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Abstract

We summarize the analytic theory of linear wave equationglobally hyperbolic
Lorentzian manifolds.
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1 Introduction

In General Relativity spacetime is modelled by a Lorentzizamifold, see e. g. [8, 15].
Many physical phenomena, such as electro-magnetic radjadie described by solutions
to certain linear wave equations defined on this spacetim@faid. Thus a good under-
standing of the theory of wave equations is crucial. Thitides initial value problems (the
Cauchy problem), fundamental solutions, and inverse opex§Green’s operators). The
classical textbooks on partial differential equationstaenthe relevant results for small
domains in Lorentzian manifolds or for very special marmd&such as Minkowski space.
In this text we summarize the global analytic results oledim [4], see also Leray’s un-
published lecture notes [13] and Choquet-Bruhat's exjfwosit7]. In order to obtain a
good solution theory one has to impose certain geometridiions on the underlying
manifold. The situation is similar to the study of elliptip@rators on Riemannian mani-
folds. In order to ensure that the Laplace-Beltrami operatoa Riemannian manifolill

is essentially self-adjoint one may make the natural astomghatM be complete. Un-
fortunately, there is no good notion of completeness foebtzian manifolds. It will turn



out that the analysis of wave operators works out nicely & assumes that the underlying
Lorentzian manifold be globally hyperbolic. Completenet&iemannian manifolds and
global hyperbolicity of Lorentzian manifolds are indeethted. If (S, gp) is a Riemannian
manifold, then the Lorentzian cylind& = R x Swith product metriog = —dt?+ gq is
globally hyperbolic if and only i{S gp) is complete.

We will start by collecting some material on distributiosattions in vector bundles. Then
we will summarize the theory of globally hyperbolic Loreiatz manifolds. Then we will
define wave operators, also called normally hyperbolicajoes, and give some examples.
After that we consider the basic initial value problem, ttai€hy problem. It turns out that
on a globally hyperbolic manifold solutions exist and aréque. They depend continu-
ously on the initial data. The support of the solutions candygrolled which is physically
nothing than the statement that a wave can never propagate fhan with the speed of
light. In the subsequent section we use the results on thehyeuroblem to show exis-
tence and unigueness of fundamental solutions. This iglgloslated to the existence and
unigueness of Green’s operators.

The author is very grateful for many helpful discussiongwablleagues including Helga
Baum, Olaf Miller, Nicolas Ginoux, Frank Pfaffle, and M&wBanchez. The author also
thanks the Deutsche Forschungsgemeinschaft for finangalost.

2 Distributional sections in vector bundles

Let us start by giving some definitions and by fixing the temtogy for distributions on
manifolds. We will confine ourselves to those facts that wi aditually need later on. A
systematic and much more complete introduction may be feugdin [9].

2.1 Preliminaries on distributional sections

Let M be a manifold equipped with a smooth volume density dV. Latewe will use the
volume density induced by a Lorentzian metric but this islevant for now. We consider
a real or complex vector bundie— M. We will always writeK = R or K = C depending
on whethelE is real or complex. The space of compactly supported smautiions inE
will be denoted by? (M, E). We equipE and the cotangent bundléM with connections,
both denoted byl. They induce connections on the tensor bundldd ® --- @ T*M ® E,
again denoted b¥l. For a continuously differentiable sectignc C1(M,E) the covariant
derivative is a continuous sectionTiM ® E, O¢ € C°(M, T*M ® E). More generally, for
¢ € CK(M,E) we getTk¢ c COM, T*"M @ --- @ T*"M QE).

k factors
We choose an auxiliary Riemannian metric BtV and an auxiliary Riemannian or Her-
mitian metric onE depending on whethé&t is real or complex. This induces metrics on all
bundlesT*M ® - --® T*M @ E. Hence the norm dfl*¢ is defined at all points df1.
For a subsef Cc M and¢ < CK(M,E) we define theC*-norm by

[ llcxea) == max sup|0' ¢ (x)]. (1)
j=0,...k xeA

If Aiis compact, then different choices of the metrics and thaeotions yield equivalent
norms| - [|cx (). For this reason there will be no need to explicitly spedify metrics and
the connections.

The elements of2(M,E) are referred to as test sectionsin We define a notion of
convergence of test sections.

Definition 2.1. Let ¢, ¢, € 2(M,E). We say that the sequen¢gn), converges ta in
2(M,E) if the following two conditions hold:

1. Thereis a compact sEtC M such that the supports ¢fand of all¢,, are contained
in K, i. e. supp¢),supd¢n) C K for all n.



