Basic properties of vector bundles

The following text is based to a very large extent on a chapter of lecture notes on dif-
ferential geometry [1] by Prof. Dr. Christian Bér. For an introduction to these topics see
also the books by Conlon [3] or Lee [4].

Andreas Hermann, October 2017

1 Vector bundles

Definition. Let K = R or C. Let E and M be differentiable manifolds. A smooth
surjective map w: E — M s called a real or a complex vector bundle of rank N if

(i) for all p € M the fiber E, := 7 *(p) has a structure of N-dimensional K-vector
space and

(ii) there exist an open covering U of M and diffeomorphisms
by Uy xKY = 771(U,), U, €U,
such that for all o we have mo ®, = pry_ and for all a,b € K and all v,w € K~

Dy (p, av + bw) = a®(p, v) + bP4 (p, w).
Remark. Since @, is a diffeomorphism the restriction {p} x KV g E, s bijective and
thus is an isomorphism of vector spaces.

Definition. E is called the total space, M 1is called the base space and 7 is called the
projection map. The maps ®, are called local trivializations.

Example. (1) The trivial vector bundle. E = M x K~ and m = pry,;. We get a global
trivialization by putting U, = M and Y, = id.

(2) The tangent bundle. E = TM = Upen/T,M. Let xo: Uy — V, CR™ be a chart of M
and put

Dy Uy XxR" = 771 U,) = Upep, T,M
(p,v) — Zv .
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(3) The Mdibius band. Define F: [0,27] x (—=1,1) — R3 by

Define E := Im(F) and M = {F(u,0) | v € [0,27]}. Then M is diffeomorphic to
the unit circle S* and w: E — M, n(F(u,v)) := F(u,0) is a real vector bundle of
rank 1, since the fiber (—1,1) over every point of S* is diffeomorphic to R.

Definition. A vector bundle of rank 1 is also called a line bundle.

Definition. A vector subbundle of a vector bundle E is a submanifold E C E such that
m|p: B — M is a vector bundle. In particular for all p € M the fiber E, C E, is a vector
subspace.

Example. Let M be a differentiable manifold and let S C M be a submanifold. Then T'S
15 a vector subbundle of T'M.

Definition. Let 7: E — M and 7: E — M be two K-vector bundles. A vector bundle
homomorphism F' over f consists of two smooth maps F: E — E and f: M — M such
that the diagram

E-L-FE

™

ML a1

™

-

commutes and for all p € M the map F|g,: E, — Ef(p) s a vector space homomorphism.

Example. (1) E = M x K, E = M x K. Let p: M — Mat(N x N,K) be smooth
and f: M — M be smooth. Then

F: E—E, F(pv):=(f(p),¢p) v
15 a vector bundle homomorphism over f.

(2) If f: M — M is smooth, then df: TM — TM is a vector bundle homomorphism
over f.

Definition. Let w: E — M be a vector bundle. A section of E is a map s: M — E such
that mo s = id]\/[.

Example. o The sections of the tangent bundle of M are the vector fields on M.

o Sections of the trivial bundle M x KN have the form

s(p) = (p, ¢(p))

where p: M — KV is smooth.



Definition. A vector bundle homomorphism F over f is called a vector bundle isomor-
phism if F' and f are diffeomorphisms.

Two vector bundles 7: E — M and 7: E — M are called isomorphic if there is a vector
bundle isomorphism E — E.

We say that a vector bundle is trivial of it is isomorphic to the trivial vector bundle.
M x KN,

Lemma 1.1. A vector bundle w: E — M of rank N is trivial if and only if there exist N

smooth sections si, ..., Sy of E such that for every p € M the vectors s1(p), ..., sy(p) form
a basis of E,.

Proof. ,=" Let m: E — M be trivial and let ®: F — M x KV be a vector bundle
isomorphism. Let ey, ...,ex be a basis of KV. Put s;(p) := & 1(p,e;), 5 =1,...,N.
,<" Assume that sq, ..., sy form a basis everywhere. Define ®~': M x KY — E by

O~ (p,v) = Zvj -+ 5(p)-

j=1

Example. Is the vector bundle TM — M trivial? The answer depends on M.

o TS is trivial since

S(Q?,y) = (_yax)tu (l‘,y) € Sl - RZ

gives a basis of every TS

e By the hairy ball theorem every smooth vector field on S? wanishes somewhere.
Therefore T'S? is not trivial.

