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Zusammenfassung in deutscher Sprache

Diese Diplomarbeit beschäftigt sich mit der speziellen Anordnung der Atome oder

Moleküle in Quasikristallen. Unser Ziel ist es, eine geeignete Zerlegung für einen

entsprechenden Schrödingeroperator anzugeben. Zur Beschreibung der Struktur eines

Quasikristalls werden wir zunächst ein gut geeignetes Modell angeben. Als nächstes

werden wir Konzepte einführen, die wir für eine Theorie benötigen, die unabhängig von

der Lokalisation des Ursprungs ist. Dabei werden wir auch den Begriff des direkten Inte-

grals kennen lernen. Diese Methode hat sich als nützlich herausgestellt, um komplizierte

Operatoren zu untersuchen. Dann werden wir unseren weitere Überlegungen auf den

Rd beschränken. Es wird um jedes Atom oder Molekül eine Zelle konstruiert, die den

Einflussbereich der zugehörigen Potentiale enthält. Aufgrund der Beschaffenheit der

Quasikristalle wird sich herausstellen, dass es nur eine endliche Anzahl an verschiedenen

Zellen und damit an verschieden Potentialen gibt. Es wird sich zeigen, dass wir damit

einen Hilbertraum konstruieren können und dieser unitär äquivalent zu L2(Rd) ist. Die

entsprechende unitäre Abbildung heißt Wannier-Transformation inspiriert durch die

Arbeit von [BNM]. Abschließend werden wir in Anlehnung an diese Arbeit die Zerlegung

des Schrödingeroperators bezüglich dieser Transformation angeben und beweisen.



Abstract

This diploma thesis engages with the special arrangement of atoms or molecules of

quasicrystals. We would like to find an appropriate decomposition of the corresponding

Schrödinger operator. Therefore, we will first specify a mathematical model which

describes the structure of a quasicrystal in a good way. Next we introduce concepts that

are necessary for a theory independently of the origin’s position. Besides, we will get

to know the notion of a direct integral. It is well-known that this method is useful to

analyze difficult operators. Then, we restrict our further considerations to the space

Rd . We will construct a cell around every atom or molecule such that it contains the

area of influence of the corresponding potentials. As a result of the configuration of

quasicrystals it points out that there can be at most a finite number of different cells

and potentials, respectively. According to this we will construct a Hilbert space which

is unitary equivalent to L2(Rd). The related unitary map is called Wannier transform

inspired by [BNM]. Finally, we indicate a decomposition of the Schrödinger operator

with respect to this transformation and prove it by following [BNM].
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Chapter 1

Introduction

A crystal is a solid material consisting of periodically arranged atoms. Each such a

material satisfies a translation invariance condition according to their lattice structure.

In 1984 Dan Shechtman analyzed the structure of an aluminum-manganese composition

which had been cooled down fast. He discovered an unusual structure of this material,

which is called quasicrystal today. He was awarded the Nobel Prize in Chemistry

for his work ([SBGC]) in 2011. In this paper it turns out that the symmetry of the

material coincides with the icosahedral point group. This is incompatible with the lattice

translations. Since such an alloy has a high degree of hardness and a good elasticity it

is of special interest in physics as well as in other fields.

Figure 1 1 :
The diffraction pattern of a quasicrystal

The configuration of the atoms and molecules in quasicrystals appears regular but not

periodic. In Figure 1 we can see the diffraction pattern of the kind of quasicrystals

1 Source: [SBGC]
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observed by Shechtmann. One feature of quasicrystals is that there can be found at

most a finite number of different sections. This property is called finite local complexity.

A mathematical model of such structures is typically embedded in a group. For instance,

one can consider the group (Rd ,+). This diploma thesis can be divided in two parts.

In chapter 2., 3. and 4. our elaborations are dealing with locally compact groups in

general. Chapters 5., 6. and 7. are restricted to Rd , where we exploit special properties

of the euclidean space. The second part is inspired by [BNM].

We will proceed in the following way: First, in chapter 2. the mathematical model

which represents our quasicrystals is given. This part is mainly inspired by [BLM] and

[BNM]. First it makes sense to take into account the fact that the atoms or molecules of

a material maintain a minimal distance to each other. Further, we would like to exclude

the case that there are gaps in the material meaning that we have a maximal distance

bewteen the particles. As mentioned above one feature of quasicrystals is that they are

of finite local complexity. A set holding these conditions is called D-set. Then, a D-set

D displays the positions of the atoms or molecules of the material. In section 2.3 (”Hull

and Transversal”) we introduce the notion of the transversal T . It can be imagined as

the set of all translates of the origin to any atom of the material. This is necessary for a

theory which is independent of the choice of the origin’s position.

In chapter 3 we construct the Lagarias group and its dual group, which will be used to

transform our space into another. Moreover, there is given an introduction to the theory

of Haar measures and dual groups in general, see [DE], [LOO]. Further, in chapter 4 we

will declare the main ideas of the concepts about groupoids, continuous fields of Hilbert

spaces and representations. These are useful tools to decompose difficult operators to

determine their spectrum easier. The underlying concept deals with direct integrals.

In the next chapter we introduce the concept of a tiling of Rd . In detail, we define a

cell, called Voronoi cell, for each element of our D-set D such that the set of all these

cells tiles our space Rd . For instance, we can imagine the Penrose tiling (Figure 2)

where our aperiodic Delone set is the set of all barycenters of each of these cells. In our

further considerations any cell will be endowed with a color (so called Collar) which

depends on the adjacent cells of it. The colors in Figure 2 are for aesthetic effects only.

They do not have any relation to the Collar of the cells. Then, we define a set P(d) of

equivalence classes of such cells with respect to their Collar. It is called the set of all

collared Voronoi proto d-cells. According to the fact that quasicrystals are of finite local

complexity it follows that P(d) is finite. This is one essential property of quasicrystals.



9

Figure 2 2 :
The Penrose tiling

Our main aim in this work is to find a useful decomposition of a Schrödinger operator

of a quasicrystal such that we can determine the spectrum of the operator easier.

The knowledge of the eigenfunctions and their eigenvalues is of particular importance,

because the eigenvalues specify the admissible energy states of the system. Note that

the eigenfunctions of an operator are usually elements of the function space L2(Rd). In

order to do so it is necessary to construct a convenient Hilbert space which is unitary

equivalent to this L2-space. We suppose that the essential part of the potential of an

atom or molecule lies in the corresponding Voronoi cell of it. According to our previous

considerations there are only a finite set of different cells. Thus, it is sufficient for us to

draw our attention to a finite number of different potentials. In detail, the procedure

works as follows:

The property that P(d) is finite will be used to define finitely many closed subspaces

of the L2-space of the dual Lagarias group. Using this, one can construct a family of

Hilbert spaces (Ht)t∈T over the transversal T . By defining a map W t : Cc(Rd)→ Ht,

called Wannier transform, we will show that these transformations satisfy some useful

features, as a covariance condition. It turns out that we can extend W t to a unitary

map between L2(Rd) and Ht.

Furthermore, we can endow the family (Ht)t∈T with a structure of a continuous field

of Hilbert spaces. We will also specify a strongly continuous, unitary representation

2 Source: http://en.wikipedia.org/wiki/File:Penrose Tiling (Rhombi).svg, January, 27th, 2012
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with respect to the family (Ht)t∈T . Thus, our theory is independent of the choice of the

origin’s position.

Finally, we adopt the Wannier transform to decompose the Schrödinger operator. We

expect that this decomposition allows us to determine the spectrum of such operators

in an easier way. Since we have a strongly continuous, unitary representation the origin

can be replaced without changing the spectrum of the Schrödinger operator.

At this point I would like to thank my advisor Prof. Dr. Daniel Lenz for his caring

support in the last year. Especially I thank him for giving me the opportunity to take a

trip to Paris to visit Dr. Giuseppe de Nittis and Prof. Dr. Jean Bellissard. My special

gratitude goes to Marcel Schmidt who read this work very carefully and who delivered

many good ideas to me. I would like to express my thanks to Felix Pogorzelski, Dr.

Matthias Keller and Sebastian Haeseler for their friendly aid and giving me a lot of

inspirations. Moreover, I have always appreciated spending their time to read my work

and helped me to understand some problems. My gratitude goes also to Dr. Giuseppe

de Nittis who spent his time to meet me in France and helped me with some questions.

I thank all the other readers of this diploma thesis taking their time. More precisely, I

thank Juliane Neubauer, Peter Beckus, Petra Hofmann and Saskia Skeide. Further, I

thank Prof. Dr. Jean Bellissard, Dr. Giuseppe de Nittis and Dr. Vida Milani for giving

me the possibility to read their preliminary paper [BNM].



Chapter 2

Delone sets

Let G be a group with group composition ”+”. We denote by −x the inverse element

of x ∈ G and by 0 the neutral element of the group G, which are unique. It is common

to write x− y for x, y ∈ G instead of x+ (−y).

Further, we call G an abelian group if for each x, y ∈ G the equation

x+ y = y + x

holds.

In the second chapter we will use linear Z-combinations of elements of the group G and

of subsets of the group. Since we denote the composition of the group by ”+” we will use

the following notations. For x1, . . . , xk ∈ G we write
k∑
j=1

xj instead of x1 + x2 + . . .+ xk,

which is an element of G. Now let n be any element of Z and x ∈ G, then,

n · x :=


0 n = 0
n∑
j=1

x n > 0

|n|∑
j=1

−x n < 0

.

These notations are motivated by the form of linear Z-combination of Rd . Using this

we define the set of all finite linear Z-combinations of some subset F ⊆ G by

[F ] :=

{
N∑
j=1

nj · xj | N ∈ N, xj ∈ F and nj ∈ Z

}
.

Moreover, we call a finite subset {x1, . . . , xk} ⊆ G linear Z-independent if

k∑
j=1

nj · xj = 0 ⇒ n1 = . . . = nk = 0.

11
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Let A,B be subsets of G and x ∈ G, then,

A+B := {y + z | y ∈ A, z ∈ B},
−A := {−y | y ∈ A},

x+ A := {x+ y | y ∈ A}.

The pair (G,O) is called a topological group if G is a group, (G,O) is a topological

space, where O is the topology on G and for each x, y ∈ G the maps

(x, y)
ρ7→x+ y,

x
i7→ − x,

are continuous. Note that G×G is endowed with the product topology. An element

x ∈ G has a compact neighborhood if there is some open set V ∈ O and some compact

subset K of G such that x ∈ V ⊆ K. We say that (G,O) is a locally compact group if

each x ∈ G has a compact neighborhood.

Let A be some subset of G. An element b ∈ A is called an isolated point if there is an

open neighborhood V ∈ O of b such that A ∩ V = {b}. We call the set A ⊆ G discrete

if any element of A is an isolated point. The induced topology of B ⊆ G is given by

O(B) := {V ∩ B | V open in G}. Thus, for any discrete subset A of G the induced

topology contains every single element of A. This topology is called discrete topology.

A topological group G is called σ-compact if there is a countable family of compact

subsets (Ki)
∞
i=1 of G such that G =

∞⋃
i=1

Ki. Furthermore, a topological group is compactly

generated if every subset A ⊆ G is closed, if and only if A∩K is closed for each compact

subset K ⊆ G.

We consider here a compactly generated, locally compact, abelian group which is σ-

compact. Further, we suppose that G is a Hausdorff space, which means that for any

two distinct elements x and y of G there are two disjoint open neighborhoods Ux and

Uy of x respectively y.

Note further, that any compact subset of a Hausdorff space is closed, see [QUE]. For a

set A ⊆ G we will denote by ](A) the number of elements of A.

In this work we consider a locally compact, abelian, Hausdorff group (G,O) which is

compactly generated and σ-compact only. We write G instead of (G,O).

In the section ”Hull and Transversal” we will need the following concept of a net. This

is a more general concept than sequences. A pair (I,C) is called a directed set if ” C ”

is a relation on the non-empty set I such that the following assertions hold.
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(i) For any ι ∈ I the relation ιC ι holds.

(ii) For any ι1, ι2, ι3 ∈ I such that ι1 C ι2 and ι2 C ι3 implies that ι1 C ι3.

(iii) For all ι1, ι2 ∈ I there exists an ι3 ∈ I such that the relations ι1 C ι3 and ι2 C ι3

are true.

Let (I,C) be a directed set and consider some subset X ⊆ Y of a topological space Y .

A map x̃ : I → X is called net. As in the case of sequences we write (xι)ι∈I ⊆ Y instead

of x̃. We say a net converges to x (xι → x) if for any neighborhood U of x there is an

ι0 ∈ I such that for each index ι ∈ I greater than ι0 (ιB ι0) we have xι ∈ U .

Let (xι)ι∈I be some net in R, the limes superior lim
ι

and the limes inferior lim
ι

are defined

by

lim
ι
xι := lim

ι

(
sup
kBι

xk

)
= inf

ι

(
sup
kBι

xk

)
,

lim
ι
xι := lim

ι

(
inf
kBι

xk

)
= sup

ι

(
inf
kBι

xk

)
.

Note that, if the topological space Y is a Hausdorff space, it can be shown that a net

has at most one limit point in Y , see [QUE]. The topology of Y has a countable base or

Y is second countable if there exists a countable collection of open sets such that each

other open set can be expressed by the union of some of these open sets.

Let X and Y be topological spaces. We call a map f : X → Y continuous, if for any

x ∈ X and some open neighborhood V ⊆ Y of f(x) there is an open neighborhood

W ⊆ X of x such that f(W ) ⊆ V . In a space with a countable base the concepts of

continuity and closure are described by sequences, else the notion of a net is necessary,

see [QUE].

Lemma 2.1 ([QUE]). Let X and Y be topological spaces. Then, f : X → Y is

continuous in x ∈ X, iff for any net (xι)ι∈I ⊆ X with xι → x, it follows that f(xι)→ f(x)

in Y .

2.1 Definition and properties

This section is inspired by [BLM] and [BNM]. A subset D ⊆ G is called aperiodic if for

some t ∈ G the equality t+D = D implies that t = 0.

Furthermore, a subset D ⊆ G is uniformly discrete if there is an open neighborhood

U of 0 ∈ G such that for any x ∈ G the sets x+ U and D have at most one common
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point. Then, D is called U -uniformly discrete. We say for x ∈ G that the set x+ U is a

translate of U . The definition of a set D which is U -uniformly discrete implies

(α + U) ∩ D = {α}, for all α ∈ D.

Further, we call D relatively dense if there exists a compact set K such that

D +K =
⋃
α∈D

(α +K) = G.

In this situation we say D is K-relatively dense.

Imagine D as the set of positions of atoms in some material. The U -uniform discreteness

means that these atoms have a minimal distance between each other whereas the

definition of K-relatively dense does not allow too big gaps in the material. The

property that D is aperiodic is an important feature of quasicrystals. In detail, the

order of the atoms of a quasicrystal is not a cubic-lattice.

For instance, consider G = R and let D = Z. Then, D is U -uniformly discrete and

K-relatively dense. More precisely, U can be chosen as the open interval (−1
2
, 1

2
) and

K can be chosen as the closed interval [−1
2
, 1

2
]. Note that Z is not aperiodic. In fact,

D satisfies that t+D = D for any t ∈ Z. At the end of this chapter we give a further

example which is also aperiodic.

Lemma 2.2. Let G be an abelian topological group and D ⊆ G. Then, the following

assertions are equivalent for a compact subset K ⊆ G.

(i) The set D is K-relatively dense.

(ii) For any x ∈ G the set (x+ (−K)) ∩ D is not empty .

Proof. Let K ⊆ G be compact such that D + K = G. Moreover, we know that a

continuous function on a topological space maps compact sets onto compact sets. Since

i : G→ G is continuous we know that (−K) is compact.

”⇒”: Let x be any element of G. We will show that (x + (−K)) ∩ D 6= ∅. Since

D +K = G there is a y ∈ K and an α ∈ D such that α + y = x and therefore,

α = x+ (−y).

It is (−y) ∈ (−K) by definition implying that (x+ (−K)) ∩ D 6= ∅.
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”⇐”: Showing that G ⊆
⋃
α∈D

(α + K) suffices, since the converse inclusion is obvious.

Consider x ∈ G and as above there is some α ∈ D and y ∈ K such that x = α+ y.

Consider D which is a U -uniformly discrete and K-relatively dense subset of G. Then,

we call D a Delone set, more precisely, a (U,K)-Delone set.

Let K be a compact subset of G. A cluster or patch in K is a finite set of the form

PK := −x+ P ′, where P ′ ⊆ K ∩ D and x ∈ P ′. In particular, you can imagine PK as

all connecting lines from a point x to any other element of P ′ if G is equal to Rd .

Let K ⊆ G be a compact set and D ⊆ G a U -uniformly discrete set. We denote by

Clu(D,K ) := {(−α +D) ∩K | α ∈ D}

the set of all clusters of D of the form K. Because the set D is U -uniformly discrete, the

intersection (−α +D) ∩K is finite, see the following Lemma 2.3. If Clu(D,K ) is finite

for every compact K ⊆ G we call D of finite local complexity (FLC). According to our

definition of cluster adding the condition that D is of finite local complexity declares

that there are only a finite number of different clusters. This property is really essential

in order to define the Lagarias group. Moreover, it entails that we only need a finite

number of different cells which tile our group G, see Proposition 5.4.

A Delone set D is called a set of finite type if

(D −D) := {α− β | α, β ∈ D}

is discrete and closed.

A subset S of a locally compact, abelian topological group G is called locally finite if for

any compact K ⊆ G the set S ∩K is finite or empty.

Lemma 2.3. Let D be a subset of a locally compact abelian group G.

(i) The set D is an aperiodic Delone set, iff for any t ∈ G the set t + D is also an

aperiodic Delone set.

(ii) The set D is of finite local complexity, iff for each t ∈ G the set t+D is of finite

local complexity.

(iii) If D is U-uniformly disrete then D is locally finite.

(iv) If (D −D) is locally finite, then, D is locally finite.
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Proof. Note that in (i) and (ii) it is sufficient to show one direction, the converse follows

immediately for t = 0 ∈ G.

(i) Let t ∈ G be fixed but arbitrary. Suppose for some x ∈ G that

x+ (t+D) = t+D.

Because G is abelian it follows that x+D = D. Since D is aperiodic we get x = 0.

Consequently, the set t+D is aperiodic.

Now we have to show that t+D is a (U,K)-Delone set. For any x ∈ G there is a

y ∈ G such that x = t+ y. Further, we get by an easy computation

(x+ U) ∩ (t+D) = t+ ((−t+ x︸ ︷︷ ︸
=y

+U) ∩ (−t+ t+D))

= t+ ((y + U) ∩ D).

Moreover, D is U -uniformly discrete implying that (y + U) ∩ D contains at most

one element and so any translate of it as well. Hence, t+D is U -uniformly discrete.

Since D is K-relatively dense it follows by Lemma 2.2 and for any x ∈ G that

(x+ (−K)) ∩ (t+D) = t+ ((−t+ x︸ ︷︷ ︸
=:y∈G

+(−K)) ∩ (−t+ t+D)

= t+ ((y + (−K)) ∩ D)︸ ︷︷ ︸
6=∅

6= ∅.

Consequently, t+D is K-relatively dense.

(ii) In the first part of the proof of (i) we have shown that for each t ∈ D the set

t+D is again U -uniformly discrete. Thus, it suffices to show that Clu(t+D, K) =

Clu(D,K ) for any compact K ⊆ G.

Let K be some compact subset of G, then,

Clu(t+D, K) = {(−α + (t+D)) ∩K | α ∈ t+D}
α=t+β

= {(−(β + t) + (t+D)) ∩K | β ∈ D}
= {(−β +D) ∩K | β ∈ D}
= Clu(D,K ) .
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(iii) Let K ⊆ G be some compact set and assume the set D ∩ K is not finite. We

choose the following covering of K

K ⊆
⋃
y∈K

(y + U).

Because K is compact we find y1, . . . , yN ∈ K such that

K ⊆
N⋃
j=1

(yj + U).

Hence, for at least one j ∈ {1, . . . , N} there has to be an infinite number of

elements of D in yj + U . This contradicts the fact that D is U -uniformly discrete,

which means that x+ U and D have at most one common element for any x ∈ G.

(iv) For any α ∈ D we know that −α +D ⊆ (D −D). Thus, for any compact K ⊆ G

we get (−α+D)∩K ⊆ (D−D)∩K which is finite. On the other hand, since the

group composition is continuous any translate of a compact set is again compact.

Hence, D is locally finite.

For some compact set K ⊆ G the set

Rep(D,K ) := {x ∈ G | (−x+D) ∩K = D ∩K}

is called the repetition of D with respect to K.

Note that (−x+D)∩K = −x+ (D∩ (x+K)). We can imagine the intersection D∩K
as the image of D in the window K. Then, the repetition is the set of all positions

where the translated images are equal to the image in the window K. A set D ⊆ G of

finite local complexity is called repetitive if Rep(D,K ) is a relatively dense subset of G

for every compact set K ⊆ G.

In the following we call D a D-set if D is an aperiodic, repetitive Delone set of finite

local complexity.
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2.2 Delone sets of finite local complexity

In this section our aim is to relate the concepts of finite local complexity and finite type

to each other.

Proposition 2.4. Let D be a Delone set of a locally compact, abelian group G. The

following statements are equivalent.

(i) The set D is of finite local complexity, which means that Clu(D,K ) is finite for

any compact set K ⊆ G.

(ii) For any compact set K ⊆ G the intersection (D −D) ∩K is finite or empty.

(iii) The set D is a set of finite type, which means that (D −D) is discrete and closed.

Proof.

”(i) ⇒ (ii)”:

Since D is of finite local complexity for any compact K ⊆ G we can choose

α1, . . . αN ∈ D such that

Clu(D,K ) := {(−α1 +D) ∩K , . . . , (−αN +D) ∩K}.

Then,

(D −D) ∩K =
⋃
α∈D

(−α +D) ∩K =
⋃

((−α+D)∩K)∈Clu(D,K )

(−α +D) ∩K

FLC
=

N⋃
j=1

(−αj +D) ∩K.

According to Lemma 2.3 we know for each j ∈ {1, . . . , N} that (−αj + D) is a

Delone set. Thus, (−αj + D) ∩K is finite for any compact K ⊆ G. Moreover,

the finite union of finite sets is again finite and so (D −D) ∩K is finite for any

compact set K.

”(ii) ⇒ (iii)”:

We would like to show that (D−D) is a closed and discrete subset of G. To do so

assume (D −D) is not discrete.

Then, there exists an x ∈ (D−D) for which any neighborhood V ⊆ G of x satisfies

]((D − D) ∩ V ) ≥ 2 . Let K be a compact neighborhood of x and x ∈ V ⊆ K

open. We can find at least one element y ∈ (D − D) ∩ V different to x. Since
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G is a Hausdorff space, there is another open neighborhood W ⊆ V of x such

that y 6∈ W . Because ]((D −D) ∩W ) is greater than or equal to two the number

]((D−D) ∩ V ) is greater than or equal to three. Using this procedure inductively

we obtain ]((D −D) ∩ V ) =∞.

On the other hand, we supposed that (D −D) ∩K is finite for K compact which

leads to a contradiction. Hence, (D −D) has to be discrete.

To show that (D −D) is closed, take some convergent net (xι) ⊆ (D −D) which

tends to x ∈ G with respect to the topology of G. By the definition of a locally

compact set there is a compact neighborhood K of X. Thus, there is some ι0 ∈ I
such that for any ι B ι0 the element xι is in K and further, the intersection

(D −D) ∩K is finite. Thus, the set of values in (D −D) of the net xι is finite.

Assume x is not an element of (D − D). Thus, there is an open neighborhood

V ⊆ K of x such that ((D − D) ∩ V ) ⊆ ((D − D) ∩ K) is empty. This is a

contradiction to (xι)ι∈I ⊆ (D −D) converging to x.

”(iii) ⇒ (i)”:

Let K be some compact subset of G. The intersection (D − D) ∩ K is finite,

because (D −D) is discrete. Hence, there is a finite number of different subsets of

(D −D) ∩K only. On the other hand, for each α ∈ D the cluster (−α+D) ∩K
is a subset of (D −D) ∩K. Thus,

Clu(D,K ) =
⋃
α∈D

{(−α +D) ∩K}

has to be finite for any compact K.

