
Cryptocurrencies & Limit Order Books:

Data, Stylised Facts and Model Building

Candidate Number: 1027984

April 4, 2021



Abstract

We investigate the limit order book of the OMG token market on the cryptocurrency exchange
Coinbase Pro. We perform a statistical analysis and find consistency of the data with several
well known stylised facts. The data allows us to identify the majority of traders as algorithmic
traders. We can further classify them into two major classes trading either with constant volume
or with constant funds.
The limit order book also exhibits a dynamical queue structure similar to the queue structure
found for large tick stocks. These queues exhibit distinct statistical behaviour. In particular
we find that the different classes of trading algorithms each place their orders predominantly in
specific queues.
Finally we present a simple queuing model based on a Markov process. The invariant distri-
bution of the model allows us to recover the volume distribution in the queues with reasonable
accuracy.
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1 Introduction

Limit Order Books are one of the most common ways to organise trading of financial assets. Many

of today’s electronic markets use limit order books to facilitate trade. Traders can place buy orders

and sell orders at a price and volume of their choice on the electronic market. The order is then

(partially) executed at the best available price. If the order is not (completely) executed it is kept on

record in the limit order book as a so called limit order (hence the name limit order book) until it is

executed or cancelled. Limit order book thus allow for a microscopic view into the basic mechanism

of price finding.

In the present thesis we investigate the limit order book of the OMG token market on the cryptocur-

rency exchange Coinbase Pro. Cryptocurrencies and tokens are decentrelised digital assets which

are based on a cryptographic tools such as distributed ledgers, block chains and digital signatures.

The most prominent example of a cryptocurrency is probably Bitcoin, see [BTC08] for the original

white paper written in 2008 by a still unknown author under the pseudonym Satoshi Nakamoto. We

focus on the OMG token since the majority of recent studies focuse either on cryptocurrency indices

or on the major cryptocurrencies such as Bitcoin, Ether or Litecoin, see literature review below.

Most cryptocurrency exchanges use limit order books to facilitate trade and many of them allow real

time access to their trading data. The trading data offered by Coinbase Pro is particularly detailed

and offers therefore an excellent opportunity to investigate the microstructure of the limit order

book.

In section 2 we give a short overview of limit order books and their mathematical modelling. An

explicit example how orders are placed into the limit order book is given in appendix A.

We review the characteristics of the OMG token and the cryptocurrency exchange Coinbase Pro in

sections 3 and 4. We put articular emphasis on the fee structure of the exchange which appears to

be a major incentive for algorithmic trading. The real time Level 3 data from Coinbase Pro which

we collected from September to November 2021 allows us to investigate the life cycle of an order.

In Level 3 data a unique order identification number identifies each order from its arrival at the

exchange to its termination by cancellation or execution. This depth of information gives us the

opportunity to investigate the fine structure of algorithmic traders and to identify certain types of

trading bots.

We collect limit order book data directly from Coinbase Pro and perform in 5 a statistical analysis.

The stylised facts that we observe in sections 5.2 and 5.3 are consistent with observations reported in

other empirical studies for other assets and markets. For an extensive overview on limit order books,

their statistical properties and mathematical modeling we refer to [GPWMFH13] and to [C01] for a

review covering the central aspects of stylised facts.

In section 5.5 we observe that the depth profile of the limit order book has a queue-like structure

close to the bid price and the ask price. We can identify four queues that are almost identical for

the bid-side and the ask-side. From the change of spread distribution, section 5.4, we conclude that

3



most orders do not change the spread and therefore keep this queue structure stable.

The data quality and in particular the information provided by the Level 3 data allows us to devide

traders into two main classes in section 5.6. We identify traders that trade with constant volume

and traders that trade with constant funds, both following in general the best price. In section 5.7

we find evidence that the traders are probably automated, algorithmic traders and that their trading

behaviour is intimately linked to the queue structure found in section 5.5.

Motivated by the preceding observations we employ a simple queuing model to the data in section

6. We follow closely the authors of [HLR15] who propose a queuing model based on a Markov

process. The invariant distribution of the Markov process models the volume distribution at fixed

price levels close to the best bid and best ask price. The model is related to the stochastic models

presented in [CST10]. For large tick stocks the authors of [HLR15] find their model in good agree-

ment with the empirical data. We apply the model to the queues we identified in section 5.5 and

find good agreement with the data for the second, third and fourth queue but only relatively poor

agreement for the first queue. We attribute this poor agreement to the sensitivity of the first queue

to price change.

We conclude this thesis in section 7 with some concluding remarks and a list of open questions as

well as some ideas how to proceed further based on our results.

Literature Review: The free availability of data from cryptocurrency exchanges allowed to anal-

yse a new market with these new types of assets.

The authors of [HHR19] review the general mechanics of cryptocurrencies, presenting a high level

exposition of the blockchain and cryptocurrency exchanges. They also provide summary statistics

of cryptocurrency markets in general and some potential research directions. For a general overview

of cryptocurrency trading with emphasis on technical aspects of trading and related research see for

example [FVBKKMW20].

In [BBHN17] the authors study long range effects using daily to 5-hour Bitcoin data from 2011

to 2017. These results have been confirmed by [PCP18] where daily return data from 244 cryp-

tocurrency indices have been investigated. Similar results have been found by [ZWLS18] and more

recently by [HPR19].

A comprehensive study of stylised facts for the Bitcoin market on the exchanges BitFinex, Bitstamp

and Coinbase can be found in [SRK19]. The authors retrieve real time data from December 2017

until October 2018 directly from the exchanges. They recover the majority of well known stylised

facts.

In [PRH20] the authors investigate the question whether cryptocurrency markets as a whole are

dominated by human traders or by autonomous algorithmic traders. They conclude that this is at

least on average the case when considering intraday patterns in the CRIX (CRyptocurrency IndeX)

as an indicator for human traders. This is in contrast to the authors of [SRK19] who find no such

patterns for the Bitcoin market.
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2 Limit Order Books

A limit order book (LOB) is a widely used protocol to organise trading of an asset for multiple

traders. Traders can place different types of orders into the LOB. These orders are subject to a set

of rules that govern the way how they are placed into the LOB. We will focus on a set of rules for

LOBs which match the rules of the crypto exchange Coinbase Pro.

2.1 Limit Order Books

LOBs split into two separate sectors. The bid side contains all sell offers and the ask side contains

all buy offers. A sell (buy) offer consists of a price and a volume of the asset which is to be sold

(bought).

Definition 2.1 The set of all offers on an electronic exchange for a given asset at time t ∈ R is

called limit order book or LOB and is denoted as L(t). The set of all sell offers is denoted as B(t)

and the buy offers are denoted as A(t) such that L(t) = B(t) ∪ A(t).

There are two types of orders that can be placed into a LOB. Limit orders specify a volume of the

asset which shall be bought (sold) for at most (at least) a predefined price. Market orders specify a

volume of the asset (an amount of funds) which shall be sold (for which the asset shall be bought).

Trading on LOBs occurs in price and size increments which are specified by the exchange.

Definition 2.2 The (incremental) lot size v0 > 0 is the smallest possible increment of traded vol-

ume. There may also be a minimal volume vmin ≥ 0 which an order must at least contain. The tick

size p0 > 0 is the smallest possible price increment.

Limit and market orders are either buy or sell orders but they are not placed directly into the order

book. They are preprocessed by the exchange and result in matched orders if they can be (partially)

executed or in open orders if they cannot be completely executed. Open orders constitute the open

buy or sell offers and are placed on the sell or bid side of the LOB accordingly. Trading takes

place 24/7 without interruptions and open orders are kept indefinitely in the LOB, i.e. there is no

predefined maximal life time of an open order.

Market orders are always executed and may result in several matched orders. Limit orders may be

completely, partially or not executed, depending of the state of the LOB. They can therefore result

in several matched orders and up to one open order.

The life cycle of an order ends if the order is completely executed. For market orders this is always

the case and for limit orders this is the case if the order is either completely executed upon arrival

or subsequently executed as an open order by incoming orders. The second way for an order to end

its life cycle is being cancelled by the traders that placed the order. We call an order which has not

been completely executed or cancelled an active order. All active orders at a given time constitute

the limit order book, i.e. we have the following definition.
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Definition 2.3 An active order is an n-tuple x(t) := (εx, px, vx, t) with t ∈ R. The sign of

the active order εx = ±1 indicates whether it is on the ask side (ε = +1) or on the bid side

(ε = −1). The price px ∈ {kp0 > 0 | k ∈ N} is a multiple of the tick size and the volume

vx ∈ {kv0 > 0 | k ∈ N} is a strictly positive multiple of the lot size.

The set of all active orders constitutes the limit order book (LOB) L(t) :=

{x(t) |x(t) is an active order}. We have for the bid side of the LOB B(t) := {x ∈ L(t)|εx =

−1, x is active} and for the ask side A(t) := {x ∈ L(t)|εx = +1, x is active} such that

L(t) = B(t) ∪ A(t).

Incoming orders change the LOB. But only open orders, matched orders and cancel orders have a

direct effect on the LOB. Open orders add volume at a given price level of the LOB, while matched

orders and cancel orders subtract volume. In this sense matched orders and cancel orders behave

identically. We will call those orders which increase volume at a given price level (open orders)

and those which decrease volume at a given price level (matched orders, cancel orders) events and

model them as follows.

Definition 2.4 An event is an n-tuple x := (εx, px, vx, tx) where εx = ±1 is the sign of the event

indicating whether it is on the ask side (ε = +1) or on the bid side (ε = −1). The price px ∈
{kp0 > 0 | k ∈ N} is a multiple of the tick size and the volume vx ∈ {kv0 6= 0 | k ∈ Z} is a

non-zero multiple of the lot size. The submission time tx ∈ R is assumed to be continuous.

Events x := (εx, px, vx, tx) act on the L(t) by adding (or removing) volume vx at price px on the

LOB side given by the sign εx at time tx. If there is an active order y(tx) ∈ L(tx) with εy = εx

and py = px then the active order is updated to y′(t ≥ tx) := (εy, py, vy + vx, t) and we have

y(t) ∈ L(t) for t < tx and y′(t) ∈ L(t) for t ≥ tx. The active order y(t) gets removed from

L(t ≥ tx) if vy + vx = 0. If there is no order y(tx) ∈ L(tx) with εy = εx and py = px then a new

active order x(t ≥ tx) := (εx, px, vx, t) is added to L(t ≥ tx).

Here we follow the convention that a change in L(t) becomes active at the arrival time tx of the

event x. So the resulting process L(t) is a càdlág process in t, i.e. continuous on the right and with

limit existing on the left, see [BBDG18].

Remark 2.5 The trading rules of the exchange ensure that the volume vx > 0 for each active order

x(t) ∈ L(t) and that B(t) ∩ A(t) = ∅ with maxx∈B(t) px < minx∈A(t) px for all t ∈ R. See

appendix A for an example how orders are placed into a LOB.

Definition 2.6 The best price at which the asset can be bought is given by the bid-price b(t),

b(t) := max
x∈B(t)

px.

The ask-price a(t) is defined as the best price at which the asset can be sold,

a(t) := min
x∈A(t)

px.
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The mid-price m(t) is the mean of the the bid-price and the ask-price

m(t) := 1
2(a(t) + b(t))

and the spread s(t) is the (strictly positive) difference between ask-price and bid-price,

s(t) := a(t)− b(t).

Note that b(t) < a(t) for all t and that a(t), b(t),m(t) and s(t) are càdlág processes just as L(t).

3 Cryptocurrencies and Tokens

In this thesis the underlying cryptocurrency is the Ether coin, see [ETH18]. It is the proprietary

cryptocurrency which is the monetary base of the Ethereum network. Creation and transfer of Ether

is based on distributed ledgers living on the Ethereum block chain. The validation of transactions

currently requires a proof-of-work similar to the Bitcoin but will change to a proof-of-stake verifi-

cation in the near future. The proof-of-stake verification requires that the verifier of a transaction

owns a certain amount of Ether, thus replacing trust built on computational work by trust built on

wealth. As of 1. January 2021 Ether’s transaction fee is ∼ 3 $ and its market capitalisation is ∼ 40

billion $, second only to Bitcoin.

