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Abstract

The spectrum of the Dirac operator on spherical space forms is cal-
culated. Manifolds with many Killing spinors are characterized. In the
last section non-isometric space forms with the same Dirac spectrum
are constructed.

1. Introduction

Riemannian spin manifolds carry an important natural operator, the Dirac
operator. The Dirac operator is an elliptic differential operator of first order
acting on spinor fields, hence its spectrum is discrete point spectrum if the un-
derlying manifold is compact. An excellent introduction to the general theory
of Dirac operators can be found in [15]. The relation between the spectrum
and the geometry of the manifold is currently an object of intense research.
Explicit calculation of the spectrum is possible only for very nice manifolds.
For example, for homogeneous spaces the calculation can be reduced to repre-
sentation theoretic computations which still can be very hard, see [2]. To the
author’s knowledge the first explicit calculation was done by Friedrich in [9]
for the flat torus to demonstrate the dependence of the Dirac spectrum on the
choice of spin structure.

In this paper we study the Dirac spectrum of the sphere and of its quotients.
Ikeda obtained analogous results for the Laplace operator on spherical space
forms in a series of papers [10]-[14]. In [10] he calculates the spectrum of the
Laplace operator acting on functions, in [14] he does the same for the Laplace
operator acting on p-forms. In [12] and [13] he constructs non-isometric exam-
ples with the same Laplace spectrum.

We begin with the calculation of the Dirac spectrum on the standard
sphere. Sulanke already did this in her unplublished thesis [17] using the
representation theoretic methods mentioned above. But the necessary com-
putations in her work are lengthy and it seemed desirable to find a simpler
way to do it. Our main tool is the use of Killing spinors. Killing spinors are
spinor fields satisfying a certain highly over-determined differential equation.
Generically, they don’t exist, but on the standard sphere they can be used to
trivialize the spinor bundle. In this trivialization the calculation can be carried
out without too much pain. The eigenvalues on Sn turn out to have a very
simple form, they are given by ±(n

2
+ k), k ≥ 0 (Theorem 1).
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In the third section we study quotients of spheres Γ\Sn. Eigenspinors on
the quotient correspond to Γ-invariant eigenspinors on the sphere. Therefore
the quotient has the same eigenvalues as the sphere, but the multiplicities will
in general be smaller. We define certain power series with such multiplicities
as coefficients and express them in terms of Γ and the spin structure (Theorem
2). This way of encoding the spectrum of quotients had already been used by
Ikeda for the Laplace operator.

As a direct consequence we obtain a formula for the dimension of the space
of Killing spinors (Theorem 3). We show that a manifold with many Killing
spinors in a sense to be made precise has to be either the sphere or in certain
dimensions it can also be real projective space (Theorem 4). This improves a
result by Franc [7, Thm. 2].

In the last section we construct non-isometric spherical space forms with
metacyclic fundamental groups having the same Dirac spectrum. Therefore we
see that the Dirac spectrum does not carry enough information to determine
the isometry class of such a space form.

2. Dirac eigenvalues of Sn

Let Sn be the n-dimensional sphere carrying the standard metric of constant
sectional curvature 1, n ≥ 2. The classical Dirac operator acting on spinor
fields over Sn is denoted by D and ∇ is the Levi-Civita connection acting on
vector fields or on spinor fields. In this section we will calculate the spectrum
of D. This can be performed by regarding Sn = Spin(n + 1)/Spin(n) as a ho-
mogeneous space and using representation theoretic methods, see S. Sulanke’s
thesis [17]. The necessary calculations however are lengthy and by now there
is a much simpler way to do it using Killing spinors.

Let µ = ±1
2
. A Killing spinor with Killing constant µ is a spinor field Ψ

satisfying the equation

∇̃XΨ := ∇XΨ− µ ·X ·Ψ = 0 (1)

for all tangent vectors X. Killing spinors are useful in this context because of
the following well known lemma.

Lemma 1. The spinor bundle ΣSn can be trivialized by Killing spinors for
µ = 1

2
as well as for µ = −1

2
.

Proof. Since Sn is simply connected it is enough to show that the curvature
of the connection ∇̃ vanishes.

