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Spectral distribution function of Hamiltonians on Zd

Hamiltonian = (negative) Laplacian + multiplication operator

= kinetic energy + potential energy (in Quantum Mechanics)

(Hφ)(x) =
∑

y neighbour of x

(
φ(x)− φ(y)

)
+ V (x)φ(x)

⇒ H selfadjoint and σ(H) ⊂ R.

How to describe ’density of the spectrum’?

Local procedure, using cubes Λ = Zd ∩ [−L, L]d and HL = 1∗ΛH1Λ:

R 3 E → NL(E) :=
#{ eigenvalues ofHL ≤ E}

(2L + 1)d

is a probability distribution function.

Well known:
Under appropriate ergodicity assumptions on potential or coloring V : Zd → R

lim
L→∞

NL(E) =: N(E)

exists for almost all E ∈ R and is a distribution function.
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Assumptions on potential or colouring V : Zd → A

I finitely many values |A| <∞
I existence of pattern frequencies:

P ∈ Pr = all patterns of size [−r , r ]d

νL(P) =
occurences of P in [−L, L]d

(2L + 1)d

Assumption: ∀ r ∀P ∈ Pr exists

lim
L→∞

νL(P) =: ν(P)

Theorem Lenz, Müller & Ves. 08

lim
n→∞

‖NL − N‖∞ = 0

In fact for any r < L ∈ N

sup
E∈R
‖NL(E)− N(E)‖∞ ≤ const

[
1

r
+

r

L
+
∑
P∈Pr

|νL(P)− ν(P)|

]

Sum is finite since A finite.
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Comment
Results does not require that the limiting distribution function is continuous.

Examples of colorings V : Zd → A satisfying assumptions

I V = 1VP, where VP ⊂ Zd denotes the set of points visible form the origin

I V (x), x ∈ Zd , i.i.d sequence of random variables ⇒ almost surely satisfied

Actually, Theorem applies to abstract fields

P(Zd) 3 Λ 7→ fΛ ∈ B Banach space

satisfying

I almost additivity with respect to finite Λ

I equi-variance with respect to colouring V , respectively patterns
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Almost addittivity (semi locality, low complexity)

Let Λ1, . . . ,ΛN ⊂ Zd finite, disjoint and Λ := Λ1 ∪ . . . ∪ ΛN

⇒

sup
ω∈AZd

∥∥∥fΛ

(ω)

−
N∑
j=1

fΛj

(ω)

∥∥∥
B
≤ const.

N∑
j=1

]∂Λj

for all patterns/configurations ω ∈ AZd

, if coloring generated by stochastic field

Λ1 Λ2 Λ3

Λ4 Λ5 Λ6

True for the eigenvalue
countig functions due
to interlacing theorem
for eigenvalues.

Each removed edge
gives a rank one
perturbation.
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Equi-variance with respect to colouring V

same patterns ⇒ same values

V |Λ = V |Λ+k ⇒ fΛ = fΛ+k

Obviously true for the eigenvalue
countig functions.

Consequence: f induces a function f̃ : patterns → B

f̃ ( ) is well defied without knowing where is located in Zd
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Questions
Does uniform convergence theorem & error estimate hold

I for Laplacians of more general groups that Zd?

I for potential fields or colorings where the set of values A is infinite or even
uncountable?
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Laplace on discrete group, more precisely, on Cayley graph

G discrete group, S = S−1 ⊂ G \ {id} finite, symmetric generating set

adjacency relation x ∼ y ⇔ x−1y ∈ S defines Cayley graph Cay(G ,S)

x

s1

s2

s3 = s−1
1

s4 = s−1
2

y = xs1
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x

s1

s2

s3 = s−1
1

s4 = s−1
2

y = xs1

neighbours of x in Z2

Cayley graph of Z2

Cay(Z2, {s1, s2, s3, s4})
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Hamilton operator on Cayley graph Cay(G ,S)

(Hφ)(x) =
∑

y ∈ G , y ∼ x

(
φ(x)− φ(y)

)
+ V (x)φ(x)

Standing assumption: Amenability

Cay(G ,S) amenable ⇔ exists Følner sequence Λ1 ⊂ Λ2 ⊂ Λ3 ⊂ . . .G

⇔ Λj 6= ∅ finite and lim
j→∞

|∂Λj |
|Λj |

= 0

where ∂Λ := {(x , y) | Λ 3 x ∼ y 6∈ Λ}

amenability of Cay(G ,S) independent of choice of S
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Temporary assumption: Symmetric tiling

finite Λ ∈ P(G) tiles G symmetricaly ⇔ there is set C = C−1 ⊆ G such that

G =
⋃̇

g∈CΛg .