Algebraic constructions for vector bundles

Whitney sum of two vector bundles
Let m: By — M and my: Ey — M be two vector bundles. Put £ := Upep E1 ), ® Es ), and
m: E — M such that
W(El,p @ EQ,p) = {p}.
=E

It remains to define a topology and a differentiable structure on E such that 7 is smooth
and such that there exist local trivializations with respect to the natural vector space
structure on E,.

To this end let z: U — V C R"™ be a chart of M. After possibly replacing U by an open
subset of U there exist local trivializations

®: UxK" — 7, (U) and
Oy U x K™ — w1 (U).



Define m: U x (K" '@ K™) — 7~ 1(U) by

O(p,v B w) = Dy(p,v) & Da(p,w) .
—_—— SN —

eEl,p €E2,p
. -1 n n obpen Rn+n1+n2’ K=R
Define p: 7=1(U) = V x (K" ¢ K™) C {Rn+2m+2n27 K—C by
p(q) = (z x id)(27(q)).

The map ¢ is bijective. One checks that the set

x: U — V chart of M,
A= {(p N (U) =V x (K" @K™) | @ :U— K" — 7, (U) local triviali- }

zations of F;, 1 =1,2

satisfies the conditions of Theorem 1.1.10 in [2]. By this theorem and by the propositions
following it there is a unique topology and a unique differentiable structure on E such
that the subsets 7=1(U) C E are open and the maps ¢ are charts of £. Then the maps ®
are diffeomorphisms and hence local trivializations of £. The vector bundle E := E; @ E,
is called the Whitney sum of F; and E,.

In an analogous way one constructs the following vector bundles over M:

(1) Tensor bundle. Ey @ Ey := Upen Erp @ Esy

(2) Dual bundle. E* := Upep )

(3) Exterior product bundle. \* E := Upers \* E,

(4) Homomorphism bundle. Hom(E}, Es) := E} ® Ey

(5) Quotient bundle. Let EE C F be a vector subbundle. Define E/E := UpcyE,/E,.

Example. o T*M :=TM* is called the cotangent bundle of M.
If 2: U — V is a chart of M, then for p € U the linear forms dz*|,, ..., dz"|, form
a basis of TyM. The map

d: UxR"—= 7 '(U)=UeTyM
(p,w) — Zwidxi]p
i=1
s a local trivialization of T*M.
° /\k T"M, k=0,1,..,n. If x: U —V is a chart of M, then for p € U the vectors
da" [, A ANda'|, € NFTEM, 1<y < .. <ip<n,

form a basis of /\k Ty M. The sections of this bundle are called differential k-forms
or differential forms of degree k on M.
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e TM®..0TMRT*M® .0 T*M

s

vV vV
r times s times

The sections of this bundle are called (r,s)-tensor fields on M.

’ geometric object \ s a section of ‘
vector field TM
semi-Riemannian metric "M T*M
Riemann curvature tensor
R(-, ) T"MQT*M QQT*M @ TM
g(R(+, ) ) T"MQQT*MQT*M @ T*M
Ricer curvature
ric T*M @ T*M
Ric "M & TM
scalar curvature trivial line bundle

Restriction and pullback
Let S C M be a submanifold, let m: £ — M be a vector bundle. Define

Els = U E,=n"'(S) and mg:=m|p,: Els — 5.

peS
Then FE|s is a vector bundle over S and is called the restriction of E to S.

Example. Let (M, g) be a semi-Riemannian manifold and let S C M be a semi-Riemannian
submanifold. For p € S define

NS ={y € T,M | g(y,z) =0 for all z € T,,S}.

Then NS := UpesN,S is a vector bundle over S and is called the normal bundle of S
in M. Obviously we have

TM|s =TS & NS.

Remark. The normal bundle NS may also be defined without using a semi-Riemannian
metric. Namely put

NS :=(TM|s)/TS.
But then NS is not a vector subbundle of TM|s.

