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Motivation and main result

Motivation and main result

e Periodic graphs: I = Z" acts on infinite graph G = (V, E) such that

G = G /T is finite
o (Combinatorial) Laplacian: ACp(v) = Sy (0(v) — o(w))
v o(A%) C[0,2ds],  dso = sup, degv (< 00) here)
o (Combinatorial) spectral gap: §¢ = [0,2ds] \ (A )
G has full (comb.) spectrum iff S& =@

Theorem (Fabila-Carrasco, Lledd, P (2017))

Assume G is a Z-periodic tree. Then the following are equivalent:
(i) G has full (comb.) spectrum (S€ =)
(i) G is the Z-lattice

(iii) G has no vertex of degree 1

o Clear: (ii)=(i) (calculate); (ii)=-(iii) (obvious); (iii)=(ii) (graph th.)

We will show —(iii)=—(i)
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Motivation and main result

Remarks on main result

o A related result holds for the standard Laplacian given by

(AES95)(1) = gk, S (V) — 9(w))
~ U(A'G,std) C [0, 2], Sﬁ,std — [0, 2] \ U(A@,std)

@ Relation with full spectrum conjecture [HS04] for maximal abelian
covering: (“all loops in G are unfolded”) if G (or G) has no vertices of
degree 1 then combinatorial or standard Laplacian has full spectrum
(proven if all degrees are even — Euler path) or G is (2k + 1)-regular
with some additional property)

~>  we have shown the full spectrum conjecture for trees

@ results and estimates on lengths of bands for periodic discrete gaps
(see e.g. [KS14, KS15, KS17])
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Methods: Spectral ordering

o Let b >0, S* self-adjoint in Hilbert space HE, dim H#*E = nT < oo,
o(S%) C [0, b]

o Definition: (spectral ordering) S— < ST iff A (S7) < A\ (ST) for
all k (k-th eigenvalue) where \((ST) = b if k > n™ (maximal possible
value)

e Magnetic potential: «: E — R with a(w,v) = —a(v, w)

(E C V x V such that (v,w) € E iff (w,v) € E)

@ (Combinatorial) magnetic Laplacian:

ASe(v) = X (@(v) = a(v, w)p(w))
o If G is a tree then AS = AC

o Floquet theory: Let G be Z-periodic tree then o(A%) = [ J, o(A9)
(G = G/Z) (and « can be supported on one edge only)
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Methods: Discrete spectral bracketing

A discrete spectral bracketing result:
o Delete edges: EgCE  ~ G =G —E:=(V,E™) with
E-:=E\E
e “Virtualise” vertices: Vg C V, Gt :=G — Vy := (V1 E),
V*t =V \ Vp (some edges have now vertices not in G* anymore,
virtual vertices, G is a partial subgraph in G)
Theorem (Fabila-Carrasco, Lled’o, P (2017))
Choose Eg C E, Vo C V and magnetic potential o: E — R such that
@ G~ =G — Eyisatree; suppa C Ey;
o Ey C Uvev, Ev (edges in Ey have at least one end in V)
then A¢ < AC < NG

Corollary

Ji = (A7), M(ACT], J = Uy Sk, then U, 0(AS) € J (+). )
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Methods: Discrete spectral bracketing

Thank you for your attention!
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