One should not confuse the property that (D −D) ∩K is finite for any compact K as

the definition of weakly uniformly discrete. We say W ⊆ G is weakly uniformly discrete

if sup
x∈G

](W ∩ (x+K)) is finite for any compact set K ⊆ G.

For instance, consider G = R and the compact set K := [−1
3
, 1

3
] in R. Define

W :=
⋃

m∈N \{0}

{x = m+
k

4m
∈ R | k ∈ N with −m ≤ k ≤ m}.

In fact, m + k
4m

lies in the interval m + [−1
3
, 1

3
] =: Km, because | k

4m
| ≤ 1

4
. The blue

points in Figure 3 illustrate the set W .
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Figure 3 :
A set of finite local complexity which is not weakly uniformly discrete

Moreover, we can easily see

sup
x∈R

(W ∩ (x+K)) ≥ sup
m∈N

(W ∩ (Km)) =∞

and so W is not weakly uniformly discrete. On the other hand, W ∩K is finite or empty

for any compact set K ⊆ R.

In the paper of [BLM] it is shown for a compactly generated group G and a Delone set

D ⊆ G that (D −D) is weakly uniformly discrete if and only if (D −D) is uniformly

discrete.

2.3 Hull and transversal

In this section we define a topology on subsets of points of G. We denote by ΛU the

set of all U -uniformly discrete sets in G. First we will show that ΛU is closed with

respect to our topology. Moreover, we will characterize convergence in ΛU . Then, we

will consider a (U,K)-Delone set D of finite local complexity and construct two closed

subsets ΩD and PT of ΛU with D. By using the results on ΛU it will be proved that

some properties of D will persist for the elements of ΩD and PT , respectively.

In order to define a topology on ΛU we need the concept of Radon measures. Here we

give a short summary of some results and definitions of these concepts following [BAU]

and [ELS]. The more interested reader may find further information there.

Let G be a locally compact abelian group which is Hausdorff and σ-compact. Let µ be

a measure defined on the Borel σ-algebra B(G) of G. We say µ is locally finite if for any

x ∈ G exists an open neighborhood Vx of x such that µ(Vx) is finite. Further, we call µ

inner regular if

µ(B) = sup{µ(K) | K ⊆ B, K is compact}

for any Borel set B ∈ B(G). Then, µ is a Radon measure if µ is locally finite and inner

regular. Further, a measure µ is called outer regular if for any Borel set B ∈ B(G)

µ(B) = inf{µ(V ) | B ⊆ V, V is open}.
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Since the group G is σ-compact and Hausdorff this implies that any Radon measure on

G is also outer regular, see [ELS]. We denote byM the set of all Radon measures on G.

Furthermore, M is endowed on a natural way with the vague topology.

The support of a function f on G is defined by

supp(f) := {x ∈ G | f(x) 6= 0}.

The set of all continuous functions f on G with compact support is denoted by Cc(G).

A net (µι)ι∈I ⊆M is called convergent to µ with respect to the vague topology if

lim
ι

ˆ

G

f dµι =

ˆ

G

f dµ

for any f ∈ Cc(G). Note that M is closed with respect to the vague topology. For our

further considerations we need the following well known proposition.

Proposition 2.5 (Urysohn,[BAU]). Consider a locally compact Hausdorff space G. Let

K ⊆ G be a compact set and W ⊆ G some open subset with K ⊆ W . Then, there exists

a function f ∈ Cc(G) with compact support in W such that 0 ≤ f ≤ 1 and f(x) = 1 for

any x ∈ K.

Consider now for x ∈ G the measure

δx(A) :=

1, x ∈ A

0, x 6∈ A
, for A ∈ B(G).

Lemma 2.6. The map J : ΛU →M defined by

J (D) := δD :=
∑
α∈D

δα, for D ∈ ΛU ,

is well-defined and injective.

Proof. We have to verify that J maps into M. In particular, we have to show that for

each D ∈ ΛU the image J (D) :=
∑
α∈D

δα is an inner regular measure which is locally

finite.

Since the elements D ∈ ΛU are U -uniformly discrete it follows immediately that J (D)

is locally finite. In detail, x+ U is an open neighborhood of x ∈ G and so

(J (D))(x+ U) = ](D ∩ (x+ U)) ≤ 1 <∞ for any x ∈ G.



22 CHAPTER 2. DELONE SETS

Let B ∈ B(G) be a Borel set. Consider first the case that ](D∩B) is infinite. Thus, the

number J (D)(B) is equal to ](D ∩B) =∞. On the other hand, there is a countable

subset {x1, x2, . . .} of (D ∩ B) and the set Kn := {x1, . . . , xn} ⊆ (D ∩ B) is compact.

Hence,

sup{µ(K) | K ⊆ B compact} ≥ sup
n∈N
{µ(Kn) | Kn := {x1, . . . xn}} =∞.

Now let ](D ∩B) =: N be finite. We have for the compact set KN := (D ∩ B) by the

monotonicity of a measure

N = ](D ∩B) = µ(B) ≥ sup{µ(K) | K ⊆ B compact}
KN⊆B
≥

compact
µ(KN) = N.

Altogether, the measure J (D) is inner regular and locally finite and so it is a Radon

measure. That J is injective is a direct implication of the definition of J .

If we consider a Radon measure µ ∈ J (ΛU) the corresponding point set is given by

Dµ := {x ∈ G | µ({x}) = 1}.

That Dµ is unique, is a consequence of the fact that J is injective.

A subset V of ΛU is called open if there exists an open set O ⊆M with respect to the

vague topology such that V = J −1(O). We call the induced topology on ΛU pointset

topology and denote it by O(ΛU) (initial topology).

The support supp(µ) of a Radon measure µ is defined by

{x ∈ G | x ∈ B ∈ B(G) implies µ(B) > 0}.

Proposition 2.7. For any open set U in G the set J (ΛU ) is closed with respect to the

vague topology.

Proof. Consider some convergent net (µι)ι∈I ⊆ J (ΛU ) which tends to µ with respect to

the vague topology. We would like to show that µ can be expressed by the sum over

some δ measures and that the corresponding support of µ is U -uniformly discrete.

Assume for some x ∈ G that there are two different α, β ∈ (x+U)∩ supp(µ). Since G is

Hausdorff we can find two open, disjoint neighborhoods Vα ⊆ (x+U) and Vβ ⊆ (x+U) of

α and β, respectively. Since α and β are elements of the support any open neighborhood

of them has positive measure.

According to Proposition 2.5 we can find a continuous function f : G → [0, 1] with

compact support in Vα such that f(α) = 1. Similar there is a continuous function

g : G → [0, 1] with compact support in Vβ such that f(β) = 1. Since f is continuous

there is some open neighborhood Wα ⊆ Vα of α such that f |Wα≥ 1
2
. Analogously, there

is some open neighborhood Wβ ⊆ Vβ of β with g |Wβ
. The measures of Wα and Wβ are

larger than some constant c, because α and β are elements of the support of µ.
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Hence,

c ≤µ(Wα)

ˆ

Wα

1 dµ ≤ 2 ·
ˆ

Wα

f dµ ≤ 2 ·
ˆ

G

f dµ

=2 · lim
ι

ˆ

G

f dµι = 2 · lim
ι

ˆ

Vα

f︸︷︷︸
≤1

dµι = 2 · lim
ι
µι(Vα)

and

c
see

≤
above

2 · lim
ι
µι(Vβ).

Consequently, there is an ι0 ∈ I such that for ι B ι0 the intersections Dµι ∩ Vα and

Dµι ∩ Vβ are not empty. Since Vα and Vβ are disjoint and both are subsets of x+ U it

follows that for ιB ι0 the intersection Dµι ∩ (x+U) contains at least two elements. This

contradicts that Dµι is U -uniformly discrete.

Thus, the support is U -uniformly discrete and µ has the form

µ =
∑

α∈supp(µ)

cα · δα

where cα is some positive real number.

Next we would like to verify that cα is equal to one for each α ∈ supp(µ). Fix some

α ∈ supp(µ). According to Proposition 2.5 there is a continuous function f : G→ [0, 1]

with compact support α + U such that f(α) = 1 and

0 < cα = µ({α}) like
=

above
lim
ι

ˆ

α+U

f dµι = lim
ι
f(αι).

where some ι0 ∈ I exists such that for ιB ι0 the equality {αι} = (α + U) ∩ Dι holds. If

we now show that αι → α we get f(αι)→ f(α) = 1 by Lemma 2.1.

Let V ⊆ (α + U) be some open neighborhood of α. By Proposition 2.5 there exists a

continuous function fV : G → [0, 1] with compact support in V such that fV (α) = 1

and so

0 < cα = µ({α}) = lim
ι
fV (αVι ).

This implies that for ι large enough

{αVι } ∈ (α + V ) ∩ Dι ⊆ (α + U) ∩ Dι = {αι}

and so αVι = αι. Consequently, for any open neighborhood V we can find an ι0 ∈ I such

that for ιB ι0 the element αι lies in V . Hence, αι converges to α which concludes the

proof.
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Proposition 2.8. Let Dι ⊆ ΛU be a net. Then, Dι tends to D with respect to the

pointset topology, if and only if the following two statements are true.

(i) For any α ∈ D there is a net (αι)ι∈I with αι ∈ Dι and αι → α.

(ii) Let Dιj be some subnet of Dι and βιj ∈ Dιj such that the limit lim
j
βιj =: β exists,

then, β ∈ D.

Proof. Take some net Dι ⊆ ΛU .

”⇒”: Suppose Dι converges to D. Since ΛU is closed the set D has to be an element of

ΛU , see Proposition 2.7. We denote by µ the corresponding measure of D and by

µι the corresponding measure of Dι. Indeed, we know µι → µ, which means that

for each f ∈ Cc(G) the equation
´
G

f dµ = lim
ι

´
G

f dµι is true.

”(i)”: If Dι → D we have seen in the proof of Proposition 2.7 that for each α ∈ D
there is a net (αι)ι∈I which tends to α.

”(ii)”: Take a subnet Dιj and let βιj ∈ Dιj such that βιj → β ∈ G. Note j is an

element of a directed set J and for any ι0 ∈ I there is a j0 ∈ J such that for

all j B j0 we have ιj B ι0. In particular, for any open set Vβ which contains β

there exists a j0 ∈ J such that for each j B j0 we know βιj ∈ Vβ.

Assume now β 6∈ D which implies that µ({β}) = 0. Further, for some compact

neighborhood Kβ of β the intersection Kβ ∩D is finite or empty, see Lemma

2.3 (iii). Thus, we can suppose that there is an open neighborhood Vβ ⊆ Kβ

of β such that Vβ ∩ D = ∅, because G is a Hausdorff space. According to

Proposition 2.5 we can find a continuous function f : G→ [0, 1] with compact

support in Vβ such that f(β) = 1. Since f is continuous there is an open

neighborhood Wβ ⊆ Vβ of β such that f(x) ≥ 3
4

for any x ∈ Wβ. Altogether,

since any subnet converges to the same limit

0 = µ({β})
supp(f)⊆Vβ

=
∑

α∈(Vβ∩D)

f(α) =

ˆ

G

f dµ = lim
ιj

ˆ

G

f dµιj

≥ lim
ιj

ˆ

Wβ

f︸︷︷︸
≥ 3

4

dµιj ≥
3

4
lim
ιj

ˆ

Wβ

dµιj =
3

4
lim
ιj
µιj(Wβ).

On the other hand, for ιj large enough βιj ∈ Wβ by the convergence of

βιj . Thus, µιj(Wβ) is at least 1 which is a contradiction to our conclusion.

Consequently, β has to be an element in D.
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”⇐”: Suppose (i) and (ii) are true. We would like to show that the net Dι converges

to D. We denote by µι the corresponding measure of Dι. First of all, we have to

check if D is U -uniformly discrete. To do so take α, β ∈ D, by (i) we know that

there are two nets αι, βι ∈ Dι such that αι → α and βι → β, respectively.

Let Ũ be some translate of U such that α, β ∈ Ũ ∩ D. Then, there is an ι0 ∈ I
such that for any ιB ι0 we get that αι, βι ∈ Ũ , because Ũ is an open neighborhood

of α and β, respectively. On the contrary, Dι is U -uniformly discrete. In fact, α

and β can not be both an element of Ũ , if they are different. Hence, D has to be

an element of ΛU . Thus, we can denote the corresponding measure of D by

µ =
∑
α∈D

δα.

We would like to show that for any f ∈ Cc(G) the equation

lim
ι

ˆ

G

f dµι =

ˆ

G

f dµ.

holds. By Proposition A.6 we can write any g ∈ Cc(G) as a finite sum of functions

ψj ∈ Cc(G) with support contained in some translate Ũ of U . Thus, it is sufficient

to consider a function f where the support K of f is contained in some translate

Ũ of U . Take some f ∈ Cc(G) and let K ⊆ Ũ be the compact support of f .

”
´
G

f dµ 6= 0”:

Since K ⊆ Ũ and D ∈ ΛU it follows that the number ](D ∩K) ≤ ](D ∩ Ũ)

is at most one. On the other hand, the integralˆ

G

f dµ =
∑
β∈D

f(β) =
∑

β∈(D∩K)

f(β)

is not zero and so the intersection D ∩ K can not be empty. Hence, the

intersection D ∩K contains exactly one element. Denote this element by α.

Thus, ˆ

G

f dµ =
∑

β∈(D∩K)

f(β) = f(α) 6= 0.

By condition (i) there is a net αι ∈ Dι which tends to α. Consequently, there

is some ι0 ∈ I such that for each ιB ι0 is αι ∈ Ũ . Since Dι is also U -uniformly

discrete the intersection Dι ∩ Ũ contains the element αι only. Hence,ˆ

G

f dµι =

ˆ

Ũ

f dµι = f(αι)
ι−→

Lemma 2.1
f(α) =

ˆ

G

f dµ,
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because f vanishes beyond Ũ .

”
´
G

f dµ = 0”:

We would like to show that the integral
´
G

f dµι converges to zero. Since

Dι ∈ ΛU the intersection Dι ∩ Ũ contains at most one element, denoted by

αι. Assume the contrary, which means that there is some subnet Dιj of Dι
such that for all j ∈ J we have

|
ˆ

G

f dµιj | = |
ˆ

Ũ

f dµιj |
Dιj∈ΛU

= |f(αιj)| ≥ c > 0

Thus, αιj is an element of the support K. Since K is compact there exists a

convergent subnet αιjk of αιj . Hence,

|
ˆ

G

f dµιjk | = |f(αιjk )| ι−→
Lemma 2.1

|f(α)| ≥ c > 0,

where lim
k→∞

αιjk =: α ∈ K. By condition (ii) α is an element of D and so

ˆ

G

f dµ = f(α) 6= 0

which leads to a contradiction.

A good illustration of the convergence of a net Dι ⊆ ΛU to D is that for ι0 ∈ I large

enough, any element of Dι0 is in a small open neighborhood of some element of D and

its stays there for any larger ιB ι0. Because of the uniformly discreteness of Dι there

can be at most one element of Dι in any of these open neighborhoods, see Figure 4.

Figure 4:
An illustration of the convergence of a net of Delone sets
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Imagine the blue points as the elements of D and the gray circles around them as the

small open neighborhoods of the elements of D. The red lines illustrate the jumps of

the elements of Dι which converges to the corresponding element of D.

The function which maps any subset A ⊆ G to t+ A for some t ∈ G is, by definition, a

homeomorphism. Further, for each homeomorphism the image of a Borel set is again

a Borel set. Thus, for t ∈ G and some Borel set B ⊆ G the translate t+B is again a

Borel set. Let µ be some Radon measure on G we denote the associated shift by

τ tµ(B) := µ(t+B)

for any t ∈ G and B ∈ B(G) some Borel set. Obviously, we have

τ t1(τ t2µ(B)) = τ (t1+t2)µ(B) for any t1, t2 ∈ G,B ∈ B(G)

and

τ 0µ(B) = µ(B).

Lemma 2.9. Let D be any element of ΛU . Then,

{τ tδD | t ∈ G}
V

= J ({t+D | t ∈ G}
P

)

where on the left side of the equation we consider the closure with respect to the vague

topology and on the right side with respect to the pointset topology.

Proof. At first we will show that

{τ tδD | t ∈ G} = J ({t+D | t ∈ G}).

According to Lemma 2.3 (i) the set t+D is an element of ΛU and so J ({t+D | t ∈ G})
is well-defined.

”⊆”: Let t ∈ G be arbitrary. By an easy computation we get

τ tδD = τ t
∑
α∈D

δα =
∑
α∈D

τ tδα =
∑
α∈D

δα−t =
∑

β∈(−t+D)

δβ = J (−t+D).

In fact, we have that τ tδD ∈ J ({t+D | t ∈ G}).

”⊇”: For any t ∈ G we get

J (t+D) =
∑

β∈(t+D)

δβ =
∑
α∈D

δα+t =
∑
α∈D

τ−tδα = τ−tδD.

Since −t ∈ G it follows that J (t+D) ∈ {τ tδD | t ∈ G}.
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By definition, the map J is continuous. Using the definition of the pointset topology

and Proposition 2.7 the statement follows immediately.

We call the set ΩD:= {t+D | t ∈ G}
P

the hull of D. According to Lemma 2.9 for any

µ ∈ {τ−tδD | t ∈ G}
V

we get an element of ΩD defined by

Dµ := {x ∈ G | µ({x}) = 1}.

For our further considerations we require that G is a second-countable space. Then, it

is sufficient to consider sequences to characterize the toplogy, see [QUE].

Let D be a U -uniformly discrete set and take some sequence (Dn)n∈N of the hull ΩD.

Hence, there is a sequence (tn)n∈N ⊆ G such that Dn has the form tn +D for any n ∈ N.

The characterization of Proposition 2.8 says that lim
n→∞
Dn = D̃ ∈ ΩD, iff the following

two assertions hold.

(i) For any α̃ ∈ D̃ there is a sequence (αn)n∈N ⊆ D such that α̃ = lim
n→∞

(tn + αn).

(ii) Consider some sequence (βn)∈N ⊆ D. If for some subsequence the limit

lim
k→∞

(tnk + βnk) = β̃

exists, then, β̃ ∈ D̃.

Note that, if we write lim
n→∞

xn for a sequence (xn)n∈N ⊆ G we mean the convergence

with respect to the topology in G.

The following statement deals with the convergence of patterns by using the feature of

finite local complexity. By this statement follows immediately that any element of the

hull of a (U,K)-Delone set D of finite local complexity has the same pattern as D, see

Lemma 2.15.

Proposition 2.10. Consider some (U,K)-Delone set of finite local complexity. Let

(αn)n∈N ⊆ D be chosen such that the limit D̃ := lim
n→∞

(−αn +D) exists. For any compact

subset K ⊆ G exists an n0 ∈ N such that

(−αn +D) ∩K = D̃ ∩K, n ≥ n0.

Proof. Define Dn by (−αn +D) and suppose that the limit lim
n→∞

Dn exists. Denote by

µn the corresponding Radon measure of Dn defined by∑
β∈Dn

δβ.
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Since the limit lim
n→∞

Dn exists the limit lim
n→∞

µn exists as well.

Fix some compact subset K ⊆ G. Because D is of finite local complexity there are only

a finite number of different clusters P1, . . . , Pl such that

Clu(D, K) := {P1, . . . , Pl}.

Thus, there are only a finite number of different possibilities for Dn ∩K. Now assume

the contrary of the statement which means that there are two subsequences (DNk)k∈N
and (DMk

)k∈N of Dn such that without loss of generality

DNk ∩K = P1, k ∈ N

and

DMk
∩K = P2, k ∈ N

where P1 6= P2. Hence, there is without loss of generality an x ∈ P1 such that x 6∈ P2.

According to Lemma 2.3 the set P2 is finite. Thus, there is some open neighborhood

Vx ⊆ x+ U of x such that the intersection Vx ∩ P2 is empty.

Denote by µNk and µMk
the corresponding Radon measure of DNk and DMk

, respectively.

By Proposition 2.5 there is a continuous function f : G→ [0, 1] with compact support

in Vx and f(x) = 1. Consequently, for any k ∈ N
ˆ

G

f dµNk =

ˆ

Vx

f dµNk =
∑

β∈DNk∩Vx

f(β) = f(x) = 1

and ˆ

G

f dµMk
=

ˆ

Vx

f dµMk
=

∑
β∈DMk∩Vx

f(β) = 0.

This contradicts the fact that the limit of (µn)n∈N exists and so follows the statement.

The latter considerations pose the question if one can convey the properties that D is

an aperiodic Delone set of finite local complexity to the elements of the hull ΩD.

Lemma 2.11. Let D be a (U,K)-Delone set of finite local complexity. Then, for any

D̃ ∈ ΩD it is (D̃ − D̃) ⊆ (D −D).

Proof. According to Proposition 2.8 for any α̃, β̃ ∈ D̃ there is a sequence (tn)n∈N ⊆ G

and further, a sequence (αn)n∈N ⊆ D respectively (βn)n∈N ⊆ D such that

α̃ = lim
n→∞

(tn + αn)
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and

β̃ = lim
n→∞

(tn + βn).

Hence, by the continuity of the group composition we have

α̃− β̃ = lim
n→∞

(αn − βn).

Moreover, D is of finite local complexity, which means by Proposition 2.4 that (D −D)

is discrete and closed. Thus, there exists an n0 ∈ N such that

α̃− β̃ = αn − βn, ∀n ≥ n0.

In fact, we get that α̃− β̃ is an element of (D −D) which means that

(D̃ − D̃) ⊆ (D −D).

Proposition 2.12. Let D be a (U,K)-Delone set of finite local complexity, then, any

D̃ ∈ ΩD is a (U,K)-Delone set of finite local complexity as well.

Proof. First note that we know by Lemma 2.3 that any element of the set {t+D | t ∈ G}
is an aperiodic (U,K)-Delone set of finite local complexity. Further, by definition ΩD

is closed with respect to the pointset topology. Let D̃ be an element of the hull of

D. Then, there is a sequence (Dn)n∈N ⊆ {t + D | t ∈ G} holding Dn
O(ΛU )→ D̃. By our

previous considerations there is a corresponding sequence (tn)n∈N ⊆ G such that any

Dn has the form tn +D for some n ∈ N.

”Delone set”:

First we will show that D̃ is K-relatively dense which means that D̃ +K = G. It

is sufficient to show that G ⊆ D̃ +K, because the converse conclusion is obvious.

Choose some x ∈ G, then, for any Dn = tn + D there exists an αn ∈ D and a

κn ∈ K such that tn + αn + κn = x. Since K is compact there is a convergent

subsequence κnk such that lim
k→∞

x− κnk = lim
k→∞

tnk + αnk exists. According to

Proposition 2.8 the limit α̃ := lim
k→∞

tnk + αnk has to be an element of D̃. Thus,

x = lim
k→∞

(tnk + αnk + κnk) = lim
k→∞

(tnk + αnk) + lim
k→∞

κnk ∈ α̃+K

by using that the group composition is continuous.
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Secondly, we would like to show that D̃ is U -uniformly discrete which means that

]((x+ U) ∩ D̃) ≤ 1 for any x ∈ G.

Assume there are two distinct element α̃, β̃ ∈ ((x+U)∩ D̃) for some x ∈ G. Thus,

by Proposition 2.8 we have (αn)n∈N, (βn)n∈N ⊆ D such that

α̃ = lim
n→∞

(tn + αn),

β̃ = lim
n→∞

(tn + βn).

Since G is a Hausdorff space the elements α̃ and β̃ can be seperated by two open,

disjoint sets Vα̃, Vβ̃ ( (x + U). Hence, by the convergence there is some n0 ∈ N
such that for n ≥ n0 we have

tn + αn ∈Vα̃ ( (x+ U),

tn + βn ∈Vβ̃ ( (x+ U).

On the other hand, the corresponding tn +D is U -uniformly discrete by Lemma

2.3. This leads to a contradiction, because ]((x+U)∩ (tn +D)) is at least two for

n ≥ n0.

”FLC”:

By our previous considerations we know that D̃ is a (U,K)-Delone set. According

to Proposition 2.4 the set D is of finite local complexity if and only if for any

compact subset K of G the intersection (D −D) ∩K is finite or empty.

