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In this chapter we will collect those basic concepts and facts related to C∗–
algebras that will be needed later on. We give complete proofs. In Sections 1,
2, 3, and 6 we follow closely the presentation in [1]. For more information on
C∗–algebras see e. g. [2, 4, 5, 7, 8].

1 Basic definitions

Definition 1. Let A be an associative C-algebra, let ‖ · ‖ be a norm on the
C-vector space A, and let ∗ : A → A, a 7→ a∗, be a C-antilinear map. Then
(A, ‖ · ‖, ∗) is called a C∗–algebra, if (A, ‖ · ‖) is complete and we have for all
a, b ∈ A:

1. a∗∗ = a (∗ is an involution)
2. (ab)∗ = b∗a∗

3. ‖ab‖ ≤ ‖a‖ ‖b‖ (submultiplicativity)
4. ‖a∗‖ = ‖a‖ (∗ is an isometry)
5. ‖a∗a‖ = ‖a‖2 (C∗–property).

A (not necessarily complete) norm on A satisfying conditions (1) to (5) is
called a C∗–norm.

Remark 1. Note that the Axioms 1–5 are not independent. For instance, Ax-
iom 4 can easily be deduced from Axioms 1,3 and 5.

Example 1. Let (H, (·, ·)) be a complex Hilbert space, let A = L(H) be the
algebra of bounded operators on H. Let ‖ · ‖ be the operator norm, i. e.,

‖a‖ := sup
x∈H
‖x‖=1

‖ax‖.

Let a∗ be the operator adjoint to a, i. e.,
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(ax, y) = (x, a∗y) for all x, y ∈ H.

Axioms 1 to 4 are easily checked. Using Axioms 3 and 4 and the Cauchy-
Schwarz inequality we see

‖a‖2 = sup
‖x‖=1

‖ax‖2 = sup
‖x‖=1

(ax, ax) = sup
‖x‖=1

(x, a∗ax)

≤ sup
‖x‖=1

‖x‖ · ‖a∗ax‖ = ‖a∗a‖
Axiom 3
≤ ‖a∗‖ · ‖a‖ Axiom 4= ‖a‖2.

This shows Axiom 5.

Example 2. Let X be a locally compact Hausdorff space. Put

A := C0(X) := {f : X → C continuous | ∀ε > 0∃K ⊂ X compact, so that
∀x ∈ X \K : |f(x)| < ε}.

We call C0(X) the algebra of continuous functions vanishing at infinity. If X
is compact, then A = C0(X) = C(X). All f ∈ C0(X) are bounded and we
may define:

‖f‖ := sup
x∈X

|f(x)|.

Moreover let
f∗(x) := f(x).

Then (C0(X), ‖ · ‖, ∗) is a commutative C∗–algebra.

Example 3. Let X be a differentiable manifold. Put

A := C∞0 (X) := C∞(X) ∩ C0(X).

We call C∞0 (X) the algebra of smooth functions vanishing at infinity. Norm
and ∗ are defined as in the previous example. Then (C∞0 (X), ‖ · ‖, ∗) satisfies
all axioms of a commutative C∗–algebra except that (A, ‖·‖)) is not complete.
If we complete this normed vector space, then we are back to the previous
example of continuous functions.

Definition 2. A subalgebra A0 of a C∗–algebra A is called a C∗–subalgebra
if it is a closed subspace and a∗ ∈ A0 for all a ∈ A0.

Any C∗–subalgebra is a C∗–algebra in its own right.

Definition 3. Let S be a subset of a C∗–algebra A. Then the intersection of
all C∗–subalgebras of A containing S is called the C∗–subalgebra generated
by S.

Definition 4. An element a of a C∗–algebra is called selfadjoint if a = a∗.
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Remark 2. Like any algebra a C∗–algebra A has at most one unit 1. Now we
have for all a ∈ A

1∗a = (1∗a)∗∗ = (a∗1∗∗)∗ = (a∗1)∗ = a∗∗ = a

and similarly one sees a1∗ = a. Thus 1∗ is also a unit. By uniqueness 1 = 1∗,
i. e., the unit is selfadjoint. Moreover,

‖1‖ = ‖1∗1‖ = ‖1‖2,

hence ‖1‖ = 1 or ‖1‖ = 0. In the second case 1 = 0 and therefore A = 0.
Hence we may (and will) from now on assume that ‖1‖ = 1.

Example 4. 1. In Example 1 the algebra A = L(H) has a unit 1 = idH .
2. The algebra A = C0(X) has a unit f ≡ 1 if and only if C0(X) = C(X),

i. e., if and only if X is compact.

Let A be a C∗–algebra with unit 1. We write A× for the set of invertible
elements in A. If a ∈ A×, then also a∗ ∈ A× because

a∗ · (a−1)∗ = (a−1a)∗ = 1∗ = 1,

and similarly (a−1)∗ · a∗ = 1. Hence (a∗)−1 = (a−1)∗.

Lemma 1. Let A be a C∗–algebra. Then the maps

A×A→ A, (a, b) 7→ a+ b,

C×A→ A, (α, a) 7→ αa,

A×A→ A, (a, b) 7→ a · b,
A× → A×, a 7→ a−1,

A→ A, a 7→ a∗,

are continuous.

Proof. (a) The first two maps are continuous for all normed vector spaces.
This easily follows from the triangle inequality and from homogeneity of the
norm.

(b) Continuity of multiplication. Let a0, b0 ∈ A. Then we have for all a,
b ∈ A with ‖a− a0‖ < ε and ‖b− b0‖ < ε:

‖ab− a0b0‖ = ‖ab− a0b+ a0b− a0b0‖
≤ ‖a− a0‖ · ‖b‖+ ‖a0‖ · ‖b− b0‖
≤ ε

(
‖b− b0‖+ ‖b0‖

)
+ ‖a0‖ · ε

≤ ε
(
ε+ ‖b0‖

)
+ ‖a0‖ · ε.

(c) Continuity of inversion. Let a0 ∈ A×. Then we have for all a ∈ A× with
‖a− a0‖ < ε < ‖a−1

0 ‖−1:
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‖a−1 − a−1
0 ‖ = ‖a−1(a0 − a)a−1

0 ‖
≤ ‖a−1‖ · ‖a0 − a‖ · ‖a−1

0 ‖
≤

(
‖a−1 − a−1

0 ‖+ ‖a−1
0 ‖

)
· ε · ‖a−1

0 ‖.

Thus (
1− ε‖a−1

0 ‖
)︸ ︷︷ ︸

>0, since ε<‖a−1
0 ‖−1

‖a−1 − a−1
0 ‖ ≤ ε · ‖a−1

0 ‖2

and therefore
‖a−1 − a−1

0 ‖ ≤ ε

1− ε‖a−1
0 ‖

· ‖a−1
0 ‖2.

(d) Continuity of ∗ is clear because ∗ is an isometry.

Remark 3. If (A, ‖·‖, ∗) satisfies the axioms of a C∗–algebra except that (A, ‖·
‖) is not complete, then the above lemma still holds because completeness has
not been used in the proof. Let Ā be the completion of A with respect to the
norm ‖ · ‖. By the above lemma +, ·, and ∗ extend continuously to Ā thus
making Ā into a C∗–algebra.

2 The spectrum

Definition 5. Let A be a C∗–algebra with unit 1. For a ∈ A we call

rA(a) := {λ ∈ C | λ · 1− a ∈ A×}

the resolvent set of a and

σA(a) := C \ rA(a)

the spectrum of a. For λ ∈ rA(a)

(λ · 1− a)−1 ∈ A

is called the resolvent of a at λ. Moreover, the number

ρA(a) := sup{|λ| | λ ∈ σA(a)}

is called the spectral radius of a.

Example 5. Let X be a compact Hausdorff space and let A = C(X). Then

A× = {f ∈ C(X) | f(x) 6= 0 for all x ∈ X},
σC(X)(f) = f(X) ⊂ C,
rC(X)(f) = C \ f(X),

ρC(X)(f) = ‖f‖∞ = maxx∈X |f(x)|.
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Proposition 1. Let A be a C∗–algebra with unit 1 and let a ∈ A. Then
σA(a) ⊂ C is a nonempty compact subset and the resolvent

rA(a) → A, λ 7→ (λ · 1− a)−1,

is continuous. Moreover,

ρA(a) = lim
n→∞

‖an‖ 1
n = inf

n∈N
‖an‖ 1

n ≤ ‖a‖.

Proof. (a) Let λ0 ∈ rA(a). For λ ∈ C with

|λ− λ0| < ‖(λ01− a)−1‖−1 (1)

the Neumann series
∞∑
m=0

(λ0 − λ)m(λ01− a)−m−1

converges absolutely because

‖(λ0 − λ)m(λ01− a)−m−1‖ ≤ |λ0 − λ|m · ‖(λ01− a)−1‖m+1

= ‖(λ01− a)−1‖ ·
( ‖(λ01− a)−1‖

|λ0 − λ|−1︸ ︷︷ ︸
<1 by (1)

)m
.

Since A is complete the Neumann series converges in A. It converges to the
resolvent (λ1− a)−1 because

(λ1− a)
∞∑
m=0

(λ0 − λ)m(λ01− a)−m−1

= [(λ− λ0)1 + (λ01− a)]
∞∑
m=0

(λ0 − λ)m(λ01− a)−m−1

= −
∞∑
m=0

(λ0 − λ)m+1(λ01− a)−m−1 +
∞∑
m=0

(λ0 − λ)m(λ01− a)−m

= 1.

Thus we have shown λ ∈ rA(a) for all λ satisfying (1). Hence rA(a) is open
and σA(a) is closed.

(b) Continuity of the resolvent. We estimate the difference of the resolvent
of a at λ0 and at λ using the Neumann series. If λ satisfies (1), then
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∥∥(λ1− a)−1 − (λ01− a)−1
∥∥ =

∥∥∥ ∞∑
m=0

(λ0 − λ)m(λ01− a)−m−1 − (λ01− a)−1
∥∥∥

≤
∞∑
m=1

|λ0 − λ|m ‖(λ01− a)−1‖m+1

= ‖(λ01− a)−1‖ · |λ0 − λ| · ‖(λ01− a)−1‖
1− |λ0 − λ| · ‖(λ01− a)−1‖

= |λ0 − λ| · ‖(λ01− a)−1‖2

1− |λ0 − λ| · ‖(λ01− a)−1‖
→ 0 for λ→ λ0.