Let p ∈ Sn, let X, Y be vector fields near p, let Ψ be a spinor field near p.
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For simplicity we assume ∇X(p) = ∇Y (p) = 0. We calculate at p

∇̃X∇̃Y Ψ = (∇X − µX)(∇Y − µY )Ψ

= ∇X∇Y Ψ− µY∇XΨ− µX∇Y Ψ +
1

4
XY

from which we deduce

R∇̃(X, Y )Ψ = RΣ(X, Y )Ψ +
1

4
(XY − Y X)Ψ. (2)

The curvature RΣ of the spinor bundle is related to the curvature R of the
tangent bundle by the formula (see [15, p.110, Thm. 4.15])

RΣ(X, Y ) =
1

4

n∑
i,j=1

〈R(X, Y )ei, ej〉eiej (3)

where e1, . . . , en is a local orthonormal basis of the tangent bundle.
Since the sectional curvature is constant 1, R is of the form

R(X, Y )Z = 〈Y, Z〉X − 〈X, Z〉Y. (4)

Combining (3) and (4) yields

RΣ(X, Y ) =
1

4
(Y X −XY ) (5)

which together with (2) gives R∇̃ = 0. 2

The following Weitzenböck formula relates the connection ∇̃ over the sphere
to the Dirac operator D.

Lemma 2. On Sn with the standard metric of sectional curvature 1 the
following formula holds:

(D + µ)2 = ∇̃∗∇̃+
1

4
(n− 1)2.

Proof. Let p ∈ Sn, let e1, . . . , en be a local orthonormal frame near p such
that ∇ei(p) = 0. At p we get

(D + µ)2 − ∇̃∗∇̃ = (
∑

i

ei∇ei
+ µ)(

∑
j

ej∇ej
+ µ) +

∑
j

∇̃ej
∇̃ej

=
∑
i,j

eiej∇ei
∇ej

+ 2µD +
1

4
+
∑
j

(∇ej
− µej)(∇ej

− µej)

3



= −
∑
j

∇ej
∇ej

+
∑
i<j

eiejR
Σ(ei, ej) + 2µD +

1

4

+
∑
j

∇ej
∇ej

− 2µD − 1

4
n

(5)
=

1

4

∑
i<j

eiej(ejei − eiej)−
1

4
(n− 1)

=
1

4
n(n− 1)− 1

4
(n− 1)

=
1

4
(n− 1)2.2

To proceed we choose an orthogonal basis f0 ≡ 1, f1, f2, . . . of the L2-
functions on Sn, L2(Sn, R), consisting of eigenfunctions of the Laplace opera-
tor 4 = d∗d, 4fi = λifi. In view of Lemma 1 we see that fiΨj form a basis
of the L2-spinor fields, L2(Sn, ΣSn) where Ψ1, . . . , Ψ2[n/2] are a trivialization of
the spinor bundle by Killing spinors with Killing constant µ. The next lemma
tells us that we found an eigenbasis for the operator (D + µ)2.

Lemma 3. (D + µ)2(fiΨj) = (λi + 1
4
(n− 1)2)fiΨj.

Proof. This follows directly from Lemma 2 and the fact that Ψj is ∇̃-
parallel.2

The eigenvalues of the Laplace operator on Sn are well known, namely we
have

Lemma 4. The eigenvalues of the Laplace operator on Sn are

k(n + k − 1), k = 0, 1, 2, . . .

with multiplicities

mk =

(
n + k − 1

k

)
n + 2k − 1

n + k − 1
.2

For a proof see [4, p. 159ff]. Combining Lemma 3 and Lemma 4 yields

Corollary. (D + µ)2 has the eigenvalues k(n + k − 1) + 1
4
(n − 1)2, k =

0, 1, 2, . . . with multiplicity 2[n
2
] ·mk.2
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The next step is the calculation of the eigenvalues of D+µ. First a general
remark. If an operator A and a vector u satisfy

A2u = ν2u,

then we get for v± := ±νu + Au:

Av± = ±νv±.

Hence if v± 6= 0, then ±ν is an eigenvalue of A.
In our case A = D + µ. Let us first look at the case k = 0, i.e. u = Ψj and

ν = −µ(n− 1).

v+ = −µ(n− 1)Ψj + (D + µ)Ψj

= −2µ(n− 1)Ψj.

Thus −µ(n − 1) is an eigenvalue of D + µ of multiplicity at least 2[n
2
]. Since

the multiplicity of the eigenvalue 1
4
(n− 1)2 of (D + µ)2 is 2[n

2
], the eigenvalue

−µ(n− 1) of D + µ has also exactly multiplicity 2[n
2
].

