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1. Introduction

Classical fields on spacetime are mathematically modeledelsyions of a vec-
tor bundle over a Lorentzian manifold. The field equatioresusually partial dif-
ferential equations. We introduce a class of differentjgérators, called Green-
hyperbolic operators, which have good analytical soltbpiroperties. This class
includes wave operators as well as Dirac type operatorslgotlae Proca and the
Rarita-Schwinger operator.

In order to quantize such a classical field theory on a cunamkdround,
we need local algebras of observables. They come in two Babosonic algebras
encoding the canonical commutation relations and ferroialgiebras encoding the
canonical anti-commutation relations. We show how suchlaigs can be associated
to manifolds equipped with suitable Green-hyperbolic afmns. We prove that we
obtain locally covariant quantum field theories in the sesfd&2]. There is a large
literature where such constructions are carried out faliqudar examples of fields,
see e.g.[[15, 16, 17, P2,130]. In all these papers the wekghusss of the Cauchy
problem plays an important role. We avoid using the Caucloplem altogether
and only make use of Green’s operators. In this respect, gpnoach is similar to
the one in[[31]. This allows us to deal with larger classeseitif, see Sectidn 3.7,
and to treat them systematically. Much of the work on palticexamples can be
subsumed under this general approach.
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It turns out that bosonic algebras can be obtained in mucle meneral situ-
ations than fermionic algebras. For instance, for the akBirac field both con-
structions are possible. Hence, on the level of observagbeas, there is no spin-
statistics theorem.

This is a condensed version of our papeér [4] where full detgié given. Here
we confine ourselves to the results and the main argumenis whileave aside all
technicalities. Moreover,[4] contains a discussion diestand the induced quantum
fields.

Acknowledgmentdt is a pleasure to thank Alexander Strohmaier for very
valuable discussion and the anonymous referee for his kesmaie authors would
like to thank SPP 1154 “Globale Differentialgeometrie” éieB 647 “Raum-Zeit-
Materie”, both funded by Deutsche Forschungsgemeinsdbafinancial support.
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2. Algebras of canonical (anti-) commutation relations

We start with algebraic preparations and collect the necgsdgebraic facts about
CAR and CCR-algebras.

2.1. CAR algebras

The symbol “CAR” stands for “canonical anti-commutatiotat®ns”. These al-
gebras are related to pre-Hilbert spaces. We always asdwnddrmitian inner
product(-,-) to be linear in the first argument and anti-linear in the secon

Definition 2.1. A CAR-representatiorof a complex pre-Hilbert spad¥/, (-,-)) is
a pair(a,A), whereA is a unital C-algebra anda:V — A is an anti-linear map
satisfying:

(i) A=C*(a(V)), thatis,Ais the C-algebra generated b,

(i) {a(v1),a(v2)} =0and
(i) {a(vi)*,a(v2)} = (v1,v2)-1,
for all vi,vo € V.

As an example, for any complex pre-Hilbert vector spé¢g-,-)), the C-
completion C{V¢,qc) of the algebraic Clifford algebra of the complexification
(Vc,de) of (V,(-,-)) is a CAR-representation d¥, (-,-)). See (4, App. A.1] for
the details, in particular for the construction of the naapy — CI(V¢,qc).

Theorem 2.2.Let(V, (-,-)) be an arbitrary complex pre-Hilbert space. lZebe any
unital C*-algebra anda: VvV — A be any anti-linear map satisfying Axiorfig and
(@i} of Definition[2Z.1. Then there exists a uniqué@orphisma : Cl(V¢,qc) — A
such that

v—2 A
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commutes. Furthermore@, is injective.
In particular, (V,(-,-)) has, up to C-isomorphism, a unigu€AR-representation.

For an alternative description of the CAR-representatioteims of creation
and annihilation operators on the fermionic Fock space vez te [10, Prop. 5.2.2].

¢From now on, given a complex pre-Hilbert spdde(-,-)), we denote the
C*-algebra C{V¢,qc) associated with the CAR-representati@Cl(Vc,qc)) of
V,(-,-)) by CAR(V,(-,-)). We list the properties of CAR-representations which
are relevant for quantization, see also|[10, Vol. Il, Thi2.5, p. 15].