Thus, by Lemma 2.11 for any compact subset K ⊆ G the intersection

(D̃ − D̃) ∩K ⊆ (D −D) ∩K

is finite or empty. Hence, by Proposition 2.4 the set D̃ is of finite local complexity

as well.

Proposition 2.13 ([SCH]). Let G be a locally compact, Hausdorff, abelian group which

is σ-compact. Consider a Delone set D of finite local complexity. Then, the following

assertions are equivalent.

(i) The set D is repetitive.

(ii) For any element D̃ of the hull ΩD of D the equality ΩD = ΩD̃ holds.
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Using this Proposition 2.13 we get a strengthen statement as in Lemma 2.11.

Proposition 2.14. Let D be a repetitive (U,K)-Delone set of finite local complexity.

Then, for any D̃ ∈ ΩD it is true that (D̃ − D̃) = (D −D).

Proof. According to Lemma 2.11 we know for D̃ ∈ ΩD that (D̃ − D̃) ⊆ (D − D). By

Proposition 2.12 the set D̃ is a (U,K)-Delone set of finite local complexity and by

Proposition 2.13 we have D ∈ ΩD̃. Using Lemma 2.11 for the (U,K)-Delone set D̃ of

finite local complexity, then, the inclusion

(D −D) ⊆ (D̃ − D̃)

follows, which leads to the statement.

Lemma 2.15. Consider an aperiodic, repetitive (U,K)-Delone set of finite local com-

plexity. Then, for any compact subset K ⊆ G and any D̃ ∈ ΩD the equality

Clu(D,K ) = Clu(D̃, K)

holds.

Proof. Fix some compact subset K ⊆ G and consider some D̃ ∈ ΩD. Then, there

exists a sequence (tn)n∈N ⊆ G such that D̃ := lim
n→∞

(tn + D). Let P be some element

of Clu(D̃, K). Thus, there is some α̃ ∈ D̃ with P = (−α̃ + D̃) ∩ K. According to

Proposition 2.8 there is a sequence (αn)n∈N ⊆ D such that

−α̃ + D̃ = lim
n→∞

(−(tn + αn) + (tn +D)) = lim
n→∞

(−αn +D)

where the limit exists. According to Proposition 2.10 there exists an n0 ∈ N such that

for any n ≥ n0 the equation

P = (−α̃ + D̃) ∩K = (−αn +D) ∩K

holds. Hence, the cluster P is an element of Clu(D,K ), because αn ∈ D.

The converse inclusion follows similar by using the fact that D is repetitive and the

equivalence in Proposition 2.13.

Moreover, we get a strengthen statement of Proposition 2.12 as well using Proposition

2.13.

Proposition 2.16. Let D be an aperiodic, repetitive (U,K)-Delone set of finite local

complexity, then, any D̃ ∈ ΩD is an aperiodic (U,K)-Delone set of finite local complexity

as well.
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Proof. Consider some fixed D̃ ∈ ΩD. According to Proposition 2.12 it follows that D̃ is

a (U,K)-Delone set of finite local complexity. Thus, we only have to verify that D̃ is

aperiodic.

It suffices to check if for some x ∈ G the equation x + D̃ = D̃ holds it leads to the

equality x + D = D. Then, by the aperiodicity of D it follows that x has to be the

neutral element 0.

To do so let x ∈ G be chosen such that

x+ D̃ = D̃ ⇔ −x+ D̃ = D̃. (?)

The following consideration can be made for x and −x and so let y denote the element x

and −x, respectively. Since G is locally compact there is a compact set which contains

x and −x. Condition (?) implies that for each α̃ ∈ D̃

y ∈ (−α̃ + D̃).

Thus, any cluster P̃ ∈ Clu(D̃, K) contains y, because any cluster P̃ has the form

(−α̃ + D̃) ∩K for some α̃ ∈ D̃.

Hence, according to Lemma 2.15 any cluster P ∈ Clu(D,K ) contains y. If now y is −x
it follows that for any α ∈ D there is a β ∈ D such that −x = −α + β. Consequently,

−x+D ⊆ D.

The converse inclusion follows similar for y = x which leads to our statement.

The set

PT := {D̃ ∈ ΩD | 0 ∈ D̃} ⊆ ΩD ⊆ ΛU

is called pointset of the transversal. Since for any α ∈ D the set (−α+D) is an element

of the hull of D and 0 ∈ (−α +D) the set PT is not empty.

According to that we define the transversal for a Delone set D by

T := {µ ∈ J (ΩD) | Dµ ∈ PT }.

In words, the transversal T of a Delone set D is the set of all Radon measures µ, where

the corresponding ”translated” pointset Dµ is U -uniformly discrete and contains the

origin.
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Proposition 2.17. The transversal T of an aperiodic Delone set D of finite local

complexity is closed with respect to the vague topology.

Proof. Assume that T is not closed, more precisely, there is a sequence (tk)k∈N ⊆ T
which converges to t ∈ J (ΛU) and t 6∈ T . Let for k ∈ N the set Dtk ⊆ PT be the

corresponding pointset of (tk)k∈N and Dt ⊆ ΛU is the pointset of t. Then, by our

assumption 0 6∈ Dt but 0 is an element of Dtk for any k ∈ N.

According to Proposition 2.16 the set Dt is an aperiodic Delone set of finite local

complexity. Since G is a Hausdorff space there exists an open neighborhood V of 0 such

that Dt ∩ V is empty. Then, there is a continuous function f : G→ [0, 1] with compact

support supp(f) ⊆ V such that f(0) = 1. Thus,

0 =

ˆ

G

f dt = lim
n→∞

ˆ

G

f dtn
0∈Dtn
≥ lim

n→∞
f(0) = 1

which is a contradiction.

Lemma 2.18. Let D be an aperiodic Delone set of finite local complexity. For any

D̃ ∈ ΩD the following assertions are equivalent.

(i) The set (b+ D̃) contains α + b for each b ∈ G.

(ii) The element α lies in D̃.

Proof. Let µ be the corresponding Radon measure of D̃ and ν the Radon measure of

b+ D̃ for some b ∈ G. Then,

µ =
∑
α∈D̃

δα and ν =
∑

β∈(b+D̃)

δβ.

Thus, for any x ∈ G

ν({x}) =
∑

β∈(b+D̃)

δβ({x}) =
∑
α∈D̃

δα+b({x}) =
∑
α∈D̃

δα({x− b})

=τ b
∑
α∈D̃

δα({x}) = τ bµ({x}).

Hence, for some b ∈ G

α + b ∈ (b+ D̃)
def.⇔ 1 = ν({α + b}) = τ bµ({α + b}) = µ({α}) def.⇔ α ∈ D̃.
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2.4 Example

We give an example of an aperiodic Delone set D ⊂ R of finite local complexity. It will

be given the idea and no exact proof of its properties.

Consider some infinite word ω ∈ {0, 1}Z such that any finite word over {0, 1} occurs in

ω. We denote by Wn for n ∈ N \{0} the set of all different words over {0, 1} with length

n. For instance,

W1 = {0; 1}
W2 = {00; 01; 10; 11}
W3 = {000; 001; 010; 100; 110; 011; 101; 111}

...

Since {0, 1} is finite any Wn is finite. In detail, ](Wn) equals 2n. Nevertheless, we can

number consecutively our finite words by ω1 = 0, ω2 = 1, ω3 = 00, ω4 = 01 and so on.

Then, we define an infinite word ω by

. . . ω4 ω3 ω2 ω1 | ω1 ω2 ω3 ω4 . . .

respectively

. . . 11 10 01 00 1 0 | 0 1 00 01 10 11 . . .

where | denotes the origin of the word ω. By definition any finite word over {0, 1} is

contained in ω. It is unimportant in which order we number consecutively our finite

words, we only have to hold to our convention. A word is aperiodic if we cannot translate

the origin of ω such that the translated word ω′ is equal to ω component-by-component.

Note that one component is only 1 or 0. For instance, if we liked to translate our origin

by t = 3 ∈ Z, then,

. . . 11 10 01 00 1 0 | 0 1 0 | 0 01 10 11 . . .

where ”|” is the old origin. Similarly, we can translate the origin for any t ∈ Z. Denote

by τ t ◦ ω the translated word ω ∈ {0, 1}Z by t ∈ Z. The map τ : {0, 1}Z → {0, 1}Z is

called shift of the words.

Take two intervals I0 = [0, 1] and I1 = [0, q] where q ∈ (R \Q) ∩ [0, 1] is an irrational

number. Note that the choice of q being an element of the interval [0, 1] is a convention.

Besides, we need q being irrational to get (D −D) to be not weakly uniformly discrete

only. It is possible to construct an aperiodic Delone set with any two intervals with

different lengths.
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Now, we can use ω to tile our space R. More precisely, we will replace 0 by the interval

I0 and 1 by the interval I1, respectively. In Figure 5 the construction of the tiling of R is

sketched. The blue points represent the points where we attach two intervals. Thus, the

orange numbers represent the distance between the origin and these points. Further, we

can see that the interval I0 is marked by 0 and I1 is marked by 1, respectively. However,

the set of blue points will be denoted by D.

origin

0

1

0 1

1 + q

1 0

2 + q

0 0

3 + q

0 0

4 + q

0 1

4 + 2 · q

1

Figure 5:
An aperiodic Delone set of finite local complexity in R defined by an infinite word

We can indicate by an one-to-one correspondence the closed intervals with the elements

of D. In fact, two points determine a closed interval in R in a unique way. Consequently,

the set D ( R is also aperiodic, if the word ω is aperiodic. As mentioned above, we use

here the fact that I0 and I1 have different lengths.

Assume the word ω is not aperiodic. Thus, there is a t ∈ Z \{0} such that we can

translate ω by t and the new infinite word ω′ is equal to ω. Hence, by induction ω is

t-periodic which means that τ z·t ◦ ω = ω for z ∈ Z. Consequently, we have a finite word

ωt of the length t attached to itself in both directions infinitely many times.

Without loss of generality, we can suppose that t is a positive integer. Then, the word

ω has at most t different words of the length t. This contradicts the fact that ]Wt has

to be equal to 2t, which is greater than t for t 6= 0. This implies that our word ω is

aperiodic and so D is as well.

We can illustrate the sketch of the proof by a short example. Let t = 3 and our finite

word ωt = 010. Then, ω has the form

. . . 010 010 010 010 010 | 010 010 010 010 010 . . .

We can immediately see that ω contains the words 010, 100, 001 of length three only.

But for example the word 110 never constists in ω.

Furthermore, the set D is U -uniformly discrete, where U is the open intervall (0, q).

Also D is K-relatively dense, where K is the closed interval [0, 1]. Note that we use here

the fact that q ∈ [0, 1].
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An element of D is called 1-point if it is the boundary point on the right hand side of

an interval of lenght one. Similar a q-point is the boundary point on the right hand side

of an interval of lenght q.

Our next aim is to determine the set (D −D) and indicate some properties of it. The

vectors in (D−D) are given by the distance of two points of D. In other words, a vector

(α − β) in (D − D) counts how many q-points and 1-points we have to go from β to

reach α, see Figure 6.

origin

1-point 1-point

q-point q-point

−1− q

β

1-point
1-point

1-point
q-point

4 + 2 · q

α

Figure 6:
An aperiodic Delone set of finite local complexity in R defined by an infinite word where the notation

of the points is sketched

Thus, (α− β) = (4 · 1 + 2 · q)− (−1− q) = 5 · 1 + 3 · q and so we have to go five times a

1-point step and three times a q-point step. This works for any α, β ∈ D and so (α− β)

can be written as (m+n · q) or (−m−n · q) for some m,n ∈ N. If (α− β) is an element

of (D −D), then, (β − α) as well. Indeed, there are no more other elements of (D −D).

The converse inclusion follows immediately by the fact that ω contains any finite word.

To conclude our statements the equality

(D −D) = {m+ n · q | m,n ∈ N} ∪ {−m− n · q | m,n ∈ N}.

holds.

Obviously, we have (D − D) ∩ K is finite for any closed interval K ⊆ R. Hence, by

Proposition 2.4 the set (D−D) is discrete and closed or in other words D is of finite local

complexity. As mentioned in the section 2.2 (”Delone sets of finite local complexity”) if

we consider a Delone set D ( G of a compactly generated group G the set (D −D) is

weakly uniformly discrete, iff (D −D) is uniformly discrete. It can be shown that our

set (D −D) is not uniformly discrete using that q is irrational. Since Rd is compactly

generated it follows that (D −D) is not weakly uniformly discrete.
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Chapter 3

Lagarias group

3.1 Definition and properties

Let D be a Delone set of G. Recall that we denote by [F ] the set of all finite linear

Z-combinations of elements of F ⊆ G. The set [D −D] is called finitely generated, if

there is a finite subset of (D−D) denoted by B(D−D) with [D−D] = [B(D−D)]. We need

the following short Lemma. Our first aim is to characterize when [D − D] is finitely

generated.

Lemma 3.1 ([BLM]). Let G′ be a topological space and C a compact space. Consider

the product space G = G′ × C endowed with the product topology. Then, the projection

Pr : G→ G′ maps locally finite subset of G to locally finite subsets of G′.

Proof. Let S ⊆ G be locally finite and so S ∩ K is finite or empty for any compact

K ⊆ G. Assume Pr(S) is not locally finite. Thus, there exists a compact K ′ ⊆ G′ such

that Pr(S) ∩K ′ is infinite. Hence, S ∩ (K ′ × C) is infinite. On the other hand, if C is

compact, K ′ × C is compact with respect to the product topology. This contradicts the

fact that S is locally finite.

In order to prove the next Theorem 3.3 we need the following statement of [DE], Theorem

4.2.2. Further information may be found there.

Proposition 3.2 ([DE]). Let G be a locally compact, Hausdorff, compactly generated,

abelian group. Then, for some m,n ∈ N and some compact, abelian group C the group

G is topologically isomorphic to Rm×Zn×C.

Theorem 3.3 ([BLM]). Consider a locally compact, Hausdorff, abelian group G which

is compactly generated. Let D ⊆ G be a (U,K)-Delone set and suppose D is of finite

local complexity. Then, there exists a finite subset F of G such that [F ] = [D].

39
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Proof. By Proposition 3.2 there are some n,m ∈ N and a compact, abelian group C
such that we can identify G by Rm×Zn×C. Thus, we can consider G as a subgroup of

Rm+n×C.

Since D is relatively dense we find a compact set K ⊆ G such that D+K = G. Moreover,

the projection from G onto Rm×Zn is continuous. Hence, the projection of K is again

a compact set and so there is a radius R > 0 such that

Rm×Zn×C = D + (Pr(K)× C) ⊆ D + (BR(
−→
0 )× C)

where BR(
−→
0 ) is the open ball with radius R and center

−→
0 ∈ Rm+n. Without loss of

generality, the radius R is chosen such that

Rm+n×C = Rm×Rn×C = D + (BR(
−→
0 )× C). (?)

Since D is a U -uniformly discrete set the set D is locally finite, see Lemma 2.3. According

to Proposition 2.4 the set (D −D) is also locally finite. Consequently, the set

F :=(D ∪ (D −D)) ∩ (B2R(
−→
0 )× C)

=(D ∩ (B2R(
−→
0 )× C)) ∪ ((D −D) ∩ (B2R(

−→
0 )× C))

is finite, because B2R(
−→
0 )× C is compact. Now consider the projection map

Pr : Rm+n×C → Rm+n .

We will show that

[F ] := {
N∑
j=1

nj · fj | N ∈ N, nj ∈ Z and fj ∈ F} = [D]

Note that it suffices to show that F ⊆ [D] and D ⊆ [F ], because any finite linear

Z-combination of F is in [D] and of D is in [F ], respectively.

”⊆”: By definition of F , any element f ∈ F has to be an element of D or (D − D).

Thus, each f ∈ F lie in [D].

”⊇”: Let α be some element of D. If α ∈ (B2R(
−→
0 ) × C), it follows immediately by

construction of F that α ∈ F . Suppose α is not an element of (B2R(
−→
0 )×C). Now

choose an x′ ∈ Rm+n on the segment [
−→
0 ,Pr(α)] such that

‖x′ − Pr(α)‖ = R

where ‖ · ‖ is the standard Euclidean norm. We can choose such an x′ ∈ Rm+n

because α 6∈ (B2R(
−→
0 )× C) and so ‖Pr(α)−−→0 ‖ > 2R. Further, this x′ is unique,

see Figure 7.
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~0

Pr(α)

R

2R x′

BR(x′)
B2R(~0) BR(Pr(α))

B| Pr(α)|(~0)

Figure 7:
The construction of the element x′ for some given α

Indeed,

Pr(α) ∈ BR(x′) \ BR(x′) = ∂ BR(x′)

where ∂ BR(x′) is the boundary of the open ball BR(x′). Set x := (x′, 0C) ∈
Rm+n×C where 0C is the neutral element of the compact, abelian group C. Conse-

quently, Pr(x) is equal to x′. Because of our choice of the radius R (see (?)) there

is a β1 ∈ D and a y ∈ BR(
−→
0 )× C such that x = β1 + y.

Since the projection is linear and Pr(y) ∈ BR(
−→
0 ) we get

‖Pr(x)− Pr(β1)‖ = ‖x′ − Pr(β1)‖ = ‖Pr(y)‖ < R

which implies that Pr(β1) ∈ BR(x′). Moreover, by construction Pr(β1) ∈ BR(x′) (
B‖Pr(α)‖(

−→
0 ), see Figure 8. Hence,

‖Pr(β1)‖ < ‖Pr(α)‖. (??)

Since Pr(β1) ∈ BR(x′) and Pr(α) ∈ ∂ BR(x′) the inequality

‖Pr(α)− Pr(β1)‖ < 2R

holds and so Pr(α − β1) ∈ B2R(
−→
0 ). In particular, this means that α − β1 is an

element of B2R(
−→
0 )× C. On the other hand, α, β1 are elements of D and thus,

α− β1 ∈ (D −D) ∩ (B2R(
−→
0 )× C) ⊆ F .

Thus, there exists some f1 ∈ F such that α− β1 = f1 respectively

α = β1 + f1

for some f1 ∈ F , β1 ∈ D with ‖Pr(β1)‖ < ‖Pr(α)‖, see (??).
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~0

Pr(α)

Pr(β1)
f1

Pr(y)
2R

x′

BR(x′)

B2R(~0)

B| Pr(α)|(~0)

Figure 8:
The illustration of the first step of the iteration

Now we can follow the same steps for β1 and construct a β2 ∈ D such that

‖Pr(β2)‖ < ‖Pr(β1)‖ and β1 = β2 + f2 for some f2 ∈ F . In the following we

will see that we can iterate this construction until we have a βK ∈ D such that

‖Pr(βK)‖ < 2R.

According to Lemma 3.1 the set Pr(D) is locally finite and so Pr(D)∩B|Pr(α)|(
−→
0 )

is finite or empty. It turns out that the intersection

Pr(D) ∩ B2R(
−→
0 ) ⊆ Pr(D) ∩ B|Pr(α)|(

−→
0 )

is not empty:

We know that (
−→
0 , 0C) is an element of Rm+n×C = D+(BR(

−→
0 )×C). Hence, there

is a γ ∈ D such that (
−→
0 , 0C) ∈ γ+(BR(

−→
0 )×C). Consequently,

−→
0 ∈ Pr(γ)+BR(

−→
0 )

which leads to

‖Pr(γ)‖ = ‖Pr(γ)−−→0 ‖ ≤ R < 2R.

Thus, Pr(γ) ∈ Pr(D) is an element of B2R(
−→
0 ) and so Pr(D) ∩ B2R(

−→
0 ) is not

empty. Further, during one iteration the distance between
−→
0 and the constructed

βj really gets smaller.

Altogether, for any α ∈ D we find some f1, . . . , fK ∈ F and a βK ∈ D∩(B2R(
−→
0 )×

C) ⊆ F such that

α =
K∑
j=1

fj + βK .
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~0

Pr(α)Pr(β1)

Pr(β2)

Pr(βK−1)

Pr(βK)

f1

f2fK

2R

B2R(~0)

Figure 9:
An illustration of the idea of the proof

In particular, we can write α as a finite linear Z-combination of elements of F .

Consequently, α ∈ D is an element of [F ].

We have shown that [D] = [F ] where F is a finite subset of G.

In Figure 9 there is sketched the idea of the proof, where fj are elements of F and βj are

points of D. One can imagine that for the construction of [D] it is sufficient to consider

only the elements of D and the differences of them in some compact set containing the

origin, denoted by KD ' B2R(
−→
0 )× C.

Proposition 3.4. Consider a locally compact, abelian, Hausdorff group G which is

compactly generated. Let D ⊆ G be a (U,K)-Delone set of finite local complexity. If

further, D contains the neutral element 0 we get that [D −D] is finitely generated and

moreover, the equation [D −D] = [D] holds.

Proof. First we will show that [D −D] = [D]. As in the proof above it suffices to show

that (D −D) ⊆ [D] and D ⊆ [D −D], respectively.

”⊆”: For any element of (D −D), we find an α, β ∈ D such that we can represent this

element by α− β. This is a finite linear Z-combination of elements of D and so

α− β is in [D].

”⊇”: Let α ∈ D be arbitrary. Since 0 ∈ D we know

α = α− 0 ∈ (D −D) ⊆ [D −D].

Thus, we have verified the equality [D −D] = [D].

In fact, we have shown that D ⊆ (D −D). In the proof of Theorem 3.3 we have proven

that for

F := (D ∪ (D −D)) ∩ (B2R(
−→
0 )× C)
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the equation [F ] = [D] holds. Hence, we have [F ] = [D −D] and further, F is a subset

of (D −D), since

F ⊆ (D −D) ∪ D = (D −D).

Thus, we have a finite subset of (D −D) which generates [D −D], or in other words,

[D −D] is finitely generated.

For any D-set D we call [D − D] the Lagarias group of D and denote it by LD. The

name of this abelian group is motivated by the work of Lagarias [LAG1], [LAG2] and

[LP].

Consider some finite set B(D−D) with [B(D−D)] = LD. This set is called a minimal

generator of the Lagarias group if for any other finite set B′(D−D) with [B′(D−D)] = [D−D]

the inequality

](B′(D−D)) ≥ ](B(D−D))

holds. Obviously, there is more than one minimal generator. For instance, the set

−B(D−D) is also a minimal generator of LD. An example is given at the end of this

chapter.

The next proposition gives us a good characterization of the Lagarias group LD.

Proposition 3.5. Let D ⊆ G be a (U,K)-Delone set of finite local complexity and let

D contain the neutral element 0. Consider a minimal generator B(D−D) of LD . Then,

there is a bijective, homomorphic map between LD and ZM for M := ](B(D−D)).

Proof. Let B(D−D) := {e1, . . . , eM | ek ∈ (D−D) for 1 ≤ k ≤M} be a minimal generator

of LD. Define for M = ](B(D−D)) the map Φ : LD → ZM by

Φ(b) :=


n1

n2

...

nM

 , where b =
M∑
j=1

nj · ej ∈ LD .

First, we have to check that Φ is well-defined: More precisely, that if

M∑
j=1

nj · ej =
M∑
j=1

n′j · ej
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it follows that for any j ∈ {1, . . . ,M} that nj = n′j . Assume the contrary, then, there is

at least one j0 ∈ {1, . . . ,M} such that

ej0 =
M∑
j=1
j 6=j0

(n′j − nj) · ej.

Thus, B(D−D) \{ej0} generates LD. This contradicts the minimality of B(D−D).

We have to verify that Φ is bijective and a homomorphism. Since the elements of

B(D−D) are pairwise distinct the map is bijective. Further, we can easily see that Φ is a

homomorphism.

Define the map Ψ : ZM → LD by
n1

n2

...

nM

 7−→
M∑
j=1

nj · ej.

As we have seen in the proof of Proposition 3.5 the fact that Φ is well-defined is equivalent

to the property that Ψ is injective. Obviously this map is the inverse map of Φ.

Because of the last Proposition 3.5 we can identify LD with the group ZM . We endow

LD with the discrete topology. Thus, the map Φ : LD → ZM is a homeomorphism which

means that Φ and Ψ are continuous.

