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1. Introduction

Classical fields on spacetime are mathematically modeled bysections of a vec-
tor bundle over a Lorentzian manifold. The field equations are usually partial dif-
ferential equations. We introduce a class of differential operators, called Green-
hyperbolic operators, which have good analytical solubility properties. This class
includes wave operators as well as Dirac type operators but also the Proca and the
Rarita-Schwinger operator.

In order to quantize such a classical field theory on a curved background,
we need local algebras of observables. They come in two flavors, bosonic algebras
encoding the canonical commutation relations and fermionic algebras encoding the
canonical anti-commutation relations. We show how such algebras can be associated
to manifolds equipped with suitable Green-hyperbolic operators. We prove that we
obtain locally covariant quantum field theories in the senseof [12]. There is a large
literature where such constructions are carried out for particular examples of fields,
see e.g. [15, 16, 17, 22, 30]. In all these papers the well-posedness of the Cauchy
problem plays an important role. We avoid using the Cauchy problem altogether
and only make use of Green’s operators. In this respect, our approach is similar to
the one in [31]. This allows us to deal with larger classes of fields, see Section 3.7,
and to treat them systematically. Much of the work on particular examples can be
subsumed under this general approach.
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It turns out that bosonic algebras can be obtained in much more general situ-
ations than fermionic algebras. For instance, for the classical Dirac field both con-
structions are possible. Hence, on the level of observable algebras, there is no spin-
statistics theorem.

This is a condensed version of our paper [4] where full details are given. Here
we confine ourselves to the results and the main arguments while we leave aside all
technicalities. Moreover, [4] contains a discussion of states and the induced quantum
fields.
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2. Algebras of canonical (anti-) commutation relations

We start with algebraic preparations and collect the necessary algebraic facts about
CAR and CCR-algebras.

2.1. CAR algebras

The symbol “CAR” stands for “canonical anti-commutation relations”. These al-
gebras are related to pre-Hilbert spaces. We always assume the Hermitian inner
product(· , ·) to be linear in the first argument and anti-linear in the second.

Definition 2.1. A CAR-representationof a complex pre-Hilbert space(V,(· , ·)) is
a pair (a,A), whereA is a unital C∗-algebra anda : V → A is an anti-linear map
satisfying:

(i) A=C∗(a(V)), that is,A is the C∗-algebra generated byA,
(ii) {a(v1),a(v2)}= 0 and
(iii) {a(v1)

∗,a(v2)}= (v1,v2) ·1,

for all v1,v2 ∈V.

As an example, for any complex pre-Hilbert vector space(V,(· , ·)), the C∗-
completion Cl(VC,qC) of the algebraic Clifford algebra of the complexification
(VC,qC) of (V,(· , ·)) is a CAR-representation of(V,(· , ·)). See [4, App. A.1] for
the details, in particular for the construction of the mapa : V → Cl(VC,qC).

Theorem 2.2.Let(V,(· , ·)) be an arbitrary complex pre-Hilbert space. LetÂ be any
unital C∗-algebra and̂a : V → Â be any anti-linear map satisfying Axioms(ii) and
(iii) of Definition 2.1. Then there exists a unique C∗-morphismα̃ : Cl(VC,qC)→ Â
such that

V
â //

a
��

Â

Cl(VC,qC)

α̃

;;
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commutes. Furthermore,̃α is injective.
In particular, (V,(· , ·)) has, up to C∗-isomorphism, a uniqueCAR-representation.

For an alternative description of the CAR-representation in terms of creation
and annihilation operators on the fermionic Fock space we refer to [10, Prop. 5.2.2].

¿From now on, given a complex pre-Hilbert space(V,(· , ·)), we denote the
C∗-algebra Cl(VC,qC) associated with the CAR-representation(a,Cl(VC,qC)) of
(V,(· , ·)) by CAR(V,(· , ·)). We list the properties of CAR-representations which
are relevant for quantization, see also [10, Vol. II, Thm. 5.2.5, p. 15].

Proposition 2.3. Let (a,CAR(V,(· , ·))) be theCAR-representation of a complex
pre-Hilbert space(V,(· , ·)).

(i) For every v∈V one has‖a(v)‖= |v|= (v,v)
1
2 , where‖·‖ denotes the C∗-norm

onCAR(V,(· , ·)).
(ii) The C∗-algebra CAR(V,(· , ·)) is simple, i.e., it has no closed two-sided∗-

ideals other than{0} and the algebra itself.
(iii) The algebraCAR(V,(· , ·)) is Z2-graded,

CAR(V,(· , ·)) = CAReven(V,(· , ·))⊕CARodd(V,(· , ·)),
anda(V)⊂ CARodd(V,(· , ·)).

(iv) Let f : V →V ′ be an isometric linear embedding, where(V ′,(· , ·)′) is another
complex pre-Hilbert space. Then there exists a unique injective C∗-morphism
CAR( f ) : CAR(V,(· , ·))→ CAR(V ′,(· , ·)′) such that

V
f

//

a
��

V ′

a′
��

CAR(V,(· , ·)) CAR( f )
// CAR(V ′,(· , ·)′)

commutes.

One easily sees that CAR(id) = id and that CAR( f ′ ◦ f ) =CAR( f ′)◦CAR( f )

for all isometric linear embeddingsV
f−→V ′ f ′−→V ′′. Therefore we have constructed

a covariant functor
CAR :HILB−→ C∗Alg,

whereHILB denotes the category whose objects are the complex pre-Hilbert spaces
and whose morphisms are the isometric linear embeddings andC∗Alg is the category
whose objects are the unital C∗-algebras and whose morphisms are the injective
unit-preserving C∗-morphisms.

For real pre-Hilbert spaces there is the concept ofself-dualCAR-representa-
tions.

Definition 2.4. A self-dualCAR-representationof a real pre-Hilbert space(V,(· , ·))
is a pair(b,A), whereA is a unital C∗-algebra andb : V → A is anR-linear map
satisfying:

(i) A=C∗(b(V)),
(ii) b(v) = b(v)∗ and
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(iii) {b(v1),b(v2)}= (v1,v2) ·1,

for all v,v1,v2 ∈V.

Note that a self-dual CAR-representation is not a CAR-representation in the
sense of Definition 2.1. Given a self-dual CAR-representation, one can extendb to
aC-linear map from the complexificationVC to A. This extensionb : VC → A then
satisfiesb(v̄) = b(v)∗ and{b(v1),b(v2)} = (v1, v̄2) · 1 for all v,v1,v2 ∈ VC. These
are the axioms of a self-dual CAR-representation as in [1, p.386].

Theorem 2.5. For every real pre-Hilbert space(V,(· , ·)), the C∗-Clifford algebra
Cl(VC,qC) provides a self-dualCAR-representation of(V,(· , ·)) via b(v) = i√

2
v.

Moreover, self-dualCAR-representations have the following universal prop-
erty: Let Â be any unital C∗-algebra and̂b : V → Â be anyR-linear map satisfy-
ing Axioms(ii) and (iii) of Definition 2.4. Then there exists a unique C∗-morphism
β̃ : Cl(VC,qC)→ Â such that

V
b̂ //

b
��

Â

Cl(VC,qC)

β̃
;;

commutes. Furthermore,̃β is injective.
In particular, (V,(· , ·)) has, up to C∗-isomorphism, a unique self-dualCAR-

representation.