A central feature of the Ethereum block chain is its ability to allow the creation of called tokens

based on the ERC20 standard for smart contracts. Smart contracts are self executing programs

living on the Ethereum network. Due to the flexibility of the ERC20 standard they can have a

wide range of possible applications ranging from value storage over stock-like ownership tokens to

voucher-like utility tokens. See section 2.5 in [HHR19] for an overview. We will focus on OMG

utility token, see section 3.1.

Cryptocurrencies and tokens can be traded on cryptocurrency exchanges such as Kraken, Coinbase

Pro, Bitfinex, etc. The present thesis we investigate trading of OMG tokens on the cryptocurrency

exchange Coinbase Pro. Trading fees on cryptocurrency exchanges for coins or tokens held on ac-

counts at the exchange are in general much lower than the above mentioned transaction fees, see

section 4.1 since they are stored by the exchange. Only if the owner transfers the crypto asset to

another location, the transaction has to be added to the distributed ledger on the corresponding block

chain, thus resulting in the higher fees.

3.1 OMG Token

The OMG token is a utility token based on the ERC20 standard and lives on the Ethereum block

chain. It serves as the basis for transaction verification by proof-of-stake on the OmiseGO network,

see [OMG17]. The OmiseGO network aims to use cryptocurrencies to facilitate cross currency and

cross country currency transaction with special focus on Southeast Asia. Money transfers between
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countries and currencies on the OmiseGO network will have relatively low fees compared to ordi-

nary bank transfers and do not require bank accounts. The security of the transfer is guaranteed by

proof-of-stake of the verifiers on the OmiseGO network, i.e. by trustworthy participants holding

sufficient amounts of OMG tokens. As a compensation for the verification of transactions the veri-

fiers receive a fee.

The OMG tokens are fungible and are traded for example on Coinbase Pro. As of 1. January 2021

the market capitalisation of the OMG token is ∼ 470 million $.

4 Coinbase Pro

Coinbase Pro is one of the largest cryptocurrency exchanges. It is located in the United States of

America in San Francisco CA. We chose Coinbase Pro for two main reasons. First, the exchange

relatively well regulated. It is registered as a Money Services Business with FinCEN and is au-

thorised by the Financial Conduct Authority under the Electronic Money Regulations 2011 (FRN:

900635) for the issuing of electronic money. Furthermore Coinbase Pro has filed a draft Form S-1

with the U.S. Securities and Exchange Commission (SEC). This formal draft is considered as a first

step in becoming a registered stock exchange under US law.

Second, Coinbase Pro offers a public application programming interface (API) that allows to obtain

real time data of LOBs in unprecedented detail of so called Level 3 order book updates. These Level

3 LOB updates allow the investigation of the full life cycle of an order from order submission to the

exchange to cancellation or execution of the order.

Many cryptocurrency exchanges supply free historical price and trade data sets. Historical order

book data sets can also be purchased with a resolution down to one minute. But there has been

some criticism concerning the data quality of different sources [AD20]. We therefore opted to col-

lect the data directly from the cryptocurrency exchange Coinbase Pro.

As of January 2021 36 cryptocurrencies and tokens can be traded on Coinbase Pro with an accumu-

lated daily volume of ∼ 5 billion $ . The OMG token can be traded since May 2020 in USD, GPB,

EUR and Bitcoin and has on Coinbase Pro a traded volume of ∼ 2.5 million $ per day. We will use

the data of the OMG-EUR pair in our investigation. For all tradable currency pairs Coinbase Pro

offers a public trading dashboard, see for example [CBPomg] for the dashboard of the OMG Token

traded in EUR.

4.1 Trading Rules and Fee Structure

Trading rules and in particular the fee structure are central to understand the functioning of the

market on an exchange. The Coinbase Pro market works on the principles of a first-in-first-out

(FIFO) LOB, see section 2. Order placement, execution and cancelation does non-discriminatory

w.r.t. size of the order or trader placing the order. The official list of trading rules can be found in

[CBPrules].

8



Pricing Tier Taker Fee Maker Fee

up to $ 10k 0.50% 0.50%

$ 10k - $ 50k 0.35% 0.35%

$ 50k - $ 100k 0.25% 0.15%

$ 100k - $ 1m 0.20% 0.10%

$ 1m - $ 10m 0.18% 0.08%

$ 10m - $ 50m 0.15% 0.05%

$ 50m - $ 100m 0.10% 0.00%
$ 100m - $ 300m 0.07% 0.00%
$ 300m - $ 500m 0.06% 0.00%

$ 500m - $ 1b 0.05% 0.00%
$ 1b + 0.04% 0.00%

Figure 1: Fee Structure valid September-November 2020, see [CBPfees] for the current fees.

The fee structure of Coinbase Pro is designed to encourage market makers to supply the market with

liquidity by placing limit orders into the LOB that are not executed. The table for the fees structure

valid from September 2020 to November 2020 in figure 1 shows the fees for executed orders (taker

fees) and for limit orders (maker fees). The pricing tier represents the value of the accumulated

volume over a trailing 30 day period placed on the exchange by a trader. Cancelling an existing

order is free of charge.

Placing limit orders with a large volumes or at a high frequency thus results in drastically reduced

(taker and maker) fees. This appears to be one plausible reason why the OMG market seems to be

dominated by algorithmic traders or trading bots, as we will see below. Due to the open API of

Coinbase Pro it is relatively easy for anyone to build a trading bot and act as a market maker thus

reducing also the maker fees for selling and buying cryptocurrencies. Many tutorials how to build

such trading bots are widely available on the internet as well as commercial offers.

4.2 OMG Token Data and Data Quality

We analyse the LOB of the OMG token traded in Euro, see [CBPomg] for the real time dashboard.

The tick size of the OMG token is p0 = 0.0001 e and the minimal traded volume is vmin = 1

OMG token with an (incremental) lot size size of v0 = 0.1 OMG tokens. We measure the volume

of orders, depth of the LOB, etc. in units of OMG tokens and write for example vmin = 1 OMG.

To ensure good data quality it is advantageous to stop the websocket and restart the data collection

in one hour intervals. At each reconnection the websocket sends a snapshot of the full LOB as an

initial condition followed by LOB updates as the occur on the exchange. But due to instabilities

of the internet connection, slow reaction times of the technical setup or failures of the exchange,
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LOB updates as well as LOB snapshots may be lost. See appendix B for a brief exposition of the

technical setup we use to collect the data.

Data has been collected from September 9th 2020 until November 1st 2021. Full data consisting of

LOB snapshots and LOB updates is collected in three one hour intervals each day between 4pm -

7pm CET to minimise these failures. This covers the busiest trading time on Coinbase Pro. During

one hour of LOB updates ∼35 MB of data is collected. Therefore we decide to limit ourselves

to collecting three hours of full data per day, i.e. ∼115 MB per day, to keep the amount of data

manageable.

Each one hour interval contains at least one LOB snapshot which serves as an initial condition. It

may happen that the exchange restarts the broadcasting during a one hour interval. This splits the

interval into shorter intervals of less than one hour. For our statistical analysis this occasional split-

ting into shorter intervals has no consequences. We collected 162 intervals of full LOB data of one

hour or less.

Out of the 162 intervals we find 16 intervals which exhibit negative volume or spread smaller than

one tick at some instance of time. These 16 intervals are discarded from our analysis leaving us

with 146 valid one our intervals of full LOB data.

These failures probably occur if orders are lost in the time between broadcasting of the LOB snap-

shot and the first LOB update. Usually the lists of sequence IDs of all orders are complete, i.e. no

orders are missing after the first update has been received. Unfortunately Coinbase Pro does not

broadcast the order ID of the first order arriving after the LOB snapshot. So we have to compromise

and use the non-negativity of volume and the positivity of the spread as further measure for the

validity of a LOB interval.

The 146 valid LOB intervals comprise ∼13·106 orders of all types, see figure 2, which gives an

average of 25 orders arriving per second with up to 10 orders per millisecond at peak times.

Remark 4.1 Let Ti, i = 1, ..., 146 be the time intervals for which a valid LOB can be constructed.

We will write these valid LOBs as L(Ti). Note that max(Ti) < min(Ti+1) and that max(Ti) −
min(Ti) ≤ 60 minutes.

To get further independent LOB information we collect snapshots of the full LOB in intervals of

one minute during the time from 7pm - 4pm CET. The amount of this data is ∼45 MB per day.

5 LOB Statistics and Stylised Facts

In the following we analyse some statistical properties of the LOBs and the incoming orders from

the OMG data. Some of these statistical properties confirm well known stylised facts, i.e. persistent

qualitative and quantitative statistical patterns which emerge when observing time series of different

asset classes in financial markets. For a comprehensive overview of stylised facts we refer to [C01]

and [BBDG18].
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limit market open matched cancelled change

# bid side 2241808 1045 2201103 21129 2196581 14

# ask side 2059134 1672 2040379 41194 2016981 14

total # 4300942 2717 4241482 62323 4213562 28

Figure 2: Absolute numbers per order type collected in 146 one hour LOB intervals from September

9th until November 1st 2020.

In order to guarantee a sound statistical interpretation of the statistical properties of a given time

series X(t), we need in general that X(t) is stationary, see [BBDG18]. By stationarity we mean

that for any set of times t1,...,tn the joint distribution of X(t1),...,X(tn) coincides for any τ > 0

with the joint distribution of X(t1 + τ), ..., X(tn + τ). Showing that a given time series has this

property is often not easy due to periodic effects and it may require a proper definition of the time

scale [CS01]. We therefore assume that any time series is indeed stationary.

To be able to calculate expectations we assume furthermore ergodicity for any time series X(t), i.e.

that the ensemble average E[X(t)] = µ is independent of t and coincides with the time average

〈X(t)〉,

〈X(t)〉 :=
1

t2 − t1

∫ t2

t1

X(t)dt.

Ergodicity is typically satisfied by iid random variables, see [CS01] but may fail in general.

For the statistical analysis in this thesis we use Python and here in particular the standard packages

numpy.py and statistics.py as well as Pandas data frames.

As an illustration of the time series we obtain from the OMG data, we display the mid-price and the

spread for a time period of one hour on September 29th in figure 3.

We compute all statistical properties that involve time averages separately for the time intervals

Ti, i = 1, ..., 146 which allow the construction of valid LOBs L(Ti), see remark 4.1. Then we

take the arithmetic average over the resulting 146 time averages. This applies in particular to the

computation of the various autocorrelation functions in the following subsections.

5.1 Market Orders and Matched Orders

Let us first investigate the distribution of market orders and matched orders compared to limit and

open orders. In figure 4 we show the ratio of the number of market orders to limit orders and of

matched orders to open orders for each day of the observation period.

Apart from October 20th market play an extremely insignificant role w.r.t. the total number of

orders amounting to less than 0.1 % of all the incoming orders. In comparison the ratio of matched
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Figure 3: Mid-price (left) and spread (right) of OMG token in EUR

Figure 4: Daily ratio market to limit orders (left) and matched to open orders (right)

to open orders is roughly one order of magnitude larger. On average each market order generates

1.75 matched orders.

Level 3 updates allows us to determine via the order ID which matched orders are linked to market

orders. We find that matched orders originating from market orders make up ∼ 8% of all matched

orders, i.e. ∼ 92% of matched orders derive from limit orders placed on the opposite side of the

order book. Yet, market orders account for∼ 21% of the matched order volume. This is reflected in

the mean volume of 171.0 OMG for the generated matched orders while matched orders originating

from limit orders have a mean volume of 52.8 OMG.

