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Nodal domains : De�nitions

(M, g) 2d compact, connected Riemannian manifold (w\o boundary).

−∆gfn = λnfn with Dirichlet B.C. fn|∂M = 0
or Neumann B.C. n̂ · ∇fn|∂M = 0

Spectrum discrete and arranged non-decreasingly, λ1 < λ2 ≤ λ3 ≤ . . .↗∞.

Orthonormal basis of eigenfunctions, {fn}∞n=1.

Example: M is �at torus with side length=2π

λ = 2

λ = 17 λ = 65 λ = 185

Nodal set of fn is Z (fn) := {x ∈M | fn (x) = 0}.

Nodal domains of fn are the connected components of M\Z (fn).

νn := # of nodal domains of fn.
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Courant's bound (1923)

Number of nodal domains of fn is bounded by n, νn ≤ n

Conclude

• ν1 = 1

• νn = 1 ⇒ n = 1 (as all eigenfunctions are orthogonal to f1)

Ω

Let f be an eigenfunction on M of eigenvalue λ.

Let Ω be a single nodal domain of f .

f |Ω is a Dirichlet eigenfunction of Ω.

f |Ω has a single nodal domain

⇒ f |Ω is the 1st eigenfunction of Ω (groundstate)

⇒ λ1 (Ω) = λ.



Nodal domains Neumann domains Spectral position of f|Ω Numerical experiments Summary

Courant's bound (1923)

Number of nodal domains of fn is bounded by n, νn ≤ n

Conclude

• ν1 = 1

• νn = 1 ⇒ n = 1 (as all eigenfunctions are orthogonal to f1)

Ω

Let f be an eigenfunction on M of eigenvalue λ.

Let Ω be a single nodal domain of f .

f |Ω is a Dirichlet eigenfunction of Ω.

f |Ω has a single nodal domain

⇒ f |Ω is the 1st eigenfunction of Ω (groundstate)

⇒ λ1 (Ω) = λ.



Nodal domains Neumann domains Spectral position of f|Ω Numerical experiments Summary

Courant's bound (1923)

Number of nodal domains of fn is bounded by n, νn ≤ n

Conclude

• ν1 = 1

• νn = 1 ⇒ n = 1 (as all eigenfunctions are orthogonal to f1)

Ω

Let f be an eigenfunction on M of eigenvalue λ.

Let Ω be a single nodal domain of f .

f |Ω is a Dirichlet eigenfunction of Ω.

f |Ω has a single nodal domain

⇒ f |Ω is the 1st eigenfunction of Ω (groundstate)

⇒ λ1 (Ω) = λ.



Nodal domains Neumann domains Spectral position of f|Ω Numerical experiments Summary

Courant's bound (1923)

Number of nodal domains of fn is bounded by n, νn ≤ n

Conclude

• ν1 = 1

• νn = 1 ⇒ n = 1 (as all eigenfunctions are orthogonal to f1)

Ω

Let f be an eigenfunction on M of eigenvalue λ.

Let Ω be a single nodal domain of f .

f |Ω is a Dirichlet eigenfunction of Ω.

f |Ω has a single nodal domain

⇒ f |Ω is the 1st eigenfunction of Ω (groundstate)

⇒ λ1 (Ω) = λ.



Nodal domains Neumann domains Spectral position of f|Ω Numerical experiments Summary

�Topography� of the eigenfunction

Nodal domains - regions below\above sea level.

Neumann domains - where would a water droplet role to?

Stable manifold
(of a minimum)

Unstable manifold
(of a maximum)
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�Topography� of the eigenfunction

Nodal domains - regions below\above sea level

Neumann domains - where would a water droplet role to?

Stable manifold

(of a minimum)

Unstable manifold

(of a maximum)

Their intersection

is a Neumann domain

Figures by Attila Gabor Gyulassy.
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Neumann domains : De�nitions

(M, g) 2d compact, connected Riemannian manifold (w\o boundary).

−∆gfn = λnfn possibly with Dirichlet or Neumann boundary.

De�ne �ow along integral curves of ∇fn, ϕ : R× M →M,

∂tϕ(t, x) = −∇fn
∣∣
ϕ(t, x)

, ϕ(0, x) = x.