Let S, M be differentiable manifolds and let f: S — M be a smooth map. Let m: £ — M

be a vector bundle. Put
1 E = J{p} % Er)
PES (7 E)

and define 7: f*E — S by 7(p,v) := p. Then 7: f*E — S is a vector bundle over S and
is called the pullback bundle of m: E — M.

Remark. Let S C M be a submanifold and let m: E — M be a vector bundle. The
restriction E|g is isomorphic to the pullback bundle f*E, where f: S — M is the inclusion
map.



Local trivializations of f*FE are obtained as follows:
Let U C M be an open subset and let ®: U x KV — 771(U) be a local trivialization
of E. Let U C S be an open subset with U C f~!(U). Put

d: UxKY = a7Y(0)

d(p,v) == (p, 2(f(p),v)).

Using Theorem 1.1.10 in [2] one obtains a topology and a differentiable structure on f*E
such that the maps ® are local trivializations of f*FE.

Example. Let f: S — M be a smooth map. The sections of f*IT'M — S are exactly the
vector fields along f.

2 Metrics and connections on vector bundles

Definition. Let E — M be a R-vector bundle. A Riemannian metric on E is a smooth
section g of B* @ E* — M, such that for allp € M

9(p) € (F" ® EY), = By ® E; = {bilinear forms on E,}

is symmetric and positive definite. A real vector bundle with a Riemannian metric g is
called a Riemannian vector bundle.

Proposition 2.1. On every real vector bundle there exists a Riemannian metric.

Proof. (a) We first assume that the vector bundle E — M is trivial. Let ®: M xRY — F
be a global trivialization. For p € M and v,w € E, write ®'(v) = (p,x) and
O~ (w) = (p,y) with x,y € RY. In order to define a Riemannian metric on E we use
the standard Euclidean scalar product (-,-) on RY and define

9(p)(v,w) := (z,y).

(b) Let E — M be a vector bundle that is not necessarily trivial. There exists an open
covering {U,} of M and local trivializations ®,: U, x RY — 771(U,) (In other words:
the restrictions |y, are trivial vector bundles. This is expressed by saying that every
vector bundle is locally trivial).

Let {¢a} be a partition of unity subordinate to the open covering {U,}, i.e.pq:
M — R is smooth, 0 < ¢, <1, Y @, = 1, for every p € M we have ¢,(p) # 0 for
only finitely many a and supp(p,) C U,.

By part (a) we know that there exist Riemannian metrics g, on F|y,. For p € M we
put

9(p) == @alp) - galp)-

Note that ¢, - go is defined on all of M (identically 0 on M \ U,) and is smooth.
Furthermore ¢(p) is a symmetric bilinear form on £, and moreover it is positive
definite since for all v # 0 we have

9(P) (v, v) = @a(p)ga(p)(v,v) > 0
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since @ (p)ga(p)(v,v) > 0 for all @ and > 0 for some of the a.
[

Remark. Riemannian metrics on vector bundles E, F — M induce canonical Rieman-
nian metrics on B*, \"E, E®&F, EQF and E/F (in case F C E is a vector subbundle).

Let V, W be finite dimensional Euclidean vector spaces with orthonormal bases vy, ..., v,
and wy, ..., w,, respectively. Then there exist Euclidean scalar products

on Ve | NV Ve Ve w
with orthonor- | v, ...,v} Viy N\ o A, U1y eevy Uns v; @ wy,
mal basis dual basis | 1 <1 < ... <y <n|wp,.,w, | 1<i1<n,1<757<m
dimension n (Z) n+m n-m

In case W C V and v; = w; for j = 1, ..., m there is a Euclidean scalar product on V/W
such that [v,,41], ..., [n] form an orthonormal basis of V/WV.

On the pullback bundle f*FE of a Riemannian vector bundle £ we obtain the Riemannian
metric

9" P (p) =" (f(p)).

Definition. Let E — M be a K-vector bundle. A connection on E is a map
V: CM, TM)xC®(M,E)— C*(M,E), (X,s)— Vxs,
such that the following holds:
(i) For alls € C*(M,E), X;,Xy € C®(M,TM), fi, fo € C*(M):
Vixitfx:5 = fiVx, s + f2Vx,s.
(ii) For all s1,85 € C°(M,E) and X € C*(M,TM):
Vx(s1+82) = Vxs; + Vyso.
(iii) For all s € C*(M,E), X € C*(M,TM) and f € C*(M):
Vx(f-s)=0xf-s+f Vxs.