The anomaly on October 20th originates from an extremely large number of ∼ 857 market orders

of volume 1 OMG out of a total of 909 market orders this day. The relatively small mean volume of

22.8 OMG per market order this day explains on the other hand the absence of the anomaly on the

ratio of matched to open orders.
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Figure 5: Distribution of mid-price logarithmic returns rm(t,∆) with ∆ = 100ms (left), ∆ = 5s

(middle) and ∆ = 60s (right).

5.2 Returns and Volatility

Next we investigate some statistical properties of the logarithmic returns. We concentrate on the

returns of the mid-price.

Definition 5.1 Let ∆ > 0 be a time interval. The logarithmic return of m(t) at time scale ∆ is

defined as

rm(t,∆) := ln

(
m(t+ ∆)

m(t)

)
= lnm(t+ ∆)− lnm(t). (1)

The logarithmic returns for the ask-price and bid-price can be defined in the same manner.

To investigate the return time series we first resample the mid-price time series m(t) obtained from

OMG data with a sampling rate of δs = 10 milliseconds. We thus obtain an evenly spaced time

series.

The distribution of the logarithmic returns for time scales ∆ = 10δs = 100ms, ∆ = 500δs = 5s

and ∆ = 6000δs = 60s are shown in figure 5. We superimpose onto each distribution a best

fit normal distribution from which suggests that the distribution of the logarithmic returns has a

power-law tail:

Definition 5.2 LetX be a random variable and FX(u) := P[X ≤ u] its (unconditional) distribution

function. If there exists an α > 0 such that

FX(u) ∼ O(z−α) as u→∞

then FX is said to have a power-law tail with tail index α.

To see the power-law tails more clearly we plot the absolute value of the logarithmic returns on a

logarithmic scale, see figure 6, and fit them with power law functions with tail index α = 4 for

∆ = 100ms, α = 3.7 for ∆ = 5s and α = 3, for ∆ = 60s. The fit is certainly not conclusive
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Figure 6: Distribution of mid-price log-returns rm(t,∆) with ∆ = 100ms (left), ∆ = 5s (middle)

and ∆ = 60s (right) in EUR.

and gives only a strong suggestion in favour of a power-law behaviour and seems to agree with the

generally observed tail index 2 ≤ α ≤ 5, see [C01] and [BBDG18].

This observation suggests that the short time logarithmic returns of the OMG token have a distribu-

tion with heavy tails.

Definition 5.3 LetX be a random variable and FX(u) := P[X ≤ u] its (unconditional) distribution

function. The distribution is called heavy tailed iff∫ ∞
−∞

etudFX(u) =∞ for all t > 0.

In particular random variables with power-law behaviour fall into the class of heavy tailed distri-

butions. Return series with heavy tailed distributions are very common and has been observed in a

multitude of assets, see [C01].

From the above observations it seem reasonable to suggest that the short time returns of display the

following stylised fact:

Stylised Fact 5.1 The distribution function of logarithmic returns Frm(t,∆)(u) for short time scales

of less than a minute is heavy tailed and can be described by a distribution with power-law tail. For

the empirically observed tail index we find 2 ≤ α ≤ 5, in agreement with observations for longer

time scales, see [C01].

It is also apparent that the distributions in figure 5 tend to resemble the normal distribution more

closely for increasing ∆. To get a simple quantitative measure we calculate the normalised kurtosis

κ(∆) :=
〈(rm(t,∆)− 〈rm(t,∆)〉)4〉

var(rm(t,∆))2
− 3.

of the logarithmic returns. We find κ(∆ = 100ms) = 106.5, κ(∆ = 5s) = 8.8 and κ(∆ = 60s) =

8.8. This certainly does not allow to conclude that the kurtosis goes to zero for large ∆. Therefore

we can only conjecture that aggregational Gaussianity is also displayed by the logarithmic returns.
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Figure 7: Autocorrelation of mid-price logarithmic returns rm(t,∆), its absolute value |rm(t,∆)|
and ist square |rm(t,∆)|2 with ∆ = 100ms and lag increment δτ = 10ms (left) as well as ∆ = 5s

and lag increment δτ = 100ms (right).

i.e. that for large time scales as ∆→∞ logarithmic returns approach a normally distributed random

variable as rm(t,∆) ∼ N (µ, σ).

Finally we investigate the autocorrelation function of the logarithmic returns and their volatilities.

Definition 5.4 Let τ > 0 be a time interval. For a time series X(t) the autocorrelation function

with lag τ is defined as

C(X(t), τ) :=
cov[X(t), X(t+ τ)]

var[X(t)]

given that the covariance cov[·, ·] and and the variance var[·] are well defined for the time series. If

a lag increment δτ > 0 is given such that τ = n · δτ , n ∈ N, then we write C(X(t), n) instead of

C(X(t), n · δτ).

As a measure for the (realised) volatility of the logarithmic returns we choose the square rm(t,∆)2

and the absolute value |rm(t,∆)| of the time series. We calculate the autocorrelation functions for

rm(t,∆), rm(t,∆) and |rm(t,∆)| with ∆ = 100ms and ∆ = 5s for each of the 146 one hour LOB

intervals and take the average. In figure 7 one can clearly see that the autocorrelation of the returns

drops for ∆ = 100ms and ∆ = 5s quickly to zero while both volatility measures decay slowly.

This phenomenon is known as volatility clustering and is also a well known stylised fact, see [C01]:

Stylised Fact 5.2 The autocorrelation of volatility measures is positive over long periods of time.

So high-volatility events tend to come in clusters.

Furthermore we see in figure 8 that the autocorrelation functions of the volatility measures of the

logarithmic returns also show power-law and therefore heavy tails. Their tail index appears to be

0 < α < 1 with decreasing α for increasing ∆.
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Figure 8: Autocorrelation of the absolute value of mid-price logarithmic returns |rm(t,∆)| and the

square of mid-price logarithmic returns |rm(t,∆)|2 with ∆ = 100ms and lag increment δτ = 10ms

(left) as well as ∆ = 5s and lag increment δτ = 100ms (right).

Stylised Fact 5.3 The autocorrelation functions of volatility measures for absolute returns display

a heavy tails. We find that the tail index is 0 < α < 1, corresponding to long memory processes,

[PB03] and [LF04].

5.3 Order Series

Now we define the order sign series, see for example [BBDG18].

Definition 5.5 The order sign series of a given order type is {S1, S2, ...} where for j = 1, 2, ...

Sj :=

−1 if the jth order of the given type is a buy order (bid side)

+1 if the jth order of the given type is a sell order (ask side)

The autocorrelation function of the order sign series for limit orders and cancel orders is shown in

figure 9. We see again that the series display a power law behaviour with tail index α ≈ 0.35 and

we can confirm the following stylised fact [PB03].

Stylised Fact 5.4 The autocorrelation function of limit and cancel order sign series display power-

law tails with empirically observed tail index 0 < α < 1 corresponding to long memory processes,

[PB03] and [LF04].
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Figure 9: Autocorrelation order sign series for limit orders and cancel orders

5.4 Spread and Change of Spread

The distribution of the spread and the change of spread is a partial motivation for the choice of the

queueing model which we will use the volume distribution of the OMG order books. We start by

resampling the spread time series s(t) to the moments in time tcj ∈ R, j = 0, 1, 2, ... when LOB

changing events arrive, i.e. an open order, a matched order or a cancel order. At each instant tck we

have the spread s(tck) and calculate the change of spread cs(tck) := s(tck)− s(tck−1) for k ≥ 1. Both

are measured in units of EUR.

The distribution of the spread has its maximum at 0.006 e and drops off exponentially to either

side with a second local maximum at 0.0002 e, i.e. at a spread of two ticks p0 = 0.0001 , see left

panel in figure 10. The arithmetic mean of the spread is 0.0063 e, i.e. 63p0 times the tick size. The

arithmetic mean of the mid-price over the time period under consideration is 〈m(t)〉 = 2.9 e, so

the OMG token can be categorised as a small tick asset.

Of particular importance for the applicability of the queueing model is the relative scarce change of

spread if a LOB changing event arrives. As can be seen in the right panel of figure 10, the change of

spread is sharply peaked around 0 ± 2p0 and drops off exponentially from there on. Indeed 86.9%

of the incoming events do not change the spread at all and the events which change the spread be

±2p0 account for 93.4% off all events. This relatively static behaviour of the spread w.r.t. incoming

events could partially explain of the structures which appear in the volume profile of the order book

close to zero relative price as described in the next section.

5.5 LOB Profiles and Queues

We use the LOB snapshots collected in one minute intervals from 19:00 to 16:00 CET to obtain the

distribution of the average bid- and ask-side relative depth profiles with respect to the relative price,
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Figure 10: Non-normalised distribution of the spread s(tc) in EUR (left) and of the change of the

spread cs(tc) in EUR (right)

which is defined as follows:

Definition 5.6 The ask-relative price of an order x ∈ L(t) as δa(px, t) := px − a(t) and the bid-

relative price as δb(px, t) := b(t) − px. If we refer to general orders (bid- or ask-relative) we will

suppress the super-scripts a and b and simply write δ(px, t).

The bid-side depth available at relative price p (at time t) is

N b(p, t) :=
∑

{x∈B(t)|δb(px,t)=p}

vx

and Na(p, t) is defined similarly. Furthermore we define the bid-side accumulated depth up to

relative price p (at time t) as

ΣN b(p, t) :=
∑

{x∈B(t)|δb(px,t)≤p}

vx

and ΣNa(p, t) similarly.

The plot of the average bid- and ask-side relative depth profiles (p,N b/a(p, t)) in figure 11. This

clearly shows that most of the volume of the bid side is placed more than 2 e away from the best

bid-price b(t). The same is true for the ask side, yet it is less visible since the volume can be dis-

tributed more evenly as the possible price range of the ask side is not bounded from above at any

given instant in time.

But the central observation for the present investigation the structure of the average relative depth

profiles close to the the bid- and ask-relative price. In figure 12 we see the bid side and the ask side

for 0 · p0 ≤ δa/b ≤ 650 · p0 with tick size 0.0001 e.

The first striking observation is the similarity of bid side and ask side. Apart from small variations

the average relative depth profiles close δa/b = 0 to are almost identical. We will therefore combine
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Figure 11: Average relative depth profiles of bid-side LOB and ask-side LOB

the bid side and the ask side when investigating statistical features close to δa/b = 0.

The second striking observation is the distribution of maxima and in particular of the minima at

δa/b ≈ 6 · p0, δa/b ≈ 50 · p0 and δa/b ≈ 120 · p0, see first three red vertical lines in figure 12. This

distribution is a stable feature of the LOBs over the whole period of observation of 54 days.

It appears therefore natural to assume that this particular structure is induced by the particular trad-

ing patterns of the traders. It is a first hint that trading on the OMG-EUR market is dominated by

algorithmic traders. We will call such traders trading Bots or simply Bots and will analyse them in

more detail in the following sections.

We will assume that the four intervals

Q1 = [0 · p0, 6 · p0]

Q2 = (6 · p0, 50 · p0]

Q2 = (50 · p0, 120 · p0]

Q4 = (120 · p0, 350 · p0] (2)

are essential for the dynamical properties of the OMG-EUR market on Coinbase Pro. Here we

have chosen max(Q4) = 350 · p0 arbitrarily in such a way that the local maximum is comfortably

included in the interval.

These intervals will serve as an equivalent of of one-tick sized queues for large tick stocks used

in various queueing models as for example in [CST10] and [HLR15]. It is assumed that many

important features of the dynamics of a LOB are mainly governed by the dynamics close to δa/b = 0

and that we can employ models from queuing theory for their description.