Assumption - fn is a Morse function
(generic by Uhlenbeck '76)

Lemma (Basic Morse theory)

∀x ∈M both limits limt→±∞ ϕ (t; x)

exist and

lim
t→±∞

ϕ (t; x) ∈ Cr (f)

Cr (f) := {x ∈M | ∇f |x = 0}
Sd (f) := {r ∈M | r is a saddle point of f}
Min (f) := {p ∈M | p is a minimum of f}
Max (f) := {q ∈M | q is a maximum of f}
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Neumann domains : De�nitions

De�nition (Stable and unstable manifolds)

For a critical point x ∈ Cr (f)

W s(x) := {y ∈M
∣∣ limt→∞ ϕ(t, y) = x}

Wu(x) := {y ∈M
∣∣ limt→−∞ ϕ(t, y) = x}

De�nitions (Neumann domain and Neumann lines)

A Neumann domain is a connected component of W s (p) ∩Wu (q) ,
where p ∈Min (f) , q ∈Max (f).

The set of Neumann lines is N (f) :=
⋃
r∈Sd(f) W

s(r) ∪Wu(r).

Their union forms a cover of the whole manifold.

Rephrasing similar de�nitions from [Zelditch '13, McDonald, Fulling '14].
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Neumann domains : Spectral position

Why Neumann domains?

Let γ ⊂ {ϕ (t; x)} be part of a gradient �ow line.

Then f 's normal derivative at γ vanishes, n̂γ · ∇f |γ = 0

γ
∇f

n̂γ

Ω

Let f be an eigenfunction of eigenvalue λ.

Let Ω be a single Neumann domain of f .

⇒ f |Ω is an eigenfunction of Ω

with Neumann boundary conditions.

What is the position of f |Ω in the Neumann spectrum of Ω?

i.e., what is k in λk (Ω) = λ?

Compare with similar question for a 'usual' (Dirichlet) nodal domain.
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Neumann domains : basic properties

Theorem (B., Fajman '16)

1. Ω ∩ Cr (f) ⊂ ∂Ω

2. Ω ∩ (Min (f) ∪Max (f)) = {p, q}

3. Ω is simply connected.

4. Ω ∩ f−1(0) is a single non self-intersecting curve

whose endpoints lie on ∂Ω.

Ω

The above shows that the �topography� of f |Ω is relatively simple.

So...for a Neumann domain Ω
what is the position of f |Ω in the spectrum of Ω?
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Position of f |Ω in Ω's Neumann spectrum

Let M be a 2d manifold and f an eigenfunction.

Pos
(
f |Ω

)
:= k ⇔ f |Ω is the kth eigenfunction of Ω

Notation: The 0th eigenfunction is the constant function.

Fix M .

If ∀f ∀Ω, Pos
(
f |Ω

)
= 1 (so that λ1 (Ω) = λ)

we can use the isoperimetric inequality A (Ω)λ1 (Ω) ≤ πλ1 (D),

where A (Ω) := Area of Ω and D is the unit disk [Szegö-Weinberger ('54-6)].

This gives estimates on the number of Neumann domains.

Alternatively,

If Pos
(
f |Ω

)
= 2 then use A (M)λ2 (M) ≤ 2πλ1 (D)

[Girouard, Nadirashvili, Polterovich '09]

or if , Pos
(
f |Ω

)
= m then use A (M)λm (M) ≤ 8πm [Kröger '92].

All the above is applicable if ∃m such that ∀f ∀Ω Pos
(
f |Ω
)
≤ m

Proposition [B., Fajman '16]:

For the 2d �at torus,
{
Pos

(
f |Ω
)}
f,Ω

is not bounded.
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Pos (f |Ω) on the torus

Proposition (B., Fajman '16)

For the 2d �at torus,
{
Pos

(
f |Ω
)}
f,Ω

is not bounded.

Proof.

Let T = [0, 1]× [0, 1] be the unit �at torus.
Assume by contradiction ∀f ∀Ω Pos

(
f |Ω
)
≤ m.