Hence the resolvent is continuous.
(c) We show ρA(a) ≤ infn ‖an‖

1
n ≤ lim infn→∞ ‖an‖ 1

n . Let n ∈ N be
fixed and let |λ|n > ‖an‖. Each m ∈ N0 can be written uniquely in the form
m = pn+ q, p, q ∈ N0, 0 ≤ q ≤ n− 1. The series

1
λ

∞∑
m=0

(a
λ

)m
=

1
λ

n−1∑
q=0

(a
λ

)q ∞∑
p=0

( an

λn︸︷︷︸
‖·‖<1

)p

converges absolutely. Its limit is (λ1− a)−1 because

(
λ1− a

)
·
( ∞∑
m=0

λ−m−1am
)

=
∞∑
m=0

λ−mam −
∞∑
m=0

λ−m−1am+1 = 1

and similarly ( ∞∑
m=0

λ−m−1am
)
·
(
λ1− a

)
= 1.

Hence for |λ|n > ‖an‖ the element (λ1− a) is invertible and thus λ ∈ rA(a).
Therefore

ρA(a) ≤ inf
n∈N

‖an‖ 1
n ≤ lim inf

n→∞
‖an‖ 1

n .

(d) We show ρA(a) ≥ lim supn→∞ ‖an‖ 1
n . We abbreviate ρ̃(a) := lim supn→∞ ‖an‖ 1

n .
Case 1: ρ̃(a) = 0. If a were invertible, then

1 = ‖1‖ = ‖ana−n‖ ≤ ‖an‖ · ‖a−n‖

would imply 1 ≤ ρ̃(a) · ρ̃(a−1) = 0, which yields a contradiction. Therefore
a 6∈ A×. Thus 0 ∈ σA(a). In particular, the spectrum of a is nonempty. Hence
the spectral radius ρA(a) is bounded from below by 0 and thus

ρ̃(a) = 0 ≤ ρA(a).

Case 2: ρ̃(a) > 0. If an ∈ A are elements for which Rn := (1 − an)−1

exist, then
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an → 0 ⇔ Rn → 1.

This follows from the fact that the map A× → A×, a 7→ a−1, is continuous
by Lemma 1. Put

S := {λ ∈ C | |λ| ≥ ρ̃(a)}.

We want to show that S 6⊂ rA(a) since then there exists λ ∈ σA(a) such that
|λ| ≥ ρ̃(a) and hence

ρA(a) ≥ |λ| ≥ ρ̃(a).

Assume in the contrary that S ⊂ rA(a). Let ω ∈ C be an n–th root of unity,
i. e., ωn = 1. For λ ∈ S we also have λ

ωk ∈ S ⊂ rA(a). Hence there exists

( λ

ωk
1− a

)−1

=
ωk

λ

(
1− ωka

λ

)−1

and we may define

Rn(a, λ) :=
1
n

n∑
k=1

(
1− ωka

λ

)−1

.

We compute(
1− an

λn

)
Rn(a, λ) =

1
n

n∑
k=1

n∑
l=1

(ωk(l−1)al−1

λl−1
− ωklal

λl

)(
1− ωka

λ

)−1

=
1
n

n∑
k=1

n∑
l=1

ωk(l−1)al−1

λl−1

=
1
n

n∑
l=1

al−1

λl−1

n∑
k=1

(ωl−1)k︸ ︷︷ ︸
=

8><>:0 if l ≥ 2
n if l = 1

= 1.

Similarly one sees Rn(a, λ)
(
1− an

λn

)
= 1. Hence

Rn(a, λ) =
(
1− an

λn

)−1

for any λ ∈ S ⊂ rA(a). Moreover for λ ∈ S we have
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1− an

ρ̃(a)n
)−1

−
(
1− an

λn

)−1∥∥∥
≤ 1
n

n∑
k=1

∥∥∥(
1− ωka

ρ̃(a)

)−1

−
(
1− ωka

λ

)−1∥∥∥
=

1
n

n∑
k=1

∥∥∥(
1− ωka

ρ̃(a)

)−1(
1− ωka

λ
− 1 +

ωka

ρ̃(a)

)(
1− ωka

λ

)−1∥∥∥
=

1
n

n∑
k=1

∥∥∥( ρ̃(a)
ωk

1− a
)−1(

− ρ̃(a)a
ωk

+
λa

ωk

)( λ

ωk
1− a

)−1∥∥∥
≤ |ρ̃(a)− λ| · ‖a‖ · sup

z∈S
‖(z1− a)−1‖2.

The supremum is finite since z 7→ (z1 − a)−1 is continuous on rA(a) ⊃ S by
part (b) of the proof and since for |z| ≥ 2 · ‖a‖ we have

‖(z1− a)−1‖ ≤ 1
|z|

∞∑
n=0

‖a‖n

|z|n︸ ︷︷ ︸
≤( 1

2 )n

≤ 2
|z|

≤ 1
‖a‖

.

Outside the annulusB2‖a‖(0)−Beρ(a)(0) the expression ‖(z1−a)−1‖ is bounded
by 1

‖a‖ and on the compact annulus it is bounded by continuity. Put

C := ‖a‖ · sup
z∈S

‖(z1− a)−1‖2.

We have shown

‖Rn(a, ρ̃(a))−Rn(a, λ)‖ ≤ C · |ρ̃(a)− λ|

for all n ∈ N and all λ ∈ S. Putting λ = ρ̃(a) + 1
j we obtain∥∥∥(

1− an

ρ̃(a)n
)−1

−
(
1− an

(ρ̃(a) + 1
j )
n︸ ︷︷ ︸

→0 for n→∞

)−1

︸ ︷︷ ︸
→1 for n→∞

∥∥∥ ≤ C

j
,

thus
lim sup
n→∞

∥∥∥(
1− an

ρ̃(a)n
)−1

− 1
∥∥∥ ≤ C

j

for all j ∈ N and hence

lim sup
n→∞

∥∥∥(
1− an

ρ̃(a)n
)−1

− 1
∥∥∥ = 0.
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For n→∞ we get (
1− an

ρ̃(a)n
)−1

→ 1

and thus
‖an‖
ρ̃(a)n

→ 0. (2)

On the other hand we have

‖an+1‖
1

n+1 ≤ ‖a‖
1

n+1 · ‖an‖
1

n+1

= ‖a‖
1

n+1 · ‖an‖−
1

n(n+1) · ‖an‖ 1
n

≤ ‖a‖
1

n+1 · ‖a‖−
n

n(n+1) · ‖an‖ 1
n

= ‖an‖ 1
n .

Hence the sequence
(
‖an‖ 1

n

)
n∈N

is monotonically nonincreasing and therefore

ρ̃(a) = lim sup
k→∞

‖ak‖ 1
k ≤ ‖an‖ 1

n for all n ∈ N.

Thus 1 ≤ ‖an‖eρ(a)n for all n ∈ N, in contradiction to (2).
(e) The spectrum is nonempty. If σ(a) = ∅, then ρA(a) = −∞ contradict-

ing ρA(a) = limn→∞ ‖an‖ 1
n ≥ 0.

Definition 6. Let A be a C∗–algebra with unit. Then a ∈ A is called

• normal, if aa∗ = a∗a,
• an isometry, if a∗a = 1, and
• unitary, if a∗a = aa∗ = 1.

Remark 4. In particular, selfadjoint elements are normal. In a commutative
algebra all elements are normal.

Proposition 2. Let A be a C∗–algebra with unit and let a, b ∈ A. Then the
following holds:

1. σA(a∗) = σA(a) = {λ ∈ C |λ ∈ σA(a)}.
2. If a ∈ A×, then σA(a−1) = σA(a)−1.
3. If a is normal, then ρA(a) = ‖a‖.
4. If a is an isometry, then ρA(a) = 1.
5. If a is unitary, then σA(a) ⊂ S1 ⊂ C.
6. If a is selfadjoint, then σA(a) ⊂ [−‖a‖, ‖a‖] and moreover σA(a2) ⊂

[0, ‖a‖2].
7. If P (z) is a polynomial with complex coefficients and a ∈ A is arbitrary,

then
σA

(
P (a)

)
= P

(
σA(a)

)
= {P (λ) |λ ∈ σA(a)}.
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8. σA(ab)− {0} = σA(ba)− {0}.

Proof. We start by showing assertion (1). A number λ does not lie in the
spectrum of a if and only if (λ1−a) is invertible, i. e., if and only if (λ1−a)∗ =
λ1− a∗ is invertible, i. e., if and only if λ does not lie in the spectrum of a∗.

To see (2) let a be invertible. Then 0 lies neither in the spectrum σA(a) of
a nor in the spectrum σA(a−1) of a−1. Moreover, we have for λ 6= 0

λ1− a = λa(a−1 − λ−11)

and
λ−11− a−1 = λ−1a−1(a− λ1).

Hence λ1− a is invertible if and only if λ−11− a−1 is invertible.
To show (3) let a be normal. Then a∗a is selfadjoint, in particular normal.

Using the C∗–property we obtain inductively

‖a2n

‖2 = ‖(a2n

)∗a2n

‖ = ‖(a∗)2
n

a2n

‖ = ‖(a∗a)2
n

‖

= ‖(a∗a)2
n−1

(a∗a)2
n−1

‖ = ‖(a∗a)2
n−1

‖2

= · · · = ‖a∗a‖2
n

= ‖a‖2
n+1

.

Thus
ρA(a) = lim

n→∞
‖a2n

‖ 1
2n = lim

n→∞
‖a‖ = ‖a‖.

To prove (4) let a be an isometry. Then

‖an‖2 = ‖(an)∗an‖ = ‖(a∗)nan‖ = ‖1‖ = 1.

Hence
ρA(a) = lim

n→∞
‖an‖ 1

n = 1.

For assertion (5) let a be unitary. On the one hand we have by (4)

σA(a) ⊂ {λ ∈ C | |λ| ≤ 1}.

On the other hand we have

σA(a)
(1)
= σA(a∗) = σA(a−1)

(2)
= σA(a)

−1
.

Both combined yield σA(a) ⊂ S1.
To show (6) let a be selfadjoint. We need to show σA(a) ⊂ R. Let λ ∈ R

with λ−1 > ‖a‖. Then |−iλ−1| = λ−1 > ρ(a) and hence 1+iλa = iλ(−iλ−1+
a) is invertible. Put

U := (1− iλa)(1 + iλa)−1.