For large tick stocks one usually assumes that the queues are defined simply by the tick size. We

assume instead that the intervals Qi, i = 1, ..., 4 defined in equations (2) serve as queues for the

small tick OMG token. Consequently the queues are not fixed but are formed dynamically and may

vary over time. But for the present investigation we assume that the four queues Qi, i = 1, ..., 4
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Figure 12: Zoom into average relative depth profiles of bid-side LOB and ask-side LOB

Figure 13: Number of events arriving in queues (left) and total volume arriving in queues (right)

during the time of observation

remain fixed. The four queues show distinct behaviour regarding the events arriving in the LOB. In

the left panel figure 13 the total number of events are plotted for each queue and for the remaining

relative price range δa/b > 350 · p0. We see that most events are placed into Q2 and very few events

are placed into the remaining relative price range δa/b > 350 · p0. The events being placed in Q1

have on average a smaller volume while in particular the event placed in Q4 and in the relative price

range δa/b > 350 · p0 have on average a larger volume.

The distribution of the volume per queue w.r.t. LOB snapshots during observation period of 54

days is shown in figure 14. We see that the volume distribution in Q1 has is peaked roughly around

v ≈ 100 OMG, v ≈ 1000 OMG and v ≈ 2800 OMG. Q2 and Q3 have similar distributions. Q4 on

the other hand has a very distinct distribution peaked roughly around v ≈ 29000 OMG. In section

6 we model these distributions using a simple queue model from [HLR15].

Finally, note that most of the volume in the LOB is aggregated far away from δa/b = 0 as we can
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Figure 14: Distribution of the volume per queue w.r.t. LOB snapshots during observation period of

54 days, bin size = 50 OMG
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Figure 15: Average accumulated depth profiles of bid-side LOB and ask-side LOB

bid-side ask-side

Figure 16: Price-volume scatter plots for bid-side and ask-side. Data set from September 29th 2021

between 17:00 and 18:00 CET.

easily see in the plot of the average bid-side relative depth profile in figure 11. On the ask side the

depth profile is stretched out over a wide rage of the relative price. By plotting the accumulated

depth profiles (p,ΣN b/a(p, t)) in figure 15 the accumulation of volume far away from δa/b = 0

becomes apparent.

Since relatively few events arrive in the price range δa/b ≥ 350p0 , see figure 13, we conclude that

orders placed far into the LOB are rarely cancelled. This leads to an accumulation of volume, i.e.

volume is parked at a very good price if executed but with very little chance of execution.

22



5.6 Trading Bots

A price-volume scatter plot 16 of the incoming limit orders shows horizontal patterns which can be

attributed to high frequency algorithmic traders. We identify these patterns as two basic types of

traders. The first type consists of traders which place and cancel orders with fixed volume into the

LOB. The second type consists of traders which place and cancel orders into the LOB for which

the product of price and volume is within a small interval, i.e. the product is almost fixed. By high

frequency trading we mean in this context that the time between placing an cancelling an order is

in general less than a minute. As we show later, that the cancellation time of orders is on average

indeed much shorter.

In the following we define these algorithmic traders which we will call Bots and present an algorithm

to classify the incoming orders into the different Bot types. The definition of Bots uses in particular

the order ID which is provided by the Level 3 updates from Coinbase Pro. In the context of Bots we

focus on limit orders only and do not take market orders into account.

Let us write l for a limit order, o for an open order, m for a matched and c for a cancel order. For an

order x = l, o,m or c define SID(x) to be the (ongoing) sequence ID of the order and OID(x) be

its order ID, see section C and appendix D for further details.

Let O be a set containing n-tuples X = (x1, x2, ..., xn) of order with xi = l for some i and

OID(x1) = OID(x2) = · · · = OID(xn). Note that n is not fixed so O contains in general tuples

of different lengths. In particular x1 = l. Furthermore we define the order ID of the n-tuple as

OID(X) := OID(x1) and, since all orders with the same order ID share the same price, the price

of the n-tuple as pX := px1 where px1 is the price of x1. Note that due to the way the orders are

generated on the exchange any n-tuple in O can be arranged such that SID(x1) < SID(x2) <

· · · < SID(xn). We assume that all n-tuples in O are ordered in such a way with respect to the

sequence ID.

Let T ⊂ O be a subset of 3-tuples fo the form X = (l, o, c), i.e. a set containing limit orders which

are not (partially) executed before being cancelled. For such 3-tuples we can define the volume of

the 3-tuple vX := vl with vl being the volume of the limit order. Furthermore we define the funds

of a 3-tuple X ∈ T as fX := pX · vX . Each X ∈ T contains exactly two events, an open order o

and a cancel order c.

We can now define the two main Bot types that we could identify.

Definition 5.7 A subset CV B ⊂ T is called a constant volume Bot (CVB) if the following three

conditions hold:

1. there is a v > 0 such that for all triples X = (l, o, c) ∈ CV B we have vX = v.

2. the cardinality |CV B| ≥ κ, with κ > 0 fixed.

3. for all 3-tuples Xi = (li, oi, ci) ∈ CV B the indexing i = 1, 2, ... can be chosen such that

SID(ci) < SID(li+1).
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The set of all constant volume Bots in T is denoted as CVB.

Condition 1 in definition 5.7 ensures that all orders of a CVB have indeed the same volume. Con-

dition 2 ensures that there are at least κ consecutive orders in a CVB and condition. Choosing κ

correctly is basically a matter of experience. With condition 3 we aim to ensure that the CVB cannot

double spend its trading volume by placing a new limit order before canceling the active one.

Definition 5.8 A subset CFB ⊂ T is called a constant funds Bot (CFB) if the following three

conditions hold:

1. for all triples X = (l, o, c) ∈ CV B we have fX ∈ I for an interval I ⊂ R+.

2. the cardinality |CFB| ≥ κ, with κ > 0 fixed.

3. for all triples X = (l, o, c) ∈ CFB we have vX ≥ V with V > 0 fixed.

The set of all constant funds Bots in T is denoted as CFB.

Constant funds Bots are defined w.r.t. an interval I ⊂ R+ since the trading Bot will adjust the

price and the volume of each limit order according to the state of the LOB it observes. From

the data we see that this adjustment is not so accurate that the funds stay fixed but they fluctuate

slightly. Therefore we demand in condition 1 that the funds stay in a suitably chosen interval. As

in definition 5.7, condition 2 ensures that there are at least κ orders in a CFB and condition. An

equivalence of condition 3 from definition 5.7 turns out to be not very practical since in many cases

funds are split into several equal sized CFBs trading simultaneously. This phenomenon does not

seem to be common for CVBs. Condition 3 has been added since the density of low volume 3-

tuples is generally much higher than the density of high volume 3-tuples. Thus we would easily

miss-identify low volume 3-tuples as CFBs.

Definition 5.9 A subset RBOT ⊂ T is called a a remaining Bot (rem.Bot) if it fulfills the con-

ditions of definition 5.7 or 5.8 but with the negation of the respective condition 3. The set of all

remaining Bots in T is denoted asRB.

Finally we define NB := O \ (CVB ∪ CFB ∪RB) as the set of orders which by our definition are

not Bots.

The remaining Bots are those 3-tuples which we consider as being Bots but which cannot be identi-

fied clearly enough as CVBs or CFBs. The setNB may certainly still contain many algorithmically

traders, but we do not classify them as Bots.

To extract the Bot types from the Level 3 LOB updates we employ a simple three step algorithm.

As a preliminary choose the same minimal length κ > 0 for CVBs and CFBs. For CFBs choose

possibly several intervals If ⊂ R+ and a minimal volume V . We adapt the intervals If to the range

of the funds in which we are searching for CFBs. Then employ the following algorithm:
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Figure 17: Price-volume scatter plots for bid-side BOTs and ask-side BOTs. Data set from Septem-

ber 29th 2021 between 17:00 and 18:00 CET. Both plots have been cropped to the displayed price

and volume range.

I. find all CVBs in T

II. find all remaining Bots in T \ CVB

III. find all CFBs in T \ (CVB ∪RB)

We start with the CVBs and the remaining Bots because they are easy to identify and the subsequent

identification of the CFBs becomes much cleaner.

For the OMG data we find by visual comparison that κ = 50 and V = 200 OMG optimise the iden-

tification of BOTs in the data sets . For the CFB intervals we choose I1 with max(I1)−min(I1) = 3

for funds in the range from 0e·OMG to 1000e·OMG. For funds in the range from 1000e·OMG to

2000e·OMG we choose I2 with max(I2)−min(I2) = 12. And for funds larger than 2000e·OMG

we choose I3 with max(I3) − min(I3) = 25. The progressive increase in the interval length for

larger funds comes from the observation that the CFBs have a wider price spread for larger funds.

We then apply the algorithm to those Level 3 LOB updates which constitute the 146 error free LOB

intervals, see remark 4.1. For each time interval Ti, i = 1, .., 146 we obtain a set CVBi, CFBi,RBi
and NBi. Then we take the union over all respective sets for each Bot type to obtain CVB, CFB,

RB and NB.

In figure 17 we illustrate the result of the algorithm on the data for the data of second time interval

collected on September 29th 2021 between 17:00 and 18:00 CET.

As we can see, the algorithm performs well for larger volumes (funds) since the 3-tuples are less

dens compared to smaller volumes (funds). The discrimination is particularly difficult for small vol-

umes with integer values. Furthermore we can see that there are probably also algorithmic traders

left in the set we identified as not Bots. For example a green vertical trace on the ask side in the

price range between 3.600− 3.625 e which we cannot attribute to any type of Bot.
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Figure 18: Price-volume plot bid-side BOTs

The algorithm is also not perfect in detecting all 3-tuples which belong to a Bot and may miss-

attribute 3-tuples. See for example the CFB (blue dots) in figure 18. Some of the 3-tuples have been

miss-attributed as rem.Bots. Changing simply the order of steps in the execution of algorithm un-

fortunately does not improve the situation. Due to long computation times we refrained for the time

being to construct a more precise algorithm which would certainly have to be more complicated.

5.7 Bot Statistics

The distribution of cancellation times of 3-tuples which we identified as either CVBs, CFBs or

rem.Bots is shown in figure 19. We find that 75% of the 3-tuples identified as Bots get cancelled

within less than 4 seconds. The maximum of the distribution is ∼ 50 ms which is a clear sign for

algorithmic traders and well below the reaction time of any human. The volume distributions of the

3-tuples from the three Bot types and those not identified as Bots are shown in figure 20. We can

make the following observations for the different Bot types. The volume distribution of 3-tuples

from CVBs is widely spread up to ∼ 11000 OMG. There are two main clusters, one around ∼ 500

OMG and a second one around ∼ 2000 OMG as well as several smaller ones.

The volume distribution of of 3-tuples from CFBs on the other hand shows two clear clusters. Most

of the 3-tuples sit in the second cluster with its maximum around ∼ 2500 OMG. The first, smaller

cluster has its maximum also around ∼ 500 OMG.

For the 3-tuples from rem.Bots and those not identified as Bots the volume distribution for volumes

below 1000 OMG seems to be almost identical. This strengthens the assumption that most of the

orders that we could not identify as Bots nevertheless have their origin in algorithmic traders. For
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Figure 19: Distribution of cancellation times of less than 4000 ms for CVBs, CFBs and rem.Bots.

rem.Bots we see additionally a relatively broad cluster ranging ∼ 1800 OMG to ∼ 3500 OMG

followed by smaller clusters.

Overall there seem to be close similarities in the shape of the the volume distributions for the three

Bot types for volumes below ∼ 4500 OMG. Those orders which we cannot identify as Bots seem

to have mainly small volumes of less than 1000 OMG.

In figure 21 we show the distribution of events (open, matched and cancel orders) and the absolute

value of their volume arriving at the four queues defined in equation (2). We note that Bots generate

for more than 86% of all events arriving in Q1 to Q4. Taking into account that the number of events

arriving in the remainder of the LOB, see figure 13 is very small, we conclude that Bots play a

dominant role in the dynamics of the LOB.

From the left panel we see that in Q1, Q2 and Q3 the majority of the incoming events have their

origin in rem.Bots but they account in general for less than 15% of the volume arriving at the queues.

