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Abstract

We summarize the analytic theory of linear wave equations onglobally hyperbolic
Lorentzian manifolds.
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1 Introduction

In General Relativity spacetime is modelled by a Lorentzianmanifold, see e. g. [8, 15].
Many physical phenomena, such as electro-magnetic radiation, are described by solutions
to certain linear wave equations defined on this spacetime manifold. Thus a good under-
standing of the theory of wave equations is crucial. This includes initial value problems (the
Cauchy problem), fundamental solutions, and inverse operators (Green’s operators). The
classical textbooks on partial differential equations contain the relevant results for small
domains in Lorentzian manifolds or for very special manifolds such as Minkowski space.
In this text we summarize the global analytic results obtained in [4], see also Leray’s un-
published lecture notes [13] and Choquet-Bruhat’s exposition [7]. In order to obtain a
good solution theory one has to impose certain geometric conditions on the underlying
manifold. The situation is similar to the study of elliptic operators on Riemannian mani-
folds. In order to ensure that the Laplace-Beltrami operator on a Riemannian manifoldM
is essentially self-adjoint one may make the natural assumption thatM be complete. Un-
fortunately, there is no good notion of completeness for Lorentzian manifolds. It will turn
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out that the analysis of wave operators works out nicely if one assumes that the underlying
Lorentzian manifold be globally hyperbolic. Completenessof Riemannian manifolds and
global hyperbolicity of Lorentzian manifolds are indeed related. If(S,g0) is a Riemannian
manifold, then the Lorentzian cylinderM = R×S with product metricg = −dt2 + g0 is
globally hyperbolic if and only if(S,g0) is complete.
We will start by collecting some material on distributionalsections in vector bundles. Then
we will summarize the theory of globally hyperbolic Lorentzian manifolds. Then we will
define wave operators, also called normally hyperbolic operators, and give some examples.
After that we consider the basic initial value problem, the Cauchy problem. It turns out that
on a globally hyperbolic manifold solutions exist and are unique. They depend continu-
ously on the initial data. The support of the solutions can becontrolled which is physically
nothing than the statement that a wave can never propagate faster than with the speed of
light. In the subsequent section we use the results on the Cauchy problem to show exis-
tence and uniqueness of fundamental solutions. This is closely related to the existence and
uniqueness of Green’s operators.
The author is very grateful for many helpful discussions with colleagues including Helga
Baum, Olaf Müller, Nicolas Ginoux, Frank Pfäffle, and Miguel Sánchez. The author also
thanks the Deutsche Forschungsgemeinschaft for financial support.

2 Distributional sections in vector bundles

Let us start by giving some definitions and by fixing the terminology for distributions on
manifolds. We will confine ourselves to those facts that we will actually need later on. A
systematic and much more complete introduction may be founde. g. in [9].

2.1 Preliminaries on distributional sections

Let M be a manifold equipped with a smooth volume density dV. Lateron we will use the
volume density induced by a Lorentzian metric but this is irrelevant for now. We consider
a real or complex vector bundleE → M. We will always writeK = R or K = C depending
on whetherE is real or complex. The space of compactly supported smooth sections inE
will be denoted byD(M,E). We equipE and the cotangent bundleT∗M with connections,
both denoted by∇. They induce connections on the tensor bundlesT∗M⊗·· ·⊗T∗M⊗E,
again denoted by∇. For a continuously differentiable sectionϕ ∈C1(M,E) the covariant
derivative is a continuous section inT∗M⊗E, ∇ϕ ∈C0(M,T∗M⊗E). More generally, for
ϕ ∈Ck(M,E) we get∇kϕ ∈C0(M,T∗M⊗·· ·⊗T∗M

︸ ︷︷ ︸

k factors

⊗E).

We choose an auxiliary Riemannian metric onT∗M and an auxiliary Riemannian or Her-
mitian metric onE depending on whetherE is real or complex. This induces metrics on all
bundlesT∗M⊗·· ·⊗T∗M⊗E. Hence the norm of∇kϕ is defined at all points ofM.
For a subsetA⊂ M andϕ ∈Ck(M,E) we define theCk-norm by

‖ϕ‖Ck(A) := max
j=0,...,k

sup
x∈A

|∇ j ϕ(x)|. (1)

If A is compact, then different choices of the metrics and the connections yield equivalent
norms‖ · ‖Ck(A). For this reason there will be no need to explicitly specify the metrics and
the connections.
The elements ofD(M,E) are referred to as test sections inE. We define a notion of
convergence of test sections.

Definition 2.1. Let ϕ ,ϕn ∈ D(M,E). We say that the sequence(ϕn)n converges toϕ in
D(M,E) if the following two conditions hold:

1. There is a compact setK ⊂ M such that the supports ofϕ and of allϕn are contained
in K, i. e. supp(ϕ),supp(ϕn) ⊂ K for all n.
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2. The sequence(ϕn)n converges toϕ in all Ck-norms overK, i. e. for eachk∈ N

‖ϕ −ϕn‖Ck(K) −→n→∞
0.

We fix a finite-dimensionalK-vector spaceW. Recall thatK = R or K = C depending on
whetherE is real or complex. Denote byE∗ the vector bundle overM dual toE.

Definition 2.2. A K-linear mapF : D(M,E∗)→W is called adistribution in E with values
in W or a distributional section in E with values in Wif it is continuous in the sense
that for all convergent sequencesϕn → ϕ in D(M,E∗) one hasF [ϕn] → F [ϕ ]. We write
D ′(M,E,W) for the space of allW-valued distributions inE.