Proposition 2.3. Let (a, CAR(V,(-,+))) be theCAR-representation of a complex
pre-Hilbert spacgV, (-, -)).
(i) ForeveryveV onehagla(v)|| = |v|= (v, v)%, where|| - || denotes the Ghorm
onCAR(V,(-,-)).
(i) The C-algebraCAR(V,(-,-)) is simple, i.e., it has no closed two-sided
ideals other thar{ 0} and the algebra itself.
(iii) The algebraCAR(V,(-,-)) is Z,-graded,
CAR(V7 ( ’ )) = CAReven(Va ( ’ )) D CAROdd(V7 ( ’ ))a
anda(V) ¢ CARMY(V (- .)).
(iv) Let f:V — V' be an isometric linear embedding, whe¥£, (-,-)') is another

complex pre-Hilbert space. Then there exists a uniquefine€-morphism
CAR(f) : CAR(V,(+,-)) = CAR(V’,(-,-)") such that

f
\Y \A

| g
CAR(f)

CAR(V,(-,")) —————= CAR(V',(-,"))
commutes.

One easily sees that CARl) = id and that CARf’ o f) = CAR(f') o CAR(f)
for all isometric linear embedding$i> V' 15 V7. Therefore we have constructed

a covariant functor
CAR :HILB — C*Alg,

whereHILB denotes the category whose objects are the complex preftipaces
and whose morphisms are the isometric linear embedding&'akig is the category
whose objects are the unital*@lgebras and whose morphisms are the injective
unit-preserving G-morphisms.

For real pre-Hilbert spaces there is the concepself-dualCAR-representa-
tions.

Definition 2.4. A self-dualCAR-representatiomf a real pre-Hilbert spad®, (-, -))
is a pair(b,A), whereA is a unital C-algebra and :V — Ais anR-linear map
satisfying:

(i) A=C*(b(V)),

(i) b(v) =b(v)* and
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(i) {b(ve),b(vz)} = (va,V2)- 1,

forall v,vy,vo € V.

Note that a self-dual CAR-representation is not a CAR-regmeation in the
sense of Definitiof 211. Given a self-dual CAR-represenitgaidne can extenld to
a C-linear map from the complexificatiovt- to A. This extensior : Vo — A then
satisfiesb(v) = b(v)* and{b(v1),b(v2)} = (v1,V2) - 1 for all v,v1,v» € V. These
are the axioms of a self-dual CAR-representation aslin [386].

Theorem 2.5. For every real pre-Hilbert spacéV,(-,-)), the C-Clifford algebra
Cl(Vc,qc) provides a self-duaCAR-representation ofV, (-, -)) viab(v) = szv.
Moreover, self-duaCAR-representations have the following universal prop-
erty: LetA be any unital C-algebra andb : V — A be anyR-linear map satisfy-
ing Axioms(ii) and (ij of Definition[Z.#. Then there exists a unigu&@orphism

B:Cl(V¢,qc) — A such that

v—P> _A
-7
bl/ ﬁ
Cl(Vc,ac)

commutes. Furthermoré is injective.
In particular, (V,(-,-)) has, up to C-isomorphism, a unique self-duglAR-
representation.

¢From now on, given a real pre-Hilbert spatg(-,-)), we denote the G
algebra C{V¢, qc) associated with the self-dual CAR-representatmiCl(Vc,qc))
of (V,(-,-)) by CARsq(V, (-,-))-

Proposition 2.6. Let (V, (-, -)) be a real pre-Hilbert space an, CARsq(V, (-, -)))
its self-dualCAR-representation.

(i) For every veV one hagb(v)| = \ifz|v|, where|| - || denotes the Gnorm on
CARsy(V, (+,-))-
(i) The Cr-algebraCARgy(V, (-,-)) is simple.
(iii) The algebraCARgq(V, (-,-)) is Zy-graded,
CARs(V, (-,-)) = CARSNV, (-,-)) & CARGUV, (-,-),
andb(V) c CAR4(V, (-,-)).