¿From now on, given a real pre-Hilbert space(V,(· , ·)), we denote the C∗-
algebra Cl(VC,qC) associated with the self-dual CAR-representation(b,Cl(VC,qC))
of (V,(· , ·)) by CARsd(V,(· , ·)).
Proposition 2.6. Let (V,(· , ·)) be a real pre-Hilbert space and(b,CARsd(V,(· , ·)))
its self-dualCAR-representation.

(i) For every v∈V one has‖b(v)‖ = 1√
2
|v|, where‖ · ‖ denotes the C∗-norm on

CARsd(V,(· , ·)).
(ii) The C∗-algebraCARsd(V,(· , ·)) is simple.
(iii) The algebraCARsd(V,(· , ·)) isZ2-graded,

CARsd(V,(· , ·)) = CAReven
sd (V,(· , ·))⊕CARodd

sd (V,(· , ·)),
andb(V)⊂ CARodd

sd (V,(· , ·)).
(iv) Let f : V → V ′ be an isometric linear embedding, where(V ′,(· , ·)′) is an-

other real pre-Hilbert space. Then there exists a unique injective C∗-morphism
CARsd( f ) : CARsd(V,(· , ·))→ CARsd(V ′,(· , ·)′) such that

V
f

//

b
��

V ′

b′
��

CARsd(V,(· , ·))
CARsd( f )

// CARsd(V ′,(· , ·)′)
commutes.



CCR- versus CAR-quantization on curved spacetimes 5

The proofs are similar to the ones for CAR-representations of complex pre-
Hilbert spaces as given in [4, App. A]. We have constructed a functor

CARsd : HILBR −→ C∗Alg,

whereHILBR denotes the category whose objects are the real pre-Hilbertspaces and
whose morphisms are the isometric linear embeddings.

Remark 2.7. Let (V,(· , ·)) be a complex pre-Hilbert space. If we considerV as
a real vector space, then we have the real pre-Hilbert space(V,Re(· , ·)). For the
corresponding CAR-representations we have

CAR(V,(· , ·)) = CARsd(V,Re(· , ·)) = Cl(VC,qC)

and

b(v) =
i√
2
(a(v)−a(v)∗).

2.2. CCR algebras
In this section, we recall the construction of the representation of any (real) symplec-
tic vector space by the so-called canonical commutation relations (CCR). Proofs can
be found in [5, Sec. 4.2].

Definition 2.8. A CCR-representationof a symplectic vector space(V,ω) is a pair
(w,A), whereA is a unital C∗-algebra andw is a mapV → A satisfying:

(i) A=C∗(w(V)),
(ii) w(0) = 1,
(iii) w(−ϕ) = w(ϕ)∗,
(iv) w(ϕ +ψ) = eiω(ϕ,ψ)/2w(ϕ) ·w(ψ),

for all ϕ ,ψ ∈V.

The mapw is in general neither linear, nor any kind of group homomorphism,
nor continuous as soon asV carries a topology which is different from the discrete
one [5, Prop. 4.2.3].

Example 2.9. Given any symplectic vector space(V,ω), consider the Hilbert space
H := L2(V,C), whereV is endowed with the counting measure. Define the mapw
fromV into the spaceL (H) of bounded endomorphisms ofH by

(w(ϕ)F)(ψ) := eiω(ϕ,ψ)/2F(ϕ +ψ),

for all ϕ ,ψ ∈ V andF ∈ H. It is well-known thatL (H) is a C∗-algebra with the
operator norm as C∗-norm, and that the mapw satisfies the Axioms (ii)-(iv) from
Definition 2.8, see e.g. [5, Ex. 4.2.2]. Hence settingA :=C∗(w(V)), the pair(w,A)
provides a CCR-representation of(V,ω).

This is essentially the only CCR-representation:

Theorem 2.10. Let (V,ω) be a symplectic vector space and(ŵ, Â) be a pair satis-
fying the Axioms(ii) -(iv) of Definition 2.8. Then there exists a unique C∗-morphism
Φ : A→ Â such thatΦ◦w= ŵ, where(w,A) is theCCR-representation from Exam-
ple 2.9. Moreover,Φ is injective.

In particular,(V,ω) has aCCR-representation, unique up to C∗-isomorphism.
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We denote the C∗-algebra associated to the CCR-representation of(V,ω) from
Example 2.9 by CCR(V,ω). As a consequence of Theorem 2.10, we obtain the
following important corollary.

Corollary 2.11. Let (V,ω) be a symplectic vector space and(w,CCR(V,ω)) its
CCR-representation.

(i) The C∗-algebraCCR(V,ω) is simple, i.e., it has no closed two-sided∗-ideals
other than{0} and the algebra itself.

(ii) Let (V ′,ω ′) be another symplectic vector space and f: V → V ′ a symplec-
tic linear map. Then there exists a unique injective C∗-morphismCCR( f ) :
CCR(V,ω)→ CCR(V ′,ω ′) such that

V
f

//

w
��

V ′

w′
��

CCR(V,ω)
CCR( f )

// CCR(V ′,ω ′)

commutes.

Obviously CCR(id) = id and CCR( f ′ ◦ f ) = CCR( f ′)◦CCR( f ) for all sym-

plectic linear mapsV
f→V ′ f ′→V ′′, so that we have constructed a covariant functor

CCR :Sympl−→ C∗Alg.

3. Field equations on Lorentzian manifolds

3.1. Globally hyperbolic manifolds

We begin by fixing notation and recalling general facts aboutLorentzian manifolds,
see e.g. [26] or [5] for more details. Unless mentioned otherwise, the pair(M,g) will
stand for a smoothm-dimensional manifoldM equipped with a smooth Lorentzian
metricg, where our convention for Lorentzian signature is(−+ · · ·+). The associ-
ated volume element will be denoted by dV. We shall also assume our Lorentzian
manifold(M,g) to be time-orientable, i.e., that there exists a smooth timelike vector
field on M. Time-oriented Lorentzian manifolds will be also referredto asspace-
times. Note that in contrast to conventions found elsewhere, we donot assume that
a spacetime be connected nor that its dimension bem= 4.

For every subsetA of a spacetimeM we denote the causal future and past ofA
in M by J+(A) andJ−(A), respectively. If we want to emphasize the ambient space
M in which the causal future or past ofA is considered, we writeJM

± (A) instead of
J±(A). Causal curves will always be implicitly assumed (future orpast) oriented.

Definition 3.1. A Cauchy hypersurfacein a spacetime(M,g) is a subset ofM which
is met exactly once by every inextensible timelike curve.

Cauchy hypersurfaces are always topological hypersurfaces but need not be
smooth. All Cauchy hypersurfaces of a spacetime are homeomorphic.

Definition 3.2. A spacetime(M,g) is calledglobally hyperbolicif and only if it
contains a Cauchy hypersurface.
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A classical result of R. Geroch [18] says that a globally hyperbolic spacetime
can be foliated by Cauchy hypersurfaces. It is a rather recent and very important
result that this also holds in the smooth category: any globally hyperbolic spacetime
is of the form(R×Σ,−βdt2⊕gt), where each{t}×Σ is a smooth spacelike Cauchy
hypersurface,β a smooth positive function and(gt)t a smooth one-parameter family
of Riemannian metrics onΣ [7, Thm. 1.1]. The hypersurfaceΣ can be even chosen
such that{0}× Σ coincides with a given smooth spacelike Cauchy hypersurface
[8, Thm. 1.2]. Moreover, any compact acausal smooth spacelike submanifold with
boundary in a globally hyperbolic spacetime is contained ina smooth spacelike
Cauchy hypersurface [8, Thm. 1.1].

