In this chapter we will collect those basic concepts and facts related to C^*-algebras that will be needed later on. We give complete proofs. In Sections 1, 2, 3, and 6 we follow closely the presentation in [1]. For more information on C^*-algebras see e. g. [2, 4, 5, 7, 8].

1 Basic definitions

Definition 1. Let A be an associative \mathbb{C}-algebra, let $\| \cdot \|$ be a norm on the \mathbb{C}-vector space A, and let $*: A \to A, a \mapsto a^*$, be a \mathbb{C}-antilinear map. Then $(A, \| \cdot \|, *)$ is called a C^*-algebra, if $(A, \| \cdot \|)$ is complete and we have for all $a, b \in A$:

1. $a^{**} = a$ ($*$ is an involution)
2. $(ab)^* = b^*a^*$
3. $\|ab\| \leq \|a\| \|b\|$ (submultiplicativity)
4. $\|a^*\| = \|a\|$ ($*$ is an isometry)
5. $\|a^*a\| = \|a\|^2$ (C^*-property).

A (not necessarily complete) norm on A satisfying conditions (1) to (5) is called a C^*-norm.

Remark 1. Note that the Axioms 1–5 are not independent. For instance, Axiom 4 can easily be deduced from Axioms 1, 3 and 5.

Example 1. Let $(H, (\cdot, \cdot))$ be a complex Hilbert space, let $A = \mathcal{L}(H)$ be the algebra of bounded operators on H. Let $\| \cdot \|$ be the operator norm, i. e.,

$$\|a\| := \sup_{x \in H} \|ax\|.,$$

Let a^* be the operator adjoint to a, i. e.,
\[(ax, y) = (x, a^*y) \quad \text{for all } x, y \in H.\]

Axioms 1 to 4 are easily checked. Using Axioms 3 and 4 and the Cauchy-Schwarz inequality we see

\[\|a\|^2 = \sup_{\|x\|=1} \|ax\|^2 = \sup_{\|x\|=1} (ax, ax) = \sup_{\|x\|=1} \langle x, a^*ax \rangle \leq \|a^*\| \cdot \|a\| \leq \|a^*\|^2 \cdot \|a\|.\]

This shows Axiom 5.

Example 2. Let \(X\) be a locally compact Hausdorff space. Put

\[A := C_0(X) := \{f : X \to \mathbb{C} \text{ continuous} \mid \forall \varepsilon > 0 \exists K \subset X \text{ compact, so that} \forall x \in X \setminus K : |f(x)| < \varepsilon\}.

We call \(C_0(X)\) the algebra of continuous functions vanishing at infinity. If \(X\) is compact, then \(A = C_0(X) = C(X)\). All \(f \in C_0(X)\) are bounded and we may define:

\[\|f\| := \sup_{x \in X} |f(x)|.

Moreover let

\[f^*(x) := \overline{f(x)}.

Then \((C_0(X), \|\|, *)\) is a commutative \(C^*\)-algebra.

Example 3. Let \(X\) be a differentiable manifold. Put

\[A := C_0^\infty(X) := C^\infty(X) \cap C_0(X).

We call \(C_0^\infty(X)\) the algebra of smooth functions vanishing at infinity. Norm and * are defined as in the previous example. Then \((C_0^\infty(X), \|\|, *)\) satisfies all axioms of a commutative \(C^*\)-algebra except that \((A, \|\|)\) is not complete. If we complete this normed vector space, then we are back to the previous example of continuous functions.

Definition 2. A subalgebra \(A_0\) of a \(C^*\)-algebra \(A\) is called a \(C^*\)-subalgebra if it is a closed subspace and \(a^* \in A_0\) for all \(a \in A_0\).

Any \(C^*\)-subalgebra is a \(C^*\)-algebra in its own right.

Definition 3. Let \(S\) be a subset of a \(C^*\)-algebra \(A\). Then the intersection of all \(C^*\)-subalgebras of \(A\) containing \(S\) is called the \(C^*\)-subalgebra generated by \(S\).

Definition 4. An element \(a\) of a \(C^*\)-algebra is called selfadjoint if \(a = a^*\).
Remark 2. Like any algebra a C^*-algebra A has at most one unit 1. Now we have for all $a \in A$
\[1^* a = (1^* a)^* = (a^* 1^*)^* = (a^*)^* = a^{**} = a \]
and similarly one sees $a 1^* = a$. Thus 1^* is also a unit. By uniqueness $1 = 1^*$, i.e., the unit is selfadjoint. Moreover,
\[
\|1\| = \|1^* 1\| = \|1\|^2,
\]
hence $\|1\| = 1$ or $\|1\| = 0$. In the second case $1 = 0$ and therefore $A = 0$. Hence we may (and will) from now on assume that $\|1\| = 1$.

Example 4. 1. In Example 1 the algebra $A = \mathcal{L}(H)$ has a unit $1 = \text{id}_H$.
2. The algebra $A = C_0(X)$ has a unit $f \equiv 1$ if and only if $C_0(X) = C(X)$, i.e., if and only if X is compact.

Let A be a C^*-algebra with unit 1. We write $A^×$ for the set of invertible elements in A. If $a \in A^×$, then also $a^* \in A^×$ because
\[
a^* \cdot (a^{-1})^* = (a^{-1} a)^* = 1^* = 1,
\]
and similarly $(a^{-1})^* \cdot a^* = 1$. Hence $(a^*)^{-1} = (a^{-1})^*$.

Lemma 1. Let A be a C^*-algebra. Then the maps
\[
A \times A \to A, \quad (a, b) \mapsto a + b,
\]
\[
\mathbb{C} \times A \to A, \quad (\alpha, a) \mapsto \alpha a,
\]
\[
A \times A \to A, \quad (a, b) \mapsto a \cdot b,
\]
\[
A^× \to A^×, \quad a \mapsto a^{-1},
\]
\[
A \to A, \quad a \mapsto a^*,
\]
are continuous.

Proof. (a) The first two maps are continuous for all normed vector spaces. This easily follows from the triangle inequality and from homogeneity of the norm.

(b) Continuity of multiplication. Let $a_0, b_0 \in A$. Then we have for all $a, b \in A$ with $\|a - a_0\| < \varepsilon$ and $\|b - b_0\| < \varepsilon$:
\[
\|ab - a_0 b_0\| = \|ab - a_0 b + a_0 b - a_0 b_0\| \\
\leq \|a - a_0\| \cdot \|b\| + \|a_0\| \cdot \|b - b_0\| \\
\leq \varepsilon (\|b\| + \|b_0\|) + \|a_0\| \cdot \varepsilon \\
\leq \varepsilon (\varepsilon + \|b_0\|) + \|a_0\| \cdot \varepsilon.
\]

(c) Continuity of inversion. Let $a_0 \in A^×$. Then we have for all $a \in A^×$ with $\|a - a_0\| < \varepsilon < \|a_0^{-1}\|^{-1}$:
\[\|a^{-1} - a_0^{-1}\| = \|a^{-1}(a_0 - a)a_0^{-1}\| \\
\leq \|a^{-1}\| \cdot \|a_0 - a\| \cdot \|a_0^{-1}\| \\
\leq (\|a^{-1} - a_0^{-1}\| + \|a_0^{-1}\|) \cdot \varepsilon \cdot \|a_0^{-1}\|.
\]

Thus
\[
\left(1 - \varepsilon \|a_0^{-1}\|\right) \|a^{-1} - a_0^{-1}\| \leq \varepsilon \cdot \|a_0^{-1}\|^2
\]
and therefore
\[
\|a^{-1} - a_0^{-1}\| \leq \frac{\varepsilon}{1 - \varepsilon \|a_0^{-1}\|} \cdot \|a_0^{-1}\|^2.
\]

(d) Continuity of \(\ast\) is clear because \(\ast\) is an isometry.

Remark 3. If \((A, \| \cdot \|, \ast)\) satisfies the axioms of a \(C^\ast\)-algebra except that \((A, \| \cdot \|)\) is not complete, then the above lemma still holds because completeness has not been used in the proof. Let \(\bar{A}\) be the completion of \(A\) with respect to the norm \(\| \cdot \|\). By the above lemma +, \(-\), and \(\ast\) extend continuously to \(\bar{A}\) thus making \(\bar{A}\) into a \(C^\ast\)-algebra.

2 The spectrum

Definition 5. Let \(A\) be a \(C^\ast\)-algebra with unit 1. For \(a \in A\) we call
\[r_A(a) := \{\lambda \in \mathbb{C} \mid \lambda \cdot 1 - a \in A^\times\}\]
the resolvent set of \(a\) and
\[\sigma_A(a) := \mathbb{C} \setminus r_A(a)\]
the spectrum of \(a\). For \(\lambda \in r_A(a)\)
\[(\lambda \cdot 1 - a)^{-1} \in A\]
is called the resolvent of \(a\) at \(\lambda\). Moreover, the number
\[\rho_A(a) := \sup\{|\lambda| \mid \lambda \in \sigma_A(a)\}\]
is called the spectral radius of \(a\).

Example 5. Let \(X\) be a compact Hausdorff space and let \(A = C(X)\). Then
\[A^\times = \{f \in C(X) \mid f(x) \neq 0 \text{ for all } x \in X\},\]
\[\sigma_{C(X)}(f) = f(X) \subset \mathbb{C},\]
\[r_{C(X)}(f) = \mathbb{C} \setminus f(X),\]
\[\rho_{C(X)}(f) = \|f\|_{\infty} = \max_{x \in X} |f(x)|.\]
Proposition 1. Let A be a C^*-algebra with unit 1 and let $a \in A$. Then $\sigma_A(a) \subseteq C$ is a nonempty compact subset and the resolvent
\[r_A(a) \to A, \quad \lambda \mapsto (\lambda \cdot 1 - a)^{-1}, \]
is continuous. Moreover,
\[\rho_A(a) = \lim_{n \to \infty} \|a^n\|^{1/n} = \inf_{n \in \mathbb{N}} \|a^n\|^{1/n} \leq \|a\|. \]

Proof. (a) Let $\lambda_0 \in r_A(a)$. For $\lambda \in C$ with
\[|\lambda - \lambda_0| < \|(\lambda_01 - a)^{-1}\|^{-1} \tag{1} \]
the Neumann series
\[\sum_{m=0}^{\infty} (\lambda - \lambda_0)^m (\lambda_01 - a)^{-m-1} \]
converges absolutely because
\[\|(\lambda_0 - \lambda)^m (\lambda_01 - a)^{-m-1}\| \leq |\lambda_0 - \lambda|^m \cdot \|(\lambda_01 - a)^{-1}\|^{m+1} \]
\[= \|(\lambda_01 - a)^{-1}\| \cdot \left(\frac{\|(\lambda_01 - a)^{-1}\|}{|\lambda_0 - \lambda|^{-1}} \right)^m. \]
Since A is complete the Neumann series converges in A. It converges to the resolvent $(\lambda_1 - a)^{-1}$ because
\[(\lambda_1 - a) \sum_{m=0}^{\infty} (\lambda - \lambda_0)^m (\lambda_01 - a)^{-m-1} \]
\[= [(\lambda - \lambda_0)1 + (\lambda_01 - a)] \sum_{m=0}^{\infty} (\lambda - \lambda_0)^m (\lambda_01 - a)^{-m-1} \]
\[= - \sum_{m=0}^{\infty} (\lambda_0 - \lambda)^{m+1} (\lambda_01 - a)^{-m-1} + \sum_{m=0}^{\infty} (\lambda_0 - \lambda)^m (\lambda_01 - a)^{-m} \]
\[= 1. \]
Thus we have shown $\lambda \in r_A(a)$ for all λ satisfying (1). Hence $r_A(a)$ is open and $\sigma_A(a)$ is closed.

(b) Continuity of the resolvent. We estimate the difference of the resolvent of a at λ_0 and at λ using the Neumann series. If λ satisfies (1), then
\[
\| (\lambda_1 - a)^{-1} - (\lambda_0 1 - a)^{-1} \| = \| \sum_{m=0}^{\infty} (\lambda_0 - \lambda)^m (\lambda_0 1 - a)^{-m-1} - (\lambda_0 1 - a)^{-1} \| \\
\leq \sum_{m=1}^{\infty} |\lambda_0 - \lambda|^m \| (\lambda_0 1 - a)^{-1} \|^m + 1 \\
= \| (\lambda_0 1 - a)^{-1} \| \cdot \frac{|\lambda_0 - \lambda| \cdot \| (\lambda_0 1 - a)^{-1} \|}{1 - |\lambda_0 - \lambda| \cdot \| (\lambda_0 1 - a)^{-1} \|} \\
= |\lambda_0 - \lambda| \cdot \frac{\| (\lambda_0 1 - a)^{-1} \|^2}{1 - |\lambda_0 - \lambda| \cdot \| (\lambda_0 1 - a)^{-1} \|} \\
\to 0 \quad \text{for } \lambda \to \lambda_0.
\]

Hence the resolvent is continuous.