Now the case k ≥ 1, i.e. u = fiΨj, i ≥ 1.

ν =

√
k(n + k − 1) +

1

4
(n− 1)2

= k +
n− 1

2
.

Now we know all the eigenvalues of D, namely −µn is an eigenvalue with
multiplicity 2[n

2
] and the other eigenvalues are −µ± (k + n−1

2
), k = 1, 2, 3, . . ..

It remains to determine the other multiplicities.
To do this let us recall that we may choose µ = +1

2
or µ = −1

2
. We start

with µ = −1
2
. We introduce the following notation for the eigenvalues of D.

λ+
0 =

n

2
,

λ+
k =

n

2
+ k, k ≥ 1,

λ+
−k = 1− n

2
− k, k ≥ 1.

We know the multiplicity of λ+
0 , namely m(n

2
) = 2[n

2
], and from the above

Corollary we know m(λ+
k ) + m(λ+

−k) = 2[n
2
] ·mk.

Using µ = +1
2

and the notation

λ−0 = −n

2
,

λ−k = −1 +
n

2
+ k, k ≥ 1,
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λ−−k = −n

2
− k, k ≥ 1

we obtain m(−n
2
) = 2[n

2
] and m(λ−k ) + m(λ−−k) = 2[n

2
] ·mk.

Lemma 5.

m(λ+
k ) = m(λ−−k) = 2[n

2
] ·
(

k + n− 1
k

)
, k ≥ 0.

Proof by induction on k. We saw already that the claim is true for k = 0.
Let us carry out the induction step k → k + 1.

m(λ+
k+1) = 2[n

2
] ·mk+1 −m(λ+

−k−1)

= 2[n
2
] ·mk+1 −m(λ−−k)

= 2[n
2
] ·
{(

n + k
k + 1

)
· n + 2k + 1

n + k
−
(

k + n− 1
k

)}

= 2[n
2
] ·
(

n + k
k + 1

)
2

Summing up everything we get

Theorem 1. The classical Dirac operator on the sphere Sn of constant
sectional curvature 1 has the eigenvalues

±(
n

2
+ k), k ≥ 0

with multiplicities

2[n
2
] ·
(

k + n− 1
k

)
.2

3. Space forms

The group of orientation preserving isometries of Sn is given by Iso+(Sn) =
SO(n + 1), SO(n + 1) acting from the left by matrix multiplication on Sn ⊂
Rn+1. Oriented compact connected manifolds of constant sectional curvature 1
are of the form Γ\Sn where Γ is a finite fixed point free subgroup of SO(n+1).
The special orthogonal group SO(n + 1) also forms the total space of the
bundle of oriented orthonormal tangent frames, the projection onto Sn given
by projection on the first column vector, say. The action of SO(n + 1) on Sn

lifts to an action on SO(n + 1), simply given by matrix multiplication. SO(n)
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acts from the right on SO(n+1) leaving invariant the first column vector. The
total space of the frame bundle of a quotient Γ\Sn is given by Γ\SO(n + 1).

Let Θ : Spin(n + 1) → SO(n + 1) be the double covering mapping. Then
Spin(n + 1) together with Θ is the spin structure of Sn. Spin(n) acts as
structure group from the right on Spin(n + 1) and Spin(n + 1) acts by group
multiplication from the left on the total space of the spin structure. Spinor
fields over Sn can be regarded as Spin(n)-equivariant mappings from Spin(n+
1) to the spinor space Σn. Spin structures of a quotient Γ\Sn are in 1-1
correspondence with homomorphisms ε : Γ → Spin(n+1) such that Θ◦ε = idΓ.
The total space of the spin structure is then given by ε(Γ)\Spin(n + 1) and
spinor fields over the quotient correspond to ε(Γ)-invariant spinor fields over
Sn.

We only need to look at odd dimensional space forms because in even
dimensions the only quotient of the sphere is real projective space which then
is not even orientable, in particular not spin.

Let M = Γ\Sn be spin, Γ ⊂ SO(n+1) a fixed point free subgroup, the spin
structure of M being specified by ε : Γ → Spin(n + 1) such that Θ ◦ ε = idΓ,
n = 2m− 1 odd. The Dirac eigenvalues of Sn are of the form ±(n

2
+ k), k ≥ 0.