(iv) Let f:V — V' be an isometric linear embedding, whe', (-,-)') is an-
other real pre-Hilbert space. Then there exists a uniquedtiye C-morphism
CARgqy(f) : CARgy(V, (+,+)) = CARsy(V/, (+,-)) such that

f

V/
lb >
CARs
CARq(V, () — 289 CARG(V/, (-,-))

commutes.
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The proofs are similar to the ones for CAR-representatidreomplex pre-
Hilbert spaces as given inl[4, App. A]. We have constructeghator

CARgq: HILBg — C*Alg,

whereHILBR denotes the category whose objects are the real pre-Hipaces and
whose morphisms are the isometric linear embeddings.

Remark 2.7. Let (V,(-,-)) be a complex pre-Hilbert space. If we consitleas
a real vector space, then we have the real pre-Hilbert spa®ée(-,-)). For the
corresponding CAR-representations we have

CAR(Vv ( ) )) = CARSd(Vv 9”’{2(- ) )) = Cl(V(CaQ(C)
and

2.2. CCR algebras

In this section, we recall the construction of the repreaion of any (real) symplec-
tic vector space by the so-called canonical commutati@tiozis (CCR). Proofs can
be found in[[5, Sec. 4.2].

Definition 2.8. A CCR-representatiorof a symplectic vector spa¢¥, w) is a pair
(w,A), whereA is a unital C-algebra andvis a mapv — A satisfying:
(i) A=C(w(V)),
(i) w(0) =1,
(i) w(—¢)=w(¢)",
(V) W($ + ) = =0/ 2w(g) - w(y),
forall ¢, eV.

The mapw is in general neither linear, nor any kind of group homomasii)
nor continuous as soon &scarries a topology which is different from the discrete
one [5, Prop. 4.2.3].

Example 2.9. Given any symplectic vector spafé w), consider the Hilbert space
H :=L?(V,C), whereV is endowed with the counting measure. Define the map
fromV into the spaceZ(H) of bounded endomorphisms Hf by

(W(P)F) () := PV2R (¢ 4 ),
for all ¢, €V andF € H. It is well-known thatZ(H) is a C-algebra with the
operator norm as ‘Gnorm, and that the may satisfies the Axiomd{ii)E(iv) from
Definition[2.8, see e.d.[5, Ex. 4.2.2]. Hence setthg= C*(w(V)), the pair(w,A)
provides a CCR-representation(®f, w).

This is essentially the only CCR-representation:

-~

Theorem 2.10. Let (V, w) be a symplectic vector space afil, A) be a pair satis-
fying the Axiomdli) -(iv) of DefinitionZ.8. Then there exists a unique@orphism
®: A— A such thatb ow = W, where(w, A) is theCCRrepresentation from Exam-
ple[2.9. Moreoverp is injective.

In particular, (V, w) has aCCR-representation, unique up to*@somorphism.
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We denote the Galgebra associated to the CCR-representatidi,@b) from
Example[Z.Pp by CCR/,w). As a consequence of Theorém 2.10, we obtain the
following important corollary.

Corollary 2.11. Let (V,w) be a symplectic vector space af, CCR(V, w)) its
CCR-representation.
(i) The C-algebraCCR(V,w) is simple, i.e., it has no closed two-sideddeals
other than{0} and the algebra itself.
(i) Let (V/, ') be another symplectic vector space and\f — V' a symplec-
tic linear map. Then there exists a unique injectiver@orphismCCR(f) :
CCR(V,w) — CCR(V’,w') such that

v f Y
| -
CCR(f
CCRV, ) — Y cCRV/, o)

commutes.
Obviously CCRid) = id and CCRf’o f) = CCR(f’) o CCR(f) for all sym-
plectic linear map¥ Sy l; V”, so that we have constructed a covariant functor
CCR :Sympl — C*Alg.