Definition 3.3. A closed subsetA⊂ M is called

• spacelike compactif there exists a compact subsetK ⊂ M such thatA ⊂
JM(K) := JM

− (K)∪JM
+ (K),

• future-compactif A∩J+(x) is compact for anyx∈ M,
• past-compactif A∩J−(x) is compact for anyx∈ M.

A spacelike compact subset is in general not compact, but itsintersection with
any Cauchy hypersurface is compact, see e.g. [5, Cor. A.5.4].

Definition 3.4. A subsetΩ of a spacetimeM is calledcausally compatibleif and
only if JΩ

±(x) = JM
± (x)∩Ω for everyx∈ Ω.

This means that every causal curve joining two points inΩ must be contained
entirely inΩ.

3.2. Differential operators and Green’s functions
A differential operatorof order (at most)k on a vector bundleS→ M overK = R

or K = C is a linear mapP : C∞(M,S)→C∞(M,S) which in local coordinatesx=
(x1, . . . ,xm) of M and with respect to a local trivialization looks like

P= ∑
|α |≤k

Aα(x)
∂ α

∂xα .

HereC∞(M,S) denotes the space of smooth sections ofS→ M, α = (α1, . . . ,αm)

∈ N0×·· ·×N0 runs over multi-indices,|α| = ∑m
j=1 α j and ∂ α

∂xα = ∂ |α|
∂ (x1)α1 ···∂ (xm)αm .

The principal symbolσP of P associates to each covectorξ ∈ T∗
x M a linear map

σP(ξ ) : Sx → Sx. Locally, it is given by

σP(ξ ) = ∑
|α |=k

Aα(x)ξ α ,

whereξ α = ξ α1
1 · · ·ξ αm

m andξ = ∑ j ξ jdxj . If P andQ are two differential operators
of orderk andℓ respectively, thenQ◦P is a differential operator of orderk+ ℓ and

σQ◦P(ξ ) = σQ(ξ )◦σP(ξ ).
For any linear differential operatorP : C∞(M,S)→C∞(M,S) there is a unique for-
mally dual operatorP∗ : C∞(M,S∗) → C∞(M,S∗) of the same order characterized
by ∫

M
〈ϕ ,Pψ〉dV =

∫

M
〈P∗ϕ ,ψ〉dV
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for all ψ ∈ C∞(M,S) andϕ ∈ C∞(M,S∗) with supp(ϕ)∩ supp(ψ) compact. Here
〈·, ·〉 : S∗⊗S→K denotes the canonical pairing, i.e., the evaluation of a linear form
in S∗x on an element ofSx, wherex∈ M. We haveσP∗(ξ ) = (−1)kσP(ξ )∗ wherek is
the order ofP.

Definition 3.5. Let a vector bundleS→ M be endowed with a non-degenerate inner
product〈· , ·〉. A linear differential operatorP on S is calledformally self-adjointif
and only if ∫

M
〈Pϕ ,ψ〉dV =

∫

M
〈ϕ ,Pψ〉dV

holds for allϕ ,ψ ∈C∞(M,S) with supp(ϕ)∩supp(ψ) compact.
Similarly, we callP formally skew-adjointif instead

∫

M
〈Pϕ ,ψ〉dV =−

∫

M
〈ϕ ,Pψ〉dV .

We recall the definition of advanced and retarded Green’s operators for a linear
differential operator.

Definition 3.6. Let P be a linear differential operator acting on the sections of a
vector bundleSover a Lorentzian manifoldM. An advanced Green’s operatorfor
P onM is a linear map

G+ : C∞
c (M,S)→C∞(M,S)

satisfying:

(G1) P◦G+ = id
C∞

c (M,S)
;

(G2) G+ ◦P|
C∞

c (M,S)
= id

C∞
c (M,S)

;

(G+
3 ) supp(G+ϕ)⊂ JM

+ (supp(ϕ)) for anyϕ ∈C∞
c (M,S).

A retarded Green’s operatorfor P onM is a linear mapG− : C∞
c (M,S)→C∞(M,S)

satisfying (G1), (G2), and

(G−
3 ) supp(G−ϕ)⊂ JM

− (supp(ϕ)) for anyϕ ∈C∞
c (M,S).

Here we denote byC∞
c (M,S) the space of compactly supported smooth sec-

tions ofS.

Definition 3.7. Let P : C∞(M,S) → C∞(M,S) be a linear differential operator. We
call P Green-hyperbolicif the restriction ofP to any globally hyperbolic subregion
of M has advanced and retarded Green’s operators.

The Green’s operators for a given Green-hyperbolic operator P provide solu-
tionsϕ of Pϕ = 0. More precisely, denoting byC∞

sc(M,S) the set of smooth sections
in Swith spacelike compact support, we have the following

Theorem 3.8. Let M be a Lorentzian manifold, let S→ M be a vector bundle, and
let P be a Green-hyperbolic operator acting on sections of S.Let G± be advanced
and retarded Green’s operators for P, respectively. Put

G := G+−G− : C∞
c (M,S)→C∞

sc(M,S).

Then the following linear maps form a complex:

{0}→C∞
c (M,S)

P−→C∞
c (M,S)

G−→C∞
sc(M,S)

P−→C∞
sc(M,S). (1)
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This complex is always exact at the first C∞
c (M,S). If M is globally hyperbolic, then

the complex is exact everywhere.

We refer to [4, Theorem 3.5] for the proof. Note that exactness at the first
C∞

c (M,S) in sequence (1) says that there are no non-trivial smooth solutions ofPϕ =
0 with compact support. Indeed, ifM is globally hyperbolic, more is true. Namely,
if ϕ ∈C∞(M,S) solvesPϕ = 0 and supp(ϕ) is future or past-compact, thenϕ = 0
(see e.g. [4, Remark 3.6] for a proof). As a straightforward consequence, the Green’s
operators for a Green-hyperbolic operator on a globally hyperbolic spacetime are
unique [4, Remark 3.7].

3.3. Wave operators

The most prominent class of Green-hyperbolic operators arewave operators, some-
times also called normally hyperbolic operators.

Definition 3.9. A linear differential operator of second orderP : C∞(M,S) →
C∞(M,S) is called awave operatorif its principal symbol is given by the Lorentzian
metric, i.e., for allξ ∈ T∗M we have

σP(ξ ) =−〈ξ ,ξ 〉 · id.

In other words, if we choose local coordinatesx1, . . . ,xm on M and a local
trivialization ofS, then

P=−
m

∑
i, j=1

gi j (x)
∂ 2

∂xi∂x j +
m

∑
j=1

A j(x)
∂

∂x j +B(x),

whereA j andB are matrix-valued coefficients depending smoothly onx and(gi j )

is the inverse matrix of(gi j ) with gi j = 〈 ∂
∂xi ,

∂
∂xj 〉. If P is a wave operator, then so

is its dual operatorP∗. In [5, Cor. 3.4.3] it has been shown that wave operators are
Green-hyperbolic.