Lemma 3.6. Consider G = Rd and an aperiodic (U,K)-Delone set D ⊆ Rd of finite

local complexity. Let B(D−D) be a minimal generator of LD. Then, M := ]B(D−D) has

to be greater than or equal to d.

Proof. First, we will show that D is not contained in a hyperplane of Rd . Assume the

contrary, so, D is contained in a hyperplane hyp(D) of Rd . More precisely, there is a

0 6= x ∈ Rd such that for all α ∈ D the equation

〈α | x〉Rd = 0

is true. Further, D is K-relatively dense, which means that D + K = Rd for some

compact K ⊆ Rd . Let

diamK := sup
k1,k2∈K

‖k1 − k2‖d <∞
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where ‖ · ‖d is the Euclidean norm in Rd . Without loss of generality, we can suppose

that the distance between x and hyp(D) is greater than diamK . Hence,

x 6∈ D +K = Rd

which leads to a contradiction.

Assume that M < d then, there is an element 0 6= x ∈ Rd such that for any b ∈ LD the

equation

〈b | x〉 = 0

holds. Thus, the Lagarias group is contained in a hyperplane in Rd which leads to a

contradiction.

Conclusion 3.7. Let D be an D-set. For any D̃ ∈ ΩD the induced Lagarias group LD̃
is equal to LD.

Proof. First recall the definition of a D-set. A D-set is an aperiodic, repetitive (U,K)-

Delone set of finite local complexity. By Proposition 2.16 D̃ is an aperiodic (U,K)-

Delone set of finite local complexity. According to Proposition 2.14 we know that

(D̃ − D̃)=(D −D) and so [D̃ − D̃] = [D −D].

3.2 The dual group and L2(L̂D)

In this section we need the concept of the dual group and the Haar measure. We start

with a short introduction on these topics. Further information may be found in [DE]

and [LOO].

Let A be a locally compact, abelian group. We call a continuous group homomorphism

η : A → S1 := {z ∈ C | |z| = 1} a character of A. Note that S1 is a compact, abelian

group with respect to multiplication. Moreover, we denote by Â the set of all characters

of A. The set Â is again an abelian group with respect to the multiplication defined by

(η · ψ)(x) = η(x) · ψ(x), η, ψ ∈ Â , x ∈ A .

The composition η · ψ is again a group homomorphism. This becomes clear by a short

computation for x, y ∈ A

(η · ψ)(x+ y) =η(x+ y) · ξ(x+ y) = (η(x) · η(y)) · (ψ(x) · ψ(y))

=(η(x) · ψ(x)) · (η(y) · ψ(y)) = (η · ψ)(x) · (η · ψ)(y).
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Further, the inverse element for η ∈ Â is given by

η−1(x) =
1

η(x)
= η(x) = η(−x), x ∈ A .

The neutral element of Â is determined by the continuous group homomorphism φ

which maps any element of A to 1. Consequently,

(η · φ)(x) = η(x) · φ(x)︸︷︷︸
=1

= η(x) = φ(x)︸︷︷︸
=1

·η(x) = (φ · η)(x).

By an easy computation we get that any character ψ ∈ Â maps 0 to 1 ∈ S1.

Consider some topological group A and the set of all contiunous functions C(A). The

topology generated by the sets

O(V,K) := {f ∈ C(A) | f(K) ⊆ V }

for any compact set K ⊆ A and each open set V ⊆ C is called the compact-open topology.

It turns out that C(A) is a topological Hausdorff space with the compact-open topology

and Â is a closed subset of C(A) with respect to this topology ([DE]).

Lemma 3.8 ([DE]). The group Â gets a topological Hausdorff group with the compact-

open topology.

Proposition 3.9 (Pontryagin Duality, [DE]). The locally compact, abelian groups A
and

̂̂A are isomorphic.

We call Â the dual group of A. The last Proposition 3.9 explains the notation dual

group.

Lemma 3.10 ([DE]). Let A be a locally compact, abelian group. Then, the following

assertions are true.

(i) The dual group Â is a locally compact, abelian group and it is a Hausdorff space.

(ii) If A is discrete, then, Â is compact.

(iii) For any 0 6= x ∈ A there exists a character ψ ∈ Â such that ψ(x) 6= 1. In fact,

the dual group Â seperates the points of A.

(iv) If A1 and A2 are both locally compact abelian groups, then, Â1×A2 is equal to

Â1 × Â2 .
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The following part is inspired by [LOO]. A measure % on a locally compact, abelian

group A is called left-invariant, if for all a ∈ A and each Borel set S ⊆ A the equation

%(a+ S) = %(S)

holds. In fact, it is shown that for any locally compact, abelian group A there exists a

unique (up to a positive multiple), left-invariant measure %.

Lemma 3.11 ([LOO]). If A is a locally compact, abelian group. Then, A is compact,

iff there is a left-invariant measure % on A such that %(A) <∞.

By using the last Propostion 3.11 for any compact, abelian group A there exists a

left-invariant measure % such that %(A) = 1. This measure % is called Haar measure of

the compact, abelian group A.

Lemma 3.12 ([LOO]). Let A be a compact, abelian group and % its corresponding Haar

measure. Then, ˆ

A

f(k̃ · k) d%(k) =

ˆ

A

f(k) d%(k)

for any f ∈ L1(A, %) and k̃ ∈ A.

Since we have endowed the abelian group LD with the discrete topology, it is locally

compact. Thus, L̂D is well-defined. According to Lemma 3.11 L̂D is a Hausdorff,

compact, abelian group. Moreover, L̂D is a locally compact, abelian group and it is a

Hausdorff space. The measure % denotes the corresponding Haar measure on L̂D.

Lemma 3.13. For any 0 6= c ∈ LD the equationˆ

L̂D

fc(k) d%(k) = 0,

holds, where fc(k) := k(c) for any character k ∈ L̂D.

Proof. According to Lemma 3.12 we get that for k̃ ∈ L̂Dˆ

L̂D

fc(k) d%(k) =

ˆ

L̂D

k(c) d%(k)

L. 3.12
=

ˆ

L̂D

(k̃ ◦ k)(c) d%(k)

=

ˆ

L̂D

k̃(c) · k(c) d%(k)

= k̃(c) ·
ˆ

L̂D

k(c)︸︷︷︸
=fc(k)

d%(k).
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Hence, ˆ

L̂D

fc(k) d%(k) · (1− k̃(c)) = 0.

This equation holds if and only if one of the factors is zero. Further, c is not the neutral

element. Thus, by Lemma 3.10 we can find a character k̃ such that k̃(c) 6= 1. In this

case, the term (1− k̃(c)) is not equal to zero. Consequently,ˆ

L̂D

fc(k) d%(k) = 0.

Note that we did not use a property of L̂D. Indeed, this result is true for general locally

compact, discrete, abelian groups.

Let 〈u | v〉C = ū · v be the scalar product in C for u, v ∈ C. Further, the absolut value

of a complex number is given by |u|2 = 〈u | u〉C. Consider now the function space

L2(L̂D) := {f : L̂D → C : f measurable,

ˆ

L̂D

|f(k)|2 d%(k) <∞}

endowed with the semiscalar product

〈f | g〉 :=

ˆ

L̂D

f(k) · g(k) d%(k).

Set N := {f ∈ L2(L̂D) | 〈f | f〉 = 0}. Then, the quotient space

L2(L̂D) := L
2(L̂D)�N

is a Hilbert space with scalar product

〈f | g〉L̂D :=

ˆ

L̂D

f(k) · g(k) d%(k).

and the induced norm

‖f‖L2(L̂D) :=

ˆ
L̂D

f(k) · f(k) d%(k)


1
2

.

In order to prove the next proposition, we need the following Theorem of Stone-

Weierstrass.
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Proposition 3.14 (Theorem of Stone-Weierstrass,[QUE]). Let X be a compact Hausdorff-

space and S a subset of C(X) with the following conditions

(SW1) For every x ∈ X there is an f ∈ S such that f(x) 6= 0.

(SW2) For each x, y ∈ X with x 6= y exists an f ∈ S such that f(x) 6= f(y). (S seperates

points)

(SW3) For any f ∈ S the complex conjugated element f is an element of S as well.

Then, the generated algebra of S is a dense set in C(X).

The following Proposition 3.15 says that the set of characters of a group forms an

orthonormal basis of the L2-space of the group.

Proposition 3.15 ([LOO]). The family
(
fb : L̂D → C

)
b∈LD

defined by

fb(k) := k(b), k ∈ L̂D

is an orthonormal basis of L2(L̂D).

Proof. Note that any map fb : L̂D → C is by definition a continuous map. We will prove

that the family (fb)b∈LD is an orthonormal system. We sketch the rest of the proof and

omit the details. The interested reader may refer to [LOO].

”b = c”: By using the fact that any character maps 0 ∈ LD to 1 ∈ S1 we get

〈fb | fc〉L2(L̂D) =

ˆ

L̂D

fb(k) · fc(k) d%(k)

=

ˆ

L̂D

k(b) · k(c) d%(k)

=

ˆ

L̂D

k(−b) · k(c) d%(k)

k homomorphism
=

ˆ

L̂D

k(c− b︸︷︷︸
=0

) d%(k)

=

ˆ

L̂D

1 d%(k) = 1.
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”b 6= c”: According to Lemma 3.10 (iii) there exists a character k̃ ∈ L̂D such that k̃(c− b)
is not equal to 1 ∈ S1 and so

〈fb | fc〉L2(L̂D)

see above
=

ˆ

L̂D

k(c− b) d%(k)

% left-invariant
=

ˆ

L̂D

(k̃ ◦ k)(c− b) d%(k)

=

ˆ

L̂D

k̃(c− b) · k(c− b) d%(k)

= k̃(c− b) ·
ˆ

L̂D

k(c− b)︸ ︷︷ ︸
=fb(k)·fc(k)

d%(k)

= k̃(c− b) · 〈fb | fc〉L2(L̂D).

Hence,

〈fb | fc〉L2(L̂D) · (1− k̃(c− b)) = 0.

As in Lemma 3.13 it follows that 〈fb | fc〉L2(L̂D) is equal to zero, since k̃(c− b) 6= 1.

To sum up, for any b, c ∈ LD the family (fb)b∈LD satisfies

〈fb | fc〉L2(L̂D) =

1, b = c

0, b 6= c
,

which means that the system (fb)b∈LD is orthonormal.

Note that L̂D is a compact Hausdorff space, see Lemma 3.10 (i) and (ii). We would like

to use the Theorem of Stone-Weierstrass (Proposition 3.14) for the subset

S := {fb : L̂D → C | b ∈ LD}.

In order to do so choose the function f0 ∈ S. For any character k ∈ L̂D the equations

1 = k(0) = f0(k)

hold. Consequently, the family (fb)b∈LD satisfies condition (SW1).

Let k1, k2 be two distinct elements of the dual Lagarias group L̂D. In fact, there is at

least one b ∈ LD such that k1(b) 6= k2(b), because else they are equal. Consequently, for

the continuous function fb ∈ S is true that

fb(k1) 6= fb(k2).



52 CHAPTER 3. LAGARIAS GROUP

Thus, the set S seperates the points (SW2).

Consider some b ∈ LD and the corresponding function fb ∈ S. Since LD is a group the

element −b is in LD and so f−b ∈ S. Furthermore,

fb(k) = k(b) = k(−b) = f−b(k), k ∈ L̂D .

Hence, the family S satisfies also the property (SW3), which allows us to use Proposition

3.14.

Lemma 3.16. For b, c ∈ LD and each k ∈ L̂D the following two equalities

(i) fb−c(k) = fb(k) · fc(k),

(ii) fb(k) · fb(k) = 1

are true.

Proof. As mentioned in the beginning of this section the equation k(−c) = k(c) holds.

Thus,

fb−c(k) = k(b+ (−c)) homomorphism
= k(b) · k(−c) = fb(k) · fc(k).

Further,

fb(k) · fb(k)
(i)
= fb−b(k) = k(0)

homomorphism
= 1.

Our last aim of this chapter is to characterize the dual Lagarias group L̂D. In particular,

we know by Proposition 3.5 that LD is isomorphic to to ZM . Hence, we can identify our

dual Lagarias group L̂D with the dual group of ZM .

The dual group Ẑ of Z is equal to

{e−i·〈h | · 〉R : Z→ S1 | h ∈ [0, 2π)}.

Further, by Lemma 3.10 (iv) we know that ẐM is equal to
M

×
n=1
Ẑ.

Lemma 3.17. Let LD be the Lagarias group of an aperiodic, Delone set D of finite

local complexity. Then, there exists an isomorphism between L̂D and

{e−i·〈h | · 〉RM : ZM → S1 | h ∈ [0, 2π)M}

where 〈· | ·〉RM is the standard scalar product on RM defined by

〈x | y〉RM =
M∑
j=1

xj · yj

for any x, y ∈ RM .
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Proof. The statement follows immediately by the previous considerations and Proposition

3.5.

3.3 Example

Recall the example of the last chapter. We have the pointset D ( R defined by an

infinite word ω which contains any finite word over {0, 1}. Then, D is an aperiodic

Delone set of finite local complexity and

(D −D) = {m · 1 + n · q | m,n ∈ N} ∪ {−m− n · q | m,n ∈ N} (?)

where q ∈ (R \Q) ∩ [0, 1] is a fixed irrational number. Recall the definition of the

Lagarias group of D, which is the group of all linear Z-combinations of elements of

(D −D). Since D is an aperiodic Delone set of finite local complexity, which contains

the neutral element 0, the Lagarias group has to be finitely generated, see Proposition

3.4. It follows immediately that LD is generated by the set B(D−D) = {1, q}, see (?).

Indeed, the set B(D−D) is a minimal generator. Note that for example the set {1,−q} is

also a minimal generator.

We can identify the Lagarias group with Z2, see Proposition 3.5. Besides, we can see

that D satisfies the dimension inequality of Lemma 3.6, since

M = 2 > 1 = dim(R).

Further, our dual Lagarias group is given by

L̂D ∼= {ei·〈h | · 〉R2 : Z2 ∼= LD → S1 | h ∈ [0, 2π)2}.
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Chapter 4

Groupoid

4.1 Groupoid on the tiling space T
Let Γ0 and Γ1 be some sets and suppose we are given maps r : Γ1 → Γ0 and s : Γ1 → Γ0,

called the range map and the source map, respectively. Define

Γ2 := {(γ1, γ2) ∈ Γ1 × Γ1 | s(γ1) = r(γ2)}.

We then say that Γ = (Γ0,Γ1) with the composition map ◦ : Γ2 → Γ1 is a groupoid, if

the following assertions hold.

(G1) For any (γ1, γ2), (γ2, γ3) ∈ Γ2 the equation (γ1 ◦ γ2) ◦ γ3 = γ1 ◦ (γ2 ◦ γ3) holds.

(G2) For each x ∈ Γ0 there is an ex ∈ Γ1 with r(ex) = s(ex) = x such that

ex ◦ γ = γ for each γ ∈ Γ1, where r(γ) = x

and

γ ◦ ex = γ for each γ ∈ Γ1, where s(γ) = x.

(G3) For all γ ∈ Γ1 exists an η ∈ Γ1 such that the following is true.

·) We have the equalities r(γ) = s(η) and s(γ) = r(η).

·) For any ξ ∈ Γ1
T with r(γ) = r(ξ) it satisfies (γ ◦ η) ◦ ξ = ξ.

·) For each ξ ∈ Γ1
T with s(γ) = r(ξ) it is true that ξ ◦ (γ ◦ η) = ξ.

The set Γ0 can be thought of as a set of points and Γ1 as a set of arrows between two

points of Γ0. The elements of Γ1 are endowed with a direction, characterized by the

source and the range map.

55
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Lemma 4.1. Let Γ be a groupoid. Then, the following statements are true.

(i) For x ∈ Γ0 the arrow ex in (G2) is unique.

(ii) For γ ∈ Γ1 the arrow η in (G3) is unique.

Proof.

(i) Let x be an arbitrary element of Γ0. Assume we have two arrows e
(1)
x , e

(2)
x ∈ Γ1

satisfying (G2). Thus, (e
(1)
x , e

(2)
x ) and (e

(2)
x , e

(1)
x ) are both elements of Γ2 and so

e
(1)
x = e

(1)
x ◦ e(2)

x = e
(2)
x .

(ii) Let γ be some element of Γ1 and η(1), η(2) ∈ Γ1 satisfying (G3). More precisely, we

have γ ◦ η(1) = er(γ) and η(2) ◦ γ = es(γ) where er(γ) and es(γ) are both unique by

(i). According to condition (G3) we know that r(η(1)) = s(γ) and r(γ) = s(η(2)).

Hence,

η(1) (G2)
= er(η(1)) ◦ η(1) = es(γ) ◦ η(1) = (η(2) ◦ γ) ◦ η(1)

(G1)
= η(2) ◦ (γ ◦ η(1)) = η(2) ◦ er(γ) = η(2) ◦ es(η(2))

(G2)
= η(2).

Because of the uniqueness in (G2) and (G3) we call the arrow ex ∈ Γ1 the unit of x ∈ Γ0

and the arrow η ∈ Γ1 in (G3) the inverse element of γ ∈ Γ1, respectively. We denote

the inverse element of γ ∈ Γ1 by γ−1 ∈ Γ1.

Moreover, because of Lemma 4.1 (i) we can consider Γ0 as a subset of Γ1, represented

by the set of the units. Hence, we can identify the groupoid Γ with the set Γ1.

Consider a groupoid Γ = (Γ0,Γ1) where Γ0 and Γ1 are topological spaces. Then, the

groupoid Γ is called topological if the range map ’r’, source map ’s’, the composition

map ’◦’ and the map which maps γ to its inverse element γ−1 are continuous.

Lemma 4.2. Let D ⊆ G be an aperiodic Delone set of finite local complexity and T the

corresponding transversal. We set Γ0
T := T and

Γ1
T := {(t, b) ∈ T ×G | τ−bt ∈ T }

where τ−b is the continuous associated shift of a measure, see section 2.3. Moreover, the

range map is given by r((t, b)) := t and the source map is given by s((t, b)) := τ−bt for

all (t, b) ∈ Γ1
T . Then,

Γ2
T = {((t1, b1), (t2, b2)) ∈ Γ1

T ×Γ1
T | τ−b1t1 = t2}.
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Furthermore, the composition map ◦ : Γ2
T → Γ1

T is defined by

(t1, b1) ◦ (t2, b2) := (t1, b1 + b2),

for each ((t1, b1), (t2, b2)) ∈ Γ2
T . The inverse element of (t, b) ∈ Γ1

T is given by

(t, b)−1 = (τ−bt,−b).

Then, ΓT= (Γ0
T ,Γ

1
T ) is a continuous groupoid.

Proof. By definition of Γ1
T the image of the range and source map is T and so they are

well-defined. The characterization of Γ2
T follows immediately by the definition of the

range and source map.

”(G1)” Let ((t1, b1), (t2, b2)) and ((t2, b2), (t3, b3)) be some elements of Γ2
T . Hence, by the

characterization of Γ2
T we have that τ−b1t1 = t2 and τ−(b1+b2)t1 = τ−b2t2 = t3.

Consequently,

[(t1, b1) ◦ ((t2, b2)] ◦ (t3, b3) =
[
(t1, b1) ◦ ((τ−b1t1, b2)

]
◦ (τ−(b1+b2)t1, b3)

= (t1, b1 + b2) ◦ (τ−(b1+b2)t1, b3) = (t1, b1 + b2 + b3)

= (t1, b1) ◦ (τ−b1t1, b2 + b3) = (t1, b1) ◦
[
(τ−b1t1, b2) ◦ (τ−(b1+b2)t1, b3)

]
= (t1, b1) ◦ [(t2, b2) ◦ (t3, b3)] .

”(G2)” Let t be some element of Γ0
T . Then, et := (t, 0) is an element of Γ1

T . Further,

r(et) = r((t, 0)) = t = τ−0t = s((t, 0)) = s(et).

Any (t, b) ∈ Γ1
T has the range t and any (τ bt, b) ∈ Γ1

T has the source t. Moreover,

the following equations are true

et ◦ (t, b) = (t, 0) ◦ (τ−0t, b) = (t, 0 + b) = (t, b), for all (t, b) ∈ Γ1
T ,

(τ bt, b) ◦ et = (τ bt, b) ◦ (t, 0) = (τ bt, b+ 0) = (τ bt, b), for all (τ bt, b) ∈ Γ1
T .

Thus, et := (t, 0) ∈ Γ1
T is the unit of t ∈ T = Γ0

T .

”(G3)” Let (t, b) be some element of Γ1
T . Obviously, the pair (τ−bt,−b) is an element of

Γ1
T . By definition

s((t, b)) = τ−bt = r((τ−bt,−b)),
r((t, b)) = t = τ b(τ−bt) = s((τ−bt,−b)).
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Furthermore,

(τ−bt,−b) ◦ (t, b) = (τ−bt, b− b) = (τ−bt, 0)
(G2)
= es((t,b)),

(t, b) ◦ (τ−bt,−b) = (t, b− b) = (t, 0)
(G2)
= er((t,b)).

Hence, (τ−bt,−b) is the inverse element of (t, b).

Now we still have to show that the groupoid ΓT is topological. Consider the set

X = {x ∈ G | ∃t ∈ T such that τ−xt ∈ T } ⊆ G.

Assume X is not discrete, which means for some b ∈ X that any open neighborhood V

of b contains a different element c 6= b of X. Choose c such that c− b is an element of U .

By definition of X there are a t1 ∈ T and t2 ∈ T such that τ−bt1 ∈ T and τ−ct2 ∈ T .

Thus, τ−bt1({0}) and τ−ct2({0}) are equal to one which means that both are equal.

Since Dt1 is U -uniformly discrete and c − b 6= 0 it follows that t1({c − b}) = 0, see

Proposition 2.16. Hence, we get

1
t2∈T= t2({0}) = τ c(τ−ct2({0})) = τ c(τ−bt1({0})) = t1({c− b}) = 0,

which is a contradiction. Thus, the set X is discrete and so its induced topology is the

discrete topology.

The set Γ1
T is in a natural way endowed with the product topology and also Γ2

T . Hence,

Γ0
T and Γ1

T are both topological spaces. Now we have to check if r,s,◦ and the inverse

map −1 are continuous. We will prove that ◦ is continuous. The other proofs work in a

similar way.

Take some ((t1, b1), (t2, b2)) ∈ Γ2
T and an open neighborhood V of (t1, b1) ◦ (t2, b2) =

(t1, b1 + b2). By definition of the topology on Γ1
T , there are open sets V1, V2 ⊆ Γ1

T

such that V1 × V2 ⊆ V and (t1, b1) ◦ (t2, b2) ∈ V1 × V2. Since the shift map τ b and its

inverse map τ−b are continuous, the set τ−b(V1) is an open neighborhood of t2 and

τ b(τ−b(V1)) = V1. Furthermore, {b1} and {b2} are open sets with respect to the induced

topology on X. Altogether, the set (V1 × {b1}) × ((τ−bV1) × {b2}) ⊆ Γ2
T is an open

neighborhood of ((t1, b1), (t2, b2)) ∈ Γ2
T and

(V1 × {b1}) ◦ ((τ−bV1)× {b2}) = V1 × {b1 + b2} ⊆ V1 × V2 = V,

which implies that the composition map ◦ is continuous.
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4.2 Continuous fields of Hilbert spaces

The following notions are motivated by [DIXC] and [BOS]. Consider a family (Ai)i∈I of

subsets of G. Then, the product of these sets is defined by∏
i∈I

Ai := {a : I →
⊔
i∈I

Ai | ai ∈ Ai for all i ∈ I}

where
⊔

denotes the disjoint union of these sets. Actually the disjoint union
⊔
i∈I

Ai is

equal to {(i, a) | i ∈ I, a ∈ Ai}. For the sake of convenience we denote such an element

by ai.

Let Σ be a locally compact space and consider the family (H(σ))σ∈Σ of complex separable

Hilbert spaces with index set Σ. For σ ∈ Σ the scalar product in H(σ) is denoted

by 〈· | ·〉σ. We write ‖ · ‖σ for the induced norm of the scalar product on H(σ). The

elements of the set

V(Σ,H(.)) :=
∏
σ∈Σ

H(σ)

are called vector fields. Furthermore, the set

O(Σ, B(H(.))) :=
∏
σ∈Σ

B(H(σ))

is called the set of operator fields on H(σ), where for any σ ∈ Σ the set B(H(σ)) denotes

the set of all bounded and linear operators on the Hilbert space H(σ).

