Basic properties of vector bundles

The following text is based to a very large extent on a chapter of lecture notes on differential geometry [1] by Prof. Dr. Christian Bär. For an introduction to these topics see also the books by Conlon [3] or Lee [4].

Andreas Hermann, October 2017

1 Vector bundles

Definition. Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Let E and M be differentiable manifolds. A smooth surjective map $\pi: E \to M$ is called a real or a complex vector bundle of rank N if

- (i) for all $p \in M$ the fiber $E_p := \pi^{-1}(p)$ has a structure of N-dimensional K-vector space and
- (ii) there exist an open covering \mathcal{U} of M and diffeomorphisms

$$\Phi_{\alpha}: U_{\alpha} \times \mathbb{K}^N \to \pi^{-1}(U_{\alpha}), \quad U_{\alpha} \in \mathcal{U},$$

such that for all α we have $\pi \circ \Phi_{\alpha} = \operatorname{pr}_{U_{\alpha}}$ and for all $a, b \in \mathbb{K}$ and all $v, w \in \mathbb{K}^N$

$$\Phi_{\alpha}(p, av + bw) = a\Phi_{\alpha}(p, v) + b\Phi_{\alpha}(p, w).$$

Remark. Since Φ_{α} is a diffeomorphism the restriction $\{p\} \times \mathbb{K}^N \xrightarrow{\Phi_{\alpha}} E_p$ is bijective and thus is an isomorphism of vector spaces.

Definition. E is called the total space, M is called the base space and π is called the projection map. The maps Φ_{α} are called local trivializations.

- **Example.** (1) The trivial vector bundle. $E = M \times \mathbb{K}^N$ and $\pi = \operatorname{pr}_M$. We get a global trivialization by putting $U_{\alpha} = M$ and $\Phi_{\alpha} = \operatorname{id}$.
- (2) The tangent bundle. $E = TM := \bigcup_{p \in M} T_p M$. Let $x_{\alpha} : U_{\alpha} \to V_{\alpha} \subset \mathbb{R}^n$ be a chart of Mand put

$$\Phi_{\alpha}: \quad U_{\alpha} \times \mathbb{R}^{n} \to \pi^{-1}(U_{\alpha}) = \bigcup_{p \in U_{\alpha}} T_{p}M$$
$$(p, v) \mapsto \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \Big|_{p}$$

(3) The Möbius band. Define $F: [0, 2\pi] \times (-1, 1) \to \mathbb{R}^3$ by

$$F(u,v) := \begin{pmatrix} (1+\frac{v}{2}\cos(\frac{u}{2}))\cos(u)\\ (1+\frac{v}{2}\cos(\frac{u}{2}))\sin(u)\\ \frac{v}{2}\sin(\frac{u}{2}) \end{pmatrix}.$$

Define E := Im(F) and $M := \{F(u,0) \mid u \in [0,2\pi]\}$. Then M is diffeomorphic to the unit circle S^1 and $\pi: E \to M$, $\pi(F(u,v)) := F(u,0)$ is a real vector bundle of rank 1, since the fiber (-1,1) over every point of S^1 is diffeomorphic to \mathbb{R} .

Definition. A vector bundle of rank 1 is also called a line bundle.

Definition. A vector subbundle of a vector bundle E is a submanifold $\tilde{E} \subset E$ such that $\pi|_{\tilde{E}}: \tilde{E} \to M$ is a vector bundle. In particular for all $p \in M$ the fiber $\tilde{E}_p \subset E_p$ is a vector subspace.

Example. Let M be a differentiable manifold and let $S \subset M$ be a submanifold. Then TS is a vector subbundle of TM.

Definition. Let $\pi: E \to M$ and $\tilde{\pi}: \tilde{E} \to \tilde{M}$ be two K-vector bundles. A vector bundle homomorphism F over f consists of two smooth maps $F: E \to \tilde{E}$ and $f: M \to \tilde{M}$ such that the diagram

$$\begin{array}{c} E \xrightarrow{F} \tilde{E} \\ \pi \middle| & & \downarrow_{\tilde{\pi}} \\ \tilde{M} \xrightarrow{f} \tilde{M} \end{array}$$

commutes and for all $p \in M$ the map $F|_{E_p} \colon E_p \to \tilde{E}_{f(p)}$ is a vector space homomorphism.

Example. (1) $E = M \times \mathbb{K}^N$, $\tilde{E} = \tilde{M} \times \mathbb{K}^{\tilde{N}}$. Let $\varphi: M \to \operatorname{Mat}(N \times \tilde{N}, \mathbb{K})$ be smooth and $f: M \to \tilde{M}$ be smooth. Then

$$F: \quad E \to \tilde{E}, \quad F(p,v) := (f(p), \varphi(p) \cdot v)$$

is a vector bundle homomorphism over f.

(2) If $f: M \to \tilde{M}$ is smooth, then $df: TM \to T\tilde{M}$ is a vector bundle homomorphism over f.

Definition. Let $\pi: E \to M$ be a vector bundle. A section of E is a map $s: M \to E$ such that $\pi \circ s = id_M$.

Example. • The sections of the tangent bundle of M are the vector fields on M.

• Sections of the trivial bundle $M \times \mathbb{K}^N$ have the form

$$s(p) = (p, \varphi(p))$$

where $\varphi: M \to \mathbb{K}^N$ is smooth.

Definition. A vector bundle homomorphism F over f is called a vector bundle isomorphism if F and f are diffeomorphisms.

Two vector bundles $\pi: E \to M$ and $\tilde{\pi}: \tilde{E} \to \tilde{M}$ are called isomorphic if there is a vector bundle isomorphism $E \to \tilde{E}$.

We say that a vector bundle is trivial if it is isomorphic to the trivial vector bundle. $M \times \mathbb{K}^N$.

Lemma 1.1. A vector bundle $\pi: E \to M$ of rank N is trivial if and only if there exist N smooth sections $s_1, ..., s_N$ of E such that for every $p \in M$ the vectors $s_1(p), ..., s_N(p)$ form a basis of E_p .

Proof. \Rightarrow " Let π : $E \to M$ be trivial and let Φ : $E \to M \times \mathbb{K}^N$ be a vector bundle isomorphism. Let $e_1, ..., e_N$ be a basis of \mathbb{K}^N . Put $s_j(p) := \Phi^{-1}(p, e_j), j = 1, ..., N$. \Rightarrow " Assume that $s_1, ..., s_N$ form a basis everywhere. Define Φ^{-1} : $M \times \mathbb{K}^N \to E$ by

$$\Phi^{-1}(p,v) := \sum_{j=1}^N v^j \cdot s_j(p).$$

Example. Is the vector bundle $TM \to M$ trivial? The answer depends on M.

• TS^1 is trivial since

$$s(x,y) := (-y,x)^t, \quad (x,y) \in S^1 \subset \mathbb{R}^2$$

gives a basis of every $T_{(x,y)}S^1$.

• By the hairy ball theorem every smooth vector field on S^2 vanishes somewhere. Therefore TS^2 is not trivial.