Then U∗ = ((1+ iλa)−1)∗(1− iλa)∗ = (1− iλa∗)−1 · (1+ iλa∗) = (1− iλa)−1 ·
(1 + iλa) and therefore
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U∗U = (1− iλa)−1 · (1 + iλa)(1− iλa)(1 + iλa)−1

= (1− iλa)−1(1− iλa)(1 + iλa)(1 + iλa)−1

= 1.

Similarly UU∗ = 1, i. e., U is unitary. By (5) σA(U) ⊂ S1. A simple compu-
tation with complex numbers shows that

|(1− iλµ)(1 + iλµ)−1| = 1 ⇔ µ ∈ R.

Thus (1− iλµ)(1 + iλµ)−1 · 1− U is invertible if µ ∈ C \ R. From

(1− iλµ)(1 + iλµ)−1 · 1− U

= (1 + iλµ)−1
(
(1− iλµ)(1 + iλa)1− (1 + iλµ)(1− iλa)

)
(1 + iλa)−1

= 2iλ(1 + iλµ)−1(a− µ1)(1 + iλa)−1

we see that a − µ1 is invertible for all µ ∈ C \ R. Thus µ ∈ rA(a) for all
µ ∈ C \ R and hence σA(a) ⊂ R. The statement about σA(a2) now follows
from part (7).

To prove (7) decompose the polynomial P (z)− λ into linear factors

P (z)− λ = α ·
n∏
j=1

(αj − z), α, αj ∈ C.

We insert an algebra element a ∈ A:

P (a)− λ1 = α ·
n∏
j=1

(αj1− a).

Since the factors in this product commute the product is invertible if and only
if all factors are invertible.3 In our case this means

λ ∈ σA
(
P (a)

)
⇔ at least one factor is noninvertible
⇔ αj ∈ σA(a) for some j
⇔ λ = P (αj) ∈ P

(
σA(a)

)
.

If c is inverse to 1− ab, then (1 + bca) · (1− ba) = 1− ba+ bc(1− ab)a = 1
and (1− ba) · (1 + bca) = 1− ba+ b(1− ab)ca = 1. Hence 1 + bca is inverse to
1− ba, which finally yields (8).

Corollary 1. Let (A, ‖ · ‖, ∗) be a C∗–algebra with unit. Then the norm ‖ · ‖
is uniquely determined by A and ∗.
3 This is generally true in algebras with unit. Let b = a1 · · · an with commuting

factors. Then b is invertible if all factors are invertible: b−1 = a−1
n · · · a−1

1 . Con-
versely, if b is invertible, then a−1

i = b−1 ·
Q

j 6=i aj where we have used that the
factors commute.
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Proof. For a ∈ A the element a∗a is selfadjoint and hence

‖a‖2 = ‖a∗a‖ 2(3)
= ρA(a∗a)

depends only on A and ∗.

3 Morphisms

Definition 7. Let A and B be C∗–algebras. An algebra homomorphism

π : A→ B

is called ∗–morphism if for all a ∈ A we have

π(a∗) = π(a)∗.

A map π : A→ A is called ∗–automorphism if it is an invertible ∗–morphism.

Corollary 2. Let A and B be C∗–algebras with unit. Each unit-preserving
∗–morphism π : A→ B satisfies

‖π(a)‖ ≤ ‖a‖

for all a ∈ A. In particular, π is continuous.

Proof. For a ∈ A×

π(a)π(a−1) = π(aa−1) = π(1) = 1

holds and similarly π(a−1)π(a) = 1. Hence π(a) ∈ B× with π(a)−1 = π(a−1).
Now if λ ∈ rA(a), then

λ1− π(a) = π(λ1− a) ∈ π(A×) ⊂ B×,

i. e., λ ∈ rB(π(a)). Hence rA(a) ⊂ rB(π(a)) and σB(π(a)) ⊂ σA(a). This
implies the inequality

ρB(π(a)) ≤ ρA(a).

Since π is a ∗–morphism and a∗a and π(a)∗π(a) are selfadjoint we can estimate
the norm as follows:

‖π(a)‖2 = ‖π(a)∗π(a)‖ = ρB
(
π(a)∗π(a)

)
= ρB

(
π(a∗a)

)
≤ ρA(a∗a) = ‖a‖2.

Corollary 3. Let A be a C∗–algebra with unit. Then each unit-preserving ∗–
automorphism π : A→ A satisfies for all a ∈ A:

‖π(a)‖ = ‖a‖
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Proof.
‖π(a)‖ ≤ ‖a‖ = ‖π−1

(
π(a)

)
‖ ≤ ‖π(a)‖.

If P (z) =
∑n
j=0 cjz

j is a polynomial of one complex variable and a an
element of an algebra A, then P (a) =

∑n
j=0 cja

j is defined in an obvious
manner. We now show how to define f(a) is f is a continuous function and a
is a normal element of a C∗–algebra A. This is known as continuous functional
calculus.

Proposition 3. Let A be a C∗–algebra with unit. Let a ∈ A be normal.
Then there is a unique ∗–morphism C(σA(a)) → A denoted by f 7→ f(a)

such that f(a) has the standard meaning in case f is the restriction of a
polynomial. Moreover, the following holds:

1. ‖f(a)‖ = ‖f‖C(σA(a)) for all f ∈ C(σA(a)).
2. If B is another C∗–algebra with unit and π : A → B a unit-preserving

∗–morphism, then π(f(a)) = f(π(a)) for all f ∈ C(σA(a)).
3. σA(f(a)) = f(σA(a)) for all f ∈ C(σA(a)). 4

Proof. For any polynomial P we have that P (a) is also normal and hence by
Proposition 2

‖P (a)‖ = ρA(P (a)) = sup{|µ| | µ ∈ σA(P (a))}
= sup{|P (λ)| | λ ∈ σA(a)} = ‖P‖C(σA(a)) (3)

Thus the map P 7→ P (a) extends uniquely to a linear map from the closure
of the polynomials in C(σA(a)) to A. Since the polynomials form an algebra
containing the unit, containing complex conjugates, and separating points,
this closure is all of C(σA(a)) by the Stone-Weierstrass theorem. By continuity
this extension is a ∗–morphism and assertion 1 follows from (3).

Assertion 2 clearly holds if f is a polynomial. It then follows for continuous
f because π is continuous by Corollary 2.

As to assertion 3 let λ ∈ σA(a). Choose polynomials Pn such that Pn → f
in C(σA(a)). By Proposition 2 Pn(λ) ∈ σA(Pn(a)), i.e. Pn(a) − Pn(λ) · 1 6∈
A×. Since the complement of A× is closed we can pass to the limit and we
obtain f(a)− f(λ) · 1 6∈ A×. Hence f(λ) ∈ σA(f(a)). This shows f(σA(a)) ⊂
σA(f(a)). Conversely, let µ 6∈ f(σA(a)). Then g := (f − µ)−1 ∈ C(σ(a)).
¿From g(a)(f(a)− µ · 1) = (f(a)− µ · 1)g(a) = 1 one sees f(a)− µ · 1 ∈ A×,
thus µ 6∈ σ(f(a)).

We extend Corollary 3 to the case where π is injective but not necessarily
onto. This is not a direct consequence of Corollary 3 because it is not a priori
clear that the image of a ∗–morphism is closed and hence a C∗–algebra in its
own right.

4 Recall from the proof of Corollary 2 that σB(π(a)) ⊂ σA(a). Strictly speaking,
the statement is π(f(a)) = (f |σB(π(a)))(π(a))
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Proposition 4. Let A and B be C∗–algebras with unit. Each injective unit-
preserving ∗–morphism π : A→ B satisfies

‖π(a)‖ = ‖a‖

for all a ∈ A.

Proof. By Corollary 2 we only have to show ‖π(a)‖ ≥ ‖a‖. Once we know this
inequality for selfadjoint elements it follows for all a ∈ A because

‖π(a)‖2 = ‖π(a)∗π(a)‖ = ‖π(a∗a)‖ ≥ ‖a∗a‖ = ‖a‖2.

Assume there exists a selfadjoint element a ∈ A such that ‖π(a)‖ < ‖a‖.
By Proposition 2, we have σA(a) ⊂ [−‖a‖, ‖a‖] and ρA(a) = ‖a‖, hence
‖a‖ ∈ σA(a) or −‖a‖ ∈ σA(a). Similarly, σB(π(a)) ⊂ [−‖π(a)‖, ‖π(a)‖].

Choose a continuous function f : [−‖a‖, ‖a‖] → R such that f van-
ishes on [−‖π(a)‖, ‖π(a)‖] and f(−‖a‖) = f(‖a‖) = 1. ¿From Proposi-
tion 3 we conclude π(f(a)) = f(π(a)) = 0 because f |σB(π(a)) = 0 and
‖f(a)‖ = ‖f‖C(σA(a)) ≥ 1. Thus f(a) 6= 0. This contradicts the injectivity
of π.

Remark 5. Any element a in a C∗–algebra A can be represented as a linear
combination a = a1 + ia2 of self-adjoint elements by setting a1 := 1

2 · (a+ a∗)
and a2 := 1

2i · (a− a∗).

Lemma 2. Let a ∈ A be a self-adjoint element in a unital C∗–algebra A.
Then the following three statements are equivalent:

1. a = b2 for a self-adjoint element b ∈ A.
2. a = c∗c for an arbitrary element c ∈ A.
3. σA(a) ⊂ [0,∞).

Proof. If a = b2 for a self-adjoint element, we have by Proposition 3

σA(a) = σA(b2) = {λ2 |λ ∈ σA(b) ⊂ [0,∞) ,

which proves the implication 1 =⇒ 3.
If σA(a) ⊂ [0,∞), we can define the element b :=

√
a using the continuous

functional calculus 3. We then have b∗ = b and b∗ = a, which proves the
implication 3 =⇒ 1.

The implication 1 =⇒ 2 is trivial.
Let a = c∗c and suppose σA(−a) ⊂ [0,∞). By assertion 8 from Proposition

2, we have σA(−cc∗) = σA(−c∗c)−{0} ⊂ [0,∞). Writing c = c1+ic2 with self-
adjoint elements c1, c2, we find c∗c+cc∗ = 2c21+2c22, hence c∗c = 2c21+2c22−cc∗,
which implies σA(c∗c) ⊂ [0,∞). Hence σA(c∗c) = {0}, which implies c∗c =
a = 0.