Remark. If V is a connection on E, then the map (X, s) — Vs is C°(M)-linear in X
and R-linear in s. Thus V can be considered as a map

V: C®E)— C®(T"M®E).

Definition. Let E — M be an R-vector bundle with a Riemannian metric g. A connec-
tion V on E is called a metric connection if we have

(v) For all X € C*°(M,TM) and s1,s9 € C®°(M, E):
Oxg(s1,52) = g(Vxsi1,s2) + g(s1, Vxsa).
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Proposition 2.2. Let E — M be a Riemannian vector bundle. Then there exists a metric
connection on F.

Proof. (a) Again, we first assume that F is trivial. By Lemma 1.1 there exist smooth
sections sy,...,sy € C®(M, E) such that for all p the vectors s1(p), ..., sy(p) form
a basis of E,. By the Gram-Schmidt process we obtain ey, ...,en € C®°(M, E) that
form an orthonormal basis at every point. We define V by

N N
Vx ( Z fz'ei) = Z Ox fi - ;.
=1 i=1
One checks that V satisfies (i) — (i7i) and thus is a connection on E. Moreover let
S1= ZzNzl fiei, s2 = Zjvzl hje;. Then we have

N =dij
Oxg(sr,52) = 0x( S fihy gleres) )

ij=1

N
=0 (3 fis)

N N
= ZaXfi‘hi+Zfi'aXhi
i=1 i=1

On the other hand we have
N N
9(Vxsi,89) = 9( Z Ox [i - €, Z hjej>
i=1 j=1

N
= Z Ox fi-hj-glei e5)

i,j=1
N

= Oxfi-h
=1

and in the same way one obtains ¢(s;, Vxsy) = Efil fi - Oxh;. Therefore V is a
metric connection.

(b) Now let E be not necessarily trivial. Let {U,} be an open covering of M such that
for every « the restriction E|y, is trivial. Then for every « there exists a metric
connection *V on E|y, by part (a). Let {¢,} be a partition of unity subordinate to
the open covering {U,}. For X € T,M and s € C};°(E) we put

Vxs = nga - *Vxs.

Then V does the job.



Definition. A Riemannian metric on T M is called torsion free if for every local coordi-
nate system z', ..., 2" of M we have

Vo,0; =V, 0; foralli,je{l,..,n},

where we have written 0; := aii for all 7.

Remark. In case E = TM the Levi-Civita connection is the unique connection that is
metric and torsion-free. But the condition of being metric does not determine a connection
uniquely. Moreover, on a general vector bundle the condition of being torsion-free does
not make sense.

Remark. If £, F — M are vector bundles with connections V¥ and VI respectively then
these connections induce connections on the vector bundles E*, /\k E, E®F and EQ F:

(a) Forwe C®°(M,E*), s€ C®(M,FE) and X € C*°(M,TM) we define

(VX w)(s) = 0x (w(s)) — w(VXs).
(Then the "product rule” Ox(w(s)) = (VE w)(s) + w(VEs) holds.)
(b) For s, ...,s;, € C°(M,E) and X € C*(M,TM) we define
Vé\(kE(sil A Nsi) = (V58i) A Siy Ao Asi, + 55, A (Vi) A A si,
8y Asip A A (VES).

(c) For sy € C®(M,E), ss € C®°(M,F) and X € C®°(M,TM) we define
V(51 @ 82) := (V1) ® (Visa).

(d) For s; € C®°(M,E), so € C°(M,F) and X € C®(M,TM) we define

V(51 ® 52) 1= (VEs1) @ 524 51 ® (Vi s2).

Remark. If V¥ and VF are metric connections then the induced connections are metric
connections with respect to the induced Riemannian metrics.

Definition. Let . — M be a complex vector bundle.

(1) We denote by E the complex conjugate vector bundle (i. e. the scalar multiplications -
on E and - on E are related by aov =a-v fora € C, v € E,).