Algebraic constructions for vector bundles

Whitney sum of two vector bundles

Let $\pi_1: E_1 \to M$ and $\pi_2: E_2 \to M$ be two vector bundles. Put $E := \bigcup_{p \in M} E_{1,p} \oplus E_{2,p}$ and $\pi: E \to M$ such that

$$\pi(\underbrace{E_{1,p}\oplus E_{2,p}}_{=E_p})=\{p\}.$$

It remains to define a topology and a differentiable structure on E such that π is smooth and such that there exist local trivializations with respect to the natural vector space structure on E_p .

To this end let $x: U \to V \subset \mathbb{R}^n$ be a chart of M. After possibly replacing U by an open subset of U there exist local trivializations

$$\Phi_1: U \times \mathbb{K}^{n_1} \to \pi_1^{-1}(U) \text{ and} \Phi_2: U \times \mathbb{K}^{n_2} \to \pi_2^{-1}(U).$$

Define $\pi: U \times (\mathbb{K}^{n-1} \oplus \mathbb{K}^{n_2}) \to \pi^{-1}(U)$ by

$$\Phi(p, v \oplus w) := \underbrace{\Phi_1(p, v)}_{\in E_{1,p}} \oplus \underbrace{\Phi_2(p, w)}_{\in E_{2,p}}.$$

Define $\varphi: \pi^{-1}(U) \to V \times (\mathbb{K}^{n_1} \oplus \mathbb{K}^{n_2}) \overset{\text{open}}{\subset} \begin{cases} \mathbb{R}^{n+n_1+n_2}, & \mathbb{K} = \mathbb{R} \\ \mathbb{R}^{n+2n_1+2n_2}, & \mathbb{K} = \mathbb{C} \end{cases}$ by $\varphi(q) := (x \times \mathrm{id})(\Phi^{-1}(q)).$

The map φ is bijective. One checks that the set

$$A := \left\{ \varphi : \pi^{-1}(U) \to V \times (\mathbb{K}^{n_1} \oplus \mathbb{K}^{n_2}) \middle| \begin{array}{l} x : U \to V \text{ chart of } M, \\ \Phi_i : U \to \mathbb{K}^{n_i} \to \pi_i^{-1}(U) \text{ local triviali-} \\ \text{zations of } E_i, i = 1, 2 \end{array} \right\}$$

satisfies the conditions of Theorem 1.1.10 in [2]. By this theorem and by the propositions following it there is a unique topology and a unique differentiable structure on E such that the subsets $\pi^{-1}(U) \subset E$ are open and the maps φ are charts of E. Then the maps Φ are diffeomorphisms and hence local trivializations of E. The vector bundle $E := E_1 \oplus E_2$ is called the *Whitney sum* of E_1 and E_2 .

In an analogous way one constructs the following vector bundles over M:

- (1) Tensor bundle. $E_1 \otimes E_2 := \bigcup_{p \in M} E_{1,p} \otimes E_{2,p}$
- (2) Dual bundle. $E^* := \bigcup_{p \in M} E_p^*$
- (3) Exterior product bundle. $\bigwedge^k E := \bigcup_{p \in M} \bigwedge^k E_p$
- (4) Homomorphism bundle. Hom $(E_1, E_2) := E_1^* \otimes E_2$
- (5) Quotient bundle. Let $\tilde{E} \subset E$ be a vector subbundle. Define $E/\tilde{E} := \bigcup_{p \in M} E_p/\tilde{E}_p$.
- **Example.** $T^*M := TM^*$ is called the cotangent bundle of M. If $x: U \to V$ is a chart of M, then for $p \in U$ the linear forms $dx^1|_p, ..., dx^n|_p$ form a basis of T_p^*M . The map

$$\Phi: \quad U \times \mathbb{R}^n \to \pi^{-1}(U) = \bigcup_{p \in U} T_p^* M$$
$$(p, \omega) \mapsto \sum_{i=1}^n \omega_i dx^i |_p$$

is a local trivialization of T^*M .

• $\bigwedge^k T^*M$, k = 0, 1, ..., n. If $x: U \to V$ is a chart of M, then for $p \in U$ the vectors

$$dx^{i_1}|_p \wedge \ldots \wedge dx^{i_k}|_p \in \wedge^k T_p^* M, \quad 1 \le i_1 < \ldots < i_k \le n_j$$

form a basis of $\bigwedge^k T_p^* M$. The sections of this bundle are called differential k-forms or differential forms of degree k on M.

• $\underline{TM \otimes \ldots \otimes TM}_{r \ times} \otimes \underline{T^*M \otimes \ldots \otimes T^*M}_{s \ times}$.

The sections of this bundle are called (r, s)-tensor fields on M.

geometric object	is a section of
vector field	TM
semi-Riemannian metric	$T^*M\otimes T^*M$
Riemann curvature tensor	
$\mathbf{R}(\cdot, \cdot)$	$T^*M\otimes T^*M\otimes T^*M\otimes TM$
$g(\mathrm{R}(\cdot,\cdot)\cdot,\cdot)$	$T^*M \otimes T^*M \otimes T^*M \otimes T^*M$
Ricci curvature	
ric	$T^*M\otimes T^*M$
Ric	$T^*M\otimes TM$
scalar curvature	trivial line bundle

Restriction and pullback

Let $S \subset M$ be a submanifold, let $\pi: E \to M$ be a vector bundle. Define

$$E|_{S} := \bigcup_{p \in S} E_p = \pi^{-1}(S) \text{ and } \pi_{S} := \pi|_{E|_{S}} : E|_{S} \to S.$$

Then $E|_S$ is a vector bundle over S and is called the *restriction* of E to S.

Example. Let (M, g) be a semi-Riemannian manifold and let $S \subset M$ be a semi-Riemannian submanifold. For $p \in S$ define

$$N_p S := \{ y \in T_p M \mid g(y, z) = 0 \text{ for all } z \in T_p S \}$$

Then $NS := \bigcup_{p \in S} N_p S$ is a vector bundle over S and is called the normal bundle of S in M. Obviously we have

$$TM|_S = TS \oplus NS.$$

Remark. The normal bundle NS may also be defined without using a semi-Riemannian metric. Namely put

$$NS := (TM|_S)/TS.$$

But then NS is not a vector subbundle of $TM|_S$.

Let S, M be differentiable manifolds and let $f: S \to M$ be a smooth map. Let $\pi: E \to M$ be a vector bundle. Put

$$f^*E := \bigcup_{p \in S} (\underbrace{\{p\} \times E_{f(p)}}_{=(f^*E)_p})$$

and define $\tilde{\pi}: f^*E \to S$ by $\tilde{\pi}(p, v) := p$. Then $\tilde{\pi}: f^*E \to S$ is a vector bundle over S and is called the *pullback bundle* of $\pi: E \to M$.

Remark. Let $S \subset M$ be a submanifold and let $\pi: E \to M$ be a vector bundle. The restriction $E|_S$ is isomorphic to the pullback bundle f^*E , where $f: S \to M$ is the inclusion map.

Local trivializations of f^*E are obtained as follows:

Let $U \subset M$ be an open subset and let $\Phi: U \times \mathbb{K}^N \to \pi^{-1}(U)$ be a local trivialization of E. Let $\tilde{U} \subset S$ be an open subset with $\tilde{U} \subset f^{-1}(U)$. Put

$$\begin{split} \tilde{\Phi} : \quad \tilde{U} \times \mathbb{K}^N \to \tilde{\pi}^{-1}(U) \\ \quad \tilde{\Phi}(p,v) := (p, \Phi(f(p), v)). \end{split}$$

Using Theorem 1.1.10 in [2] one obtains a topology and a differentiable structure on f^*E such that the maps $\tilde{\Phi}$ are local trivializations of f^*E .