(c) We show \(\rho_A(a) \leq \inf_{n} \| a^n \|^{\frac{1}{n}} \leq \lim \inf_{n \to \infty} \| a^n \|^{\frac{1}{n}} \). Let \(n \in \mathbb{N} \) be fixed and let \(|\lambda|^n > \| a^n \| \). Each \(m \in \mathbb{N}_0 \) can be written uniquely in the form \(m = pn + q, p, q \in \mathbb{N}_0, 0 \leq q \leq n - 1 \). The series

\[
\frac{1}{\lambda} \sum_{m=0}^{\infty} \left(\frac{a}{\lambda} \right)^m = \frac{1}{\lambda} \sum_{q=0}^{n-1} \left(\frac{a}{\lambda} \right)^q \sum_{p=0}^{\infty} \left(\frac{a^n}{\lambda^n} \right)^p
\]

converges absolutely. Its limit is \((\lambda I - a)^{-1}\) because

\[
(\lambda I - a) \cdot \left(\sum_{m=0}^{\infty} \lambda^{-m-1} a^m \right) = \sum_{m=0}^{\infty} \lambda^{-m} a^m - \sum_{m=0}^{\infty} \lambda^{-m-1} a^{m+1} = 1
\]

and similarly

\[
(\sum_{m=0}^{\infty} \lambda^{-m-1} a^m) \cdot (\lambda I - a) = 1.
\]

Hence for \(|\lambda|^n > \| a^n \| \) the element \((\lambda I - a)\) is invertible and thus \(\lambda \in r_A(a) \).

Therefore

\[
\rho_A(a) \leq \inf_{n \in \mathbb{N}} \| a^n \|^{\frac{1}{n}} \leq \lim \inf_{n \to \infty} \| a^n \|^{\frac{1}{n}}.
\]

(d) We show \(\rho_A(a) \geq \lim \sup_{n \to \infty} \| a^n \|^{\frac{1}{n}} \). We abbreviate \(\bar{\rho}(a) := \lim \sup_{n \to \infty} \| a^n \|^\frac{1}{n} \).

Case 1: \(\bar{\rho}(a) = 0 \). If \(a \) were invertible, then

\[
1 = \| 1 \| = \| a^n a^{-n} \| \leq \| a^n \| \cdot \| a^{-n} \|
\]

would imply \(1 \leq \bar{\rho}(a) \cdot \bar{\rho}(a^{-1}) = 0 \), which yields a contradiction. Therefore \(a \notin A^\times \). Thus \(0 \notin \sigma_A(a) \). In particular, the spectrum of \(a \) is nonempty. Hence the spectral radius \(\rho_A(a) \) is bounded from below by \(0 \) and thus

\[
\bar{\rho}(a) = 0 \leq \rho_A(a).
\]

Case 2: \(\bar{\rho}(a) > 0 \). If \(a_n \in A \) are elements for which \(R_n := (1 - a_n)^{-1} \) exist, then
This follows from the fact that the map $A^\times \to A^\times$, $a \mapsto a^{-1}$, is continuous by Lemma 1. Put

$$S := \{ \lambda \in \mathbb{C} \mid |\lambda| \geq \tilde{\rho}(a) \}.$$

We want to show that $S \not\subset r_A(a)$ since then there exists $\lambda \in \sigma_A(a)$ such that $|\lambda| \geq \tilde{\rho}(a)$ and hence $\rho_A(a) \geq |\lambda| \geq \tilde{\rho}(a)$.

Assume in the contrary that $S \subset r_A(a)$. Let $\omega \in \mathbb{C}$ be an n-th root of unity, i.e., $\omega^n = 1$. For $\lambda \in S$ we also have $\frac{\lambda}{\omega} \in S \subset r_A(a)$. Hence there exists

$$\left(\frac{\lambda}{\omega^k 1 - a} \right)^{-1} = \frac{\omega^k}{\lambda} \left(1 - \frac{\omega^k a}{\lambda} \right)^{-1}$$

and we may define

$$R_n(a, \lambda) := \frac{1}{n} \sum_{k=1}^{n} \left(1 - \frac{\omega^k a}{\lambda} \right)^{-1}.$$

We compute

$$\left(1 - \frac{a^n}{\lambda^n} \right) R_n(a, \lambda) = \frac{1}{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \left(\frac{\omega^{k(l-1)} a^{l-1}}{\lambda^{l-1}} - \frac{\omega^{kl} a^l}{\lambda^l} \right) \left(1 - \frac{\omega^k a}{\lambda} \right)^{-1}$$

$$= \frac{1}{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{\omega^{k(l-1)} a^{l-1}}{\lambda^{l-1}}$$

$$= \frac{1}{n} \sum_{l=1}^{n} \frac{a^{l-1}}{\lambda^{l-1}} \sum_{k=1}^{n} (\omega^{l-1})^k$$

$$= \begin{cases} 0 & \text{if } l \geq 2 \\ n & \text{if } l = 1 \end{cases}$$

$$= 1.$$

Similarly one sees $R_n(a, \lambda) \left(1 - \frac{a^n}{\lambda^n} \right) = 1$. Hence

$$R_n(a, \lambda) = \left(1 - \frac{a^n}{\lambda^n} \right)^{-1}$$

for any $\lambda \in S \subset r_A(a)$. Moreover for $\lambda \in S$ we have
\[
\left\| \left(1 - \frac{a^n}{\tilde{\rho}(a)^n} \right)^{-1} - \left(1 - \frac{a^n}{\lambda^n} \right)^{-1} \right\| \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left\| \left(1 - \frac{\omega^k a}{\tilde{\rho}(a)} \right)^{-1} - \left(1 - \frac{\omega^k a}{\lambda} \right)^{-1} \right\| \\
= \frac{1}{n} \sum_{k=1}^{n} \left\| \left(1 - \frac{\omega^k a}{\tilde{\rho}(a)} \right)^{-1} \left(1 - \frac{\omega^k a}{\lambda} - 1 + \frac{\omega^k a}{\tilde{\rho}(a)} \right) \left(1 - \frac{\omega^k a}{\lambda} \right)^{-1} \right\| \\
= \frac{1}{n} \sum_{k=1}^{n} \left\| \left(\frac{\tilde{\rho}(a)}{\omega^k} a - 1 \right)^{-1} \left(- \frac{\tilde{\rho}(a) a + \lambda a}{\omega^k} \left(\frac{\lambda}{\omega^k} - 1 \right) - 1 \right) \right\| \\
\leq |\tilde{\rho}(a) - \lambda| \cdot \|a\| \cdot \sup_{z \in S} \|(z1 - a)^{-1}\|^2.
\]

The supremum is finite since \(z \mapsto (z1 - a)^{-1} \) is continuous on \(r_A(a) \supset S \) by part (b) of the proof and since for \(|z| \geq 2 \cdot \|a\| \) we have

\[
\|(z1 - a)^{-1}\| \leq \frac{1}{|z|} \sum_{n=0}^{\infty} \|a\|^n \leq \frac{2}{|z|} \leq \frac{1}{\|a\|}.
\]

Outside the annulus \(B_{2|a|}(0) - B_{\tilde{\rho}(a)}(0) \) the expression \(\|(z1 - a)^{-1}\| \) is bounded by \(\frac{1}{\|a\|} \) and on the compact annulus it is bounded by continuity. Put

\[
C := \|a\| \cdot \sup_{z \in S} \|(z1 - a)^{-1}\|^2.
\]

We have shown

\[
\|R_n(a, \tilde{\rho}(a)) - R_n(a, \lambda)\| \leq C \cdot |\tilde{\rho}(a) - \lambda|
\]

for all \(n \in \mathbb{N} \) and all \(\lambda \in S \). Putting \(\lambda = \tilde{\rho}(a) + \frac{1}{j} \) we obtain

\[
\left\| \left(1 - \frac{a^n}{\tilde{\rho}(a)^n} \right)^{-1} - \left(1 - \frac{a^n}{(\tilde{\rho}(a) + \frac{1}{j})^n} \right)^{-1} \right\| \leq C \cdot \frac{1}{j}, \quad \text{for } n \to \infty, \quad \lim_{n \to \infty} \left(1 - \frac{a^n}{\tilde{\rho}(a)^n} \right)^{-1} = 1
\]

thus

\[
\limsup_{n \to \infty} \left\| \left(1 - \frac{a^n}{\tilde{\rho}(a)^n} \right)^{-1} - 1 \right\| \leq \frac{C}{j}
\]

for all \(j \in \mathbb{N} \) and hence

\[
\limsup_{n \to \infty} \left\| \left(1 - \frac{a^n}{\tilde{\rho}(a)^n} \right)^{-1} - 1 \right\| = 0.
\]
For $n \to \infty$ we get

\[
\left(1 - \frac{a^n}{\tilde{\rho}(a)^n}\right)^{-1} \to 1
\]

and thus

\[
\frac{\|a^n\|}{\tilde{\rho}(a)^n} \to 0. \tag{2}
\]

On the other hand we have

\[
\|a^{n+1}\|^{\frac{1}{n+1}} \leq \|a\|^{\frac{1}{n+1}} \cdot \|a^n\|^{\frac{n}{n+1}}
\]

\[
= \|a\|^{\frac{1}{n+1}} \cdot \|a^n\|^{\frac{1}{n+1}} \cdot \|a^n\|^{\frac{n}{n+1}}
\]

\[
\leq \|a\|^{\frac{1}{n+1}} \cdot \|a\|^{\frac{n}{n+1}} \cdot \|a^n\|^{\frac{n}{n+1}}
\]

\[
= \|a^n\|^\frac{1}{n}.
\]

Hence the sequence $\left(\|a^n\|^\frac{1}{n}\right)_{n \in \mathbb{N}}$ is monotonically nonincreasing and therefore

\[
\tilde{\rho}(a) = \limsup_{k \to \infty} \|a^k\|^\frac{1}{k} \leq \|a^n\|^\frac{1}{n} \quad \text{for all } n \in \mathbb{N}.
\]

Thus $1 \leq \|a^n\|^\frac{1}{n}$ for all $n \in \mathbb{N}$, in contradiction to (2).

(c) The spectrum is nonempty. If $\sigma(a) = \emptyset$, then $\rho_A(a) = -\infty$ contradicting $\rho_A(a) = \lim_{n \to \infty} \|a^n\|^\frac{1}{n} \geq 0$.

Definition 6. Let A be a C^*–algebra with unit. Then $a \in A$ is called

- normal, if $aa^* = a^*a$,
- an isometry, if $a^*a = 1$, and
- unitary, if $a^*a = aa^* = 1$.

Remark 4. In particular, selfadjoint elements are normal. In a commutative algebra all elements are normal.

Proposition 2. Let A be a C^*–algebra with unit and let $a, b \in A$. Then the following holds:

1. $\sigma_A(a^*) = \overline{\sigma_A(a)} = \{ \lambda \in \mathbb{C} \mid \overline{\lambda} \in \sigma_A(a) \}$.
2. If $a \in A^*$, then $\sigma_A(a^{-1}) = \sigma_A(a)^{-1}$.
3. If a is normal, then $\rho_A(a) = \|a\|$.
4. If a is an isometry, then $\rho_A(a) = 1$.
5. If a is unitary, then $\sigma_A(a) \subset S^1 \subset \mathbb{C}$.
6. If a is selfadjoint, then $\sigma_A(a) \subset [-\|a\|, \|a\|]$ and moreover $\sigma_A(a^2) \subset [0, \|a\|^2]$.
7. If $P(z)$ is a polynomial with complex coefficients and $a \in A$ is arbitrary, then

\[
\sigma_A(P(a)) = P(\sigma_A(a)) = \{ P(\lambda) \mid \lambda \in \sigma_A(a) \}.
\]
8. $\sigma_A(ab) - \{0\} = \sigma_A(ba) - \{0\}$.

Proof. We start by showing assertion (1). A number λ does not lie in the spectrum of a if and only if $(\lambda I - a)$ is invertible, i.e., if and only if $(\lambda I - a)^* = \lambda^* I - a^*$ is invertible, i.e., if and only if λ does not lie in the spectrum of a^*.

To see (2) let a be invertible. Then 0 lies neither in the spectrum $\sigma_A(a)$ of a nor in the spectrum $\sigma_A(a^{-1})$ of a^{-1}. Moreover, we have for $\lambda \neq 0$

$$\lambda I - a = \lambda a(a^{-1} - \lambda^{-1}1)$$

and

$$\lambda^{-1}1 - a^{-1} = \lambda^{-1}a^{-1}(a - \lambda 1).$$

Hence $\lambda I - a$ is invertible if and only if $\lambda^{-1}1 - a^{-1}$ is invertible.

To show (3) let a be normal. Then a^*a is selfadjoint, in particular normal.

Using the C^*-property we obtain inductively

$$\|a^{2n}\|^2 = \|(a^{2n})^*a^{2n}\| = \|(a^*)^{2n}a^{2n}\| = \|(a^*)^{2n}\|^2 = \cdots = \|a^*a\|^{2n} = \|a\|^{2n+1}.$$ Thus

$$\rho_A(a) = \lim_{n \to \infty} \|a^{2n}\|^{\frac{1}{2n}} = \lim_{n \to \infty} \|a\| = \|a\|.$$ To prove (4) let a be an isometry. Then

$$\|a^n\|^2 = \|(a^n)^*a^n\| = \|(a^*)^na^n\| = \|1\| = 1.$$ Hence

$$\rho_A(a) = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}} = 1.$$ For assertion (5) let a be unitary. On the one hand we have by (4)

$$\sigma_A(a) \subset \{\lambda \in \mathbb{C} | |\lambda| \leq 1\}. $$

On the other hand we have

$$\sigma_A(a) \cup \sigma_A(a^*) = \overline{\sigma_A(a^{-1})} \subset \sigma_A(a).$$ Both combined yield $\sigma_A(a) \subset S^1$.