(2) A Hermitian metric on a complex vector bundle = — M is a smooth section h of
E* ® E such that for all p € M the sesquilinear form h(p) satisfies h(p)(w,v) =
h(p)(v,w) for all v,w € E, and h(p)(v,v) >0 for all v # 0.

(3) A complez vector bundle with a Hermitian metric is called a Hermitian vector bundle.



(4) A connection NV on a Hermitian vector bundle E — M is called a metric connection
if for all s1,s9 € C*°(M,E) and X € C*(M,TM) we have

8Xh(31, 52) = h(VXsl, 52) + h(Sl, VXSQ).

Remark. One can show that on every complex vector bundle there exrist a Hermitian
metric h and a connection that is metric with respect to h.

Connections in local coordinates

Let E — M be a K-vector bundle and let x: U — V C R"” be a chart of M. Without loss
of generality we may assume that E|y — U is trivial. Let sy, ..., sy be smooth sections of
E|y which form a basis at every point. For i = 1,...,n and a = 1,..., N we write

N

V%SQ =: ;(Fiﬁa ox) - sg.
—1

This defines smooth functions Ffa: V' — K. They are called the Christoffel symbols of
V with respect to z and s = (s, ..., sy). The Christoffel symbols determine V, since for
every s € C°(M, E) and X € C®°(M,TM) we may write

N n ‘ a
s:Zfasa, X:ZXZaxi
a=1 i=1

and we compute

N
Vxs = VZ?:l X aii (2:1 fasa)
n N ‘ -
— ZZXZV%(PS&)
i=1 a=1
n N i 8fa . n 5
=33 X (Grte t I o) - 55)
i=1 a=1 B=1
n . N 8 B N
= ZXZZ (821 + Zfa(Ffa ox))sB.
i=1 B=1 a=1

The pullback connection
Let M, S be differentiable manifolds, let £ — M be a K-vector bundle and let f: S — M
be a smooth map. The map F: f*E — E, F(p,v) := v is a vector bundle homomorphism
over f and an isomorphism on every fiber. In particular the following diagram commutes:
E-L-E
S

_f>M
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Proposition 2.3. Let V be a connection on E. Then there erists a unique connection
VI'E on f*E such that for all s € C*°(M,E), p€ S and X € T,S we have:

VEP(F T oso f) = F ' (Vi)
This connection s called the pullback connection on f*FE.

Proof. Uniqueness. Let y: U — V be a chart of M, let sq, ..., sy be smooth sections of F|y
which form a basis at every point and let F : V. — K be the Corresponding Christoffel
symbols. Let z: U — W be a chart of S Where we assume that U C I ( ). The sections
S0 :=Flos,o flg of f*E|; form a basis at every point of U. Let F : W — K be the

corresponding Christoffel symbols. Then for all p € U we have

N
= (2 (p)3s(p) = V];%ip) - VJ;M w0500 /) = F7H (Vi o (50)
(Ve -y 2

-1
So) = laxj(p)F (v%mp))sa)

and therefore . '
P ) = 3 2L o) () )

N J
i=1 Oz

Thus the Christoffel symbols f‘fa of V/'F are determined by those of V.
FEzistence. Define the Christoffel symbols by the formula (1). One checks that this defines
a connection V/'F as in the assertion. O

Example. o If B =TM — M and VF is the Levi-Civita connection then VI F is
the covariant derivative of vector fields along smooth maps (see Chapter 2.4 in [2]).

o If V¥ is any connection on E — M and f: S — M is a constant map then for any
basis vy, ...,vn of By the sections

Sa(p) = (pa Ua)

are smooth and form a global trivialization of f*E, in particular f*E is trivial. For
V7 E we obtain Ffa =0 and thus

N N
V§E<Zfa5a) = ZaXfa'Sa
a=1 a=1
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3 Curvature of a vector bundle

Definition. Let £ — M be a K-vector bundle with a connection V. The curvature tensor
RY is for XY € C*°(M,TM) and s € C®(M, E) given by

RV(X, Y)S = VXVYS — VYVXS — V[X,Y]S S COO(M, E)

Lemma 3.1. For p € U the value (RV(X,Y)s)(p) depends on X, Y and s only via the
values X (p), Y(p) and s(p).