Example. Let $f: S \to M$ be a smooth map. The sections of $f^*TM \to S$ are exactly the vector fields along f.

2 Metrics and connections on vector bundles

Definition. Let $E \to M$ be a \mathbb{R} -vector bundle. A Riemannian metric on E is a smooth section g of $E^* \otimes E^* \to M$, such that for all $p \in M$

$$g(p) \in (E^* \otimes E^*)_p = E_p^* \otimes E_p^* \cong \{bilinear forms on E_p\}$$

is symmetric and positive definite. A real vector bundle with a Riemannian metric g is called a Riemannian vector bundle.

Proposition 2.1. On every real vector bundle there exists a Riemannian metric.

Proof. (a) We first assume that the vector bundle $E \to M$ is trivial. Let $\Phi: M \times \mathbb{R}^N \to E$ be a global trivialization. For $p \in M$ and $v, w \in E_p$ write $\Phi^{-1}(v) = (p, x)$ and $\Phi^{-1}(w) = (p, y)$ with $x, y \in \mathbb{R}^N$. In order to define a Riemannian metric on E we use the standard Euclidean scalar product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^N and define

$$g(p)(v,w) := \langle x,y \rangle$$

(b) Let $E \to M$ be a vector bundle that is not necessarily trivial. There exists an open covering $\{U_{\alpha}\}$ of M and local trivializations $\Phi_{\alpha}: U_{\alpha} \times \mathbb{R}^{N} \to \pi^{-1}(U_{\alpha})$ (In other words: the restrictions $E|_{U_{\alpha}}$ are trivial vector bundles. This is expressed by saying that every vector bundle is locally trivial).

Let $\{\varphi_{\alpha}\}$ be a partition of unity subordinate to the open covering $\{U_{\alpha}\}$, i.e. φ_{α} : $M \to \mathbb{R}$ is smooth, $0 \leq \varphi_{\alpha} \leq 1$, $\sum_{\alpha} \varphi_{\alpha} = 1$, for every $p \in M$ we have $\varphi_{\alpha}(p) \neq 0$ for only finitely many α and $\operatorname{supp}(\varphi_{\alpha}) \subset U_{\alpha}$.

By part (a) we know that there exist Riemannian metrics g_{α} on $E|_{U_{\alpha}}$. For $p \in M$ we put

$$g(p) := \sum_{\alpha} \varphi_{\alpha}(p) \cdot g_{\alpha}(p).$$

Note that $\varphi_{\alpha} \cdot g_{\alpha}$ is defined on all of M (identically 0 on $M \setminus U_{\alpha}$) and is smooth. Furthermore g(p) is a symmetric bilinear form on E_p and moreover it is positive definite since for all $v \neq 0$ we have

$$g(p)(v,v) = \sum_{\alpha} \varphi_{\alpha}(p)g_{\alpha}(p)(v,v) > 0$$

since $\varphi_{\alpha}(p)g_{\alpha}(p)(v,v) \geq 0$ for all α and > 0 for some of the α .

Remark. Riemannian metrics on vector bundles $E, F \rightarrow M$ induce canonical Riemannian metrics on E^* , $\bigwedge^k E$, $E \oplus F$, $E \otimes F$ and E/F (in case $F \subset E$ is a vector subbundle).

Let V, W be finite dimensional Euclidean vector spaces with orthonormal bases $v_1, ..., v_n$ and $w_1, ..., w_m$ respectively. Then there exist Euclidean scalar products

on	V^*	$\bigwedge^k V$	$V \oplus W$	$V \otimes W$
with orthonor-	$v_1^*,, v_n^*$	$v_{i_1} \wedge \ldots \wedge v_{i_k},$	$v_1, \ldots, v_n,$	$v_i \otimes w_j,$
mal basis	dual basis	$1 \le i_1 < \dots < i_k \le n$	$w_1,, w_m$	$1 \le i \le n, \ 1 \le j \le m$
dimension	n	$\binom{n}{k}$	n+m	$n \cdot m$

In case $W \subset V$ and $v_j = w_j$ for j = 1, ..., m there is a Euclidean scalar product on V/Wsuch that $[v_{m+1}], ..., [v_n]$ form an orthonormal basis of V/W. On the pullback bundle f^*E of a Riemannian vector bundle E we obtain the Riemannian metric

$$g^{f^*E}(p) := g^E(f(p)).$$

Definition. Let $E \to M$ be a K-vector bundle. A connection on E is a map

 $C^{\infty}(M, TM) \times C^{\infty}(M, E) \to C^{\infty}(M, E), \quad (X, s) \mapsto \nabla_X s,$ ∇ :

such that the following holds:

(i) For all $s \in C^{\infty}(M, E)$, $X_1, X_2 \in C^{\infty}(M, TM)$, $f_1, f_2 \in C^{\infty}(M)$:

$$\nabla_{f_1 X_1 + f_2 X_2} s = f_1 \nabla_{X_1} s + f_2 \nabla_{X_2} s.$$

(ii) For all $s_1, s_2 \in C^{\infty}(M, E)$ and $X \in C^{\infty}(M, TM)$:

$$\nabla_X(s_1 + s_2) = \nabla_X s_1 + \nabla_X s_2.$$

(iii) For all $s \in C^{\infty}(M, E)$, $X \in C^{\infty}(M, TM)$ and $f \in C^{\infty}(M)$:

$$\nabla_X (f \cdot s) = \partial_X f \cdot s + f \cdot \nabla_X s.$$

Remark. If ∇ is a connection on E, then the map $(X,s) \mapsto \nabla_X s$ is $C^{\infty}(M)$ -linear in X and \mathbb{R} -linear in s. Thus ∇ can be considered as a map

$$\nabla: \quad C^{\infty}(E) \to C^{\infty}(T^*M \otimes E).$$

Definition. Let $E \to M$ be an \mathbb{R} -vector bundle with a Riemannian metric g. A connection ∇ on E is called a metric connection if we have

(iv) For all $X \in C^{\infty}(M, TM)$ and $s_1, s_2 \in C^{\infty}(M, E)$: $\partial_X g(s_1, s_2) = g(\nabla_{\mathbf{v}} s_1, s_2) + g(s_1, s_2)$

$$\partial_X g(s_1, s_2) = g(\nabla_X s_1, s_2) + g(s_1, \nabla_X s_2).$$

Proposition 2.2. Let $E \to M$ be a Riemannian vector bundle. Then there exists a metric connection on E.