Example 3.10 (d’Alembert operator). Let Sbe the trivial line bundle so that sec-
tions of S are just functions. The d’Alembert operatorP = 2 = −div ◦ grad is a
formally self-adjoint wave operator, see e.g. [5, p. 26].

Example 3.11 (connection-d’Alembert operator).More generally, letSbe a vec-
tor bundle and let∇ be a connection onS. This connection and the Levi-Civita
connection onT∗M induce a connection onT∗M⊗S, again denoted∇. We define
the connection-d’Alembert operator2

∇ to be the composition of the following three
maps

C∞(M,S)
∇−→C∞(M,T∗M⊗S)

∇−→C∞(M,T∗M⊗T∗M⊗S)
−tr⊗idS−−−−→C∞(M,S),

where tr :T∗M⊗T∗M → R denotes the metric trace, tr(ξ ⊗η) = 〈ξ ,η〉. We com-
pute the principal symbol,

σ
2

∇(ξ )ϕ =−(tr⊗ idS)◦σ∇(ξ )◦σ∇(ξ )(ϕ) =−(tr⊗ idS)(ξ ⊗ξ ⊗ϕ) =−〈ξ ,ξ 〉ϕ .

Hence2∇ is a wave operator.



10 Christian Bär and Nicolas Ginoux

Example 3.12 (Hodge-d’Alembert operator). Let S= ΛkT∗M be the bundle
of k-forms. Exterior differentiationd : C∞(M,ΛkT∗M) → C∞(M,Λk+1T∗M) in-
creases the degree by one while the codifferentialδ = d∗ : C∞(M,ΛkT∗M) →
C∞(M,Λk−1T∗M) decreases the degree by one. Whiled is independent of the
metric, the codifferentialδ does depend on the Lorentzian metric. The operator
P=−dδ − δd is a formally self-adjoint wave operator.

3.4. The Proca equation

The Proca operator is an example of a Green-hyperbolic operator of second order
which is not a wave operator.

Example 3.13 (Proca operator). The discussion of this example follows [31,
p. 116f]. The Proca equation describes massive vector bosons. We takeS= T∗M
and letm0 > 0. The Proca equation is

Pϕ := δdϕ +m2
0ϕ = 0 , (2)

whereϕ ∈C∞(M,S). Applying δ to (2) we obtain, usingδ 2 = 0 andm0 6= 0,

δϕ = 0 (3)

and hence
(dδ + δd)ϕ +m2

0ϕ = 0. (4)

Conversely, (3) and (4) clearly imply (2).
SinceP̃ := dδ + δd+m2

0 is minus a wave operator, it has Green’s operators
G̃±. We define

G± : C∞
c (M,S)→C∞

sc(M,S), G± := (m−2
0 dδ + id)◦ G̃± = G̃± ◦ (m−2

0 dδ + id) .

The last equality holds becaused andδ commute withP̃, see [4, Lemma 2.16]. For
ϕ ∈C∞

c (M,S) we compute

G±Pϕ = G̃±(m−2
0 dδ + id)(δd+m2

0)ϕ = G̃±P̃ϕ = ϕ

and similarlyPG±ϕ = ϕ . Since the differential operatorm−2
0 dδ + id does not in-

crease supports, the third axiom in the definition of advanced and retarded Green’s
operators holds as well.

This shows thatG+ andG− are advanced and retarded Green’s operators for
P, respectively. ThusP is not a wave operator but Green-hyperbolic.

3.5. Dirac type operators
The most important Green-hyperbolic operators of first order are the so-called Dirac
type operators.

Definition 3.14. A linear differential operatorD : C∞(M,S) → C∞(M,S) of first
order is calledof Dirac typeif −D2 is a wave operator.

Remark 3.15. If D is of Dirac type, theni times its principal symbol satisfies the
Clifford relations

(iσD(ξ ))2 =−σD2(ξ ) =−〈ξ ,ξ 〉 · id,
hence by polarization

(iσD(ξ ))(iσD(η))+ (iσD(η))(iσD(ξ )) =−2〈ξ ,η〉 · id.
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The bundleS thus becomes a module over the bundle of Clifford algebras Cl(TM)
associated with(TM,〈· , ·〉). See [6, Sec. 1.1] or [23, Ch. I] for the definition and
properties of the Clifford algebra Cl(V) associated with a vector spaceV with inner
product.

Remark 3.16. If D is of Dirac type, then so is its dual operatorD∗. On a glob-
ally hyperbolic region letG+ be the advanced Green’s operator forD2, which exists
since−D2 is a wave operator. Then it is not hard to check thatD ◦G+ is an ad-
vanced Green’s operator forD, see [25, Thm. 3.2]. The same discussion applies to
the retarded Green’s operator. Hence any Dirac type operator is Green-hyperbolic.

Example 3.17 (Classical Dirac operator).If the spacetimeM carries a spin struc-
ture, then one can define the spinor bundleS= ΣM and the classical Dirac operator

D : C∞(M,ΣM) →C∞(M,ΣM), Dϕ := i
m

∑
j=1

ε j ej ·∇ej ϕ .

Here(ej)1≤ j≤m is a local orthonormal basis of the tangent bundle,ε j = 〈ej ,ej〉=±1
and “·” denotes the Clifford multiplication, see e.g. [6] or [3, Sec. 2]. The principal
symbol ofD is given by

σD(ξ )ψ = iξ ♯ ·ψ .

Hereξ ♯ denotes the tangent vector dual to the 1-formξ via the Lorentzian metric,
i.e., 〈ξ ♯,Y〉 = ξ (Y) for all tangent vectorsY over the same point of the manifold.
Hence

σD2(ξ )ψ = σD(ξ )σD(ξ )ψ =−ξ ♯ ·ξ ♯ ·ψ = 〈ξ ,ξ 〉ψ .

ThusP=−D2 is a wave operator. Moreover,D is formally self-adjoint, see e.g. [3,
p. 552].

Example 3.18 (Twisted Dirac operators).More generally, letE → M be a com-
plex vector bundle equipped with a non-degenerate Hermitian inner product and a
metric connection∇E over a spin spacetimeM. In the notation of Example 3.17,
one may define the Dirac operator ofM twisted withE by

DE := i
m

∑
j=1

ε j ej ·∇ΣM⊗E
ej

: C∞(M,ΣM⊗E)→C∞(M,ΣM⊗E),

where∇ΣM⊗E is the tensor product connection onΣM⊗E. Again,DE is a formally
self-adjoint Dirac type operator.

Example 3.19 (Euler operator). In Example 3.12, replacingΛkT∗M by S :=
ΛT∗M⊗C=⊕m

k=0ΛkT∗M⊗C, the Euler operatorD = i(d− δ ) defines a formally
self-adjoint Dirac type operator. In caseM is spin, the Euler operator coincides with
the Dirac operator ofM twisted withΣM if m is even and withΣM⊕ΣM if m is odd.

Example 3.20 (Buchdahl operators).On a 4-dimensional spin spacetimeM, con-
sider the standard orthogonal and parallel splittingΣM = Σ+M⊕Σ−M of the com-
plex spinor bundle ofM into spinors of positive and negative chirality. The finite di-
mensional irreducible representations of the simply-connected Lie group Spin0(3,1)

are given byΣ(k/2)
+ ⊗Σ(ℓ/2)

− wherek, ℓ ∈ N. HereΣ(k/2)
+ = Σ⊙k

+ is thek-th symmetric
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tensor product of the positive half-spinor representationΣ+ and similarly forΣ(ℓ/2)
− .

