Spectral gaps and discrete magnetic Laplacians

Olaf Post

Mathematik (Fachbereich 4), Universität Trier, Germany

joint work with John Steward Fabila-Carrasco and Fernando Lledó (Universidad Carlos III de Madrid)

2017-08-01

Analysis and Geometry on Graphs and Manifolds — Potsdam

Motivation and main result
 Methods: Discrete spectral bracketing

Olaf Post (Universität Trier)

Spectral gaps and discrete Laplacians

AaGoGaM Potsdam

1/7

Motivation and main result

- Periodic graphs: $\Gamma = \mathbb{Z}^r$ acts on infinite graph $\widetilde{G} = (\widetilde{V}, \widetilde{E})$ such that $G = \widetilde{G}/\Gamma$ is finite
- (Combinatorial) Laplacian: Δ^Gφ(v) = Σ_{w~v}(φ(v) φ(w)) → σ(Δ^G) ⊂ [0, 2d_∞], d_∞ = sup_v deg v (<∞) here)
 (Combinatorial) spectral gap: S^G = [0, 2d_∞] \ σ(Δ^G) G has full (comb.) spectrum iff S^G = Ø

Theorem (Fabila-Carrasco, Lledó, P (2017))

Assume \widetilde{G} is a \mathbb{Z} -periodic tree. Then the following are equivalent:

- (i) \widetilde{G} has full (comb.) spectrum ($S^{\widetilde{G}} = \emptyset$)
- (ii) \tilde{G} is the \mathbb{Z} -lattice

(iii) \widetilde{G} has no vertex of degree 1

 Clear: (ii)⇒(i) (calculate); (ii)⇒(iii) (obvious); (iii)⇒(ii) (graph th.) We will show ¬(iii)⇒¬(i)

Remarks on main result

- A related result holds for the standard Laplacian given by $(\Delta^{\widetilde{G}, \text{std}} \varphi)(v) = \frac{1}{\deg v} \sum_{w \sim v} (\varphi(v) - \varphi(w))$ $\rightsquigarrow \quad \sigma(\Delta^{\widetilde{G}, \text{std}}) \subset [0, 2], \qquad S^{\widetilde{G}, \text{std}} := [0, 2] \setminus \sigma(\Delta^{\widetilde{G}, \text{std}})$
- Relation with full spectrum conjecture [HS04] for maximal abelian covering: ("all loops in G are unfolded") if G (or G) has no vertices of degree 1 then combinatorial or standard Laplacian has full spectrum (proven if all degrees are even Euler path) or G is (2k + 1)-regular with some additional property)

 \rightsquigarrow we have shown the full spectrum conjecture for trees

• results and estimates on lengths of bands for periodic discrete gaps (see e.g. [KS14, KS15, KS17])

Motivation and main result

- Periodic graphs: $\Gamma = \mathbb{Z}^r$ acts on infinite graph $\widetilde{G} = (\widetilde{V}, \widetilde{E})$ such that $G = \widetilde{G}/\Gamma$ is finite
- (Combinatorial) Laplacian: Δ^Gφ(v) = Σ_{w~v}(φ(v) φ(w)) → σ(Δ^G) ⊂ [0, 2d_∞], d_∞ = sup_v deg v (<∞) here)
 (Combinatorial) spectral gap: S^G = [0, 2d_∞] \ σ(Δ^G) G has full (comb.) spectrum iff S^G = Ø

Theorem (Fabila-Carrasco, Lledó, P (2017))

Assume \widetilde{G} is a \mathbb{Z} -periodic tree. Then the following are equivalent:

- (i) \widetilde{G} has full (comb.) spectrum ($S^{\widetilde{G}} = \emptyset$)
- (ii) \tilde{G} is the \mathbb{Z} -lattice

(iii) \widetilde{G} has no vertex of degree 1

 Clear: (ii)⇒(i) (calculate); (ii)⇒(iii) (obvious); (iii)⇒(ii) (graph th.) We will show ¬(iii)⇒¬(i)