To show (6) let a be selfadjoint. We need to show $\sigma_A(a) \subset \mathbb{R}$. Let $\lambda \in \mathbb{R}$ with $\lambda^{-1} > \|a\|$. Then $|\lambda^{-1}| > \rho(a)$ and hence $1 + i\lambda a = i\lambda(-i\lambda^{-1} + a)$ is invertible. Put

$$U := (1 - i\lambda a)(1 + i\lambda a)^{-1}.$$ Then $U^* = ((1 + i\lambda a)^{-1})^*(1 - i\lambda a)^* = (1 - i\lambda a^*)^{-1} \cdot (1 + i\lambda a^*) = (1 - i\lambda a)^{-1} \cdot (1 + i\lambda a)$ and therefore
\[U^*U = (1 - i\lambda a)^{-1} \cdot (1 + i\lambda a)(1 - i\lambda a)(1 + i\lambda a)^{-1} = 1 \]

Similarly \(U^*U = 1 \), i.e., \(U \) is unitary. By (5) \(\sigma_A(U) \subset S^1 \). A simple computation with complex numbers shows that

\[|(1 - i\lambda \mu)(1 + i\lambda \mu)^{-1}| = 1 \Leftrightarrow \mu \in \mathbb{R}. \]

Thus \((1 - i\lambda \mu)(1 + i\lambda \mu)^{-1} \cdot 1 - U \) is invertible if \(\mu \in \mathbb{C} \setminus \mathbb{R} \). From

\[(1 - i\lambda \mu)(1 + i\lambda \mu)^{-1} \cdot 1 - U = (1 + i\lambda \mu)^{-1}((1 - i\lambda \mu)(1 + i\lambda a)1 - (1 + i\lambda \mu)(1 - i\lambda a))(1 + i\lambda a)^{-1} = 2i\lambda(1 + i\lambda \mu)^{-1}(a - \mu 1)(1 + i\lambda a)^{-1} \]

we see that \(a - \mu 1 \) is invertible for all \(\mu \in \mathbb{C} \setminus \mathbb{R} \). Thus \(\mu \in r_A(a) \) for all \(\mu \in \mathbb{C} \setminus \mathbb{R} \) and hence \(\sigma_A(a^2) \subset \mathbb{R} \). The statement about \(\sigma_A(a^2) \) now follows from part (7).

To prove (7) decompose the polynomial \(P(z) - \lambda \) into linear factors

\[P(z) - \lambda = \alpha \cdot \prod_{j=1}^{n}(\alpha_j - z), \quad \alpha, \alpha_j \in \mathbb{C}. \]

We insert an algebra element \(a \in A \):

\[P(a) - \lambda 1 = \alpha \cdot \prod_{j=1}^{n}(\alpha_j 1 - a). \]

Since the factors in this product commute the product is invertible if and only if all factors are invertible.\(^3\) In our case this means

\[\lambda \in \sigma_A(P(a)) \Leftrightarrow \text{at least one factor is noninvertible} \]
\[\Leftrightarrow \alpha_j \in \sigma_A(a) \text{ for some } j \]
\[\Leftrightarrow \lambda = P(\alpha_j) \in P(\sigma_A(a)). \]

If \(c \) is inverse to \(1 - ab \), then \((1 + bca) \cdot (1 - ba) = 1 - ba + bc(1 - ab)a = 1 \) and \((1 - ba) \cdot (1 + bca) = 1 - ba + b(1 - ab)ca = 1 \). Hence \(1 + bca \) is inverse to \(1 - ba \), which finally yields (8).

Corollary 1. Let \((A, \| \cdot \|, *) \) be a C*-algebra with unit. Then the norm \(\| \cdot \| \) is uniquely determined by \(A \) and \(* \).

\(^3\) This is generally true in algebras with unit. Let \(b = a_1 \cdots a_n \) with commuting factors. Then \(b \) is invertible if all factors are invertible: \(b^{-1} = a_n^{-1} \cdots a_1^{-1} \). Conversely, if \(b \) is invertible, then \(a_i^{-1} = b^{-1} \cdot \prod_{j \neq i} a_j \) where we have used that the factors commute.
Proof. For $a \in A$ the element a^*a is selfadjoint and hence
\[\|a\|^2 = \|a^*a\|^2 = \rho_A(a^*a) \]
depends only on A and \ast.

3 Morphisms

Definition 7. Let A and B be C^*–algebras. An algebra homomorphism
\[\pi : A \to B \]
is called \ast–morphism if for all $a \in A$ we have
\[\pi(a^*) = \pi(a)^* . \]
A map $\pi : A \to A$ is called \ast–automorphism if it is an invertible \ast–morphism.

Corollary 2. Let A and B be C^*–algebras with unit. Each unit-preserving \ast–morphism $\pi : A \to B$ satisfies
\[\|\pi(a)\| \leq \|a\| \]
for all $a \in A$. In particular, π is continuous.

Proof. For $a \in A^\times$
\[\pi(a)\pi(a^{-1}) = \pi(aa^{-1}) = \pi(1) = 1 \]
holds and similarly $\pi(a^{-1})\pi(a) = 1$. Hence $\pi(a) \in B^\times$ with $\pi(a)^{-1} = \pi(a^{-1})$.

Now if $\lambda \in r_A(a)$, then
\[\lambda 1 - \pi(a) = \pi(\lambda 1 - a) \in \pi(A^\times) \subset B^\times, \]
i. e., $\lambda \in r_B(\pi(a))$. Hence $r_A(a) \subset r_B(\pi(a))$ and $\sigma_B(\pi(a)) \subset \sigma_A(a)$. This implies the inequality
\[\rho_B(\pi(a)) \leq \rho_A(a). \]

Since π is a \ast–morphism and a^*a and $\pi(a)^*\pi(a)$ are selfadjoint we can estimate the norm as follows:
\[\|\pi(a)\|^2 = \|\pi(a)^*\pi(a)\| = \rho_B(\pi(a)^*\pi(a)) = \rho_B(\pi(a)a)) \]
\[\leq \rho_A(a^*a) = \|a\|^2. \]

Corollary 3. Let A be a C^*–algebra with unit. Then each unit-preserving \ast–automorphism $\pi : A \to A$ satisfies for all $a \in A$:
\[\|\pi(a)\| = \|a\| \]
Proof.

\[\| \pi(a) \| \leq \| a \| = \| \pi^{-1}(\pi(a)) \| \leq \| \pi(a) \|. \]

If \(P(z) = \sum_{j=0}^{n} c_j z^j \) is a polynomial of one complex variable and \(a \) an element of an algebra \(A \), then \(P(a) = \sum_{j=0}^{n} c_j a^j \) is defined in an obvious manner. We now show how to define \(f(a) \) if \(f \) is a continuous function and \(a \) is a normal element of a \(C^* \)-algebra \(A \). This is known as continuous functional calculus.

Proposition 3. Let \(A \) be a \(C^* \)-algebra with unit. Let \(a \in A \) be normal.

Then there is a unique \(* \)-morphism \(C(\sigma_A(a)) \to A \) denoted by \(f \mapsto f(a) \) such that \(f(a) \) has the standard meaning in case \(f \) is the restriction of a polynomial. Moreover, the following holds:

1. \(\| f(a) \| = \| f \|_{C(\sigma_A(a))} \) for all \(f \in C(\sigma_A(a)) \).
2. If \(B \) is another \(C^* \)-algebra with unit and \(\pi : A \to B \) a unit-preserving \(* \)-morphism, then \(\pi(f(a)) = f(\pi(a)) \) for all \(f \in C(\sigma_A(a)) \).
3. \(\sigma_A(f(a)) = f(\sigma_A(a)) \) for all \(f \in C(\sigma_A(a)) \). \(^4\)

Proof. For any polynomial \(P \) we have that \(P(a) \) is also normal and hence by Proposition 2

\[
\| P(a) \| = \rho_A(P(a)) = \sup\{|\mu| \mid \mu \in \sigma_A(P(a))\} = \sup\{|P(\lambda)| \mid \lambda \in \sigma_A(a)\} = \| P \|_{C(\sigma_A(a))}
\]

Thus the map \(P \mapsto P(a) \) extends uniquely to a linear map from the closure of the polynomials in \(C(\sigma_A(a)) \) to \(A \). Since the polynomials form an algebra containing the unit, containing complex conjugates, and separating points, this closure is all of \(C(\sigma_A(a)) \) by the Stone-Weierstrass theorem. By continuity this extension is a \(* \)-morphism and assertion 1 follows from (3).

Assertion 2 clearly holds if \(f \) is a polynomial. It then follows for continuous \(f \) because \(\pi \) is continuous by Corollary 2.

As to assertion 3 let \(\lambda \in \sigma_A(a) \). Choose polynomials \(P_n \) such that \(P_n \to f \) in \(C(\sigma_A(a)) \). By Proposition 2 \(P_n(\lambda) \in \sigma_A(P_n(a)) \), i.e. \(P_n(a) - P_n(\lambda) \cdot 1 \notin A^x \). Since the complement of \(A^x \) is closed we can pass to the limit and we obtain \(f(a) - f(\lambda) \cdot 1 \notin A^x \). Hence \(f(\lambda) \in \sigma_A(f(a)) \). This shows \(f(\sigma_A(a)) \subset \sigma_A(f(a)) \). Conversely, let \(\mu \notin f(\sigma_A(a)) \). Then \(g := (f - \mu)^{-1} \in C(\sigma_A) \).

From \(g(a)(f(a) - \mu \cdot 1) = (f(a) - \mu \cdot 1)g(a) = 1 \) one sees \(f(a) - \mu \cdot 1 \in A^x \), thus \(\mu \notin \sigma(f(a)) \).

We extend Corollary 3 to the case where \(\pi \) is injective but not necessarily onto. This is not a direct consequence of Corollary 3 because it is not a priori clear that the image of a \(* \)-morphism is closed and hence a \(C^* \)-algebra in its own right.

\(^4\) Recall from the proof of Corollary 2 that \(\sigma_B(\pi(a)) \subset \sigma_A(a) \). Strictly speaking, the statement is \(\pi(f(a)) = (f|_{\sigma_B(\pi(a))})(\pi(a)) \)
Proposition 4. Let A and B be C^*-algebras with unit. Each injective unit-preserving $*$-morphism $\pi : A \to B$ satisfies

$$\|\pi(a)\| = \|a\|$$

for all $a \in A$.

Proof. By Corollary 2 we only have to show $\|\pi(a)\| \geq \|a\|$. Once we know this inequality for selfadjoint elements it follows for all $a \in A$ because

$$\|\pi(a)\|^2 = \|\pi(a)^*\pi(a)\| = \|\pi(a^*a)\| \geq \|a^*a\| = \|a\|^2.$$

Assume there exists a selfadjoint element $a \in A$ such that $\|\pi(a)\| < \|a\|$. By Proposition 2, we have $\sigma_A(a) \subset [-\|a\|, \|a\|]$ and $\rho_A(a) = \|a\|$, hence $\|a\| \in \sigma_A(a)$ or $-\|a\| \in \sigma_A(a)$. Similarly, $\sigma_B(\pi(a)) \subset [-\|\pi(a)\|, \|\pi(a)\|]$. Thus $\|\pi(a)\| = \|a\|$.

Choose a continuous function $f : [-\|a\|, \|a\|] \to \mathbb{R}$ such that f vanishes on $[-\|\pi(a)\|, \|\pi(a)\|]$ and $f(-\|a\|) = f(\|a\|) = 1$. From Proposition 3 we conclude $\pi(f(a)) = f(\pi(a)) = 0$ because $f|_{\sigma_A(\pi(a))} = 0$ and $\|f(a)\| = \|f\|_{C(\sigma_A)} \geq 1$. This contradicts the injectivity of π.

Remark 5. Any element a in a C^*-algebra A can be represented as a linear combination $a = a_1 + ia_2$ of self-adjoint elements by setting $a_1 := \frac{1}{2} \cdot (a + a^*)$ and $a_2 := \frac{1}{2i} \cdot (a - a^*)$.

Lemma 2. Let a be a self-adjoint element in a unital C^*-algebra A. Then the following three statements are equivalent:

1. $a = b^2$ for a self-adjoint element $b \in A$.
2. $a = c^*c$ for an arbitrary element $c \in A$.
3. $\sigma_A(a) \subset [0, \infty)$.

Proof. If $a = b^2$ for a self-adjoint element, we have by Proposition 3

$$\sigma_A(a) = \sigma_A(b^2) = \{\lambda^2 \mid \lambda \in \sigma_A(b) \subset [0, \infty)\},$$

which proves the implication 1 \implies 3.

If $\sigma_A(a) \subset [0, \infty)$, we can define the element $b := \sqrt{a}$ using the continuous functional calculus 3. We then have $b^* = b$ and $b^* = a$, which proves the implication 3 \implies 1.

The implication 1 \implies 2 is trivial.

Let $a = c^*c$ and suppose $\sigma_A(-a) \subset [0, \infty)$. By assertion 8 from Proposition 2, we have $\sigma_A(-c^*c) = \sigma_A(-c^*c)-\{0\} \subset [0, \infty)$. Writing $c = c_1 + ic_2$ with self-adjoint elements c_1, c_2, we find $c^*c + cc^* = 2c_1^2 + 2c_2^2$, hence $c^*c = 2c_1^2 + 2c_2^2 - cc^*$, which implies $\sigma_A(c^*c) \subset [0, \infty)$. Hence $\sigma_A(c^*c) = \{0\}$, which implies $c^*c = a = 0$.