The same holds for M but the multiplicities for M will in general be smaller
than those for Sn. To know the Dirac spectrum of M means to know the
multiplicities m(±(n

2
+ k), D) for M . We encode this information into the

following two power series

F+(z) =
∞∑

k=0

m(
n

2
+ k, D)zk,

F−(z) =
∞∑

k=0

m(−(
n

2
+ k), D)zk.

Lemma 6. F+(z) and F−(z) converge absolutely for |z| < 1.

Proof. According to Theorem 1 F±(z) can be majorized by

2[n
2
] ·

∞∑
k=0

(
k + n− 1

k

)
zk.

This power series has radius of convergence = 1 because

lim
k→∞

(
k + n− 1

k

)
(

k + n
k + 1

) = 1.2

The aim of this section is to give formulas for F±(z) in terms of Γ and ε.
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In even dimension 2m the complex spinor representation of Spin(2m) on
Σ2m decomposes into two irreducible half spin representations

ρ+ : Spin(2m) → Aut(Σ+
2m),

ρ− : Spin(2m) → Aut(Σ−2m).

Let χ± : Spin(2m) → C be the character of ρ±. The main result of this section
is

Theorem 2. Let Γ\S2m−1 be a spherical space form with spin structure
given by ε : Γ → Spin(2m). Then the eigenvalues of the Dirac operator are
±(n

2
+ k), k ≥ 0, with multiplicities determined by

F+(z) =
1

|Γ|
∑
γ∈Γ

χ−(ε(γ))− z · χ+(ε(γ))

det(12m − z · γ)
,

F−(z) =
1

|Γ|
∑
γ∈Γ

χ+(ε(γ))− z · χ−(ε(γ))

det(12m − z · γ)
.

Before we prove the theorem let us draw a few conclusions. The formulas
show that F± extend to meromorphic functions on the whole complex plane
with finitely many poles.

Heat kernel asymptotics show that the volume of a closed Riemannian spin
manifold is determined by its Dirac spectrum. The following argument, first
used by Ikeda to study Laplace operators [10, Cor. 2.4], shows that for spher-
ical space forms we need to know only half the spectrum.

Corollary 1. If Γ1\S2m−1 and Γ2\S2m−1 have the same positive or the
same negative Dirac spectrum, then

|Γ1| = |Γ2|.

Proof. The power series F+(z) has a pole of order n at z = 1 and

lim
z→1

(1− z)nF+(z) =
2m−1

|Γ|
.

Thus |Γ| is determined by F+, hence by the positive Dirac spectrum. The
same argument applies to F−.2

Corollary 2. Let Γ1 and Γ2 be two finite fixed point free subgroups of
SO(2m), let εi : Γi → Spin(2m) be two homomorphisms such that Θ◦εi = idΓi

.
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If there exists a bijective mapping Φ : Γ1 → Γ2 such that for every γ ∈ Γ1 the
two elements ε1(γ) and ε2(Φ(γ)) are conjugate in Spin(2m), then the two space
forms Γ1\S2m−1 and Γ2\S2m−1 are Dirac isospectral.

Proof. The power series F± coincide for the two groups because all ingre-
dients are invariant under conjugation.2

Proof of Theorem 2. As in the previous section we first look at the
operators (D ± 1

2
)2. Put

G±(z) :=
∞∑

k=0

m((
n− 1

2
+ k)2, (D ± 1

2
)2)zk.

Over Sn the eigenspace Ek for the eigenvalue (n−1
2

+k)2 of (D+ 1
2
)2 is spanned

by products f ·Ψ where Ψ is a Killing spinor with Killing constant µ = 1
2

and
f ∈ Hk = {harmonic homogeneous polynomials of degree k on R2m, restricted
to S2m−1}.

Spin(2m) acts on the spinor fields over Sn and leaves invariant the
eigenspaces Ek. We want to determine the dimension of the ε(Γ)-invariant
subspace of Ek because this is exactly the multiplicity m((n−1

2
+k)2, (D+ 1

2
)2).

How does the action of Spin(2m) on the 1
2
-Killing spinors look like?