Proof. (a) Again, we first assume that E is trivial. By Lemma 1.1 there exist smooth sections $s_1, ..., s_N \in C^{\infty}(M, E)$ such that for all p the vectors $s_1(p), ..., s_N(p)$ form a basis of E_p . By the Gram-Schmidt process we obtain $e_1, ..., e_N \in C^{\infty}(M, E)$ that form an orthonormal basis at every point. We define ∇ by

$$\nabla_X \Big(\sum_{i=1}^N f_i e_i \Big) := \sum_{i=1}^N \partial_X f_i \cdot e_i$$

One checks that ∇ satisfies (i) - (iii) and thus is a connection on E. Moreover let $s_1 = \sum_{i=1}^N f_i e_i, s_2 = \sum_{j=1}^N h_j e_j$. Then we have

$$\partial_X g(s_1, s_2) = \partial_X \left(\sum_{i,j=1}^N f_i h_j \underbrace{g(e_i, e_j)}^{=\delta_{ij}} \right)$$
$$= \partial_X \left(\sum_{i=1}^N f_i h_i \right)$$
$$= \sum_{i=1}^N \partial_X f_i \cdot h_i + \sum_{i=1}^N f_i \cdot \partial_X h_i$$

On the other hand we have

$$g(\nabla_X s_1, s_2) = g\left(\sum_{i=1}^N \partial_X f_i \cdot e_i, \sum_{j=1}^N h_j e_j\right)$$
$$= \sum_{i,j=1}^N \partial_X f_i \cdot h_j \cdot g(e_i, e_j)$$
$$= \sum_{i=1}^N \partial_X f_i \cdot h_i$$

and in the same way one obtains $g(s_1, \nabla_X s_2) = \sum_{i=1}^N f_i \cdot \partial_X h_i$. Therefore ∇ is a metric connection.

(b) Now let E be not necessarily trivial. Let $\{U_{\alpha}\}$ be an open covering of M such that for every α the restriction $E|_{U_{\alpha}}$ is trivial. Then for every α there exists a metric connection ${}^{\alpha}\nabla$ on $E|_{U_{\alpha}}$ by part (a). Let $\{\varphi_{\alpha}\}$ be a partition of unity subordinate to the open covering $\{U_{\alpha}\}$. For $X \in T_pM$ and $s \in C_p^{\infty}(E)$ we put

$$\nabla_X s := \sum_{\alpha} \varphi_{\alpha} \cdot {}^{\alpha} \nabla_X s.$$

Then ∇ does the job.

Definition. A Riemannian metric on TM is called torsion free if for every local coordinate system $x^1, ..., x^n$ of M we have

$$\nabla_{\partial_i}\partial_j = \nabla_{\partial_i}\partial_i \quad for \ all \ i, j \in \{1, ..., n\},$$

where we have written $\partial_i := \frac{\partial}{\partial x^i}$ for all *i*.

Remark. In case E = TM the Levi-Civita connection is the unique connection that is metric and torsion-free. But the condition of being metric does not determine a connection uniquely. Moreover, on a general vector bundle the condition of being torsion-free does not make sense.

Remark. If $E, F \to M$ are vector bundles with connections ∇^E and ∇^F respectively then these connections induce connections on the vector bundles E^* , $\bigwedge^k E, E \oplus F$ and $E \otimes F$:

(a) For $\omega \in C^{\infty}(M, E^*)$, $s \in C^{\infty}(M, E)$ and $X \in C^{\infty}(M, TM)$ we define

$$(\nabla_X^{E^*}\omega)(s) := \partial_X(\omega(s)) - \omega(\nabla_X^E s).$$

(Then the "product rule" $\partial_X(\omega(s)) = (\nabla_X^{E^*}\omega)(s) + \omega(\nabla_X^E s)$ holds.)

(b) For $s_{i_1}, ..., s_{i_k} \in C^{\infty}(M, E)$ and $X \in C^{\infty}(M, TM)$ we define

$$\nabla_X^{\bigwedge^k E}(s_{i_1} \wedge \ldots \wedge s_{i_k}) := (\nabla_X^E s_{i_1}) \wedge s_{i_2} \wedge \ldots \wedge s_{i_k} + s_{i_1} \wedge (\nabla_X^E s_{i_2}) \wedge \ldots \wedge s_{i_k} + \ldots + s_{i_1} \wedge s_{i_2} \wedge \ldots \wedge (\nabla_X^E s_{i_k}).$$

(c) For $s_1 \in C^{\infty}(M, E)$, $s_2 \in C^{\infty}(M, F)$ and $X \in C^{\infty}(M, TM)$ we define

$$\nabla_X^{E\oplus F}(s_1\oplus s_2):=(\nabla_X^E s_1)\oplus(\nabla_X^F s_2).$$

(d) For $s_1 \in C^{\infty}(M, E)$, $s_2 \in C^{\infty}(M, F)$ and $X \in C^{\infty}(M, TM)$ we define

$$\nabla_X^{E\otimes F}(s_1\otimes s_2):=(\nabla_X^E s_1)\otimes s_2+s_1\otimes (\nabla_X^F s_2).$$

Remark. If ∇^E and ∇^F are metric connections then the induced connections are metric connections with respect to the induced Riemannian metrics.

Definition. Let $E \to M$ be a complex vector bundle.

- (1) We denote by \overline{E} the complex conjugate vector bundle (i. e. the scalar multiplications $\overline{\cdot}$ on \overline{E} and \cdot on E are related by $\alpha \overline{\cdot} v = \overline{\alpha} \cdot v$ for $\alpha \in \mathbb{C}$, $v \in E_p$).
- (2) A Hermitian metric on a complex vector bundle $E \to M$ is a smooth section h of $\underline{E^* \otimes \overline{E}^*}$ such that for all $p \in M$ the sesquilinear form h(p) satisfies $h(p)(w,v) = \overline{h(p)(v,w)}$ for all $v, w \in E_p$ and h(p)(v,v) > 0 for all $v \neq 0$.
- (3) A complex vector bundle with a Hermitian metric is called a Hermitian vector bundle.

(4) A connection ∇ on a Hermitian vector bundle $E \to M$ is called a metric connection if for all $s_1, s_2 \in C^{\infty}(M, E)$ and $X \in C^{\infty}(M, TM)$ we have

$$\partial_X h(s_1, s_2) = h(\nabla_X s_1, s_2) + h(s_1, \nabla_X s_2).$$

Remark. One can show that on every complex vector bundle there exist a Hermitian metric h and a connection that is metric with respect to h.

Connections in local coordinates

Let $E \to M$ be a K-vector bundle and let $x: U \to V \subset \mathbb{R}^n$ be a chart of M. Without loss of generality we may assume that $E|_U \to U$ is trivial. Let $s_1, ..., s_N$ be smooth sections of $E|_U$ which form a basis at every point. For i = 1, ..., n and $\alpha = 1, ..., N$ we write

$$\nabla_{\frac{\partial}{\partial x^i}} s_{\alpha} =: \sum_{\beta=1}^N (\Gamma_{i\alpha}^{\beta} \circ x) \cdot s_{\beta}.$$

This defines smooth functions $\Gamma_{i\alpha}^{\beta}$: $V \to \mathbb{K}$. They are called the *Christoffel symbols* of ∇ with respect to x and $s = (s_1, ..., s_N)$. The Christoffel symbols determine ∇ , since for every $s \in C^{\infty}(M, E)$ and $X \in C^{\infty}(M, TM)$ we may write

$$s = \sum_{\alpha=1}^{N} f^{\alpha} s_{\alpha}, \quad X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}$$

and we compute

$$\nabla_X s = \nabla_{\sum_{i=1}^n X^i \frac{\partial}{\partial x^i}} \left(\sum_{\alpha=1}^N f^\alpha s_\alpha \right)$$