2. The sequencg,)n converges t@ in all Ck-norms oveiK, i. e. for eactk € N

16— ¢nllck) —2 0
We fix a finite-dimensionaK-vector spac&V. Recall thatk = R or K = C depending on
whetherE is real or complex. Denote ly* the vector bundle ovevl dual toE.

Definition 2.2. A K-linear magF : 2(M,E*) — W is called adistribution in E with values
in W or adistributional section in E with values in W it is continuous in the sense
that for all convergent sequencés — ¢ in 2(M,E*) one hask[¢n] — F[¢]. We write
2'(M,E,W) for the space of alV-valued distributions ir.

Note that sinc&V is finite-dimensional all normg | onW yield the same topology oW.
Hence there is no need to specify a norm\drfor Definition 2.2 to make sense. Note
moreover, that distributional sectionsEnact on test sections i&*.

Example 2.3. Pick a bundleE — M and a pointx € M. The delta-distributiondy is a
distributional section ifE with values inE;. For$ € 2(M,E*) itis defined by

Example 2.4. Every locally integrable sectiofi € L&)C

valued distribution irE by setting for anyp € 2(M,E*)

(M,E) can be regarded asl&-

flo]:= [ p()av.

Here¢ () denotes th&-valuedL!-function with compact support dvi obtained by point-
wise application ofp (x) € E;; to f(x) € Ex.

2.2 Differential operators acting on distributions

Let E andF be twoK-vector bundles over the manifoM, K =R or K = C. Consider a
linear differential operatde : C*(M,E) — C*(M,F). There is a unique linear differential
operatorP* : C*(M,F*) — C*(M,E*) called theformal adjoint of Psuch that for any
¢ € 2(M,E) andy € 2(M,F*)

| wPo)av= [ P'w)@) av. @

If Pis of orderk, then so i?* and (2) holds for alp € C¥(M,E) andy € CK(M,F*) such
that supid¢ ) Nsupg () is compact. With respect to the canonical identificatios (E*)*
we have(P*)* = P.

Any linear differential operatoP : C*(M,E) — C*(M,F) extends canonically to a linear
operatoiP : 2'(M,E,W) — 2'(M,F,W) by

(PT)[¢]:=T[P"¢]

where¢ € Z(M,F*). If a sequencéd,), converges irZ(M,F*) to 0, then the sequence
(P*¢n)n converges to 0 as well becauBt is a differential operator. Hend®T)|[¢n] =
T[P*¢n] — 0. ThereforePT is indeed again a distribution.
The mapP : 2'(M,E,W) — 2'(M,F,W) is K-linear. If P is of orderk and ¢ is a C*-
section inE, seen as &-valued distribution irE, then the distributiofP¢ coincides with
the continuous section obtained by applyiitp ¢ classically.
An important special case occurs whBnis of order 0, i. e.P € C*(M,Hom(E,F)).
Then P* € C*(M,Hom(F*,E*)) is the pointwise adjoint. In particular, for a function
f € C*(M,K) we have

(fT)[$] =T[t9].



2.3 Supports
Definition 2.5. Thesupportof a distributionT € 2'(M, E,W) is defined as the set

Supp(T)
= {xe M|V neighborhood) of x3¢ € 2(M,E) with supg¢) C U andT[¢] # O}.

It follows from the definition that the support @fis a closed subset &fl. In caseT is a
L1 -section this notion of support coincides with the usual famesections.

If for ¢ € 2(M,E*) the supports o andT are disjoint, the [¢] = 0. Namely, for each
X € supf¢) there is a neighborhodd of x such thafT [y] = 0 whenever supjy) C U.
Cover the compact set su@p) by finitely many such open sétg, .. .,Uk. Using a partition
of unity one can writg) = Y + - - - + Y with ¢; € 2(M,E*) and suppy;) C U;. Hence

T =T+ -+ =Tg]+---+ T[] =0.

Be aware that it is not sufficient to assume thatanishes on sugiy ) in order to ensure
T[¢] = 0. For example, iM = R andE is the trivial K-line bundle lefT € 2'(R,K) be
given byT[¢] = ¢’(0). Then suppT) = {0} butT[¢] = ¢'(0) may well be nonzero while
$(0) =0.
If T e 2'(ME,W) and ¢ € C*°(M,E*), then the evaluatior [¢] can be defined if
supgT) Nsupfd¢) is compact even if the support ¢f itself is noncompact. To do this
pick a functiono € 2(M,R) that is constant 1 on a neighborhood of s(ipp sup¢)
and put

T[¢]:=To¢].