Now suppose a = c∗c for an arbitrary element c ∈ A. Since a = c∗c is self-
adjoint and σA(a2) ⊂ [0,∞), by the continuous functional calculus 3, there
exists a unique element |a| :=

√
a2 with
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σA(d) = {
√
λ |λ ∈ σA(a2)} ⊂ [0,∞) .

By the same argument, the elements a+ := 1
2 ·(|a|+a) and a− := 1

2 ·(|a|−a) are
self-adjoint and satisfy σA(ai) ⊂ [0,∞). We then have a = a+ − a−. Further,
for the element d := ca−, we compute

−d∗d = −a−c∗ca− = −a−(a+ − a−)a− = −a−a+a− + (a−)3 = (a−)3 ,

since a+a− = 1
4 (|a|+a)·(|a|−a) = 1

4 (|a|2−a2) = 0. We thus have σA(−d∗d) =
σA((a−)3) ⊂ [0,∞), which yields d = 0. Hence c = 0 or a− = 0, thus a = a+

and σA(a) = σA(a+) ⊂ [0,∞). This proves the implication 1 =⇒ 3.

Definition 8. A self-adjoint element a ∈ A is called positive, if one and
hence of the properties in Lemma 2 hold.

Remark 6. By the reasoning of the preceding proof, any self-adjoint element
a ∈ A can be represented as a linear combination a = a+ − a− with positive
elements a+ := 1

2 · (|a| + a) and a− := 1
2 · (|a| − a) satisfying a+a− = 0.

Combining this observation with remark 5, we conclude that any ∗–subalgebra
of A is spanned by its positive elements (of norm ≤ 1).

4 States and representations

Let (A, ‖ · ‖, ∗) be a C∗–algebra and H a Hilbert space.

Definition 9. A representation of A on H is a ∗–morphism π : A → L(H).
A representation is called faithful, if π is injective. A subset U ⊂ H is called
invariant under A, if

π(A)U := {π(a) · u | a ∈ a, u ∈ U} ⊂ U .

A representation is called irreducible, if the only closed vector subspaces of H
invariant under A are {0} and H.

Remark 7. Let πλ : A→ L(Hλ), λ ∈ Λ, be representations of A. Then

π =
⊕
λ∈Λ

πλ : A→ L(
⊕
λ∈Λ

Hλ),

π(a)
(
(xλ)λ∈Λ

)
=

(
πλ(a) · xλ

)
λ∈Λ,

is called the direct sum representation.

Definition 10. Two representations π1 : A → L(H1), π2 : A → L(H2) are
called unitarily equivalent, if there exists a unitary operator U : H1 → H2,
such that for every a ∈ A:

U ◦ π1(a) = π2(a) ◦ U .
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Definition 11. A vector Ω ∈ H is called cyclic for a representation π, if

{π(a) ·Ω | a ∈ A} ⊂ H

is a dense subset.

Example 6. The commutative C∗–algebra A = C(X) of continuous functions
on a compact Hausdorff space has a natural representation on the Hilbert
space H = L2(X) by multiplication. The constant function Ω = 1 is a cyclic
vector since the continuous functions are dense in L2(X).

Lemma 3. If (H,π) is an irreducible representation, then either π is the zero
map or every non-zero vector Ω ∈ H is cyclic for π.

Proof. For every vector Ω ∈ H, the space π(A)Ω is invariant under A, hence
its closure is either {0} or H. If Ω is non-zero then either π(A)Ω = {0}, so
that the 1-dimensional subspace C ·Ω is invariant under A, whence H = C ·Ω
and π = 0. Or their exists an element a ∈ A such that π(a)Ω 6= 0, so that
π(A) ·Ω is dense in H and hence Ω is cyclic.

Definition 12. A state on a C∗–algebra A is a linear funtional τ : A → C
with

1. ‖τ‖ := sup{|τ(a)| | a ∈ A, ‖a‖ = 1} = 1 (τ has norm 1).
2. τ(a∗a) ≥ 0 ∀a ∈ A (τ is positive).

The set of all states on A is denoted by S(A).

Example 7. Let X be a compact Hausdorff space, A = C(X). Let µ be a Borel
probability measure on X, i.e. a measure on the Borel sigma algebra of X with∫
X
dµ = 1. Then

τµ : A → C

f 7→
∫
X

f dµ

is a state. For instance, the state µδx0
corresponding to the Dirac measure at

x0 is the evaluation at x0:

µδx0
(f) = f(x0) .

Example 8. On the C∗–algebra A = Mat(n × n; C) of complex matrices, we
have the state

τ(A) :=
1
n
· tr(A) .

Example 9. On A = L(H), a vector Ω ∈ H with ‖Ω‖ = 1 yields a so called
vector state

τ(A) := 〈A ·Ω,Ω〉 .
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Proposition 5. Let τ : A→ C be a state on a C∗–algebra A with unit. Then
we have:

1. A × A → C, (a, b) 7→ τ(b∗a), is a positive semi definite, hermitian
sesquilinear form.

2. |τ(b∗a)|2 ≤ τ(a∗a)·τ(b∗b) ∀a, b ∈ A (Cauchy-Schwarz inequality).
3. τ(a∗) = τ(a) ∀a ∈ A.
4. |τ(a)|2 ≤ τ(a∗a) ∀a ∈ A.
5. τ(1) = ‖τ‖ = 1.

Proof. It follows immediately from the definitions, that the form (a, b) 7→
τ(b∗a) is sesquilinear and positive semi definite. To show that it is hermitian,
we set c = a · z + b for some z ∈ C and compute

0 ≤ τ(c∗c)
= z̄ · z · τ(a∗a) + z̄ · τ(a∗b) + z · τ(b∗a) + τ(b∗b) . (4)

It follows, that Im
(
z̄ · τ(a∗b) + z · τ(b∗a)

)
= 0. Setting z = 1, we obtain

Im τ(a∗b) = −Im τ(b∗a), setting z = i, we obtain Re τ(a∗b) = Re τ(b∗a). Thus
τ(a∗b) = τ(b∗a).

Setting z = − τ(a∗b)
τ(a∗a) , (4) implies the Cauchy-Schwarz inequality:

0 ≤ |τ(a∗b)|2

τ(a∗a)
− |τ(a∗b)|2

τ(a∗a)
− |τ(a∗b)|2

τ(a∗a)
+ τ(b∗b) .

Since A has a unit, we have

τ(a∗) = τ(a∗1) = τ(1∗a) = τ(a) .

To show 4, we compute

|τ(a)|2 = |τ(1∗a)|2 ≤ τ(1∗1) · τ(a∗a) = τ(1) · τ(a∗a)
≤ ‖τ‖ · ‖1‖ · τ(a∗a) ≤ τ(a∗a) .

Using τ(1) = τ(1∗1) ≥ 0 and τ(1) ≤ 1, we compute

|τ(a)|2 ≤ τ(1∗1) · τ(a∗a) ≤ τ(1) · ‖τ‖ · ‖a∗a‖ = τ(1) · ‖a‖2 .

We thus have

1 = ‖τ‖2 ≤ sup
a∈A
a 6=0

|τ(a)|2

‖a‖2
≤ τ(1)

hence τ(1) = 1.

Remark 8. The proof of assertion 5 shows that ϕ(1) = ‖ϕ‖ holds for every
positive linear functional ϕ.
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Corollary 4. Let τ1, . . . , τn be states and λ1, . . . , λn ≥ 0 with
∑n
j=1 λj = 1.

Then the convex combination τ =
∑n
j=1 λn · τn is also a state.

Let τi, i ∈ N be states and define τ(a) := limi→∞ τi(a). Then τ is a state.

Proof. For the convex combinations, we have

τ(a∗a) =
n∑
j=1

λj︸︷︷︸
≥0

· τj(a∗a)︸ ︷︷ ︸
≥0

≥ 0

and

‖τ‖ = τ(1) =
n∑
j=1

λj · τj(1) =
n∑
j=1

λj = 1 .

Similarly, for the pointwise convergence, we have

τ(a∗a) = lim
i→∞

τi(a∗a) ≥ 0

and

‖τ‖ := sup{|τ(a)| | a ∈ A, ‖a‖ = 1}
= sup{| lim

i→∞
τi(a)| | a ∈ A, ‖a‖ = 1}

= sup{ lim
i→∞

|τi(a)| | a ∈ A, ‖a‖ = 1}

= lim
i→∞

‖τi‖

= 1 .

Example 10. Let τ1, . . . , τn be vector states for vectors Ω1, . . . , Ωn ∈ H. Then
for the state τ =

∑n
j=1 λjτj with λj ≥ 0,

∑n
j=1 λj = 1, we find

τ(a) =
n∑
j=1

λj · τj(a) =
n∑
j=1

λj · (a ·Ωj , Ωj) = tr(% · a) .

Here % ∈ L(H) is an operator of finite dimensional range with eigenvectors
Ωj and eigenvalues λj .

More generally, a positive trace class operator % ∈ L(H) defines a state τ
on A = L(H) by τ(a) := tr(% · a). States of this form are called normal.

Lemma 4. Let τ be a state on a C∗–algebra A. Then the following holds:

1. τ(a∗a) = 0 ⇔ τ(ba) = 0 for any b ∈ A.
2. τ(b∗a∗ab) ≤ ‖a∗a‖ · τ(b∗b).

Proof. 1. Suppose τ(a∗a) = 0. Then the Cauchy-Schwarz inequality

|τ(ba)|2 ≤ τ(a∗a)︸ ︷︷ ︸
=0

·τ(bb∗) = 0

implies τ(ba) = 0. The other direction is obvious.
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2. If τ(b∗b) = 0, then τ(cb) = 0 for any c ∈ A, especially for c = b∗a∗a. We
thus assume τ(b∗b) > 0 and set %(c) := τ(b∗cb)

τ(b∗b) . Then % is a positive linear
functional with ‖%‖ = %(1) = 1. Hence % is a state, and from Proposition 5
we have %(a∗a) ≤ ‖a∗a‖.