Let the associated vector bundlesΣ(k/2)
± M carry the induced inner product and con-

nection.
For s∈ N, s≥ 1, consider the twisted Dirac operatorD(s) acting on sections

of ΣM⊗Σ((s−1)/2)
+ M. In the induced splitting

ΣM⊗Σ((s−1)/2)
+ M = Σ+M⊗Σ((s−1)/2)

+ M⊕Σ−M⊗Σ((s−1)/2)
+ M

the operatorD(s) is of the form
(

0 D(s)
−

D(s)
+ 0

)

because Clifford multiplication by vectors exchanges the chiralities. The Clebsch-

Gordan formulas [11, Prop. II.5.5] tell us that the representationΣ+⊗Σ( s−1
2 )

+ splits
as

Σ+⊗Σ( s−1
2 )

+ = Σ( s
2 )

+ ⊕Σ( s
2−1)

+ .

Hence we have the corresponding parallel orthogonal projections

πs : Σ+M⊗Σ( s−1
2 )

+ M → Σ( s
2 )

+ M and π ′
s : Σ+M⊗Σ( s−1

2 )
+ M → Σ( s

2−1)
+ M.

On the other hand, the representationΣ− ⊗ Σ( s−1
2 )

+ is irreducible. NowBuchdahl
operatorsare the operators of the form

B(s)
µ1,µ2,µ3 :=

(
µ1 ·πs+ µ2 ·π ′

s D(s)
−

D(s)
+ µ3 · id

)
,

whereµ1,µ2,µ3 ∈ C are constants. By definition,B(s)
µ1,µ2,µ3 is of the formD(s)+b,

whereb is of order zero. In particular,B(s)
µ1,µ2,µ3 is a Dirac-type operator, hence it is

Green-hyperbolic. For a definition of Buchdahl operators using indices we refer to
[13, 14, 35] and to [24, Def. 8.1.4, p. 104].

3.6. The Rarita-Schwinger operator

For the Rarita-Schwinger operator on Riemannian manifolds, we refer to [34,
Sec. 2], see also [9, Sec. 2]. In this section let the spacetimeM be spin and consider
the Clifford-multiplicationγ : T∗M⊗ΣM → ΣM, θ ⊗ψ 7→ θ ♯ ·ψ , whereΣM is the
complex spinor bundle ofM. Then there is the representation-theoretic splitting of
T∗M⊗ΣM into the orthogonal and parallel sum

T∗M⊗ΣM = ι(ΣM)⊕Σ3/2M,

whereΣ3/2M := ker(γ) andι(ψ) :=− 1
m ∑m

j=1e∗j ⊗ej ·ψ . Here again(ej)1≤ j≤m is a
local orthonormal basis of the tangent bundle. LetD be the twisted Dirac operator
on T∗M⊗ΣM, that is,D := i · (id⊗ γ)◦∇, where∇ denotes the induced covariant
derivative onT∗M⊗ΣM.

Definition 3.21. TheRarita-Schwinger operatoron the spin spacetimeM is defined
by Q := (id− ι ◦ γ)◦D : C∞(M,Σ3/2M)→C∞(M,Σ3/2M).
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By definition, the Rarita-Schwinger operator is pointwise obtained as the or-
thogonal projection ontoΣ3/2M of the twisted Dirac operatorD restricted to a sec-
tion of Σ3/2M. As for the Dirac operator, its characteristic variety coincides with the
set of lightlike covectors, at least whenm≥ 3, see [4, Lemma 2.26]. In particular,
[21, Thms. 23.2.4 & 23.2.7] imply that the Cauchy problem forQ is well-posed
in caseM is globally hyperbolic. Since the well-posedness of the Cauchy problem
implies the existence of advanced and retarded Green’s operators (compare e.g. [4,
Theorem 3.3.1 & Prop. 3.4.2] for wave operators), the operatorQ has advanced and
retarded Green’s operators. HenceQ is not of Dirac type but is Green-hyperbolic.

Remark 3.22. The equations originally considered by Rarita and Schwinger in [28]
correspond to the twisted Dirac operatorD restricted toΣ3/2M but not projected
back toΣ3/2M. In other words, they considered the operator

D |C∞(M,Σ3/2M) : C∞(M,Σ3/2M)→C∞(M,T∗M⊗ΣM).

These equations are over-determined. Therefore it is not a surprise that non-trivial
solutions restrict the geometry of the underlying manifoldas observed by Gibbons
[19] and that this operator has no Green’s operators.

3.7. Combining given operators into a new one

Given two Green-hyperbolic operators we can form the directsum and obtain a new
operator in a trivial fashion. Namely, letS1,S2 → M be two vector bundles over a
globally hyperbolic manifoldM and letP1 andP2 be two Green-hyperbolic operators
acting on sections ofS1 andS2 respectively. Then

P1⊕P2 :=

(
P1 0
0 P2

)
: C∞(M,S1⊕S2)→C∞(M,S1⊕S2)

is Green-hyperbolic [5, Lemma 2.27]. Note that the two operators need not have the
same order. Hence Green-hyperbolic operators need not be hyperbolic in the usual
sense.

4. Algebras of observables

Our next aim is to quantize the classical fields governed by Green-hyperbolic dif-
ferential operators. We construct local algebras of observables and we prove that we
obtain locally covariant quantum field theories in the senseof [12].

4.1. Bosonic quantization

In this section we show how a quantization process based on canonical commuta-
tion relations (CCR) can be carried out for formally self-adjoint Green-hyperbolic
operators. This is a functorial procedure. We define the firstcategory involved in the
quantization process.

Definition 4.1. The categoryGlobHypGreen consists of the following objects and
morphisms:

• An object inGlobHypGreen is a triple(M,S,P), where
� M is a globally hyperbolic spacetime,
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� S is a real vector bundle overM endowed with a non-degenerate inner
product〈· , ·〉 and

� P is a formally self-adjoint Green-hyperbolic operator acting on sections
of S.

• A morphism between objects(M1,S1,P1) and(M2,S2,P2) of GlobHypGreen
is a pair( f ,F), where

� f is a time-orientation preserving isometric embeddingM1 → M2 with
f (M1) causally compatible and open inM2,

� F is a fiberwise isometric vector bundle isomorphism overf such that
the following diagram commutes:

C∞(M2,S2)
P2 //

res

��

C∞(M2,S2)

res

��
C∞(M1,S1)

P1 // C∞(M1,S1),

(5)

where res(ϕ) := F−1◦ϕ ◦ f for everyϕ ∈C∞(M2,S2).

Note that morphisms exist only if the manifolds have equal dimension and the
vector bundles have the same rank. Note, furthermore, that the inner product〈· , ·〉
onS is not required to be positive or negative definite.

The causal compatibility condition, which is not automatically satisfied (see
e.g. [5, Fig. 33]), ensures the commutation of the extensionand restriction maps
with the Green’s operators. Namely, if( f ,F) be a morphism between two objects
(M1,S1,P1) and(M2,S2,P2) in the categoryGlobHypGreen, and if(G1)± and(G2)±
denote the respective Green’s operators forP1 andP2, then we have

res◦ (G2)± ◦ext= (G1)±.