Proof. We write X = Y77 X'V = 370 Y/ and s = SN f*sa. We compute

3227

(and use the Einstein summation convention)

VxVys = Vx(Y'V o (fs0))
(e i)

So(r (5 r1z)e)

= s (G +5T0) Y (o 5T+ )
+YZ(af [T )T 5,

When computing VxVys — Vy Vs the terms symmetric in ¢, j cancel and we get

= (V55 ) (5 + )

+ XY fa(%rz = aart + T, — Fﬂﬁa%)]

and thus VxVys — VyVxs — Vixy|s = XYifeRY ia* Sy where
oy 9 s 8
R;yza - % - 8x anrzﬂ - F]arzﬁ

O
Corollary 3.2. The curvature tensor R is a smooth section of T*M @ T*M @ E* ® E.
Proposition 3.3. The curvature tensor RY has the following symmetries:
(i) For all X, Y € C*(M,TM): RV(X,Y)=—-RV(Y,X)

(ii) If V is a metric connection with respect to a Riemannian or Hermitian metric g,
then for oll XY € C®°(M,TM) and s1,s2 € C°(M, E):

g(RY(X,Y)s1,82) = —g(s1, RV (X,Y)s5).
Proof. (i) is clear by definition.
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(ii) We have
0 = (Ox0y — OyOx — Ox,y1)g(s1, 52)
= g(Rv(X7 Y)sh 82) + 9(31, RV(Xa Y)SQ)

where in the last step we have used that V is a metric connection.

Corollary 3.4. RY is a smooth section of /\2 T"M® E*®Q E.

Proposition 3.5 (Bianchi identity). Let E — M be a K-vector bundle with a connection
V. Assume that M 1is equipped with a semi-Riemannian metric and T M with the Leuvi-
Civita connection. Then for all X,Y,Z € C*(M,TM) and for R := RV we have

(VxR)(Y,Z)+ (VyR)(Z,X)+ (VzR)(X,Y) =0.
Proof. By definition for all s € C*°(M, E) we have
(VxR)(Y,Z)s :=Vx(R(Y,Z)s) — R(VxY,Z)s — R(Y,VxZ)s — R(Y,Z)Vxs

where we denote both the connection on E and the Levi-Civita connection by V.
Let p e M, let X,Y,Z € T,M and e € E,. We extend e to a smooth section s of £ in
an open neighborhood of p (this is possible since E is locally trivial). Furthermore we
extend XY, Z to smooth vector fields X, Y, Z on an open neighborhood of p by parallel
translation of XY, Z along the radial geodesics emanating from p. Then we have

V.X|,=V.Y],=V.Z|, =0
and in particular
[X, YHp = vXY|p - V5’)(|1!7 =0, [Y, Z”p = [X, Z”p = 0.
We calculate
(VxR)(Y,Z)e=Vx(R(Y,Z)s)|, — R(VxY,Z)s|, — R(Y,VxZ)s|, — R(Y,Z)Vxs|,
= (Vx(VyVZS — V2VYS — V[yyz}s))‘p — R(K Z)sz‘p.
We conclude
(VxR)(Y, Z)e + (VyR)(Z, X)e + (VzR)(X,Y)e
= (VXVyvzs — VXv2VYS — va[yz]s — R(Y, Z)sz
+VyVzVxs—VyVxVzs — VYV[Z,X]s — R(Z, X)VyS
+ VZVXVys — VZVYVXS — V2V[X7y]8 — R(X, Y)VZS)|p
= (R([Y. 2], X)s + Viz1x)8 + R([Z, X],Y)s + V(iz,xv)8
0 at Oatp
=0 atp =U a

+R([X,Y],Z)s + Vixy1,25) |p
W—/

=0at p
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Since R depends only on the values of its arguments at the point p we get

(VxR)(Y, Z)e + (VyR)(Z, X)e + (VzR)(X,Y)e

= V{v,2,X]+[12.X],Y]+(x,],2]S|p = 0
by the Jacobi identity. O

Remark. This Bianche identity has nothing to do with the "first Biancht identity” for
the Levi-Civita connection R(X,Y)Z + R(Y,Z)X + R(Z, X)Y =0 (see Proposition 3.1.7
in [2]). In the case of the Levi-Civita connection the above Bianchi identity is also called
the "second Bianchi identity".