= $\sum_{i=1}^n \sum_{\alpha=1}^N X^i \nabla_{\frac{\partial}{\partial x^i}} (f^\alpha s_\alpha)$
= $\sum_{i=1}^n \sum_{\alpha=1}^N X^i \left(\frac{\partial f^\alpha}{\partial x^i} s_\alpha + f^\alpha \sum_{\beta=1}^n (\Gamma_{i\alpha}^\beta \circ x) \cdot s_\beta \right)$
= $\sum_{i=1}^n X^i \sum_{\beta=1}^N \left(\frac{\partial f^\beta}{\partial x^i} + \sum_{\alpha=1}^N f^\alpha (\Gamma_{i\alpha}^\beta \circ x) \right) s_\beta.$

The pullback connection

Let M, S be differentiable manifolds, let $E \to M$ be a K-vector bundle and let $f: S \to M$ be a smooth map. The map $F: f^*E \to E, F(p, v) := v$ is a vector bundle homomorphism over f and an isomorphism on every fiber. In particular the following diagram commutes:

$$\begin{array}{cccc}
f^*E & \xrightarrow{F} & E \\
& \tilde{\pi} & & & & \\
& \tilde{\pi} & & & & \\
S & \xrightarrow{f} & M
\end{array}$$

Proposition 2.3. Let ∇ be a connection on E. Then there exists a unique connection ∇^{f^*E} on f^*E such that for all $s \in C^{\infty}(M, E)$, $p \in S$ and $X \in T_pS$ we have:

$$\nabla_X^{f^*E}(F^{-1} \circ s \circ f) = F^{-1}(\nabla_{df(X)}^E s).$$

This connection is called the pullback connection on f^*E .

Proof. Uniqueness. Let $y: U \to V$ be a chart of M, let $s_1, ..., s_N$ be smooth sections of $E|_U$ which form a basis at every point and let $\Gamma_{i\alpha}^{\beta}: V \to \mathbb{K}$ be the corresponding Christoffel symbols. Let $x: \tilde{U} \to W$ be a chart of S where we assume that $\tilde{U} \subset f^{-1}(U)$. The sections $\tilde{s}_{\alpha} := F^{-1} \circ s_{\alpha} \circ f|_{\tilde{U}}$ of $f^*E|_{\tilde{U}}$ form a basis at every point of \tilde{U} . Let $\tilde{\Gamma}_{j\alpha}^{\beta}: W \to \mathbb{K}$ be the corresponding Christoffel symbols. Then for all $p \in \tilde{U}$ we have

$$\sum_{\beta=1}^{N} \tilde{\Gamma}_{j\alpha}^{\beta}(x(p))\tilde{s}_{\beta}(p) = \nabla_{\frac{\partial}{\partial x^{j}}(p)}^{f^{*}E} \tilde{s}_{\alpha} = \nabla_{\frac{\partial}{\partial x^{j}}(p)}^{f^{*}E} (F^{-1} \circ s_{\alpha} \circ f) = F^{-1}(\nabla_{df(\frac{\partial}{\partial x^{j}}(p))}^{E} s_{\alpha})$$

$$= F^{-1}(\nabla_{\sum_{i=1}^{n}\frac{\partial f^{i}}{\partial x^{j}}(p)\frac{\partial}{\partial y^{j}}(f(p))} s_{\alpha}) = \sum_{i=1}^{n}\frac{\partial f^{i}}{\partial x^{j}}(p)F^{-1}(\nabla_{\frac{\partial}{\partial y^{j}}(f(p))}^{E} s_{\alpha})$$

$$= \sum_{i=1}^{n}\frac{\partial f^{i}}{\partial x^{j}}(p)F^{-1}\left(\sum_{\beta=1}^{N}\Gamma_{j\alpha}^{\beta}(y(f(p)))s_{\beta}(f(p))\right)$$

$$= \sum_{\beta=1}^{N}\sum_{i=1}^{n}\frac{\partial f^{i}}{\partial x^{j}}(p)\Gamma_{i\alpha}^{\beta}(y(f(p)))\tilde{s}_{\beta}(p)$$

and therefore

$$\tilde{\Gamma}^{\beta}_{j\alpha}(x(p)) = \sum_{i=1}^{n} \frac{\partial f^{i}}{\partial x^{j}}(p) \Gamma^{\beta}_{i\alpha}(y(f(p)))$$
(1)

Thus the Christoffel symbols $\tilde{\Gamma}_{j\alpha}^{\beta}$ of ∇^{f^*E} are determined by those of ∇^E . Existence. Define the Christoffel symbols by the formula (1). One checks that this defines a connection ∇^{f^*E} as in the assertion.

Example. • If $E = TM \to M$ and ∇^E is the Levi-Civita connection then ∇^{f^*E} is the covariant derivative of vector fields along smooth maps (see Chapter 2.4 in [2]).

• If ∇^E is any connection on $E \to M$ and $f: S \to M$ is a constant map then for any basis $v_1, ..., v_N$ of $E_{f(x)}$ the sections

$$s_{\alpha}(p) := (p, v_{\alpha})$$

are smooth and form a global trivialization of f^*E , in particular f^*E is trivial. For ∇^{f^*E} we obtain $\tilde{\Gamma}^{\beta}_{j\alpha} \equiv 0$ and thus

$$\nabla_X^{f^*E} \Big(\sum_{\alpha=1}^N f^\alpha s_\alpha\Big) = \sum_{\alpha=1}^N \partial_X f^\alpha \cdot s_\alpha.$$

3 Curvature of a vector bundle

Definition. Let $E \to M$ be a \mathbb{K} -vector bundle with a connection ∇ . The curvature tensor \mathbb{R}^{∇} is for $X, Y \in C^{\infty}(M, TM)$ and $s \in C^{\infty}(M, E)$ given by

$$R^{\nabla}(X,Y)s := \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X,Y]} s \in C^{\infty}(M,E).$$

Lemma 3.1. For $p \in U$ the value $(R^{\nabla}(X, Y)s)(p)$ depends on X, Y and s only via the values X(p), Y(p) and s(p).