This definition is independent of the choicemkince for another choice’ we have
T(og]-T[o'¢]=T[(c—0')¢] =0

because sufpo — o’)¢) and suppT) are disjoint.

LetT € 2'(M,E,W) and letQ c M be an open subset. Each test sectpoa 2(Q,E*)
can be extended by 0 and yields a test seofiagn 2(M,E*). This defines an embedding
2(Q,E*) C 2(M,E*). By the restriction off to Q we mean its restriction fro¥ (M, E*)

to 2(Q,E*).

Definition 2.6. The singular supportsingsupgT) of a distributionT € 2'(M,E,W) is
the set of points which do not have a neighborhood restrictechich T coincides with a
smooth section.

The singular support is also closed and we always have SipgBuC supgT).

Example 2.7. For the delta-distributiody we have sup@x) = singsuppdy) = {x}.

2.4 Convergence of distributions

The spaceZ’(M,E) of distributions inE will always be given theveak topology This
means thaf, — T in 2'(M,E,W) if and only if T,[¢] — T[¢] for all p € Z(M,E*).
Linear differential operatorB are always continuous with respect to the weak topology.
Namely, if T, — T, then we have for every € 2(M,E*)

PTh(¢] = Ta[P"¢] — T[P"¢] = PT[4].

Hence
PT, — PT.

Remark 2.8. LetT,, T € C°(M,E) and supposgT, —Tllcom) — 0. Considefl, andT as
distributions. The, — T in 2'(M,E). In particular, for every linear differential operator
P we havePT, — PT.



3 Globally hyperbolic Lorentzian manifolds

Next we summarize some notions and facts from Lorentziamgéy. More comprehen-
sive introductions can be found in [2] and in [14].

By a Lorentzian manifoldve mean a semi-Riemannian manifold whose metric has signa-
ture (—,+,---,+). We denote the Lorentzian metric lgyor by (-,-). A tangent vector

X € TM is calledtimelikeif (X,X) < 0, lightlike if (X,X) =0 andX # 0, causalif it

is timelike or lightlike, andspacelikeotherwise. At each poinp € M the set of timelike
vectors inTpM decomposes into two connected componenttim&orientationon M is a
choice of one of the two connected components of timelikeoreén T,M which depends
continuously orp. This means that we can find a continuous timelike vector fialdl tak-

ing values in the chosen connected components. Tangemtrsectthe chosen connected
component are callddture directedthose in the other component are caliedt directed
Let M be a timeoriented Lorentzian manifold. A piecew@ecurve inM is calledtime-
like, lightlike, causal, spacelike, future directemt past directedf its tangent vectors are
timelike, lightlike, causal, spacelike, future directedpast directed respectively.

The chronological future M(x) of a pointx € M is the set of points that can be reached
from x by future directed timelike curves. Similarly, tiiausal future ¥ (x) of a point

X € M consists of those points that can be reached fxdim causal curves and afitself.
Thechronological futureof a subseA C M is defined to béM (A) ::XgA IM(x). Similarly,

thecausal futureof Ais IM(A) = U, JM(x). Thechronological pastY (A) and thecausal
Xe

past M(A) are defined by replacing future directed curves by past @idecurves. One
has in general that/ (A) is the interior ofJ}! (A) and that!¥ (A) is contained in the closure
of IM(A). The chronological future and past are open subsets buatisatfuture and past
are not always closed everéAfis closed.

Fig. 1: Causal and chronological future resp. pagk of

We will also use the notatiod™(A) := JM(A) UIM(A). A subsetA C M is calledpast
compactif AnJM(p) is compact for allp € M. Similarly, one definesuture compact
subsets.



M(p)

Fig. 2: Past compact subset

Definition 3.1. A subsetS of a connected timeoriented Lorentzian manifold is called
achronalif each timelike curve meetSin at most one point. A subs&of a connected
timeoriented Lorentzian manifold is calledausalif each causal curve mee$sn at most
one point. A subse® of a connected timeoriented Lorentzian manifold Sauchy hyper-
surfaceif each inextendible timelike curve il meetsS at exactly one point.