Note that sinceW is finite-dimensional all norms| · | onW yield the same topology onW.
Hence there is no need to specify a norm onW for Definition 2.2 to make sense. Note
moreover, that distributional sections inE act on test sections inE∗.

Example 2.3. Pick a bundleE → M and a pointx ∈ M. The delta-distributionδx is a
distributional section inE with values inE∗

x . Forϕ ∈ D(M,E∗) it is defined by

δx[ϕ ] = ϕ(x).

Example 2.4. Every locally integrable sectionf ∈ L1
loc(M,E) can be regarded as aK-

valued distribution inE by setting for anyϕ ∈ D(M,E∗)

f [ϕ ] :=
∫

M
ϕ( f ) dV.

Hereϕ( f ) denotes theK-valuedL1-function with compact support onM obtained by point-
wise application ofϕ(x) ∈ E∗

x to f (x) ∈ Ex.

2.2 Differential operators acting on distributions

Let E andF be twoK-vector bundles over the manifoldM, K = R or K = C. Consider a
linear differential operatorP : C∞(M,E) →C∞(M,F). There is a unique linear differential
operatorP∗ : C∞(M,F∗) → C∞(M,E∗) called theformal adjoint of Psuch that for any
ϕ ∈ D(M,E) andψ ∈ D(M,F∗)

∫

M
ψ(Pϕ) dV =

∫

M
(P∗ψ)(ϕ) dV. (2)

If P is of orderk, then so isP∗ and (2) holds for allϕ ∈Ck(M,E) andψ ∈Ck(M,F∗) such
that supp(ϕ)∩supp(ψ) is compact. With respect to the canonical identificationE = (E∗)∗

we have(P∗)∗ = P.
Any linear differential operatorP : C∞(M,E) →C∞(M,F) extends canonically to a linear
operatorP : D

′(M,E,W) → D
′(M,F,W) by

(PT)[ϕ ] := T[P∗ϕ ]

whereϕ ∈ D(M,F∗). If a sequence(ϕn)n converges inD(M,F∗) to 0, then the sequence
(P∗ϕn)n converges to 0 as well becauseP∗ is a differential operator. Hence(PT)[ϕn] =
T[P∗ϕn] → 0. ThereforePT is indeed again a distribution.
The mapP : D ′(M,E,W) → D ′(M,F,W) is K-linear. If P is of orderk andϕ is aCk-
section inE, seen as aK-valued distribution inE, then the distributionPϕ coincides with
the continuous section obtained by applyingP to ϕ classically.
An important special case occurs whenP is of order 0, i. e.P ∈ C∞(M,Hom(E,F)).
Then P∗ ∈ C∞(M,Hom(F∗,E∗)) is the pointwise adjoint. In particular, for a function
f ∈C∞(M,K) we have

( f T)[ϕ ] = T[ f ϕ ].
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2.3 Supports

Definition 2.5. Thesupportof a distributionT ∈ D ′(M,E,W) is defined as the set

supp(T)

:= {x∈ M |∀ neighborhoodU of x ∃ϕ ∈ D(M,E) with supp(ϕ) ⊂U andT[ϕ ] 6= 0}.

It follows from the definition that the support ofT is a closed subset ofM. In caseT is a
L1

loc-section this notion of support coincides with the usual onefor sections.
If for ϕ ∈ D(M,E∗) the supports ofϕ andT are disjoint, thenT[ϕ ] = 0. Namely, for each
x ∈ supp(ϕ) there is a neighborhoodU of x such thatT[ψ ] = 0 whenever supp(ψ) ⊂ U .
Cover the compact set supp(ϕ) by finitely many such open setsU1, . . . ,Uk. Using a partition
of unity one can writeϕ = ψ1 + · · ·+ ψk with ψ j ∈ D(M,E∗) and supp(ψ j) ⊂U j . Hence

T[ϕ ] = T[ψ1 + · · ·+ ψk] = T[ψ1]+ · · ·+T[ψk] = 0.

Be aware that it is not sufficient to assume thatϕ vanishes on supp(T) in order to ensure
T[ϕ ] = 0. For example, ifM = R andE is the trivialK-line bundle letT ∈ D ′(R,K) be
given byT[ϕ ] = ϕ ′(0). Then supp(T) = {0} butT[ϕ ] = ϕ ′(0) may well be nonzero while
ϕ(0) = 0.
If T ∈ D ′(M,E,W) and ϕ ∈ C∞(M,E∗), then the evaluationT[ϕ ] can be defined if
supp(T)∩ supp(ϕ) is compact even if the support ofϕ itself is noncompact. To do this
pick a functionσ ∈ D(M,R) that is constant 1 on a neighborhood of supp(T)∩ supp(ϕ)
and put

T[ϕ ] := T[σϕ ].

This definition is independent of the choice ofσ since for another choiceσ ′ we have

T[σϕ ]−T[σ ′ϕ ] = T[(σ −σ ′)ϕ ] = 0

because supp((σ −σ ′)ϕ) and supp(T) are disjoint.
Let T ∈ D ′(M,E,W) and letΩ ⊂ M be an open subset. Each test sectionϕ ∈ D(Ω,E∗)
can be extended by 0 and yields a test sectionϕ ∈ D(M,E∗). This defines an embedding
D(Ω,E∗)⊂D(M,E∗). By the restriction ofT to Ω we mean its restriction fromD(M,E∗)
to D(Ω,E∗).