Proof. We write $X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}$, $Y = \sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}}$ and $s = \sum_{\alpha=1}^{N} f^{\alpha} s_{\alpha}$. We compute (and use the Einstein summation convention)

$$\begin{aligned} \nabla_X \nabla_Y s &= \nabla_X (Y^i \nabla_{\frac{\partial}{\partial x^i}} (f^\alpha s_\alpha)) \\ &= \nabla_X \left(Y^i \Big(\frac{\partial f^\alpha}{\partial x^i} s_\alpha + f^\alpha \Gamma^\beta_{i\alpha} s_\beta \Big) \Big) \\ &= \nabla_X \Big(Y^i \Big(\frac{\partial f^\beta}{\partial x^i} + f^\alpha \Gamma^\beta_{i\alpha} \Big) s_\beta \Big) \\ &= X^j \Big[\frac{\partial Y^i}{\partial x^j} \Big(\frac{\partial f^\gamma}{\partial x^i} + f^\alpha \Gamma^\gamma_{i\alpha} \Big) + Y^i \Big(\frac{\partial^2 f^\gamma}{\partial x^j \partial x^i} + \frac{\partial f^\beta}{\partial x^j} \Gamma^\gamma_{i\beta} + f^\alpha \frac{\partial \Gamma^\gamma_{i\alpha}}{\partial x^j} \Big) \\ &+ Y^i \Big(\frac{\partial f^\beta}{\partial x^i} + f^\alpha \Gamma^\beta_{i\alpha} \Big) \Gamma^\gamma_{j\beta} \Big] s_\gamma \end{aligned}$$

When computing $\nabla_X \nabla_Y s - \nabla_Y \nabla_X s$ the terms symmetric in i, j cancel and we get

$$\nabla_X \nabla_Y s - \nabla_Y \nabla_X s = \left[\left(X^j \frac{\partial Y^i}{\partial x^j} - Y^j \frac{\partial X^i}{\partial x^j} \right) \left(\frac{\partial f^{\gamma}}{\partial x^i} + f^{\alpha} \Gamma^{\gamma}_{i\alpha} \right) \right. \\ \left. + X^j Y^i f^{\alpha} \left(\frac{\partial \Gamma^{\gamma}_{i\alpha}}{\partial x^j} - \frac{\partial \Gamma^{\gamma}_{j\alpha}}{\partial x^i} + \Gamma^{\beta}_{i\alpha} \Gamma^{\gamma}_{j\beta} - \Gamma^{\beta}_{j\alpha} \Gamma^{\gamma}_{i\beta} \right) \right] s_{\gamma}$$

and thus $\nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X,Y]} s = X^j Y^i f^{\alpha} R^{\gamma}_{ji\alpha} \cdot s_{\gamma}$, where

$$R_{ji\alpha}^{\gamma} = \frac{\partial \Gamma_{i\alpha}^{\gamma}}{\partial x^{j}} - \frac{\partial \Gamma_{j\alpha}^{\gamma}}{\partial x^{i}} + \Gamma_{i\alpha}^{\beta} \Gamma_{j\beta}^{\gamma} - \Gamma_{j\alpha}^{\beta} \Gamma_{i\beta}^{\gamma}.$$

Corollary 3.2. The curvature tensor R^{∇} is a smooth section of $T^*M \otimes T^*M \otimes E^* \otimes E$.

Proposition 3.3. The curvature tensor R^{∇} has the following symmetries:

- (i) For all $X, Y \in C^{\infty}(M, TM)$: $R^{\nabla}(X, Y) = -R^{\nabla}(Y, X)$
- (ii) If ∇ is a metric connection with respect to a Riemannian or Hermitian metric g, then for all $X, Y \in C^{\infty}(M, TM)$ and $s_1, s_2 \in C^{\infty}(M, E)$:

$$g(R^{\nabla}(X,Y)s_1,s_2) = -g(s_1,R^{\nabla}(X,Y)s_2).$$

Proof. (i) is clear by definition.

(ii) We have

$$0 = (\partial_X \partial_Y - \partial_Y \partial_X - \partial_{[X,Y]})g(s_1, s_2)$$

= $g(R^{\nabla}(X, Y)s_1, s_2) + g(s_1, R^{\nabla}(X, Y)s_2)$

where in the last step we have used that ∇ is a metric connection.

Corollary 3.4. R^{∇} is a smooth section of $\bigwedge^2 T^*M \otimes E^* \otimes E$.

Proposition 3.5 (Bianchi identity). Let $E \to M$ be a K-vector bundle with a connection ∇ . Assume that M is equipped with a semi-Riemannian metric and TM with the Levi-Civita connection. Then for all $X, Y, Z \in C^{\infty}(M, TM)$ and for $R := R^{\nabla}$ we have

$$(\nabla_X R)(Y,Z) + (\nabla_Y R)(Z,X) + (\nabla_Z R)(X,Y) = 0.$$

Proof. By definition for all $s \in C^{\infty}(M, E)$ we have

$$(\nabla_X R)(Y,Z)s := \nabla_X (R(Y,Z)s) - R(\nabla_X Y,Z)s - R(Y,\nabla_X Z)s - R(Y,Z)\nabla_X s$$

where we denote both the connection on E and the Levi-Civita connection by ∇ . Let $p \in M$, let $X, Y, Z \in T_p M$ and $e \in E_p$. We extend e to a smooth section s of E in an open neighborhood of p (this is possible since E is locally trivial). Furthermore we extend X, Y, Z to smooth vector fields X, Y, Z on an open neighborhood of p by parallel translation of X, Y, Z along the radial geodesics emanating from p. Then we have

$$\nabla X|_p = \nabla Y|_p = \nabla Z|_p = 0$$

and in particular

$$[X,Y]|_p = \nabla_X Y|_p - \nabla_Y X|_p = 0, \quad [Y,Z]|_p = [X,Z]|_p = 0.$$

We calculate

$$\begin{aligned} (\nabla_X R)(Y,Z)e &= \nabla_X (R(Y,Z)s)|_p - R(\nabla_X Y,Z)s|_p - R(Y,\nabla_X Z)s|_p - R(Y,Z)\nabla_X s|_p \\ &= (\nabla_X (\nabla_Y \nabla_Z s - \nabla_Z \nabla_Y s - \nabla_{[Y,Z]} s))|_p - R(Y,Z)\nabla_X s|_p. \end{aligned}$$

We conclude

$$\begin{split} (\nabla_X R)(Y,Z)e &+ (\nabla_Y R)(Z,X)e + (\nabla_Z R)(X,Y)e \\ &= (\nabla_X \nabla_Y \nabla_Z s - \nabla_X \nabla_Z \nabla_Y s - \nabla_X \nabla_{[Y,Z]} s - R(Y,Z) \nabla_X s \\ &+ \nabla_Y \nabla_Z \nabla_X s - \nabla_Y \nabla_X \nabla_Z s - \nabla_Y \nabla_{[Z,X]} s - R(Z,X) \nabla_Y s \\ &+ \nabla_Z \nabla_X \nabla_Y s - \nabla_Z \nabla_Y \nabla_X s - \nabla_Z \nabla_{[X,Y]} s - R(X,Y) \nabla_Z s)|_p \\ &= \begin{pmatrix} R([Y,Z],X)s + \nabla_{[[Y,Z],X]}s + R([Z,X],Y)s + \nabla_{[[Z,X],Y]}s \\ &= 0 \text{ at } p \end{pmatrix}|_p \\ &+ R([X,Y],Z)s + \nabla_{[[X,Y],Z]}s)|_p \end{split}$$

Since R depends only on the values of its arguments at the point p we get

$$(\nabla_X R)(Y, Z)e + (\nabla_Y R)(Z, X)e + (\nabla_Z R)(X, Y)e = \nabla_{[[Y,Z],X]+[[Z,X],Y]+[[X,Y],Z]}s|_p = 0$$

by the Jacobi identity.

Remark. This Bianchi identity has nothing to do with the "first Bianchi identity" for the Levi-Civita connection R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0 (see Proposition 3.1.7 in [2]). In the case of the Levi-Civita connection the above Bianchi identity is also called the "second Bianchi identity".

Definition. A connection ∇ is called flat if its curvature tensor satisfies $R^{\nabla} = 0$.

