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Topological spaces

De�nition 0.1. Let X be a set.

1. A topology on M is a set O whose elements are subsets of X such that:

a) ∅ ∈ O and X ∈ O,
b) If A1, ..., An ∈ O are �nitely many elements of O then A1 ∩ ... ∩ An ∈ O,
c) If (Ai)i∈I is an arbitrary family of elements of O then

⋃
i∈I Ai ∈ O.

2. A topological space is a pair (X,O) where O is a topology on X.

Elements of O are called open subsets of X. If B is a subset of X such that X \B is open
then B is called a closed subset of X.

Example 0.2. 1. If X is an arbitrary set, then O := {∅, X} is a topology on X. It is
called the trivial topology on X.

2. If X is an arbitrary set, then O := P(X) := {Y | Y ⊂ X} the power set of X is a
topology on X. It is called the discrete topology on X. All subsets of X are open
with respect to the discrete topology.

3. Let X = Rn. For any x ∈ Rn and r ∈ R, r > 0, we de�ne

Br(x) := {y ∈ Rn | ‖x− y‖ < r},

where ‖.‖ denotes the Euclidean norm on Rn. Now, for a subset A ⊂ Rn we de�ne

A ∈ O ⇔ for every x ∈ A there is r > 0 such that Br(x) ⊂ A.

Then O de�nes a topology on Rn. It is called the standard topology on Rn.

Remark 0.3. 1. The subsets ∅ = X \X and X = X \ ∅ are closed and open.
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2. If B1, ..., Bn are �nitely many closed subsets of X then B1 ∪ ... ∪ Bn is closed since
with Ai := X \ Bi we have B1 ∪ ... ∪ Bn = X \ (A1 ∩ ... ∩ An) and A1 ∩ ... ∩ An is
open.

3. If (Bi)i∈I is an arbitrary family of closed subsets of X then
⋂

i∈I Bi is closed since
with Ai := X \Bi we have

⋂
i∈I Bi = X \

⋃
i∈I Ai and

⋃
i∈I Ai is open.

De�nition 0.4. Let X be a set. A topology O on X is called Hausdor� i� for any two
points x, y ∈ X with x 6= y there exist open subsets A,B ∈ O of X such that x ∈ A,
y ∈ B and A ∩B = ∅.

Example 0.5. 1. If X has at least two distinct points then the trivial topology on X
is not Hausdor�.

2. The discrete topology on X is Hausdor�.

3. The standard topology on Rn is Hausdor�.

De�nition 0.6. Let X be a set with a topology O. A basis of the topology O is a subset
B ⊂ O such that every non-empty open subset of X can be obtained as a union of sets
in B.

Example 0.7. 1. If O is the trivial topology on X, then B = {X} is a basis of O.

2. If O is the discrete topology on X then B = {{x} | x ∈ X} is a basis of O.

3. If O is the standard topology on Rn then B = {Br(x) | x ∈ Rn, r > 0} is a basis
of O.

De�nition 0.8. Let (X,OX) be a topological space and let x ∈ X. A subset Y ⊂ X is
called a neighborhood of x, if there is A ∈ OX such that x ∈ A and A ⊂ Y .

Interior and closure of a subset

If a subset Y ⊂ X is not open then we want to consider those points in Y for which Y
is a neighborhood. Similarly we want to consider those points x ∈ X such that every
neighborhood of x intersects Y . This leads to the following de�nitions.

De�nition 0.9. Let (X,O) be a topological space and let Y be a subset of X.

1. The interior of Y with respect to (X,O) is de�ned as

Y̊ := {y ∈ Y | there is A ∈ O such that y ∈ A and A ⊂ Y }.

2. The closure of Y with respect to (X,O) is de�ned as

Y := {x ∈ X | for every A ∈ O such that x ∈ A we have A ∩ Y 6= ∅}.

Example 0.10. Let X := {1, 2} and let Y := {1} ⊂ X.
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1. If O is the trivial topology on X, then Y̊ = ∅ and Y = {1, 2}.

2. If O is the discrete topology on X, then Y̊ = {1} and Y = {1}.

Lemma 0.11. Let (X,O) be a topological space and let Y be a subset of X.

1. The interior of Y is the union of all open subsets of Y

Y̊ =
⋃

A open, A⊂Y

A.

2. The closure of Y is the intersection of all closed supersets of Y

Y =
⋂

B closed, Y⊂B

B.

Proof. 1. For all y ∈ X we have

y ∈ Y̊ ⇔ there is A ∈ O such that y ∈ A and A ⊂ Y

⇔ y ∈
⋃

A open, A⊂Y

A.

2. �⊂� Let x ∈ Y and let B be a closed subset of X such that Y ⊂ B. If we had x /∈ B,
then we would have x ∈ X \B =: A. Now, A is open and since Y ⊂ B we have A∩Y = ∅,
which is a contradiction to x ∈ Y .
�⊃� Let x ∈

⋂
B closed, Y⊂B B and let A ∈ O such that x ∈ A. If we had A ∩ Y = ∅ then

we would have Y ⊂ X \A =: B. Now, B is closed and since x ∈ A we have x /∈ B, which
is a contradiction to x ∈

⋂
B closed, Y⊂B B.

Remark 0.12. 1. From Y̊ =
⋃

A open, A⊂Y A we see that Y̊ is a union of open sets and

thus Y̊ is an open set. Moreover we see that Y̊ is the largest subset of Y that is
open.