The number of events and the volume deposited in the queues is monotonically falling from Q1 to

Q4.

The number of events coming from QVBs is rising monotonically from Q1 to Q4 and the same is

true for the absolute value of their volume, see left panel. QVBs account for ∼ 80% of the volume

in Q4

The number of events coming from QFBs stays approximately constant from Q1 to Q3 and drops

off in Q4. Although QFBs account only for ∼ 20% of the events in Q1 to Q3 they dominate the

volume which arrives in these queues with ∼ 80% in Q2. In contrast QFBs contribute a negligible

amount of volume to Q4.
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remaining Bots not as Bots identified

Figure 20: Distribution of absolute volume |vx| of all events arriving via different Bot types, bin

size = 100
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Figure 21: Ratio of number of events (left) and ratio of absolute value of volume (right) w.r.t. bot

types per queue

Those events which we cannot identify with Bots stay almost constant fromQ1 toQ4 w.r.t. to either

the number of events or the volume arriving at the queues.

All these statistical features fit well with the assumption that one purpose of Bots is the exploitation

of the Coinbase Pro fee structure as described in section 4.1. CFBs place and cancel a large number

of orders with relatively large volume close to the bid-price b(t) or ask-price a(t). So if a match

occurs the adjusted volume guarantees that the desired funds are spent or received. If no match

occurs CFBs generate volume flow to reduce the trading fees. CVBs with large volumes on the

other hand place their orders relatively far from the bid-price and ask-price. We suspect that CVBs

serve a double purpose just as CFBs. On the one hand they park the tokens at a safe distance while

waiting for a better price. On the other hand they also generate volume flow thus reducing the

trading fees.

6 A simple Queuing Model

The authors of [HLR15] propose that the LOB close to the bid price and the ask price can be

described by a Markov queuing system consisting of several (possibly interacting) queues. In par-

ticular the average a volume distribution for each queue can be seen as the invariant distribution of

the Markov processes which drive the dynamics of the queues.

In [HLR15] the assets under consideration are large tick stocks such as France Telecom and Alcatel

Lucent traded on Euronext Paris. The queue size is defined to be 1 tick and the authors consider the

first four queues to be the first four price levels of one tick from relative price δa/b = 0. Furthermore

the authors assume that incoming and outgoing orders have the same size for each queue.

The authors of note that the average volume distribution of the queues depends very little on the side

of LOB, i.e. they are almost identical for the bid-side and the ask-side. So they combine both sides

into and model the volume change in the queues by a single 4-dimensional continuous time Markov
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process. The authors show that under some general assumptions the Markov process is ergodic and

has therefore an invariant distribution.

In the simple case of non-interacting queues each queue can then be modeled by an independent

G/G/1 queuing model. So the distribution of the incoming and outgoing orders is taken to be the

empirical distribution given by the order data. The invariant volume distribution can be derived

explicitly from the balance equations of the queuing model, see [GSTH08].

Even in the simple case of non-interacting queues the authors find that the invariant volume distribu-

tion derived from the order flow is in good agreement with the average volume distribution obtained

from LOB snapshots taken over a given time period.

Although the OMG token is certainly a small tick asset, see section 5.4, we nevertheless propose

that the simple queuing model of [HLR15] can be applied. We suggest that instead of using queues

of size 1 tick, we can use the queue structure that we found in the average relative depth profiles in

section 5.5, in particular in figure 12. We use the similarity of the bid-side and the ask-side to justify

that we can combine both sides just as the authors in [HLR15] did.

We then assume that the average volume distributions for each in figure 14 can be interpreted stable

distributions of an ergodic Markov process driving the simple model treating each queue indepen-

dently.

Next we define the Markov process of the incoming and outgoing order flow and show that the pro-

cess is ergodic and thus has an invariant distribution. In section 6.2 we use the balance equations of

the queuing model to derive explicit formulas that allow to calculate the invariant distribution from

the order flow. Then we apply these results to our data in section 6.3.

6.1 The Ergodic Markov Process

In the following section we will follow closely [HLR15]. The volume change in the queues is mod-

eled by a k-dimensional continuous time Markov process Q(t) = (Q1(t), Q2(t), ..., Qk(t)). Each

individual queue Qα(t) will be treated as an independent 1-dimensional continuous time Markov

jump process with values in N0, where the unit of measure is the average size of an incoming event

denoted asAESj (average event size). TheAES depends on the queue and the source of the events.

The state space of the process Q(t) is Ω = Nk0 and is in particular countable. Each incoming event

will be modeled by a jump of one AESα unit in queue Qα, α = 1, ..., k.

In the following we restrict ourselves for simplicity to one queue with average event sizeAES = 1.

Given a particular state of the process q = (q1, .., qj , ..., qk) ∈ Ω = Nk0 , an incoming limit order in

Qα, α = 1, ..., k is modeled by the jump q → q + eα where eα is the α-th (row) unit vector. An

incoming cancellation or market order in queue α is modeled by the jump q → q − eα.

Since the state space Ω is countable we can define the infinitesimal generator as the transition rate
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matrix Q as follows

Qq,q+eα = λα(qα)

Qq,q−eα = µα(qα)

Qq,q = −
∑

p∈Ω,p 6=qQq,p
Qq,p = 0 otherwise (3)

for each q, p ∈ Ω.

The transition probabilities of the Markov jump process from state q to state p in time t form a

semi-group with elements Pq,p(t) = exp(tQq,p). See figure 22 for an illustration of the process for

two time steps of a single queue. In this figure the integers are to be understood as multiples of the

average event size AES = 1 of the queue.

Our aim is now to show that the Markov jump process admits a stable limiting distribution π, i.e. a

distribution satisfying πP = π and

lim
t→∞

Pp,q = πq.

Such a Markov process with countable state space is called ergodic.

We nee two further assumptions on the process which will guarantee the process is sufficiently well

behaved. The first assumption ensures that queue volumes tend to decrease if they become too large.

Assumption 6.1 (Assumption 1 in [HLR15]) There exist an integer C ∈ N and a δ > 0, such that

for all α = 1, ..., k and all q ∈ Ω, if qα > C then

λα(qα)− µα(qα) < −δ.

The second assumption ensures the boundedness of incoming events and thus guarantees that the

Markov process is non-explosive.

Assumption 6.2 (Assumption 2 in [HLR15]) There exists an H > 0 such that for any q ∈ Q∑
α∈{1,...,k}

λα(qα) ≤ H

Under these two assumption we can prove that the following central theorem is true:

Theorem 6.3 (Thm. 2.1 in [HLR15]) Under assumption 6.1 and assumption 6.1 the k-

dimensional continuous time Markov jump process Q(t) = (Q1(t), Q2(t), ..., Qk(t)) is ergodic.

31



The first key ingredient in the proof of theorem 6.3 is theorem 4.2 from [MT93] from we can deduce

that Q(t) is an irreducible Markov process with invariant distribution. The second key ingredient is

theorem 3.6.2 from [N98] from which the ergodicity of the Markov process follows.

Theorem 4.2 from [MT93] is formulated for Markov processes with arbitrary state spaces and re-

quires the notion of petite sets. To simplify the presentation we restrict ourselves to the case of

countable state spaces. This allows us to replace the notion of petite sets by the notion of small

sets and eventually by any subset of the state space. Following [RR01], we first recall the standard

definition of a small set.

Definition 6.4 Let M(t) be a Markov process with state space Ω and with transition probability

PM . A set S ∈ Ω is small if there is an n0 ∈ N, an ε > 0 and a probability distribution ν on Ω, such

that

Pn0
M (x, ·) ≥ ε ν(·), ∀x ∈ C. (4)

Every small set is a petite set, see for example [RR04]. By the following proposition we see that

any subset of a countable state space is small.

Proposition 6.5 (Prop. 4 in [RR01]) Let M(t) be a Markov process with countable state space Ω

and let S ⊂ Ω be any subset. Then S is small.

Under the additional assumption (CD2) it is shown in theorem 4.2 in [MT93] that a non-explosive

right process is positive Harris recurrent and admits a unique invariant probability density. For

our purpose it enough to note that positive Harris recurrence implies irreducibility of the Markov

process, see section 3.2 in [MT93]. So we formulate the following corollary of theorem 4.2 in

[MT93]:

Corollary 6.6 LetM(t) be a non-explosive Markov jump process with countable state space Ω and

infinitesimal generator Q. Assume that for c, d > 0, some measurable set S ⊂ Ω, some functions

f, V : Ω→ R with f ≥ 1 and V ≥ 0 bounded on S

QV (x) ≤ −cf(x) + d1S(x) ∀x ∈ Ω (5)

holds. Then the process M(t) is irreducible and admits a unique invariant probability density πM .

If corollary 6.6 can be shown to hold, theorem 3.6.2 from [N98] can be used to deduce ergodicity.

Theorem 6.7 (Thm. 3.6.2 in [N98]) Let M(t) be an irreducible non-explosive Markov process

with state space Ω, infinitesimal generator Q and transition probabilities Pp,q(t), p, q ∈ Ω. As-

sume that M(t) has an invariant distribution π. Then we have for all states p, q ∈ Ω

lim
t→∞

Pp,q(t) = πq.
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We are now in the position to sketch the main steps of the proof of theorem 6.3. For computational

details we refer to Appendix A in [HLR15].

Proof of theorem 6.3:

Let z > 1 and define a positive function V : Ω→ R by

V (q) =
∑

α∈{1,...,k}

z|qα−C|

where C ∈ N from assumption 6.1. Now apply the infinitesimal generatorQ defined in 3 to V . For

any q ∈ Ω one finds

QV (q) =
∑
p6=q
Qp,q[V (p)− V (q)]

=
∑

α∈{1,...,k}

[λα(qα)(z|qα+1−C| − z|qα−C|) + µα(qα)(z|qα−1−C| − z|qα−C|)]

= (z − 1)
∑

α∈{1,...,k},
qα=C

λα(qα) + (z − 1)
∑

α∈{1,...,k},
qα>C

[λα(qα) +
µα(qα)

z
]zqα−C)

For qα > C we can find a z sufficiently close to 1 such that under assumptions 6.1 and 6.2

λα(qα) +
µα(qα)

z
<
−δ +H(z − 1)

z
< 0.

Setting r := (δ −H(z − 1))/z and using assumption 6.2 again we have

QV (q) ≤ (z − 1)H − (z − 1) r
∑

α∈{1,...,k},
qα>C

zqα−C

≤ −(z − 1) r
∑

α∈{1,...,k}

z|qα−C|) + (z − 1)rk + (z − 1)H

= −(z − 1)r V (q) + (z − 1)(rk +H)1Ω(q)

Multiplication by 1Ω(q) is a tautology since Ω is itself a small set by proposition 6.5. So condition

(5) from corollary 6.6 holds after suitable normalisation of the constants.

Therefore the Markov jump process Q(t) is irreducible and admits a unique invariant probability

distribution π. By assumption 6.2 the Markov process is non-explosive. So theorem 6.7 ensures that

the probability distribution π is obtained by taking the limit t → ∞ of the transition probabilities

Pp,q(t) and Q(t) is an ergodic Markov process. �

6.2 The Stable Distribution

In order to determine the stable distribution π of ergodic Markov process in section 6.1 we assume

that the queues are independent and each queue can be described by a G/G/1-queuing model. The

process is illustrated in figure 22 for a single queue Qα. We simplify our notation writing λn and
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Figure 22: Simple queueing model driven by an ergodic Markov process.

µn for the volume increasing and decreasing intensity under the condition that volume in Qλ is n.

Similarly we define πn to be the n-th component of the invariant distribution at volume n of Qα.

Following [GSTH08], to find the stable distribution π of the Markov process we write down the

balance equations for the process.