Fig. 3: Cauchy hypersurface

Obviously every acausal subset is achronal, but the rei@mgeng. Any Cauchy hyper-
surface is achronal. Moreover, it is a closed topologicaldrgurface and it is hit by each
inextendible causal curve in at least one point. Any two @gutypersurfaces iM are
homeomorphic. Furthermore, the causal future and past efue!ty hypersurface is past
and future compact respectively.

Definition 3.2. A Lorentzian manifold is said to satisfy tleausality conditiorif it does
not contain any closed causal curve.

A Lorentzian manifold is said to satisfy tiserong causality conditioif there are no almost
closed causal curves. More precisely, for each ppintM and for each open neighborhood
U of p there exists an open neighborhdéd- U of p such that each causal curveMh
starting and ending i¥ is entirely contained itJ.
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Fig. 4: Strong causality condition

Obviously, the strong causality condition implies the @ditag condition.
In order to get a good analytical theory for wave operatorsnet impose certain geomet-
ric conditions on the Lorentzian manifold. Here are sevegaiivalent formulations.

Theorem 3.3. Let M be a connected timeoriented Lorentzian manifold. Therfollowing
are equivalent:

(1) M satisfies the strong causality condition and for allgge M the intersection
IM(p)nIM(q) is compact.

(2) There exists a Cauchy hypersurface in M.
(3) There exists a smooth spacelike Cauchy hypersurface in M

(4) M is foliated by smooth spacelike Cauchy hypersurfabése precisely, M is iso-
metric toR x S with metric—Bdt? + g wherep is a smooth positive function; & a
Riemannian metric on S depending smoothly aerlt and each{t} x S is a smooth
spacelike Cauchy hypersurface in M.

That (1) implies (4) has been shown by Bernal and Sancheg, ifitjm. 1.1] using work
of Geroch [11, Thm. 11]. See also [8, Prop. 6.6.8] and [1508] Por earlier mentionings
of this fact. The implication$4) = (3) and(3) = (2) are trivial. That (2) implies (1) is
well-known, see e. g. [14, Cor. 39, p. 422].

Definition 3.4. A connected timeoriented Lorentzian manifold satisfyimge @nd hence
all conditions in Theorem 3.3 is callgdobally hyperbolic

Remark 3.5. If M is a globally hyperbolic Lorentzian manifold, then a nonémgpen
subsetfQ C M is itself globally hyperbolic if and only if for any,q € Q the intersection
J2(p)NJI%(q) C Qis compact. Indeed non-existence of almost closed causa€inM
directly implies non-existence of such curve<in

Remark 3.6. It should be noted that global hyperbolicity is a conformation. The defi-
nition of a Cauchy hypersurface requires only causal cascéfence if(M,g) is globally
hyperbolic and we replace the metgiby a conformally related metrig= f - g, f a smooth
positive function orM, then(M, §) is again globally hyperbolic.

Examples 3.7. Minkowski space is globally hyperbolic. Every spacelikeplgplane is
a Cauchy hypersurface. One can write Minkowski spac® asR"~! with the metric
— dt? + g whereg; is the Euclidean metric oR™ ! and does not depend on

Let (S,go) be a connected Riemannian manifold dnd R an interval. The manifold
M = I x Swith the metricg = — dt? 4 g is globally hyperbolic if and only ifS,go) is
complete. This applies in particularsfis compact.

More generally, iff : 1 — R is a smooth positive function we may eqiip= | x Swith the
metricg = — dt? + f(t)2- go. Again, (M,g) is globally hyperbolic if and only ifS, go) is
complete.Robertson-Walker spacetimasd, in particularFriedmann cosmological mod-
els, are of this type. They are used to discuss big bang, expawsithe universe, and
cosmological redshift, compare [14, Ch. 12]. Another exi@ng this type isdeSitter



spacetimewherel =R, S= S™1, gy is the canonical metric "1 of constant sectional
curvature 1, and (t) = cosht). But Anti-deSitter spacetimie not globally hyperbolic.
The interior and exterioBchwarzschild spacetimase globally hyperbolic. They model
the universe in the neighborhood of a massive static rofipegmmetric body such as a
black hole. They are used to investigate perihelion advafdéercury, the bending of
light near the sun and other astronomical phenomena, se€fl43].

Lemma 3.8. Let S be a Cauchy hypersurface in a globally hyperbolic Ltaian manifold
M and let K K’ ¢ M be compact.
Then ¥(K)n'S, 3(K)nI*(S), and I (K) nIM(K’) are compact.