As mappings Ψ : Spin(2m) → Σn the 1
2
-Killing spinors are of the form

Ψ(g) = ρ+(g−1) · σ, σ = Ψ(1) ∈ Σn,

see [6, Prop. 12]. Hence an element g0 ∈ Spin(2m) acts on Ψ by

(g0Ψ)(g) = Ψ(g−1
0 g)

= ρ+(g−1g0) · σ
= ρ+(g−1)ρ+(g0)σ.

By identifying Ψ with σ we see that the action of Spin(2m) on the space of
1
2
-Killing spinors is equivalent to ρ+.

Now let ρk be the representation of SO(2m) on Hk with character χk.
We have just seen that the representation of Spin(2m) on Ek is equivalent to
(ρk ◦Θ)⊗ ρ+. The dimension of the ε(Γ)-invariant subspace is given by

dim(Ek)ε(Γ) = 〈χk · χρ+◦ε, 1〉

=
1

|Γ|
∑
γ∈Γ

χk(γ)χ+(ε(γ)). (6)

Ikeda [10, p. 81] calculated

∞∑
k=0

χk(γ)zk =
1− z2

det(12m − z · γ)
. (7)
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From (6) and (7) we obtain

G+(z) =
1− z2

|Γ|
∑
γ∈Γ

χ+(ε(γ))

det(12m − z · γ)
.

In the same way we get

G−(z) =
1− z2

|Γ|
∑
γ∈Γ

χ−(ε(γ))

det(12m − z · γ)
.

As in the previous section we have

m(
n

2
+ k, D) + m(−n

2
− k + 1, D) = m((

n

2
+ k)2, (D − 1

2
)2)

which means for the power series

F+(z) + z · F−(z) = G−(z). (8)

Similarly,
z · F+(z) + F−(z) = G+(z). (9)

Solving (8) and (9) for F+ and F− finishes the proof. 2

4. Killing spinors

In the second section we have seen that on a spherical space form of curvature 1
the Killing spinors with Killing constant µ = ±1

2
are exactly the eigenspinors

of the Dirac operator for the eigenvalue −µn. To get the dimension of the
space of Killing spinors we only need to plug in z = 0 into the series F∓(z).

Theorem 3. Let Γ\S2m−1 be a spherical space form with spin structure
given by ε : Γ → Spin(2m). Then the dimension of the space of Killing spinors
with Killing constant µ = 1

2
is given by

1

|Γ|
∑
γ∈Γ

χ+(ε(γ))

whereas for the Killing constant µ = −1
2

the dimension is

1

|Γ|
∑
γ∈Γ

χ−(ε(γ)).2

Killing spinors on 3-dimensional spherical space forms have been studied
by Friedrich in [8] and the 5-dimensional case was done by Sulanke in [18].
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Example. Let us look at the case Γ = {±12m}, i.e. Γ\S2m−1 = RP2m−1

is real projective space. It is not hard to see that the two preimages ±ω ∈
Spin(2m) of −12m ∈ SO(2m) satisfy

(±ω)2 = (−1)m.

In fact, if we view Spin(2m) as sitting in the Clifford algebra Cl(R2m), then
ω is just ω = e1 · e2 · . . . · e2m.

If m is odd, then there is no homomorphism ε : Γ → Spin(2m) with
Θ ◦ ε = idΓ because we need to have

1 = ε(12m) = ε((−12m)2) = ε(−12m)2 = (±ω)2 = (−1)m.

In other words, RP2m−1 is not spin if m is odd.
If m is even, then RP2m−1 carries two spin structures given by ε±(−12m) =

±ω. The decomposition Σ2m = Σ+
2m ⊕ Σ−2m is nothing but the eigenspace

decompsition for ω [15, p. 129]. Therefore χ±(ω) = ±2m−1. For the spin
structure given by ε+ we get from Theorem 3 that there are 2m−1 linearly
independent Killing spinors with Killing constant µ = 1

2
whereas there are no

nontrivial Killing spinors with µ = −1
2
. If we change to ε− then we have to

interchange µ and −µ.
We have seen that in dimension n ≡ 3(4) there is another manifold, namely

real projective space, besides the sphere having the maximal number of lin-
early independent Killing spinors at least for one of the two possible Killing
constants ±1

2
. Franc showed in [7, Thm. 2] that there are no further examples

in the class of lens spaces. But there are actually no further such examples at
all.

