ollivier (JFA 2009) considered κ₀ (Examples 5, 15) and κ_{1/2} (Example 8).
- Lin/Lu/Yau (Tohoku MJ 2011) considered κ_{LLY}.
- ► For *D*-regular graphs, Ollivier-Villani (SIAM J. Discr. M. 2012, Qⁿ) considered κ_{1/(D+1)}.
- Jost/Liu (Disc Comp Geom 2014) considered κ₀ (lower curvature estimate in terms of triangles).

Some classical results: *Bonnet-Myers and Lichnerowicz*

Not 2000 years old (like this Greek mosaic) but important!

Discrete Bonnet-Myers

Theorem (Discrete Bonnet-Myers, Ollivier, JFA 2009) For any $z, w \in V$:

$$d(z,w) \leq \frac{W_1(\delta_z,\mu_z^p) + W_1(\mu_w^p,\delta_w)}{\kappa_p(z,w)} = \frac{2(1-p)}{\kappa_p(z,w)}$$

Moreover, if, for all edges $\{x, y\} \in E$, $\kappa_p(x, y) \ge K > 0$, then

$$\operatorname{diam}(G) \leq \frac{2(1-p)}{\kappa}.$$
(1)

Finally, if, for all edges $\{x, y\} \in E$, $\kappa_{LLY}(x, y) \ge K > 0$, then

$$\operatorname{diam}(G) \leq \frac{2}{K}.$$
(2)

For hypercube Q^n : (2) is sharp and (1) is sharp for idleness $p \in [\frac{1}{n+1}, 1]$. At idleness p = 0, Q^n has zero curvature, so Theorem not applicable!

Graphs with positive curvature

Bonnet-Myers is sharp for Q^n for idleness $p \in [\frac{1}{n+1}, 1]$ and, in the smooth setting, Bonnet-Myers is sharp for round spheres S^n .

General philosophy: Hypercubes can be viewed as discrete analogues of round spheres.

Question: Are there *infinite graphs* with $\kappa_0(x, y) > 0$ along all edges?

Graphs with positive curvature

Bonnet-Myers is sharp for Q^n for idleness $p \in [\frac{1}{n+1}, 1]$ and, in the smooth setting, Bonnet-Myers is sharp for round spheres S^n .

General philosophy: Hypercubes can be viewed as discrete analogues of round spheres.

Question: Are there *infinite graphs* with $\kappa_0(x, y) > 0$ along all edges? **Answer:** YES! Anti-tree $\mathcal{AT}((j))$:



Curvature of anti-trees

Theorem (Cushing, Liu, Münch, Peyerimhoff, 2017) Let $(a_j)_{j \in \mathbb{N}}$ be monotone increasing, $a_1 = 1$. Then, for the anti-tree $\mathcal{AT}((a_j))$, we have the following curvature results:

• For radial root edges: $\kappa_0 = \frac{a_2-1}{a_2+a_3} > 0$, $\kappa_{LLY} = \frac{a_2+1}{a_2+a_3} > 0$,

• For radial inner edges from K_{a_i} to $K_{a_{i+1}}$ $(i \ge 2)$:

$$\kappa_{p} = \left(\frac{2a_{i} + a_{i+1} - 1}{a_{i} + a_{i+1} + a_{i+2} - 1} - \frac{2a_{i-1} + a_{i} - 1}{a_{i-1} + a_{i} + a_{i+1} - 1}\right)(1 - p),$$

• For spherical edges in
$$K_{a_i}$$
 $(i \ge 2)$: $\kappa_0 = \frac{a_{i-1}+a_i+a_{i+1}-2}{a_{i-1}+a_i+a_{i+1}-1} > 0$, $\kappa_{LLY} = \frac{a_{i-1}+a_i+a_{i+1}+2}{a_{i-1}+a_i+a_{i+1}-1} > 0$.

Corollary

Anti-trees have strictly positive curvature κ_p , $p \in [0, 1)$, for arithmetic and geometric progressions (e.g., $\mathcal{AT}((j))$ or $\mathcal{AT}((2^{j-1}))$).

Discrete Lichnerowicz

Normalized Laplacian is defined as $\Delta f(x) = \frac{1}{d_x} \sum_{y \sim x} (f(x) - f(y))$. Self-adjoint operator with eigenvalues (respecting multiplicities)

$$0 = \lambda_0 < \lambda_1 \le \lambda_2 \le ... \le \lambda_{|V|-1} \le 2,$$

provided G = (V, E) is finite and connected.

Theorem (Discrete Lichnerowicz, Lin/Lu/Yau, Tohoku MJ 2011)

Let G = (V, E) to be finite and connected. Assume for all edges $\{x, y\} \in E$, $\kappa_{LLY}(x, y) \ge K > 0$. Then

$$\lambda_1 \geq K$$
.