Definition 2.6. The singular supportsingsupp(T) of a distributionT ∈ D ′(M,E,W) is
the set of points which do not have a neighborhood restrictedto whichT coincides with a
smooth section.

The singular support is also closed and we always have singsupp(T) ⊂ supp(T).

Example 2.7. For the delta-distributionδx we have supp(δx) = singsupp(δx) = {x}.

2.4 Convergence of distributions

The spaceD ′(M,E) of distributions inE will always be given theweak topology. This
means thatTn → T in D ′(M,E,W) if and only if Tn[ϕ ] → T[ϕ ] for all ϕ ∈ D(M,E∗).
Linear differential operatorsP are always continuous with respect to the weak topology.
Namely, ifTn → T, then we have for everyϕ ∈ D(M,E∗)

PTn[ϕ ] = Tn[P
∗ϕ ] → T[P∗ϕ ] = PT[ϕ ].

Hence
PTn → PT.

Remark 2.8. Let Tn,T ∈C0(M,E) and suppose‖Tn−T‖C0(M) → 0. ConsiderTn andT as
distributions. ThenTn → T in D ′(M,E). In particular, for every linear differential operator
P we havePTn → PT.
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3 Globally hyperbolic Lorentzian manifolds

Next we summarize some notions and facts from Lorentzian geometry. More comprehen-
sive introductions can be found in [2] and in [14].
By a Lorentzian manifoldwe mean a semi-Riemannian manifold whose metric has signa-
ture (−,+, · · · ,+). We denote the Lorentzian metric byg or by 〈·, ·〉. A tangent vector
X ∈ TM is calledtimelike if 〈X,X〉 < 0, lightlike if 〈X,X〉 = 0 andX 6= 0, causal if it
is timelike or lightlike, andspacelikeotherwise. At each pointp ∈ M the set of timelike
vectors inTpM decomposes into two connected components. Atimeorientationon M is a
choice of one of the two connected components of timelike vectors inTpM which depends
continuously onp. This means that we can find a continuous timelike vector fieldonM tak-
ing values in the chosen connected components. Tangent vectors in the chosen connected
component are calledfuture directed, those in the other component are calledpast directed.
Let M be a timeoriented Lorentzian manifold. A piecewiseC1-curve inM is calledtime-
like, lightlike, causal, spacelike, future directed, or past directedif its tangent vectors are
timelike, lightlike, causal, spacelike, future directed,or past directed respectively.
The chronological future IM+ (x) of a pointx ∈ M is the set of points that can be reached
from x by future directed timelike curves. Similarly, thecausal future JM+ (x) of a point
x∈ M consists of those points that can be reached fromx by causal curves and ofx itself.
Thechronological futureof a subsetA⊂ M is defined to beIM

+ (A) := ∪
x∈A

IM
+ (x). Similarly,

thecausal futureof A is JM
+ (A) := ∪

x∈A
JM
+ (x). Thechronological past IM− (A) and thecausal

past JM− (A) are defined by replacing future directed curves by past directed curves. One
has in general thatIM

± (A) is the interior ofJM
± (A) and thatJM

± (A) is contained in the closure
of IM

± (A). The chronological future and past are open subsets but the causal future and past
are not always closed even ifA is closed.

A

JM
+ (A)

IM
+ (A)

bc

JM
− (A)

IM
− (A)

Fig. 1: Causal and chronological future resp. past ofA

We will also use the notationJM(A) := JM
− (A)∪ JM

+ (A). A subsetA ⊂ M is calledpast
compactif A∩ JM

− (p) is compact for allp ∈ M. Similarly, one definesfuture compact
subsets.
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A

b
p

JM
− (p)

Fig. 2: Past compact subset

Definition 3.1. A subsetS of a connected timeoriented Lorentzian manifold is called
achronalif each timelike curve meetsS in at most one point. A subsetS of a connected
timeoriented Lorentzian manifold is calledacausalif each causal curve meetsS in at most
one point. A subsetSof a connected timeoriented Lorentzian manifold is aCauchy hyper-
surfaceif each inextendible timelike curve inM meetsSat exactly one point.

M

S
b

Fig. 3: Cauchy hypersurface

Obviously every acausal subset is achronal, but the reverseis wrong. Any Cauchy hyper-
surface is achronal. Moreover, it is a closed topological hypersurface and it is hit by each
inextendible causal curve in at least one point. Any two Cauchy hypersurfaces inM are
homeomorphic. Furthermore, the causal future and past of a Cauchy hypersurface is past
and future compact respectively.

Definition 3.2. A Lorentzian manifold is said to satisfy thecausality conditionif it does
not contain any closed causal curve.
A Lorentzian manifold is said to satisfy thestrong causality conditionif there are no almost
closed causal curves. More precisely, for each pointp∈M and for each open neighborhood
U of p there exists an open neighborhoodV ⊂ U of p such that each causal curve inM
starting and ending inV is entirely contained inU .
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b

b

b

p

V
U

forbidden!

Fig. 4: Strong causality condition

Obviously, the strong causality condition implies the causality condition.
In order to get a good analytical theory for wave operators wemust impose certain geomet-
ric conditions on the Lorentzian manifold. Here are severalequivalent formulations.

Theorem 3.3. Let M be a connected timeoriented Lorentzian manifold. Thenthe following
are equivalent:

(1) M satisfies the strong causality condition and for all p,q ∈ M the intersection
JM
+ (p)∩JM

− (q) is compact.

(2) There exists a Cauchy hypersurface in M.

