C*-Algebras

Winter semester 2016/17

Prof. Dr. M. Keller

Sheet 9

(1) Let b be a selfadjoint element of a C^* -algebra such that $b \ge 0$. Then

$$\sqrt{b_-b_+}=0$$

where $\sqrt{b_{-}}$ and b_{+} are defined via the continuous spectral calculus.

(2) Show that for elements a, b in a C^* -algebra we have

$$\sigma(ab) \setminus \{0\} = \sigma(ba) \setminus \{0\}$$

- (3) Give an example of a maximal ideal in a C^* -algebra that is not closed.
- (4) Let (e_{ι}) be a net of selfadjoint elements of a C^* -algebra. Then, the following statements are equivalent:
 - (i) $e_{\iota}a \to a$ for all $a \in A$.
 - (ii) $e_{\iota}a \to a$ for all selfadjoint $a \in A$.
 - (iii) $e_{\iota}a \to a$ for all $a \in A$ with $a \ge 0$.
 - (iv) $ae_{\iota} \to a$ for all $a \in A$.
 - (v) $ae_{\iota} \to a$ for all selfadjoint $a \in A$.
 - (vi) $ae_{\iota} \to a$ for all $a \in A$ with $a \ge 0$.

Optional problem

(O1) Show that the square function is not operator monotone, i.e., there is a C^* -algebra and elements $0 \le a \le b$ but the inequality $a^2 \le b^2$ fails to hold.