For hypercube Q^n : Eigenvalues $\frac{2k}{n}$ with multiplicity $\binom{n}{k}$, $k \in \{0, ..., n\}$. Therefore, $\lambda_1 = 2/n$ and $\kappa_{LLY}(x, y) = 2/n$ for all edges. So Discrete Lichnerowicz is sharp. Lichnerowicz also sharp for complete graphs K_n $(\lambda_1 = \frac{n}{n-1})$.

Our Main Result: " $p \mapsto \kappa_p$ has three linear pieces"

Based on detailed and thorough investigations...

Our main result

Theorem (Bourne, Cushing, Liu, Münch, Peyerimhoff, 2017) Let G = (V, E) be a simple graph and $\{x, y\} \in E$ an edge. Then the function $p \mapsto \kappa_p(x, y)$ is concave and piecewise linear over [0, 1] with at most 3 linear pieces. Furthermore, $\kappa_p(x, y)$ is linear on the intervals

$$\begin{bmatrix} 0, \frac{1}{\operatorname{lcm}(d_x, d_y) + 1} \end{bmatrix}$$
 and $\begin{bmatrix} \frac{1}{\max(d_x, d_y) + 1}, 1 \end{bmatrix}$.

Thus, if we have $d_x = d_y$, then $p \mapsto \kappa_p(x, y)$ has at most two linear pieces with only possible change of slope at $p = \frac{1}{d_x+1}$.

Important consequence: This result allows us to relate curvatures of egdes for different values of idleness: for example, $\kappa_{\frac{1}{2}}(x, y)$, $\kappa_{LYY}(x, y)$, $\kappa_{\frac{1}{D+1}}(x, y)$ (for *D*-regular graphs):

$$\kappa_{LLY}(x,y) = 2\kappa_{\frac{1}{2}}(x,y) = \frac{D+1}{D}\kappa_{\frac{1}{D+1}}(x,y) \text{ for } \{x,y\} \in E.$$

Very few words about the proof...

Fundamental tool is "Duality": Let $\{x, y\} \in E$. Then

$$\underbrace{\inf_{\pi \in \Pi(\mu_x^{\rho}, \mu_y^{\rho})} \sum_{z, w \in V} \pi(z, w) d(z, w)}_{=W_1(\mu_1, \mu_2)} = \sup_{\phi \in 1-\text{Lip}} \underbrace{\sum_{x \in V} \phi(x)(\mu_1(x) - \mu_2(x))}_{(*)}.$$

Since $d: V \times V \to \mathbb{N} \cup \{0\}$ is integer-valued, it suffices to choose integer-values 1-Lipschitz functions ϕ on the RHS. Moreover, expression (*) does not change by replacing ϕ by ϕ + constant. The considered 1-Lipschitz functions ϕ can therefore be divided into three classes:

•
$$\phi(x) = 1$$
 and $\phi(y) = 0$,

•
$$\phi(x) = 0$$
 and $\phi(y) = 0$,

•
$$\phi(x) = -1$$
 and $\phi(y) = 0$.

This indicates that we will have at most 3 linear pieces of $p \mapsto \kappa_p(x, y)$. The estimates for the lengths of the first and last linear piece require further detailed investigations...

Some applications

Corollary (of Main Result and Lin/Lu/Yau, Tohoku MJ 2011) G and H two regular graphs, $\{x_1, x_2\} \in E_G$, $y \in V_H$. Then

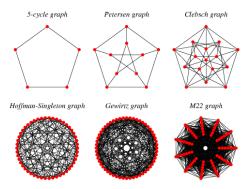
$$\begin{split} \kappa_{p}^{G \times H}((x_{1}, y), (x_{2}, y)) &= \frac{d_{G}}{d_{G} + d_{H}} \times \\ \begin{cases} \kappa_{p}(x_{1}, x_{2}) + d_{H}(\kappa_{LLY}(x_{1}, x_{2}) - \kappa_{0}(x_{1}, x_{2}))p, & \text{if } p \in [0, \frac{1}{d_{G} + d_{H} + 1}], \\ \kappa_{LLY}(x_{1}, x_{2})(1 - p), & \text{if } p \in [\frac{1}{d_{G} + d_{H} + 1}, 1]. \end{cases} \end{split}$$

Theorem (Cushing, Kangaslampi, Liu, Peyerimhoff 2017) G = (V, E) strongly regular. Let $\{x, y\} \in E$.

• If girth is 4, we have $\kappa_0(x, y) = 0$ and $\kappa_{LLY}(x, y) = \frac{2}{d}$ (same as Q^d).

• If girth is 5, we have $\kappa_0(x, y) = \frac{2}{d} - 1$ and $\kappa_{LLY}(x, y) = \frac{3}{d} - 1$. Main Result implies explicit curvature for all idleness (since 2 linear pieces).

A final conjecture



Conjecture (Cushing, Kangaslampi, Liu, Peyerimhoff)

All strongly regular graphs of girth 3 have non-negative Ollivier Ricci curvature $\kappa_0.$

We checked many known examples, including those given in

http://mathworld.wolfram.com/StronglyRegularGraph.html

Thank you for your attention!