Here ext(ϕ) ∈C∞
c (M2,S2) is the extension by 0 ofF ◦ϕ ◦ f−1 : f (M1)→ S2 to M2,

for everyϕ ∈C∞
c (M1,S1), see [4, Lemma 3.2].

What is most important for our purpose is that the Green’s operators for a
formally self-adjoint Green-hyperbolic operator providea symplectic vector space
in a canonical way. First recall how the Green’s operators ofan operator and of its
formally dual operator are related: ifM is a globally hyperbolic spacetime,G+,G−
are the advanced and retarded Green’s operators for a Green-hyperbolic operatorP
acting on sections ofS→ M andG∗

+,G
∗
− denote the advanced and retarded Green’s

operators forP∗, then
∫

M
〈G∗

±ϕ ,ψ〉dV =

∫

M
〈ϕ ,G∓ψ〉dV (6)

for all ϕ ∈C∞
c (M,S∗) andψ ∈C∞

c (M,S), see e.g. [4, Lemma 3.3]. This implies:

Proposition 4.2. Let(M,S,P) be an object in the categoryGlobHypGreen. Set G:=
G+ −G−, where G+,G− are the advanced and retarded Green’s operator for P,
respectively.
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Then the pair(SYMPL(M,S,P),ω) is a symplectic vector space, where

SYMPL(M,S,P) :=C∞
c (M,S)/ker(G) and ω([ϕ ], [ψ ]) :=

∫

M
〈Gϕ ,ψ〉dV.

Here the square brackets[·] denote residue classes moduloker(G).

Proof. The bilinear form(ϕ ,ψ) 7→ ∫
M〈Gϕ ,ψ〉dV onC∞

c (M,S) is skew-symmetric
as a consequence of (6) becauseP is formally self-adjoint. Its null space is
exactly ker(G). Therefore the induced bilinear formω on the quotient space
SYMPL(M,S,P) is non-degenerate and hence a symplectic form. �

Theorem 3.8 shows thatG(C∞
c (M,S)) coincides with the space of smooth so-

lutions of the equationPϕ = 0 which have spacelike compact support. In particular,
given an object(M,S,P) in GlobHypGreen, the mapG induces an isomorphism

SYMPL(M,S,P) =C∞
c (M,S)/ker(G)

∼=−→ ker(P)∩C∞
sc(M,S).

Hence we may think of SYMPL(M,S,P) as the space of classical solutions of
the equationPϕ = 0 with spacelike compact support.

Now, let( f ,F) be a morphism between objects(M1,S1,P1) and(M2,S2,P2) in
the categoryGlobHypGreen. Then the extension by zero induces a symplectic linear
map SYMPL( f ,F) : SYMPL(M1,S1,P1)→ SYMPL(M2,S2,P2) with

SYMPL(idM, idS) = idSYMPL(M,S,P) (7)

and, for any further morphism( f ′,F ′) : (M2,S2,P2)→ (M3,S3,P3),

SYMPL(( f ′,F ′)◦ ( f ,F)) = SYMPL( f ′,F ′)◦SYMPL( f ,F). (8)

Remark 4.3. Under the isomorphism SYMPL(M,S,P) → ker(P)∩C∞
sc(M,S) in-

duced byG, the extension by zero corresponds to an extension as a smooth solution
of Pϕ = 0 with spacelike compact support. In other words, for any morphism( f ,F)
from (M1,S1,P1) to (M2,S2,P2) in GlobHypGreen we have the following commuta-
tive diagram:

SYMPL(M1,S1,P1)
SYMPL( f ,F)

//

∼=
��

SYMPL(M2,S2,P2)

∼=
��

ker(P1)∩C∞
sc(M1,S1)

extensionas

asolution
// ker(P2)∩C∞

sc(M2,S2).

Summarizing, we have constructed a covariant functor

SYMPL :GlobHypGreen−→ Sympl,

whereSympl denotes the category of real symplectic vector spaces with symplectic
linear maps as morphisms. In order to obtain an algebra-valued functor, we compose
SYMPL with the functor CCR which associates to any symplectic vector space
its Weyl algebra. Here “CCR” stands for “canonical commutation relations”. This
is a general algebraic construction which is independent ofthe context of Green-
hyperbolic operators and which is carried out in Section 2.2. As a result, we obtain
the functor

Abos := CCR◦SYMPL :GlobHypGreen−→ C∗Alg,
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whereC∗Alg is the category whose objects are the unital C∗-algebras and whose
morphisms are the injective unit-preserving C∗-morphisms.

In the remainder of this section we show that the functorAbos is a bosonic
locally covariant quantum field theory. We call two subregions M1 and M2 of a
spacetimeM causally disjointif and only if JM(M1)∩M2 = /0. In other words, there
are no causal curves joiningM1 andM2.

Theorem 4.4. The functorAbos : GlobHypGreen −→ C∗Alg is a bosonic locally
covariant quantum field theory, i.e., the following axioms hold:

(i) (Quantum causality) Let (M j ,Sj ,Pj) be objects inGlobHypGreen, j = 1,2,3,
and ( f j ,Fj) morphisms from(M j ,Sj ,Pj) to (M3,S3,P3), j = 1,2, such that
f1(M1) and f2(M2) are causally disjoint regions in M3. Then the sub-
algebrasAbos( f1,F1)(Abos(M1,S1,P1)) andAbos( f2,F2)(Abos(M2,S2,P2)) of
Abos(M3,S3,P3) commute.

(ii) (Time slice axiom) Let (M j ,Sj ,Pj) be objects inGlobHypGreen, j = 1,2, and
( f ,F) a morphism from(M1,S1,P1) to (M2,S2,P2) such that there is a Cauchy
hypersurfaceΣ ⊂ M1 for which f(Σ) is a Cauchy hypersurface of M2. Then

Abos( f ,F) : Abos(M1,S1,P1)→ Abos(M2,S2,P2)

is an isomorphism.

Proof. We first show (i). For notational simplicity we assume without loss of gen-
erality that f j andFj are inclusions,j = 1,2. Letϕ j ∈C∞

c (M j ,Sj). SinceM1 andM2

are causally disjoint, the sectionsGϕ1 andϕ2 have disjoint support, thus

ω([ϕ1], [ϕ2]) =

∫

M
〈Gϕ1,ϕ2〉dV = 0.

Now relation (iv) in Definition 2.8 tells us

w([ϕ1]) ·w([ϕ2]) = w([ϕ1]+ [ϕ2]) = w([ϕ2]) ·w([ϕ1]).

SinceAbos( f1,F1)(Abos(M1,S1,P1)) is generated by elements of the formw([ϕ1])
andAbos( f2,F2)(Abos(M2,S2,P2)) by elements of the formw([ϕ2]), the assertion
follows.

In order to prove (ii) we show that SYMPL( f ,F) is an isomorphism of sym-
plectic vector spaces providedf maps a Cauchy hypersurface ofM1 onto a Cauchy
hypersurface ofM2. Since symplectic linear maps are always injective, we only
need to show surjectivity of SYMPL( f ,F). This is most easily seen by replacing
SYMPL(M j ,Sj ,Pj) by ker(Pj)∩C∞

sc(M j ,Sj) as in Remark 4.3. Again we assume
without loss of generality thatf andF are inclusions.