3. Field equations on Lorentzian manifolds

3.1. Globally hyperbolic manifolds

We begin by fixing notation and recalling general facts atvauéentzian manifolds,
see e.gl[26] of [5] for more details. Unless mentioned oties, the pailM, g) will
stand for a smootim-dimensional manifoldM equipped with a smooth Lorentzian
metricg, where our convention for Lorentzian signaturé-is+ - --+). The associ-
ated volume element will be denoted by dV. We shall also assoun Lorentzian
manifold (M, g) to be time-orientable, i.e., that there exists a smoothltkmeector
field on M. Time-oriented Lorentzian manifolds will be also refertedasspace-
times Note that in contrast to conventions found elsewhere, wead@ssume that
a spacetime be connected nor that its dimensiombe4.

For every subse of a spacetim®! we denote the causal future and pasfof
in M by J. (A) andJ_(A), respectively. If we want to emphasize the ambient space
M in which the causal future or past &fis considered, we writd! (A) instead of
J.: (A). Causal curves will always be implicitly assumed (futurgast) oriented.

Definition 3.1. A Cauchy hypersurfade a spacetiméM, g) is a subset o which
is met exactly once by every inextensible timelike curve.

Cauchy hypersurfaces are always topological hyperswsfageneed not be
smooth. All Cauchy hypersurfaces of a spacetime are homemmioo

Definition 3.2. A spacetime(M,g) is calledglobally hyperbolicif and only if it
contains a Cauchy hypersurface.
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A classical result of R. Geroch [[L8] says that a globally hippéic spacetime
can be foliated by Cauchy hypersurfaces. It is a rather temeeh very important
result that this also holds in the smooth category: any diphgperbolic spacetime
is of the form(R x %, —Bdt?© @), where eacHt} x 3 is a smooth spacelike Cauchy
hypersurface3 a smooth positive function ar{d;): a smooth one-parameter family
of Riemannian metrics ob [[7, Thm. 1.1]. The hypersurfagecan be even chosen
such that{0} x X coincides with a given smooth spacelike Cauchy hypersarfac
[8, Thm. 1.2]. Moreover, any compact acausal smooth spgacslibmanifold with
boundary in a globally hyperbolic spacetime is containea ismooth spacelike
Cauchy hypersurfacel[8, Thm. 1.1].

Definition 3.3. A closed subseA C M is called
e spacelike compadf there exists a compact subdétc M such thatA C
IM(K) == IM(K) uIN(K),
o future-compacif AN J;(x) is compact for anx € M,
e past-compadf ANJ_(x) is compact for anx € M.

A spacelike compact subset is in general not compact, bmtéssection with
any Cauchy hypersurface is compact, see glg. [5, Cor. A.5.4]

Definition 3.4. A subsetQ of a spacetiméM is calledcausally compatibléf and
only if 32(x) = M (x) N Q for everyx € Q.

This means that every causal curve joining two pointQ imust be contained
entirely inQ.

3.2. Differential operators and Green'’s functions
A differential operatorof order (at mostk on a vector bundl&— M overK =R
orK=Cis alinear magP: C*(M,S) — C*(M,S) which in local coordinates =
(x%,...,x™) of M and with respect to a local trivialization looks like
da
P= > Ad¥)>7

-
a2k oX

HereC*®(M, S) denotes the space of smooth section§e$t M, a = (ax,...,0m)
- a la|

€ No x --- x Np runs over multi-indicesiar| = 3™, aj and 2= = m.

The principal symbolop of P associates to each covectpre T/M a linear map

op(&) : Sc— S« Locally, itis given by

(&)= 3 Aa(x)§",

la|=k

whereé?d = Ef’l ~-égmandé =y Ejdxj. If P andQ are two differential operators
of orderk and/ respectively, the® o P is a differential operator of ordér+ ¢ and

Oqop(§) = 0Q(&) 0 0p(&).
For any linear differential operaté: C*(M,S) — C*(M, S) there is a unique for-
mally dual operatoP* : C*(M,S*) — C*(M, S") of the same order characterized
by
| @Po)av= [ Po.)av
M M
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for all y € C*(M,S) and¢ € C*(M,S") with supg¢) Nsup () compact. Here
(-,-) : S*® S— K denotes the canonical pairing, i.e., the evaluation ofesliriorm
in S; on an element o, wherex € M. We haveop- (&) = (—1)Xop(&)* wherekis
the order ofP.