Now suppose $a = c^*c$ for an arbitrary element $c \in A$. Since $a = c^*c$ is self-adjoint and $\sigma_A(a^2) \subset [0, \infty)$, by the continuous functional calculus 3, there exists a unique element $|a| := \sqrt{a^2}$ with

$$\|\pi(a)\| = \|a\|.$$
\[\sigma_A(d) = \{ \sqrt{\lambda} | \lambda \in \sigma_A(a^2) \} \subset [0, \infty). \]

By the same argument, the elements \(a_+ := \frac{1}{2}(|a|+a) \) and \(a_- := \frac{1}{2}(|a|-a) \) are self-adjoint and satisfy \(\sigma_A(a_+) \subset [0, \infty) \). We then have \(a = a_+ - a_- \). Further, for the element \(d := ca_- \), we compute

\[-d^*d = -a_-c^*ca_- = -a_- (a_+ - a_-)a_- = -(a_-a_+ a_- + (a_-)^3) = (a_-)^3, \]

since \(a_+ a_- = \frac{1}{4}(|a|+a) \cdot (|a|-a) = \frac{1}{4}(|a|^2 - a^2) = 0 \). We thus have \(\sigma_A(-d^*d) = \sigma_A((a_-)^3) \subset [0, \infty) \), which yields \(d = 0 \). Hence \(c = 0 \) or \(a_- = 0 \), thus \(a = a_+ \) and \(\sigma_A(a) = \sigma_A(a_+) \subset [0, \infty) \). This proves the implication \(1 \implies 3 \).

Definition 8. A self-adjoint element \(a \in A \) is called positive, if one and hence of the properties in Lemma 2 hold.

Remark 6. By the reasoning of the preceding proof, any self-adjoint element \(a \in A \) can be represented as a linear combination \(a = a_+ - a_- \) with positive elements \(a_+ := \frac{1}{2} \cdot (|a| + a) \) and \(a_- := \frac{1}{2} \cdot (|a| - a) \) satisfying \(a_+ a_- = 0 \). Combining this observation with remark 5, we conclude that any \(* \)-subalgebra of \(A \) is spanned by its positive elements (of norm \(\leq 1 \)).

4 States and representations

Let \((A, \| \cdot \|, *) \) be a \(C^* \)-algebra and \(H \) a Hilbert space.

Definition 9. A representation of \(A \) on \(H \) is a \(* \)-morphism \(\pi : A \to \mathcal{L}(H) \). A representation is called faithful, if \(\pi \) is injective. A subset \(U \subset H \) is called invariant under \(A \), if

\[\pi(A)U := \{ \pi(a) \cdot u | a \in A, u \in U \} \subset U. \]

A representation is called irreducible, if the only closed vector subspaces of \(H \) invariant under \(A \) are \(\{0\} \) and \(H \).

Remark 7. Let \(\pi_\lambda : A \to \mathcal{L}(H_\lambda), \lambda \in A \), be representations of \(A \). Then

\[\pi = \bigoplus_{\lambda \in A} \pi_\lambda : A \to \bigoplus_{\lambda \in A} \mathcal{L}(H_\lambda), \]

\[\pi(a)(x_\lambda)_{\lambda \in A} = (\pi_\lambda(a) \cdot x_\lambda)_{\lambda \in A}, \]

is called the direct sum representation.

Definition 10. Two representations \(\pi_1 : A \to \mathcal{L}(H_1), \pi_2 : A \to \mathcal{L}(H_2) \) are called unitarily equivalent, if there exists a unitary operator \(U : H_1 \to H_2 \), such that for every \(a \in A \):

\[U \circ \pi_1(a) = \pi_2(a) \circ U. \]
Definition 11. A vector $\Omega \in H$ is called cyclic for a representation π, if

$$\{\pi(a) \cdot \Omega \mid a \in A\} \subset H$$

is a dense subset.

Example 6. The commutative C^*-algebra $A = C(X)$ of continuous functions on a compact Hausdorff space has a natural representation on the Hilbert space $H = L^2(X)$ by multiplication. The constant function $\Omega = 1$ is a cyclic vector since the continuous functions are dense in $L^2(X)$.

Lemma 3. If (H, π) is an irreducible representation, then either π is the zero map or every non-zero vector $\Omega \in H$ is cyclic for π.

Proof. For every vector $\Omega \in H$, the space $\pi(A)\Omega$ is invariant under A, hence its closure is either $\{0\}$ or H. If Ω is non-zero then either $\pi(A)\Omega = \{0\}$, so that the 1-dimensional subspace $C \cdot \Omega$ is invariant under A, whence $H = C \cdot \Omega$ and $\pi = 0$. Or there exists an element $a \in A$ such that $\pi(a)\Omega \neq 0$, so that $\pi(A) \cdot \Omega$ is dense in H and hence Ω is cyclic.

Definition 12. A state on a C^*-algebra A is a linear functional $\tau : A \to \mathbb{C}$ with

1. $\|\tau\| := \sup\{|\tau(a)| \mid a \in A, \|a\| = 1\} = 1$ (\(\tau\) has norm 1).
2. $\tau(a^*a) \geq 0 \ \forall a \in A$ (\(\tau\) is positive).

The set of all states on A is denoted by $S(A)$.

Example 7. Let X be a compact Hausdorff space, $A = C(X)$. Let μ be a Borel probability measure on X, i.e. a measure on the Borel sigma algebra of X with $\int_X d\mu = 1$. Then

$$\tau_{\mu} : A \rightarrow \mathbb{C}$$

$$f \mapsto \int_X f \, d\mu$$

is a state. For instance, the state $\mu_{\delta_{x_0}}$ corresponding to the Dirac measure at x_0 is the evaluation at x_0:

$$\mu_{\delta_{x_0}}(f) = f(x_0).$$

Example 8. On the C^*-algebra $A = \text{Mat}(n \times n; \mathbb{C})$ of complex matrices, we have the state

$$\tau(A) := \frac{1}{n} \cdot \text{tr}(A).$$

Example 9. On $A = \mathcal{L}(H)$, a vector $\Omega \in H$ with $\|\Omega\| = 1$ yields a so called vector state

$$\tau(A) := \langle A \cdot \Omega, \Omega \rangle.$$
Proposition 5. Let $\tau : A \to \mathbb{C}$ be a state on a C^*-algebra A with unit. Then we have:

1. $A \times A \to \mathbb{C}$, $(a, b) \mapsto \tau(b^*a)$, is a positive semi definite, hermitian sesquilinear form.
2. $|\tau(b^*a)|^2 \leq \tau(a^*)\tau(b^*b)$ \ \forall a, b \in A \quad (\text{Cauchy-Schwarz inequality}).
3. $\tau(a^*) = \overline{\tau(a)}$ \ \forall a \in A.
4. $|\tau(a)|^2 \leq \tau(a^*a)$ \ \forall a \in A.
5. $\tau(1) = \|\tau\| = 1$.

Proof. It follows immediately from the definitions, that the form $(a, b) \mapsto \tau(b^*a)$ is sesquilinear and positive semi definite. To show that it is hermitian, we set $c = a \cdot z + b$ for some $z \in \mathbb{C}$ and compute

$$0 \leq \tau(c^*c) = \overline{z} \cdot z \cdot \tau(a^*a) + \overline{z} \cdot \tau(a^*b) + z \cdot \tau(b^*a) + \tau(b^*b).$$

(4)

It follows, that $\text{Im}(\overline{z} \cdot \tau(a^*b) + z \cdot \tau(b^*a)) = 0$. Setting $z = 1$, we obtain $\text{Im} \tau(a^*b) \equiv -\text{Im} \tau(b^*a)$, setting $z = i$, we obtain $\text{Re} \tau(a^*b) = \text{Re} \tau(b^*a)$. Thus $\tau(a^*b) = \overline{\tau(b^*a)}$.

Setting $z = -\frac{\tau(a^*b)}{\tau(a^*a)}$, (4) implies the Cauchy-Schwarz inequality:

$$0 \leq \frac{|\tau(a^*b)|^2}{\tau(a^*a)} - \frac{|\tau(a^*b)|^2}{\tau(a^*a)} - \frac{|\tau(a^*b)|^2}{\tau(a^*a)} + \tau(b^*b).$$

Since A has a unit, we have

$$\tau(a^*) = \tau(a^*1) = \overline{\tau(1^*a)} = \overline{\tau(a)}.$$

To show 4, we compute

$$|\tau(a)|^2 = |\tau(1^*a)|^2 \leq \tau(1^*1) \cdot \tau(a^*a) \leq \tau(a^*a).$$

Using $\tau(1) = \tau(1^*1) \geq 0$ and $\tau(1) \leq 1$, we compute

$$|\tau(a)|^2 \leq \tau(1^*1) \cdot \tau(a^*a) \leq \tau(1) \cdot \|\tau\| \cdot \|a^*a\| = \tau(1) \cdot \|a\|^2.$$

We thus have

$$1 = \|\tau\|^2 \leq \sup_{a \in A, \|a\| \leq 1} \frac{|\tau(a)|^2}{\|a\|^2} \leq \tau(1)$$

hence $\tau(1) = 1$.

Remark 8. The proof of assertion 5 shows that $\varphi(1) = \|\varphi\|$ holds for every positive linear functional φ.

\[C^*\text{-Algebras} \quad 17\]
Corollary 4. Let τ_1, \ldots, τ_n be states and $\lambda_1, \ldots, \lambda_n \geq 0$ with $\sum_{j=1}^{n} \lambda_j = 1$. Then the convex combination $\tau = \sum_{j=1}^{n} \lambda_j \cdot \tau_j$ is also a state.

Let $\tau_i, i \in \mathbb{N}$ be states and define $\tau(a) := \lim_{i \to \infty} \tau_i(a)$. Then τ is a state.

Proof. For the convex combinations, we have

$$\tau(a^*a) = \sum_{j=1}^{n} \lambda_j \cdot \tau_j(a^*a) \geq 0$$

and

$$\|\tau\| = \tau(1) = \sum_{j=1}^{n} \lambda_j \cdot \tau_j(1) = \sum_{j=1}^{n} \lambda_j = 1.$$

Similarly, for the pointwise convergence, we have

$$\tau(a^*a) = \lim_{i \to \infty} \tau_i(a^*a) \geq 0$$

and

$$\|\tau\| := \sup\{|\tau(a)| \mid a \in A, \|a\| = 1\} = \sup\{|\lim_{i \to \infty} \tau_i(a)| \mid a \in A, \|a\| = 1\} = \sup\{\lim_{i \to \infty} |\tau_i(a)| \mid a \in A, \|a\| = 1\} = \lim_{i \to \infty} \|\tau_i\| = 1.$$

Example 10. Let τ_1, \ldots, τ_n be vector states for vectors $\Omega_1, \ldots, \Omega_n \in H$. Then for the state $\tau = \sum_{j=1}^{n} \lambda_j \cdot \tau_j$ with $\lambda_j \geq 0$, $\sum_{j=1}^{n} \lambda_j = 1$, we find

$$\tau(a) = \sum_{j=1}^{n} \lambda_j \cdot \tau_j(a) = \sum_{j=1}^{n} \lambda_j \cdot (a \cdot \Omega_j, \Omega_j) = \text{tr}(\varrho \cdot a).$$

Here $\varrho \in \mathcal{L}(H)$ is an operator of finite dimensional range with eigenvectors Ω_j and eigenvalues λ_j.

More generally, a positive trace class operator $\varrho \in \mathcal{L}(H)$ defines a state τ on $A = \mathcal{L}(H)$ by $\tau(a) := \text{tr}(\varrho \cdot a)$. States of this form are called normal.

Lemma 4. Let τ be a state on a C^*-algebra A. Then the following holds:

1. $\tau(a^*a) = 0 \iff \tau(ba) = 0$ for any $b \in A$.
2. $\tau(b^*a^*ab) \leq \|a^*a\| \cdot \tau(b^*b)$.

Proof. 1. Suppose $\tau(a^*a) = 0$. Then the Cauchy-Schwarz inequality

$$|\tau(ba)|^2 \leq \tau(a^*a) \cdot \tau(b^*b) = 0$$

implies $\tau(ba) = 0$. The other direction is obvious.
2. If \(\tau(b^*b) = 0 \), then \(\tau(cb) = 0 \) for any \(c \in A \), especially for \(c = b^*a^*a \). We thus assume \(\tau(b^*b) > 0 \) and set \(\varrho(c) := \frac{\tau(b^*cb)}{\tau(b^*b)} \). Then \(\varrho \) is a positive linear functional with \(\| \varrho \| = \varrho(1) = 1 \). Hence \(\varrho \) is a state, and from Proposition 5 we have \(\varrho(a^*a) \leq \|a^*a\| \).

From every state \(\tau \) on a \(C^* \)-algebra \(A \) we can construct a representation of \(A \) by making the product \((b, a) \mapsto \tau(b^*a) \) non degenerate. By assertion 1 in Lemma 4, the null space \(N_\tau := \{ a \in A \mid \tau(a^*a) = 0 \} \) is a closed linear subspace of \(A \). By assertion 2 in Lemma 4, \(N_\tau \) is a left ideal in \(A \). Therefore, the pairing

\[
\langle [a], [b] \rangle \mapsto \tau(b^*a),
\]

is a well defined hermitian scalar product. Let \(H_\tau \) be the completion of the pre-Hilbert space \(A/N_\tau \). Then the map

\[
\pi_\tau : A \to \mathcal{L}(A/N_\tau),
\]

\[
\pi_\tau(a) \cdot [b] := [ab],
\]

satisfies

\[
\|\pi_\tau(a) \cdot [b]\|^2 = \tau(b^*a^*ab) \leq \|a^*a\| \cdot \tau(b^*b) = \|a\|^2 \cdot \|b\|^2,
\]

so \(\|\pi_\tau(a)\| \leq \|a\| \) and \(\|\pi_\tau\| \leq 1 \). The map \(\pi_\tau \) thus extends to a representation \(\pi_\tau : A \to \mathcal{L}(H_\tau) \).