Assume existence of Foelner sequence of symmetric tiles.

Uj

Λ1

Λ2

Λ3
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Theorem Lenz, Schwarzenberger, Ves. 2011

Let V : G → A have frequencies and f : P(G)→ B be V equi-variant and
almost-additive. Let (Λn) be a Følner sequence such that each Λn

symmetrically tiles G . Let (Uj) be arbitrary Følner sequence.

Then the Banach space limit

s

f := lim
j→∞

fUj

|Uj |

= lim
n→∞

∑
P∈P(Λn)

ν(P)
f̃ (P)

|Λn|

exists

and coincide.
For j , n ∈ N the difference∥∥∥∥∥∥ fUj

|Uj |
−

∑
P∈P(Λn)

ν(P)
f̃ (P)

|Λn|

∥∥∥∥∥∥
B

is bounded above by

const.

 |∂Λn|
|Λn|

+
|∂diam(Λn)Uj |
|Uj |

+
∑

P∈P(Λn)

∣∣∣νUj (P)

|Uj |
− ν(P)

∣∣∣

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How restrictive is the assumption of having a symmetric tiling Følner
sequence?

I this is satisfied, if one finds a sequence of subgroups (Gn) and associated
fundamental domains (Fn), which form a Følner sequence

I this is satisfied, if is residually finite, amenable group G (Krieger 2007
using Weiss 2001)

I example: Heisenberg group

a

b

c

I Not very restrictive.

I No discrete amenable groups
known which violate condition.

I Still unsatisfactory condition.
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Quasi-tilings

Figure: Ball quasi-tilings approximate Rd or Zd very fast.
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ε-Quasi tilings of Ornstein and Weiss

Uj
T ε

3

T ε
2

T ε
1

Leave at most ε-portion uncovered.
Have at most ε-portion overlap (within same generation).
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Quasi-Tiling

Theorem Pogorzelski, Schwarzenberger 11 based on Ornstein, Weiss 87

Let (Uj) and (Sn) be Følner sequences with e ∈ Sn ⊆ Sn+1, (n ∈ N). For
0 < ε ≤ 1/10 there are sets T ε

i ∈ {Sn | n ≥ i}, i = 1, . . . ,N(ε) which fulfil:

for j ≥ j0(ε) we find center sets (Ci,j)
N(ε)
i=1 such that

I T ε
i Ci,j ⊆ Uj (i ∈ {1, . . . ,N(ε)})

I {T ε
i c}c∈Ci,j is ε-disjoint (i ∈ {1, . . . ,N(ε)})

I {T ε
i Ci,j}N(ε)

i=1 is a disjoint family

I

∣∣∣ |Tεi Ci,j |
|Uj |

− ηi (ε)
∣∣∣ ≤ 2−N(ε)−1ε (i ∈ {1, . . . ,N(ε)})

where

I N(ε) := dlog(ε)/ log(1− ε)e 0 < ε ≤ 1/10

I ηi (ε) := ε(1− ε)N(ε)−i i = 1, . . . ,N(ε).
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Theorem Pogorzelski, Schwarzenberger 2011

For V with pattern frequencies ν(P), F almost additive & equi-variant,
(Uj) ⊂ G Følner sequence

f = lim
j→∞

fUj

|Uj |

= lim
ε↘0

N(ε)∑
i=1

ηi (ε)
∑

P∈P(Tεi )

ν(P)
f̃ (P)

|T ε
i |

exists

, where

I N(ε) := dlog(ε)/ log(1− ε)e 0 < ε ≤ 1/10

I ηi (ε) := ε(1− ε)N(ε)−i i = 1, . . . ,N(ε).