(3) There exists a smooth spacelike Cauchy hypersurface in M.

(4) M is foliated by smooth spacelike Cauchy hypersurfaces.More precisely, M is iso-
metric toR×S with metric−βdt2+gt whereβ is a smooth positive function, gt is a
Riemannian metric on S depending smoothly on t∈ R and each{t}×S is a smooth
spacelike Cauchy hypersurface in M.

That (1) implies (4) has been shown by Bernal and Sánchez in [5, Thm. 1.1] using work
of Geroch [11, Thm. 11]. See also [8, Prop. 6.6.8] and [15, p. 209] for earlier mentionings
of this fact. The implications(4) ⇒ (3) and(3) ⇒ (2) are trivial. That (2) implies (1) is
well-known, see e. g. [14, Cor. 39, p. 422].

Definition 3.4. A connected timeoriented Lorentzian manifold satisfying one and hence
all conditions in Theorem 3.3 is calledglobally hyperbolic.

Remark 3.5. If M is a globally hyperbolic Lorentzian manifold, then a nonempty open
subsetΩ ⊂ M is itself globally hyperbolic if and only if for anyp,q∈ Ω the intersection
JΩ
+(p)∩JΩ

−(q) ⊂ Ω is compact. Indeed non-existence of almost closed causal curves inM
directly implies non-existence of such curves inΩ.

Remark 3.6. It should be noted that global hyperbolicity is a conformal notion. The defi-
nition of a Cauchy hypersurface requires only causal concepts. Hence if(M,g) is globally
hyperbolic and we replace the metricg by a conformally related metric ˆg= f ·g, f a smooth
positive function onM, then(M, ĝ) is again globally hyperbolic.

Examples 3.7. Minkowski space is globally hyperbolic. Every spacelike hyperplane is
a Cauchy hypersurface. One can write Minkowski space asR×Rn−1 with the metric
− dt2 +gt wheregt is the Euclidean metric onRn−1 and does not depend ont.
Let (S,g0) be a connected Riemannian manifold andI ⊂ R an interval. The manifold
M = I ×S with the metricg = − dt2 + g0 is globally hyperbolic if and only if(S,g0) is
complete. This applies in particular ifS is compact.
More generally, iff : I →R is a smooth positive function we may equipM = I ×Swith the
metricg = − dt2 + f (t)2 ·g0. Again,(M,g) is globally hyperbolic if and only if(S,g0) is
complete.Robertson-Walker spacetimesand, in particular,Friedmann cosmological mod-
els, are of this type. They are used to discuss big bang, expansion of the universe, and
cosmological redshift, compare [14, Ch. 12]. Another example of this type isdeSitter
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spacetime, whereI = R, S= Sn−1, g0 is the canonical metric ofSn−1 of constant sectional
curvature 1, andf (t) = cosh(t). But Anti-deSitter spacetimeis not globally hyperbolic.
The interior and exteriorSchwarzschild spacetimesare globally hyperbolic. They model
the universe in the neighborhood of a massive static rotionally symmetric body such as a
black hole. They are used to investigate perihelion advanceof Mercury, the bending of
light near the sun and other astronomical phenomena, see [14, Ch. 13].

Lemma 3.8. Let S be a Cauchy hypersurface in a globally hyperbolic Lorentzian manifold
M and let K,K′ ⊂ M be compact.
Then JM± (K)∩S, JM± (K)∩JM

∓ (S), and JM+ (K)∩JM
− (K′) are compact.

4 Wave operators

Let M be a Lorentzian manifold and letE → M be a real or complex vector bundle. A
linear differential operatorP : C∞(M,E)→C∞(M,E) of second order will be called awave
operatoror anormally hyperbolic operatorif its principal symbol is given by the metric,

σP(ξ ) = −〈ξ ,ξ 〉 · idEx

for all x∈ M and allξ ∈ T∗
x M. In other words, if we choose local coordinatesx1, . . . ,xn on

M and a local trivialization ofE, then

P = −
n

∑
i, j=1

gi j (x)
∂ 2

∂xi∂x j +
n

∑
j=1

A j(x)
∂

∂x j +B(x)

whereA j andB are matrix-valued coefficients depending smoothly onx and(gi j )i j is the
inverse matrix of(gi j )i j with gi j = 〈 ∂

∂xi ,
∂

∂xj 〉.

Example 4.1. Let E be the trivial line bundle so that sections inE are just functions. The
d’Alembert operatorP = � = −div◦grad is a wave operator.

Example 4.2. Let E be a vector bundle and let∇ be a connection onE. This connection
together with the Levi-Civita connection onT∗M induces a connection onT∗M⊗E, again
denoted∇. We define theconnection-d’Alembert operator�∇ to be minus the composition
of the following three maps

C∞(M,E)
∇

−→C∞(M,T∗M⊗E)
∇

−→C∞(M,T∗M⊗T∗M⊗E)
tr⊗idE−−−−→C∞(M,E)

where tr :T∗M⊗T∗M → R denotes the metric trace, tr(ξ ⊗η) = 〈ξ ,η〉. We compute the
principal symbol,

σ
�∇(ξ )ϕ = −(tr⊗idE)◦σ∇(ξ )◦σ∇(ξ )(ϕ) = −(tr⊗idE)(ξ ⊗ ξ ⊗ϕ) = −〈ξ ,ξ 〉ϕ .

Hence�∇ is a wave operator.