The scalar product induced by \(\langle [a], [b] \rangle \mapsto \tau(b^*a) \) on \(H_\tau \) will be denoted by \(\langle \cdot, \cdot \rangle_\tau \).

Definition 13. Let \(\tau \) be a state on a \(C^* \)-algebra \(A \). The representation \((H_\tau, \langle \cdot, \cdot \rangle_\tau, \pi_\tau) \) constructed above is called the Gelfand-Naimark-Segal representation, or GNS representation for short.

Example 11. For \(A = C(X) \) with a state \(\tau_\mu \) given by a probability measure \(\mu \) as \(\tau_\mu(f) = \int_X f \, d\mu \), the representation space of the GNS representation is \(H_\tau = L^2(X, \mu) \).

Remark 9. Let \(\tau \) be a state on a \(C^* \)-algebra \(A \) with unit. Then we have:

1. The vector \(\Omega_\tau := [1] \in H_\tau \) is cyclic for \(\pi_\tau \), since

\[
\pi_\tau(A) \cdot \Omega_\tau = A/N_\tau \subset H_\tau
\]

is dense.
2. \(\tau \) can be represented as a vector state on the GNS representation because

\[
\tau(a) = \tau(1^*a1) = \langle [a1], [1] \rangle = \langle \pi_\tau(a) \cdot \Omega_\tau, \Omega_\tau \rangle.
\]

Definition 14. Let \(A \) be a \(C^* \)-algebra \(A \). The direct sum representation

\[
\bigoplus_{\tau \in S(A)} \pi_\tau : A \to L\left(\bigoplus_{\tau \in S(A)} H_\tau \right)
\]

is called the universal representation of \(A \).

Remark 10. The universal representation is faithful. Hence every \(C^* \)-algebra \(A \) is isomorphic to a subalgebra of the algebra \(L(H) \) of bounded linear operators on a Hilbert space \(H \).

Definition 15. A state \(\tau \) on a \(C^* \)-algebra \(A \) is called pure, if for every positive linear functional \(\varrho : A \to \mathbb{C} \) with \(\varrho(a^*a) \leq \tau(a^*a) \forall a \in A \), there exists \(\lambda \in [0, 1] \) with \(\varrho = \lambda \cdot \tau \).

Remark 11. A pure state \(\tau \) cannot be written as a convex combination of different states \(\tau_1 \neq \tau_2 \): If \(\tau = \lambda \cdot \tau_1 + (1 - \lambda) \cdot \tau_2 \) with \(\lambda \in [0, 1] \), then \(\tau \geq \lambda \cdot \tau_1 \) implies \(\lambda = 0 \) and \(\tau = \tau_2 \) or \(\lambda = 1 \) and \(\tau = \tau_1 \).

Definition 16. Let \(S \subseteq A \) be a subset of a \(C^* \)-algebra \(A \). The space \(S' := \{ a \in A \mid [a, s] = 0 \forall a \in A, s \in S \} \) is called the commutant of \(S \). Here \([a, s] := as - sa\) is the commutator of \(a \) and \(s \).

Remark 12. If \(S \subseteq A \) is a \(* \)-invariant subset, i.e. \(S^* := \{ s^* \mid s \in S \} \subseteq S \), then the commutant \(S' \) is also \(* \)-invariant. \(S' \) is closed, since for every \(s \in S \), the map \(A \to A, a \mapsto [a, s] \) is continuous. Hence \(S' \) is a \(C^* \)-subalgebra of \(A \).

Theorem 1. Let \((H, \pi) \) be a representation of a unital \(C^* \)-algebra. Then the following two statements are equivalent:

1. \(\pi \) is irreducible
2. \((\pi(A))' = \mathbb{C} \cdot \text{id}_H \).

Proof. Suppose \(\pi \) is irreducible and \(b \in L(H) \) commutes with all elements of \(\pi(A) \). By Remark 5, we may write \(b = b_1 + ib_2 \) with self-adjoint elements \(b_1, b_2 \in L(H) \). We need to show that \(\sigma_A(b_1) \) and \(\sigma_A(b_2) \) each consist of a single point. Suppose to the contrary, that \(\sigma_A(b_1) \) contains two different numbers \(\lambda \neq \mu \). Then we choose functions \(f, g \in C(\sigma_A(b_1)) \) such that \(f(\lambda) = g(\mu) = 1 \) and \(f \cdot g = 0 \). By the continuous functional calculus 3 in the \(C^* \)-algebra \((\pi(A))'\), we have \(f(b_1) \cdot g(b_1) = (f \cdot g)(b_1) = 0 \), and \(f(b_1), g(b_1) \neq 0 \). Since \(g(b_1) \) commutes with every element of \(\pi(A) \) and \(\pi \) is irreducible, \(g(b_1) \cdot H \) is an \(A \)-invariant, dense subspace of \(H \). The vanishing of \(f(b_1) \) on this subspace implies \(f(b_1) = 0 \), which contradicts the fact that the continuous functional calculus 3 is an isometry. Thus \(\sigma_A(b_1) \) consists of a single point, hence \(C(\sigma_A(b_1)) \) is
one-dimensional. Since the continuous functional calculus $C(\sigma_A(b_1)) \to A$ is an isometric embedding with b_1, id_H in its image, we conclude that $b_1 = \lambda \text{id}_H$ for a $\lambda \in \mathbb{C}$. By the same argument, b_2 and hence b is a multiple of the identity.

Now suppose $(\pi(A))' = \mathbb{C} \cdot \text{id}_H$. Let $K \subset H$ be a closed subspace invariant under A, and let p be the orthogonal projection from H onto K. The invariance property $\pi(A)K \subset K$ yields that p commutes with every operator in $\pi(A)$. Hence p is of the form $p = \lambda \cdot \text{id}_H$, $\lambda \in \mathbb{C}$. Since p is a projection, $p^2 = p$ thus $\lambda^2 = \lambda$. Hence $K = \{0\}$ or $K = H$.

Theorem 2. Let τ be a state on a C^*--algebra A. Then the following two statements are equivalent:

1. τ is a pure state.
2. The GNS representation (H_τ, π_τ) is irreducible, i.e. H_τ has no nontrivial closed A-invariant subspace.

Proof. Suppose τ is a pure state and $v \in \mathcal{L}(H)$ is a positive element of norm ≤ 1 that commutes with every element in $\pi_\tau(A)$. Then the function

$$\varrho : A \to \mathbb{C}, a \mapsto \langle \pi_\tau(a) \cdot v \Omega_\tau, \Omega_\tau \rangle$$

is a positive linear functional on A, satisfying $\varrho(a^* a) \leq \tau(a^* a)$ for all $a \in A$. Hence $\varrho = \lambda \cdot \tau$ for a $\lambda \in [0, 1]$. Thus for arbitrary $a, b \in A$, we obtain in the pre-Hilbert space A/N_τ:

$$\langle v \cdot (a + N_\tau), (b + N_\tau) \rangle_\tau = \langle v \cdot \pi_\tau(a) \Omega_\tau, \pi_\tau(b) \Omega_\tau \rangle_\tau$$

$$= \langle v \cdot \pi_\tau(b^* a) \Omega_\tau, \Omega_\tau \rangle_\tau$$

$$= \varrho(b^* a)$$

$$= \lambda \cdot \tau(b^* a)$$

$$= \langle \lambda \text{id}_{N_\tau}, (a + N_\tau), (b + N_\tau) \rangle_\tau .$$

This implies $v = \lambda \text{id}_H$, since A/N_τ is dense in H_τ. By Proposition 1, we conclude that π_τ is irreducible.

Now suppose that ϱ is a positive linear functional on A such that $\varrho(a^* a) \leq \tau(a^* a)$ for all $a \in A$. Then the pairing

$$(a + N_\tau, b + N_\tau) \mapsto \varrho(b^* a)$$

is a positive semi-definite, hermitian sesquilinear form on A/N_τ. Being majorized by $\langle \cdot, \cdot \rangle_\tau$, it extends to another inner product $\langle \cdot, \cdot \rangle_\varrho$ on the Hilbert space H_τ. Hence there exists a bounded positive operator $m \in \mathcal{L}(H)$ such that

$$\langle x, y \rangle_\varrho = \langle x, my \rangle_\tau \quad \forall x, y \in H_\tau .$$

Now the estimate

$$0 \leq \varrho(a^* a) = \langle \pi_\tau(a) \Omega, m \pi_\tau(a) \Omega \rangle_\tau \leq \tau(a^* a) = \langle \pi_\tau(a) \Omega, \pi_\tau(a) \Omega \rangle_\tau$$
together with the Cauchy-Schwarz inequality yields $\|m\| \leq 1$. For every $a, b, c \in A$, we have
\[
\langle \pi_\tau(a), m\pi_\tau(b)\pi_\tau(c) \rangle = \rho(a^*bc) = \rho((b^*)^*c) = \langle \pi_\tau(a), \pi_\tau(b)m\pi_\tau(c) \rangle.
\]
Hence m commutes with every $\pi(c)$, $c \in A$.

Now suppose the functional ρ is not a mutiple of the state τ. Then the operator m is not a multiple of id_H. By Theorem 1, this contradicts the irreducibility of the representation π_τ.

Lemma 5. In a unital C^*–algebra A, every state is a pointwise limit of convex combinations of pure states.

Proof. By Corollary 4, convex combinations pointwise limits of states are states. Hence $S(A)$ is a closed convex set in the topology of pointwise convergence. By the Banach-Alaoglu theorem from functional analysis, $S(A)$ is thus a compact subset of the closed unit ball in the dual space of A (in the topology of pointwise convergence). The Krein-Milman theorem then implies, that $S(A)$ is the closed convex hull of its extreme points, which be Remark 11 contain all pure states. Now let $\tau \in S(A)$ be an extreme point of $S(A)$, ϱ a positive linear functional on A satisfying $\varrho(a^*a) \leq \tau(a^*a)$ for all $a \in A$, and suppose $\tau \neq \varrho \neq 0$. Then setting $t = \|\varrho\| \in (0, 1)$, we find
\[
\tau = t \cdot \frac{\varrho}{\|\varrho\|} + (1 - t) \cdot \frac{(\tau - \varrho)}{\|\tau - \varrho\|} s
\]
since $\|\tau - \varrho\| = \tau(1) - \varrho(1) = \|\tau\| - \|\varrho\| = 1 - t$ by Remark 8. Hence $\frac{\varrho}{\|\varrho\|} = \frac{(\tau - \varrho)}{\|\tau - \varrho\|} = \tau$, since by assumption τ is an extreme point of $S(A)$. Thus $\varrho = t\tau$ and hence τ is a pure state.

5 Product states

In this section, we consider states on the tensor product of C^*–algebras. The norms making the algebraic tensor product into a C^*–algebra are highly nonunique. However, the norm making the algebraic tensor product of Hilbert spaces into a pre-Hilbert space is unique. So it seems natural to study norms on the algebras by means of norms on representation spaces. We will work here with the finest norm topology, making the algebraic tensor product of C^*–algebras into a C^*–algebra. Throughout this section, we assume the C^*–algebras in question to have a unit.

Remark 13. Let $(H, \langle \cdot, \cdot \rangle_H)$ and $(K, \langle \cdot, \cdot \rangle_K)$ be Hilbert spaces. Then there is a unique inner product $\langle \cdot, \cdot \rangle$ on the algebraic tensor product of H and K such that
The completion of the algebraic tensor product with respect to this inner product is called the tensor product of the Hilbert spaces and is denoted by $\langle x \otimes y, x' \otimes y' \rangle = \langle x, x' \rangle_H \cdot \langle y, y' \rangle_K \quad \forall x, x' \in H, y, y' \in K$.

This operator satisfies $(a \otimes b)(x \otimes y) = a(x) \otimes b(y) \quad \forall x \in H, y \in K$.

Given two C^*-algebras $(A, \| \cdot \|_A, *)$ and $(B, \| \cdot \|_B, +)$, we want to construct C^*-norms on the algebraic tensor product $A \otimes B$. The simplest way to do so is by using the universal representations. The \mathbb{C}-antilinear map $*: A \otimes B \to A \otimes B$ defined by $(a \otimes b)^* := a^* \otimes b^*$ on homogeneous elements and extended bilinearly to $A \otimes B$ makes the algebraic tensor product into an involutive algebra.

Lemma 6. Let (H, φ) and (K, ψ) be representations of A and B, respectively. Then there is a unique $*$-homomorphism $\pi: A \otimes B \to \mathcal{L}(H \otimes K)$ such that

$$\pi(a \otimes b) = \varphi(a) \otimes \psi(b) \quad \forall a \in A, b \in B.$$

Moreover, if the representations φ and ψ are faithful, then so is π.