Theorem 4. Let M be a closed connected Riemannian spin manifold of
dimension n having 2[n

2
] linearly independent Killing spinors with the same

Killing constant µ = ±1
2
. Then either M is isometric to the standard sphere

Sn or n ≡ 3(4) and M is isometric to RPn.

Proof. From the classification of simply connected manifolds with Killing
spinors [3] it follows that the universal covering of M is isometric to Sn. Hence
M is a spherical space form, M = Γ\Sn. If n is even, the only space form is
real projective space which is not spin in this case.

We may therefore assume n = 2m−1 odd. Let’s say M carries 2m−1 Killing
spinors with Killing constant µ = +1

2
. For γ ∈ Γ the automorphism ρ+(ε(γ)) is

unitary, thus all eigenvalues have absolute value 1. Triangle inequality applied
to the formula of Theorem 3 shows that the dimension of the space of Killing
spinors with a fixed Killing constant is bounded by 2m−1. In our case we have
equality, hence all eigenvalues of all ρ+(ε(γ)) must be one. In other words, Γ
acts trivially via ρ+ ◦ ε.
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If m is odd, then the tensor product ρ+⊗ ρ+ contains the complexification
of the standard representation on R2m given by Θ : Spin(2m) → SO(2m), see
[5, p. 280]. The only element of SO(2m) acting trivially on C2m is the neutral
element 12m. Thus Γ must be trivial and M is isometric to Sn.

If m is even the tensor product ρ+⊗ρ+ contains the complexification of the
representation on Λ2R2m, see again [5, p. 280]. The only matrices in SO(2m)
acting trivially on Λ2C2m are ±12m. Hence Γ = {±12m} or Γ is trivial. 2

5. Isospectral examples

In this section we will construct examples of spherical space forms which are
not isometric but which have the same Dirac spectra. Therefore the Dirac
spectrum does not determine the isometry class of a spherical space form.
In this respect the Dirac operator behaves similarly to the Laplace operator,
compare Ikeda’s papers [12] and [13].

One might expect that the simplest class to look for isospectral examples
are lens spaces but we want to use Corollary 2 to Theorem 2 and we need two
fixed point free subgroups of Spin(2m) such that there is a bijection between
them under which the corresponding elements are conjugate in Spin(2m). If
the groups in question are cyclic, then this implies that the two groups are con-
jugate (conjugation by the element in Spin(2m) which sends a generator of
the first group to something in the second) and hence the corresponding space
forms are isometric. Therefore we have to deal with more complicated funda-
mental groups. This does not mean that isospectral lens spaces are isometric
but the argument would have to be different.

Let a and b be two positive odd integers, let r be a positive integer such
that rb ≡ 1(a) and ((r − 1)b, a) = 1. We denote by Γ(a, b, r) the group gener-
ated by the two elements A and B satisfying the relations Aa = Bb = 1 and
BAB−1 = Ar. Such groups are called metacyclic.

Lemma 7. A spherical space form with fundamental group isomorphic to
Γ(a, b, r) as above has exactly one spin structure.

Proof. Let ±Ã,±B̃ ∈ Spin(2m) be the preimages of A, B ∈ Γ(a, b, r) ⊂
SO(2m). For the spin structure corresponding to ε : Γ(a, b, r) → Spin(2m) we
need to have

Ãa = ε(Aa) = 1. (10)

Since a is odd we can arrange (10) by passing from Ã to −Ã if necessary.
Similarly, by choosing the correct preimage B̃ of B we have B̃b = 1 and we
can put ε(B) = B̃.
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We have already seen uniqueness of the spin structure. It remains to check

B̃ÃB̃−1 = Ãr. (11)

We know
B̃ÃB̃−1 = δÃr, δ = ±1. (12)

By taking (12) to the power a we get 1 = δa, hence δ = 1 which is (11).2

Lemma 8. Let Γ1 and Γ2 be two fixed point free subgroups of SO(2m)
isomorphic to Γ(a, b, r). Let εi : Γi → Γ̃i ⊂ Spin(2m) be the spin structures
from Lemma 7. If X ∈ Γ1 and Y ∈ Γ2 are conjugate in SO(2m), then ε1(X)
and ε2(Y ) are conjugate in Spin(2m).

