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y neighbour of x
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How to describe 'density of the spectrum’?

Local procedure, using cubes A = Z¢ N[—L, L]¢ and H; = 1;H1,:
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RS E — N(E) = BLT 17

is a probability distribution function.

Well known:
Under appropriate ergodicity assumptions on potential or coloring V: Z¢ — R

LILn;O N (E) =: N(E)

exists for almost all E € R and is a distribution function.
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Assumptions on potential or colouring V: 74 — A

> finitely many values |A| < oo

( ) . .
‘ ‘ ‘ » existence of pattern frequencies:
P € P, = all patterns of size [—r, r]?
48 py _ occurences of Pin [—L,L]?
An A n(P) = (2L +1)d
T
N NEh Assumption: VrV P € P, exists
e + 1 e + & ¢ ¢
lim v (P)=:v(P)

L—oo

Theorem Lenz, Miiller & Ves. 08

[Ne— N, =0

lim
n—oo

In fact for any r < L€ N

1
sup [|NL(E) = N(E)|. < const |+ 7+ > [(P) ~ v(P)
EER ro L PeP,

Sum is finite since A finite.
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Comment
Results does not require that the limiting distribution function is continuous.

Examples of colorings V' : Z9 — A satisfying assumptions

» V = 1yp, where VP C Z9 denotes the set of points visible form the origin

» V(x), x € Z9, i.i.d sequence of random variables = almost surely satisfied

Actually, Theorem applies to abstract fields

P(2%) 5 A — fp € B Banach space
satisfying
» almost additivity with respect to finite A

> equi-variance with respect to colouring V/, respectively patterns



Almost addittivity  (semi locality, low complexity)
Let Ay,..., Ay C Z finite, disjoint and A := A; U... U Ay

N N
= Hf/\ — Z f/\j HB < const. Zﬁ@l\j
Jj=1 j

Jj=1

True for the eigenvalue
A3 I countig functions due
to interlacing theorem
for eigenvalues.

Each removed edge
Ne I gives a rank one
I perturbation.




Almost addittivity
Let A4, .

= sup

weAzd

(semi locality, low complexity)
.., An C Z¢ finite, disjoint and A := Ay U ... UAy

N N
fa(w) — Z f/\j(w)HB < const. Zﬁ@l\j
= =

. . d . . e
for all patterns/configurations w € AZ" | if coloring generated by stochastic field

True for the eigenvalue
countig functions due
to interlacing theorem
for eigenvalues.

Each removed edge
gives a rank one
perturbation.



Equi-variance with respect to colouring V

|

|

N

N

same patterns = same values

Vin=Viark = =

Obviously true for the eigenvalue
countig functions.



Equi-variance with respect to colouring V

|

|

N

same patterns = same values

Vin=Viark = =

Obviously true for the eigenvalue
countig functions.

Consequence: f induces a function f: patterns — B

f( ) is well defied without knowing where

is located in Z¢



Questions
Does uniform convergence theorem & error estimate hold

» for Laplacians of more general groups that Z9?

» for potential fields or colorings where the set of values A is infinite or even
uncountable?



Laplace on discrete group, more precisely, on Cayley graph
G discrete group, S = S™ C G\ {id} finite, symmetric generating set

adjacency relation x ~ y <> x~'y € S defines Cayley graph Cay(G, S)
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Laplace on discrete group, more precisely, on Cayley graph
G discrete group, S = S™ C G\ {id} finite, symmetric generating set

adjacency relation x ~ y <> x~'y € S defines Cayley graph Cay(G, S)

® @ @ @ @ ®
@ L @ @ @ L J
S2
X Y|= Xs1
@ @ @ —® 9 L J
S3 =5, S1
si|=s, !
@ @ @ L J @ L J

neighbours of x in 72
Cayley graph of 72

Cay(Zz’ {517 S2, 53, 54})
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Hamilton operator on Cayley graph Cay(G, S)

(Ho)) = > (¢(x) = () + V(x)o(x)

yeG,y~x

Standing assumption: Amenability
Cay(G, S) amenable < exists Fglner sequence Ay CA, CA3C ... G

& N #0 finite and  lim oAl _

jmeo [N

where ON = {(x,y) | N> x ~y & A}

amenability of Cay(G, S) independent of choice of S
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Temporary assumption: Symmetric tiling

Assume existence of Foelner sequence of symmetric tiles.

A3

N2




Theorem Lenz, Schwarzenberger, Ves. 2011

Let V: G — A have frequencies and f : P(G) — B be V equi-variant and
almost-additive. Let (A,) be a Fglner sequence such that each A,
symmetrically tiles G. Let (U;) be arbitrary Fglner sequence.

Then the Banach space limit

exists
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Let V: G — A have frequencies and f : P(G) — B be V equi-variant and
almost-additive. Let (A,) be a Fglner sequence such that each A,
symmetrically tiles G. Let (U;) be arbitrary Fglner sequence.

Then the Banach space limits

. fy; F(P)
f:= lim —L = lim v(P)
fm gy = 2 P
exist and coincide.
For j, n € N the difference
fUi _ Z I/(P)F(P)
|Uj| |An]
PEP(A,)

B

is bounded above by

const.

0| | [9%*m M Y| ’ vy (P)
_|_ —
Al 1] 2.



How restrictive is the assumption of having a symmetric tiling Fglner
sequence?

> this is satisfied, if one finds a sequence of subgroups (G,) and associated
fundamental domains (F,), which form a Fglner sequence

> this is satisfied, if is residually finite, amenable group G (Krieger 2007
using Weiss 2001)

> example: Heisenberg group

Ab
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How restrictive is the assumption of having a symmetric tiling Fglner
sequence?