Proof. The map $A \times B \to \mathcal{L}(H \otimes K)$, $(a, b) \mapsto \varphi(a) \otimes \psi(b)$ is bilinear and thus yields a unique linear map $\pi: A \otimes B \to \mathcal{L}(H \otimes K)$ as claimed, which is indeed a $*$-morphism. If both φ and ψ are injective and $z \in A \otimes B$ satisfies $\pi(z) = 0$, then by writing $z = \sum_{j=0}^n a_j \otimes b_j$ with linearly independent b_j, we conclude $\varphi(a_j) = 0$ for $j = 0, \ldots, n$. Hence $a_j = 0$ for $j = 1, \ldots, n$ and thus $z = 0$.

By this Lemma, it is natural to make use of the universal representation from Definition 14 to obtain a C^*-norm on the algebraic tensor product.

Definition 17. Let $(A, \| \cdot \|_A, *)$ and $(B, \| \cdot \|_B, +)$ be C^*-algebras with the universal representations $\pi^A: A \to \mathcal{L}(H)$ and $\pi^B: B \to \mathcal{L}(K)$. The injective C^*-norm $\| \cdot \|_i$ on the algebraic tensor product is defined by

$$\|c\|_i := \|\pi(c)\|,$$

where $\pi: A \otimes B \to \mathcal{L}(H \otimes K)$ is the unique $*$-morphism induced by $\pi^A \times \pi^B$ as in Lemma 6. The completion of the algebraic tensor product with respect to the C^*-norm $\| \cdot \|_i$ is called the injective C^*-tensor product and is denoted by $A \overset{\alpha}{\otimes} B$.

Since the $*$-morphism π constructed via the universal representations is injective, $\| \cdot \|_i$ is indeed a C^*-norm on $A \otimes B$. Another natural C^*-norm on $A \otimes B$ is constructed by taking the supremum over all C^*-norms. By Remark 2, a unit preserving $*$-morphism π from the algebraic tensor product $A \otimes B$ to a C^*-algebra C satisfies $\|\pi(x)\| \leq \|x\|_i$ with respect to any C^*-norm $\| \cdot \|_i$ on $A \otimes B$. This yields the following characterization of the maximal C^*-norm on $A \otimes B$:
Definition 18. Let \((A, \| \cdot \|_A, \ast)\) and \((B, \| \cdot \|_B, \ast)\) be C*-algebras. The projective C*-norm \(\| \cdot \|_\pi\) on the algebraic tensor product \(A \otimes B\) is defined by

\[
\| c \|_\pi := \inf \left\{ \sum_{j=1}^n \| a_j \|_A \cdot \| b_j \|_B \mid c = \sum_{j=1}^n a_j \otimes b_j \right\}.
\]

The completion of \(A \otimes B\) with respect to the C*-norm \(\| \cdot \|_\pi\) is called the projective C*-tensor product and is denoted by \(A \otimes_\pi B\).

Remark 14. The projective C*-norm \(\| \cdot \|_\pi\) satisfies \(\| a \otimes b \|_\pi = \|a\|_A \cdot \|b\|_B\) for all \(a \in A, b \in B\). Clearly, any other C*-norm \(\| \cdot \|_\gamma\) on \(A \otimes B\) satisfies \(\|c\|_\gamma \leq \|c\|_\pi\) for all \(c \in A \otimes B\), hence the projective C*-norm is maximal among all C*-norms on \(A \otimes B\). One can show that the injective C*-norm \(\| \cdot \|_i\) on the other hand is minimal among all C*-norms on \(A \otimes B\).

The projective C*-tensor product has the following universal property:

Lemma 7. Let \(A, B\) and \(C\) be C*-algebras, and let \(\varphi : A \to C\) and \(\psi : B \to C\) be \(*\)-morphisms such that \(\varphi(a)\) and \(\psi(b)\) commute for all \(a \in A, b \in B\). Then there exists a unique \(*\)-morphism \(\pi : A \otimes_\pi B \to C\) such that

\[
\pi(a \otimes b) = \varphi(a) \cdot \psi(b) \quad \forall a \in A, b \in B.
\]

Proof. The bilinear map \(A \times B \to C, (a, b) \mapsto \varphi(a) \cdot \psi(b)\) induces a unique linear map \(\pi : A \otimes B \to C\) satisfying (5). This map is a \(*\)-morphism. The map \(\| \cdot \|_\gamma : A \otimes B \to \mathbb{R}, c \mapsto \|\pi(c)\|_\gamma\) is a C*-norm, hence it satisfies \(\|c\|_\gamma \leq \|c\|_\pi\) for all \(c \in A \otimes B\). Hence \(\pi\) is continuous with respect to the projective C*-norm and thus uniquely extends from the dense subset \(A \otimes B\) to the projective C*-tensor product \(A \otimes_\pi B\).

Now we study states on the projective C*-tensor product \(A \otimes_\pi B\). Taking linear functionals \(\mu : A \to \mathbb{C}\) and \(\nu : B \to \mathbb{C}\), setting

\[
(\mu \otimes \nu)(a \otimes b) := \mu(a) \cdot \nu(b)
\]
on homogeneous elements and extending bilinearly, we obtain a linear functional on \(A \otimes B\). In the projective C*-norm, we have \(\|\mu \otimes \nu\|_\pi = \|\mu\|_A \cdot \|\nu\|_B\). Furthermore, for the homogeneous elements \(a \otimes b\), we have:

\[
(\mu \otimes \nu)((a \otimes b)^\ast(a \otimes b)) = (\mu \otimes \nu)(a^\ast a \otimes b^\ast b) = \mu(a^\ast a) \cdot \nu(b^\ast b).
\]

Hence the functional \(\mu \otimes \nu : A \otimes B \to \mathbb{C}\) is positive, if \(\mu\) and \(\nu\) are.

Definition 19. Let \(A\) and \(B\) be C*-algebras, and let \(\mu \in S(A)\) and \(\nu \in S(B)\) be states. The unique extension of \(\mu \otimes \nu\) to a state on the projective tensor product \(A \otimes_\pi B\) is called a product state.
If A and B have a unit, then we can restrict a state $\tau \in S(A \otimes B)$ to one of the factors by setting:

$$
\tau^A(a) := \tau(a \otimes 1) \quad \forall a \in A \\
\tau^B(b) := \tau(1 \otimes b) \quad \forall b \in B
$$

Obviously, for any two states $\mu \in S(A)$ and $\nu \in S(B)$, there is a state $\tau \in S(A \otimes B)$ such that $\tau^A = \mu$ and $\tau^B = \nu$, namely the product state $\tau = \mu \otimes \nu$. Hence in this case, $\tau = \tau^A \otimes \tau^B$, i.e., the measurement in the state τ of an observable in $A \otimes B$ simply results in the product of measurements in the states τ^A and τ^B, respectively. In general this is not the case, so we set:

Definition 20. A state $\tau \in S(A \otimes B)$ is called correlated, if there exists $a \in A$ and $b \in B$ such that $\tau(a \otimes b) \neq \tau^A(a) \cdot \tau^B(b)$.

Definition 21. A state $\tau \in S(A \otimes B)$ is called decomposable, if it is the pointwise limit of convex combinations of product states. A state $\tau \in S(A \otimes B)$ is called entangled, if it is not decomposable.

Remark 15. In the literature, the pointwise limit of linear functionals is referred to as the weak*-limit. Stated this way, the set of decomposable states is the weak*-closure of the convex hull of the product states.

Example 12. A pure state on $A \otimes B$ cannot be written as convex combination of different states. It can neither be written as a pointwise limit of such convex combinations. Hence a pure state is decomposable if and only it is a product state.

The set of decomposable states is a convex subset of the set of all (positive) linear functionals on the projective C^*-tensor product $A \otimes_{\pi} B$. One aims at a characterization of this convex set by inequalities. While a complete characterization is unknown, a simple such inequality has been deduced from the work of Bell in the late 1950’s on the Einstein-Podolsky-Rosen paradox. Therefore, inequalities of this type are often referred to as (generalized) Bell inequalities.

Lemma 8. Let A and B be C^*-algebras and let τ be a decomposable state on the projective C^*-tensor product $A \otimes_{\pi} B$. Then

$$
|\tau(a \otimes (b - b'))| + |\tau(a' \otimes (b + b'))| \leq 2
$$

holds for all self-adjoint elements $a, a' \in A$, $b, b' \in B$ of norm ≤ 1.

Proof. For a product state $\tau = \mu \otimes \nu$, we have

$$
\tau(a \otimes (b - b')) = \mu(a) \cdot \nu(b) - \mu(a) \cdot \nu(b') = \mu(a) \cdot \nu(b) \cdot (1 \pm \mu(a') \cdot \nu(b')) - \mu(a) \cdot \nu(b') \cdot (1 \pm \mu(a') \cdot \nu(b)).
$$
By assumption, \(|\mu(a)|, |\mu(a')|, |\nu(b)|, |\nu(b')| \leq 1\), so we have
\[
|\tau(a \otimes (b - b'))| \leq |1 \pm \mu(a') \cdot \nu(b')| + |1 \pm \mu(a') \cdot \nu(b)|
\]
\[
= 1 \pm \mu(a') \cdot \nu(b') + 1 \pm \mu(a') \cdot \nu(b)
\]
\[
= 2 \pm \tau(a' \otimes (b + b')).
\]

Hence, (6) holds for all product states. If \(\tau\) is a convex combination of product states, \(\tau = \sum_{j=1}^{n} \lambda_j \mu_j \otimes \nu_j\), we obtain:
\[
|\tau(a \otimes (b - b'))| + |\tau(a' \otimes (b + b'))|
\]
\[
\leq \sum_{j=1}^{n} \lambda_j \cdot \left\{(\mu_j \otimes \nu_j)(a \otimes (b - b')) + (\mu_j \otimes \nu_j)(a' \otimes (b + b'))\right\}
\]
\[
\leq 2.
\]

Taking pointwise limits of convex combinations, the inequality holds by continuity.

Example 13. Let \(A = B = \text{Mat}(2 \times 2; \mathbb{C})\) be matrix algebras. Let \(e_1, e_2\) be the standard basis of \(\mathbb{C}^2\). On \(A \otimes B\), we have the Bell state \(\tau\), which is the vector state with the vector
\[
\Omega := \frac{1}{\sqrt{2}}(e_1 \otimes e_1 + e_2 \otimes e_2).
\]

It is easy to see, that the Bell state is entangled. For instance, the observables
\[
a = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad a' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad b = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad b' = \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}
\]
in the state \(\tau\) yield:
\[
\tau(a \otimes (b - b')) = \sqrt{2} \tau(a \otimes a) = \sqrt{2} \langle (a \otimes a)(\Omega), \Omega \rangle
\]
\[
= \sqrt{2} \langle \Omega, \Omega \rangle = \sqrt{2}
\]
and similarly
\[
\tau(a' \otimes (b + b')) = \sqrt{2},
\]

hence
\[
|\tau(a \otimes (b - b'))| + |\tau(a' \otimes (b + b'))| = 2\sqrt{2} > 2.
\]

Thus the state \(\tau\) violates Bell’s inequality and is therefore entangled by Lemma 8.

Bell inequalities are often referred to as inequalities which a priori hold for all states in a classical system. The existence of entangled states may thus be considered as a characterizing phenomenon of quantum systems. In fact, if one of the observable algebras is abelian – e.g. if it corresponds to a classical system – then there are no entangled states in \(A \otimes \pi B\):
Proposition 6. Let A and B be C^*-algebras with unit. If A or B is abelian, then all states on the projective C^*-tensor product $A \otimes \pi B$ are decomposable.

Proof. By Theorem 2, it suffices to show that every pure state τ on $A \otimes \pi B$ is a product state. We first claim that $\tau(xy) = \tau(x) \cdot \tau(y)$ holds for all $x \in A \otimes \pi B$ and all $y \in Z(A \otimes \pi B)$, where $Z(A \otimes \pi B)$ denotes the center of $A \otimes \pi B$. Since $Z(A \otimes \pi B)$ is spanned by its positive elements of norm ≤ 1, it suffices to prove the claim for y positive, i.e. $y = z^2$ for a self-adjoint $z \in Z(A \otimes \pi B)$, with $\|y\| \leq 1$. If $\tau(y) = 0$, the Cauchy-Schwarz inequality

$$|\tau(xy)|^2 = |\tau((xz^*)z)|^2 \leq \tau(xz^*xz) \cdot \tau(z^*z)$$

implies $\tau(xy) = 0$. If $\tau(y) = 1$, then $\tau(1 - y) = 0$, thus $0 = \tau(x(1 - y)) = \tau(x) \cdot \tau(y) - \tau(xy)$.

For $0 < \tau(y) < 1$, we have:

$$\tau(x) = \frac{\tau(y)}{\tau(y)} \cdot \tau(xy) + (1 - \tau(y)) \cdot \frac{1}{1 - \tau(y)} \cdot \tau(x(1 - y)) \quad \forall x \in A \otimes \pi B.$$

Since $y \in Z(A \otimes \pi B)$, we have $\tau_1(x^*x) = \frac{1}{\tau(y)} \cdot \tau(x^*xy) = \frac{1}{\tau(y)} \cdot \tau((xx^*)xx) \geq 0$. Similarly, $\tau_2(x^*x) = \frac{1}{1 - \tau(y)} \cdot \tau(x^*x(1 - y)) \geq 0$, since

$$\tau(x^*xy) = \tau(x^*z^*xx) \leq \|z^*z\| \cdot \tau(x^*x) \leq \tau(x^*x).$$

Clearly, $\tau_1(1) = \tau_2(1) = 1$, hence τ_1 and τ_2 are states on $A \otimes \pi B$. Since τ is a pure state by assumption, we conclude $\tau = \tau_1 = \tau_2$. Hence $\tau_1(x) = \tau_2(x)$ for all $x \in A \otimes \pi B$, which yields $\tau(xy) = \tau(y) \cdot \tau(x)$.