2. Similarly, from Y =
⋂

B closed, Y⊂B B we see that Y is a closed set and that it is the
smallest superset of Y that is closed.

3. Let Y ⊂ X be any subset. From Lemma 0.11 we see that Y is open if and only if
Y̊ = Y . Similarly, we see that Y is closed if and only if Y = Y .

Subspace topology

If X is a set with a topology and Y ⊂ X is a subset, then the topology of X induces a
topology on Y as follows.

Lemma 0.13. Let X be a set with a topology OX and let Y ⊂ X be a subset of X.
Then

OY := {A ∩ Y | A ∈ OX}
is a topology on Y .
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Proof. We verify that properties a), b), c) from the de�nition of a topology are satis�ed.
a) Obviously, we have ∅ = ∅ ∩ Y ∈ OY and Y = X ∩ Y ∈ OY .
b) If A1 ∩ Y, ..., An ∩ Y ∈ O are �nitely many elements of OY then

n⋂
i=1

(Ai ∩ Y ) =
( n⋂

i=1

Ai

)
∩ Y ∈ OY .

c) If (Ai ∩ Y )i∈I is an arbitrary family of elements of OY then⋃
i∈I

(Ai ∩ Y ) =
(⋃

i∈I

Ai

)
∩ Y ∈ OY .

De�nition 0.14. Let X be a set with a topology OX and let Y ⊂ X be a subset of X.
The topology

OY := {A ∩ Y | A ∈ OX}
on Y is called the subspace topology of Y induced by (X,OX).

By de�nition of the subspace topology, for any subset B ⊂ Y we have

B ∈ OY ⇔ there is A ∈ OX such that B = A ∩ Y.

Example 0.15. Let X = R equipped with the standard topology OX and let Y = [0, 2].
Then for the subset B = [0, 1) ⊂ Y we have B ∈ OY since B = (−1, 1) ∩ Y and
(−1, 1) ∈ OX .
Note that B /∈ OX . Therefore the statement �B is open� can be confusing and one should
rather say �B is open in Y with respect to the subspace topology�.

Product topology

If X and Y are sets with topologies, then we can construct a topology on the Cartesian
product X × Y as follows.

Lemma 0.16. Let (X,OX) and (Y,OY ) be topological spaces. Then

OX×Y := {A ⊂ X × Y | A =
⋃
i∈I

Ui × Vi where Ui ∈ OX and Vi ∈ OY for all i}

is a topology on X × Y . It is called the product topology on X × Y .

Proof. Again, we verify that properties a), b), c) from the de�nition of a topology are
satis�ed.
a) We have ∅ ∈ OX ,X ∈ OX and Y ∈ OY and thus ∅ = ∅×Y ∈ OX×Y andX×Y ∈ OX×Y .
b) For all Ui, Uj ⊂ X and Vi, Vj ⊂ Y we have

(Ui × Vi) ∩ (Uj × Vj) = (Ui ∩ Uj)× (Vi ∩ Vj).

By proceeding inductively, we get that the intersection of �nitely many sets in OX×Y is
again in OX×Y .
c) It follows immediately from the de�nition of OX×Y that the union of arbitrarily many
sets in OX×Y is again in OX×Y .
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Note that the product topology on X×Y has a lot more open sets than just the products
U × V with U ∈ OX , V ∈ OY . In fact, the set

B := {A ⊂ X × Y | A = U × Y where U ∈ OX and V ∈ OY }

is not a topology on X × Y . But B is a basis of the product topology on X × Y .

Example 0.17. Let X = Y = R and let OX = OY be the standard topology. The
product topology is then a topology on X × Y = R2. By proceeding inductively we get
the product topology on Rn for every n. It is not di�cult to show that the product
topology on Rn coincides with the standard topology on Rn.

Continuous maps

De�nition 0.18. Let (X,OX), (Y,OY ) be topological spaces and let f : X → Y be a
map.

1. Let x ∈ X. f is called continuous at x i� for every neighborhood V of f(x) in Y
the preimage f−1(V ) is a neighborhood of x in X.

2. f is called continuous i� f is continuous at every x ∈ X.

3. f is called a homeomorphism i� f is bijective and both f and f−1 are continuous.

It is easy to see that f is continuous if and only if for every open set V in Y the preimage
f−1(V ) is open in X.

Example 0.19. f : [0, 2π) → S1 := {x ∈ R2 | ‖x‖ = 1}, f(t) =

(
cos(t)
sin(t)

)
is continuous

and bijective but not a homeomorphism since f−1 is not continuous at (1, 0)t ∈ S1.

De�nition 0.20. Let (X,O) be a topological space.

1. A subset U of the power set of X is called a cover of X i�

X =
⋃
U∈U

U.

2. Let U and V be covers of X. If V ⊂ U then V is called a subcover of U .

3. The topological space (X,O) is called compact i� every cover of X has a �nite
subcover.

Remark 0.21. 1. Let X = Rn be equipped with the standard topology. The Theorem
of Heine-Borel says: A subset Y ⊂ X with the subspace topology is compact if and only
if Y is bounded and closed in X.
2. It is not di�cult to show: If (X,OX) and (Y,OY ) are topological spaces, (X,O)
is compact and f : X → Y is continuous then f(X) ⊂ Y equipped with the subspace
topology is compact.
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