Consider a linear subspace S ⊆ V(Σ,H(.)). The pair ((H(σ))σ∈Σ ,S) is called a contin-

uous field of Hilbert spaces if the following conditions are hold.

(H1) For any σ ∈ Σ the set Sσ := {vσ | v ∈ S} is a dense subset in H(σ).

(H2) For all v ∈ S the map Φv : Σ→ R defined by

σ 7→ ‖vσ‖σ

is continuous.

(H3) Let v ∈ V(Σ,H(.)) be a vector field. If for any σ ∈ Σ and ε > 0 there is a w ∈ S
and a neighborhood of σ such that ‖vσ′ −wσ′‖σ′ ≤ ε is true, then, v is an element

of S.

The set S is called a generator and we say any element of S is a continuous vector field

or section.
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Proposition 4.3 ([DIXC]). Consider a locally compact space Σ and a family (H(σ))σ∈Σ

of complex seperable Hilbert spaces with index set Σ. If there is a linear subset Λ of

V(Σ,H(.)) satisfying (H1) and (H2), then, the family (H(σ))σ∈Σ can be uniquely endowed

with a structure of a continuous field of Hilbert spaces.

A subset of a Hilbert space is called total if the subspace of all finite linear combinations

is a dense subset of the Hilbert space. According to that we call a subset Λ ⊆ V(Σ,H(.))

total if for each σ ∈ Σ the set

Λσ := {vσ | v ∈ Λ}

is total in H(σ).

Proposition 4.4 ([DIXC]). Consider a continuous field of Hilbert spaces ((H(σ))σ∈Σ ,S)

over a locally compact space Σ and Λ a total subset of S. For any v ∈ S, K ⊆ Σ compact

and ε > 0 there are functions ϕ1, . . . , ϕn ∈ Cc(Σ) and w(1), . . . w(n) ∈ Λ such that

‖vσ − (
n∑
j=1

ϕj(σ) · w(j)
σ )‖ ≤ ε

holds for all σ ∈ K.

Denote the disjoint union
⊔
σ∈Σ

H(σ) by H. As mentioned above any element h of H has

the form (σ, h′) where h′ is an element of the Hilbert space H(σ). Now consider the

projection pr : H → Σ defined by

pr(h) := pr((σ, h′)) := σ ∈ Σ.

For ε > 0, an open set W ⊆ Σ and v ∈ S we define the set

U(ε, v,W ) := {h := (σ, h′) ∈ H | pr(h) ∈ W and ‖h′ − vpr(h)‖σ < ε}.

These sets forms a basis for a topology O(H) on H.

Σ

Figure 10:
An open set in H
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An open set in H is sketched in Figure 10. The blue lines describes an open set W ⊆ Σ

and any gray line represents a Hilbert space H(σ) located at σ ∈ Σ. The section v ∈ S
is represented by the black points and the open set U(ε, v,W ) is drawn with the red

lines.

Then, the set C(Σ,H) denotes the set of all continuous functions in
∏
σ∈Σ

H(σ).

Lemma 4.5 ([DIXC]). Consider a continuous field of Hilbert spaces ((H(σ))σ∈Σ,S)

over Σ. For each σ ∈ Σ and each x ∈ H(σ) there is a section v ∈ S such that

vσ = x.

4.3 Representation of groupoids

Consider a locally compact space Σ and a topological groupoid ΓΣ = (Σ,Γ1
Σ) with unit

space Σ. Let (H(σ))σ∈Σ be a continuous field of Hilbert spaces and S be its generator.

We denote
⊔
σ∈Σ

H(σ) by H endowed with the topology O(H) as above. In this section

we follow [BOS].

Let
(
A(γ) : Hs(γ) → Hr(γ)

)
γ∈ΓΣ

be a family of unitary invertible bounded operators.

The triple ((H(σ))σ∈Σ,S, (A(γ))γ∈ΓΣ
) is called a unitary representation if the following

assertions hold.

(R1) For any σ ∈ Σ and its corresponding unit eσ ∈ Γ1
Σ the equation A(eσ) = idH(σ) is

true.

(R2) For all (γ1, γ2) ∈ Γ2
Σ the equation A(γ1 ◦ γ2) = A(γ1) ◦ A(γ2) holds.

(R3) For each γ ∈ ΓΣ it is true that A(γ−1) = A(γ)−1.

Note that for any unitary representation the map γ 7→ ‖A(γ)‖ is locally bounded,

because for γ ∈ ΓΣ the operator A(γ) is unitary and hence, it has norm one. A unitary

representation ((H(σ))σ∈Σ,S, (A(γ))γ∈ΓΣ
) is called

·) weakly continuous if the map Ψ : Γ1
Σ → C defined by

γ
Ψ7→ 〈ur(γ) | A(γ)vs(γ)〉

is continuous for all u, v ∈ S.

·) strongly continuous if the map Φ : Γ1
Σ →

⊔
σ∈Σ

H(σ) defined by

γ
Φ7→ A(γ)vs(γ)

is continuous for each v ∈ S.
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·) continuous if the map Υ : Γ1
Σ×

⊔
σ∈Σ

H(σ)→
⊔
σ∈Σ

H(σ) defined by

(γ, h)
Υ7→ A(γ)h

is continuous.

Proposition 4.6 ([BOS]). Let ((H(σ))σ∈Σ,S, (A(γ))γ∈ΓΣ
) be a weakly continuous, uni-

tary representation. Then, this representation is strongly continuous.

Proof. Let v ∈ S be arbitrary. Consider for some ε > 0 and an open set W ⊆ Σ

the neighborhood N (ε, v,W ) ⊆ H of A(γ)vs(γ) for a given γ ∈ Γ1
Σ such that for

u ∈ N (ε, v,W ) the equation

ur(γ) = A(γ)vs(γ) (?)

holds. Because the representation is weakly continuous there is a neighborhood Kγ ⊂ Γ1
Σ

of γ such that for all η ∈ Kγ it is true that∣∣〈ur(η) | A(η)vs(η)〉r(η) − 〈ur(γ) | A(γ)vs(γ)〉r(γ)

∣∣ < ε

4
. (??)

Furthermore, r(.) is a continuous map and so for u ∈ N (ε, v,W ) we can find an open

neighborhood K′γ ⊂ Kγ of γ such that for any γ′ ∈ K′γ the inequality∣∣〈ur(γ′) | ur(γ′)〉r(γ′) − 〈ur(γ) | ur(γ)〉r(γ)

∣∣ < ε

4
(? ? ?)

holds. Since A(γ) is unitary for all γ ∈ Γ1
Σ we have

〈A(γ)vs(γ) | A(γ)vs(γ)〉r(γ) = 〈vs(γ) | vs(γ)〉s(γ).

By using the triangle inequality we get for all γ′ ∈ K′γ that

‖ur(γ′) − A(γ′)vs(γ′)‖2
r(γ′)

=
∣∣〈ur(γ′) − A(γ′)vs(γ′) | ur(γ′) − A(γ′)vs(γ′)〉r(γ′)

∣∣
≤
∣∣〈ur(γ′) | ur(γ′)〉r(γ′) − 〈ur(γ′) | A(γ′)vs(γ′)〉r(γ′)

∣∣
+

∣∣∣∣∣∣∣〈A(γ′)vs(γ′) | A(γ′)vs(γ′)〉r(γ′)︸ ︷︷ ︸
=〈vs(γ′) | vs(γ′)〉s(γ′)

−〈A(γ′)vs(γ′) | ur(γ′)〉r(γ′)

∣∣∣∣∣∣∣
=
∣∣〈ur(γ′) | ur(γ′)〉r(γ′) − 〈ur(γ′) | A(γ′)vs(γ′)〉r(γ′)

∣∣+
∣∣〈vs(γ′) | vs(γ′)〉s(γ′) − 〈A(γ′)vs(γ′) | ur(γ′)〉r(γ′)

∣∣
< ε.
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The last inequality follows by the following two computations∣∣〈ur(γ′) | ur(γ′)〉r(γ′) − 〈ur(γ′) | A(γ′)vs(γ′)〉r(γ′)
∣∣

≤
∣∣〈ur(γ′) | ur(γ′)〉r(γ′) − 〈ur(γ) | ur(γ)〉r(γ)

∣∣︸ ︷︷ ︸
< ε

4
because of (???)

+
∣∣〈ur(γ) | ur(γ)〉r(γ) − 〈ur(γ′) | A(γ′)vs(γ′)〉r(γ′)

∣∣
(?)
<
ε

4
+
∣∣〈ur(γ) | A(γ)vs(γ)〉r(γ) − 〈ur(γ′) | A(γ′)vs(γ′)〉r(γ′)

∣∣︸ ︷︷ ︸
< ε

4
because of (??)

<
ε

2

and∣∣〈vs(γ′) | vs(γ′)〉s(γ′) − 〈A(γ′)vs(γ′) | ur(γ′)〉r(γ′)
∣∣

≤
∣∣〈vs(γ′) | vs(γ′)〉s(γ′) − 〈A(γ)vs(γ) | ur(γ)〉r(γ)

∣∣+
∣∣〈A(γ)vs(γ) | ur(γ)〉r(γ) − 〈A(γ′)vs(γ′) | ur(γ′)〉r(γ′)

∣∣
(?)
=

∣∣∣∣∣∣∣〈vs(γ′) | vs(γ′)〉s(γ′) − 〈A(γ)vs(γ) | A(γ)vs(γ)〉r(γ)︸ ︷︷ ︸
=〈vs(γ) | vs(γ)〉s(γ)

∣∣∣∣∣∣∣
+
∣∣〈A(γ)vs(γ) | ur(γ)〉r(γ) − 〈A(γ′)vs(γ′) | ur(γ′)〉r(γ′)

∣∣︸ ︷︷ ︸
< ε

4
because of (??)

< |〈vs(γ′) | vs(γ′)〉s(γ′) − 〈vs(γ) | vs(γ)〉s(γ)|︸ ︷︷ ︸
< ε

4
because of (???)

+
ε

4

<
ε

2
,

which leads to the statement.

Proposition 4.7 ([BOS]). If ((H(σ))σ∈Σ,S, (A(γ))γ∈ΓΣ
) is a strongly continuous, uni-

tary representation, then, this representation is continuous.

Proof. Let (γ, h) ∈ Γ1
Σ×H be arbitrary. Consider some open neighborhood N (ε, v,W )

in H of A(γ)h such that the equation

vr(γ) = A(γ)h

holds. Choose w ∈ S such that ws(γ) is equal to h. Since the representation is strongly

continuous there is an open neighborhood Wγ ⊆ Γ1
Σ of γ such that for any γ′ ∈ Wγ we

have the inequality

‖vr(γ′) − A(γ′)ws(γ′)‖r(γ′) <
ε

2
. (?)
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The set

Uγ,h := {(γ′, h′) ∈ Γ1
Σ×H | ‖h′ − ws(γ′)‖s(γ′) <

ε

2
, γ′ ∈ Wγ}

is obviously an open neighborhood of (γ, h), since for any ε > 0 we have

‖h− ws(γ)‖s(γ) = ‖h− h‖s(γ) = 0 <
ε

2
.

Thus, for any (γ′, h′) ∈ Uγ,h

‖vr(γ′) − A(γ′)h′‖r(γ′)
≤ ‖vr(γ′) − A(γ′)ws(γ′)‖r(γ′)︸ ︷︷ ︸

< ε
2

because of (?)

+‖A(γ′)ws(γ′) − A(γ′)h′‖r(γ′)

<
ε

2
+ ‖A(γ′)‖︸ ︷︷ ︸

=1 since A is unitary

· ‖ws(γ′) − h′‖s(γ′)︸ ︷︷ ︸
< ε

2
since (γ′,h′)∈Uγ,h

< ε.

The last two propositions imply that a weakly continuous, unitary representation

((H(σ))σ∈Σ,S, (A(γ))γ∈ΓΣ
) is continuous.



Chapter 5

Proto cells

From now on we consider the locally compact abelian group (Rd ,+) endowed with

the standard topology. The space Rd is σ-compact, because it can be written as the

union of the family ([−n, n]d)n∈N of compact subsets. Moreover, Rd is Hausdorff and

second-countable. Thus, we can use all our previous results. Let D denote our D-set of

Rd .

Consider some real, positive numbers R0 and R1. We say D is R0-uniformly discrete, if

for each x ∈ Rd the interesection D∩BR0(x) contains at most one point. Further, the set

D is called R1-relatively dense, if the equation D + BR1(0) = Rd holds. We immediately

see that these definitions are special cases of the definitions of U -uniformly discrete and

K-relatively dense. We call D an (R0, R1)-Delone set, if D is R0-uniformly discrete and

R1-relatively dense. If we speak in the following about Delone sets, we actually mean

(R0, R1)-Delone sets. Note that we suppose that R0 is chosen to be maximal, i.e. as

large as possible, and R1 is chosen to be minimal. They satisfy the inequality R0 ≤ R1.

In this chapter our main aim is to tile the space Rd by a finite number of different cells.

In order to do so we will define the Voronoi cells of the set D. By using them, we will

construct the set of all collared Voronoi proto cells P . Then, we will show that this set

is finite and that the cells of dimension d tile our space. The following considerations

are inspired by [BNM].

First, we give a short introduction to the concept of hyperplanes and polytopes. A

hyperplane with respect to u ∈ Rd and c ∈ R is defined by

H := {x ∈ Rd | 〈u | x〉Rd = c}.

Such a hyperplane splits the space Rd in two half-spaces

H+ := {x ∈ Rd} | 〈u | x〉Rd ≥ c}

65
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and

H− := {x ∈ Rd} | 〈u | x〉Rd ≤ c}.

Let C be a convex and closed subset of Rd and H ⊆ Rd be some hyperplane. If further,

the intersection C ∩H is not empty and C is a subset of H−, we call H a supporting

hyperplane of the set C. The intersection C ∩H is called face of C, see Figure 11.

face

C

H

Figure 11:
An illustration of the face and a corresponding supporting hyperplane of a convex, closed subset of Rd

Lemma 5.1. Consider a closed and convex set C ⊆ Rd and a supporting hyperplane H

of it. The face F := C ∩H is convex and closed.

Proof. By definition there are a c ∈ R and a u ∈ Rd such that

H = {x ∈ Rd | 〈u | x〉Rd = c}.

Note that a set F is called convex, if for any f1, f2 ∈ F and some λ ∈ [0, 1] the linear

combination λ · f1 + (1− λ) · f2 is still an element of F . Let f1, f2 be some elements of

F and λ ∈ [0, 1] be arbitrary but fixed. Since f1, f2 ∈ H the equations

〈u | f1〉Rd = c = 〈u | f2〉Rd

hold. Thus,

〈u | λ · f1 + (1− λ) · f2〉Rd = λ · 〈u | f1〉Rd + (1− λ) · 〈u | f2〉Rd = c.

Consequently, λ · f1 + (1− λ) · f2 is an element of H. On the other hand, it is also an

element of C, because C is convex. Altogether, the linear combination is an element of

the intersection C ∩H. Obviously, the intersection C ∩H is also closed.

We call a convex and closed set C a finite polytope, if there is a finite number N ∈ N of

hyperplanes (Hj)Nj=1 such that C =
N⋂
j=1

Hj
−. If, further, the set C is compact we call C

a bounded, finite polytope. Here we will only consider bounded, finite polytopes. Thus,

if we talk in the following about polytopes, we mean a bounded, finite polytope.
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Any polytope C is contained in the subspace EC of Rd which is defined by

EC := span{x ∈ Rd | ∃α, β ∈ C such that x = α− β}.

We denote by span(X) the set of all finite linear combinations of the elements of X ⊆ Rd .

The dimension of EC is called the dimension of the corresponding polytope C.

For instance, consider the bounded, finite polytope

C :=


x1

x2

x3

 ∈ R3 | x1, x2 ∈ [0, 1], x3 = 0

 .

Then, the space EC determined by
x1

x2

x3

 ∈ R3 | x3 = 0

 .

Hence, the dimension of the bounded finite polytope is equal to two.

Recall that the interior of a convex subset X of Rd is the set

int(X) := {x ∈ X | ∃B open s.t. x ∈ B ⊆ X}.

Now we give a short summary of the concept of a tiling of Rd . This part is inspired by

[SEN].

Let (Zk)k∈N ⊆ Rd be a countable family of compact, convex sets with non-empty

interior. We call Z := {Z1, Z2, . . .} a tiling, if for two different k1, k2 ∈ N the intersection

Zk1 ∩ int(Zk2) is empty and
∞⋃
k=1

Zk = Rd . The subset Zk is called tile. Consider a tiling

Z of Rd . The non-empty intersection of d−n+ 1 pairwise different tiles Zk1 , . . . , Zkd−n+1

with dim(
d−n+1⋂
j=1

Zkj) = n is called n-face. For example, Figure 12 shows a tiling of R2.

The set F1 is a 2-face, F2 is a 1-face and F3 is a 0-face.

F1

F2F3

Figure 12:
The illustration of some k-faces for a special tiling of the space R2
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A convex and compact set K specifies an affine space AK := x+ EC where x is some

element of K. Let ` be the Lebesgue measure on AK , then, the barycenter of a compact

and convex set K is defined component-by-component by

bK :=
1´

K

1 d`(x)
·
ˆ

K

x d`(x).

Later on, we will use the barycenter of a face of a Voronoi tile to puncture this face.

5.1 Voronoi cells

Now consider a D-set D ⊆ Rd . We define the Voronoi cell of an element α ∈ D by

VD(α) :={x ∈ Rd | ∀β ∈ D \ {α} : ‖x− α‖Rd < ‖x− β‖Rd}

=
⋂

β∈D\{α}

{x ∈ Rd | ‖x− α‖Rd < ‖x− β‖Rd}.

The sets H
(β)
− := {x ∈ Rd | ‖x− α‖Rd < ‖x− β‖Rd} are halfspaces of the hyperplanes

H(β) := {x ∈ Rd | ‖x − α‖Rd = ‖x − β‖Rd}. Namely, such a hyperplane bisects

perpendicularly the segment −α+ β ∈ (−α+D). Then, the Voronoi cell is the interior

of all these half-spaces H−, see Figure 13.

α

β1

β2

β3

β4

Figure 13:
The illustration how to construct a Voronoi cell of some given α

Figure 13 suggests that only a finite number of hyperplanes are essential for the

construction of a Voronoi cell. This statement will be proven in the following lemma.
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Lemma 5.2. Let D ⊆ Rd be a D-set, then, the following assertions hold.

(i) For any α ∈ D the closure of the Voronoi cell VD(α) is a bounded, finite polytope.

Indeed, the closure of a Voronoi cell VD(α) is contained in BR1(α).

(ii) For each different α, β ∈ D it follows that VD(α) ∩ VD(β) is empty.

(iii) The union
⋃
α∈D
VD(α) is equal to Rd .

In fact, the family of the closure of the Voronoi cells with respect to D is a tiling of Rd .

Proof. First note that for some α ∈ D the closure of the Voronoi cell VD(α) is equal to

{x ∈ Rd | ∀β ∈ D \ {α} : ‖x− α‖Rd ≤ ‖x− β‖Rd}.

(i) Since D is R1-relatively dense we have D + BR1(0) = Rd . Hence, for each

x ∈ Rd \BR1(α) there is some β ∈ D such that ‖x− β‖Rd ≤ R1. This implies that

VD(α) ⊆ BR1(α). Consequently, VD(α) is bounded and closed making it compact.

Further, for any element β of D ∩ (Rd \B2R1(α)) the distance ‖α− β‖Rd is greater

than 2R1. Thus, the segments (−α + (D ∩ (Rd \B2R1(α)))) do not play a role for

VD(α), because VD(α) ⊆ BR1(α). On the other hand, the intersection D∩B2R1(α)

contains at most a finite number of elements, because D is R0-uniformly discrete

(see Lemma 2.3 (iii)). Hence, only a finite number of segments (−α+D) contribute

to the construction of VD(α). Altogether, VD(α) is a polytope.

(ii) Let α and β be two different elements of D. Assume VD(α) ∩ VD(β) is not empty

and x ∈ VD(α) ∩ VD(β). Then,

‖x− α‖Rd

x∈VD(α)

≤ ‖x− β‖Rd

x∈VD(β)
< ‖x− α‖Rd

which is a contradiction.

(iii) The union
⋃
α∈D
VD(α) is obviously a subset of Rd . Thus, we only have to verify

the converse inclusion Rd ⊆
⋃
α∈D
VD(α).

Consider some x ∈ Rd . Since D is uniformly discrete the intersection D ∩ BR1(x)

is finite or empty (Lemma 2.3 (iii)). But the intersection is non-empty, see Lemma

2.2. Consequently, we can take the minimum over the distances between x and the

elements of D ∩ BR1(x). Denote a minimum by β ∈ D ∩ BR1(x). Hence, x is an

element of VD(β), because any other element of D ∩ (Rd \BR1(x)) has a distance

to x greater than R1, see (i).
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Furthermore, for α ∈ D the Voronoi cell VD(α) is not empty, since D is R0-uniformly

discrete. More precisely, the open ball BR0
2

(α) is contained in VD(α). Thus, the family(
VD(α)

)
α∈D is a tiling of Rd .

The closure of a Voronoi cell VD(α) is called Voronoi tile and it is punctured by α ∈ D.

We call two elements α, β ∈ D nearest neighbors (n.n.), if the intersection VD(α)∩VD(β)

is not empty and has dimension d− 1.

To get a better imagination of the definition of a nearest neighbor consider the group

R2. Suppose D ⊆ R2 is a D-set and we have given its Voronoi cells. By definition

two elements of D are nearest neighbors, if the intersection of its Voronoi cells are not

empty and has the dimension 1. In Figure 14 it can be seen that β1, β3, β4, β5 and β7

are nearest neighbors of α. But β2, β6 and β8 are not nearest neighbors of α, because

the intersection of the Voronoi cells have the dimension zero.

α

β1 β2

β3

β4
β5

β6 β7

β8

Figure 14:
An example which Voronoi cells are nearest neighbors of some given Voronoi cell VD(α)

We define the relative interior of a convex set X by

relint(X) := {x ∈ X | ∀y ∈ X, ∃z ∈ X, ∃λ ∈ (0, 1) such that x = λ · y + (1− λ) · z}.

A set K of convex polytopes is called cell complex of Rd if the following two assertions

are true.

·) Any face of a convex polytope of K lies in K.

·) Let P1, P2 ∈ K with non-empty intersection, then, their intersection is a common

face of both.

The elements of K are called cells. The meaning of the second condition is sketched

in Figure 15. There can be seen which cases we would like to exclude. The red line

illustrates the intersection of these two convex polytopes. This red line is obviously not

a face of either of the two polytopes.
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Figure 15:
The intersection of two polytopes

For α ∈ D the pair (VD(α), α) is called a (Voronoi) d-cell. For each k ∈ {0, . . . , d− 1}
we say the pair (F , bF ) is a (Voronoi) k-cell if F is the relative interior of a face of

dimension k of a Voronoi cell. The point bF ∈ Rd is the puncture of this cell and it is

defined by the barycenter of F .

It is possible to choose a different puncture of the Voronoi k-cells. Necessary are the

following. First, the puncture must lie in the relative interior of the face and secondly

the choice of the puncture for any k-cell must be coherent.

For any k ∈ {0, . . . , d} the translated support (−bF + F ) of a k-cell (F , bF ) is called the

geometric support of the k-cell. Then, KV is the set of all k-cells of the appertaining set

D. Obviously, the set KV is an infinite cell complex and we use the following notations

K(k)
V := {σ ∈ KV | σ is a k-cell},
D(k) := {b ∈ Rd | ∃F ⊆ Rd such that (F , b) ∈ K(k)

V }.

5.2 Collection of all proto cells

For any α ∈ D we define the collar of the Voronoi d-cell σ = (VD(α), α) by

ColD(σ) := ColD(α) := {β − α ∈ (D −D) | β is nearest neighbor of α}.