0 = −(λn + µn)πn + λn−1πn−1 + µn+1πn+1 for n ≥ 1 (6)

0 = −λ0π0 + µ1π1 (7)

1 =
∞∑
j=0

πj (8)

Equations (6) and (7) guarantee that in the limit of the stable distribution π incoming and outgoing

volume are equal for each place in the queue. Equation (8) is the normalisation of the probability

distribution. The major advantage of this simple queuing model is that it admits a closed analytic

solution.

Assuming that µi > 0 for all i, re-arranging (6) and (7) gives

πn+1 =
λn + µn
µn+1

πn −
λn−1

µn+1
πn−1 for n ≥ 1 (9)

π1 = =
λ0

µ1
π0. (10)

For n = 1 we find using (10)

π2 =
λ1 + µ1

µ2
π1 −

λ0

µ2
π0

(10)
=

λ0

µ1

(
λ1 + µ1

µ2

)
π0 −

λ0

µ2
π0

=
λ0λ1

µ1µ2
π0 +

λ0µ1

µ1µ2
π0 −

λ0µ1

µ1µ2
π0

=
λ0λ1

µ1µ2
π0
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A straightforward induction argument leads to

πn = π0

n∏
j=1

λj−1

µj
for n ≥ 1 (11)

From the normalisation condition (8) for probabilities follows

1 =

∞∑
i=0

πi

(11)
= π0 +

∞∑
i=1

π0

i∏
j=1

λj−1

µj

= π0

1 +

∞∑
i=1

i∏
j=1

λj−1

µj


and therefore

π0 =

1 +
∞∑
i=1

i∏
j=1

λj−1

µj

−1

(12)

where we assume that

∞∑
i=1

i∏
j=1

λj−1

µj
<∞ (13)

converges. The convergence of (13) poses no problem since only finitely many intensities λi and µi
are non zero.

From the data of the Level 3 updates we can now calculate the intensities λj and µj for each queue

Q1 to Q4 as defined in (2). Using equation (11) and (12) we then estimate the invariant distribution

π for each queue w.r.t. to bin size given by the average event size AES1,..,AES4 of each queue.

6.3 Data Analysis and Model Fitting

To estimate the invariant distributions π for each queue Qα α = 1, .., 4 we follow again closely

[HLR15]. First we need to estimate the average event sizes EASα as well as the volume increasing

intensities λ(Qα) := (λ1, λ2, ...) and the volume decreasing intensities µ(Qα) := (µ1, µ2, ...). The

volume increasing intensity corresponds to the intensity of the open order flow while the volume de-

creasing intensity consists of the intensities of the matched order flow and the cancel order flow. We

write π(Q1) = (π1, π2, ....) for the corresponding invariant distributions.We may drop the explicit

dependency on the queue in λ, µ and π if it is clear from the context to which queue they belong.

Let us focus on a single queue Qα. Let κ indicate the type of an event x, i.e. κ = l for an open

order, κ = m for a matched order κ = c for a cancel order. E(κ) is defined as the set of all events

of type κ arriving at queue Qα. We denote by κn the intensity of events x ∈ E(κ) given the volume
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AES Q1 (in OMG) AES Q2 (in OMG) AES Q3 (in OMG) AES Q4 (in OMG)

all events 483 691 701 1807

CVBots 603 519 868 3467

CFBots 1762 2422 2477 1433

rem. Bots 132 92 107 174

Figure 23: Average event sizes for queues Q1, ..., Q4 for all orders and restricted to the three bot

types.

of queue Qα is qα(x) = n. We write κn = λon for volume increasing open orders. For volume

decreasing orders we write κn = µmn for matched orders κn = µcn for cancel orders.

With ∆t(x) being the time passed between event x and preceding event arriving at queue Qα we

use the maximum likelihood method to estimate the intensities κn

Λn := (mean[∆t(x)|qα(x) = n])−1

(14)

κn := Λn
|{x ∈ E(κ)|qα(x) = n}|

|{qα(x) = n}|
.

We estimate the intensities from the data of the 146 valid LOB intervals in section 4.2. The data is

divided into time intervals during which the queues are stable, i.e. the bid price does not change for

the bid-side queue and the ask price does not change for the ask-side queue. So we restart recording

each time when the bid price or the ask price changes on the respective side of the LOB. We use the

data to estimate the intensities κn and take the arithmetic mean over all recording intervals.

Let us first estimate the average event sizes for the queues Q1, ..., Q4 by taking the arithmetic mean

of the absolute value of the volume |vx| of the orders x under consideration. The table in figure 23

shows theAESα for all events, for constant volume bots CVB, for constant funds bots CFB and for

the remaining bots RB. We see that AESα increase from Q1 to Q4 if we consider all orders. This

behaviour is no longer true for the different bot types separately.

All Events: Let us first estimate the intensities and the invariant distribution for all events. In

figure 24 the intensities of all events are shown in units of events per second.

The intensity of volume increasing events λo(Q1) in Q1 has an increasing tendency from 1 AES

and reaches a maximum at ∼ 16AES ≈ 7700 OMG. So there is an increasing tendency of traders

to add volume to Q1 if the volume increases. We also see a local maximum around ∼ 16AES for

the intensities µc(Q1) of the cancel orders and the intensities of matched orders µm(Q2). We can

conclude that traders become more active in Q1 as the available volume approaches ∼ 16AES.

We can interpret the maximum at 30AES ≈ 14400 OMG in µc(Q1) as follows. Events which have

been placed into Q2, Q3 or Q4 can be moved into Q1 if the bid price or ask price changes enough.
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Figure 24: Intensities for limit/open orders (left), cancel orders (middle), matched order (right) of

all events.

This unintentional miss-placement of orders triggers the corresponding traders to immediately can-

cel them. Here we already see that our assumption of independent queues is just an approximation

and that the queues interact.

The intensities of the matched orders show clearly that matching only occurs in Q1 and then pre-

dominantly if the queue contains a relatively large volume.

We also observe a relatively high intensity if the volume of Q1 is zero. Placing an order into Q1

at volume zero means placing an order at least 7 ticks into the spread and thus moving the queues.

The sharp drop λo(Q1) from volume zero to 1AES indicates that other traders need a certain time

to react to the new price levels and become more active as the volume in Q1 increases again.

The intensities in Q2 and Q3 show a similar behaviour to the ones in Q1 with their maxima shifted

to higher queue volume. But Q3 shows a quite different behaviour. Volume increasing events arrive

particularly in Q3 if its volume is small. This seems to be at odds with the relatively small intensity

λc(Q3) of cancel orders. But as we saw in section 5.7, Q4 is largely dominated by high volume

CVBs. As we will see below, restricting ourselves to these high volume CVBs provides an expla-

nation for this anomaly.

From the intensity estimates we can now calculate the invariant distributions for each queue using

equation (11) and equation (12). Note that the total intensity of volume decreasing order flows is

simply µ = µc +µm, see [GSTH08]. We compare the invariant distributions to the average volume

distributions we obtained from the LOB snapshots which we collected in one minute intervals from

7pm - 4pm CET, see section 4.2. In this way the two data sets are relatively independent from each

other.

In figure 25 we plot the invariant distributions as red lines. The average volume distributions from

the LOB snapshots are plotted with bin size adjusted to the corresponding average event size are

shown as bar plots. Compare figure 14 for the average volume distribution with smaller bin size.

The invariant distributions fit the average volume distributions quite well for Q2 and Q3 apart from

the local maxima close to zero volume. The fit of the invariant distribution to the average volume

distribution in Q4 is slightly shifted to larger volumes but still seems reasonable good. In Q1 the fit

does not capture the structure of two maxima for the average volume distribution. The invariant dis-
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Queue 1 Queue 2

Queue 3 Queue 4

Figure 25: Average volume distribution from LOB snapshots vs. invariant distribution of the queue

model estimated from all events. Bin size is given by the average event size AESα, α = 1, ..., 4.

The volume axis of the plots are in OMG units for easier comparability.

tribution shows only a single maximum at∼ 2AES and completely misses the second maximum at

∼ 6AES of the average volume distribution. This may be due to the fact that the outgoing volume

in Q1 overcompensates the incoming volume for large queue volume due to the moving queue ef-

fect described above. Using one single average event size for all events also gives too much weight

to events with smaller volume which have a local maxima in their volume increasing intensities at

lower queue volume as we will see below in figures 26 and 30.

To get a more detailed view we will next restrict ourselves to events coming from the three bot

types, i.e. to events in CVB, CFB and RB. We ignore those events that we classified as not bots,

i.e. those in NB.

Constant Volume Bots: Next we restrict our analysis to CVBs, i.e. events x ∈ CVB. In figure

26 we plot the intensities of the volume increasing and volume decreasing order flows. Note that

we only need to take the limit/open orders and the cancel orders into account, since by CVB do not

contain matched orders by definition 5.7.

The left plot in figure 26 shows the intensities of the limit/open and cancel order flows for Q1. We
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Figure 26: Intensities CVBots. Q1 open orders and cancel order (left), Q2, ..., Q3 open orders

(middle) and Q2, ..., Q3 cancel orders (right)

Figure 27: Average volume distribution from LOB snapshots vs. invariant distribution of the queue

model estimated from events in CVB. Bin size is given by the average event size AESα, α =

1, ..., 4. The volume axis of the plots are in OMG units for easier comparability.

see that two maxima of the intensities λo(Q1) of the limit/open order flow at queue volume zero and

at ∼ 2.5AES ≈ 1500 OMG. The intensities µc(Q1) of the cancel order of have several maxima.

The first is at ∼ 2.5AES matching the maximum of the limit/open order flow. The second maxi-

mum at ∼ 10AES ≈ 6000 OMG and in particular the third maximum at ∼ 15AES ≈ 9000 OMG

may again be due to the moving queue effect. The same seems to be true for the intensities volume

decreasing order flows in Q3 and Q4 as can be seen from the plot in the middle and the plot on the

right of 26.

If we focus on Q4 we see that the intensities λo(Q4) of volume increasing and µc(Q4) volume

decreasing order flows appear to be reasonably well balanced. So we suspect that big volumes are

placed and canceled predominantly into Q4. And if Q1 gets completely depleted and events in Q4

move into Q3, Q2 or even Q1, they get cancelled immediately. This leads to the structure for the

decreasing order flows in the lower queues.

Estimating the invariant distributions using CVBs alone is shows that in particular the two maxi-

mum structure of the average volume distribution ofQ1 can be reproduced, see first plot on the left

in figure 27. Also the structure of the invariant distribution π(Q4) of Q4 is still reasonably well

captured.

Constant Funds Bots: Now we restrict to CFBs, i.e. to events x ∈ CFB, see definition 5.8. In

figure 28 we plotted the intensities of the volume increasing and volume decreasing order flows.

We observe that CFBs place their limit/open orders predominantly into Q2 and Q3. The volume
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Figure 28: Intensities CFBots. Q1 open orders and cancel order (left), Q2, ..., Q3 open orders

(middle) and Q2, ..., Q3 cancel orders (right)

Figure 29: Average volume distribution from LOB snapshots vs. invariant distribution of the queue

model estimated from events in CFB. Bin size is given by the average event size AESα, α =

1, ..., 4. The volume axis of the plots are in OMG units for easier comparability.

increasing intensity λo(Q2) has a local maximum if the volume in the queue is small ∼ 1AES ≈
2500 OMG and a global maximum at ∼ 6AES ≈ 15000 OMG. Yet, as can be seen in the right

plot, the maximum of the intensity of cancel orders µc(Q2) is increasing for larger queue volume

reaching its maximum also also at∼ 6AES ≈ 15000 OMG and decreasing from there more slowly

than λo. So volume is placed into and removed from Q2 by CFBs at a high frequency if there is a

lot of volume in the queue. If there is only a small volume in Q2, CFBs place volume into the queue

but is removed at a lower frequency.

