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Cellular automata models & the limit shape universality conjecture

In this talk I will describe the following models: [recent results on SG ]

1 Internal diffusion-limited aggregation (IDLA): [C.–Huss–Sava-Huss–Teplyaev ’17]

2 Divisible sandpiles: [Huss–Sava-Huss ’17]

3 Rotor-router aggregation: [C.–Kudler-Flam ’17+]

4 Abelian sandpiles: [C.–Kudler-Flam ’17+]

They all belong to the class of abelian networks introduced by Bond–Levine ’13∼’14.

The IDLA is a random growth model; all others are deterministic growth models.

Conjecture (“Folklore∗” limit shape universality)

Given any fixed state space, the limit shapes of clusters formed under the 4 models coincide.

∗Sources: 2017 Bulletin AMS survey paper by Lionel Levine and Yuval Peres; 4 of Wolfgang Woess’ PhD
students (Huss, Sava-Huss, Bertacchi, Zucca); Antal Járai (cf. his sandpile lecture notes from the 2013 Cornell
Probability Summer School.)

Status of its resolution. Covfefe???????????????
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1© Internal DLA [Meakin–Deutch ’86, Diaconis–Fulton ’88]

Set the first particle at the origin.
Each successive particle performs i.i.d. random walk started from the origin, and stops upon the
first exit from the aggregate formed by the previous particles.

Figure by Lionel Levine

Limit shape theorem (Lawler–Bramson–Griffeath ’92) IDLA clusters on Zd fill Euclidean balls.

∀ε > 0 : Bo(n(1− ε)) ⊂ I(|Bo(n)|) ⊂ Bo(n(1 + ε)) for all sufficiently large n, w.p.1

Corresponding limit shape theorems on many other state spaces: percolation clusters,
(non)amenable groups, comb lattices, etc.
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IDLA: known limit shape results

Lawler–Bramson–Griffeath ’92: On Zd , IDLA fills Euclidean balls w.p. 1.

Lucas ’12: Replace simple RWs by drifted RWs on Zd , IDLA cluster converges to a true heat
ball in Rd .

Blachère–Brofferio ’07: On discrete groups with exponential growth.

Huss ’09: On nonamenable graphs.

Shellef ’10: Inner bound for IDLA on supercrticial percolation cluster on Zd is a ball.

Duminil-Copin–Lucas–Yadin–Yehudayoff ’13: Outer bound for IDLA on supercritical
percolation cluster on Zd is a ball.

Huss–Sava ’11: On comb lattices, IDLA fills “diamonds.”

In many examples, the IDLA cluster shapes coincide with level sets of the Green’s function
x 7→ G(o, x).
However it is NOT always true, e.g. on the comb lattice.
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The (double-sided) graphical Sierpiński gasket

Volume: |B(x , r)| � rdH , Expected exit time: Ex [τB(x,r)] � rdW .

Green’s function: G(x , y) � d(x , y)dW−dH .

Hausdorff dim dH =
log 3

log 2
, Walk dim dW =

log 5

log 2
.
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IDLA on the (one-sided) graphical SG

Simulations by Jonah Kudler-Flam
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Limit shape of IDLA on SG

I(k): IDLA cluster consisting of k particles launched from the origin o.
Bo(r): Closed ball of radius r in the graph metric centered at o.

Theorem (C.–Huss–Sava-Huss–Teplyaev. arXiv:1702.04017)

For every ε > 0,
Bo(n(1− ε)) ⊂ I(|Bo(n)|) ⊂ Bo(n(1 + ε))

holds for all sufficiently large n, with probability 1.

This theorem says that IDLA on SG fills balls in the graph metric, but does not provide the rate
of convergence.
A more quantitative statement:

Bo(n − φ−(n)) ⊂ I(|Bo(n)|) ⊂ Bo(n + φ+(n)),

where φ±(n) are o(n) functions.

On Zd , the functions φ±(n) were rigorously identified by Lawler ’95, Asselah–Gaudillière ’13 (2x),
and Jerison–Levine–Sheffield ’13, ’14.

On SG this is an open question.
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Proof ingredients [C.–Huss–Sava-Huss–Teplyaev ’17]

Inner bound: Bo(n(1− ε)) ⊂ I(|Bo(n)|).