> this is satisfied, if one finds a sequence of subgroups (G,) and associated
fundamental domains (F,), which form a Fglner sequence

> this is satisfied, if is residually finite, amenable group G (Krieger 2007
using Weiss 2001)

> example: Heisenberg group

Ab

> Not very restrictive.

> No discrete amenable groups
known which violate condition.

» Still unsatisfactory condition.

]
~ ~ ~ ~

oV
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Quasi-Tiling

Theorem Pogorzelski, Schwarzenberger 11 based on Ornstein, Weiss 87
Let (U;) and (S,) be Fglner sequences with e € S, C S,41, (n € N). For
0 < € <1/10 there are sets T € {S, | n > i}, i =1,..., N(¢) which fulfil:
for j > jo(€) we find center sets (C,-,j)f\’:(f) such that

» TG, C U (fe{1,...,N(})

» {Tfc}eec, is e-disjoint (ied{1,....,N(e)})
> {TfC;,j}ﬁV:(f) is a disjoint family
‘T(Uf;>f‘ —mi(e)| <27 (ie{l,...,N(e)})
where

> N(e) ;= [log(e)/log(l—¢€)] 0<e<1/10
> nie) = e(1—e)VITT i=1,... N(e).



Theorem Pogorzelski, Schwarzenberger 2011
For V with pattern frequencies v(P), F almost additive & equi-variant,
(U;) C G Fglner sequence

fu.

J

f=l
J—I>no1<> |Uj|

exists



Theorem Pogorzelski, Schwarzenberger 2011
For V with pattern frequencies v(P), F almost additive & equi-variant,
(U;) C G Fglner sequence

_ fu. N©) £(P)
f=lim — = lim ni(g) v(P) 7=
e [U| - eNo ; ,,E;Tf) |77l

exists, where

> N(e) :=[log(e)/log(l —€)] 0<e<1/10
> nie) = e(1—e)VITT =1, N(e).
> (7}6)‘{\’:(;) is an e-quasi-tiling (as before)
>
il
Uil

N(e) N(e)

< const. [e + Z ni(e) b|(71f|) + Z ni(g) Z
i i=1 P

i=1 eP(TE)

l/Uj(P)
o P )‘]



Potential or coloring V' with uncountable many values in A C R

Recall error estimate of Lenz, Miiller & Ves. 2008

LS ) P ()

PeP,

1
—df/\n — f|| < const
n

B

Sum does not make sense for uncountable A, but we identify the total
variation norm of the difference v, — v.

= convergence of pattern densities in total variation norm sufficient to extend
the theorem.



Potential or coloring V' with uncountable many values in A C R

Recall error estimate of Lenz, Miiller & Ves. 2008

1
' n—f/\ — f|| < const

B

d \n

LS ) P ()

PeP,

Sum does not make sense for uncountable A, but we identify the total
variation norm of the difference v, — v.

= convergence of pattern densities in total variation norm sufficient to extend
the theorem.

Unfortunately this, is not a natural assumption.

Glivenko—Cantelli Theory tells us

For an continuous probability measure v on R the approximating empirical
measures v, do not converge in total variation.

So, if V(x) is an i.i.d. sequence of continuous random variables (*) does not
converge to zero.



Monotonicity allows integration by parts
Assume that B = L°(R) and w, — f(w) is monotone for each index x € Z9.



Monotonicity allows integration by parts
Assume that B = L°(R) and w, — f(w) is monotone for each index x € Z9.

Idea

monotonicity
~ weak differentiability
~> inegration by parts

~ replace TV norm by ||.||c norm for distribution functions



Theorem Schumacher, Schwarzenberger & Ves. 17

Vi: Q — R, x € Z9, i.i.d.random variables define random colouring,
f: P(Z%) x Q — B equi-variant, almost additive, monotone coordinate-wise
and

1fille < const |A

= exists isotone bounded function f: R — [0, 1]

A, — fH =0 for almost all w

[oe]

1
li -
nLn;o H (2[7 + 1)d
and explicit error estimates: geometric + probabilistic error.
Recall A, = Z¢ N [~n, n]“.
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Vi: Q — R, x € Z9, i.i.d.random variables define random colouring,
f: P(Z%) x Q — B equi-variant, almost additive, monotone coordinate-wise
and

[[falloo < const |A|

= exists isotone bounded function f: R — [0, 1]

. 1
nIer;o Hmf/\n — fHoo =0 for almost all w
and explicit error estimates: geometric + probabilistic error.
Recall A, = Z¢ N [~n, n]“.

probabilistic error:
Large deviations type result ~» fast stochastic convergense ~~ almost sure
convergence



Extension to amenable groups G

Theorem Schumacher, Schwarzenberger & Ves. preprint 2017
Vi: Q — G,x € Z9, i.i.d.random variables define random colouring,
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for any Fglner sequence (A,) in G.
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Extension to amenable groups G

Theorem Schumacher, Schwarzenberger & Ves. preprint 2017

Vi: Q — G,x € Z9, i.i.d.random variables define random colouring,
f: P(Z9) x Q — B equi-variant, almost additive, monotone coordinate-wise
and

Ifalloo < const |A|

= exists isotone bounded function f: R — [0,1]
. 1
lim Hmf/\n — fH =0 for almost all w

n—o00
oo

for any Fglner sequence (A,) in G.

Error estimate involves not only (A,) but also auxiliary e-quasi tilings of Fglner
sets.

New challenge here

Tiles in a quasi-tiling might overlap ~~ corresponding sample are not
independent ~~ empirical measures for pattern frequencies are biased ~~ use
resampling machinery to correct/estimate bias and apply Glivenko—Cantelli
Theory.



Many thanks for your attention!