Now if A is abelian, then $A \otimes \pi \{1\} \subset Z(A \otimes \pi B)$. As we have seen, every pure state τ on $A \otimes \pi B$ satisfies

$$\tau(a \otimes b) = \tau((a \otimes 1) \cdot (1 \otimes b)) = \tau^A(a) \cdot \tau^B(b) \quad \forall a \in A, b \in B.$$

Hence τ is a product state.

6 Weyl systems

In this section we introduce Weyl systems and CCR-representations. They formalize the “canonical commutator relations” from quantum field theory in an “exponentiated form”. The main result of the present section is Theorem 3 which says that for each symplectic vector space there is an essentially unique CCR-representation. Our approach follows ideas in [6]. A different proof of this result may be found in [3, Sec. 5.2.2.2].

Let (V, ω) be a symplectic vector space, i.e., V is a real vector space of finite or infinite dimension and $\omega : V \times V \to \mathbb{R}$ is an antisymmetric bilinear map such that $\omega(\phi, \psi) = 0$ for all $\psi \in V$ implies $\phi = 0$.
Definition 22. A Weyl system of \((V, \omega)\) consists of a \(C^*\)-algebra \(A\) with unit and a map \(W : V \to A\) such that for all \(\phi, \psi \in V\) we have

(i) \(W(0) = 1\),
(ii) \(W(-\phi) = W(\phi)^*\),
(iii) \(W(\phi) \cdot W(\psi) = e^{-i\omega(\phi, \psi)/2} W(\phi + \psi)\).

Condition (iii) says that \(W\) is a representation of the additive group \(V\) in \(A\) up to the “twisting factor” \(e^{-i\omega(\phi, \psi)/2}\). Note that since \(V\) is not given a topology there is no requirement on \(W\) to be continuous. In fact, we will see that even in the case when \(V\) is finite-dimensional and so \(V\) carries a canonical topology \(W\) will in general not be continuous.

Example 14. We construct a Weyl system for an arbitrary symplectic vector space \((V, \omega)\). Let \(H = L^2(V, \mathbb{C})\) be the Hilbert space of square-integrable complex-valued functions on \(V\) with respect to the counting measure, i.e., \(H\) consists of those functions \(F : V \to \mathbb{C}\) that vanish everywhere except for countably many points and satisfy

\[
\|F\|_{L^2}^2 := \sum_{\phi \in V} |F(\phi)|^2 < \infty.
\]

The Hermitian product on \(H\) is given by

\[
(F, G)_{L^2} = \sum_{\phi \in V} \overline{F(\phi)} \cdot G(\phi).
\]

Let \(A := \mathcal{L}(H)\) be the \(C^*\)-algebra of bounded linear operators on \(H\) as in Example 1. We define the map \(W : V \to A\) by

\[
(W(\phi)F)(\psi) := e^{i\omega(\phi, \psi)/2} F(\phi + \psi).
\]

Obviously, \(W(\phi)\) is a bounded linear operator on \(H\) for any \(\phi \in V\) and \(W(0) = \text{id}_H = 1\). We check (ii) by making the substitution \(\chi = \phi + \psi\):

\[
(W(\phi)F, G)_{L^2} = \sum_{\psi \in V} \overline{(W(\phi)F)(\psi)} G(\psi)
= \sum_{\psi \in V} \overline{e^{i\omega(\phi, \psi)/2} F(\phi + \psi)} G(\psi)
= \sum_{\chi \in V} e^{i\omega(\phi, \chi - \phi)/2} F(\chi) G(\chi - \phi)
= \sum_{\chi \in V} e^{i\omega(\phi, \chi)/2} \cdot \overline{F(\chi)} \cdot G(\chi - \phi)
= \sum_{\chi \in V} \overline{F(\chi)} \cdot e^{i\omega(-\phi, \chi)/2} \cdot G(\chi - \phi)
= (F, W(-\phi)G)_{L^2}.
\]
Hence \(W(\phi)^* = W(-\phi) \). To check (iii) we compute
\[
(W(\phi)(W(\psi)F))(\chi) = e^{i\omega(\phi,\chi)/2} (W(\psi)F)(\phi + \chi)
\]
\[
= e^{i\omega(\phi,\chi)/2} e^{i\omega(\psi,\phi+\chi)/2} F(\phi + \chi + \psi)
= e^{i\omega(\psi,\phi)/2} e^{i\omega(\phi+\psi,\chi)/2} F(\phi + \chi + \psi)
= e^{-i\omega(\phi,\psi)/2} (W(\phi + \psi)F)(\chi).
\]
Thus \(W(\phi)W(\psi) = e^{-i\omega(\phi,\psi)/2} W(\phi+\psi) \). Let CCR\((V, \omega)\) be the \(C^* \)-subalgebra of \(\mathcal{L}(H) \) generated by the elements \(W(\phi), \phi \in V \). Then CCR\((V, \omega)\) together with the map \(W \) forms a Weyl-system for \((V, \omega)\).

Proposition 7. Let \((A, W)\) be a Weyl system of a symplectic vector space \((V, \omega)\). Then

1. \(W(\phi) \) is unitary for each \(\phi \in V \),
2. \(||W(\phi) - W(\psi)|| = 2 \) for all \(\phi, \psi \in V, \phi \neq \psi \),
3. The algebra \(A \) is not separable unless \(V = \{0\} \),
4. the family \(\{W(\phi)\}_{\phi \in V} \) is linearly independent.

Proof. From \(W(\phi)^* W(\phi) = W(-\phi) W(\phi) = e^{i\omega(\phi, \phi)} W(0) = 1 \) and similarly \(W(\phi) W(\phi)^* = 1 \) we see that \(W(\phi) \) is unitary.

To show (2) let \(\phi, \psi \in V \) with \(\phi \neq \psi \). For arbitrary \(\chi \in V \) we have
\[
W(\chi) W(\phi - \psi) W(\chi)^{-1} = W(\chi) W(\phi - \psi) W(\chi)^* = e^{-i\omega(\chi, \phi - \psi)/2} W(\chi + \phi - \psi) W(\chi)^*
= e^{-i\omega(\chi, \phi - \psi)/2} e^{-i\omega(\chi + \phi - \psi, -\chi)/2} W(\chi + \phi - \psi - \chi)
= e^{-i\omega(\chi, \phi - \psi)} W(\phi - \psi).
\]
Hence the spectrum satisfies
\[
\sigma_A(W(\phi - \psi)) = \sigma_A(W(\chi) W(\phi - \psi) W(\chi)^{-1}) = e^{-i\omega(\chi, \phi - \psi)} \sigma_A(W(\phi - \psi)).
\]
Since \(\phi - \psi \neq 0 \) the real number \(\omega(\chi, \phi - \psi) \) runs through all of \(\mathbb{R} \) as \(\chi \) runs through \(V \). Therefore the spectrum of \(W(\phi - \psi) \) is \(U(1) \)-invariant. By Proposition 2 (5) the spectrum is contained in \(S^1 \) and by Proposition 1 it is nonempty. Hence \(\sigma_A(W(\phi - \psi)) = S^1 \) and therefore
\[
\sigma_A(e^{i\omega(\psi,\phi)/2} W(\phi - \psi)) = S^1.
\]
Thus \(\sigma_A(e^{i\omega(\psi,\phi)/2} W(\phi - \psi) - 1) \) is the circle of radius 1 centered at \(-1\). Now Proposition 2 (3) says
\[
\|e^{i\omega(\psi,\phi)/2} W(\phi - \psi) - 1\| = \rho_A(e^{i\omega(\psi,\phi)/2} W(\phi - \psi) - 1) = 2.
\]
Hence \(W(\phi) - W(\psi) = W(\psi)(W(\psi)^* W(\phi) - 1) = W(\psi)(e^{i\omega(\psi,\phi)/2} W(\phi - \psi) - 1) \) we conclude
\[\|W(\phi) - W(\psi)\|^2 = \|(W(\phi) - W(\psi))^* (W(\phi) - W(\psi))\| \]
\[= \|((e^{i\omega(\psi,\phi)/2} W(\phi - \psi) - 1)^* W(\psi)^* W(\psi) (e^{i\omega(\psi,\phi)/2} W(\phi - \psi) - 1))\| \]
\[= \|((e^{i\omega(\psi,\phi)/2} W(\phi - \psi) - 1)^* (e^{i\omega(\psi,\phi)/2} W(\phi - \psi) - 1))\| \]
\[= \|e^{i\omega(\psi,\phi)/2} W(\phi - \psi) - 1\|^2 = 4. \]

This shows (2). Assertion (3) now follows directly since the balls of radius 1 centered at \(W(\phi)\), \(\phi \in V\), form an uncountable collection of mutually disjoint open subsets.

We show (4). Let \(\phi_j \in V\), \(j = 1, \ldots, n\), be pairwise different and let \(\sum_{j=1}^{n} \alpha_j W(\phi_j) = 0\). We show \(\alpha_1 = \ldots = \alpha_n = 0\) by induction on \(n\). The case \(n = 1\) is trivial by (1). Without loss of generality assume \(\alpha_n \neq 0\). Hence

\[W(\phi_n) = \sum_{j=1}^{n-1} \frac{-\alpha_j}{\alpha_n} W(\phi_j) \]

and therefore

\[1 = W(\phi_n)^* W(\phi_n) \]
\[= \sum_{j=1}^{n-1} \frac{-\alpha_j}{\alpha_n} W(\phi_n) W(\phi_j) \]
\[= \sum_{j=1}^{n-1} \frac{-\alpha_j}{\alpha_n} e^{-i\omega(\phi,\phi_j)/2} W(\phi_j - \phi_n) \]
\[= \sum_{j=1}^{n-1} \beta_j W(\phi_j - \phi_n) \]

where we have put \(\beta_j := \frac{\alpha_j}{\alpha_n} e^{i\omega(\phi,\phi_j)/2}\). For an arbitrary \(\psi \in V\) we obtain

\[1 = W(\psi)^* \cdot 1 \cdot W(-\psi) \]
\[= \sum_{j=1}^{n-1} \beta_j W(\psi) W(\phi_j - \phi_n) W(-\psi) \]
\[= \sum_{j=1}^{n-1} \beta_j e^{-i\omega(\psi,\phi_j - \phi_n)} W(\phi_j - \phi_n). \]

From

\[\sum_{j=1}^{n-1} \beta_j W(\phi_j - \phi_n) = \sum_{j=1}^{n-1} \beta_j e^{-i\omega(\psi,\phi_j - \phi_n)} W(\phi_j - \phi_n) \]

we conclude by the induction hypothesis
\[\beta_j = \beta_j e^{-i\omega(\psi, \phi_j - \phi_n)} \]
for all \(j = 1, \ldots, n - 1 \). If some \(\beta_j \neq 0 \), then
\[e^{-i\omega(\psi, \phi_j - \phi_n)} = 1, \]
hence
\[\omega(\psi, \phi_j - \phi_n) = 0 \]
for all \(\psi \in V \). Since \(\omega \) is nondegenerate
\(\phi_j - \phi_n = 0 \), a contradiction. Therefore all \(\beta_j \) and thus all \(\alpha_j \) are zero, a contradiction.

Remark 16. Let \((A, W')\) be a Weyl system of the symplectic vector space \((V, \omega)\).
Then the linear span of the \(W(\phi), \phi \in V \), is closed under multiplication
and under \(\ast \). This follows directly from the properties of a Weyl system. We
denote this linear span by \(\langle W(V) \rangle \subset A \). Now if \((A', W')\) is another Weyl
system of the same symplectic vector space \((V, \omega)\), then there is a unique
linear map \(\pi : \langle W(V) \rangle \to \langle W'(V) \rangle \) determined by \(\pi(W(\phi)) = W'(\phi) \). Since \(\pi \)
is given by a bijection on the bases \(\{W(\phi)\}_{\phi \in V} \) and \(\{W'(\phi)\}_{\phi \in V} \) it is a linear
isomorphism. By the properties of a Weyl system \(\pi \) is a \(\ast \)-isomorphism. In
other words, there is a unique \(\ast \)-isomorphism such that the following diagram
commutes

\[\begin{array}{ccc}
V & \xrightarrow{W} & W(V) \\
\pi & \downarrow & \downarrow \\
W'(V) & \xrightarrow{W} & \langle W'(V) \rangle
\end{array} \]

Remark 17. On \(\langle W(V) \rangle \) we can define the norm
\[\| \sum_{\phi} a_{\phi} W(\phi) \|_{1} := \sum_{\phi} |a_{\phi}|. \]
This norm is not a \(C^* \)-norm but for every \(C^* \)-norm \(\| \cdot \|_0 \) on \(\langle W(V) \rangle \) we have
by the triangle inequality and by Proposition 7 (1)
\[\| a \|_0 \leq \| a \|_1 \] (7)
for all \(a \in \langle W(V) \rangle \).

