Some basic notions from point-set topology

March 1, 2019

Topological spaces

Definition 0.1. Let X be a set.

- 1. A topology on M is a set \mathcal{O} whose elements are subsets of X such that:
 - a) $\emptyset \in \mathcal{O}$ and $X \in \mathcal{O}$,
 - b) If $A_1, ..., A_n \in \mathcal{O}$ are finitely many elements of \mathcal{O} then $A_1 \cap ... \cap A_n \in \mathcal{O}$,
 - c) If $(A_i)_{i \in I}$ is an arbitrary family of elements of \mathcal{O} then $\bigcup_{i \in I} A_i \in \mathcal{O}$.
- 2. A topological space is a pair (X, \mathcal{O}) where \mathcal{O} is a topology on X.

Elements of \mathcal{O} are called *open subsets* of X. If B is a subset of X such that $X \setminus B$ is open then B is called a *closed subset* of X.

Example 0.2. 1. If X is an arbitrary set, then $\mathcal{O} := \{\emptyset, X\}$ is a topology on X. It is called the *trivial topology* on X.

- 2. If X is an arbitrary set, then $\mathcal{O} := \mathcal{P}(X) := \{Y \mid Y \subset X\}$ the power set of X is a topology on X. It is called the *discrete topology* on X. All subsets of X are open with respect to the discrete topology.
- 3. Let $X = \mathbb{R}^n$. For any $x \in \mathbb{R}^n$ and $r \in \mathbb{R}$, r > 0, we define

$$B_r(x) := \{ y \in \mathbb{R}^n \mid ||x - y|| < r \},\$$

where $\|.\|$ denotes the Euclidean norm on \mathbb{R}^n . Now, for a subset $A \subset \mathbb{R}^n$ we define

 $A \in \mathcal{O} \Leftrightarrow$ for every $x \in A$ there is r > 0 such that $B_r(x) \subset A$.

Then \mathcal{O} defines a topology on \mathbb{R}^n . It is called the *standard topology on* \mathbb{R}^n .

Remark 0.3. 1. The subsets $\emptyset = X \setminus X$ and $X = X \setminus \emptyset$ are closed and open.

- 2. If $B_1, ..., B_n$ are finitely many closed subsets of X then $B_1 \cup ... \cup B_n$ is closed since with $A_i := X \setminus B_i$ we have $B_1 \cup ... \cup B_n = X \setminus (A_1 \cap ... \cap A_n)$ and $A_1 \cap ... \cap A_n$ is open.
- 3. If $(B_i)_{i\in I}$ is an arbitrary family of closed subsets of X then $\bigcap_{i\in I} B_i$ is closed since with $A_i := X \setminus B_i$ we have $\bigcap_{i\in I} B_i = X \setminus \bigcup_{i\in I} A_i$ and $\bigcup_{i\in I} A_i$ is open.

Definition 0.4. Let X be a set. A topology \mathcal{O} on X is called *Hausdorff* iff for any two points $x, y \in X$ with $x \neq y$ there exist open subsets $A, B \in \mathcal{O}$ of X such that $x \in A$, $y \in B$ and $A \cap B = \emptyset$.

- **Example 0.5.** 1. If X has at least two distinct points then the trivial topology on X is not Hausdorff.
 - 2. The discrete topology on X is Hausdorff.
 - 3. The standard topology on \mathbb{R}^n is Hausdorff.

Definition 0.6. Let X be a set with a topology \mathcal{O} . A *basis* of the topology \mathcal{O} is a subset $\mathcal{B} \subset \mathcal{O}$ such that every non-empty open subset of X can be obtained as a union of sets in \mathcal{B} .

Example 0.7. 1. If \mathcal{O} is the trivial topology on X, then $\mathcal{B} = \{X\}$ is a basis of \mathcal{O} .

- 2. If \mathcal{O} is the discrete topology on X then $\mathcal{B} = \{\{x\} \mid x \in X\}$ is a basis of \mathcal{O} .
- 3. If \mathcal{O} is the standard topology on \mathbb{R}^n then $\mathcal{B} = \{B_r(x) \mid x \in \mathbb{R}^n, r > 0\}$ is a basis of \mathcal{O} .

Definition 0.8. Let (X, \mathcal{O}_X) be a topological space and let $x \in X$. A subset $Y \subset X$ is called a *neighborhood* of x, if there is $A \in \mathcal{O}_X$ such that $x \in A$ and $A \subset Y$.

Interior and closure of a subset

If a subset $Y \subset X$ is not open then we want to consider those points in Y for which Y is a neighborhood. Similarly we want to consider those points $x \in X$ such that every neighborhood of x intersects Y. This leads to the following definitions.

Definition 0.9. Let (X, \mathcal{O}) be a topological space and let Y be a subset of X.