In Q3 CFBs tend to place volume into the queue at high frequency if the volume in the queue is

close to zero (in AES units) and a local maximum at ∼ 8AES ≈ 19000 OMG. There is a sharp

peak removing volume from Q3 if the volume in the queue is ∼ 8AES ≈ 19700 OMG largely

overcompensating the corresponding local maximum of λo(Q3). We interpret this maximum of

µc(Q3) again as being mainly an effect due to moving queues.

The moving queue effect is probably also the reason for the maximum of the volume decreasing

intensity µc(Q1) at ∼ 5AES ≈ 8800 OMG. We interpret this maximum of µc(Q1) as volume

being cancelled immediately from Q1 as it is moved from higher queues by a sufficiently large

change in price.

CFBs play a negligible role in Q4 as they contribute few events and little volume, see figure 21.

Estimating the invariant distributions from CFBs alone gives a relatively good agreement with the

average volume distributions from the LOB snapshots for Q2 and Q3, see figure 29. This is to be

expected since CFBs dominate the volume placed into and removed from these two queues as is
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Figure 30: Intensities remaining Bots. Q1 open orders and cancel order (left), Q2, ..., Q3 open

orders (middle) and Q2, ..., Q3 cancel orders (right)

Figure 31: Average volume distribution from LOB snapshots vs. invariant distribution of the queue

model estimated from events inRB. Bin size is given by the average event sizeAESα, α = 1, ..., 4.

The volume axis of the plots are in OMG units for easier comparability.

shown in figure 21.

The invariant distributions for Q1 and Q4 are hard to interpret. The distribution π(Q1) has little

information since the bin size of oneAES = 1762 OMG obscures the details of the average volume

distribution from the LOB snapshots. And the invariant distribution for Q4 is insignificant due to

the negligible contribution the CFB order flow to this queue.

Remaining Bots For those events which originate from the remaining bots x ∈ RB we observe

in general similar features as for CVBs and CFBs. Figure 30 shows the intensities of the volume

increasing order flows λo(Qα) and the volume decreasing order flows µc(Qα) for the four queues.

The invariant distributions π(Qα) restricted to the remaining bots match the average volume distri-

bution of the LOB snapshots rather poorly as can be seen in figure 31. This is not surprising, since

the volume of the events is not significant compared to CVBs and CFBs, see figure 21.

Let us focus on the intensity of the volume increasing order flows for the case that the relevant price

moved by more than 6 ticks, i.e. the case where Q1 moves by more than 6 ticks into the spread

and the volume of Q1 is zero. Compare λ0(Q1) with zero volume for the CVBs, the CFBs and the

remaining bots:

λ0(Q1) CVBots CFBots rem. Bots

intensity

(num. per sec.)
1.19 0.74 7.90
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We see that λ0(Q1) for x ∈ RB is by a factor of 6.6 larger than λ0(Q1) for x ∈ CVB. Furthermore

λ0(Q1) for x ∈ RB is by a factor of 10.6 larger than λ0(Q1) for x ∈ CFB. We conclude that

the remaining bots are the predominant drivers of price change and therefore volatility and we

conjecture that CVBs with small volume also fall into this category. The CFBs on the other hand

follow the price in the second row (or queue).

7 Concluding Remarks and Outlook

In this thesis we show that the market for OMG tokens on the crypto exchange Coinbase Pro shares

many of standard features and stylised facts with classical assets traded via limit order books. We

use the information provided by Level 3 updates to partially identify the structure of algorithmic

trading traders. These traders or trading bots dominate the OMG market and their existence is

strongly incentivised by the fee structure of Coinbase Pro. A striking feature of the relative depth

profiles of the limit order book is the dynamical formation of queue-like structures close to the bid

price and ask price.

It is possible to identify two major bot types, constant volume bots and constant funds bots. We

analyse some statistical properties of these bots and in particular their relevance in a simple queuing

model in order to understand the average volume distribution of the queues. Nevertheless, we only

scratched the surface of possibilities to analyse these crypto markets offered by Level 3 updates of

the LOB.

The fact that the market is dominated by algorithmic traders, incentivised the by fee structure and

easily accessible APIs is certainly also due to the prospect of substantial returns in the hyped market

for crypto assets.

Our analysis provides some insights into the structure of the OMG market on Coinbase Pro. But it

also left many questions unanswered and generated new questions and ideas. So we end this thesis

with some of these open questions and ideas.

The authors of [PRH20] assert that high-frequency trading (5-minute intervals) of may be mainly

human based or at least human initiated. They base their conclusion on intraday patterns in the

CRIX (CRyptocurrency IndeX). In contrast to this the authors of [SRK19] find no such patterns for

the Bitcoin market. Whether these results are at odds with our findings is a priori not clear. The

trading bots we found could be initiated by humans on relatively short time scales so that we ac-

tually see bot assisted trading. Or there could be a significant difference between cryptocurrencies

such as Bitcoin and the OMG token. The precise relation of human and algorithmic traders certainly

deserves further research.

We focus our analysis on a single asset, the OMG token, on a single exchange, Coinbase Pro. The

next step would be to include other assets (tokens, coins) traded on Coinbase pro and compare the

results. This would have the advantage of having also the information of Level 3 updates at our

disposal. Another step would be to compare assets across exchanges. Here the effect of different
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fee structures would be interesting to investigate.

Concerning the queue structure we were not able to clarify how the queues are actually formed.

What is the dynamical feature responsible for their emergence? Can the traders or bot types be

identified which produce such queue patterns? And and important question for the statistical anal-

ysis and the application of queuing models is the stability of the queues over time. The analysis of

these questions will require larger datasets collected over longer time periods.

We assume that the queues are independent. From our analysis of the intensities of the order flows

we already saw that this is certainly not the case. The queues interact at least when queues move due

to changes in the bid price and the ask price. So what are the correlations between the queues? And

can we track the life cycle of individual orders through the queues? Into which queue is an order

place and in which queue is it cancelled or matched? Such an analysis should be possible using the

order ID provided by Level 3 updates.

Our bot classification is rather straight forward and certainly oversimplifies the structure of the al-

gorithmic traders active on the OMG market. The next step would certainly be to include market

orders into the bot classification. The classification could also be improved using clustering tech-

niques based on artificial intelligence to categorise traders more accurately and more efficiently.

A risk analysis to what would happen if (private) bots malfunction would also an interesting line

of research. Many of the trading bots we encountered were probably written by amateurs. How

disruptive could a malfunctioning bot be for the market?

We see that the simple queue model we employed is certainly not good enough to successfully ex-

plain the data. Yet, the model looks promising and may be significantly improved.

In order to estimate intensities of order flows, we restarted data collection after every price change

that moved the queue. As a result we also collected data from short time intervals, i.e. during times

of high volatility. These time intervals contain only very few events and the queues do not stay sta-

ble in the LOB. But in order to estimate an invariant distribution we should at least come reasonably

close to the t→∞ limit.

To improve the situation one could restrict the analysis to time intervals which contain at least cer-

tain minimal number of events. On such time intervals it may be better justified that the invariant

distribution can be estimated from the order flows since the queues had some time to approach an

equilibrium state.

This approach could be extended in the spirit of the queue reactive model from [HLR15]. Apart

from the stable regime described above there would be a volatile regime where prices change, the

queues move and do not settle into the invariant distribution.

One of the major short comings of the simple queue model seems to be the restriction to orders

of one single size given by the average event size. This would be appropriate if the average order

volume would at least be close to the AES. But in contrast to this assumption we can clearly see

in figure 21 that order volumes of the different bot types have complicated distributions which are

poorly modeled by a single (average) value.
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Figure 32: Extended queue model for order flows of variable volume.

We would therefore propose to extend the simple queuing model by generalising to intensities corre-

sponding to order flows of variable volume. A tractable model would be to allow for order volumes

that are multiples of a suitable order unit. Figure 32 shows a graphical depiction of such a queuing

model where order volume can be added or subtracted in multiples of a unit order volume. This

model has the advantage that the balance equation can be written down explicitly as follows:

0 = −
∞∑
j=1

λjn pn −
n−1∑
j=0

µjn pn +
n−1∑
j=0

λnj pj +
∞∑

j=n+1

µnj pj for n ≥ 1

0 = −
∞∑
j=1

λj0 p0 +
∞∑
j=1

µ0
jpj

1 =
∞∑
j=0

pj

This system of linear equations will in general not have a simple closed solution for the invariant

distribution such as equation (11) and equation (12) for the simple model. But numerical solutions

may be possible. Furthermore it is not a priori clear whether this solution is indeed the invariant

distribution of a Markov process. This needs to be shown for the process sketched in figure 32.

One could also extend the model including the reaction time of traders to the state of the LOB. The

present models assume that the traders react immediately to the state of the LOB. In reality there is

always a finite reaction time due to the exchange broadcasting with a delay, the finite transmission

speed of the internet and the finite reaction time of the trader. As a consequence traders necessarily

react to outdated LOB states.

In this thesis we focus on high frequency trading and do not consider that open orders have an

a priori infinite life time. This peculiarity of Coinbase Pro and other crypto exchanges stands in

contrast to classical exchanges. Even FX exchanges with continuous 24/7 trading usually limit the

life time of orders. So it would be interesting to investigate the impact of extremely long lived orders

on crypto exchanges in contrast to classical exchanges.

Another problem we do not address in this theses is an error analysis for our results. This is on the
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one hand due to lack of data points. But the main point is the difficulty performing a reliable error

analysis with data that is far from being normally distributed. We expect that the errors themselves

are not normally distributed and standard techniques will fail. A possible solution may be to resort

to warping methods or to numerical fitting of the distributions.

Finally, we do not investigate different approaches to modeling LOBs which are dominated by

algorithmic traders. There are many models on the market that could be adapted and tested, see

for example [C11] and [PRH20]. In particular agent based models and behavioral models may be

promising due to the availability of Level 3 updates that allow to investigate the fine structure of

these agents (or bots). See for example [CTM19] for an agent based model for the Bitcoin market

and [MF08] for behavioral models.
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Appendix

A Example for LOB Order Placement

Figure 33 schematically illustrates six consecutive time steps of a LOB. At each time step the bid-

price, ask-price, mid-price and spread are given as well as the incoming order type and the resulting

events:

t = 0: At t = 0 we have the bid-price b(t) = 3, the ask-price a(t) = 7, the mid-price m(t) = 5 and

the spread s(t) = 4.

An incoming incoming limit sell order at price p = 6 with volume v = 1 is received and

generates an event (open order) x = (+1, 6, 1, 0). The event is placed on the ask side of the

LOB.

t = 1: We have bid-price b(t) = 3, ask-price a(t) = 6, mid-price m(t) = 4.5 and spread s(t) = 3.

An incoming limit buy order at price p = 3 with volume v = 3 is received and generates an

event (open order) x = (−1, 3, 3, 1). The event is placed on the bid side of the LOB. Note

that the incoming event is added according to the FIFO principle.

t = 2: We have bid-price b(t) = 3, ask-price a(t) = 6, mid-price m(t) = 4.5 and spread s(t) = 3.

An order is cancelled on the ask-side at price p = 9 volume v = 4 is cancelled by the

event (cancel order) x = (+1, 9,−4, 2). The event is placed on the ask side of the LOB and

removes the corresponding event.

t = 3: We have bid-price b(t) = 3, ask-price a(t) = 6, mid-price m(t) = 4.5 and spread s(t) = 3.

An incoming market buy order with funds for volume v = 4 is received and gener-

ates three events (matched orders) x1 = (+1, 6,−1, 3), x2 = (+1, 7,−2, 3 + ε1) and

x3 = (+1, 8,−1, 3 + ε2). Here εi < 1 are small time intervals with εi < εj for i < j

so the events are placed into the LOB in the order with the FIFO principle. The events are

placed on the ask side of the LOB and remove the events at price p = 6, p = 7 and (partially)

match with the ask-side event at price p = 8 with volume v = 2 also according to the FIFO

principle.

t = 4: We have bid-price b(t) = 3, ask-price a(t) = 8, mid-price m(t) = 5.5 and spread s(t) = 5.