Establish a discrete mean value inequality over balls Bo(n).
Given ε > 0, for all suff. large n and all z ∈ Bo(n(1− ε)):

1

|Bo(n)|
∑

y∈Bo (n)

G n(y , z) ≤ G n(o, z).

Use divisible sandpiles. [Done by Huss–Sava-Huss ’17]

Green’s function G(x , y) and exit time Ex [τBx (r)] estimates: well-known on SG .

Implement the above into the machinery of Lawler–Bramson–Griffeath ’92.

Outer bound: I(|Bo(n)|) ⊂ Bo(n(1 + ε)).

Exploit the abelian property of the IDLA process.

We adapt the algorithm of Duminil-Copin et al. ’13, by freezing the IDLA process when
either the particle attaches to the aggregate [STOP] or when it exits Bo(nj ) [PAUSE]. (nj is
defined inductively.) Then relaunch the PAUSEd particles towards Bo(nj+1). Repeat.

With the following inputs, we can then implement the algorithm and use the IDLA inner
bound to show there are no long outward tentacles, and hence gain control of the outer
bound.

I Geometric input: Volume growth of balls and of annuli in SG .
I Potential theoretic input: Show that the Green’s function G n(x, y) killed upon exiting Bo(n) is
≥ C(ε) > 0 for all x, y ∈ Bo((1− ε)n). This follows from the elliptic Harnack inequality (proved
by Kigami ’01 on SG) and a chaining argument.
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Interlude: IDLA on the graphical Sierpiński carpet (SC )

Limit shape status: Unclear.

Simulations by Wilfried Huss (PhD thesis, TU Graz, 2010)

Huss: “There seems to be a family of limit shapes as opposed to one limit shape.”
Status of proof. All of our proofs on SG can be adapted to work on SC , except the harmonic
measure (divisible sandpile) calculation. A delicate problem.
Known: hitting estimates of Brownian motions on square boundaries via Knight’s and corner moves

[Barlow–Bass ’88∼’92].
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Sublog fluctuations in the IDLA cluster on SG

In/out-radius (rescaled by
√

log n) vs. expected radius in IDLA cluster.
(≥ 1000 runs for each value n of the expected radius)

Conjecture (C.–Kudler-Flam ’17+)

∃C > 0, ∀n ∈ N : Bo(n − C
√

log n) ⊂ I(|Bo(n)|) ⊂ Bo(n + C
√

log n)

with probability 1.

Potential proof strategy is narrow and involves highly technical potential theoretic estimates, à la
Asselah et al.

Joe P. Chen (Colgate) Limit Shape Universality on SG AGGM Potsdam (Aug 2017) 10 / 25



IDLA on SG : Conjectured form of a CLT [C.–Kudler-Flam ’17+]

Run the IDLA with Poissonized time: IN(t), N(t) a rate-1 Poisson process, t = |Bo(ε2k )|.
Pictured: Covariance of the “lateness function” (cf. Jerison–Levine–Sheffield ’14).
(The covariance is nonnegative by the FKG inequality.)

What is the limit distribution?

ε = 3
4

ε = 7
8

ε = 1

k
=

5
k

=
6

k
=

7
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2© Divisible sandpiles [Levine–Peres ’09]

5 1 2

2

11/4

1/4

21/4

1/41

Keep toppling vertices with > 1 sand and evenly distribute the excess to its neighbors, until every
vertex has sand amount ≤ 1 (“stable”).

∂IBo(n) := {x ∈ Bo(n) : ∃y ∈ (Bo(n))c such that x ∼ y}. Inner boundary of Bo(n)
bn := |Bo(n)| − 1

2
|∂IBo(n)|.

Theorem (Huss–Sava-Huss. arXiv:1702.08370)

For any m ≥ 0, let n = max{k ≥ 0 : bk ≤ m}. Then the sandpile cluster Sm (“firing set”) on SG
with initial mass m at o satisfies Bo(n − 1) ⊂ Sm ⊂ Bo(n).

The solution to the divisible sandpile problem yields effective estimate of the harmonic measure
on spheres. Used as an input, in conjunction with arguments of Lawler–Bramson–Griffeath ’92, to
obtain the IDLA inner bound in [C.–Huss–Sava-Huss–Teplyaev ’17].
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3© Rotor-router aggregation: “IDLA derandomized” [Propp (early 2000’s)]

Rotor(-router) walks

Each vertex is equipped with an arrow (“rotor”) pointing to one of the neighboring vertices.