Example 4.3. Let E = ΛkT∗M be the bundle ofk-forms. Exterior differentiationd :
C∞(M,ΛkT∗M) →C∞(M,Λk+1T∗M) increases the degree by one while the codifferential
δ : C∞(M,ΛkT∗M) →C∞(M,Λk−1T∗M) decreases the degree by one. Whiled is indepen-
dent of the metric, the codifferentialδ does depend on the Lorentzian metric. The operator
P = dδ + δd is a wave operator.

Example 4.4. If M carries a Lorentzian metric and a spin structure, then one can define the
spinor bundleΣM and the Dirac operator

D : C∞(M,ΣM) →C∞(M,ΣM),
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see [1] or [3] for the definitions. The principal symbol ofD is given by Clifford multipli-
cation,

σD(ξ )ψ = ξ ♯ ·ψ .

Hence
σD2(ξ )ψ = σD(ξ )σD(ξ )ψ = ξ ♯ ·ξ ♯ ·ψ = −〈ξ ,ξ 〉ψ .

ThusP = D2 is a wave operator.

5 The Cauchy problem

We now come to the basic initial value problem for wave operators, theCauchy problem.
The local theory of linear hyperbolic operators can be foundin basically any textbook
on partial differential equations. In [10] and [12] the local theory for wave operators on
Lorentzian manifolds is developed. The results of this section are of global nature. They
make statements about solutions to the Cauchy problem whichare defined globally on a
manifold. Proofs of the results of this section can be found in [4, Sec. 3.2].

Theorem 5.1 (Existence and uniqueness of solutions). Let M be a globally hyperbolic
Lorentzian manifold and let S⊂ M be a smooth spacelike Cauchy hypersurface. Letν be
the future directed timelike unit normal field along S. Let E be a vector bundle over M and
let P be a wave operator acting on sections in E.
Then for each u0,u1 ∈ D(S,E) and for each f∈ D(M,E) there exists a unique u∈
C∞(M,E) satisfying Pu= f , u|S = u0, and∇νu|S = u1.

It is unclear how to even formulate the Cauchy problem on a Lorentzian manifold which is
not globally hyperbolic. One would have to replace the concept of a Cauchy hypersurface
by something different to impose the initial conditions upon. Here are two examples which
illustrate what can typically go wrong.

Example 5.2.Let M = S1×Rn−1 with the metricg=−dθ 2+g0 wheredθ 2 is the standard
metric onS1 of length 1 andg0 is the Euclidean metric onRn−1. The universal covering of
M is Minkowski space.
Let us try to impose a Cauchy problem on{θ0}×Rn−1 which is the image of a Cauchy
hypersurface in Minkowski space. Such a solution would liftto Minkowski space where it
indeed exists uniquely due to Theorem 5.1. But such a solution on Minkowski space is in
general not time periodic, hence does not descend to a solution onM.
Therefore existence of solutions fails. The problem is herethat M violates the causality
condition, i. e. there are closed causal curves.

Remark 5.3. Compact Lorentzian manifolds always possess closed timelike curves and
are therefore never well suited for the analysis of wave operators.

Example 5.4. Let M be a timelike strip in 2-dimensional Minkowski space, i. e.M =
R× (0,1) with metricg = −dt2 +dx2. Let S:= {0}× (0,1). Given anyu0,u1 ∈ D(S,E)
and anyf ∈ D(M,E), there exists a solutionu to the Cauchy problem. One can simply
take the solution in Minkowski space and restrict it toM. But this solution is not unique
in M. Choosex in Minkowski space,x 6∈ M, such thatJMink

+ (x) intersectsM in the future
of Sand of supp( f ). The advanced fundamental solutionw = F+(x) (see next section) has
support contained inJMink

+ (x) and satisfiesPw= 0 away fromx. Henceu+w restricted to
M is again a solution to the Cauchy problem onM with the same initial data.
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M

S

supp( f )
x

JMink
+ (x)

supp(u0)∪supp(u1)

Fig. 5: Nonunique solution to Cauchy problem

The problem is here thatS is acausal but not a Cauchy hypersurface. Physically, a wave
“from outside the manifold” enters intoM.

The physical statement that a wave can never propagate faster than with the speed of light
is contained in the following.

Theorem 5.5 (Finite propagation speed). The solution u from Theorem 5.1 satisfies
supp(u) ⊂ JM(K) where K= supp(u0)∪supp(u1)∪supp( f ).

The solution to the Cauchy problem depends continuously on the data.

Theorem 5.6(Stability). Let M be a globally hyperbolic Lorentzian manifold and let S⊂M
be a smooth spacelike Cauchy hypersurface. Letν be the future directed timelike unit
normal field along S. Let E be a vector bundle over M and let P be awave operator acting
on sections in E.
Then the mapD(M,E)⊕D(S,E)⊕D(S,E)→C∞(M,E) sending( f ,u0,u1) to the unique
solution u of the Cauchy problem Pu= f , u|S = u|0, ∇ν u = u1 is linear continuous.

This is essentially an application of the open mapping theorem for Fréchet spaces.

6 Fundamental solutions

Definition 6.1. Let M be a timeoriented Lorentzian manifold, letE →M be a vector bundle
and letP : C∞(M,E) →C∞(M,E) be a wave operator. Letx∈ M. A fundamental solution
of P at x is a distributionF ∈ D ′(M,E,E∗

x ) such that

PF = δx.

In other words, for allϕ ∈ D(M,E∗) we have

F [P∗ϕ ] = ϕ(x).

If supp(F(x)) ⊂ JM
+ (x), then we callF anadvanced fundamental solution, if supp(F(x))⊂

JM
− (x), then we callF a retarded fundamental solution.