- **Example.** Every metric connection on a Riemannian line bundle E is flat. Namely $R^{\nabla}(X,Y)$ is a skew-symmetric endomorphism of the 1-dimensional vector space E_p and thus vanishes.
 - Every trivial vector bundle has a flat connection. Namely let $s_1, ..., s_N$ be a global trivialization and define

$$\nabla_X \left(\sum_{\alpha=1}^N f^\alpha s_\alpha \right) := \sum_{\alpha=1}^N \partial_X f^\alpha \cdot s_\alpha.$$

By definition of the Lie bracket we get $R^{\nabla} = 0$.

Orientation and the Hodge star operator

Let V be an n-dimensional real vector space with a non-degenerate symmetric bilinear form $g: V \times V \to \mathbb{R}$ of *index* s (i.e.s is the maximal dimension of a negative definite subspace). Then $\bigwedge^p V$ has a non-degenerate symmetric bilinear form $g^{\bigwedge^p V}: \bigwedge^p V \times$ $\bigwedge^p V \to \mathbb{R}$ characterized by the following:

Let $e_1, ..., e_n$ be a generalized orthonormal basis of V such that $g(e_i, e_j) = \varepsilon_i \delta_{ij}$ with $\varepsilon_i = \pm 1$. Then the vectors $e_{i_1} \wedge ... \wedge e_{i_p}$, $1 \leq i_1 < ... < i_p \leq n$, form a generalized orthonormal basis of $\bigwedge^p V$, where

$$g^{\bigwedge^{p} V}(e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}, e_{j_{1}} \wedge \ldots \wedge e_{j_{p}}) = \varepsilon_{i_{1}} \cdots \varepsilon_{i_{p}} \delta_{i_{1}j_{1}} \cdots \delta_{i_{p}j_{p}}.$$

In the same way, V^* has a non-degenerate symmetric bilinear form $g^{V^*}: V^* \times V^* \to \mathbb{R}$ characterized by

$$g^{V^*}(e_i^*, e_j^*) = \varepsilon_i \delta_{ij}.$$

Definition. If V is oriented, we define the volume form $\omega := e_1 \wedge ... \wedge e_n \in \bigwedge^n V$, where $e_1, ..., e_n$ is a positively oriented generalized orthonormal basis of V.

Remark. The volume form is independent of the choice of the positively oriented generalized orthonormal basis. If one reverses the orientation of V, then ω gets replaced by $-\omega$. Moreover we have

$$g(\omega,\omega) = (-1)^s$$

where s is the index of g.

Definition. Let M be a differentiable manifold. Let $x: U \to V$ and $y: \tilde{U} \to \tilde{V}$ be two charts of M. Then x and y are called orientation compatible if on $x(U \cap \tilde{U})$ we have

$$\det D(y \circ x^{-1}) > 0.$$

A C^{∞} -atlas \mathcal{A} of M is called oriented if any two charts contained in \mathcal{A} are orientation compatible. An orientation of M is a maximal oriented C^{∞} -atlas of M. A differentiable manifold equipped with an orientation is called an oriented manifold.

Remark. If M is an oriented manifold, then every tangent space T_pM (and thus every cotangent space T_p^*M) is equipped with an orientation in the sense of linear algebra.

Namely, if $x: U \to V$ is a chart contained in the oriented atlas with $p \in U$, then $\frac{\partial}{\partial x^1}|_p, ..., \frac{\partial}{\partial x^n}|_p$ is a positively oriented basis of T_pM (and $dx^1|_p, ..., dx^n|_p$ is a positively oriented basis of T_p^*M).

Proposition 3.6. Let M be an n-dimensional differentiable manifold. Then the following are equivalent:

- (i) M is orientable
- (ii) The real line bundle $\bigwedge^n T_p^*M$ is trivial.

Proof. $(ii) \Rightarrow (i)$: Assume that $\bigwedge^n T_p^* M$ is trivial. Then there exists a smooth section $\omega \in C^{\infty}(M, T^*M)$ such that $\omega(p) \neq 0$ for all $p \in M$. Let \mathcal{A} be the differentiable structure of M. We put

$$\mathcal{A}_{\omega} := \left\{ (x: U \to V) \in \mathcal{A} \, \Big| \, \omega \Big(\frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^n} \Big) > 0 \text{ on } U \right\}.$$

We show that \mathcal{A}_{ω} is an oriented atlas of M.

(a) We show that the charts contained in \mathcal{A}_{ω} cover all of M. Namely, let $p \in M$, let $(x : U \to V) \in \mathcal{A}$ with $p \in U$. W.l.o.g. we may assume that U (and therefore V) is connected.

If $\omega(\frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^n}) > 0$, then $(x : U \to V) \in \mathcal{A}_{\omega}$. Otherwise we have $\omega(\frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^n}) < 0$ on all of U (since $\omega \neq 0$ and U is connected). We put

$$y^{1} := -x^{1}, \quad y^{2} := x^{2}, ..., y^{n} := x^{n}, \quad \tilde{V} := \{ (x^{1}, ..., x^{n}) \in \mathbb{R}^{n} \mid (-x^{1}, x^{2}, ..., x^{n}) \in V \}.$$

The chart $y: U \to \tilde{V}$ contains p and satisfies

$$\omega\left(\frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^n}\right) > 0 \text{ on } U,$$

thus $(y: U \to \tilde{V}) \in \mathcal{A}_{\omega}$.

(b) It remains to show that any two charts $x: U \to V$ and $y: U \to \tilde{V}$ contained in \mathcal{A}_{ω} are orientation compatible. On $x(U \cap \tilde{U})$ we have

$$\begin{aligned} 0 &< \omega \left(\frac{\partial}{\partial y^{1}}, ..., \frac{\partial}{\partial y^{n}} \right) \\ &= \omega \left(\sum_{i_{1}=1}^{n} \frac{\partial (x^{i_{1}} \circ y^{-1})}{\partial y^{1}} \frac{\partial}{\partial x^{i_{1}}}, ..., \sum_{i_{n}=1}^{n} \frac{\partial (x^{i_{n}} \circ y^{-1})}{\partial y^{n}} \frac{\partial}{\partial x^{i_{n}}} \right) \\ &= \det D(x \circ y^{-1}) \cdot \underbrace{\omega \left(\frac{\partial}{\partial x^{1}}, ..., \frac{\partial}{\partial x^{n}} \right)}_{>0} \end{aligned}$$

and thus det $D(x \circ y^{-1}) > 0$.

 $(i) \Rightarrow (ii)$: Choose a Riemannian metric g on M. For $p \in M$ let $\omega(p) \in \bigwedge^n T_p^* M$ be the volume form of $T_p^* M$, i.e. we have

$$g^{\bigwedge^n}(\omega,\omega) := g^{\bigwedge^n T_p^*M}(\omega,\omega) = 1.$$

Thus ω is a nowhere vanishing section of $\bigwedge^n T^*M$.

Now let $p \in M$. Choose a positively oriented chart $x: U \to V$ around p. Then $dx^1, ..., dx^n$ are smooth sections of $T^*M|_U$ that form a positively oriented basis at every point of U. Using the Gram-Schmidt process we obtain smooth sections $e_1, ..., e_n$ of $T^*M|_U$ that form a positively oriented orthonormal basis at every point of U. We have $\omega = e_1 \wedge ... \wedge e_n$ on U and thus ω is smooth on U.

