C*-Algebras

Winter semester 2016/17

Prof. Dr. M. Keller

Sheet 2

(1) Let (b, c) be a graph over a discrete set X and let

$$\mathcal{D}_{\infty} := \{ f : X \to \mathbb{C} \mid \mathcal{Q}(f) < \infty, \|f\|_{\infty} < \infty \}$$

with

$$\mathcal{Q}(f) = \frac{1}{2} \sum_{x,y \in X} b(x,y) |f(x) - f(y)|^2 + \sum_{x \in X} b(x,y) |f(x)|^2$$
$$\|f\|_{\infty} = \sup_{x \in X} |f(x)|.$$

- (a) Show that \mathcal{D}_{∞} is a commutative normed algebra with respect to pointwise multiplication and $\|\cdot\|_{\infty}$.
- (b) Give an example of a graph where \mathcal{D}_{∞} is not complete with respect to $\|\cdot\|_{\infty}$.
- (c)) Show that \mathcal{D}_{∞} is unital if and only if $c \in \ell^1(X)$.
- (2) Show that the compact operators $\mathcal{K}(B)$ are an ideal with in the Banach algebra of the bounded operators $\mathcal{L}(B)$ of a Banach space B.
- (3) Show that the set GL(A) of invertible elements of a unital algebra A is a group.
- (4) Let $(X, \|\cdot\|)$ be a normed space, X' be the space of continuous linear functionals on X and $x \in X$. Show the following statements using the Hahn-Banach Theorem
 - (a) There is a continuous linear functional $\varphi \in X'$ such that $\varphi(x) = ||x||$.
 - (b) $||x|| = \sup_{\varphi \in X', ||\varphi|| = 1} |\varphi(x)|.$

Optional Problems

(OP1) Let K be a compact metric space. Determine the connected components of GL(C(K)).