Using the knowlegde about the Cauchy problem from the previous section it is now not
hard to find global fundamental solutions on a globally hyperbolic manifold.

Theorem 6.2. Let M be a globally hyperbolic Lorentzian manifold. Let P be awave
operator acting on sections in a vector bundle E over M.
Then for every x∈ M there is exactly one fundamental solution F+(x) for P at x with past
compact support and exactly one fundamental solution F−(x) for P at x with future compact
support. They satisfy

10



1. supp(F±(x)) ⊂ JM
± (x),

2. for eachϕ ∈ D(M,E∗) the maps x7→ F±(x)[ϕ ] are smooth sections in E∗ satisfying
the differential equation P∗(F±(·)[ϕ ]) = ϕ .

Sketch of proof.We do not do the uniqueness part. To show existence fix a foliation of M
by spacelike Cauchy hypersurfacesSt , t ∈R as in Theorem 3.3. Letν be the future directed
unit normal field along the leavesSt . Let ϕ ∈ D(M,E∗). Chooset so large that supp(ϕ) ⊂
IM
− (St). By Theorem 5.1 there exists a uniqueχϕ ∈ C∞(M,E∗) such thatP∗χϕ = ϕ and

χϕ |St = (∇ν χϕ)|St = 0. One can check thatχϕ does not depend on the choice oft.
Fix x ∈ M. By Theorem 5.6χϕ depends continuously onϕ . Since the evaluation map
C∞(M,E) → Ex is continuous, the mapD(M,E∗) → E∗

x , ϕ 7→ χϕ(x), is also continuous.
ThusF+(x)[ϕ ] := χϕ(x) defines a distribution. By definitionP∗(F+(·)[ϕ ]) = P∗χϕ = ϕ .
Now P∗χP∗ϕ = P∗ϕ , henceP∗(χP∗ϕ −ϕ) = 0. Since bothχP∗ϕ andϕ vanish alongSt the
uniqueness part which we have omitted showsχP∗ϕ = ϕ . Thus

(PF+(x))[ϕ ] = F+(x)[P∗ϕ ] = χP∗ϕ(x) = ϕ(x) = δx[ϕ ].

HenceF+(x) is a fundamental solution ofP atx.
It remains to show supp(F+(x)) ⊂ JM

+ (x). Let y ∈ M \ JM
+ (x). We have to construct a

neighborhood ofy such that for each test sectionϕ ∈D(M,E∗) whose support is contained
in this neighborhood we haveF+(x)[ϕ ] = χϕ(x) = 0. SinceM is globally hyperbolicJM

+ (x)
is closed and thereforeJM

+ (x)∩JM
− (y′) = /0 for all y′ sufficiently close toy. We choosey′ ∈

IM
+ (y) andy′′ ∈ IM

− (y) so close thatJM
+ (x)∩JM

− (y′) = /0 and
(
JM
+ (y′′)∩

⋃

t≤t′ St
)
∩JM

+ (x) = /0
wheret ′ ∈ R is such thaty′ ∈ St′ .

St′

by
b

y′

JM
− (y′)

b

y′′

JM
+ (y′′)∩ (∪t≤t ′St)

b

x

JM
+ (x)

b

Fig. 6: Construction ofy, y′ andy′′

Now K := JM
− (y′)∩ JM

+ (y′′) is a compact neighborhood ofy. Let ϕ ∈ D(M,E∗) be such
that supp(ϕ) ⊂ K. By Theorem 5.1 supp(χϕ ) ⊂ JM

+ (K)∪ JM
− (K) ⊂ JM

+ (y′′)∪ JM
− (y′). By

the independence ofχϕ of the choice oft > t ′ we have thatχϕ vanishes on
⋃

t>t′ St .
Hence supp(χϕ) ⊂

(
JM
+ (y′′)∩

⋃

t≤t′ St
)
∪JM

− (y′) and is therefore disjoint fromJM
+ (x). Thus

F+(x)[ϕ ] = χϕ(x) = 0 as required.

For a complete proof see [4, Sec. 3.3].
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7 Green’s operators

Now we want to find “solution operators” for a given wave operator P. More precisely,
we want to find operators which are inverses ofP when restricted to suitable spaces of
sections. We will see that existence of such operators is basically equivalent to the existence
of fundamental solutions.

Definition 7.1. Let M be a timeoriented connected Lorentzian manifold. LetP be a wave
operator acting on sections in a vector bundleE overM. A linear mapG+ : D(M,E) →
C∞(M,E) satisfying

(i) P◦G+ = idD(M,E),

(ii) G+ ◦P|D(M,E) = idD(M,E),

(iii) supp(G+ϕ) ⊂ JM
+ (supp(ϕ)) for all ϕ ∈ D(M,E),

is called anadvanced Green’s operator for P. Similarly, a linear mapG− : D(M,E) →
C∞(M,E) satisfying (i), (ii), and

(iii’) supp(G−ϕ) ⊂ JM
− (supp(ϕ)) for all ϕ ∈ D(M,E)

instead of (iii) is called aretarded Green’s operator for P.

Fundamental solutions and Green’s operators are closely related.

Theorem 7.2. Let M be a globally hyperbolic Lorentzian manifold. Let P be awave
operator acting on sections in a vector bundle E over M.
Then there exist unique advanced and retarded Green’s operators G± : D(M,E) →
C∞(M,E) for P.