I (T ε
i )

N(ε)
i=1 is an ε-quasi-tiling (as before)

I ∥∥∥∥f − fUj

|Uj |

∥∥∥∥
≤ const.

ε+

N(ε)∑
i=1

ηi (ε)
b(T ε

i )

|T ε
i |

+

N(ε)∑
i=1

ηi (ε)
∑

P∈P(Tεi )

∣∣∣∣νUj (P)

|Uj |
− ν(P)

∣∣∣∣

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Potential or coloring V with uncountable many values in A ⊂ R

Recall error estimate of Lenz, Müller & Ves. 2008∥∥∥∥ 1

nd
fΛn − f

∥∥∥∥
B
≤ const

[
1

r
+

r

n
+
∑
P∈Pr

|νn(P)− ν(P)|

]
(∗)

Sum does not make sense for uncountable A, but we identify the total
variation norm of the difference νn − ν.

⇒ convergence of pattern densities in total variation norm sufficient to extend
the theorem.

Unfortunately this, is not a natural assumption.

Glivenko–Cantelli Theory tells us

For an continuous probability measure ν on R the approximating empirical
measures νn do not converge in total variation.
So, if V (x) is an i.i.d. sequence of continuous random variables (*) does not
converge to zero.
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Monotonicity allows integration by parts

Assume that B = L∞(R) and ωx 7→ fΛ(ω) is monotone for each index x ∈ Zd .

Idea

monotonicity

 weak differentiability

 inegration by parts

 replace TV norm by ‖.‖∞ norm for distribution functions
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Theorem Schumacher, Schwarzenberger & Ves. 17

Vx : Ω→ R, x ∈ Zd , i.i.d.random variables define random colouring,
f : P(Zd)× Ω→ B equi-variant, almost additive, monotone coordinate-wise
and

‖fΛ‖∞ ≤ const |Λ|

⇒ exists isotone bounded function f : R→ [0, 1]

lim
n→∞

∥∥∥∥ 1

(2n + 1)d
fΛn − f

∥∥∥∥
∞

= 0 for almost all ω

and explicit error estimates: geometric + probabilistic error.

Recall Λn = Zd ∩ [−n, n]d .

probabilistic error:
Large deviations type result  fast stochastic convergense  almost sure
convergence
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Extension to amenable groups G

Theorem Schumacher, Schwarzenberger & Ves. preprint 2017

Vx : Ω→ G , x ∈ Zd , i.i.d.random variables define random colouring,
f : P(Zd)× Ω→ B equi-variant, almost additive, monotone coordinate-wise
and

‖fΛ‖∞ ≤ const |Λ|

⇒ exists isotone bounded function f : R→ [0, 1]

lim
n→∞

∥∥∥∥ 1

|Λn|
fΛn − f

∥∥∥∥
∞

= 0 for almost all ω

for any Følner sequence (Λn) in G .

Error estimate involves not only (Λn) but also auxiliary ε-quasi tilings of Følner
sets.

New challenge here

Tiles in a quasi-tiling might overlap  corresponding sample are not
independent  empirical measures for pattern frequencies are biased  use
resampling machinery to correct/estimate bias and apply Glivenko–Cantelli
Theory.
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Theory.
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Extension to amenable groups G

Theorem Schumacher, Schwarzenberger & Ves. preprint 2017

Vx : Ω→ G , x ∈ Zd , i.i.d.random variables define random colouring,
f : P(Zd)× Ω→ B equi-variant, almost additive, monotone coordinate-wise
and

‖fΛ‖∞ ≤ const |Λ|

⇒ exists isotone bounded function f : R→ [0, 1]

lim
n→∞

∥∥∥∥ 1

|Λn|
fΛn − f

∥∥∥∥
∞

= 0 for almost all ω

for any Følner sequence (Λn) in G .

Error estimate involves not only (Λn) but also auxiliary ε-quasi tilings of Følner
sets.

New challenge here

Tiles in a quasi-tiling might overlap  corresponding sample are not
independent  empirical measures for pattern frequencies are biased  use
resampling machinery to correct/estimate bias and apply Glivenko–Cantelli
Theory.
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Many thanks for your attention!