4 \Wave operators

Let M be a Lorentzian manifold and I& — M be a real or complex vector bundle. A
linear differential operatd? : C*(M,E) — C*(M, E) of second order will be calledwave
operatoror anormally hyperbolic operatoif its principal symbol is given by the metric,

op(&) = —(£, &) -idg,

for all x e M and allé € TM. In other words, if we choose local coordinats .., x" on
M and a local trivialization oE, then

n ij 02 n a
zg dx'dxl ZA()0XJ+B()

i,]=1 =1

whereA; andB are matrix-valued coefficients depending smoothlyand (g’ )ij is the

inverse matrix of gij )i; with gi; = <%, %).

Example 4.1. Let E be the trivial line bundle so that sectionskrare just functions. The
d’Alembert operatoP = [0 = — divograd is a wave operator.

Example 4.2. Let E be a vector bundle and I&t be a connection o&. This connection
together with the Levi-Civita connection @M induces a connection oh*M ® E, again
denoted]. We define theonnection-d’Alembert operatai” to be minus the composition
of the following three maps

C*(M,E) L M, T*"M®E) L. C*(M, T*"Me T*"M g E) *2%, c*(M,E)

where tr .;T*M ® T*M — R denotes the metric trace(&r@ n) = (£,n). We compute the
principal symbol,

00(&)9 = —(tr@ide) o 0n(§) 0 0n(&)(9) = —(treide)(E @@ ¢) = —(£, &) ¢.
HenceO" is a wave operator.

Example 4.3. Let E = AKT*M be the bundle ok-forms. Exterior differentiatiord :
C*(M,AKT*M) — C*(M,AKt1T*M) increases the degree by one while the codifferential
5 :C°(M,AKT*M) — C*(M,AX1T*M) decreases the degree by one. WHlile indepen-
dent of the metric, the codifferentidldoes depend on the Lorentzian metric. The operator
P =dod + &d is a wave operator.

Example 4.4.1f M carries a Lorentzian metric and a spin structure, then oneefine the
spinor bundl&M and the Dirac operator

D :C”(M,ZM) — C®(M,IM),



see [1] or [3] for the definitions. The principal symbolDfis given by Clifford multipli-
cation,

o (E) =8 y.
Hence

o2 (&)Y =0p(§)op(§)Y =& & p=—(§.&)y.

ThusP = D? is a wave operator.

5 The Cauchy problem

We now come to the basic initial value problem for wave opsttheCauchy problem
The local theory of linear hyperbolic operators can be foumBasically any textbook
on partial differential equations. In [10] and [12] the lbtaeory for wave operators on
Lorentzian manifolds is developed. The results of thisieactre of global nature. They
make statements about solutions to the Cauchy problem venieldefined globally on a
manifold. Proofs of the results of this section can be foumidj Sec. 3.2].

Theorem 5.1 (Existence and uniqueness of solutionkpt M be a globally hyperbolic
Lorentzian manifold and let & M be a smooth spacelike Cauchy hypersurface.vLieé¢
the future directed timelike unit normal field along S. Letd=abvector bundle over M and
let P be a wave operator acting on sections in E.

Then for each giu; € 2(S,E) and for each fe 2(M,E) there exists a unique @
C>*(M, E) satisfying Pu= f, u|s = up, andOyu|s = uj.

It is unclear how to even formulate the Cauchy problem on @htzian manifold which is
not globally hyperbolic. One would have to replace the cphoga Cauchy hypersurface
by something different to impose the initial conditions apblere are two examples which
illustrate what can typically go wrong.

Example 5.2. LetM = St x R™1 with the metricg = —d62+ go whered6? is the standard

metric onS' of length 1 andyg is the Euclidean metric oR"~1. The universal covering of
M is Minkowski space.

Let us try to impose a Cauchy problem ¢} x R"~* which is the image of a Cauchy
hypersurface in Minkowski space. Such a solution woulddiflinkowski space where it

indeed exists uniquely due to Theorem 5.1. But such a solaioMinkowski space is in

general not time periodic, hence does not descend to acolotiM.

Therefore existence of solutions fails. The problem is lbatM violates the causality

condition, i. e. there are closed causal curves.

Remark 5.3. Compact Lorentzian manifolds always possess closed tmelirves and
are therefore never well suited for the analysis of wave a@tpes.