Methods: Spectral ordering

- Let b > 0, S^{\pm} self-adjoint in Hilbert space \mathscr{H}^{\pm} , dim $\mathscr{H}^{\pm} = n^{\pm} < \infty$, $\sigma(S^{\pm}) \subset [0, b]$
- Definition: (spectral ordering) $S^- \preccurlyeq S^+$ iff $\lambda_k(S^-) \le \lambda_k(S^+)$ for all k (k-th eigenvalue) where $\lambda_k(S^{\pm}) = b$ if $k > n^{\pm}$ (maximal possible value)
- Magnetic potential: α: E → ℝ with α(w, v) = -α(v, w) (E ⊂ V × V such that (v, w) ∈ E iff (w, v) ∈ E)
- (Combinatorial) magnetic Laplacian: $\Delta_{\alpha}^{G}\varphi(v) = \sum_{w \sim v}(\varphi(v) - \alpha(v, w)\varphi(w))$
- If G is a tree then $\Delta^G_{lpha}\cong\Delta^G$
- Floquet theory: Let \widetilde{G} be \mathbb{Z} -periodic tree then $\sigma(\Delta^{\widetilde{G}}) = \bigcup_{\alpha} \sigma(\Delta_{\alpha}^{G})$ $(G = \widetilde{G}/\mathbb{Z})$ (and α can be supported on one edge only)

イロト 不得下 イヨト イヨト 二日

Methods: Discrete spectral bracketing

A discrete spectral bracketing result:

- Delete edges: $E_0 \subset E \quad \rightsquigarrow \quad G^- := G E_0 := (V, E^-)$ with $E^- := E \setminus E_0$
- "Virtualise" vertices: V₀ ⊂ V, G⁺ := G − V₀ := (V⁺, E),
 V⁺ := V \ V₀ (some edges have now vertices not in G⁺ anymore, virtual vertices, G⁺ is a partial subgraph in G)

Theorem (Fabila-Carrasco, Lled'o, P (2017))

Choose $E_0 \subset E$, $V_0 \subset V$ and magnetic potential $\alpha \colon E \to \mathbb{R}$ such that

•
$${\sf G}^-={\sf G}-{\sf E}_0$$
 is a tree; ${\sf supp}\, lpha \subset {\sf E}_0$;

• $E_0 \subset \bigcup_{v \in V_0} E_v$ (edges in E_0 have at least one end in V_0) then $\Delta^{G^-} \preccurlyeq \Delta^G_{cr} \preccurlyeq \Delta^{G^+}$

Corollary

$$J_k := [\lambda_k(\Delta^{G^-}), \lambda_k(\Delta^{G^+}], J := \bigcup_k J_k, \text{ then } \bigcup_\alpha \sigma(\Delta^G_\alpha) \subset J (*).$$

Olaf Post (Universität Trier)

Thank you for your attention!

- Y. Higuchi and Y. Nomura, Spectral structure of the Laplacian on a covering graph, European J. Combin. 30 (2009), 570-585.
- Y. Higuchi and T. Shirai, Some spectral and geometric properties for infinite graphs, Discrete geometric analysis, Contemp. Math., vol. 347, Amer. Math. Soc., Providence, RI, 2004, pp. 29-56.
- E. Korotyaev and N. Saburova, Schrödinger operators on periodic discrete graphs, J. Math. Anal. Appl. 420 (2014), 576-611.
- E. Korotyaev and N. Saburova, Spectral band localization for Schrödinger operators on discrete periodic graphs, Proc. Amer. Math. Soc. 143 (2015), 3951-3967.
- E. Korotyaev and N. Saburova, Magnetic Schrödinger operators on periodic discrete graphs, J. Funct. Anal. 272 (2017), 1625-1660.
 - F. Lledó and O. Post, Eigenvalue bracketing for discrete and metric graphs, J. Math. Anal. Appl. 348 (2008), 806-833.

イロト イポト イヨト イヨト

Asymptotic Analysis & Spectral Theory

3rd French-German meeting

Trier, Germany September 25-29, 2017

Invited speakers

Wolfgang Arendt (Ulm)

Philippe Briet (Toulon)

Daniel Grieser (Oldenburg)

Luc Hillairet (Orleans)

Michael Plum (Karlsruhe)

Jussi Behrndt (Graz)

Pavel Exner (Prague)

Bernard Helffer (Nantes)

Patrick Joly (Palaiseau)

Ivan Veselić (Dortmund)

Organisers

Konstantin Pankrashkin (Orsay)

Olaf Post, Ralf Rückriemen (Trier)

by

Vikolaus Koch Stiftung

M∩Φ International Association of Mathematical Physics

Supported

http://math318.uni-trier.de/aspect17/

Bilder : © Presseamt Trier