¿From every state τ on a C∗–algebra A we can construct a representation
of A by making the product (b, a) 7→ τ(b∗a) non degenerate. By assertion 1
in Lemma 4, the null space

Nτ := {a ∈ A | τ(a∗a) = 0}

is a closed linear subspace of A. By assertion 2 in Lemma 4, Nτ is a left ideal
in A. Therefore, the pairing

A/Nτ ×A/Nτ → C ,

([a], [b]) 7→ τ(b∗a) ,

is a well defined hermitian scalar product. Let Hτ be the completion of the
pre-Hilbert space A/Nτ . Then the map

πτ : A→ L(A/Nτ ) ,
πτ (a) · [b] := [ab] ,

satisfies

‖πτ (a) · [b]‖2 = τ(b∗a∗ab) ≤ ‖a∗a‖ · τ(b∗b) = ‖a‖2 · ‖[b]‖2 ,

so ‖πτ (a)‖ ≤ ‖a‖ and ‖πτ‖ ≤ 1. The map πτ thus extends to a representation

πτ : A → L(Hτ ) .

The scalar product induced by ([a], [b]) 7→ τ(b∗a) on Hτ will be denoted by
〈·, ·〉τ .

Definition 13. Let τ be a state on a C∗–algebra A. The representation
(Hτ , 〈·, ·〉τ , πτ ) constructed above is called the Gelfand-Naimark-Segal re-
presentation, or GNS representation for short.

Example 11. For A = C(X) with a state τµ given by a probability measure
µ as τµ(f) =

∫
X
f dµ, the representation space of the GNS representation is

Hτ = L2(X,µ).

Remark 9. Let τ be a state on a C∗–algebra A with unit. Then we have:

1. The vector Ωτ := [1] ∈ Hτ is cyclic for πτ , since

πτ (A) ·Ωτ = A/Nτ ⊂ Hτ

is dense.
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2. τ can be represented as a vector state on the GNS representation because

τ(a) = τ(1∗a1) = 〈[a1], [1]〉τ = 〈πτ (a) ·Ωτ , Ωτ 〉τ

Definition 14. Let A be a C∗–algebra A. The direct sum representation⊕
τ∈S(A)

πτ : A→ L
( ⊕
τ∈S(A)

Hτ

)
is called the universal representation of A.

Remark 10. The universal representation is faithful. Hence every C∗–algebra
A is isomorphic to a subalgebra of the algebra L(H) of bounded linear oper-
ators on a Hilbert space H.

Definition 15. A state τ on a C∗–algebra A is called pure, if for every pos-
itive linear functional % : A → C with %(a∗a) ≤ τ(a∗a) ∀a ∈ A, there exists
λ ∈ [0, 1] with % = λ · τ .

Remark 11. A pure state τ cannot be written as a convex combination of
different states τ1 6= τ2: If τ = λ ·τ1 +(1−λ) ·τ2 with λ ∈ [0, 1], then τ ≥ λ ·τ1
implies λ = 0 and τ = τ2 or λ = 1 and τ = τ1.

Definition 16. Let S ⊂ A be a subset of a C∗–algebra A. The space S′ :=
{a ∈ A | [a, s] = 0 ∀a ∈ A, s ∈ S} is called the commutant of S. Here [a, s] :=
as− sa is the commutator of a and s.

Remark 12. If S ⊂ A is a ∗–invariant subset, i.e. S∗ := {s∗ | s ∈ S} ⊂ S, then
the commutant S′ is also ∗–invariant. S′ is closed, since for every s ∈ S, the
map A→ A, a 7→ [a, s] is continuous. Hence S′ is a C∗–subalgebra of A.

Theorem 1. Let (H,π) be a representation of a unital C∗–algebra. Then the
following two statemenst are equivalent:

1. π is irreducible
2. (π(A))′ = C · idH .

Proof. Suppose π is irreducible and b ∈ L(H) commutes with all elements
of π(A). By Remark 5, we may write b = b1 + ib2 with self-adjoint elements
b1, b2 ∈ L(H). We need to show that σA(b1) and σA(b2) each consist of a single
point. Suppose to the contrary, that σA(b1) contains two different numbers
λ 6= µ. Then we choose functions f, g ∈ C(σA(b1)) such that f(λ) = g(µ) = 1
and f · g = 0. By the continuous functional calculus 3 in the C∗–algebra
(π(A))′, we have f(b1)·g(b1) = (f ·g)(b1) = 0, and f(b1), g(b1) 6= 0. Since g(b1)
commutes with every element of π(A) and π is irreducible, g(b1) ·H is an A-
invariant, dense subspace ofH. The vanishing of f(b1) on this subspace implies
f(b1) = 0, which contradicts the fact that the continuous functional calculus
3 is an isometry. Thus σA(b1) consists of a single point, hence C(σA(b1)) is
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one-dimensional. Since the continuous functional calculus C(σA(b1)) → A is
an isometric embedding with b1, idH in its image, we conclude that b1 = λidH
for a λ ∈ C. By the same argument, b2 and hence b is a multiple of the identity.

Now suppose (π(A))′ = C · idH . Let K ⊂ H be a closed subspace invariant
under A, and let p be the orthogonal projection fromH ontoK. The invariance
property π(A)K ⊂ K yields that p commutes with every operator in π(A).
Hence p is of the form p = λ · idH , λ ∈ C. Since p is a projection, p2 = p thus
λ2 = λ. Hence K = {0} or K = H.

Theorem 2. Let τ be a state on a C∗–algebra A. Then the following two
statements are equivalent:

1. τ is a pure state.
2. The GNS representation (Hτ , πτ ) is irreducible, i.e. Hτ has no nontrivial

closed A-invariant subspace.

Proof. Suppose τ is a pure state and v ∈ L(H) is a positive element of norm
≤ 1 that commutes with every element in πτ (A). Then the function

% : A→ C, a 7→ 〈πτ (a) · vΩτ , Ωτ 〉

is a positive linear functional on A, satisfying %(a∗a) ≤ τ(a∗a) for all a ∈ A.
Hence % = λ · τ for a λ ∈ [0, 1]. Thus for arbitary a, b ∈ A, we obtain in the
pre-Hilbert space A/Nτ :

〈v · (a+Nτ ), (b+Nτ )〉τ = 〈v · πτ (a)Ωτ , πτ (b)Ωτ 〉τ
= 〈v · πτ (b∗a)Ωτ , Ωτ 〉τ
= %(b∗a)
= λ · τ(b∗a)
= 〈λidNτ · (a+Nτ ), (b+Nτ )〉τ .

This implies v = λidHτ
, since A/Nτ is dense in Hτ . By Proposition 1, we

conculde that πτ is irreducible.
Now suppose that % is a positive linear functional on A such that %(a∗a) ≤

τ(a∗a) for all a ∈ A. Then the pairing

(a+Nτ , b+Nτ ) 7→ %(b∗a)

is a positive semi-definite, hermitian sesquilinear form on A/Nτ . Being ma-
jorized by 〈·, ·〉τ , it extends to another inner product 〈·, ·〉% on the Hilbert
space Hτ . Hence there exists a bounded positive operator m ∈ L(H) such
that

〈x, y〉% = 〈x,my〉τ ∀x, y ∈ Hτ .

Now the estimate

0 ≤ %(a∗a) = 〈πτ (a)Ω,mπτ (a)Ω〈τ≤ τ(a∗a) = 〈πτ (a)Ω, πτ (a)Ω〈τ
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together with the Cauchy-Schwarz inequality yields ‖m‖ ≤ 1. For every
a, b, c ∈ A, we have

〈πτ (a),mπτ (b)πτ (b)〈τ = %(a∗bc)
= %((b∗a)∗c)
= 〈πτ (a), πτ (b)mπτ (b)〈τ .

Hence m commutes with every π(c), c ∈ A.
Now suppose the functional % is not a mutiple of the state τ . Then the

operator m is not a multiple of idHτ . By Theorem 1, this contradicts the
irreducibility of the representation πτ .

Lemma 5. In a unital C∗–algebra A, every state is a pointwise limit of convex
combinations of pure states.

Proof. By Corollary 4, convex combinations pointwise limits of states are
states. Hence S(A) is a closed convex set in the topology of pointwise con-
vergence. By the Banach-Alaoglu theorem from functional analysis, S(A) is
thus a compact subset of the closed unit ball in the dual space of A (in the
topology of pointwise convergence). The Krein-Milman theorem then implies,
that S(A) is the closed convex hull of its extreme points, which be Remark
11 contain all pure states. Now let τ ∈ S(A) be an extreme point of S(A), %
a positive linear functional on A satisfying %(a∗a) ≤ τ(a∗a) for all a ∈ A, and
suppose τ 6= % 6= 0. Then setting t = ‖%‖ ∈ (0, 1), we find

τ = t · %

‖%‖
+ (1− t) · (τ − %)

‖τ − %‖
s

since ‖τ − %‖ = τ(1) − %(1) = ‖τ‖ − ‖%‖ = 1 − t by Remark 8. Hence %
‖%‖ =

(τ−%)
‖τ−%‖ = τ , since by assumption τ is an extreme point of S(A). Thus % = tτ

and hence τ is a pure state.

5 Product states

In this section, we consider states on the tensor product of C∗–algebras.
The norms making the algebraic tensor product into a C∗–algebra are highly
nonunique. However, the norm making the algebraic tensor product of Hilbert
spaces into a pre-Hilbert space is unique. So it seems natural to study norms
on the algebras by means of norms on representation spaces. We will work
here with the finest norm topology, making the algebraic tensor product of
C∗–algebras into a C∗–algebra. Throughout this section, we assume the C∗–
algebras in question to have a unit.

Remark 13. Let (H, 〈·, ·〉H) and (K, 〈·, ·〉K) be Hilbert spaces. Then there is a
unique inner product 〈·, ·〉 on the algebraic tensor product of H and K such
that
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〈x⊗ y, x′ ⊗ y′〉 = 〈x, x′〉H · 〈y, y′〉K ∀x, x′ ∈ H, y, y′ ∈ K .

The completion of the algebraic tensor product with respect to this inner
product is called the tensor product of the Hilbert spaces and is denoted by
H⊗K. Moreover, for bounded operators a ∈ L(H) and b ∈ L(K), there exists
a unique operator a⊗ b ∈ L(H ⊗K) such that

(a⊗ b)(x⊗ y) = a(x)⊗ b(y) ∀x ∈ H, y ∈ K .

This operator satisfies ‖a⊗ b‖ = ‖a‖H · ‖b‖K .