Definition. A connection V is called flat if its curvature tensor satisfies RV = 0.

Example. e Fvery metric connection on a Riemannian line bundle E is flat. Namely
RY(X)Y) is a skew-symmetric endomorphism of the 1-dimensional vector space E,
and thus vanishes.

o Fuvery trivial vector bundle has a flat connection. Namely let sq, ..., sy be a global
trivialization and define

N N
Yy ( 3 fasa> =3 0x [ s

By definition of the Lie bracket we get RV = 0.

Orientation and the Hodge star operator
Let V be an n-dimensional real vector space with a non-degenerate symmetric bilinear
form g: V. xV — R of index s (i.e.s is the maximal dimension of a negative definite
subspace). Then APV has a non-degenerate symmetric bilinear form gA'V: APV x
A’V — R characterized by the following:
Let ey, ...,e, be a generalized orthonormal basis of V' such that g(e;,e;) = €;0;; with
g; = £1. Then the vectors e;; A ... Ne;j,, 1 <4y < ... <1, < n, form a generalized
orthonormal basis of A"V, where

g/\pv(eil VANRTAN €ip, ejl AL A €jp) =& 5ip6i1j1 s 5ipjp'
In the same way, V* has a non-degenerate symmetric bilinear form ¢ : V* x V¥ = R
characterized by
V*(

er 6*) = gi(sij-

g 1) J

Definition. If V is oriented, we define the volume form w :=e; A ... Ae, € "V, where
€1, ...,y 1S a positively oriented generalized orthonormal basis of V.

Remark. The volume form s independent of the choice of the positively oriented gen-
eralized orthonormal basis. If one reverses the orientation of V', then w gets replaced by
—w. Moreover we have

g(w,w) = (=1)°,

where s is the index of g.
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Definition. Let M be a differentiable manifold. Let x: U — V and y: (Z — V be two
charts of M. Then x and y are called orientation compatible if on (U NU) we have

det D(yoz™) > 0.

A C*®-atlas A of M is called oriented if any two charts contained in A are orientation
compatible. An orientation of M is a mazimal oriented C*-atlas of M. A differentiable
manifold equipped with an orientation is called an oriented manifold.

Remark. If M is an oriented manifold, then every tangent space T,M (and thus every
cotangent space T;M) 15 equipped with an orientation in the sense of linear algebra.

Namely, if z: U — V is a chart contained in the oriented atlas with p € U, then

%]p, - axinb’ is a positively oriented basis of T,M (and dz'|,,...,dz"|, is a positively

oriented basis of Ty M).

Proposition 3.6. Let M be an n-dimensional differentiable manifold. Then the following
are equivalent:

(i) M is orientable
(ii) The real line bundle \" Ty M is trivial.

Proof. (ii) = (i): Assume that A" TM is trivial. Then there exists a smooth section
w € C®(M,T*M) such that w(p) # 0 for all p € M. Let A be the differentiable structure
of M. We put

Aw::{(x:U%V)EA‘w( 0 . 0 )>OonU}.

oz’ Oz
We show that A, is an oriented atlas of M.

(a) We show that the charts contained in A, cover all of M. Namely, let p € M, let
(x:U —=V)e Awith p e U. W.l.o.g.we may assume that U (and therefore V) is

connected.
If w(zk, ..., 52) > 0, then (z: U — V) € A,. Otherwise we have w(32, ..., 5% ) < 0

on all of U (since w # 0 and U is connected). We put
ylo= =2, =22yt =", Vi={(' . 2" eR"| (=, 2% .., 2") e V]

The chart y: U — V contains p and satisfies

w(%, o %) > (0 on U,

thus (y: U — V) € A,

15



(b) Tt remains to show that any two charts z: U — V and y: U — V contained in A,
are orientation compatible. On (U NU) we have

) 0
0 < w<a—y17 ceey a_yn)
ot o) 0 oy 0
= w<“21 oy Oxi’ " an oy" 8xzn)
1 9 9
=det D(z oy )'W<@"”’%>
>0

and thus det D(z oy™1) > 0.

(i) = (ii): Choose a Riemannian metric g on M. For p € M let w(p) € A" Ty M be the
volume form of T M, i.e. we have

g/\n(w,w) = g/\nT;M(w,w) =1.