Proof. By Theorem 6.2 there exist familiesF±(x) of advanced and retarded fundamental
solutions for the adjoint operatorP∗ respectively. We know thatF±(x) depend smoothly on
x and the differential equationP(F±(·)[ϕ ]) = ϕ holds. By definition we have

P(G±ϕ) = P(F∓(·)[ϕ ]) = ϕ

thus showing (i). Assertion (ii) follows from the fact that theF±(x) are fundamental solu-
tions,

G±(Pϕ)(x) = F∓(x)[Pϕ ] = P∗F∓(x)[ϕ ] = δx[ϕ ] = ϕ(x).

To show (iii) letx∈ M such that(G+ϕ)(x) 6= 0. Since supp(F−(x)) ⊂ JM
− (x) the support of

ϕ must hitJM
− (x). Hencex∈ JM

+ (supp(ϕ)) and therefore supp(G+ϕ) ⊂ JM
+ (supp(ϕ)). The

argument forG− is analogous.

We have seen that existence of fundamental solutions forP∗ depending nicely onx implies
existence of Green’s operators forP. This construction can be reversed. Then uniqueness
of fundamental solutions in Theorem 6.2 implies uniquenessof Green’s operators.

Lemma 7.3. Let M be a globally hyperbolic Lorentzian manifold. Let P be awave operator
acting on sections in a vector bundle E over M. Let G± be the Green’s operators for P and
G∗
± the Green’s operators for the adjoint operator P∗. Then

∫

M
(G∗

±ϕ) ·ψ dV =

∫

M
ϕ · (G∓ψ) dV (3)

holds for allϕ ∈ D(M,E∗) andψ ∈ D(M,E).

12



Proof. For the Green’s operators we havePG± = idD(M,E) and P∗G∗
± = idD(M,E∗) and

hence
∫

M
(G∗

±ϕ) ·ψ dV =

∫

M
(G∗

±ϕ) · (PG∓ψ) dV

=

∫

M
(P∗G∗

±ϕ) · (G∓ψ) dV

=
∫

M
ϕ · (G∓ψ) dV.

Notice that supp(G±ϕ)∩supp(G∓ψ)⊂ JM
± (supp(ϕ))∩JM

∓ (supp(ψ)) is compact in a glob-
ally hyperbolic manifold so that the partial integration inthe second equation is justi-
fied.

Notation 7.4. We writeC∞
sc(M,E) for the set of allϕ ∈ C∞(M,E) for which there exists

a compact subsetK ⊂ M such that supp(ϕ) ⊂ JM(K). Obviously,C∞
sc(M,E) is a vector

subspace ofC∞(M,E).
The subscript “sc” should remind the reader of “space-like compact”. Namely, ifM is
globally hyperbolic andϕ ∈ C∞

sc(M,E), then for every Cauchy hypersurfaceS⊂ M the
support ofϕ |S is contained inS∩ JM(K) hence compact by Lemma 3.8. In this sense
sections inC∞

sc(M,E) have space-like compact support.

Definition 7.5. We say that a sequence of elementsϕ j ∈C∞
sc(M,E) converges in C∞sc(M,E)

to ϕ ∈C∞
sc(M,E) if there exists a compact subsetK ⊂ M such that

supp(ϕ) ⊂ JM(K) and supp(ϕ j) ⊂ JM(K)

for all j and
‖ϕ j −ϕ‖Ck(K′,E) → 0

for all k∈ N and all compact subsetsK′ ⊂ M.

If G+ andG− are advanced and retarded Green’s operators forP respectively, then we get
a linear map

G := G+−G− : D(M,E) →C∞
sc(M,E).

Much of the solution theory of wave operators on globally hyperbolic Lorentzian manifolds
is collected in the following theorem.

Theorem 7.6. Let M be a globally hyperbolic Lorentzian manifold. Let P be awave
operator acting on sections in a vector bundle E over M. Let G+ and G− be advanced and
retarded Green’s operators for P respectively.
Then

0→ D(M,E)
P

−→ D(M,E)
G

−→C∞
sc(M,E)

P
−→C∞

sc(M,E) (4)

is an exact sequence of linear maps.

Proof. Properties (i) and (ii) in Definition 7.1 of Green’s operators directly yieldG◦P= 0
andP◦G = 0, both onD(M,E). Properties (iii) and (iii’) ensure thatG mapsD(M,E) to
C∞

sc(M,E). Hence the sequence of linear maps forms a complex.
Exactness at the firstD(M,E) means that

P : D(M,E) → D(M,E)

is injective. To see injectivity letϕ ∈D(M,E) with Pϕ = 0. Thenϕ = G+Pϕ = G+0 = 0.
Next let ϕ ∈ D(M,E) with Gϕ = 0, i. e. G+ϕ = G−ϕ . We put ψ := G+ϕ =
G−ϕ ∈ C∞(M,E) and we see supp(ψ) = supp(G+ϕ) ∩ supp(G−ϕ) ⊂ JM

+ (supp(ϕ)) ∩
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JM
− (supp(ϕ)). Since(M,g) is globally hyperbolicJM

+ (supp(ϕ))∩ JM
− (supp(ϕ)) is com-

pact, henceψ ∈ D(M,E). From P(ψ) = P(G+(ϕ)) = ϕ we see thatϕ ∈ P(D(M,E)).
This shows exactness at the secondD(M,E).
Finally, let ϕ ∈ C∞

sc(M,E) such thatPϕ = 0. Without loss of generality we may as-
sume that supp(ϕ) ⊂ IM