1. The interior of Y with respect to (X, \mathcal{O}) is defined as

 $\mathring{Y} := \{ y \in Y \mid \text{there is } A \in \mathcal{O} \text{ such that } y \in A \text{ and } A \subset Y \}.$

2. The closure of Y with respect to (X, \mathcal{O}) is defined as

 $\overline{Y} := \{ x \in X \mid \text{for every } A \in \mathcal{O} \text{ such that } x \in A \text{ we have } A \cap Y \neq \emptyset \}.$

Example 0.10. Let $X := \{1, 2\}$ and let $Y := \{1\} \subset X$.

- 1. If \mathcal{O} is the trivial topology on X, then $\mathring{Y} = \emptyset$ and $\overline{Y} = \{1, 2\}$.
- 2. If \mathcal{O} is the discrete topology on X, then $\mathring{Y} = \{1\}$ and $\overline{Y} = \{1\}$.

Lemma 0.11. Let (X, \mathcal{O}) be a topological space and let Y be a subset of X.

1. The interior of Y is the union of all open subsets of Y

$$\mathring{Y} = \bigcup_{A \text{ open, } A \subset Y} A.$$

2. The closure of Y is the intersection of all closed supersets of Y

$$\overline{Y} = \bigcap_{B \text{ closed}, Y \subset B} B.$$

Proof. 1. For all $y \in X$ we have

$$y \in Y \Leftrightarrow$$
 there is $A \in \mathcal{O}$ such that $y \in A$ and $A \subset Y$
 $\Leftrightarrow y \in \bigcup_{A \text{ open, } A \subset Y} A.$

2. " \subset " Let $x \in \overline{Y}$ and let B be a closed subset of X such that $Y \subset B$. If we had $x \notin B$, then we would have $x \in X \setminus B =: A$. Now, A is open and since $Y \subset B$ we have $A \cap Y = \emptyset$, which is a contradiction to $x \in \overline{Y}$.

"⊃" Let $x \in \bigcap_{B \text{ closed}, Y \subset B} B$ and let $A \in \mathcal{O}$ such that $x \in A$. If we had $A \cap Y = \emptyset$ then we would have $Y \subset X \setminus A =: B$. Now, B is closed and since $x \in A$ we have $x \notin B$, which is a contradiction to $x \in \bigcap_{B \text{ closed}, Y \subset B} B$.

- **Remark 0.12.** 1. From $\mathring{Y} = \bigcup_{A \text{ open}, A \subset Y} A$ we see that \mathring{Y} is a union of open sets and thus \mathring{Y} is an open set. Moreover we see that \mathring{Y} is the largest subset of Y that is open.
 - 2. Similarly, from $\overline{Y} = \bigcap_{B \text{ closed}, Y \subset B} B$ we see that \overline{Y} is a closed set and that it is the smallest superset of Y that is closed.
 - 3. Let $Y \subset X$ be any subset. From Lemma 0.11 we see that Y is open if and only if $\mathring{Y} = Y$. Similarly, we see that Y is closed if and only if $\overline{Y} = Y$.

Subspace topology

If X is a set with a topology and $Y \subset X$ is a subset, then the topology of X induces a topology on Y as follows.

Lemma 0.13. Let X be a set with a topology \mathcal{O}_X and let $Y \subset X$ be a subset of X. Then

$$\mathcal{O}_Y := \{ A \cap Y \mid A \in \mathcal{O}_X \}$$

is a topology on Y.

Proof. We verify that properties a), b), c) from the definition of a topology are satisfied. a) Obviously, we have $\emptyset = \emptyset \cap Y \in \mathcal{O}_Y$ and $Y = X \cap Y \in \mathcal{O}_Y$. b) If $A_1 \cap Y = A_1 \cap Y \in \mathcal{O}$ are finitely many elements of \mathcal{O}_Y then

b) If $A_1 \cap Y, ..., A_n \cap Y \in \mathcal{O}$ are finitely many elements of \mathcal{O}_Y then

$$\bigcap_{i=1}^{n} (A_i \cap Y) = \left(\bigcap_{i=1}^{n} A_i\right) \cap Y \in \mathcal{O}_Y$$

c) If $(A_i \cap Y)_{i \in I}$ is an arbitrary family of elements of \mathcal{O}_Y then

$$\bigcup_{i\in I} (A_i \cap Y) = \left(\bigcup_{i\in I} A_i\right) \cap Y \in \mathcal{O}_Y.$$

Definition 0.14. Let X be a set with a topology \mathcal{O}_X and let $Y \subset X$ be a subset of X. The topology

$$\mathcal{O}_Y := \{ A \cap Y \mid A \in \mathcal{O}_X \}$$

on Y is called the subspace topology of Y induced by (X, \mathcal{O}_X) .

By definition of the subspace topology, for any subset $B \subset Y$ we have

 $B \in \mathcal{O}_Y \Leftrightarrow$ there is $A \in \mathcal{O}_X$ such that $B = A \cap Y$.