An incoming limit sell order at price p = 3 and volume v = 10 is received and generates four

events (three matched orders, one open order) x1 = (−1, 3,−3, 4), x2 = (−1, 3,−1, 4+ε1),

x4 = (−1, 3,−5, 4 + ε2) and x4 = (+1, 3, 1, 4 + ε3). First, the three matched orders remove

the total volume at price p = 3 on the bid side. Then the open order is placed into the LOB at

price p = 3 with volume v = 1, now on the ask side.
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Figure 33: Six consecutive time steps illustrating the dynamics of a LOB.

t = 5: We have bid-price b(t) = 2, ask-price a(t) = 3, mid-price m(t) = 2.5 and spread s(t) = 1.

An incoming limit buy order at price p = 4 and volume v = 4 is received and generates two

events (one matched order and one open order) x1 = (+1, 3,−1, 5), x2 = (−1, 3, 3, 5 + ε1).

First, the matched order remove the total volume at price p = 3 on the ask side. Then the

open order is placed into the LOB at price p = 3 with volume v = 3, now on the bid side.

B Data Collection and Technical Setup

The public API of Coinbase Pro, see [CBPapi] for complete specifications, can be used to manage

trading accounts, access historical data as well as live data of all currency pairs traded on the ex-

change.

For this thesis we are interested in real time LOB data which are broadcasted the websocket of the

Coinbase Pro API. The technical setup to connect to the exchange consists of a Raspberry Pi 4 with

a Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC 1.5GHz processor and 8GB

SDRAM. The data stream is saved on a 3 TB raid hard disk using couchDB as a no-SQL open

source database. Since the data of the API is broadcasted in JSON format the flexibility of the no-

SQL database technology allows to store the data without any time consuming preprocessing. For

a schematic view of the technical setup see figure 34.

The program to access the Coinbase Pro websocket is written in JavaScript and runs in a Node.js run-

time environment. We use the JavaScript library CryptoCurrency eXchange WebSockets [CCXWS]
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Figure 34: Technical setup for data collection from Coinbase Pro digital asset exchange via the API

websocket connection.

which takes care of most of the technical issues concerning the connection to the websocket and sta-

ble retrieval of the data. The data is written into the couchDB using the JavaScript library couchdb-

nano.

C LOB Data and Level 3 LOB Updates

We use two types of data types broadcasted by Coinbase Pro to build the full history of the LOB in

a given time interval. For a detailed exposition of the data structure see appendix D.

The first type of data is the LOB snapshot. It consists of the full LOB at the instance in time when

data collection starts. Each LOB snapshot is divided into bid side and ask side and consists of all

price levels with available volume at the respective price. Since the LOB snapshots contain the

complete LOB at a given instance in time they provide a considerable amount of information. But

for us their main purpose will be to serve as initial conditions for the level 3 LOB updates to obtain

the dynamics of the LOB.

The second type of data we are interested in are level 3 LOB updates. Each level 3 update contains a

single order which belongs to a set of six order types. There are two types of order being broadcasted

by the exchange upon receipt are limit orders and market orders. These orders are processed by the

exchange before they appear on the LOB itself.

These processed order is then placed on the LOB in the form of one or several orders of the following

order types: open orders, matched orders, cancel orders. These orders actually change the available

volume at a given price level of the LOB and we will call them events.

The last type of order is the filled order. It does not change the LOB but indicates the end of order

life cycle.

An order life cycle starts either with a limit order or a market order being received by the exchange.

Let us focus first on the life cycle and information contained in the level 3 update for a limit order.
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As in the case of level 2 limit orders are either buy or sell orders at a given price and size and come

with the timestamp at which the order is received. For details on price increments and tick size of

the OMG token see 4.2. Furthermore the level 3 limit orders contain a unique order ID which allows

to track the order over its entire life cycle and a unique ongoing sequence ID which allows to ensure

the completeness of the incoming orders and is thus central to ensure data quality.

Before being placed into the LOB the limit order is preprocessed by the exchange. It is checked

whether the limit order can be fully or partially matched with existing orders on the opposite side

of the LOB. If this is the case, the exchange will generate corresponding orders of type matched

and will place them into the LOB on with a negative volume on the LOB side opposite to the limit

order. The remaining positive volume will be placed as an order of type open on the LOB side of

the limit order. If no matching can take place the full volume of the limit order is placed into the

LOB as a limit order. All of the orders following the limit order are given the order ID of the limit

order. Matched orders contain in addition the order ID of the opposing order. The life cycle of a

limit order ends if either the whole volume is consumed due to matching or if, at a later time, the

an order of type cancelled is received. If the volume is consumed due to matching an order of type

filled is broadcasted.

A market order is built similarly to a limit order, the most notable difference being that it does not

come at a fixed price. Instead a sell order states the volume to be sold and a buy order the funds for

which assets shall be bought. This asymmetry ensures that the seller owns enough volume to sell

if the price drops and the buyer does not exceed its funds if the price rises. After broadcasting the

market order corresponding matched orders are generated and placed into the LOB with negative

volume on the opposite side of the LOB. Its life cycle ends with an order of type filled. As in the

case of limit orders the order ID is given to all orders following the market order.

It is clear that only events, i.e. orders of types open, matched or cancelled result in a change of the

LOB state. The other order types are provide additional information but do not directly contribute

to the dynamics of the LOB. Yet, they are vital to maintain a valid order book since their sequence

ID is needed to ensure that no orders have been lost in transmission.

A very rare order type which we will only briefly mention is the change order. On Coinbase Pro the

volume of limit orders and the price or volume of market orders can be changed by the trader before

the order is placed in the order book. The time span between the broadcasting of the limit or market

order and its placement in the order book is usually ∼1 millisecond, so change orders require an

extremely short reaction time. Out of the ∼13·106 orders collected for this thesis, there were only

28 change orders.

From the incoming data we build the order book L(t) according to the rules laid out in section 2.

The initial condition is given by the LOB snapshot broadcasted by the exchange when the collection

of Level 3 updates is started. The updates are then added to the LOB in the order indicated by the

sequence ID. If the data is complete, i.e. if no orders were lost, the resulting LOB is valid for the

time period of data collection.
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D API and Data Structure

The Coinbase Pro API [CBPapi] broadcasts data in JavaScript Object Notation [JSON], in short

json. It a lightweight format which easily read by machines and humans and fits the needs of

broadcasting LOB data which has in general no fixed length or data structure. Storing data in json

format in a data base requires either a mapping to a fixed SQL compatible format or a non-SQL

database. Since writing speed is an issue when receiving LOB data and parsing large amounts of

data to an SQL format consumes a lot of time an computational power, we chose the open source

non-SQL database couchDB [CDB]. It is compatible with Raspbian, the native Linux distribution

of the Raspberry Pi.

To access the real time data stream the Coinbase Pro API provides a public websocket. We connect

to the websocket, collect the data and write it into the database using a JavaScript code using the

CrypotCurrency eXchange WebSockets library running on a node.js kernel. This proves to be a very

stable and fast environment resulting in very little data loss.

The json files can be easily exported from the database for further analysis in Python using the

json.py package to parse json files to Python dictionaries.

We do not display the different order types in json format as they are broadcasted by the Coinbase

Pro websocket. Instead we give for the LOB snapshot and for LOB updates in each order type a

schematic example of its main data content. In view of their scarcity we do not cover change orders.

LOB Snapshot: A LOB snapshot is broadcasted directly after connecting to the websocket. It

contains the full LOB at this instant in time in terms of price-volume pairs on the bid and ask side.

Furthermore it contains basic data on the currency pair:

base: OMG, quote: EUR,
bids:
(price: 3.1971, volume: 1989.2), (price: 3.1959, volume: 400.0), (price: 3.1955, volume:
1994.1), ...
asks:
(price: 3.1982, volume: 1.0), (price: 3.1991, volume: 1.0), (price: 3.2000, volume: 1926.4), ...

Note that there is no reference to the sequence ID of the first LOB update. This makes it

sometimes hard to determine whether no updates have been lost and further measures of validity of

the LOB have to be applied. We required that a valid LOB has never a negative volume and that the

spread is always positive.

Limit Order: The main content of the limit order is its price, its volume and the side of the order

book where the order is placed. It is broadcasted with an ongoing (unique) sequence ID and a

timestamp in milliseconds since 1970-01-01 00:00:00 UTC. Furthermore it has a unique order ID
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which will be carried by all subsequent orders. The meta data specifies the order further.

base: OMG, quote: EUR,
sequenceId: 390619818, timestampMs:1600096532629,
asks:
orderId: 6f1702a396cd4f54b19500f54a82bfbb, price: 3.2684, volume: 2.2,
meta: type: received, side: sell, order type: limit
bids:

A limit order is pre-processed by the exchange and can generate an open order as well as

matched orders if it can be executed immediately.

Market Order: Data of market orders is dependent whether it is a buy or a sell order. Apart from

the sequence ID, the timestamp and the order ID a buy market order contains the total funds (in

terms of the quote) for which the base currency shall be purchased. A sell market order contains

the volume (in terms of the quote) which shall be sold.

base: OMG, quote: EUR,
sequenceId: 390619982, timestampMs: 1600096553785,
asks:,
bids:
orderId: 31b5144ecab74963b824eb4a32b69a44,
meta: type: received, side: buy, order type: market, funds: 57.2162

base: OMG, quote: EUR,
sequenceId:458781526, timestampMs: 1602947732898,
asks:
orderId: 85524af7a5544d5baae4752d3a096f5e, volume: 916.2,
meta: type: received, side: sell, order type: market,
bids:,

The asymmetry between buy and sell market orders guaranties that the oder can be executed

since the available funds for purchase or volume for sale of the trader are known in advance.

Open Order: A limit order that cannot or only partially be matched is placed into the order

books as an open order. The order ID is the one of the preceding limit order. A limit order actually

changes the LOB.
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base: OMG, quote: EUR,
sequenceId: 390619819, timestampMs: 1600096532629,
asks:
orderId: 6f1702a396cd4f54b19500f54a82bfbb, price: 3.2684, volume: 2.2,
meta: type: open,
bids:,

Matched Order: A market order will be executed immediately and will generate one or several

matched orders according to its volume. A limit order can be partially executed and may also

generate one or several matched orders. The order of type matched is put into the order book

on the opposite side of the incoming market or limit order. Apart from the standard data such

as sequence ID and timestamp the matched order contains an ongoing trade ID. Furthermore

the order IDs of both orders which have been matched are submitted in the meta data section.

The order ID of the matched order corresponds to the order which was placed first in the order book.

base: OMG, quote: EUR,
sequenceId: 390619983, timestampMs: 1600096553785,
asks:
orderId: 6f1702a396cd4f54b19500f54a82bfbb, price: 3.2684, volume: 2.2,
meta: type: match, trade id: 670995, maker order id: 6f1702a396cd4f54b19500f54a82bfbb,
taker order id: 31b5144ecab74963b824eb4a32b69a44,
bids:,

Filled Order: A market or limit (open) order that ends its life cycle by being completely executed

will generate an order of type done with the reason filled stated in the meta data.

base: OMG, quote: EUR,
sequenceId: 390619992, timestampMs: 1600096553785,
asks:,
bids:
orderId: 31b5144ecab74963b824eb4a32b69a44,
meta: type: done, reason: filled

Cancel Order: An open order can in principle life infinitely on the order book until it is either

executed with an incoming order (see filled order) or until it is cancelled by the trader. In this case

an order of type done with the reason cancelled is placed into the order book and the life cycle of

the order ends.
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base: OMG, quote: EUR,
sequenceId: 390613652, timestampMs: 1600095922821,
asks:
orderId: 51fe81a2019b4cb78729df23e77932d8, price: 3.2668, volume: 1940.1,
meta: type: done, reason: canceled,
bids:,
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