C*-Algebras

Winter semester 2016/17

Prof. Dr. M. Keller

Sheet 5

(1) Let A be a Banach algebra without a unit. Let B be a unital Banach algebra and $i: A \to B$ a continuous injective map. Show that there is a unique continuous map $h: A_1 \to B$ such that

$$h \circ j = i$$

and

$$h(e) = e_B$$

Is h also injective?

(2) Show that

$$f^*(n) = \overline{f(-n)}, \qquad n \in \mathbb{Z}$$

is an isometric involution the normed algebra $\ell^1(\mathbb{Z})$, but $\ell^1(\mathbb{Z})$ does not becomes an C^* -algebra.

- (3) Give an example of an element a of a C^* -algebra such that
 - (a) $\sigma(a) \subseteq \mathbb{T}$ but $a^* \neq a^{-1}$,
 - (b) $\sigma(a) \subseteq \mathbb{R}$ but $a \neq a^*$.
- (4) Let V be a normed vector space and $p: V \to \mathbb{C}$ be linear. Show that the following statements are equivalent:
 - (i) p is continuous
 - (ii) ker $p := \{x \in V \mid px = 0\}$ is closed.