Similarly, the collar of a Voronoi k-cell σ = (F, bF ) ∈ K(k)
V is defined by

ColD(σ) := {−bF + α ∈ (−bF +D) | VD(α) ∩ F 6= ∅}.

Note that the definition of nearest neighbors requires that the dimension of the in-

tersection of the Voronoi tiles is d − 1 (dimension condition). But the definition of
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the collar of a Voronoi k-cell (k 6= d) asks for the intersection of the closure of their

geometric supports being not empty. Reason for establishing the dimension condition is

the uprising of problems with the construction of the boundary condition due to the

admission of Voronoi tiles whose intersection has dimension less than d− 1.

Lemma 5.3. Let D be a D-set. Then, for two different α, β ∈ D the following two

statements are equivalent.

(i) The collars of α and β are equal (ColD(α) = ColD(β)).

(ii) The Voronoi cells VD(α) and VD(β) coincide, which means

−α + VD(α) = −β + VD(β).

Proof. Let α, β ∈ D be chosen such that α 6= β.

(i)⇒ (ii) According to Lemma 5.2 (i) the sets VD(α) − α and VD(β) − β are polytopes.

Furthermore, they have the same number of hyperplanes which determine them,

because ]ColD(α) = ]ColD(β). Since the Voronoi cells are defined by the same

segments the statement follows.

(ii)⇒ (i) Since the Voronoi cells VD(α) and VD(β) be equal we have

VD(α) = α− β + VD(β). (?)

Let (γ − α) be some element of ColD(α). Then, the intersection VD(γ) ∩ VD(α) is

not empty and the dimension of VD(γ) ∩ VD(α) is equal to d− 1. Moreover,

VD(γ) ∩ VD(α)
(?)
= VD(γ) ∩ (−β + α + VD(β)) = (β − α + VD(γ)) ∩ VD(β).

Hence, by definition (γ − α) = (β − α + γ)− β is an element of ColD(β).

Let σ = (F , bF ) and σ′ = (F ′, b′F ) be both elements of KV (k) for some k ∈ {0, . . . , d}.
We call them translation equivalent (σ ∼ σ′) if the following statements are true.

(T1) The geometric supports coincide (F − bF = F ′ − b′F ).

(T2) They have the same collar (ColD(σ) = ColD(σ′)).
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Note that in this definition also the Voronoi d-cells are included. By definition it is

obvious that for two Voronoi d-cells which are translation equivalent the differences of

their puncture is contained in (D −D). The relation ∼ defines an equivalence class [σ]

on KV . The representator is given by (F , 0,ColD(σ)) which is located at the origin.

Such a [σ] of dimension k is called collared Voronoi proto k-cell. We define the set of all

collared Voronoi proto k-cells by

P(k) := K
(k)
V�∼ = {[σ] | σ ∈ K(k)

V }.

Proposition 5.4. For every D-set D the set of all collared Voronoi proto k-cells P(k) is

finite for each k ∈ {0, . . . , d}.

Proof. Consider at first the set of all collared Voronoi proto d-cells P(d). First of all we

will prove that it is sufficient to consider the elements β ∈ (D ∩ B2R1(α)) to determine

the collar ColD(α) of some α ∈ D.

Assume there is some γ ∈ D with ‖α − γ‖Rd > 2R1 such that α − γ ∈ ColD(α). By

definition of ColD(α) there is some x ∈ Rd such that the intersection VD(γ) ∩ VD(α)

contains x. Thus,

2R1 < ‖α− γ‖Rd

4-inequality

≤ ‖α− x‖Rd + ‖x− γ‖Rd

L. 5.2 (i)

≤ R1 +R1 = 2R1

which is a contradiction. Consequently,

ColD(α) ⊆ (−α +D) ∩ B2R1(α) ∈ Clu(D,B2R1(α)),

where B2R1(α) is compact. Since D is of finite local complexity there can be only a finite

number of different collars. Thus, by Lemma 5.3 the set P(d) is finite.

Consider now for k ∈ {0, . . . , d} the collared Voronoi proto k-cells P(k). Any element

[σ] ∈ P(k) has only a finite set of k-1 dimensional faces, because the k-cells are bounded,

finite polytopes. Hence, there is a finite set of Voronoi (k-1)-cells which matches to one

Voronoi k-cell [σ] only.

Moreover, we have proven that P(d) is finite. Consequently by our last consideration

the set P(d−1) has to be finite. Iterating this step it follows that for any k ∈ {0, . . . , d}
the set P(k) is finite.
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According to the last Proposition 5.4 there is for any set of all collared Voronoi proto

k-cells P(k) an Nk = ](P(k)) such that

P(d) = {[σ1], . . . , [σ]Nd}, (proto cells)

P(d−1) = {[σ1], . . . , [σ]Nd−1
}, (proto faces)

...

P(k) = {[σ1], . . . , [σ]Nk}, (proto k-cells)

...

P(0) = {[σ1], . . . , [σ]N0}. (proto vertices)

The disjoint union

P :=
d⊔

k=1

P(k)

is called the collection of all collared Voronoi proto cells which is finite, see Proposition

5.4.

A relation between the elements of P(k) and P(k−1), called incidence number

[·; ·]∼ : P(k) × P(k−1) → {−1, 0, 1},

can be established, see [BNM]. It turns out that P is a CW-complex with homology

induced by the incidence number [·; ·]∼. This leads to a cell complex structure on P and

it is called Anderson-Putnam Complex. A CW-complex gives an instruction how we

have to glue the cells together.

Our main aim is to decompose the Schrödinger operator in a useful way. To do so we

will use the structure of the D-set. According to Lemma 5.2 we can describe the whole

space Rd by the elements of P(d). If we suppose that the main potential of an atome or

molecule lies in such a cell it suffices to draw our attention to a finitie number of cells.

Let Dµ be some pointset of the Hull ΩD of D. We define for any p ∈ P(d) the set

Dµ(p) := {α ∈ Dµ | (VDµ(α), α,ColDµ(α)) ∼ p}

of all points of the set Dµ such that the corresponding collared Voronoi proto d-cell is

translation equivalent to p.

Lemma 5.5. Let D be a D-set of Rd and p ∈ P(d) be some collared Voronoi proto d-cell.

Then, for each t ∈ T we have

Dt(p) ⊆ (D −D) ⊆ LD .
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Proof. First note that for any element t ∈ T the set Dt is by definition an element of

the Hull ΩD and so Dt(p) is well-defined. According Proposition 2.14 the equation

Dt −Dt = D −D ⊆ LD

holds. Since Dt is an element of PT the origin 0 lies in Dt. Thus,

Dt(p) ⊆ Dt
0∈Dt
⊆ Dt −Dt = D −D ⊆ LD .

Lemma 5.6. Let t ∈ T and β ∈ Dt(p) be arbitrary and fixed. The following two

statements are equivalent for any p ∈ P(d).

(i) The set Dt(p) contains γ − β.

(ii) The set Dτ−βt(p) contains γ.

Moreover, for each β ∈ Dt ∈ PT the pointset Dτβt is an element of PT .

Proof. The origin is an element of Dτβt(p) for β ∈ Dt(p), because

τβt({0}) = t({β}) β∈Dt(p)
= 1.

Thus, the set Dτβt ∈ ΩD is an element of the Transversal T . Since the collar does not

change by shifting and

t({γ − β}) = τ−βt({γ})

the equivalence follows.

For some p ∈ P(d) we denote by Col(p) the corresponding collar of this Voronoi cell.

We define

Tp := {t ∈ T | ColDt(0) = Col(p)} ⊆ T .

In detail, Tp is the set of all elements of the transversal where the collar of the Voronoi

cell located at the origin 0 coincides with the collar of p. Note that by definition 0 ∈ Dt
and so the collar ColDt(0) is well-defined.

As mentiones above we number consecutively the set P(d) = {p1, . . . , pNd}. Thus, we

define the characteristic function χp : T → {0, 1} of Tp by

χp(t) =

1 , t ∈ Tp
0 , else

.
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5.3 Example

Recall the example of chapter 2 and chapter 3. Let D ⊆ R be the aperiodic Delone

set of finite local complexity as before. In chapter 2 we have seen that our minimal

generator of the Lagarias group

L̂D ∼= {ei·〈h | · 〉R2 : Z2 ∼= LD → S1 | h ∈ [0, 2π)2}

is given by {1, q}. We would like to characterize the set of all collared Voronoi proto

d-cells P(d) of D. Obviously, we have only four possibilities of nearest neighbors for

some α ∈ D, see Figure 16.

q q
Case 1:

αβ1 β2

q 1
Case 2:

αβ1 β2

1 1
Case 3:

αβ1 β2

1 q
Case 4:

αβ1 β2

Figure 16:
The different possibilities of nearest neighbors in our setting

The orange lines represent the corresponding closed Voronoi cell of α. The blue points

label the nearest neighbors of α. More precisely, we have

P(d) = {(
[
−q

2
,
q

2

]
, 0, {−q, q}) ,

(

[
−q

2
,
1

2

]
, 0, {−q, 1}) ,

(

[
−1

2
,
1

2

]
, 0, {−1, 1}) ,

(

[
−1

2
,
q

2

]
, 0, {−1, q})}.

The elements of P(d) have the form (F , 0,ColD(α)) where F is the geometric support

and ColD(α) is the corresponding collar. That all these cells lie in P(d) is clear, because

ω contains any finite word.



Chapter 6

The Wannier transform

In this chapter we use the concepts of a tensor product and a direct sum, see [KR] and

[WEI]. The main ideas of this chapter are based on [BNM]. We will add those proofs

which are missing and carry out the corresponding arguments in a detailed and rigorous

way.

First recall the definition of the Hilbert space

L2(L̂D) := {f : L̂D → C : f measurable,

ˆ

L̂D

|f(k)|2 d%(k) <∞}/ ∼

endowed with the scalar product

〈f | g〉L2(L̂D) :=

ˆ

L̂D

f(k) · g(k) d%(k)

which we have discussed in chapter 3 about the Lagarias group. According to Proposition

3.15 the family
(
fb : L̂D → C

)
b∈LD

defined by

fb(k) := k(b), k ∈ L̂D

is an orthonormal basis of L2(L̂D).

As mentioned above we will now consider the group G = Rd . Thus, by Proposition 3.5

we can uniquely identify our Lagarias group LD with ZM and so by Lemma 3.17

L̂D := {k : LD → S1 | k ∈ C(LD) homomorphism} ∼= {e−i·〈h | · 〉RM : ZM → S1 | h ∈ [0, 2π)M}.

In the last chapter we have seen that the set of all collared Voronoi proto d-cells P(d) is

finite. According to Lemma 5.2 the equality

Nd⋃
j=1

 ⋃
α∈Dt (pj )

α + Vj

 = Rd

77
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holds for each t ∈ T , where Vj is the geometric support of pj ∈ P(d).

Lemma 6.1. Consider two compact sets K1 and K2 of Rd and a U -uniformly discrete

set D ⊆ Rd . Then, there is an R > 0 such that

{α ∈ D | (α +K1) ∩K2 6= ∅} ⊆ D ∩ BR(0)

and this set is finite.

Proof. Since K1, K2 ⊆ Rd are compact there exists an R > 0 such that

K1, K2 ⊆ BR
2

(0).

Let α ∈ D be chosen such that (α+K1)∩K2 6= ∅. Thus, there are x1 ∈ K1 and x2 ∈ K2

with

α + x1 = x2 ⇔ α = x2 − x1.

Hence,

‖α‖Rd = ‖x2 − x1‖Rd ≤ ‖x2‖Rd + ‖x1‖Rd ≤ R
2

+
R
2

= R

which implies

{α ∈ D | (α +K1) ∩K2 6= ∅} ⊆ D ∩ BR(0).

According to Lemma 2.3 (iii) the set D ∩ BR(0) is finite and so

{α ∈ D | (α +K1) ∩K2 6= ∅}

is finite.

Lemma 6.2. Consider a D-set D and a collared Voronoi proto d-cell pj ∈ P(d) with

geometric support Vj. Then, for any ψ ∈ Cc(Rd) there exists an R > 0 such that the

equation ∑
α∈Dt (pj )

ψ(α + r) =
∑

α∈Dt (pj )∩BR(0)

ψ(α + r)

holds uniformly in r ∈ Vj. In particular, this sum is finite.
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Proof. Note that if we have verified that there is such a closed ball BR(0) independent

of r ∈ Vj the statement follows by Lemma 2.3 (iii).

According to Lemma 5.2 the closure of the geometric support K1 := Vj is compact. Let

K2 be the compact support of ψ. Note that Dt(pj ) ⊆ Dt is U -uniformly discrete. Hence,

by Lemma 6.1 there is an R > 0 such that

{α ∈ Dt(pj ) | (α +K1) ∩K2 6= ∅} ⊆ Dt(pj ) ∩ BR(0).

Since ψ vanishes on Rd \K2 the equation∑
α∈Dt (pj )

ψ(α + r) =
∑

α∈Dt (pj )∩BR(0)

ψ(α + r)

holds.

In the following this property will be used often. For instance, to interchange the

integral over the geometric support of a collared Voronoi proto d-cell with such a sum.

Denote for any ψ ∈ Cc(Rd) with corresponding R > 0 the intersection Dt(pj ) ∩ BR(0)

by DRt (pj ).

Using the results of chapter 3 and chapter 5 we define for pj ∈ P(d) a family (Et(pj ))t∈T

of closed subspaces of L2(L̂D) by

Et(pj ) := Lin{fα : L̂D → C | α ∈ Dt(pj )}.

By Lemma 5.5 the term fα is well-defined for α ∈ Dt(pj ). Consider the Hilbert space

Ht :=

Nd⊕
j=1

L2(Vj)⊗Et(pj ) .

According to Statement A.13 we define for F,G ∈ Ht the scalar product on Ht by

〈F | G〉Ht =

Nd∑
j=1

〈F (pj; ·, ·) | G(pj; ·, ·)〉L2(Vj)⊗Et (pj )

=

Nd∑
j=1

ˆ

Vj

ˆ

L̂D

F (pj; r, k) ·G(pj; r, k) d%(k) d`d(r),

where `d denotes the Lebesgue measure on Rd . Denote by H(pj)
t the tensor space

L2(Vj)⊗Et(pj ).
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6.1 Definition and properties

Consider some function ψ ∈ Cc(Rd). Then, for some t ∈ T and pj ∈ P(d) the t-Wannier

transform W t is defined by

(W t ψ)(pj; s, k) :=
∑

α∈Dt (pj )

ψ(α + s) · fα(k), s ∈ Vj ⊂ Rd , k ∈ L̂D

where Vj is the geometric support of the collared Voronoi proto d-cell pj. Note that

according to Lemma 6.2 this sum exists uniformly in r ∈ Vj and so the transformation

is well-defined.

We define the related shift map τ : L2(Rd)→ L2(Rd) for ψ ∈ L2(Rd) and x ∈ Rd by

τ−xψ(y) = ψ(x+ y), y ∈ Rd .

Similar to the associated shift of a measure we get

τ−x
(
τ−yψ

)
= τ−(x+y)ψ

and

τ−0ψ = ψ.

Lemma 6.3 ([BNM]). Consider some fixed t ∈ T . For any ψ ∈ Cc(Rd) the t-Wannier

transform W t ψ is an element of the Hilbert space Ht.

Proof. By definition of the direct sum (see A.2 ”Tensor product and direct sum”) it

suffices to show that

(W t ψ)(pj; ·, ·) ∈ H
(pj)
t , pj ∈ P(d).

Consider some pj ∈ P(d) and ψ ∈ Cc(Rd) with corresponding radius R > 0 (Lemma 6.2).

Then,

(W t ψ)(pj; ·, ·) =
∑

α∈Dt (pj )

τ−αψ ⊗ fα =
∑

α∈DRt (pj )

τ−αψ ⊗ fα.

For α ∈ DRt (pj ) ⊆ Dt(pj ) the map fα is an element of Et(pj ). According to Lemma 6.2

this is a finite linear combination of elements of the set {fα | α ∈ Dt(pj )}. Further, we

have τ−αψ ∈ L2(Vj) and so

(W t ψ)(pj; ·, ·) ∈ L2(Vj)⊗Et(pj ) = H(pj)
t
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Proposition 6.4 ([BNM]). Consider some pj ∈ P(d) with geometric support Vj and

some fixed t ∈ T . Then, for ψ ∈ Cc(Rd) and β ∈ Dt(pj ) the equation

(Wτβt ψ)(pj; s+ β, k) = (W t ψ)(pj; s, k) · fβ(k), s ∈ Vj, k ∈ L̂D

holds.

Proof. Let β ∈ Dt(pj ) be arbitrary and consider the corresponding radius R > 0 of

ψ ∈ Cc(Rd) (Lemma 6.2). The statement follows for some s ∈ Vj and k ∈ L̂D by

(Wτβt ψ)(pj; s+ β, k) =
∑

α∈DR
τβt

(pj)

ψ(s+ β + α) · fα(k)

=
∑

α∈DR
τβt

(pj)

ψ(s+ (α + β)) · fα+β−β(k)

L. 3.16
=

 ∑
α∈DR

τβt
(pj)

ψ(s+ (α + β)) · fα+β(k)

 · fβ(k)

γ=α+β
=

 ∑
γ−β∈DR

τβt
(pj)

ψ(s+ γ) · fγ(k)

 · fβ(k)

L. 5.6
=

 ∑
γ∈DRt (pj )

ψ(s+ γ) · fγ(k)

 · fβ(k)

= (W t ψ)(pj; s, k) · fβ(k).

This property of the Wannier transform is called covariance condition. This means that

in a certain sense the transformation is translation invariant.

Proposition 6.5 ([BNM]). Consider some pj ∈ P(d) with geometric support Vj and a

fixed t ∈ T . For β ∈ Dt(pj ) and ψ ∈ Cc(Rd) the equality

ψ(s+ β) =

ˆ

L̂D

(W t ψ)(pj; s, k) · fβ(k) d%(k), s ∈ Vj

is true.

Proof. Let R > 0 be the corresponding radius of ψ ∈ Cc(Rd), see Lemma 6.2. Consider

some s ∈ Vj and β ∈ Dt(pj ). According to Lemma 5.6 the origin lies in Dτβt(pj) and

because the Haar measure % on L̂D is normed it follows
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ˆ

L̂D

(W t ψ)(pj; s, k) · fβ(k) d%(k)

P. 6.4
=

ˆ

L̂D

(Wτβt ψ)(pj; s+ β, k) d%(k)

=

ˆ

L̂D

∑
α∈DR

τβt
(pj)

ψ(s+ β + α) · fα(k) d%(k)

L. 6.2
= ψ((s+ β)) ·

ˆ

L̂D

f0(k)︸ ︷︷ ︸
=1

d%(k)

︸ ︷︷ ︸
=1

+
∑

α∈DR
τβt

(pj)\{0}

ψ(s+ β + α) ·
ˆ

L̂D

fα(k) d%(k)

︸ ︷︷ ︸
=0 because α 6=0 (L. 3.13)

= ψ(s+ β).

We denote by ∇r the gradient with respect to the variable of Rd . For the sake of

convenience we write ∇ψ for some ψ ∈ C1
c(Rd) instead of ∇rψ.

Lemma 6.6 ([BNM]). Consider some ψ ∈ C1
c(Rd) and some fixed t ∈ T . Then, for

r ∈ Vj the equation

∇r(W t ψ) =W t(∇ψ)

holds.

Proof. First note that since ψ ∈ C1
c(Rd) we know that ∇ψ ∈ Cc(Rd) and so W t(∇ψ) is

well-defined. Let R > 0 be the corresponding radius of ψ (Lemma 6.2). Then,

∇r ((W t ψ)(pj; r, ·)) = ∇r

∑
α∈DRt (pj )

ψ(r + α) · fα

L. 6.2
=

∑
α∈DRt (pj )

∇rψ(r + α) · fα

=
∑

α∈DRt (pj )

(∇ψ)(r + α) · fα

= (W t(∇ψ)) (pj; r, ·).
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Theorem 6.7 ([BNM], Plancherel formula). Consider some fixed t ∈ T . Then, for

ψ ∈ Cc(Rd) the t-Wannier transform W t : Cc(Rd)→ Ht satisfies

ˆ

Rd

|ψ(r)|2 d`d(r) =

Nd∑
j=1

ˆ

Vj

ˆ

L̂D

|(W t ψ)(pj; r, k)|2 d%(k) d`d(r).

Further, there exists a uniquely unitary extension W̃ t : L2(Rd)→ Ht of the t-Wannier

transform W t.

Proof. Consider a function ψ ∈ Cc(Rd) with corresponding radius R > 0 (Lemma 6.2).

By a short computation we get for each pj ∈ P(d) and r ∈ Vj that
ˆ

L̂D

|(W t ψ)(pj; r, k)|2 d%(k)

=

ˆ

L̂D

 ∑
α1∈DRt (pj )

ψ(α1 + r) · fα1(k)

 ·
 ∑
α2∈DRt (pj )

ψ(α2 + r) · fα2(k)

 d%(k)

L. 6.2
=

∑
α1∈DRt (pj )

ψ(α1 + r) ·
∑

α2∈DRt (pj )

ψ(α2 + r) ·
ˆ

L̂D

fα1(k) · fα2(k) d%(k)

︸ ︷︷ ︸
=δα1,α2

=
∑

α1∈DRt (pj )

|ψ(α1 + r)|2

Hence,

Nd∑
j=1

ˆ

Vj

ˆ

L̂D

|(W t ψ)(pj; r, k)|2 d%(k) d`d(r)
L. 6.2
=

Nd∑
j=1

∑
α1∈DRt (pj )

ˆ

Vj

|ψ(α1 + r)|2 d`d(r)

s=α1+r
=

Nd∑
j=1

∑
α1∈Dt (pj )

ˆ

α1+Vj

|ψ(s)|2 d`d(s)

=

ˆ

Nd⋃
j=1

 ⋃
α1∈Dt (pj )

(α1+Vj)


|ψ(s)|2 d`d(s)

L. 5.2
=

ˆ

Rd

|ψ(s)|2 d`d(s).

According to Lemma 6.3 we know that W t maps to Ht. We would like to verify that

the t-Wannier transform W t has a dense image in Ht.
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Assume the contrary. Hence, there is an F :=
Nd⊕
=1

F (pj ; r, k) 6= 0 of Ht such that for each

ψ ∈ Cc(Rd) with radius R > 0 the equation

0
Ass.
= 〈F | W t ψ〉Ht

=

Nd∑
j=1

ˆ

Vj

ˆ

L̂D

F (pj; r, k) · (W t ψ)(pj; r, k) d%(k) d`d(r)

L. 6.2
=

Nd∑
j=1

∑
α∈DRt (pj )

ˆ

Vj

ˆ

L̂D

F (pj; r, k) · ψ(α + r) · fα(k) d%(k) d`d(r)

holds. Suppose that supp(ψ) ⊆ α + Vj for some pj ∈ P(d) and α ∈ Dt(pj ). Thus,

0 =

ˆ

Vj

ˆ

L̂D

F (pj; r, k) · ψ(α + r) · fα(k) d%(k) d`d(r)

=

ˆ

Vj

ψ(α + r) ·
ˆ

L̂D

F (pj; r, k) · fα(k) d%(k) d`d(r).

Since this equality is true for each ψ ∈ Cc(Rd), where the support of ψ lies in α + Vj,

we get for almost every r ∈ Vj that

0 =

ˆ

L̂D

F (pj; r, k) · fα(k) d%(k).

Moreover, this works for each α ∈ Dt(pj ). Because {fα | α ∈ Dt(pj )} is an orthonormal

basis of Et(pj ) it follows

F (pj; ·, ·) ≡ 0,

for pj ∈ P(d) and almost every r ∈ Vj. Since we get this conclusion for any pj ∈ P(d)

the map F vanishes almost everywhere, which contradicts our assumption that F 6= 0.

Consequently, the range of the t-Wannier transformW t has to be dense inHt. Altogether,

W t maps a dense subset Cc(Rd) of L2(Rd) onto a dense subset of Ht and it is an isometry.

Hence, there is a unitary extension W̃ t : L2(Rd)→ Ht of W t such that

W̃ t |Cc(Rd )=W t .
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6.2 Properties of the Hilbert spaces Ht

For the next considerations we have to recall the definitions and results of section 4.2.