Thus w is a nowhere vanishing section of A" T*M.

Now let p € M. Choose a positively oriented chart x: U — V around p. Then dz?, ..., dz"
are smooth sections of T*M]|y that form a positively oriented basis at every point of U.
Using the Gram-Schmidt process we obtain smooth sections ey, ..., e, of T*M|y that form
a positively oriented orthonormal basis at every point of U. We have w = e; A ... A e,
on U and thus w is smooth on U.

We conclude that w is a nowhere vanishing smooth section of A" T*M. By Lemma 1.1
the real line bundle A" T*M is trivial. O

Lemma 3.7. Let V' be an oriented n-dimensional real vector space with a non-degenerate

symmetric bilinear form g. Let p € {0,...,n}. Then there is a unique isomorphism of
vector spaces x: N'V — NPV, such that for all o, 8 € \'V we have

an(xf) = gNV(a.B) - w.

Proof. Uniqueness. Let %1 and %o be two such isomorphisms. Then for all o, 8 € A"V
we have

a((x1—*2)B) = gApV(a,ﬁ) Cw— g/\pv(a,ﬁ) cw=0.
Iftye AN""V and for all « € A*V we have a Ay = 0, then we have v = 0. Namely we

write
7= 27161
I

where e1, ..., e, is a generalized orthonormal basis, ey := e;, A... Ae;,_ for any multi-index
I'=(1<i4 <..<iyp <n)and we sum over all multi-indices I of length n — p and
have v/ € R.

We fix a multi-index Iy and consider its complementary multi-index I§. For a = ere €
A’V we have

O=aAny=egcA 27161 = 7]06100 Aep, = £y0w.
I
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We conclude that v/ = 0 for all multi-indices I,. Thus we have 7 = 0, i.e. %, = *,.
Existence. Let eq, ..., e, be a positively oriented generalized orthonormal basis of V. We
define x: A’V — APV by

xer = gN'Vier er) -sign(I, 1) - esc.

Here (I,1¢) is considered as a permutation of {1,...,n} and sign(/, I¢) is the sign of this
permutation. ]

Remark. If we reverse the orientation of V then x gets replaced by —x.
Definition. The operator x is called the Hodge star operator.
Proposition 3.8. The Hodge star operator has the following properties:

(i) *1 =w and *w = (—1)*.

(ii) For a € N'V and 3 € NPV we have g\"V(a, %) = (=1)PPgA"" (xa, 3).
(iii) On N\'V we have * = (—1)P"=P)Fsid po .
Here s is the index of the symmetric bilinear form g on V.

Proof. (i) We have

x1 = xey = g/\ov(l, 1)sign(l---n)ep., =w

~~ ~~
— =1
n

ww = *e€p.y = ¢\ V(w,w)sign(l---n) ey = (—1)°.

—(Z1ys =1
(iii) We compute

wle; = *(g/\pv(el, er)sign(1, Ic)elc)

= 9NV (er,er) -sign(1,19) - g\ "V (ege, ) - sign(19,1) - e
= QAPV(GI, er) - QNHW(GIC, ere) -sign(l,19) - sign(1°, 1) -es

v~ v~

=(-1)s =(—1)p(n—p)

(ii) On the one hand we have

(i)

an D (1) AR = ()P () -

on the other hand

i)

0 A B = (1P P8 A o (L1 1y s
- (_1)2p(n—p)+sg/\"7pv(5, k) - w.
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Definition. Let M be an oriented semi-Riemannian manifold. Let
d: C®(M,\N°T*M) — C°>°(M, \P**T*M)
be the exterior deriwative of differential p-forms on M. Then
§ = (=1t wds . O°(M,ANPTT*M) — C°(M, NPT*M)
is called the codifferential.

Remark. For the definition of d neither the semi- Riemannian metric nor the orientation
are used. If one reverses the orientation, then x gets replaced by —x, thus d remains un-
changed. Therefore § depends on the semi-Riemannian metric but not on the orientation.
Hence, § can also be defined on non-orientable manifolds.

Remark. We have 62 = & x d * *dx = & x d?>x = 0 since 2 = +1 and d?> = 0.
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