Let ψ ∈ C∞
sc(M2,S2) be a solution ofP2ψ = 0. Let ϕ be the restriction ofψ

to M1. Thenϕ solvesP1ϕ = 0 and has spacelike compact support inM1, see [4,
Lemma 3.11]. We will show that there is only one solution inM2 with spacelike
compact support extendingϕ . It will then follow thatψ is the image ofϕ under the
extension map corresponding to SYMPL( f ,F) and surjectivity will be shown.
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To prove uniqueness of the extension, we may, by linearity, assume thatϕ = 0.
Thenψ+ defined by

ψ+(x) :=

{
ψ(x), if x∈ JM2

+ (Σ),
0, otherwise,

is smooth sinceψ vanishes in an open neighborhood ofΣ. Now ψ+ solvesP2ψ+ =
0 and has past-compact support. As noticed just below Theorem 3.8, this implies
ψ+ ≡ 0, i.e.,ψ vanishes onJM2

+ (Σ). One shows similarly thatψ vanishes onJM2
− (Σ),

henceψ = 0. �

The quantization process described in this subsection applies in particular to
formally self-adjoint wave and Dirac-type operators.

4.2. Fermionic quantization

Next we construct a fermionic quantization. For this we needa functorial construc-
tion of Hilbert spaces rather than symplectic vector spaces. As we shall see this
seems to be possible only under much more restrictive assumptions. The underlying
Lorentzian manifoldM is assumed to be a globally hyperbolic spacetime as before.
The vector bundleS is assumed to be complex with Hermitian inner product〈· , ·〉
which may be indefinite. The formally self-adjoint Green-hyperbolic operatorP is
assumed to be of first order.

Definition 4.5. A formally self-adjoint Green-hyperbolic operatorP of first order
acting on sections of a complex vector bundleS over a spacetimeM is of definite
type if and only if for anyx ∈ M and any future-directed timelike tangent vector
n ∈ TxM, the bilinear map

Sx×Sx →C, (ϕ ,ψ) 7→ 〈iσP(n
♭) ·ϕ ,ψ〉,

yields a positive definite Hermitian scalar product onSx.

Example 4.6. The classical Dirac operatorP from Example 3.17 is, when defined
with the correct sign, of definite type, see e.g. [6, Sec. 1.1.5] or [3, Sec. 2].

Example 4.7. If E → M is a semi-Riemannian or semi-Hermitian vector bundle
endowed with a metric connection over a spin spacetimeM, then the twisted Dirac
operator from Example 3.18 is of definite type if and only if the metric onE is
positive definite. This can be seen by evaluating the tensorized inner product on
elements of the formσ ⊗ v, wherev∈ Ex is null.

Example 4.8. The operatorP = i(d− δ ) on S= ΛT∗M ⊗C is of Dirac type but
not of definite type. This follows from Example 4.7 applied toExample 3.19, since
the natural inner product onΣM is not positive definite. An alternative elementary
proof is the following: for any timelike tangent vectorn onM and the corresponding
covectorn♭, one has

〈iσP(n
♭)n♭,n♭〉=−〈n♭∧n

♭−nyn
♭,n♭〉= 〈n,n〉〈1,n♭〉= 0.

Example 4.9. An elementary computation shows that the Rarita-Schwingeropera-
tor defined in Section 3.6 is not of definite type ifm≥ 3, see [4, Ex. 3.16].



18 Christian Bär and Nicolas Ginoux

We define the categoryGlobHypDef, whose objects are triples(M,S,P),
whereM is a globally hyperbolic spacetime,S is a complex vector bundle equipped
with a complex inner product〈· , ·〉, and P is a formally self-adjoint Green-
hyperbolic operator of definite type acting on sections ofS. The morphisms are
the same as in the categoryGlobHypGreen.

We construct a covariant functor fromGlobHypDef toHILB, whereHILB de-
notes the category whose objects are complex pre-Hilbert spaces and whose mor-
phisms are isometric linear embeddings. As in Section 4.1, the underlying vector
space is the space of classical solutions to the equationPϕ = 0 with spacelike com-
pact support. We put

SOL(M,S,P) := ker(P)∩C∞
sc(M,S).

Here “SOL” stands for classical solutions of the equationPϕ = 0 with spacelike
compact support. We endow SOL(M,S,P) with a positive definite Hermitian scalar
product as follows: consider a smooth spacelike Cauchy hypersurfaceΣ ⊂ M with
its future-oriented unit normal vector fieldn and its induced volume element dA
and set

(ϕ ,ψ) :=
∫

Σ
〈iσP(n

♭) ·ϕ |Σ ,ψ |Σ〉dA, (9)

for all ϕ ,ψ ∈ C∞
sc(M,S). The Green’s formula for formally self-adjoint first-order

differential operators [32, p. 160, Prop. 9.1] (see also [4,Lemma 3.17]) implies that
(· , ·) does not depend on the choice ofΣ. Of course, it is positive definite because
of the assumption thatP is of definite type. In caseP is not of definite type, the
sesquilinear form(· , ·) is still independent of the choice ofΣ but may be degenerate,
see [4, Remark 3.18].

For any object(M,S,P) in GlobHypDef we equip SOL(M,S,P) with the Her-
mitian scalar product in (9) and thus turn SOL(M,S,P) into a pre-Hilbert space.

Given a morphism( f ,F) from (M1,S1,P1) to (M2,S2,P2) in GlobHypDef,
then this is also a morphism inGlobHypGreen and hence induces a homomor-
phism SYMPL( f ,F) : SYMPL(M1,S1,P1) → SYMPL(M2,S2,P2). As explained
in Remark 4.3, there is a corresponding extension homomorphism SOL( f ,F) :
SOL(M1,S1,P1)→SOL(M2,S2,P2). In other words, SOL( f ,F) is defined such that
the diagram

SYMPL(M1,S1,P1)
SYMPL( f ,F)

//

∼=
��

SYMPL(M2,S2,P2)

∼=
��

SOL(M1,S1,P1)
SOL( f ,F)

// SOL(M2,S2,P2)

(10)

commutes. The vertical arrows are the vector space isomorphisms induced be the
Green’s propagatorsG1 andG2, respectively.

Lemma 4.10. The vector space homomorphismSOL( f ,F) : SOL(M1,S1,P1) →
SOL(M2,S2,P2) preserves the scalar products, i.e., it is an isometric linear embed-
ding of pre-Hilbert spaces.

We refer to [4, Lemma 3.19] for a proof. The functoriality of SYMPL and
diagram (10) show that SOL is a functor fromGlobHypDef to HILB, the category
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of pre-Hilbert spaces with isometric linear embeddings. Composing with the functor
CAR (see Section 2.1), we obtain the covariant functor

Aferm := CAR◦SOL :GlobHypDef −→ C∗Alg.

The fermionic algebrasAferm(M,S,P) are actuallyZ2-graded algebras, see Propo-
sition 2.3 (iii).