Proposition 6.8 ([BNM]). For each pj ∈ P(d) we can endow the family (Et(pj ))t∈T

with a structure of a continuous field of Hilbert spaces.

Proof. Consider some pj ∈ P(d). We define

ΛE(.)(pj ) := {v ∈
∏
t∈T

Et(pj ) | ∀t ∈ T ,∃
(
v(α)
)
α∈Dt (pj )

⊂ C(T ) finite

family, such that vt =
∑

α∈Dt (pj )

v(α)(t) · fα}.

At first we have to prove that

Λ
E(.)(pj )

t := {vt | v ∈ ΛE(.)(pj )}

is a dense subset of Et(pj ). Let t be some fixed element of T . Because (fα)α∈Dt (pj )
is

the basis of Et(pj ) it follows that any vt is an element of Et(pj ). Since Λ
E(.)(pj )

t contains

any finite linear combination of (fα)α∈Dt (pj )
it is a dense subset of Et(pj ).

Secondly, we have to verify that for any v ∈ ΛE(.)(pj ) the map t ∈ T 7→ ‖vt‖L2(L̂D) is

continuous. Consider some v ∈ ΛE(.)(pj ) and so for each t ∈ T we have a corresponding

finite family F :=
(
v(α)
)
α∈Dt (pj )

of continuous functions on T such that

vt =
∑

α∈Dt (pj )

v(α)(t) · fα.

Thus,

‖vt‖2
L2(L̂D)

=

ˆ

L̂D

vt(k) · vt(k) d%(k)

F
=

finite

∑
α1∈Dt (pj )

∑
α2∈Dt (pj )

v(α1)(t) · v(α2)(t) ·
ˆ

L̂D

fα1(k) · fα2(k) d%(k)

︸ ︷︷ ︸
=δα1,α2 by P. 3.15

=
∑

α1∈Dt (pj )

|v(α1)(t)|2

Since we have chosen a finite family
(
v(α)
)
α∈Dt (pj )

⊂ C(T ) the sum is finite implying

that t ∈ T 7→ ‖vt‖L2(L̂D) is continuous. The statement follows by Proposition 4.3
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Consider now the topological groupoid ΓT = (Γ0
T ,Γ

1
T ) described in Lemma 4.2. Let

γ = (t, β) ∈ Γ1
T be an arrow of the groupoid ΓT . We define for pj ∈ P(d) the linear

operator

Opj (γ) : Eτ−βt(pj)→ Et(pj )

by

Opj (γ) fα = fα−β, fα ∈ Eτ−βt(pj).

In comparison to Lemma 5.6

α ∈ Dτ−βt(pj)⇔ α− β ∈ Dt(pj ).

and so

fα ∈ Eτ−bt(pj)⇔ fα−β ∈ Et(pj )

for β ∈ Dt(pj ). Thus, the operator Opj (γ) is well-defined and by definition bijective.

Proposition 6.9 ([BNM]). For each pj ∈ P(d) the family (Opj (γ))γ∈Γ1
T

is a strongly

continuous, unitary, bounded representation of the topological groupoid ΓT .

Proof. Let pj ∈ P(d) and γ = (t, β) ∈ Γ1
T be fixed. Note that it is sufficient to prove

that the operators match at the basis of the corresponding spaces in (R2) and (R3).

(R1) Recall that et = (t, 0) ∈ Γ1
T is the unit of t ∈ T . Consequently,

Opj(et) : Eτ−0t(pj) = Et(pj ) 7→ Et(pj ) .

The operator Opj (γ) satisfies

Opj(et)fα = fα−0 = fα

for any α ∈ Dt(pj ), which leads to the statement.

(R2) For any (γ1, γ2) ∈ Γ2
T we know that γ1 = (t, β1) and γ2 = (τ−β1t, β2) for β1, β2 ∈ Rd .

Further, the composition γ1 ◦ γ2 is equal to (t, β1 + β2).

First note that

Opj(γ1 ◦ γ2) : Eτ−(β1+β2)t(pj) 7→ Et(pj ),

Opj(γ1) : Eτ−β1 t(pj) 7→ Et(pj ),

Opj(γ2) : Eτ−β2 (τ−β1 t)(pj) = Eτ−(β1+β2)t(pj) 7→ Eτ−β1 t(pj).

Thus, the domain and the range of Opj(γ1 ◦ γ2) and Opj(γ1) ◦Opj(γ2) coincide.

Moreover, for any α ∈ Dτ−(β1+β2)t(pj) they satisfy

Opj(γ1 ◦ γ2)fα = fα−(β1+β2) = Opj(γ1)fα−β2 = Opj(γ1)
(
Opj(γ2)fα

)
.
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(R3) For any γ := (t, β) ∈ Γ1
T the operator Opj (γ) is bijective and linear and so it is

invertible. Consider the operator

Qpj (γ) : Et(pj ) 7→ Eτ−βt(pj),

where

Qpj (γ) fα := fα+β, fα ∈ Et(pj ) .

Similar to Opj (γ) it follows that this linear operator is well-defined and bijective.

Obviously, the image of Opj (γ) and the domain of Qpj (γ) are equal and vice versa.

For α ∈ Dτ−βt(pj) and α̃ ∈ Dt(pj ) the equations

Qpj (γ)(Opj (γ) fα) = Qpj (γ)(fα−β) = f(α−β)+β = fα

and

Opj (γ)(Qpj (γ) fα̃) = Opj (γ)(fα̃+β) = f(α̃+β)−β = fα̃

hold. Consequently, Qpj (γ) is the inverse operator of Opj (γ). In our further

considerations we write O-1
pj

(γ) instead of Qpj (γ).

By Lemma 4.2 the inverse element of γ = (t, β) is given by γ−1 = (τ−βt,−β).

Hence,

Opj(γ
−1) : Eτ−(−β)(τ−βt)(pj) = Et(pj ) 7→ Eτ−βt(pj).

Furthermore, for each fα ∈ Et(pj ) they satisfy

Opj(γ
−1)fα = fα−(−β) = O-1

pj
(γ) fα.

Next we would like to check if for each γ ∈ Γ1
T the operators Opj (γ) are unitary. Note

that the norm of a unitary operators is always equal to one and so these operators are

bounded.

Because Opj (γ) is surjective it is sufficient to show

〈Opj (γ) fα1 | Opj (γ) fα2〉L2(L̂D) = 〈fα1 | fα2〉L2(L̂D)

for each fα1 , fα2 ∈ Eτ−βt(pj).
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Consider some fα1 , fα2 ∈ Eτ−βt(pj), then,

〈Opj (γ) fα1 | Opj (γ) fα2〉L2(L̂D) = 〈fα1−β | fα2−β〉L2(L̂D)

=

ˆ

L̂D

fα1−β(k) · fα2−β(k) d%(k)

L. 3.16 (i)
=

ˆ

L̂D

fα1(k) · fβ(k) · fβ(k)︸ ︷︷ ︸
=1 see L. 3.16 (ii)

·fα2(k) d%(k)

=

ˆ

L̂D

fα1(k) · fα2(k) d%(k)

= 〈fα1 | fα2〉L2(L̂D).

We still have to verify that this unitary representation is strongly continuous. According

to Proposition 4.6 we have to prove that it is weakly continuous. By Proposition 4.4 it

suffices to consider two vector fields u, v ∈ ΛE(.)(pj ). By definition for any t ∈ T there

are two finite families

Fu :=
(
u(α1)

)
α1∈Dt (pj )

,Fv :=
(
v(α2)

)
α2∈Dτ−βt(pj)

⊂ C(T )

such that

ur(γ)
L. 4.2
= ut =

∑
α1∈Dt (pj )

u(α1)(t) · fα1

vs(γ)
L. 4.2
= vτ−βt =

∑
α2∈Dτ−βt(pj)

v(α1)(τ−βt) · fα2

Hence,

〈ur(γ) | Opj (γ) vs(γ)〉r(γ) = 〈
∑

α1∈Dt (pj )

u(α1)(t) · fα1 |
∑

α2∈Dτ−βt(pj)

v(α2)(τ−βt) ·Opj (γ) fα2〉r(γ)

=
∑

α1∈Dt (pj )

u(α1)(t)·
∑

α2∈Dτ−βt(pj)

v(α2)(τ−βt)· 〈fα1 | fα2−β〉r(γ)︸ ︷︷ ︸
=δα1,α2−β

α̃=α2−β
=

∑
α1∈Dt (pj )

u(α1)(t) ·
∑

α̃+β∈D
τ−βt(pj)

v(α̃+β)(τ−βt) · δα1,α̃

L. 5.6
=

∑
α1∈Dt (pj )

u(α1)(t)·
∑

α̃∈Dt (pj )

v(α̃+β)(τ−βt) · δα1,α̃

=
∑

α1∈Dt (pj )

u(α1)(t) · v(α1+β)(τ−βt).

Thus, 〈v(1)
r(γ) | Opj (γ) v

(2)
s(γ)〉r(γ) is a finite sum of continuous functions with respect to

γ ∈ Γ1
T . Therefore, recall that the associated shift map τ of measures is continuous as

well. This implies that the unitary representation is weakly continuous.
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Actually this unitary representation is continuous, see Proposition 4.7.

Theorem 6.10. We can endow the family (Ht)t∈T with a structure of a continuous

field of Hilbert spaces. Moreover, the family(
U(γ) :=

Nd⊕
j=1

1L2(Vj)
⊗Opj (γ)

)
γ∈Γ1

T

defines a strongly continuous, unitary representation of the groupoid ΓT .

Proof. By definition of the direct sum it suffices to prove that
(
H(pj)
t

)
t∈T

is endowed

with a structure of a continuous field of Hilbert space for each pj ∈ P(d). Similarly, it is

sufficient to verify that the family(
U (pj)(γ) := 1L2(Vj)

⊗Opj (γ)
)
γ∈Γ1

T

defines a strongly continuous, unitary representation of the groupoid ΓT .

First we will show that
(
H(pj)
t

)
t∈T

can be endowed with a structure of a continuous

field of Hilbert spaces. Define

ΛH
(pj )

(.) := L2(Vj)⊗ΛE(.)(pj )

where ΛE(.)(pj ) is defined as in the proof of Proposition 6.8. Thus,

Λ
H

(pj )

(.)

t := {vt | v ∈ ΛH
(pj )

(.) }

is a dense subset of H(pj)
t .

Further, for some v ∈ ΛH
(pj )

(.) there is a finite family
(
v(α)
)
α∈Dt (pj )

of continuous functions

on T and a ψ ∈ L2(Vj) such that

vt = ψ ⊗

 ∑
α∈Dt (pj )

v(α)(t) · fα

 .

Hence,

‖vt‖2
L2(Vj)⊗Et (pj )

St. A.13
= ‖ψ‖2

L2(Vj)
·
ˆ

L̂D

∑
α1∈Dt (pj )

v(α1)(t) · fα1(k) ·
∑

α2∈Dt (pj )

v(α2)(t) · fα2(k) d%(k)

see proof of
=

P. 6.8
‖ψ‖2

L2(Vj)
·
∑

α1∈Dt (pj )

|v(α1)(t)|2.
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Since we have chosen a finite family
(
v(α)
)
α∈Dt (pj )

⊂ C(T ) and ‖ψ‖2
L2(Vj)

<∞ the map

t ∈ T 7→ ‖vt‖L2(Vj)⊗Et (pj )

is continuous. According to Proposition 4.3 the family
(
H(pj)
t

)
t∈T

can be endowed with

a structure of a continuous field of Hilbert spaces.

Secondly, we will prove that
(
U (pj)(γ)

)
γ∈Γ1

T
defines a strongly continuous unitary repre-

sentation on ΓT . Let γ = (t, β) ∈ Γ1
T be fixed but arbitrary. The proof works similarly

to the proof of Proposition 6.9.

(R1) Consider the unit et = (t, 0) ∈ Γ1
T of t ∈ T . Then,

U (pj)(et) = 1L2(Vj)
⊗Opj(et)

P. 6.9
= 1L2(Vj)

⊗ idEt (pj )

L. A.12
= idL2(Vj)⊗Et (pj )

.

(R2) For (γ1, γ2) ∈ Γ2
T the operator U (pj) satisfies

U (pj)(γ1 ◦ γ2) = 1L2(Vj)
⊗Opj(γ1 ◦ γ2)

P. 6.9
= 1L2(Vj)

⊗
(
Opj(γ1) ◦Opj(γ2)

)
L. A.12

=
(
1L2(Vj)

⊗Opj(γ1)
)
◦
(
1L2(Vj)

⊗Opj(γ2)
)

= U (pj)(γ1) ◦ U (pj)(γ2).

(R3) First note that 1−1

L2(Vj)
= 1L2(Vj)

is true. Hence, for γ ∈ Γ1
T

U (pj)(γ−1) = 1L2(Vj)
⊗Opj(γ

−1)

P. 6.9
= 1

−1

L2(Vj)
⊗O-1

pj
(γ)

L. A.12
=

(
1L2(Vj)

⊗Opj (γ)
)−1

= U (pj)(γ)−1.

Our next step is to verify that U (pj)(γ) is unitary. Since 1L2(Vj)
⊗Opj (γ) is surjective it

suffices to show

〈U (pj)(γ)F | U (pj)(γ)G〉L2(Vj)⊗Et (pj )
= 〈F | G〉L2(Vj)⊗Eτ−bt(pj)

for any F,G ∈ L2(Vj)⊗Eτ−βt(pj).
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Consider some fixed F,G ∈ L2(Vj)⊗Eτ−βt(pj). By definition there are ψ, ϕ ∈ L2(Vj)

and v, w ∈ Eτ−βt(pj) such that F = ψ ⊗ v and G = ϕ⊗ w. Thus,(
U (pj)(γ)F

)
(r, k) =

(
1L2(Vj)

⊗Opj (γ)
)

(ψ ⊗ v)

=
(
1L2(Vj)

ψ ⊗Opj (γ) v
)

=
(
ψ ⊗

(
Opj (γ) v

))
and analogously (

U (pj)(γ)G
)

(r, k) =
(
ϕ⊗

(
Opj (γ)w

))
(r, k).

Hence,

〈U (pj)(γ)F | U (pj)(γ)G〉L2(Vj)⊗Et (pj )
= 〈ψ | ϕ〉L2(Vj)

· 〈Opj (γ) v | Opj (γ)w〉Et (pj )

P. 6.9
= 〈ψ | ϕ〉L2(Vj)

· 〈v | w〉E
τ−βt(pj)

= 〈F | G〉L2(Vj)⊗Eτ−βt(pj)
.

Finally we will check if this unitary representation is strongly continuous. According

to Proposition 4.6 we have to prove that it is weakly continuous. It is sufficient to

consider F,G ∈ ΛH
(pj )

(.) only, see Proposition 4.4. By definition of ΛH
(pj )

(.) there are

(u(α1))α1∈Dt (pj ), (v
(α2))α2∈Dt (pj ) ⊂ C(T ) and ψ, ϕ ∈ L2(Vj) such that

Fr(γ) = Ft = ψ ⊗
∑

α1∈Dt (pj )

u(α1)(t) · fα1 ,

Gs(γ) = Gτ−βt = ϕ⊗
∑

α2∈Dτ−βt(pj)

v(α2)(τ−βt) · fα2 .

Then,

U (pj)(γ)
(
Gs(γ)

)
= (1L2(Vj)

⊗Opj (γ))

ϕ⊗ ∑
α2∈Dτ−βt(pj)

v(α2)(τ−βt) · fα2


=

(
1L2(Vj)

ϕ
)
⊗

 ∑
α2∈Dτ−βt(pj)

v(α2)(τ−βt) ·
(
Opj (γ) fα2

)︸ ︷︷ ︸
=fα2−β


α̃=α2−β

= ϕ⊗

 ∑
α̃+β∈D

τ−βt(pj)

v(α̃+β)(τ−βt) · fα̃


L. 5.6
= ϕ⊗

 ∑
α̃∈Dt (pj )

v(α̃+β)(τ−βt) · fα̃

 .
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Consequently,

〈Ft | Upj(γ)(Gt)〉L2(Vj)⊗Et (p)

= 〈ψ | ϕ〉L2(Vj)︸ ︷︷ ︸
=:K

·〈
∑

α1∈Dt (pj )

u(α1)(t) · fα1 |
∑

α̃∈Dt (pj )

v(α̃+β)(τ−βt) · fα̃〉Et (pj )

P. 3.15
= K ·

 ∑
α1∈Dt (pj )

u(α1)(t) · v(α1+β)(τ−βt)

 ,

where K is some constant and independent of γ ∈ Γ1
T (Cauchy–Schwarz inequality).

Likewise, in Proposition 6.9 the unitary representation is weakly continuous.

Proposition 6.11. For each γ = (t, β) ∈ Γ1
T we have

U(γ) ◦ W̃τ−βt = W̃ t ◦ Ureg(β)

where Ureg : L2(Rd)→ L2(Rd) is the regular representation of Rd . More precisely, for

ψ ∈ L2(Rd) the regular representation is defined by

Ureg(β)ψ = τ−βψ.

Proof. Similar to the proof of Theorem 6.7 it is sufficient to show the equality component-

by-component with respect to P(d). Consider some function ψ ∈ Cc(Rd) and for each

pj ∈ P(d) we get

U (pj)(γ) ((Wτ−βt ψ)(pj; ·, ·)) =
(
1L2(Vj)

⊗Opjγ
) ∑

α∈D
τ−βt(pj)

(τ−αψ)⊗ fα


=

∑
α∈D

τ−βt(pj)

1L2(Vj)
(τ−αψ)⊗Opj (γ)(fα)

=
∑

α∈D
τ−βt(pj)

(τ−αψ)⊗ fα−β

α̃=α−β
=

∑
α̃+β∈D

τ−βt(pj)

(τ−α̃−βψ)⊗ fα̃

L. 5.6
=

∑
α̃∈Dt (pj )

(τ−α̃(τ−βψ))⊗ fα̃

=
∑

α̃∈Dt (pj )

τ−α̃(Ureg(β)ψ)⊗ fα̃

= (W t(Ureg(β)ψ))(pj; ·, ·).

Since U and Ureg are continuous the statement follows for the extension W̃ t of W t.



Chapter 7

The Schrödinger operator

7.1 Projection on L2(L̂D)

The main ideas of this chapter are based on [BNM]. We will carry out the corresponding

arguments in a detailed and rigorous way.

Recall for pj ∈ P(d) and some fixed t ∈ T the definition of the closed subspaces

Et(pj ) := Lin{fα ∈ L2(L̂D) | α ∈ Dt(pj )}

of L2(L̂D). In this chapter we follow the considerations of [BNM]. We define for each

closed subspace the projection Πt ,pj : L2(L̂D)→ Et(pj ) for h ∈ L2(Rd) by

Πt ,pj (h) :=
∑

α∈Dt (pj )

〈fα | h〉L2(L̂D) · fα.

Since the family (fα))α∈Dt (pj )
forms an orthonormal basis of Et(pj ) the map Πt ,pj is

well-defined and an orthonormal projection by definition. Consequently, it is self-adjoint

and for a fixed t ∈ T and two distinct elements pj1 , pj2 of P(d) the maps Πt,pj1
and Πt,pj2

are orthogonal, see [WER].

Lemma 7.1. Consider some fixed t ∈ T and pj ∈ P(d). For each ψ ∈ C1
c(Rd) and

r ∈ Vj the equality

Πt ,pj (∇r(W t ψ)(pj; ·, ·) |r) = ∇r (W t ψ) (pj; ·, ·) |r

is true.

Proof. By Lemma 6.6 the equation

∇r(W t ψ) =W t(∇ψ)
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holds. According to Lemma 6.3 the Wannier transform (W t ψ)(pj; ·, ·) is an element of

L2(Vj)⊗ Et(pj ). Hence,

Πt ,pj ((∇r(W t ψ))(pj; ·, ·) |r) = Πt ,pj ((W t∇ψ)(pj; ·, ·) |r)
= (W t∇ψ)(pj; ·, ·) |r
= (∇r (W t ψ)) (pj; ·, ·) |r .

7.2 Representation of the Schrödinger operator

As mentioned above the main aim in this work is to decompose the Schrödinger operator

in a useful way by using the Wannier transform. Consider the Schrödinger operator

St := − ~
2m
4+ Vt

where

Vt(x) :=

Nd∑
j=1

∑
α∈Dt (pj )

v
(pj)
at (x− α)

and v
(pj)
at ∈ Cc(Rd).

We interpret the elements of D as the positions of the atoms of the material. The closed

Voronoi cell describe the area of influence v
(pj)
at of an atom. In our setting we have seen

that there are a finite number of different Voronoi cells. Thus, the material contains a

finite number of various species of atoms only. Then, the potential Vt is a convenient

description of the potential of the material.

Theorem 7.2. Let S be a Schrödinger operator which is given by (St)t∈T . Further, let

supp(v
(pj)
at ) ⊆ Vj where Vj is the geometric support of the collared Voronoi proto d-cell

pj. Then, for each ψ ∈ C2
c(Rd) and some fixed t ∈ T

〈ψ | St ψ〉 =

Nd∑
j=1

ˆ

Vj

ˆ

L̂D

~
2m
· |∇r(W t ψ)(pj; r, k)|2 + v

(pj)
at (r) · |(W t ψ)(pj; r, k)|2 d%(k) d`d(r).

Proof. Consider some t ∈ T and ψ ∈ C2
c(Rd). Let R > 0 be the corresponding radius of

ψ ∈ C2
c(Rd), see Lemma 6.2. Because of the considerations in A.3 ”The quadratic form

of the Laplacian” we have

〈ψ | (−4)ψ〉L2(Rd ) =

ˆ

Rd

(∇ψ)(x) · (∇ψ)(x) d`d(x)



7.2. REPRESENTATION OF THE SCHRÖDINGER OPERATOR 95

Thus,

〈ψ | (−4)ψ〉L2(Rd ) =

ˆ

Rd

∇ψ(x) · ∇ψ(x) d`d(x)

L. 5.2
=

ˆ

Nd⋃
j=1

 ⋃
α∈Dt (pj )

(α+Vj)


|∇ψ(x)|2 d`d(x)

=

Nd∑
j=1

∑
α∈Dt (pj )

ˆ

α+Vj

|∇ψ(x)|2 d`d(x)

x=α+r
=

Nd∑
j=1

∑
α∈Dt (pj )

ˆ

Vj

|∇ψ(α + r)|2 d`d(r)

According to Proposition 6.5 for ψ ∈ C2
c(Rd), α ∈ Dt(pj ) and r ∈ Vj the equation

ψ(α + r) =

ˆ

L̂D

(W t ψ) (pj; r, k) · fα(k) d%(k)

holds. Hence,

∇ψ(α + r) = ∇

ˆ
L̂D

(W t ψ) (pj; r, k) · fα(k) d%(k)


L. 6.2

= ∇

 ∑
β∈DRt (pj )

ψ(β + r) ·
ˆ

L̂D

fβ(k) · fα(k) d%(k)


=

∑
β∈DRt (pj )

∇ψ(β + r) ·
ˆ

L̂D

fβ(k) · fα(k) d%(k)

L. 6.2
=

ˆ

L̂D

 ∑
β∈DRt (pj )

∇ψ(β + r) · fβ(k)

 · fα(k) d%(k)

L. 6.6
=

ˆ

L̂D

∇r (W t ψ) (pj; r, k) · fα(k) d%(k).
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Consequently, for each pj ∈ P(d) the equality

∑
α∈DRt (pj )

ˆ

Vj

∇ψ(α + r) · ∇ψ(α + r) d`d(r)

=
∑

α∈DRt (pj )

ˆ

Vj

 ˆ
L̂D

∇r (W t ψ) (pj; r, k) · fα(k) d%(k)


·

 ˆ
L̂D

∇r (W t ψ) (pj; r, k̃) · fα(k̃) d%(k̃)

 d`d(r)

=
∑

α∈DRt (pj )

ˆ

Vj

ˆ

L̂D

∇r (W t ψ) (pj; r, k)

·

 ˆ
L̂D

fα(k̃) · ∇r (W t ψ) (pj; r, k̃) d%(k̃)

 · fα(k) d%(k) d`d(r)

L. 6.2
=

ˆ

Vj

ˆ

L̂D

∇r (W t ψ) (pj; r, k)

·

 ∑
α∈Dt (pj )

〈fα | ∇r (W t ψ) (pj; r, ·)〉L2(L̂D) · fα(k)

 d%(k) d`d(r)

=

ˆ

Vj

ˆ

L̂D

∇r (W t ψ) (pj; r, k) ·
(
Πt ,pj (∇r (W t ψ) (pj; r, ·))

)
(k) d%(k) d`d(r)

L. 7.1
=

ˆ

Vj

ˆ

L̂D

∇r (W t ψ) (pj; r, k) · ∇r (W t ψ) (pj; r, k) d%(k) d`d(r)

=

ˆ

Vj

ˆ

L̂D

|∇r (W t ψ) (pj; r, k)|2 d%(k) d`d(r)

is true. Denote this calculation by (?). Summing up, we get

〈ψ | (−4)ψ〉 =

Nd∑
j=1

ˆ

Vj

ˆ

L̂D

|∇r (W t ψ) (pj; r, k)|2 d%(k) d`d(r).
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Further, for the potential Vt(x) we have

〈ψ | Vt ψ〉 =

ˆ

Rd

ψ(x) · Vt(x) · ψ(x) d`d(x)

L. 5.2
=

Nd∑
j=1

∑
α∈Dt (pj )

ˆ

α+Vj

Vt(x) · |ψ(x)|2 d`d(x)

x=α+r
=

Nd∑
j=1

∑
α∈Dt (pj )

ˆ

Vj

Vt(α + r)︸ ︷︷ ︸
=v

(pj)

at (r)

since supp(v
(pj)

at )⊆Vj

·|ψ(α + r)|2) d`d(x)

=

Nd∑
j=1

ˆ

Vj

v
(pj)
at (r) ·

 ∑
α∈Dt (pj )

|ψ(α + r)|2
 d`d(x)

as in
=
(?)

