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Motivation and main result

Motivation and main result

Periodic graphs: Γ = Zr acts on in�nite graph G̃ = (Ṽ , Ẽ ) such that
G = G̃/Γ is �nite

(Combinatorial) Laplacian: ∆G̃ϕ(v) =
∑

w∼v (ϕ(v)− ϕ(w))
 σ(∆G̃ ) ⊂ [0, 2d∞], d∞ = supv deg v (<∞) here)

(Combinatorial) spectral gap: S G̃ = [0, 2d∞] \ σ(∆G̃ )
G̃ has full (comb.) spectrum i� S G̃ = ∅

Theorem (Fabila-Carrasco, Lledó, P (2017))

Assume G̃ is a Z-periodic tree. Then the following are equivalent:

(i) G̃ has full (comb.) spectrum (S G̃ = ∅)
(ii) G̃ is the Z-lattice
(iii) G̃ has no vertex of degree 1

Clear: (ii)⇒(i) (calculate); (ii)⇒(iii) (obvious); (iii)⇒(ii) (graph th.)
We will show ¬(iii)⇒¬(i)
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Remarks on main result

A related result holds for the standard Laplacian given by
(∆G̃ ,stdϕ)(v) = 1

deg v

∑
w∼v (ϕ(v)− ϕ(w))

 σ(∆G̃ ,std) ⊂ [0, 2], S G̃ ,std := [0, 2] \ σ(∆G̃ ,std)

Relation with full spectrum conjecture [HS04] for maximal abelian
covering: (�all loops in G are unfolded�) if G̃ (or G ) has no vertices of
degree 1 then combinatorial or standard Laplacian has full spectrum
(proven if all degrees are even � Euler path) or G̃ is (2k + 1)-regular
with some additional property)
 we have shown the full spectrum conjecture for trees

results and estimates on lengths of bands for periodic discrete gaps
(see e.g. [KS14, KS15, KS17])
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Methods: Spectral ordering

Let b > 0, S± self-adjoint in Hilbert space H ±, dimH ± = n± <∞,
σ(S±) ⊂ [0, b]

De�nition: (spectral ordering) S− 4 S+ i� λk(S−) ≤ λk(S+) for
all k (k-th eigenvalue) where λk(S±) = b if k > n± (maximal possible
value)

Magnetic potential: α : E → R with α(w , v) = −α(v ,w)
(E ⊂ V × V such that (v ,w) ∈ E i� (w , v) ∈ E )

(Combinatorial) magnetic Laplacian:
∆G
αϕ(v) =

∑
w∼v (ϕ(v)− α(v ,w)ϕ(w))

If G is a tree then ∆G
α
∼= ∆G

Floquet theory: Let G̃ be Z-periodic tree then σ(∆G̃ ) =
⋃
α σ(∆G

α )
(G = G̃/Z) (and α can be supported on one edge only)
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Methods: Discrete spectral bracketing

A discrete spectral bracketing result:

Delete edges: E0 ⊂ E  G− := G − E0 := (V ,E−) with
E− := E \ E0

�Virtualise� vertices: V0 ⊂ V , G+ := G − V0 := (V+,E ),
V+ := V \ V0 (some edges have now vertices not in G+ anymore,
virtual vertices, G+ is a partial subgraph in G )

Theorem (Fabila-Carrasco, Lled'o, P (2017))

Choose E0 ⊂ E, V0 ⊂ V and magnetic potential α : E → R such that

G− = G − E0 is a tree; suppα ⊂ E0;

E0 ⊂
⋃
v∈V0

Ev (edges in E0 have at least one end in V0)

then ∆G−
4 ∆G

α 4 ∆G+

Corollary

Jk := [λk(∆G−
), λk(∆G+

], J :=
⋃
k Jk , then

⋃
α σ(∆G

α ) ⊂ J (∗).
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