Example 5.4. Let M be a timelike strip in 2-dimensional Minkowski space, i.\M.=

R x (0,1) with metricg = —dt? 4+ dx. LetS:= {0} x (0,1). Given anyup,u; € Z(S,E)
and anyf € 2(M,E), there exists a solution to the Cauchy problem. One can simply
take the solution in Minkowski space and restrict itMo But this solution is not unique
in M. Choosex in Minkowski spacex ¢ M, such thatiM™(x) intersectsM in the future
of Sand of suppf). The advanced fundamental solutior= F. (x) (see next section) has
support contained idﬁi”k(x) and satisfie®w = 0 away fromx. Henceu+ w restricted to
M is again a solution to the Cauchy problemMrwith the same initial data.
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Fig. 5: Nonunique solution to Cauchy problem

The problem is here th&is acausal but not a Cauchy hypersurface. Physically, a wave
“from outside the manifold” enters intdl.

The physical statement that a wave can never propagate faatewith the speed of light
is contained in the following.

Theorem 5.5 (Finite propagation speed)The solution u from Theorem 5.1 satisfies
supg(u) € IM(K) where K= sup{up) Usupguy) Usupg f).

The solution to the Cauchy problem depends continuousiyewlata.

Theorem 5.6(Stability). Let M be a globally hyperbolic Lorentzian manifold and let ™
be a smooth spacelike Cauchy hypersurface. \Léke the future directed timelike unit
normal field along S. Let E be a vector bundle over M and let P Wwae operator acting
on sections in E.

Then the ma@(M,E)® 2(S,E) ® 2(S,E) — C*(M, E) sending(f, up, u;) to the unique
solution u of the Cauchy problem Ruf, u|s = uo, Oyu = uj is linear continuous.

This is essentially an application of the open mapping thedior Fréchet spaces.

6 Fundamental solutions

Definition 6.1. LetM be a timeoriented Lorentzian manifold, Et—= M be a vector bundle
and letP : C*(M,E) — C*(M, E) be a wave operator. Latc M. A fundamental solution
of P atxis a distributionF € 2'(M, E,E;) such that

PF = &
In other words, for alp € 2(M,E*) we have
F[P*¢] = ¢(x).

If supp(F (x)) < IM(x), then we calF anadvanced fundamental solutighsupp(F (x)) C
JM(x), then we calF aretarded fundamental solution

Using the knowlegde about the Cauchy problem from the pteviection it is now not
hard to find global fundamental solutions on a globally hipeéic manifold.

Theorem 6.2. Let M be a globally hyperbolic Lorentzian manifold. Let P bavave
operator acting on sections in a vector bundle E over M.

Then for every x M there is exactly one fundamental solution(k) for P at x with past
compact support and exactly one fundamental solutiopxfor P at x with future compact
support. They satisfy

10



1. supgF+(x)) ¢ IM(x),

2. for eachg € 2(M,E*) the maps ¥~ F.(X)[¢] are smooth sections in*Esatisfying
the differential equation RF.(-)[¢]) = ¢.

Sketch of proofWe do not do the uniqueness part. To show existence fix aitoliaf M
by spacelike Cauchy hypersurfacg € R as in Theorem 3.3. Let be the future directed
unit normal field along the leavék. Let ¢ € 2(M,E*). Choosd so large that sugg) C
IM(S). By Theorem 5.1 there exists a unigyg € C*(M,E*) such thatP*xs = ¢ and
X¢ls = (Ovxe)|ls = 0. One can check thaf does not depend on the choicetof

Fix x e M. By Theorem 5.6y depends continuously of. Since the evaluation map
C*(M,E) — Ex is continuous, the ma@(M,E*) — E§, ¢ — X4 (X), is also continuous.
ThusF,(X)[¢] := x4 (X) defines a distribution. By definitioR*(F(-)[¢]) = P* Xy = ¢.
Now P*xp<y = P*¢, henceP*(xp«¢ — ¢) = 0. Since bothxp:y and¢ vanish alongs the
unigueness part which we have omitted shaws = ¢. Thus

(PEL(X))[9] = FL()[P"9] = Xpr¢ (X) = ¢(X) = &K[d].

HenceF, (x) is a fundamental solution &f atx.

It remains to show sugf(x)) C IM(x). Lety e M\ JI¥(x). We have to construct a
neighborhood of such that for each test sectigne (M, E*) whose support is contained
in this neighborhood we hawe_ (x)[¢] = x4 (X) = 0. SinceM is globally hyperbolic (x)

is closed and therefoﬂﬁf‘ (x)NJIM(y') = 0 for ally sufficiently close to). We choose/ €
IM(y) andy” € IM(y) so close thai (x) NIM(y') = 0 and(IM(Y") NUr<py S) NIV (X) = 0
wheret’ € R is such thay € S.