Proof. Let S ∈ SO(2m) such that SXS−1 = Y . Choose a preimage S̃ of
S in Spin(2m). Then we know

S̃ε1(X)S̃−1 = δε2(Y ), δ = ±1. (13)

Taking (13) to the power ab yields 1 = δab = δ. 2

Now we construct two different embeddings Γ(a, b, r) → SO(2m). Let d
be the smallest positive integer such that rd ≡ 1(a). Hence d divides b, i.e.
b = db′ for some integer b′. Put

R(θ) =

(
cos(2πθ) sin(2πθ)
− sin(2πθ) cos(2πθ)

)
∈ SO(2)

and define

π1(A) = π2(A) =


R( 1

a
)

R( r
a
)

. . .

R( rd−1

a
)

 ∈ SO(2d),

π1(B) =


0 1
...

. . .

0 1
R( 1

b′
) 0 · · · 0

 ∈ SO(2d).

For a positive integer l with (l, b) = 1 we set

π2(B) =


0 1
...

. . .

0 1
R( l

b′
) 0 · · · 0

 ∈ SO(2d).

13



Lemma 9. For any integers s and t the matrices π1(A
sBlt) and π2(A

sBt)
are conjugate in O(2d).

Proof. Elementary calculation [13, p.443] shows that π1(A
sBlt) and

π2(A
sBt) have the same characteristic polynomial. Since two matrices in

SO(2d) have the same characteristic polynomial if and only if they are conju-
gate in O(2d) the Lemma is proved. 2

Now we set m = 2d and define two embeddings i1, i2 : Γ(a, b, r) → SO(2m)
by

i1(X) = (π1 ⊕ π1)(X) =

(
π1(X) 0

0 π1(X)

)
,

i2(X) = (π2 ⊕ π2)(X) =

(
π2(X) 0

0 π2(X)

)
,

Γ1 = i1(Γ(a, b, r)), Γ2 = i2(Γ(a, b, r)).

Lemma 10. The two space forms Γ1\S2m−1 and Γ2\S2m−1 are Dirac
isospectral.

Proof. Define a bijective map Φ : Γ1 → Γ2 by

Φ(i1(A
sBlt)) = i2(A

sBt).

From Lemma 9 we know that for each s and t there is an S ∈ O(2d) such that
π2(A

sBt) = Sπ1(A
sBlt)S−1. Thus

Φ(i1(A
sBlt)) =

(
S 0
0 S

)
· i1(AsBlt) ·

(
S 0
0 S

)−1

.

Since

(
S 0
0 S

)
∈ SO(2m) Lemma 8 says that ε(i1(A

sBlt)) and

ε(Φ(i1(A
sBlt))) are conjugate in Spin(2m) and the Lemma follows from Corol-

lary 2 in Section 3.2

It remains to find conditions under which Γ1\S2m−1 and Γ2\S2m−1 are not
isometric. Let us recall the conditions on the positive integers a, b, b′, r, d and
l. a and b are odd, r satisfies rb ≡ 1(a) and ((r− 1)b, a) = 1. d is the smallest
number such that rd ≡ 1(a) and b = db′. Finally, (l, b) = 1 and m = 2d.

14



From the classification of spherical space forms [19, p. 171] it is known
that if the two space forms Γ1\S2m−1 and Γ2\S2m−1 are isometric, then there
is an integer t such that

(t, b) = 1, t ≡ 1(d) and l ≡ ±t(b′).

Now we need to arrange everything so that the latter is not possible.
We start with a positive odd number d ≥ 5. By Dirichlet’s prime number

theorem [16, p. 73, Thm. 2] we can choose a prime number a of the form
a = 1 + kd, k ≥ 1. We put b = d2, b′ = d and m = 2d. From (d, a) = 1 we
obtain (b, a) = 1. The multiplicative group (Z/aZ)∗ of the field Z/aZ is cyclic
of order kd [16, p. 4, Thm. 2]. Hence there is an element r ∈ (Z/aZ)∗ of order
d. Finally, we set l = 2. Now all necessary conditions are fulfilled.

Assume there is a t as above. Then we get 2 = l ≡ ±t ≡ ±1(d) which
implies 1 ≡ 0(d) or 3 ≡ 0(d), a contradiction in either case. We summarize

Theorem 5. Let d ≥ 5 be odd. Then there exist two non-isometric spheri-
cal space forms of dimension 4d − 1 having the same Dirac spectrum. Their
fundamental groups are isomorphic to Γ(a, b, r) where a, b, and r are chosen
as above.2
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