Lemma 9. Let \((A, W)\) be a Weyl system of a symplectic vector space \((V, \omega)\).
Then
\[\| a \|_{\max} := \sup \{ \| a \|_0 \ | \ | \cdot \|_0 \ is \ a \ C^* \- norm \ on \ \langle W(V) \rangle \} \]
defines a \(C^* \)-norm on \(\langle W(V) \rangle \).

Proof. The given \(C^* \)-norm on \(A \) restricts to one on \(\langle W(V) \rangle \), so the supremum
is not taken on the empty set. Estimate (7) shows that the supremum is finite.
The properties of a \(C^* \)-norm are easily checked. E. g. the triangle inequality
follows from
We check that i.e., it has no nontrivial closed twosided ideals.

By Remark 16 we may assume that $(\phi,0) = (\phi,0)$.

We have

\[
\|a + b\|_{\max} = \sup\{\|a + b\|_0: \|a\|_0 \leq 1, \|b\|_0 \leq 1, \|a\|_0 = 1, \|b\|_0 = 1\}
\]

Moreover,

\[
\|a\|_{\max} + \|b\|_{\max} \leq \|a + b\|_{\max}.
\]

The other properties are shown similarly.

Lemma 10. Let (A,W) be a Weyl system of a symplectic vector space (V,ω). Then the completion $\bar{W}(V)$ of $(W(V))$ with respect to $\|\cdot\|_{\max}$ is simple, i.e., it has no nontrivial closed twosided $*$-ideals.

Proof. By Remark 16 we may assume that (A,W) is the Weyl system constructed in Example 14. In particular, $(W(V))$ carries the C^*-norm $\|\cdot\|_{\Op}$, the operator norm given by $(W(V)) \subset \mathcal{L}(\mathcal{H})$ where $\mathcal{H} = L^2(V,\mathbb{C})$.

Let $I \subset (\bar{W}(V))^{\max}$ be a closed twosided $*$-ideal. Then $I_0 := I \cap \mathbb{C} \cdot W(0)$ is a (complex) vector subspace in $\mathbb{C} \cdot W(0) = \mathbb{C} \cdot 1 \cong \mathbb{C}$ and thus $I_0 = \{0\}$ or $I_0 = \mathbb{C} \cdot W(0)$. If $I_0 = \mathbb{C} \cdot W(0)$, then I contains 1 and therefore $I = (\bar{W}(V))^{\max}$. Hence we may assume $I_0 = \{0\}$.

Now we look at the projection map

\[
P : (W(V)) \rightarrow \mathbb{C} \cdot W(0), \quad P(\sum a_\phi W(\phi)) = a_0 W(0).
\]

We check that P extends to a bounded operator on $(\bar{W}(V))^{\max}$. Let $\delta_0 \in L^2(V,\mathbb{C})$ denote the function given by $\delta_0(0) = 1$ and $\delta_0(\phi) = 0$ otherwise. For $a = \sum a_\phi W(\phi)$ and $\psi \in V$ we have

\[
(a \cdot \delta_0)(\psi) = \sum a_\phi W(\phi) \delta_0)(\psi) = \sum a_\phi e^{i\omega(\phi,\psi)/2} \delta_0(\phi + \psi) = a_\phi e^{i\omega(-\psi,\phi)/2} = a_\psi
\]

and therefore

\[
(\delta_0, a \cdot \delta_0)_{L^2} = \sum_{\psi \in V} \delta_0(\psi)(a \cdot \delta_0)(\psi) = (a \cdot \delta_0)(0) = a_0.
\]

Moreover, $\|\delta_0\| = 1$. Thus

\[
\|P(a)\|_{\max} = \|a_0 W(0)\|_{\max} = |a_0| = |(\delta_0, a \cdot \delta_0)_{L^2}| \leq \|a\|_{\Op} \leq \|a\|_{\max}
\]

which shows that P extends to a bounded operator on $(\bar{W}(V))^{\max}$.

Now let $a \in I \subset (\bar{W}(V))^{\max}$. Fix $\epsilon > 0$. We write
\[a = a_0 W(0) + \sum_{j=1}^{n} a_j W(\phi_j) + r \]

where the \(\phi_j \neq 0 \) are pairwise different and the remainder term \(r \) satisfies \(\|r\|_{\text{max}} < \epsilon \). For any \(\psi \in V \) we have

\[I \ni W(\psi) a W(-\psi) = a_0 W(0) + \sum_{j=1}^{n} a_j e^{-i\omega(\psi,\phi_j)} W(\phi_j) + r(\psi) \]

where \(\|r(\psi)\|_{\text{max}} = \|W(\psi) r W(-\psi)\|_{\text{max}} \leq \|r\|_{\text{max}} < \epsilon \). If we choose \(\psi_1 \) and \(\psi_2 \) such that \(e^{-i\omega(\psi_1,\phi_n)} = -e^{-i\omega(\psi_2,\phi_n)} \), then adding the two elements

\[a_0 W(0) + \sum_{j=1}^{n} a_j e^{-i\omega(\psi_1,\phi_j)} W(\phi_j) + r(\psi_1) \in I \]
\[a_0 W(0) + \sum_{j=1}^{n} a_j e^{-i\omega(\psi_2,\phi_j)} W(\phi_j) + r(\psi_2) \in I \]

yields

\[a_0 W(0) + \sum_{j=1}^{n-1} a_j' W(\phi_j) + r_1 \in I \]

where \(\|r_1\|_{\text{max}} = \frac{\|r(\psi_1) + r(\psi_2)\|_{\text{max}}}{2} < \frac{\epsilon + \epsilon}{2} = \epsilon \). Repeating this procedure we eventually get

\[a_0 W(0) + r_n \in I \]

where \(\|r_n\|_{\text{max}} < \epsilon \). Since \(\epsilon \) is arbitrary and \(I \) is closed we conclude

\[P(a) = a_0 W(0) \in I_0, \]

thus \(a_0 = 0 \).

For \(a = \sum_{\phi} a_{\phi} W(\phi) \in I \) and arbitrary \(\psi \in V \) we have \(W(\psi)a \in I \) as well, hence \(P(W(\overline{\psi})a) = 0 \). This means \(a_{-\psi} = 0 \) for all \(\psi \), thus \(a = 0 \). This shows \(I = \{0\} \).

Definition 23. A Weyl system \((A,W)\) of a symplectic vector space \((V,\omega)\) is called a CCR-representation of \((V,\omega)\) if \(A \) is generated as a \(\mathbb{C}^\ast \)-algebra by the elements \(W(\phi), \phi \in V \). In this case we call \(A \) a CCR-algebra of \((V,\omega)\).

Of course, for any Weyl system \((A,W)\) we can simply replace \(A \) by the \(\mathbb{C}^\ast \)-subalgebra generated by the elements \(W(\phi), \phi \in V \), and we obtain a CCR-representation.

Existence of Weyl systems and hence CCR-representations has been established in Example 14. Uniqueness also holds in the appropriate sense.
Theorem 3. Let (V, ω) be a symplectic vector space and let (A_1, W_1) and (A_2, W_2) be two CCR-representations of (V, ω).

Then there exists a unique $*$-isomorphism $\pi : A_1 \to A_2$ such that the diagram

\[
\begin{array}{ccc}
V & \xrightarrow{S} & V_2 \\
\downarrow & & \downarrow \\
W_1 & \xrightarrow{\pi} & W_2
\end{array}
\]

commutes.

Proof. We have to show that the $*$-isomorphism $\pi : \langle W_1(V) \rangle \to \langle W_2(V) \rangle$ as constructed in Remark 16 extends to an isometry $(A_1, \| \cdot \|_1) \to (A_2, \| \cdot \|_2)$. Since the pull-back of the norm $\| \cdot \|_2$ on A_2 to $\langle W_1(V) \rangle$ via π is a C^*-norm we have $\| \pi(a) \|_2 \leq \|a\|_{\max}$ for all $a \in \langle W_1(V) \rangle$. Hence π extends to a $*$-morphism $\langle W_1(V) \rangle \to A_2$. By Lemma 10 the kernel of π is trivial, hence π is injective. Proposition 4 implies that $\pi : \langle (W_1(V))_{\max} \rangle \to (A_2, \| \cdot \|_2)$ is an isometry.

In the special case $(A_1, \| \cdot \|_1) = (A_2, \| \cdot \|_2)$ where π is the identity this yields $\| \cdot \|_{\max} = \| \cdot \|_1$. Thus for arbitrary A_2 the map π extends to an isometry $(A_1, \| \cdot \|_1) \to (A_2, \| \cdot \|_2)$.

¿From now on we will call CCR(V, ω) as defined in Example 14 the CCR-algebra of (V, ω).

Corollary 5. CCR-algebras of symplectic vector spaces are simple, i. e., all unit preserving $*$–morphisms to other C^*–algebras are injective.

Proof. Direct consequence of Corollary 2 and Lemma 10.

Corollary 6. Let (V_1, ω_1) and (V_2, ω_2) be two symplectic vector spaces and let $S : V_1 \to V_2$ be a symplectic linear map, i. e., $\omega_2(S\phi, S\psi) = \omega_1(\phi, \psi)$ for all $\phi, \psi \in V_1$.

Then there exists a unique injective $*$–morphism $\text{CCR}(S) : \text{CCR}(V_1, \omega_1) \to \text{CCR}(V_2, \omega_2)$ such that the diagram

\[
\begin{array}{cccc}
V_1 & \xrightarrow{S} & V_2 \\
\downarrow & & \downarrow \\
\text{CCR}(V_1, \omega_1) & \xrightarrow{\text{CCR}(S)} & \text{CCR}(V_2, \omega_2)
\end{array}
\]

commutes.

Proof. One immediately sees that $(\text{CCR}(V_2, \omega_2), W_2 \circ S)$ is a Weyl system of (V_1, ω_1). Theorem 3 yields the result.

¿From uniqueness of the map $\text{CCR}(S)$ we conclude that $\text{CCR}(\text{id}_V) = \text{id}_{\text{CCR}(V, \omega)}$ and $\text{CCR}(S_2 \circ S_1) = \text{CCR}(S_2) \circ \text{CCR}(S_1)$. In other words, we have constructed a functor.
CCR : $\text{SymplVec} \to C^\ast \text{Alg}$

where SymplVec denotes the category whose objects are symplectic vector spaces and whose morphisms are symplectic linear maps, i.e., linear maps $A : (V_1, \omega_1) \to (V_2, \omega_2)$ with $A^* \omega_2 = \omega_1$. By $C^\ast \text{Alg}$ we denote the category whose objects are C^\ast--algebras and whose morphisms are injective unit preserving $*$--morphisms. Observe that symplectic linear maps are automatically injective.

In the case $V_1 = V_2$ the induced $*$--automorphisms $\text{CCR}(S)$ are called Bogoliubov transformation in the physics literature.

References

4. K. Davidson: C^\ast--algebras by example, (AMS, Providence 1997)
Index

A^*, invertible elements in A, 3
$C_0(X)$, continuous functions vanishing at infinity, 2
$C_0^\infty(X)$, smooth functions vanishing at infinity, 2
S', commutant of S, 20
$S(A)$, states on A, 16
$W(\phi)$, Weyl-system, 28
$\langle [\cdot, \cdot] \rangle$, commutator, 20
$(W(V))$, linear span of the $W(\phi)$, $\phi \in V$, 31
$\text{CCR}(S)$, *-morphism induced by a symplectic linear map, 34
$\text{CCR}(V, \omega)$, CCR-algebra of a symplectic vector space, 29, 34
$L(H)$, bounded operators on Hilbert space H, 1
CCR, functor $\text{SymplVec} \to \text{C}^*\text{Alg}$, 34
C^*Alg, category of C^*-algebras and injective *-morphisms, 35
$\rho_A(a)$, spectral radius of $a \in A$, 4
$\sigma_A(a)$, spectrum of $a \in A$, 4
$r_A(a)$, resolvent set of $a \in A$, 4
SymplVec, category of symplectic vector spaces and symplectic linear maps, 35
*-automorphism, 12
*-morphism, 12
Bell inequality, 25
Cauchy-Schwarz inequality, 17
C^*-algebra, 1
C^*-norm, 1
C^*-property, 1
C^*-subalgebra, 2
C^*-subalgebra generated by a set, 2
commutant, 20
commutator, 20
continuous functional calculus, 13
convex combination, 18
correlated state, 25
cyclic vector, 16
decomposable state, 25
direct sum representation, 15
entangled state, 25
faithful representation, 15
Gelfand-Naimark-Segal representation, 19
GNS representation, 19
injective C^*-norm, 23
injective C^*-tensor product, 23
invariant subset, 15
irreducible representation, 21
irreducible representation, 15
isometric element of a C^*-algebra, 1, 9
normal element of a C^*-algebra, 9
normal state, 18
positive element of a C^*-algebra, 15
product state, 24
projective C^*-norm, 24
projective C^*-tensor product, 24
pure state, 20
representation, 15
direct sum ∼, 15
faithful ∼, 15
Gelfand-Naimark-Segal ∼, 19
GNS ∼, 19
irreducible ∼, 15, 21
universal ∼, 20

selfadjoint element of a C^\ast–algebra, 2
simple C^\ast–algebra, 32, 34
state, 16
correlated ∼, 25
decomposable ∼, 25
entangled ∼, 25

normal ∼, 18
product ∼, 24
pure ∼, 20
vector ∼, 16
symplectic linear map, 34
symplectic vector space, 27
unitarily equivalent, 15
unitary element of a C^\ast–algebra, 9
universal representation, 20
vector state, 16

Weyl-system, 28