Theorem 4.11. The functorAferm : GlobHypDef −→ C∗Alg is a fermionic locally
covariant quantum field theory, i.e., the following axioms hold:

(i) (Quantum causality) Let (M j ,Sj ,Pj) be objects inGlobHypDef, j = 1,2,3,
and ( f j ,Fj) morphisms from(M j ,Sj ,Pj) to (M3,S3,P3), j = 1,2, such that
f1(M1) and f2(M2) are causally disjoint regions in M3. Then the subalge-
bras Aferm( f1,F1)(Aferm(M1,S1,P1)) and Aferm( f2,F2)(Aferm(M2,S2,P2)) of
Aferm(M3,S3,P3) super-commute1.

(ii) (Time slice axiom) Let (M j ,Sj ,Pj) be objects inGlobHypDef, j = 1,2, and
( f ,F) a morphism from(M1,S1,P1) to (M2,S2,P2) such that there is a Cauchy
hypersurfaceΣ ⊂ M1 for which f(Σ) is a Cauchy hypersurface of M2. Then

Aferm( f ,F) : Aferm(M1,S1,P1)→ Aferm(M2,S2,P2)

is an isomorphism.

Proof. To show (i), we assume without loss of generality thatf j andFj are inclu-
sions. Letϕ1 ∈ SOL(M1,S1,P1) andψ1 ∈ SOL(M2,S2,P2). Denote the extensions
to M3 by ϕ2 := SOL( f1,F1)(ϕ1) andψ2 := SOL( f2,F2)(ψ1). Choose a compact
submanifoldK1 (with boundary) in a spacelike Cauchy hypersurfaceΣ1 of M1 such
that supp(ϕ1)∩ Σ1 ⊂ K1 and similarlyK2 for ψ1. SinceM1 and M2 are causally
disjoint, K1 ∪K2 is acausal. Hence, by [8, Thm. 1.1], there exists a Cauchy hy-
persurfaceΣ3 of M3 containingK1 and K2. As in the proof of Lemma 4.10 one
sees that supp(ϕ2) ∩ Σ3 = supp(ϕ1) ∩ Σ1 and similarly for ψ2. Thus, when re-
stricted toΣ3, ϕ2 andψ2 have disjoint support. Hence(ϕ2,ψ2) = 0. This shows that
the subspaces SOL( f1,F1)(SOL(M1,S1,P1)) and SOL( f2,F2)(SOL(M2,S2,P2)) of
SOL(M3,S3,P3) are perpendicular. Since the even (resp. odd) part of the Clifford
algebra of a vector spaceV with quadratic form is linearly spanned by the even
(resp. odd) products of vectors inV, Definition 2.1 shows that the corresponding
CAR-algebras must super-commute.

To see (ii) we recall that( f ,F) is also a morphism inGlobHypGreen and
that we know from Theorem 4.4 that SYMPL( f ,F) is an isomorphism. ¿From dia-
gram (10) we see that SOL( f ,F) is an isomorphism. HenceAferm( f ,F) is also an
isomorphism. �

Remark 4.12. Since causally disjoint regions should lead to commuting ob-
servables also in the fermionic case, one usually considersonly the even part
Aeven

ferm(M,S,P) as the observable algebra while the full algebraAferm(M,S,P) is
called thefield algebra.

1This means that the odd parts of the algebras anti-commute while the even parts commute with
everything.
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There is a slightly different description of the functorAferm. LetHILBR denote
the category whose objects are the real pre-Hilbert spaces and whose morphisms
are the isometric linear embeddings. We have the functor REAL : HILB→ HILBR

which associates to each complex pre-Hilbert space(V,(· , ·)) its underlying real
pre-Hilbert space(V,Re(· , ·)). By Remark 2.7,

Aferm = CARsd◦REAL◦SOL.

Since the self-dual CAR-algebra of a real pre-Hilbert spaceis the Clifford algebra
of its complexification and since for any complex pre-Hilbert spaceV we have

REAL(V)⊗RC=V ⊕V∗,

Aferm(M,S,P) is also the Clifford algebra of SOL(M,S,P)⊕ SOL(M,S,P)∗ =
SOL(M,S⊕S∗,P⊕P∗). This is the way this functor is often described in the physics
literature, see e.g. [31, p. 115f].

Self-dual CAR-representations are more natural for real fields. LetM be glob-
ally hyperbolic and letS→ M be areal vector bundle equipped with a real inner
product〈· , ·〉. A formally skew-adjoint2 differential operatorP acting on sections
of S is called ofdefinite typeif and only if for anyx ∈ M and any future-directed
timelike tangent vectorn ∈ TxM, the bilinear map

Sx×Sx → R, (ϕ ,ψ) 7→ 〈σP(n
♭) ·ϕ ,ψ〉,

yields a positive definite Euclidean scalar product onSx. An example is given by the
real Dirac operator

D :=
m

∑
j=1

ε j ej ·∇ej

acting on sections of the real spinor bundleΣRM.
Given a smooth spacelike Cauchy hypersurfaceΣ ⊂ M with future-directed

timelike unit normal fieldn, we define a scalar product on SOL(M,S,P) = ker(P)∩
C∞

sc(M,S,P) by

(ϕ ,ψ) :=
∫

Σ
〈σP(n

♭) ·ϕ |Σ ,ψ |Σ〉dA.

With essentially the same proofs as before, one sees that this scalar product
does not depend on the choice of Cauchy hypersurfaceΣ and that a morphism
( f ,F) : (M1,S1,P1) → (M2,S2,P2) gives rise to an extension operator SOL( f ,F) :
SOL(M1,S1,P1) → SOL(M2,S2,P2) preserving the scalar product. We have con-
structed a functor

SOL :GlobHypSkewDef −→ HILBR,

whereGlobHypSkewDef denotes the category whose objects are triples(M,S,P)
with M globally hyperbolic,S→ M a real vector bundle with real inner product and
P a formally skew-adjoint, Green-hyperbolic differential operator of definite type
acting on sections ofS. The morphisms are the same as before.

Now the functor

A
sd
ferm := CARsd◦SOL :GlobHypSkewDef −→ C∗Alg

2instead of self-adjoint!
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is a locally covariant quantum field theory in the sense that Theorem 4.11 holds with
Aferm replaced byAsd

ferm.

5. Conclusion

We have constructed three functors,

Abos : GlobHypGreen−→ C∗Alg,

Aferm : GlobHypDef −→ C∗Alg,

A
sd
ferm : GlobHypSkewDef −→ C∗Alg.

The first functor turns out to be a bosonic locally covariant quantum field theory
while the second and third are fermionic locally covariant quantum field theories.

The categoryGlobHypGreen seems to contain basically all physically rele-
vant free fields such as fields governed by wave equations, Dirac equations, the
Proca equation and the Rarita-Schwinger equation. It contains operators of all or-
ders. Bosonic quantization of Dirac fields might be considered unphysical but the
discussion shows that there is no spin-statistics theorem on the level of observable
algebras. In order to obtain results like Theorem 5.1 in [33]one needs more struc-
ture, namely representations of the observable algebras with good properties.

The categoriesGlobHypDef andGlobHypSkewDef are much smaller. They
contain only operators of first order with Dirac operators asmain examples. But even
certain twisted Dirac operators such as the Euler operator do not belong to this class.
The categoryGlobHypSkewDef is essentially the real analogue ofGlobHypDef.
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[3] C. BÄR, P. GAUDUCHON, AND A. M OROIANU: Generalized Cylinders in Semi-
Riemannian and Spin Geometry. Math. Zeitschr.249(2005), 545–580.
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