We conclude that ω is a nowhere vanishing smooth section of $\bigwedge^n T^*M$. By Lemma 1.1 the real line bundle $\bigwedge^n T^*M$ is trivial.

Lemma 3.7. Let V be an oriented n-dimensional real vector space with a non-degenerate symmetric bilinear form g. Let $p \in \{0, ..., n\}$. Then there is a unique isomorphism of vector spaces $*: \bigwedge^p V \to \bigwedge^{n-p} V$, such that for all $\alpha, \beta \in \bigwedge^p V$ we have

$$\alpha \wedge (*\beta) = g^{\bigwedge^p V}(\alpha, \beta) \cdot \omega.$$

Proof. Uniqueness. Let $*_1$ and $*_2$ be two such isomorphisms. Then for all $\alpha, \beta \in \bigwedge^p V$ we have

$$\alpha \wedge ((*_1 - *_2)\beta) = g^{\bigwedge^p V}(\alpha, \beta) \cdot \omega - g^{\bigwedge^p V}(\alpha, \beta) \cdot \omega = 0$$

If $\gamma \in \bigwedge^{n-p} V$ and for all $\alpha \in \bigwedge^p V$ we have $\alpha \wedge \gamma = 0$, then we have $\gamma = 0$. Namely we write

$$\gamma = \sum_{I} \gamma^{I} e_{I}$$

where $e_1, ..., e_n$ is a generalized orthonormal basis, $e_I := e_{i_1} \wedge ... \wedge e_{i_{n-p}}$ for any multi-index $I = (1 \leq i_1 < ... < i_{n-p} \leq n)$ and we sum over all multi-indices I of length n - p and have $\gamma^I \in \mathbb{R}$.

We fix a multi-index I_0 and consider its complementary multi-index I_0^C . For $\alpha = e_{I_0^C} \in \bigwedge^p V$ we have

$$0 = \alpha \wedge \gamma = e_{I_0^C} \wedge \sum_I \gamma^I e_I = \gamma^{I_0} e_{I_0^C} \wedge e_{I_0} = \pm \gamma^{I_0} \omega.$$

We conclude that $\gamma^{I_0} = 0$ for all multi-indices I_0 . Thus we have $\gamma = 0$, i. e. $*_1 = *_2$. Existence. Let $e_1, ..., e_n$ be a positively oriented generalized orthonormal basis of V. We define $*: \bigwedge^p V \to \bigwedge^{n-p} V$ by

$$*e_I := g^{\bigwedge^p V}(e_I, e_I) \cdot \operatorname{sign}(I, I^C) \cdot e_{I^C}.$$

Here (I, I^C) is considered as a permutation of $\{1, ..., n\}$ and $sign(I, I^C)$ is the sign of this permutation.

Remark. If we reverse the orientation of V then * gets replaced by -*.

Definition. The operator * is called the Hodge star operator.

Proposition 3.8. The Hodge star operator has the following properties:

- (i) $*1 = \omega$ and $*\omega = (-1)^s$.
- (ii) For $\alpha \in \bigwedge^p V$ and $\beta \in \bigwedge^{n-p} V$ we have $g^{\bigwedge^p V}(\alpha, *\beta) = (-1)^{p(n-p)} g^{\bigwedge^{n-p}}(*\alpha, \beta)$.
- (iii) On $\bigwedge^p V$ we have $*^2 = (-1)^{p(n-p)+s} \mathrm{id}_{\bigwedge^p V}$.

Here s is the index of the symmetric bilinear form g on V.

Proof. (i) We have

$$*1 = *e_{\emptyset} = \underbrace{g^{\bigwedge^{0} V}(1,1)}_{=1} \underbrace{\operatorname{sign}(1\cdots n)}_{=1} e_{1\cdots n} = \omega$$
$$*\omega = *e_{1\cdots n} = \underbrace{g^{\bigwedge^{n} V}(\omega,\omega)}_{=(-1)^{s}} \underbrace{\operatorname{sign}(1\cdots n)}_{=1} e_{\emptyset} = (-1)^{s}.$$

(iii) We compute

$$*^{2}e_{I} = *(g^{\bigwedge^{p}V}(e_{I}, e_{I})\operatorname{sign}(I, I^{C})e_{I^{C}})$$

$$= g^{\bigwedge^{p}V}(e_{I}, e_{I}) \cdot \operatorname{sign}(I, I^{C}) \cdot g^{\bigwedge^{n-p}V}(e_{I^{C}}, e_{I^{C}}) \cdot \operatorname{sign}(I^{C}, I) \cdot e_{I}$$

$$= \underbrace{g^{\bigwedge^{p}V}(e_{I}, e_{I}) \cdot g^{\bigwedge^{n-p}V}(e_{I^{C}}, e_{I^{C}})}_{=(-1)^{s}} \cdot \underbrace{\operatorname{sign}(I, I^{C}) \cdot \operatorname{sign}(I^{C}, I)}_{=(-1)^{p(n-p)}} \cdot e_{I}$$

$$= (-1)^{p(n-p)+s}e_{I}.$$

(ii) On the one hand we have

$$\alpha \wedge \beta \stackrel{(iii)}{=} (-1)^{(n-p)p+s} \alpha \wedge *^2 \beta = (-1)^{(n-p)p+s} g^{\bigwedge^p V}(\alpha, *\beta) \cdot \omega$$

on the other hand

$$\begin{aligned} \alpha \wedge \beta &= (-1)^{p(n-p)} \beta \wedge \alpha \stackrel{(iii)}{=} (-1)^{p(n-p)} (-1)^{p(n-p)+s} \beta \wedge *^2 \alpha \\ &= (-1)^{2p(n-p)+s} g^{\bigwedge^{n-p} V}(\beta, *\alpha) \cdot \omega. \end{aligned}$$

Definition. Let M be an oriented semi-Riemannian manifold. Let

$$d: \quad C^{\infty}(M, \wedge^{p}T^{*}M) \to C^{\infty}(M, \wedge^{p+1}T^{*}M)$$

be the exterior derivative of differential p-forms on M. Then

$$\delta := (-1)^{np+1+s} * d* : \quad C^{\infty}(M, \wedge^{p+1}T^*M) \to C^{\infty}(M, \wedge^pT^*M)$$

is called the codifferential.

Remark. For the definition of d neither the semi-Riemannian metric nor the orientation are used. If one reverses the orientation, then * gets replaced by -*, thus δ remains unchanged. Therefore δ depends on the semi-Riemannian metric but not on the orientation. Hence, δ can also be defined on non-orientable manifolds.

Remark. We have $\delta^2 = \pm *d * *d* = \pm *d^2* = 0$ since $*^2 = \pm 1$ and $d^2 = 0$.

References

[1] Christian Bär: Differentialgeometrie. Vorlesungsskript, Unversität Potsdam 2006.

- [2] Christian Bär: Differential geometry. Lecture notes, Potsdam University 2013.
- [3] Lawrence Conlon: Differentiable manifolds: A first course. Birkhäuser 2008.
- [4] John M. Lee Introduction to smooth manifolds. Springer 2002.