C^{*}-Algebras

Winter semester 2016/17
Prof. Dr. M. Keller

Sheet 11
Let (b, c) be a graph over X and \mathcal{L} the Laplacian

$$
\mathcal{L} \varphi(x)=\sum_{x \in X} b(x, y)(\varphi(x)-\varphi(y))+c(x) \varphi(x) .
$$

Furthermore, let

$$
\operatorname{deg}: X \rightarrow[0, \infty), \quad x \mapsto \sum_{x \in X} b(x, y)+c(x)
$$

and

$$
\ell^{2}(X)=\sum_{x \in X}\left\{\varphi: X \rightarrow \mathbb{C} \mid\|\varphi\|_{2}:\left(\sum_{x \in X}|\varphi(x)|^{2}<\infty\right)^{1 / 2}\right\}
$$

be the Hilbert space with scalar product $\langle\cdot, \cdot\rangle$.
(1) Show that the restriction L of \mathcal{L} to $\ell^{2}(X)$ is a bounded selfadjoint operator if deg is a bounded function.
To this end show that

$$
\mathcal{L} C_{c}(X) \subseteq \ell^{2}(X, m)
$$

and that the restriction of \mathcal{L} to $C_{c}(X)$ is densely defined on $\ell^{2}(X)$, and bounded on $\ell^{2}(X)$ if and only if deg is a bounded function.
Hint: For the boundedness, show first that

$$
\|\mathcal{L} \varphi\|=\sup _{\|g\|_{2}^{2}=1}\langle\mathcal{L} \varphi, g\rangle
$$

From now on let $X=\mathbb{N}$ and $b(x, y)=1$ if $|x-y|=1$ and $b(x, y)=0$ otherwise and let L be the restriction of \mathcal{L} to $\ell^{2}(X)$.
(2) Show that 1_{x} is a cyclic vector for L in $\ell^{2}(X)$.
(3) Compute the spectrum of L.

Hint: Try to mimick the Fourier transform of \mathbb{R}.
(4) Compute the spectrum of $S: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ be given by

$$
S \varphi(n)=\varphi(n-1), \quad n \in \mathbb{Z}
$$