Given two C∗–algebras (A, ‖·‖A, ∗) and (B, ‖·‖B , ∗), we want to construct
C∗–norms on the algebraic tensor product A⊗B. The simplest way to do so
is by using the universal representations. The C-antilinear map ∗ : A⊗ B →
A⊗B defined by (a⊗ b)∗ := a∗ ⊗ b∗ on homogeneous elements and extended
bilinearly to A ⊗ B makes the algebraic tensor product into an involutive
algebra.

Lemma 6. Let (H,ϕ) and (K,ψ) be representations of A and B, respectively.
Then there is a unique ∗–homomorphism π : A⊗B → L(H ⊗K) such that

π(a⊗ b) = ϕ(a)⊗ ψ(b) ∀a ∈ A, b ∈ B .

Moreover, if the representations ϕ and ψ are faithful, then so is π.

Proof. The map A×B → L(H⊗K), (a, b) 7→ ϕ(a)⊗ψ(b) is bilinear and thus
yields a unique linear map π : A⊗B → L(H⊗K) as claimed, which is indeed
a ∗–morphism. If both ϕ and ψ are injective and z ∈ A⊗B satisfies π(z) = 0,
then by writing z =

∑n
j=1 aj ⊗ bj with linearly independent bj , we conclude

ϕ(aj) = 0 for j = 0, . . . , n. Hence aj = 0 for j = 1, . . . , n and thus z = 0.

By this Lemma, it is natural to make use of the universal representation
from Definition 14 to obtain a C∗–norm on the algebraic tensor product.

Definition 17. Let (A, ‖ · ‖A, ∗) and (B, ‖ · ‖B , ∗) be C∗–algebras with the
universal representations πA : A→ L(H) and πB : B → L(K). The injective
C∗–norm ‖ · ‖ι on the algebraic tensor product is defined by

‖c‖ι := ‖π(c)‖ ,

where π : A⊗B → L(H ⊗K) is the unique ∗–morphism induced by πA × πB
as in Lemma 6. The completion of the algebraic tensor product with respect
to the C∗–norm ‖ · ‖ι is called the injective C∗–tensor product and is denoted
by A⊗ι B.

Since the ∗–morphism π constructed via the universal representations is
injective, ‖ · ‖ι is indeed a C∗–norm on A⊗B. Another natural C∗–norm on
A⊗B is constructed by taking the supremum over all C∗–norms. By Remark
2, a unit preserving ∗–morphism π from the algebraic tensor product A ⊗ B
to a C∗–algebra C satisfies ‖π(x)‖ ≤ ‖x‖γ with respect to any C∗–norm ‖ · ‖γ
on A⊗B. This yields the following characterization of the maximal C∗–norm
on A⊗B:
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Definition 18. Let (A, ‖ · ‖A, ∗) and (B, ‖ · ‖B , ∗) be C∗–algebras. The pro-
jective C∗–norm ‖ · ‖π on the algebraic tensor product A⊗B is defined by

‖c‖π := inf


n∑
j=1

‖aj‖A · ‖bj‖B

∣∣∣∣∣∣ c =
n∑
j=1

aj ⊗ bj

 .

The completion of A ⊗ B with respect to the C∗–norm ‖ · ‖π is called the
projective C∗–tensor product and is denoted by A⊗π B.

Remark 14. The projective C∗–norm ‖ · ‖π satisfies ‖a ⊗ b‖π = ‖a‖A · ‖b‖B
for all a ∈ A, b ∈ B. Clearly, any other C∗–norm ‖ · ‖γ on A ⊗ B satisfies
‖c‖γ ≤ ‖c‖π for all c ∈ A ⊗ B, hence the projective C∗–norm is maximal
among all C∗–norms on A ⊗ B. One can show that the injective C∗–norm
‖ · ‖ι on the other hand is minimal among all C∗–norms on A⊗B.

The projective C∗–tensor product has the following universal property:

Lemma 7. Let A, B and C be C∗–algebras, and let ϕ : A→ C and ψ : B → C
be ∗–morphisms such that ϕ(a) and ψ(b) commute for all a ∈ A, b ∈ B. Then
there exists a unique ∗–morphism π : A⊗π B → C such that

π(a⊗ b) = ϕ(a) · ψ(b) ∀ a ∈ A, b ∈ B . (5)

Proof. The bilinear map A × B → C, (a, b) 7→ ϕ(a) · ψ(b) induces a unique
linear map π : A⊗B → C satisfying (5). This map is a ∗–morphism. The map
‖ · ‖γ : A⊗B → R, c 7→ ‖π(c)‖γ is a C∗–norm, hence it satisfies ‖c‖γ ≤ ‖c‖π
for all c ∈ A ⊗ B. Hence π is continuous with respect to the projective C∗–
norm and thus uniquely extends from the dense subset A⊗B to the projective
C∗–tensor product A⊗π B.

Now we study states on the projective C∗–tensor product A⊗π B. Taking
linear functionals µ : A→ C and ν : B → C, setting

(µ⊗ ν)(a⊗ b) := µ(a) · ν(b)

on homogeneous elements and extending bilinearly, we obtain a linear func-
tional on A⊗B. In the projective C∗–norm, we have ‖µ⊗ν‖π = ‖µ‖A · ‖ν‖B .
Furthermore, for the homogeneous elements a⊗ b, we have:

(µ⊗ ν)
(
(a⊗ b)∗(a⊗ b)

)
= (µ⊗ ν)(a∗a⊗ b∗b) = µ(a∗a) · ν(b∗b) .

Hence the functional µ⊗ ν : A⊗B → C is positive, if µ and ν are.

Definition 19. Let A and B be C∗–algebras, and let µ ∈ S(A) and ν ∈ S(B)
be states. The unique extension of µ ⊗ ν to a state on the projective tensor
product A⊗π B is called a product state.
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If A and B have a unit, then we can restrict a state τ ∈ S(A⊗B) to one
of the factors by setting:

τA(a) := τ(a⊗ 1) ∀ a ∈ A
τB(b) := τ(1⊗ b) ∀ b ∈ B

Obviously, for any two states µ ∈ S(A) and ν ∈ S(B), there is a state τ ∈
S(A⊗πB) such that τA = µ and τB = ν, namely the product state τ = µ⊗ν.
Hence in this case, τ = τA ⊗ τB , i.e. the measurement in the state τ of an
observable in A ⊗π B simply results in the product of measurements in the
states τA and τB , respectively. In general this is not the case, so we set:

Definition 20. A state τ ∈ S(A ⊗π B) is called correlated, if there exists
a ∈ A and b ∈ B such that τ(a⊗ b) 6= τA(a) · τB(b).

Definition 21. A state τ ∈ S(A ⊗π B) is called decomposable, if it is the
pointwise limit of convex combinations of product states. A state τ ∈ S(A⊗π
B) is called entangled, if it is not decomposable.

Remark 15. In the literature, the pointwise limit of linear functionals is re-
ferred to as the weak∗-limit. Stated this way, the set of decomposable states
is the weak∗–closure of the convex hull of the product states.

Example 12. A pure state on A⊗πB cannot be written as convex combination
of different states. It can neither be written as a pointwise limit of such convex
combinations. Hence a pure state is decomposable if and only it is a product
state.

The set of decomposable states is a convex subset of the set of all (positive)
linear functionals on the projective C∗–tensor product A ⊗π B. One aims
at a characterization of this convex set by inequalities. While a complete
characterization is unknown, a simple such inequality has been deduced from
the work of Bell in the late 1950’s on the Einstein-Podolsky-Rosen paradox.
Therefore, inequalities of this type are often referred to as (generalized) Bell
inequalities.

Lemma 8. Let A and B be C∗–algebras and let τ be a decomposable state on
the projective C∗–tensor product A⊗π B. Then

|τ(a⊗ (b− b′))|+ |τ(a′ ⊗ (b+ b′))| ≤ 2 (6)

holds for all self-adjoint elements a, a′ ∈ A, b, b′ ∈ B of norm ≤ 1.

Proof. For a product state τ = µ⊗ ν, we have

τ(a⊗ (b− b′)) = µ(a) · ν(b)− µ(a) · ν(b′)
= µ(a) · ν(b) ·

(
1± µ(a′) · ν(b′)

)
− µ(a) · ν(b′) ·

(
1± µ(a′) · ν(b)

)
.
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By assumption, |µ(a)|, |µ(a′)|, |ν(b)|, |ν(b′)| ≤ 1, so we have

|τ(a⊗ (b− b′))| ≤ |1± µ(a′) · ν(b′)|+ |1± µ(a′) · ν(b)|
= 1± µ(a′) · ν(b′) + 1± µ(a′) · ν(b)
= 2± τ(a′ ⊗ (b+ b′)) .

Hence, (6) holds for all product states. If τ is a convex combination of product
states, τ =

∑n
j=1 λjµj ⊗ νj , we obtain:

|τ(a⊗ (b− b′))|+ |τ(a′ ⊗ (b+ b′))|

≤
n∑
j=1

λj ·
{

(µj ⊗ νj)(a⊗ (b− b′)) + (µj ⊗ νj)(a′ ⊗ (b+ b′))
}

≤ 2 .

Taking pointwise limits of convex combinations, the inequality holds by con-
tinuity.

Example 13. Let A = B = Mat(2×2; C) be matrix algebras. Let e1, e2 be the
standard basis of C2. On A⊗B, we have the Bell state τ , which is the vector
state with the vector

Ω :=
1√
2

(
e1 ⊗ e1 + e2 ⊗ e2

)
.

It is easy to see, that the Bell state is entangled. For instance, the observables

a =
(

1 0
0 −1

)
, a′ =

(
0 1
1 0

)
, b =

1√
2
·
(

1 1
1 −1

)
, b′ =

1√
2
·
(
−1 1
1 1

)
in the state τ yield:

τ(a⊗ (b− b′)) =
√

2 τ(a⊗ a) =
√

2 〈(a⊗ a)(Ω), Ω〉
=
√

2 〈Ω,Ω〉 =
√

2

and similarly
τ(a′ ⊗ (b+ b′)) =

√
2,

hence
|τ(a⊗ (b− b′))|+ |τ(a′ ⊗ (b+ b′))| = 2

√
2 > 2.

Thus the state τ violates Bell’s inequality and is therefore entangled by
Lemma 8.