+ (K)∪ IM
− (K) for a compact subsetK of M. Using a partition of

unity subordinated to the open covering{IM
+ (K), IM

− (K)} write ϕ asϕ = ϕ1 + ϕ2 where
supp(ϕ1) ⊂ IM

− (K) ⊂ JM
− (K) and supp(ϕ2) ⊂ IM

+ (K) ⊂ JM
+ (K). Forψ := −Pϕ1 = Pϕ2 we

see that supp(ψ) ⊂ JM
− (K)∩JM

+ (K), henceψ ∈ D(M,E).
We check thatG+ψ = ϕ2. For all χ ∈ D(M,E∗) we have

∫

M
χ · (G+Pϕ2) dV =

∫

M
(G∗

−χ) · (Pϕ2) dV =

∫

M
(P∗G∗

−χ) ·ϕ2 dV =

∫

M
χ ·ϕ2 dV

whereG∗
− is the Green’s operator for the adjoint operatorP∗ according to Lemma 7.3.

Notice that for the second equation we use the fact that supp(ϕ2)∩supp(G∗
−χ)⊂ JM

+ (K)∩
JM
− (supp(χ)) is compact. Similarly, one showsG−ψ = −ϕ1.

Now Gψ = G+ψ −G−ψ = ϕ2 + ϕ1 = ϕ , henceϕ is in the image ofG.

Proposition 7.7. Let M be a globally hyperbolic Lorentzian manifold, let P be awave
operator acting on sections in a vector bundle E over M. Let G+ and G− be the advanced
and retarded Green’s operators for P respectively.
Then G± : D(M,E) →C∞

sc(M,E) and all maps in the complex (4) are continuous.

Proof. The mapsP : D(M,E) → D(M,E) and P : C∞
sc(M,E) → C∞

sc(M,E) are continu-
ous simply becauseP is a differential operator. It remains to show thatG : D(M,E) →
C∞

sc(M,E) is continuous.
Let ϕ j ,ϕ ∈ D(M,E) andϕ j → ϕ in D(M,E) for all j. Then there exists a compact subset
K ⊂ M such that supp(ϕ j) ⊂ K for all j and supp(ϕ) ⊂ K. Hence supp(Gϕ j) ⊂ JM(K) for
all j and supp(Gϕ)⊂ JM(K). From the proof of Theorem 6.2 we know thatG+ϕ coincides
with the solutionu to the Cauchy problemPu= ϕ with initial conditionsu|S− = (∇ν u)|S− =
0 whereS− ⊂ M is a spacelike Cauchy hypersurface such thatK ⊂ IM

+ (S−). Theorem 5.6
tells us that ifϕ j → ϕ in D(M,E), then the solutionsG+ϕ j → G+ϕ in C∞(M,E). The
proof forG− is analogous and the statement forG follows.

References

[1] H. BAUM : Spin-Strukturen und Dirac-Operatoren̈uber pseudoriemannschen Man-
nigfaltigkeiten. Teubner, Leipzig, 1981

[2] J. K. BEEM, P. E. EHRLICH, AND K. L. EASLEY: Global Lorentzian Geometry
(second edition). Marcel Dekker, New York-Basel-Hong Kong, 1996
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[12] P. GÜNTHER: Huygens’ Principle and Hyperbolic Equations. Academic Press,
Boston, 1988

[13] J. LERAY: Hyperbolic Differential Equations. Unpublished Lecture Notes, Princeton,
1953

[14] B. O’NEILL : Semi-Riemannian Geometry. Academic Press, San Diego, 1983

[15] R. M. WALD : General Relativity. University of Chicago Press, Chicago, 1984

15



Index
acausal subset, 6
achronal subset, 6
anti-deSitter spacetime, 8

big bang, 7
black hole, 8

Cauchy hypersurface, 6
Cauchy problem, 9

existence and uniqueness of solutions,
9

stability of solutions, 10
causal future, 5
causal past, 5
causality condition, 6
chronological future, 5
chronological past, 5
compactly supported smooth sections, 2
completeness, 2
connection, 2
connection-d’Alembert operator, 8
cosmological redshift, 7
curve

causal, 5
future directed, 5
lightlike, 5
past directed, 5
spacelike, 5
timelike, 5

d’Alembert operator, 8
delta-distribution, 3
deSitter spacetime, 8
Dirac operator, 8
distributional section, 3

singular support of, 4
support of, 4

electro-magnetic radiation, 1
elliptic operator, 1
essentially self-adjoint, 2
expansion of the universe, 7

finite propagation speed, 10
Friedmann cosmological model, 7
fundamental solution, 10

advanced, 10
retarded, 10

future compact subset, 5

general relativity, 1
Green’s operator

advanced, 12
continuity of, 14
retarded, 12

initial value problem, 9

Laplace-Beltrami operator, 1
linear differential operator, 3

acting on distributions, 3
formal adjoint of, 3

Lorentzian cylinder, 2
Lorentzian manifold, 1, 5

globally hyperbolic, 7
Lorentzian metric, 5

Minkowski space, 7

normally hyperbolic operator, 8

past compact subset, 5

Riemannian manifold, 1
Robertson-Walker spacetime, 7

Schwarzschild spacetime, 8
space-like compact support, 13
spacetime, 1
strong causality condition, 6

tangent vector
causal, 5
future directed, 5
lightlike, 5
past directed, 5
spacelike, 5
timelike, 5

test sections, 2
convergence of, 2

timeorientation, 5

wave operator, 8
weak topology, 4

16


