C*-Algebras

Winter semester 2016/17

Prof. Dr. M. Keller

Sheet 6

- (1) Let A be an algebra, $a \in A$ and p be a complex polynomial such that p(a) = 0. What can be said about $\sigma(a)$?
- (2) Let B be a subset of a commutative normed algebra A. Show that

$$\{ab \mid a \in A, b \in B\} = \bigcap_{B \subseteq I \subseteq A \text{ ideal}} I$$

(b)

(a)

$$\overline{\{ab \mid a \in A, b \in B\}} = \bigcap_{B \subseteq I \subseteq A \text{ closed ideal}} I$$

(3) Let \mathcal{K}_1 be the unital C^* -algebra associated to the non-unital C^* -algebra $\mathcal{K} = \mathcal{K}(H)$ of compact operators on a infinite-dimensional operators on a Hilbert space H and let I be the identity operator. Show that

$$\mathcal{K}_1 \to \lim \{\mathcal{K}, I\} \subseteq \mathcal{L}(H), \quad (a, \lambda) \mapsto a + \lambda I$$

is an isometric isomorphisms.

- (4) Give an example of a (non-commutative) Banach algebra that has
 - (a) no non-trivial ideals,
 - (b) no characters.