Example 0.15. Let $X = \mathbb{R}$ equipped with the standard topology \mathcal{O}_X and let Y = [0, 2]. Then for the subset $B = [0, 1) \subset Y$ we have $B \in \mathcal{O}_Y$ since $B = (-1, 1) \cap Y$ and $(-1, 1) \in \mathcal{O}_X$.

Note that $B \notin \mathcal{O}_X$. Therefore the statement "B is open" can be confusing and one should rather say "B is open in Y with respect to the subspace topology".

Product topology

If X and Y are sets with topologies, then we can construct a topology on the Cartesian product $X \times Y$ as follows.

Lemma 0.16. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces. Then

$$\mathcal{O}_{X \times Y} := \{ A \subset X \times Y \mid A = \bigcup_{i \in I} U_i \times V_i \text{ where } U_i \in \mathcal{O}_X \text{ and } V_i \in \mathcal{O}_Y \text{ for all } i \}$$

is a topology on $X \times Y$. It is called the *product topology* on $X \times Y$.

Proof. Again, we verify that properties a), b), c) from the definition of a topology are satisfied.

a) We have $\emptyset \in \mathcal{O}_X$, $X \in \mathcal{O}_X$ and $Y \in \mathcal{O}_Y$ and thus $\emptyset = \emptyset \times Y \in \mathcal{O}_{X \times Y}$ and $X \times Y \in \mathcal{O}_{X \times Y}$. b) For all $U_i, U_j \subset X$ and $V_i, V_j \subset Y$ we have

$$(U_i \times V_i) \cap (U_j \times V_j) = (U_i \cap U_j) \times (V_i \cap V_j).$$

By proceeding inductively, we get that the intersection of finitely many sets in $\mathcal{O}_{X \times Y}$ is again in $\mathcal{O}_{X \times Y}$.

c) It follows immediately from the definition of $\mathcal{O}_{X \times Y}$ that the union of arbitrarily many sets in $\mathcal{O}_{X \times Y}$ is again in $\mathcal{O}_{X \times Y}$.

Note that the product topology on $X \times Y$ has a lot more open sets than just the products $U \times V$ with $U \in \mathcal{O}_X, V \in \mathcal{O}_Y$. In fact, the set

 $\mathcal{B} := \{ A \subset X \times Y \mid A = U \times Y \text{ where } U \in \mathcal{O}_X \text{ and } V \in \mathcal{O}_Y \}$

is not a topology on $X \times Y$. But \mathcal{B} is a basis of the product topology on $X \times Y$.

Example 0.17. Let $X = Y = \mathbb{R}$ and let $\mathcal{O}_X = \mathcal{O}_Y$ be the standard topology. The product topology is then a topology on $X \times Y = \mathbb{R}^2$. By proceeding inductively we get the product topology on \mathbb{R}^n for every n. It is not difficult to show that the product topology on \mathbb{R}^n coincides with the standard topology on \mathbb{R}^n .

Continuous maps

Definition 0.18. Let (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) be topological spaces and let $f: X \to Y$ be a map.

- 1. Let $x \in X$. f is called *continuous at* x iff for every neighborhood V of f(x) in Y the preimage $f^{-1}(V)$ is a neighborhood of x in X.
- 2. f is called *continuous* iff f is continuous at every $x \in X$.
- 3. f is called a homeomorphism iff f is bijective and both f and f^{-1} are continuous.

It is easy to see that f is continuous if and only if for every open set V in Y the preimage $f^{-1}(V)$ is open in X.

Example 0.19. $f: [0, 2\pi) \to S^1 := \{x \in \mathbb{R}^2 \mid ||x|| = 1\}, f(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$ is continuous and bijective but not a homeomorphism since f^{-1} is not continuous at $(1, 0)^t \in S^1$.

Definition 0.20. Let (X, \mathcal{O}) be a topological space.

1. A subset \mathcal{U} of the power set of X is called a *cover* of X iff

$$X = \bigcup_{U \in \mathcal{U}} U.$$

- 2. Let \mathcal{U} and \mathcal{V} be covers of X. If $\mathcal{V} \subset \mathcal{U}$ then \mathcal{V} is called a *subcover* of \mathcal{U} .
- 3. The topological space (X, \mathcal{O}) is called *compact* iff every cover of X has a finite subcover.

Remark 0.21. 1. Let $X = \mathbb{R}^n$ be equipped with the standard topology. The Theorem of Heine-Borel says: A subset $Y \subset X$ with the subspace topology is compact if and only if Y is bounded and closed in X.

2. It is not difficult to show: If (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) are topological spaces, (X, \mathcal{O}) is compact and $f: X \to Y$ is continuous then $f(X) \subset Y$ equipped with the subspace topology is compact.