Nd∑
j=1

ˆ

Vj

v
(pj)
at (r) ·

ˆ

L̂D

| (W t ψ) (pj; r, k)|2 d%(k) d`d(x).

Altogether, this leads to the assertion.
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Appendix A

Backgrounds

A.1 Continuous functions with compact support

A topological space X is called normal if the following two assertions hold.

(N1) Let x and y be two different elements of X. Then, there exists an open neighbor-

hood Vx of x and Vy of y such that

x 6∈ Vy and y 6∈ Vx.

(N2) Let A and B be some closed disjoint subsets of X. Then, we can find two open

neighborhoods VA of A and VB of B such that

VA ∩ VB = ∅.

Consider a locally compact space G. We define the one-point compactification or

Alexandroff-compactification by the group G̃ := G∪{∞} with the topology characterized

by

O(G̃) := {U ⊆ G̃ | U ⊆ G open or U = G̃ \K for some compact K ⊆ G}.

That G̃ is a compact space with respect to this topology is been shown in [QUE].

Lemma A.1. Consider some locally compact space X and its one-point compactification

X̃. If X is Hausdorff the group X̃ is also Hausdorff.

Proof. Obviously we only have to verify that for any x ∈ X there are two disjoint, open

neighborhoods Ux of x and V∞ of ∞. Let x ∈ X be arbitrary. Because X is locally

compact there is a compact set K ⊆ X and an open set Ux ⊆ X such that

x ∈ Ux ⊆ K.
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Further, by definition V∞ := X̃ \K is open with respect to the topology on X̃. Moreover,

V∞ ∩ Ux ⊆ X̃ \K ∩K = ∅

which leads to the statement.

Lemma A.2 ([QUE]). Let X be a Hausdorff space and K ⊆ X some compact set.

Then, for each x ∈ X \ K we can find an open neighborhood U of K and an open

neighborhood V of x such that they are disjoint.

Proof. Fix some x ∈ X \K. Since X is Hausdorff there are for any y ∈ K two open,

disjoint neighborhoods Uy of y and V
(y)
x of x. Because (Uy)y∈K is an open covering of

the compact set K there are y1, . . . , yn ∈ K such that

K ⊆
n⋃
j=1

Uyj =: U.

Set V :=
n⋂
j=1

V
(yj)
x which is an open neighborhood of x. Furthermore,

V ∩ U = ∅.

Lemma A.3 ([QUE]). A compact, Hausdorff space X is normal.

Proof. Consider two closed, disjoint sets A,B ⊆ G. Because X is compact the sets A

and B are compact as well. According to Lemma A.2 there are for any x ∈ A two open,

disjoint neighborhoods Vx of x and Ux of B. Since (Vx)x∈A is an open covering of the

compact set A there are x1, . . . , xn ∈ A with

A ⊆
n⋃
j=1

Vxj =: V.

The set U :=
n⋂
j=1

Uxj is an open neighborhood of B and

U ∩ V = ∅.

Hence, the space X satisfies condition (N2). Condition (N1) follows immediately by the

fact that X is a Hausdorff space.

A family (Ui)i∈I of open subsets of X is called point-finite if for each x ∈ X it is true

that

]{Ui | x ∈ Ui, i ∈ I} <∞.
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Lemma A.4 ([QUE]). Consider a normal topological space X, a closed subset F ⊆ X

and a point-finite cover (Ui)i∈I of F . Then, there exists an open cover (U ′i)i∈I of F such

that for each i ∈ I we have U ′i ⊆ Ui.

An open covering (Ui)i∈I of a topological space X is called locally finite if for each x ∈ X
there is an open neighborhood V ⊆ X of x such that

]{Ui | i ∈ I where Ui ∩ V 6= ∅}

is finite.

Proposition A.5 ([QUE]). Let X be a normal, topological space and consider some

locally finite cover (Vi)i∈I of X. Then, there is a family (φi)i∈I ⊆ Cc(G) with

supp(φi) ⊆ Vi, i ∈ I

and ∑
i∈I

φi(x) = 1.

Proposition A.6. Let G be a locally compact, Hausdorff space. Consider some function

f ∈ Cc(G) and an open set U ⊆ G which contains the neutral element 0 of G. For some

n ∈ N there are x1, . . . , xn and ψ1, . . . , ψn ∈ Cc(G) such that for each j ∈ {1, . . . , n} it

is true that

supp(ψj) ⊆ xj + U

and

f =
n∑
j=1

ψj.

Proof. Denote by K the support of f ∈ Cc(G). Because of the compactness of K there

are x1, . . . , xn ∈ K such that

K ⊆
n⋃
j=1

(xj + U).

Now consider the one-point compactification G̃ := G ∪ {∞} of G. We set Vj := xj + U

and Vn+1 := KC ∪ {∞}. By definition these sets are open with respect to the topology

on G̃ and

G =
n+1⋃
j=1

Vj.
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According to Lemma A.1 and Lemma A.3 the space G̃ is normal. By Lemma A.4 there

is an open cover V ′1 , . . . , V
′
n+1 of G̃ such that for j ∈ {1, . . . , n+ 1}

V ′j ⊆ Vj.

Therefore, note that (Vj)
n+1
j=1 is obviously a point-finite cover of G̃. The set V ′j denotes

the closure of V ′j with respect to the topology on G̃. Hence, V ′j is a compact set.

According to Proposition A.5 we can find continuous functions φ′j with compact support

in Ṽj such that

n+1∑
j=1

φj(x) = 1, x ∈ G̃.

By definition the restriction φj of φ′j on K is still continuous. Further, for j ∈ {1, . . . , n}

supp(φj) = supp(φ′j) ∩G ⊆ V ′j ∩G = V ′j ⊆ V ′j .

Since each V ′j is compact any function φj has compact support.

Moreover, because supp(φn+1) ⊆ Vn+1 = KC ∪ {∞} the equation

n∑
j=1

φj(x) = 1, x ∈ K

holds. Thus,

f(x) =

(
n∑
j=1

φj(x)

)
· f(x) =

n∑
j=1

φj(x) · f(x)︸ ︷︷ ︸
=:ψj(x)

,

because f vanishes on KC . Obviously, the function ψj is continuous and has compact

support in (xj + U) which leads to the statement.

A.2 Tensor products and direct sums

The following section is inspired by [WEI] and [KR]. Let H1, . . . ,Hn be some Hilbert

spaces and

H := {(x1, . . . , xn) | xi ∈ Hi}

the set of all n-tuples. This set gets a Hilbert space with the following operation

(x1, . . . , xn) + λ · (y1, . . . , yn) := (x1 + λ · y1, . . . , xn + λ · yn)
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and scalar product

〈(x1, . . . , xn) | (y1, . . . , yn)〉H :=
n∑
j=1

〈xj | yj〉Hj

for some λ ∈ C and (x1, . . . , xn), (y1, . . . , yn) ∈ H, see [KR]. The norm on H is induced

by the scalar product, which means for (x1, . . . , xn) ∈ H that

‖(x1, . . . , xn)‖H =

(
n∑
j=1

‖xj‖2
Hj

) 1
2

.

This Hilbert space is called direct sum of the Hilbert spaces H1, . . . ,Hn and is denoted

by
n⊕
j=1

Hj.

Lemma A.7 ([KR]). The set H′k := {(x1, . . . , xn) ∈ H | xi = 0 for i 6= k} defines a

closed subspace of
n⊕
j=1

Hj and for i 6= k the subspaces H′i and H′k are orthogonal.

Consider now the Hilbert spaces H1, . . . ,Hn and H̃1, . . . , H̃n. For j ∈ {1, . . . , n} let Sj

be a bounded, linear operator from Hj to H̃j . We define an operator S :
n⊕
j=1

Hj →
n⊕
j=1

H̃j

by

S(x1, . . . , xn) := (Sx1, . . . , Sxn), (x1, . . . , xn) ∈
n⊕
j=1

Hj.

Lemma A.8 ([KR]). The operator S is a linear, bounded operator and

‖S‖ = sup{‖Sj‖ | j ∈ {1, . . . , n}}.

Proof. The linearity of S follows immediately by a short computation

S((x1, . . . , xn) + λ · (y1, . . . , yn)) =(S(x1 + λ · y1), . . . , S(xn + λ · yn))

=(Sx1 + λ · Sy1, . . . , Sxn + λ · Syn)

=(Sx1, . . . , Sxn) + λ · (Sy1, . . . , Syn)

=S(x1, . . . , xn) + λ · S(y1, . . . , yn).

Set K := sup{‖Sj‖ | j ∈ {1, . . . , n}} , then,

‖S(x1, . . . , xn)‖ ≤

(
n∑
j=1

‖Sj‖2 · ‖xj‖2
Hj

) 1
2

≤K · ‖(x1, . . . , xn)‖H
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and

‖Sjxj‖Hj =‖(0, . . . 0, , Sjxj, 0, . . . , 0‖H
=‖S(0, . . . , 0, xj, 0, . . . , 0)‖H
≤‖S‖ · ‖xj‖Hj .

Note that it is also possible to introduce the direct sum for some infinite family (Hj)j∈I

of Hilbert spaces.

Now we introduce the concept of a tensor product. Let H1 and H2 be two Hilbert spaces

over C. Consider the set

L(H1 ×H2) := {
n∑
i=1

αi · (fi, gi) | αi ∈ C, fi ∈ H1, gi ∈ H2, n ∈ N}

and

N := Lin{v ∈ L(H1 ×H2) | v =
n∑
i=1

m∑
j=1

αi · βj · (fi, gj) − 1×

(
n∑
i=1

αi · fi,
m∑
j=1

βj · gj

)
,

αi, βi ∈ C, fi ∈ H1, gi ∈ H2}.

Then, the quotion space H1 ⊗H2 := L(H1 ×H2)/N with the operation(
n∑
i=1

αi · fi

)
⊗

(
m∑
j=1

βj · gj

)
=

n∑
i=1

m∑
j=1

αi · βj · (fi ⊗ gj)

and scalar product

〈f1 ⊗ g1 | f2 ⊗ g2〉H1⊗H2 := 〈f1 | f2〉H1 · 〈g1 | g2〉H2 , f1 ⊗ g1, f2 ⊗ g2 ∈ (H1 ⊗H2)

gets a Hilbert space, see [WEI]. This Hilbert space H1 ⊗H2 is called tensor product of

H1 and H2.

Lemma A.9 ([WEI]). Let {ei | i ∈ I} and {ẽj | j ∈ J} be an orthonormal basis of H1

and H2, respectively. Then,

{ei ⊗ ẽj | i ∈ I and j ∈ J}

is an orthonormal basis of H1 ⊗H2.

In the following lemma is given an example of a tensor space.
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Lemma A.10 ([KR]). Consider two σ-finite measure spaces (X,B, µ) and (X ′,B′, µ′)
and its L2-spaces. Then, the tensor product of these L2-spaces can be identified with the

space H̃ := L2(X ×X ′,B×B′, µ× µ′).

More precisely, any f ⊗ g ∈ H := L2(X,B, µ) ⊗ L2(X ′,B′, µ′) is characterized by

θf,g ∈ L2(X ×X ′,B×B′, µ× µ′) where

θf,g(x, y) := f(x) · g(y), (x, y) ∈ X ×X ′.

Proof. First note that the function θf,g is complex-valued and measurable. Sinceˆ

X×X′

|θf,g(x, y)|2 dµ(x) dµ′(y) =

ˆ

X×X′

|f(x) · g(y)|2 dµ(x) dµ′(y)

=

ˆ

X×X′

f(x) · g(y) · (f(x) · g(y)) dµ(x) dµ′(y)

=

ˆ
X

f(x) · f(x) dµ(x)

 ·
ˆ
X′

g(y) · g(y) dµ′(y)


=‖f‖L2(X,B,µ) · ‖g‖L2(X′,B′,µ′) <∞.

Thus, the function θf,g is contained in H̃. Note that by Lemma A.9 the set

{θf,g | f ⊗ g ∈ H}

is a dense set of H̃.

Moreover, for f1 ⊗ g1, f2 ⊗ g2 ∈ H we get

〈θf1,g1 | θf2,g2〉H̃ =

ˆ

X×X′

θf1,g1(x, y) · θf2,g2(x, y) dµ(x) dµ′(y)

=

ˆ

X×X′

f1(x) · g1(y) · f2(x) · g2(y) dµ(x) dµ′(y)

=

ˆ
X

f1(x · f2(x) dµ(x)

 ·
ˆ
X′

g1(y · g2(y) dµ′(y)


=〈f1 | f2〉L2(X,B,µ) · 〈g1 | g2〉L2(X′,B′,µ′)

=〈f1 ⊗ g1 | f2 ⊗ g2〉H.

Thus, for λj ∈ C and f ⊗ g ∈ H the equation

‖
n∑
j=1

λj · θf,g‖H̃ = ‖
n∑
j=1

λj · (f ⊗ g)‖H
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holds. Hence, there is a linear map Ũ form {θf,g | f ⊗ g ∈ H} onto the linear span of all

simple tensors which preserves the norm and

Ũθf,g = f ⊗ g.

Then, we can extend this map Ũ by continuity to an isomorphismus U from H̃ onto

H.

Proposition A.11 ([KR]). Consider the Hilbert spaces H1, H̃1,H2 and H̃2. For some

S ∈ B(H1, H̃1) and T ∈ B(H2, H̃2) there is a unique operator O ∈ B(H1⊗H2, H̃1⊗H̃2)

such that for each f ⊗ g ∈ H1 ⊗H2 the equation

O(f ⊗ g) = (Sf)⊗ (Tg)

is true. Furthermore, we have ‖O‖ = ‖S‖ · ‖T‖.

Because of the uniqueness we denote the operator O by S ⊗ T . Using this proposition

we get the following lemma.

Lemma A.12. Consider the Hilbert spaces H1 and H2. For some S ∈ B(H1) and

T,R ∈ B(H2) we get the following assertions.

(i) The equality idH1⊗H2 = idH1 ⊗ idH2 is valid.

(ii) If S and T are invertible it follows that (S ⊗ T )−1 = S−1 ⊗ T−1.

(iii) It is true that S ⊗ (T ◦R) = (S ⊗ T ) ◦ (idH1 ⊗R) = (idH1 ⊗T ) ◦ (S ⊗R).

Proof. It is given the proof of (i). The other proofs works similarly. Consider some

f ⊗ g ∈ (H1 ⊗H2). Then,

(idH1 ⊗ idH2)(f ⊗ g) = (idH1 f)⊗ (idH2 g) = f ⊗ g = idH1⊗H2(f ⊗ g).

The following statement follows by our previous considerations.

Statement A.13. Consider some Hilbert spaces H1 . . . ,Hn and H̃1, . . . , H̃n. We define

the Hilbert space H by

H :=
n⊕
j=1

(Hj ⊗ H̃j).

Some F ∈ H has the form

F = (F (1) ⊗ F̃ (1), . . . , F (n) ⊗ F̃ (n)).

Then, the scalar product on H is given for F,G ∈ H by

〈F | G〉H =
n∑
j=1

〈F (j) | G(j)〉Hj · 〈F̃ (j) | G̃(j)〉H̃j .
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A.3 The quadratic form of the Laplacian

The following considerations can be found in [DAV]. Consider the operator H0 defined

as

H0ψ(x) := (−4)ψ(x) :=
d∑
i=1

∂2

∂x2
i

ψ(x)

with domain D(H0) = C2
c(Rd). Then, integration by parts gives

〈ϕ | (−4)ψ(x)〉L2(Rd ) =

ˆ

Rd

∇ϕ(x) · ∇ψ(x) d`d(x) =: Q0(ϕ, ψ)

for all ϕ, ψ ∈ C2
c(Rd) whence −4 is a symmetric and positive operator on L2(Rd).

Moreover, let (ϕn)n∈N ⊆ C
2
c(Rd) such that Q0(ϕn − ϕm)→ 0 and ‖ϕn‖L2(Rd ) → 0, then,

clearly Q0(ϕn)→ 0. Thus, the form Q0 is closable, i.e. there exists a closed extension

Q of Q0. It can be shown that D(Q) is equal to W 1,2(Rd) the Sobolev space of order 1

over L2(Rd).

A famous result of Friedrichs extension is then: There exists a unique self-adjoint

operator H in L2(Rd) such that

Hψ(x) = (−4)ψ(x),

D(H) ⊆ D(Q)

and for each ψ ∈ D(H) and v ∈ D(Q) the equality

Q(v, ψ) = 〈v | (−4)ψ〉L2(Rd )

holds. The domain is given by

D(H) = {ψ ∈ D(Q) | ∃ϕ ∈ L2(Rd), ∀v ∈ D(Q) is true Q(v, f) = 〈v | g〉L2(Rd )}.

In the setting described above the domain D(H) equals W 2,2(Rd), the Sobolev space of

order 2 over L2(Rd).

Altogether, we can use the characterization

〈ψ | (−4)ψ〉L2(Rd ) =

ˆ

Rd

(∇ψ)(x) · (∇ψ)(x) d`d(x)

for ψ ∈ C2
c(Rd).
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A.4 The direct integral

Vector fields

The definitions and statements in this section are motivated by [DIXC] and [DIXN].

Consider some measure space (Σ,B, µ). A field of Hilbert spaces (H(σ))σ∈Σ over Σ is a

map

σ 7→ H(σ), σ ∈ Σ

such that H(σ) is a Hilbert space. We would like to construct a Hilbert space which

we call direct integral
⊕́

Σ

H(σ) dµ of the family (H(σ))σ∈Σ over Σ. The definition of

this space works similar to the construction of L2(Σ,B, µ). The motivation behind this

construction is to consider difficult operators, as the multiplication operator, in some

L2-spaces.

For σ ∈ Σ the scalar product in H(σ) is denoted by 〈· | ·〉σ. We write ‖ · ‖σ for the

induced norm of the scalar product on H(σ). Recall the definitions and results of section

4.2.

Let (Σ,B, µ) and (Σ′,B′, µ′) be two measure spaces. Consider two families (H(σ))σ∈Σ

and (H′(σ′))σ′∈Σ′ of Hilbert spaces. Suppose that they can be endowed with a structure

of a continuous field of Hilbert spaces with generator S and S ′, respectively. Let

Φ : (Σ,B)→ (Σ′,B′) be a Borel isomorphism which transform µ to µ′. A Φ-isomorphism

between these structures of a continuous field of Hilbert spaces is a family (Υ(σ))σ∈Σ

such that the following assertions are true.

(i) For each σ ∈ Σ the map Υ(σ) is an isomoprhism from H(σ) onto H′(Φ(σ)).

(ii) For a vector field v ∈ S the map Υ(σ) 7→ Υ(σ)vσ ∈ H′(Φ(σ)) belongs to S ′.

Consider some sequence
(
v(n)
)
n∈N in V(Σ,H(.)) such that it satisfies the following two

conditions.

(F1) For each σ ∈ Σ the set {v(n)
σ | 1 ≤ n ≤ dim(H(σ))} forms an orthonormal basis in

H(σ).

(F2) For any σ ∈ Σ and n > dim(H(σ)) the component v
(n)
σ is equal to zero.

A sequence of vector fields which satisfies (F1) and (F2) is called a sequence of vector

fields of orthonormal basis. The existence of such sequences is been shown in [DIXN].
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Consider such a sequence of vector fields of orthonormal basis
(
v(n)
)
n∈N. An element

v ∈ V(Σ,H(.)) is continuous with respect to
(
v(n)
)
n∈N if

σ 7→ 〈vσ | v(n)
σ 〉σ

is continuous for any n ∈ N.

Analogously an operator field A ∈ O(Σ, B(H(.))) is called continuous with respect to(
v(n)
)
n∈N if

σ 7→ 〈Aσv(n)
σ | v(m)

σ 〉σ

is continuous for n,m ∈ N. That these conditions are sufficient is proven in [DIXN].

Statement A.14 ([DIXN]). Consider a family of Hilbert spaces (H(σ))σ∈Σ over Σ. Let(
v(n)
)
n∈N be a sequence of vector fields of orthonormal basis such that

σ → 〈v(n)
σ | v(m)

σ 〉σ

is continuous. Then, there exists exactly one structure of a continuous field of Hilbert

spaces such that the vector fields vn are continuous.

Definition and properties

Now consider the vector space

L2(Σ,B,H(.)) := {v ∈ V(Σ,H(.)) | v measurable,

ˆ

Σ

‖vσ‖σ dµ <∞}.

This space is endowed with a semiscalarproduct defined by

〈v | w〉 :=

ˆ

Σ

〈vσ | wσ〉σ dµ, v, w ∈ L2(Σ,B,H(.)).

Similar to the construction of the L2-space we get forN := {v ∈ L2(Σ,B,H(.)) | ‖v‖ = 0}
that

⊕̂

Σ

H(σ) dµ := L2(Σ,B,H(.)) := L
2(Σ,B,H(.))�N

is a Hilbert space with scalar product 〈· | ·〉 and induced norm ‖ · ‖ := 〈· | ·〉 1
2 . It turns

out that
⊕́

Σ

H(σ) dµ is a complete normed vector space. This Hilbert space is called

direct integral of the family (H(σ))σ∈Σ over Σ. We call the Hilbert space H(σ) the
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fibers over Σ. This definition is motivated by the imagination of attaching at any σ ∈ Σ

the Hilbert space H(σ), see Figure 10 at page 60. It turns out that the direct integral

does not depends on the structure of the measure space (Σ,B, µ), besides, a unitary

isomorphism.

Statement A.15 ([DIXN]). Consider a sequence of vector fields of orthonormal basis(
v(n)
)
n∈N.

(i) A vector field w is an element of
⊕́

Σ

H(σ) dµ iff the functions

σ 7→ 〈wσ | v(n)
σ 〉σ

are square integrable and

∞∑
n=1

ˆ

Σ

|〈wσ | v(n)
σ 〉σ|2 dµ <∞.

(ii) The scalar product of w, u ∈
⊕́

Σ

H(σ) dµ is equal to

∞∑
n=1

ˆ

Σ

〈wσ | v(n)
σ 〉σ · 〈uσ | v(n)

σ 〉σ dµ.

(iii) For any w ∈
⊕́

Σ

H(σ) dµ and for each σ ∈ Σ we define

w(n)
σ :=

n∑
j=1

〈wσ | v(j)
σ 〉σ · v(j)

σ .

Then, ‖w − w(n)‖ tends to zero iff n goes to infinity.
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