Fix some f with eigenvalue λ.

∀Ω A (Ω)λm (Ω) ≤ 8πm ⇒ A (Ω)λ ≤ 8πm

Summing over all Ω of f (denote by µ their number):

A (T)λ ≤ 8πm · µ ⇒ µ ≥ 1

8πm
λ (1)

Set f (x, y) = cos (2πnxx) cos (2πnyy)

λ = 4π2
(
n2
x + n2

y

)
, µ = 8nxny.

Choosing nx = 1, ny � 1 contradicts (1).

Remark: The above also shows that bounded Pos
(
f |Ω

)
implies µn →∞.

This holds even if Pos
(
f |Ω

)
is bounded for a positive proportion of Ω's.
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A tale of two Neumann domains

Back to the integrable function: f (x, y) = cos
(
π
2a
x
)

cos
(
π
2b
y
)

We saw Pos
(
f |Ω

)
−→
b→0
∞.

For which of the domains above the position is unbounded?

It is the lens-like domain Ωlens =

What about the star-like domain, Ωstar?

Theorem (B., Egger, Taylor)

∀a, ∃ba, such that ∀b < ba,

the eigenfunction f (x, y) = cos
(
π
2a
x
)

cos
(
π
2b
y
)
satis�es Pos(f |Ωstar

) = 1.
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area-to-perimeter ratio

De�ne the area-to-perimeter ratio of a Neumann domain Ω

of eigenfunction f with eigenvalue λ

(following Elon, Gnutzmann, Joas, Smilansky '07)

ρ (Ω) := A(Ω)
√
λ

L(Ω)
,

with A (Ω) := Area and L (Ω) := Perimeter length.

Assume Pos(f |Ω) = 1 (so that λ = λ1 (Ω))

• Szegö-Weinberger A (Ω)λ1 (Ω) ≤ πλ1 (D) ⇔
√
A (Ω)λ ≤

√
πp2,

with p ≈ 1.8412, (as the disk D as maximizer).

• Geometric isoperimetric inequality (with disk as maximizer)√
A (Ω)

L (Ω)
≤
√
π

2π
=

1

2
√
π

Combining both gives

ρ (Ω) =
A (Ω)

√
λ

L (Ω)
≤ p

2
≈ 0.9206.
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ρ (Ω) =
A (Ω)

√
λ

L (Ω)
≤ p

2
≈ 0.9206.
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area-to-perimeter ratio

The area-to-perimeter ratio of a Neumann domain Ω

ρ (Ω) := A(Ω)
√
λ

L(Ω) ,

with A (Ω) := Area and L (Ω) := Perimeter length.

The assumption Pos(f |Ω) = 1 yields ρ (Ω) ≤ p
2 ≈ 0.9206.

Numerical distribution of ρ (Ω)

calculated for random eigenfunctions

on the �at torus of eigenvalue=925

(mutiplicity=24)

(by Alexander Taylor)
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Summary and Questions

Summary

An example with

1. Unobounded {Pos (f |Ω)}
f,Ω

2. But Pos (f |Ω) = 1 for �half� of the Neumann domains.

Random eigenfunctions on the torus have Pos (f |Ω) > 1
for a positive proportion of the Neumann domains.

Questions

1. Is {Pos (f |Ω)} generically bounded?

2. How is it distributed?

3. Conjecture: For all f , there is a positive proportion of Neumann
domains with Pos(f |Ω) = 1.

4. Using Pos (f |Ω) for estimates on the Neumann domain count.
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After the co�ee break...

Back to the integrable function: f (x, y) = cos
(
π
2a
x
)

cos
(
π
2b
y
)

We saw Pos
(
f |Ω

)
−→
b→0
∞.

The position is unbounded for the lens-like domain Ωlens =

Whereas, for the star-like domain, Ωstar we have

Theorem (B., Egger, Taylor)

∀a, ∃ba, such that ∀b < ba,

the eigenfunction f (x, y) = cos
(
π
2a
x
)

cos
(
π
2b
y
)
satis�es Pos(f |Ωstar

) = 1.

To be proven by Sebastian Egger after the co�ee break.
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