MY N (U< S)

S

Fig. 6: Construction of, y andy”

Now K := JM(y") nIM(y") is a compact neighborhood gf Let ¢ € Z(M,E*) be such
that supgg) C K. By Theorem 5.1 sugipy) € IM(K) uIM(K) c IM(y") uIM(y). By
the independence gfy of the choice oft > t' we have thatyy vanishes orlJ.v S.
Hence supfxs) C (IM(Y") NU<y S) UIM(Y') and is therefore disjoint frord)! (x). Thus
Fi(X)[¢] = Xx¢ (X) = 0 as required. O

For a complete proof see [4, Sec. 3.3].

11



7 Green’s operators

Now we want to find “solution operators” for a given wave operd. More precisely,
we want to find operators which are inversesPoivhen restricted to suitable spaces of
sections. We will see that existence of such operators isddBsequivalent to the existence
of fundamental solutions.

Definition 7.1. Let M be a timeoriented connected Lorentzian manifold. R&ke a wave
operator acting on sections in a vector burilleverM. A linear mapG, : 2(M,E) —
C>*(M, E) satisfying
(l) Po G+ = id.@(M,E)v
(i) GioPlgme) =idgmE),
(iii) supp(G+¢) c M(supg¢)) forall ¢ € 2(M,E),

is called anadvanced Green'’s operator for. PFSimilarly, a linear mags_ : 2(M,E) —
C*®(M, E) satisfying (i), (i), and

(i) supp(G_¢) c M(supg¢)) forall ¢ € 2(M,E)
instead of (iii) is called aetarded Green’s operator for P
Fundamental solutions and Green'’s operators are clodetgde

Theorem 7.2. Let M be a globally hyperbolic Lorentzian manifold. Let P bavave
operator acting on sections in a vector bundle E over M.

Then there exist unique advanced and retarded Green’s tperas, : 2(M,E) —
C*(M,E) for P.

Proof. By Theorem 6.2 there exist familids_(x) of advanced and retarded fundamental
solutions for the adjoint operatB¥ respectively. We know thdt. (x) depend smoothly on
x and the differential equatio®(F.(-)[¢]) = ¢ holds. By definition we have

P(G+9) =P(F:()[¢]) = ¢

thus showing (i). Assertion (i) follows from the fact th&ietF . (x) are fundamental solu-
tions,

G+ (P)(x) = Fx(x)[P¢] = PF=(X)[¢] = &[] = ¢(x).

To show (iii) letx € M such tha(G, ¢)(x) # 0. Since supfF_(x)) c JM(x) the support of
¢ must hitdM(x). Hencex € M (supp(¢)) and therefore sugs. ¢) I (supd¢)). The
argument foiG_ is analogous. O

We have seen that existence of fundamental solution®*fdepending nicely or implies
existence of Green’s operators f8r This construction can be reversed. Then uniqueness
of fundamental solutions in Theorem 6.2 implies uniquené&dreen’s operators.

Lemma 7.3. Let M be a globally hyperbolic Lorentzian manifold. Let P beave operator
acting on sections in a vector bundle E over M. Let & the Green'’s operators for P and
G’ the Green’s operators for the adjoint operatof.Prhen

[ ©i0)wav=[ ¢-(Gp)av ©
M M

holds for all¢ € Z(M,E*) andy € 2(M,E).

12



Proof. For the Green’s operators we hak&, = idy v g) and P*GYL = idgv g+) and
hence

[ @) wav — [ (GL)- PGy av
M M

| (PGi4)-(G=y) v
| ¢-@y)av.

M

Notice that supfG..¢) Nsupf G+ ) € I (supd¢)) NI¥ (sup(y)) is compactin a glob-
ally hyperbolic manifold so that the partial integrationtimee second equation is justi-
fied. O

Notation 7.4. We write Cgo(M, E) for the set of allp € C*(M,E) for which there exists

a compact subsé¢ C M such that supf) ¢ JM(K). Obviously,C3(M,E) is a vector
subspace o£” (M, E).

The subscript “sc” should remind the reader of “space-li@mpact”. Namely, ifM is
globally hyperbolic andp € C3(M,E), then for every Cauchy hypersurfae- M the
support of|s is contained inSN JM(K) hence compact by Lemma 3.8. In this sense
sections inC&(M, E) have space-like compact support.