Bell inequalities are often referred to as inequalities which a priori hold
for all states in a classical system. The existence of entangled states may thus
be considered as a characterizing phenomenon of quantum systems. In fact, if
one of the observable algebras is abelian – e.g. if it corresponds to a classical
system – then there are no entangled states in A⊗π B:
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Proposition 6. Let A and B be C∗–algebras with unit. If A or B is abelian,
then all states on the projective C∗–tensor product A⊗π B are decomposable.

Proof. By Theorem 2, it suffices to show that every pure state τ on A⊗πB is a
product state. We first claim that τ(xy) = τ(x) · τ(y) holds for all x ∈ A⊗πB
and all y ∈ Z(A⊗π B), where Z(A⊗π B) denotes the center of A⊗π B. Since
Z(A⊗πB) is spanned by its positive elements of norm ≤ 1, it suffices to prove
the claim for y positive, i.e. y = z2 for a self-adjoint z ∈ Z(A ⊗π B), with
‖y‖ ≤ 1. If τ(y) = 0, the Cauchy-Schwarz inequality

|τ(xy)|2 = |τ((zx∗)∗z)|2 ≤ τ(xz∗zx∗) · τ(z∗z)
= τ(xyx∗) · τ(y)

implies τ(xy) = 0. If τ(y) = 1, then τ(1 − y) = 0, thus 0 = τ(x(1 − y)) =
τ(x) · τ(y)− τ(xy).

For 0 < τ(y) < 1, we have:

τ(x) = τ(y) · 1
τ(y)

· τ(xy)︸ ︷︷ ︸
=:τ1(x)

+(1− τ(y)) · 1
1− τ(y)

· τ(x(1− y))︸ ︷︷ ︸
=:τ2(x)

∀x ∈ A⊗π B .

Since y ∈ Z(A⊗πB), we have τ1(x∗x) = 1
τ(y) ·τ(x

∗xy) = 1
τ(y) ·τ((zx)

∗zx) ≥ 0.
Similarly, τ2(x∗x) = 1

1−τ(y) · τ(x
∗x(1− y)) ≥ 0, since

τ(x∗xy) = τ(x∗z∗zx) ≤ ‖z∗z‖ · τ(x∗x) ≤ τ(x∗x) .

Clearly, τ1(1) = τ2(1) = 1, hence τ1 and τ2 are states on A⊗π B. Since τ is a
pure state by assumption, we conclude τ = τ1 = τ2. Hence τ1(x) = τ2(x) for
all x ∈ A⊗π B, which yields τ(xy) = τ(y) · τ(x).

Now if A is abelian, then A⊗π {1} ⊂ Z(A⊗π B). As we have seen, every
pure state τ on A⊗π B satisfies

τ(a⊗ b) = τ((a⊗ 1) · (1⊗ b)) = τA(a) · τB(b) ∀a ∈ A, b ∈ B .

Hence τ is a product state.

6 Weyl systems

In this section we introduce Weyl systems and CCR-representations. They
formalize the “canonical commutator relations” from quantum field theory in
an “exponentiated form”. The main result of the present section is Theorem 3
which says that for each symplectic vector space there is an essentially unique
CCR-representation. Our approach follows ideas in [6]. A different proof of
this result may be found in [3, Sec. 5.2.2.2].

Let (V, ω) be a symplectic vector space, i. e., V is a real vector space of
finite or infinite dimension and ω : V × V → R is an antisymmetric bilinear
map such that ω(φ, ψ) = 0 for all ψ ∈ V implies φ = 0.
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Definition 22. A Weyl system of (V, ω) consists of a C∗–algebra A with unit
and a map W : V → A such that for all φ, ψ ∈ V we have

(i) W (0) = 1,
(ii)W (−φ) = W (φ)∗,
(iii)W (φ) ·W (ψ) = e−iω(φ,ψ)/2W (φ+ ψ).

Condition (iii) says that W is a representation of the additive group V in
A up to the “twisting factor” e−iω(φ,ψ)/2. Note that since V is not given a
topology there is no requirement on W to be continuous. In fact, we will see
that even in the case when V is finite-dimensional and so V carries a canonical
topology W will in general not be continuous.

Example 14. We construct a Weyl system for an arbitrary symplectic vector
space (V, ω). Let H = L2(V,C) be the Hilbert space of square-integrable
complex-valued functions on V with respect to the counting measure, i. e.,
H consists of those functions F : V → C that vanish everywhere except for
countably many points and satisfy

‖F‖2L2 :=
∑
φ∈V

|F (φ)|2 <∞.

The Hermitian product on H is given by

(F,G)L2 =
∑
φ∈V

F (φ) ·G(φ).

Let A := L(H) be the C∗–algebra of bounded linear operators on H as in
Example 1. We define the map W : V → A by

(W (φ)F )(ψ) := eiω(φ,ψ)/2 F (φ+ ψ).

Obviously, W (φ) is a bounded linear operator on H for any φ ∈ V and
W (0) = idH = 1. We check (ii) by making the substitution χ = φ+ ψ:

(W (φ)F,G)L2 =
∑
ψ∈V

(W (φ)F )(ψ)G(ψ)

=
∑
ψ∈V

eiω(φ,ψ)/2 F (φ+ ψ)G(ψ)

=
∑
χ∈V

eiω(φ,χ−φ)/2 F (χ)G(χ− φ)

=
∑
χ∈V

eiω(φ,χ)/2 · F (χ) ·G(χ− φ)

=
∑
χ∈V

F (χ) · eiω(−φ,χ)/2 ·G(χ− φ)

= (F,W (−φ)G)L2 .
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Hence W (φ)∗ = W (−φ). To check (iii) we compute

(W (φ)(W (ψ)F ))(χ) = eiω(φ,χ)/2 (W (ψ)F )(φ+ χ)
= eiω(φ,χ)/2 eiω(ψ,φ+χ)/2 F (φ+ χ+ ψ)
= eiω(ψ,φ)/2 eiω(φ+ψ,χ)/2 F (φ+ χ+ ψ)
= e−iω(φ,ψ)/2 (W (φ+ ψ)F )(χ).

ThusW (φ)W (ψ) = e−iω(φ,ψ)/2W (φ+ψ). Let CCR(V, ω) be the C∗–subalgebra
of L(H) generated by the elements W (φ), φ ∈ V . Then CCR(V, ω) together
with the map W forms a Weyl-system for (V, ω).

Proposition 7. Let (A,W ) be a Weyl system of a symplectic vector space
(V, ω). Then

1. W (φ) is unitary for each φ ∈ V ,
2. ‖W (φ)−W (ψ)‖ = 2 for all φ, ψ ∈ V , φ 6= ψ,
3. The algebra A is not separable unless V = {0},
4. the family {W (φ)}φ∈V is linearly independent.

Proof. ¿From W (φ)∗W (φ) = W (−φ)W (φ) = eiω(−φ,φ)W (0) = 1 and simi-
larly W (φ)W (φ)∗ = 1 we see that W (φ) is unitary.

To show (2) let φ, ψ ∈ V with φ 6= ψ. For arbitrary χ ∈ V we have

W (χ)W (φ− ψ)W (χ)−1 = W (χ)W (φ− ψ)W (χ)∗

= e−iω(χ,φ−ψ)/2W (χ+ φ− ψ)W (−χ)
= e−iω(χ,φ−ψ)/2 e−iω(χ+φ−ψ,−χ)/2W (χ+ φ− ψ − χ)
= e−iω(χ,φ−ψ)W (φ− ψ).

Hence the spectrum satisfies

σA(W (φ− ψ)) = σA(W (χ)W (φ− ψ)W (χ)−1) = e−iω(χ,φ−ψ) σA(W (φ− ψ)).

Since φ − ψ 6= 0 the real number ω(χ, φ − ψ) runs through all of R as χ
runs through V . Therefore the spectrum of W (φ − ψ) is U(1)-invariant. By
Proposition 2 (5) the spectrum is contained in S1 and by Proposition 1 it is
nonempty. Hence σA(W (φ− ψ)) = S1 and therefore

σA(eiω(ψ,φ)/2W (φ− ψ)) = S1.

Thus σA(eiω(ψ,φ)/2W (φ−ψ)−1) is the circle of radius 1 centered at −1. Now
Proposition 2 (3) says

‖eiω(ψ,φ)/2W (φ− ψ)− 1‖ = ρA

(
eiω(ψ,φ)/2W (φ− ψ)− 1

)
= 2.

¿From W (φ) −W (ψ) = W (ψ)(W (ψ)∗W (φ) − 1) = W (ψ)(eiω(ψ,φ)/2W (φ −
ψ)− 1) we conclude
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‖W (φ)−W (ψ)‖2

= ‖(W (φ)−W (ψ))∗(W (φ)−W (ψ))‖
= ‖(eiω(ψ,φ)/2W (φ− ψ)− 1)∗W (ψ)∗W (ψ) (eiω(ψ,φ)/2W (φ− ψ)− 1)‖
= ‖(eiω(ψ,φ)/2W (φ− ψ)− 1)∗ (eiω(ψ,φ)/2W (φ− ψ)− 1)‖
= ‖eiω(ψ,φ)/2W (φ− ψ)− 1‖2

= 4.

This shows (2). Assertion (3) now follows directly since the balls of radius 1
centered at W (φ), φ ∈ V , form an uncountable collection of mutually disjoint
open subsets.

We show (4). Let φj ∈ V , j = 1, . . . , n, be pairwise different and let∑n
j=1 αjW (φj) = 0. We show α1 = . . . αn = 0 by induction on n. The case

n = 1 is trivial by (1). Without loss of generality assume αn 6= 0. Hence

W (φn) =
n−1∑
j=1

−αj
αn

W (φj)

and therefore

1 = W (φn)∗W (φn)

=
n−1∑
j=1

−αj
αn

W (−φn)W (φj)

=
n−1∑
j=1

−αj
αn

e−iω(−φn,φj)/2W (φj − φn)

=
n−1∑
j=1

βjW (φj − φn)

where we have put βj := −αj

αn
eiω(φn,φj)/2. For an arbitrary ψ ∈ V we obtain

1 = W (ψ) · 1 ·W (−ψ)

=
n−1∑
j=1

βjW (ψ)W (φj − φn)W (−ψ)

=
n−1∑
j=1

βje
−iω(ψ,φj−φn)W (φj − φn).