Assume the rotor mechanism is periodic and simple (e.g. NWSENWSE . . .).

Rules of the walk: A walker starting at vertex x first rotates the rotor to the next orientation
according to the fixed ordering, then moves to the neighboring vertex according to the new
orientation. Continue.

Rotor-router aggregation = Aggregation formed by m rotor walkers (started at o).

(A more modest) Conjecture. The IDLA and rotor-router clusters have the same limit shape on
any state space. Status of its resolution: covfefe.
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Rotor-router aggregation on SG

R(m): cluster formed by launching m rotor walks from o.

Theorem (C.–Kudler-Flam ’17+)

For every n ≥ 1,
Bo(n − 1) ⊂ R(|Bo(n)|) ⊂ Bo(n + 1)

regardless of the initial rotor configuration.

In/out-radius (no rescaling!) vs. expected radius in rotor-router aggregation
(≥ 1000 realizations of the initial rotor configuration for each value n of the expected radius)
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4© Abelian sandpiles [Bak–Tang–Wiesenfeld ’88]

5 3 1

1

1 2

2

Whenever the # of sand grains at vertex x ≥ deg(x), topple x by emitting one grain to each of
the neighbors of x . Continue toppling until every vertex v has # of grains < deg(v) (“stable”).
The order of topplings does not matter (abelian property).

Previous literature on SG :

Physicists (late ’90s): Daerden–Vanderzande, Daerden–Priezzhev–Vanderzande numerically
studied avalanche statistics, found it fits a power law modulated by log-periodic oscillations.

Fairchild–Haim–Setra–Strichartz–Westura (2013∼14 Cornell math REU): Established the
power law of the diameter-to-mass scaling (Diameter = O(m1/dH )), identified the sandpile
group.
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Simulations by Jonah Kudler-Flam
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Simulations by Jonah Kudler-Flam
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Cluster shapes for abelian sandpiles on SG : Exact ball

Starting from m sand grains at o, define:
The receiving set S(m) = set of vertices which have received sands during the topplings.
The firing set A(m) = set of vertices which have toppled. (Clearly A(m) ⊂ S(m).)

Proposition (Receiving set is a perfect ball on SG )

For every m ∈ N, there exists a unique rm ∈ N such that S(m) = Bo(rm).

Proof. Induct on the sequence of configs of suitably paused abelian sandpiles in annuli {Bo(2n+1) \ Bo(2n)}∞n=1.

Relies strongly on the nested structure and self-similarity of SG .
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Radial jumps follow a log-periodic pattern

m 7→ rm is a càdlàg jump function: Numerical findings by Kudler-Flam ’17

m rm − rm−1
2 1
8 1

14 1
26 1
36 1
48 1
56 1
84 1

108 2
110 1
144 1
162 1
198 1
216 1
270 1
324 5

m rm − rm−1
360 1
432 1
486 4
594 1
648 2
702 1
810 1
972 11

1080 1
1134 1
1296 2
1458 7
1782 1
1944 5
2106 2
2268 1

m rm − rm−1
2430 1
2916 22
3240 1
3402 4
3888 4
4374 13
4698 1
5346 2
5832 8
6318 5
6804 2
7290 2
8748 44
9720 3
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Strong shape theorem for abelian sandpiles on SG

Theorem (C.–Kudler-Flam ’17+)

1 For every m ∈ N, Bo(rm − 1) ⊂ A(m) (firing set) ⊂ Bo(rm) = S(m) (receiving set) .

2 For every ε > 0,
2

9
− ε ≤

(rm)dH

m
≤
(

3

4

)dH

+ ε holds for all sufficiently large m.

3 Furthermore let r(x) = rbxc. Then

r(x) = x1/dH [G(log x) + o(1)] as x →∞,

where G is a nonconstant, discontinuous, (log 3)-periodic function.