Definition 7.5. We say that a sequence of elemapits C3 (M, E) converges in &(M, E)
to ¢ € C3(M,E) if there exists a compact subsetC M such that

supf¢) < IM(K) and suppg;) < IM(K)

forall j and
1¢; — ¢Hck(K/,E) -0

for all k € N and all compact subses C M.

If G. andG_ are advanced and retarded Green'’s operatorB fespectively, then we get
a linear map
G:=G.—G_:2(ME) — CxM,E).

Much of the solution theory of wave operators on globallyénjwlic Lorentzian manifolds
is collected in the following theorem.

Theorem 7.6. Let M be a globally hyperbolic Lorentzian manifold. Let P bavave
operator acting on sections in a vector bundle E over M. Letadd G_ be advanced and
retarded Green’s operators for P respectively.
Then

0— 2(M,E) = 2(M,E) - C2(M,E) -2 C2(M, E) (4)

is an exact sequence of linear maps.

Proof. Properties (i) and (i) in Definition 7.1 of Green'’s operatdirectly yieldGoP =0
andPo G = 0, both onZ (M, E). Properties (iii) and (iii") ensure th& mapsZ (M, E) to
Ca(M,E). Hence the sequence of linear maps forms a complex.

Exactness at the first (M, E) means that

P:2(M,E) - 2(M,E)
is injective. To see injectivity lep € 2(M,E) with P$ =0. Thenp =G, Pp =G,.0=0.

Next let ¢ € Z(M,E) with Gp =0, i. e. G, = G_¢. We puty = G, ¢ =
G_¢ € C*(M,E) and we see sug) = supfG¢) NsupgG-_¢) C IV (supd¢)) N

13



IM(supf(¢)). Since(M,g) is globally hyperbolic]™ (supg¢)) NIV (supd¢)) is com-
pact, hencep € Z(M,E). FromP(y) = P(G.(¢)) = ¢ we see tha) € P(2(M,E)).
This shows exactness at the secedM, E).

Finally, let ¢ € Cg(M,E) such thatP¢ = 0. Without loss of generality we may as-
sume that sup) C I"(K) UIM(K) for a compact subsé¢ of M. Using a partition of
unity subordinated to the open coverifid!(K),IM(K)} write ¢ as¢ = ¢1 + ¢ where
supg¢1) € IM(K) c IM(K) and suppgz) C IM(K) ¢ M(K). For g := —P¢y = P, we
see that sup) c IM(K)NIM(K), hence € 2(M,E).

We check thaG, @ = ¢,. Forallx € 2(M,E*) we have

| x-@Poyav= [ (& x)-(Po2) aV= [ (PG x)-g2aV = [ X920V

whereG* is the Green's operator for the adjoint opera®raccording to Lemma 7.3.
Notice that for the second equation we use the fact that(gupp supgG* x)  IM(K)n
IM(suprx)) is compact. Similarly, one shov@ ¢ = —¢;.

Now Gy = G —G_y = ¢o+ ¢1 = ¢, hencep is in the image oG O

Proposition 7.7. Let M be a globally hyperbolic Lorentzian manifold, let P bevave
operator acting on sections in a vector bundle E over M. Letg®dd G be the advanced
and retarded Green’s operators for P respectively.

Then G : 2(M,E) — C&(M,E) and all maps in the complex (4) are continuous.

Proof. The mapsP : 2(M,E) — Z(M,E) andP : C3(M,E) — Cg(M,E) are continu-
ous simply becausP is a differential operator. It remains to show tl@&t 2(M,E) —
Ca(M,E) is continuous.

Let¢;,¢ € 2(M,E) and¢; — ¢ in Z(M,E) for all j. Then there exists a compact subset
K C M such that sup@;) C K for all j and suppg) C K. Hence sup(Gg¢;) c IM(K) for

all j and suppG¢) c JM(K). From the proof of Theorem 6.2 we know ti@t ¢ coincides
with the solutioru to the Cauchy problefAu= ¢ with initial conditionsu|s_ = (Oyu)|s. =

0 whereS_ C M is a spacelike Cauchy hypersurface such kat Ii"(&). Theorem 5.6
tells us that if¢; — ¢ in 2(M,E), then the solution&, ¢; — G, ¢ in C*(M,E). The
proof for G_ is analogous and the statement @®follows. O
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