From
n−1∑
j=1

βjW (φj − φn) =
n−1∑
j=1

βje
−iω(ψ,φj−φn)W (φj − φn)

we conclude by the induction hypothesis
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βj = βje
−iω(ψ,φj−φn)

for all j = 1, . . . , n− 1. If some βj 6= 0, then e−iω(ψ,φj−φn) = 1, hence

ω(ψ, φj − φn) = 0

for all ψ ∈ V . Since ω is nondegenerate φj−φn = 0, a contradiction. Therefore
all βj and thus all αj are zero, a contradiction.

Remark 16. Let (A,W ) be a Weyl system of the symplectic vector space (V, ω).
Then the linear span of the W (φ), φ ∈ V , is closed under multiplication
and under ∗. This follows directly from the properties of a Weyl system. We
denote this linear span by 〈W (V )〉 ⊂ A. Now if (A′,W ′) is another Weyl
system of the same symplectic vector space (V, ω), then there is a unique
linear map π : 〈W (V )〉 → 〈W ′(V )〉 determined by π(W (φ)) = W ′(φ). Since π
is given by a bijection on the bases {W (φ)}φ∈V and {W ′(φ)}φ∈V it is a linear
isomorphism. By the properties of a Weyl system π is a ∗–isomorphism. In
other words, there is a unique ∗–isomorphism such that the following diagram
commutes

〈W ′(V )〉

V
W1 //

W2

;;wwwwwwwww
〈W (V )〉

π

OO

Remark 17. On 〈W (V )〉 we can define the norm∥∥∥ ∑
φ

aφW (φ)
∥∥∥

1
:=

∑
φ

|aφ|.

This norm is not a C∗–norm but for every C∗–norm ‖ · ‖0 on 〈W (V )〉 we have
by the triangle inequality and by Proposition 7 (1)

‖a‖0 ≤ ‖a‖1 (7)

for all a ∈ 〈W (V )〉.

Lemma 9. Let (A,W ) be a Weyl system of a symplectic vector space (V, ω).
Then

‖a‖max := sup{‖a‖0 | ‖ · ‖0 is a C∗–norm on 〈W (V )〉}

defines a C∗–norm on 〈W (V )〉.

Proof. The given C∗–norm on A restricts to one on 〈W (V )〉, so the supremum
is not taken on the empty set. Estimate (7) shows that the supremum is finite.
The properties of a C∗–norm are easily checked. E. g. the triangle inequality
follows from
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‖a+ b‖max = sup{‖a+ b‖0 | ‖ · ‖0 is a C∗–norm on 〈W (V )〉}
≤ sup{‖a‖0 + ‖b‖0 | ‖ · ‖0 is a C∗–norm on 〈W (V )〉}
≤ sup{‖a‖0 | ‖ · ‖0 is a C∗–norm on 〈W (V )〉}

+ sup{‖b‖0 | ‖ · ‖0 is a C∗–norm on 〈W (V )〉}
= ‖a‖max + ‖b‖max.

The other properties are shown similarly.

Lemma 10. Let (A,W ) be a Weyl system of a symplectic vector space (V, ω).
Then the completion 〈W (V )〉

max
of 〈W (V )〉 with respect to ‖ · ‖max is simple,

i. e., it has no nontrivial closed twosided ∗–ideals.

Proof. By Remark 16 we may assume that (A,W ) is the Weyl system con-
structed in Example 14. In particular, 〈W (V )〉 carries the C∗–norm ‖ · ‖Op,
the operator norm given by 〈W (V )〉 ⊂ L(H) where H = L2(V,C).

Let I ⊂ 〈W (V )〉
max

be a closed twosided ∗–ideal. Then I0 := I ∩C ·W (0)
is a (complex) vector subspace in C ·W (0) = C · 1 ∼= C and thus I0 = {0} or
I0 = C·W (0). If I0 = C·W (0), then I contains 1 and therefore I = 〈W (V )〉

max
.

Hence we may assume I0 = {0}.
Now we look at the projection map

P : 〈W (V )〉 → C ·W (0), P (
∑
φ

aφW (φ)) = a0W (0).

We check that P extends to a bounded operator on 〈W (V )〉
max

. Let δ0 ∈
L2(V,C) denote the function given by δ0(0) = 1 and δ0(φ) = 0 otherwise. For
a =

∑
φ aφW (φ) and ψ ∈ V we have

(a · δ0)(ψ) = (
∑
φ

aφW (φ)δ0)(ψ)

=
∑
φ

aφ e
iω(φ,ψ)/2δ0(φ+ ψ)

= a−ψ e
iω(−ψ,ψ)/2 = a−ψ

and therefore

(δ0, a · δ0)L2 =
∑
ψ∈V

δ0(ψ)(a · δ0)(ψ) = (a · δ0)(0) = a0.

Moreover, ‖δ0‖ = 1. Thus

‖P (a)‖max = ‖a0W (0)‖max = |a0| = |(δ0, a · δ0)L2 | ≤ ‖a‖Op ≤ ‖a‖max

which shows that P extends to a bounded operator on 〈W (V )〉
max

.
Now let a ∈ I ⊂ 〈W (V )〉

max
. Fix ε > 0. We write
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a = a0W (0) +
n∑
j=1

ajW (φj) + r

where the φj 6= 0 are pairwise different and the remainder term r satisfies
‖r‖max < ε. For any ψ ∈ V we have

I 3W (ψ) aW (−ψ) = a0W (0) +
n∑
j=1

aj e
−iω(ψ,φj)W (φj) + r(ψ)

where ‖r(ψ)‖max = ‖W (ψ)rW (−ψ)‖max ≤ ‖r‖max < ε. If we choose ψ1 and
ψ2 such that e−iω(ψ1,φn) = −e−iω(ψ2,φn), then adding the two elements

a0W (0) +
n∑
j=1

aj e
−iω(ψ1,φj)W (φj) + r(ψ1) ∈ I

a0W (0) +
n∑
j=1

aj e
−iω(ψ2,φj)W (φj) + r(ψ2) ∈ I

yields

a0W (0) +
n−1∑
j=1

a′jW (φj) + r1 ∈ I

where ‖r1‖max = ‖ r(ψ1)+r(ψ2)
2 ‖max <

ε+ε
2 = ε. Repeating this procedure we

eventually get
a0W (0) + rn ∈ I

where ‖rn‖max < ε. Since ε is arbitrary and I is closed we conclude

P (a) = a0W (0) ∈ I0,

thus a0 = 0.
For a =

∑
φ aφW (φ) ∈ I and arbitrary ψ ∈ V we have W (ψ)a ∈ I as well,

hence P (W (ψ)a) = 0. This means a−ψ = 0 for all ψ, thus a = 0. This shows
I = {0}.

Definition 23. A Weyl system (A,W ) of a symplectic vector space (V, ω) is
called a CCR-representation of (V, ω) if A is generated as a C∗–algebra by
the elements W (φ), φ ∈ V . In this case we call A a CCR-algebra of (V, ω)

Of course, for any Weyl system (A,W ) we can simply replace A by the
C∗–subalgebra generated by the elements W (φ), φ ∈ V , and we obtain a
CCR-representation.

Existence of Weyl systems and hence CCR-representations has been es-
tablished in Example 14. Uniqueness also holds in the appropriate sense.
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Theorem 3. Let (V, ω) be a symplectic vector space and let (A1,W1) and
(A2,W2) be two CCR-representations of (V, ω).

Then there exists a unique ∗–isomorphism π : A1 → A2 such that the
diagram

A2

V
W1 //

W2

>>~~~~~~~~
A1

π

OO

commutes.

Proof. We have to show that the ∗–isomorphism π : 〈W1(V )〉 → 〈W2(V )〉 as
constructed in Remark 16 extends to an isometry (A1, ‖ · ‖1) → (A2, ‖ · ‖2).
Since the pull-back of the norm ‖ · ‖2 on A2 to 〈W1(V )〉 via π is a C∗–norm
we have ‖π(a)‖2 ≤ ‖a‖max for all a ∈ 〈W1(V )〉. Hence π extends to a ∗–
morphism 〈W1(V )〉

max
→ A2. By Lemma 10 the kernel of π is trivial, hence π

is injective. Proposition 4 implies that π : (〈W1(V )〉
max

, ‖·‖max) → (A2, ‖·‖2)
is an isometry.

In the special case (A1, ‖ · ‖1) = (A2, ‖ · ‖2) where π is the identity this
yields ‖·‖max = ‖·‖1. Thus for arbitrary A2 the map π extends to an isometry
(A1, ‖ · ‖1) → (A2, ‖ · ‖2).

¿From now on we will call CCR(V, ω) as defined in Example 14 the CCR-
algebra of (V, ω).

Corollary 5. CCR-algebras of symplectic vector spaces are simple, i. e., all
unit preserving ∗–morphisms to other C∗–algebras are injective.

Proof. Direct consequence of Corollary 2 and Lemma 10.

Corollary 6. Let (V1, ω1) and (V2, ω2) be two symplectic vector spaces and let
S : V1 → V2 be a symplectic linear map, i. e., ω2(Sφ, Sψ) = ω1(φ, ψ) for all
φ, ψ ∈ V1.

Then there exists a unique injective ∗–morphism CCR(S) : CCR(V1, ω1) →
CCR(V2, ω2) such that the diagram

V1
S //

W1

��

V2

W2

��
CCR(V1, ω1)

CCR(S) // CCR(V2, ω2)
commutes.

Proof. One immediately sees that (CCR(V2, ω2),W2 ◦ S) is a Weyl system of
(V1, ω1). Theorem 3 yields the result.

¿From uniqueness of the map CCR(S) we conclude that CCR(idV ) =
idCCR(V,ω) and CCR(S2 ◦S1) = CCR(S2)◦CCR(S1). In other words, we have
constructed a functor
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CCR : SymplVec → C∗Alg

where SymplVec denotes the category whose objects are symplectic vector
spaces and whose morphisms are symplectic linear maps, i. e., linear maps A :
(V1, ω1) → (V2, ω2) with A∗ω2 = ω1. By C∗Alg we denote the category whose
objects are C∗–algebras and whose morphisms are injective unit preserving ∗–
morphisms. Observe that symplectic linear maps are automatically injective.

In the case V1 = V2 the induced ∗–automorphisms CCR(S) are called
Bogoliubov transformation in the physics literature.
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