Proof of 3©. Uniform estimate of r3m − 2rm, combined with the renewal theorem.
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Analytic connection among the cellular automata models

Fix a connected graph and a vertex o. Initial configuration mδo (m ∈ N).

u : V → R or N0 is the odometer function.

u(x) =

 # exits from x in the aggregation process (N0-valued)
amount of mass emitted from x in the divisible sandpile process (R-valued)
# topples at x in the abelian sandpile process (N0-valued)

(∆u)(x) =
∑
y∼x

(u(y)− u(x)) is the graph Laplacian.

Model Analytic problem

IDLA Proof may rely on solving the divisible sandpile problem

Rotor-router aggregation
“ 1

deg
∆u = 1R(m) −mδo on average”

(Identity is exact if all rotors complete periodic rotations)

Divisible sandpiles u = pt-wise inf{v : mδo + 1
deg

∆v ≤ 1}
Abelian sandpiles u = pt-wise inf{v : mδo + ∆v ≤ (deg−1)}

There is NO a priori boundary condition on the PDEs!

Least action principle for the sandpile models: Harder to solve for the abelian sandpiles due to the

integrality of the odometer function.
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Cellular automata limit shapes: Zd , d ≥ 2

For all models: Launch |Bo(n)| walks at o.

Model Shape theorem/conjecture

IDLA In/out-radius

{
n ±O(log n), d = 2

n ±O(
√

log n), d ≥ 3

}
α,β,γ,δ

Rotor-router aggregation
In-radius n − c log n, out-radius n + c ′ log n κ,`

(c, c ′ indep of n)

Divisible sandpiles
In-radius n − c, out-radius n + c ′ κ

(c, c ′ indep of n)

Abelian sandpiles
Limit shape might not be an Euclidean ball? κ

Rigorous upper/lower estimates available (with a gap) κ,ι

α Lawler–Bramson–Griffeath ’92
β Lawler ’95
γ Asselah–Gaudillière ’13 (2x)
δ Jerison–Levine–Sheffield ’13, ’14
κ Levine–Peres ’09
` Levine–Peres ’17
ι Fey–Levine–Peres ’10

IDLA, RRA, and divisible sandpiles all fill Euclidean balls. Abelian sandpiles do not appear to fill
Euclidean balls (due to the model’s integrality) [See e.g. Levine-Peres ’17 BAMS].
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Abelian sandpile on Z2
[Levine–Peres ’17 BAMS]
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Cellular automata limit shapes: SG

For aggregation models: Launch |Bo(n)| walks at o.
For sandpile models: Start with m chips at o.

Model Shape theorem/conjecture

IDLA In/out-radius n±O(
√

log n) 1,2

Rotor-router aggregation In/out-radius n ± 1 2

Divisible sandpiles
In-radius nm − 1, out-radius nm 3

(nm = max{k ≥ 0 : |Bo(k)| − 1
2 |∂IBo(k)| ≤ m})

Abelian sandpiles

Receiving set is an exact ball with radius

rm = m1/dH (G(log m) + o(1)) 2

(G is nonconstant and (log 3)-periodic)

1 C.–Huss–Sava-Huss–Teplyaev ’17
2 C.–Kudler-Flam ’17+
3 Huss–Sava-Huss ’17

Theorem (Limit shape universality on SG [C.–Huss–Kudler-Flam–Sava-Huss–Teplyaev ’17+])

On SG, clusters in all 4 cellular automata models (single source at o) fill balls in the graph metric.

First (?) nontrivial state space (beyond Z) where the limit shape universality conjecture holds.
Maybe SG is too special?! Finite ramification (many cut points), self-similarity, . . .
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Lots of open questions!

How generic is this shape universality? Seems possible to extend to nested fractals.
Example. Vicsek tree.

Avalanche statistics and critical exponents in abelian sandpiles.

Scaling limit of the abelian sandpile height functions
On Zd convergence in weak-∗ L∞(Rd ) by Pegden–Smart ’11. Apollonian structure proved by
Levine–Pegden–Smart, Ann. Math. ’17. I think convergence can be established on SG .

Connections to other combinatorial & stat mech models: spanning trees/forests,
complex-valued graph Laplacians
Vector-bundle Laplacians ↔ cycle-rooted spanning forests (Kenyon ’11). Dhar’s burning
bijection (recurrent sandpile config ↔ spanning trees). Also ties in with the geometry of AC
circuits and regularized Laplacian determinants.

Thank you!
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