Definition 3.5. Let a vector bundl&— M be endowed with a non-degenerate inner
product(-,-). A linear differential operatoP on Sis calledformally self-adjointif
and only if

[ Po.wav= [ (o.Py)av

holds for allg, ¢ € C*(M, S) with supg¢) Nsupg () compact.
Similarly, we callP formally skew-adjoinif instead

[ ®owav=—[ @.ryjav.

We recall the definition of advanced and retarded Green’sabqies for a linear
differential operator.

Definition 3.6. Let P be a linear differential operator acting on the sections of a
vector bundles over a Lorentzian manifol. An advanced Green’s operatdor
PonM is alinear map
G, :CZ (M, —C*(M,S)

satisfying:
(Gy) PoGy = idcéo(MS);
(G2) GioPlegiug =1z}
(G3) supHG,¢) c I (supg¢)) forany¢ € CZ(M,S).
A retarded Green’s operatdor PonM is a linear magis_ : CZ’(M,S) — C*(M, )
satisfying (@), (Gp), and
(G3) supdG_¢) c M(supp¢)) for any¢ € CZ(M,S).

Here we denote bg (M, S) the space of compactly supported smooth sec-
tions of S,

Definition 3.7. LetP: C*(M,S) — C*(M,S) be a linear differential operator. We
call P Green-hyperbolidf the restriction ofP to any globally hyperbolic subregion
of M has advanced and retarded Green'’s operators.

The Green’s operators for a given Green-hyperbolic opeRfwrovide solu-
tions¢ of P$ = 0. More precisely, denoting b§.(M, S) the set of smooth sections
in Swith spacelike compact support, we have the following

Theorem 3.8. Let M be a Lorentzian manifold, let-S M be a vector bundle, and
let P be a Green-hyperbolic operator acting on sections dfe$ G. be advanced
and retarded Green’s operators for P, respectively. Put

G:=G; —G_:CI(M,S) - Cx(M,9).
Then the following linear maps form a complex:

{0} »c2(M,9 B cem,9) S caM, ) B e, s). (1)
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This complex is always exact at the firgt@®, S). If M is globally hyperbolic, then
the complex is exact everywhere.

We refer to [4, Theorem 3.5] for the proof. Note that exactnaisthe first
C2 (M, S) in sequencd (1) says that there are no non-trivial smoottisnk ofP¢ =
0 with compact support. Indeed,M is globally hyperbolic, more is true. Namely,
if ¢ € C*(M,S) solvesP¢ =0 and supfp) is future or past-compact, then= 0
(see e.gl[4, Remark 3.6] for a proof). As a straightforwamasequence, the Green’s
operators for a Green-hyperbolic operator on a globallyehnlyplic spacetime are
unique [4, Remark 3.7].

3.3. Wave operators

The most prominent class of Green-hyperbolic operatorezave operators, some-
times also called normally hyperbolic operators.

Definition 3.9. A linear differential operator of second ordér: C*(M,S) —
C*(M,S) is called avave operatoif its principal symbol is given by the Lorentzian
metric, i.e., for allé € T*M we have

op(§) = —(&,&)-id

In other words, if we choose local coordinatés...,x™ on M and a local
trivialization of S, then
m 62 m a
i LX)
|Z g’ z?x'z?xl +2 A oxl +BX),
J=1 =1
whereA; andB are matrix-valued coefficients depending smoothlyxand (g))
is the inverse matrix ofgij) with gij = <‘;9XI , dxj> If P is a wave operator, then so
is its dual operatoP*. In [5], Cor. 3.4.3] it has been shown that wave operators are
Green-hyperbolic.

Example 3.10 (d’Alembert operator). Let Sbe the trivial line bundle so that sec-
tions of S are just functions. The d’Alembert operater= 0 = —divograd is a
formally self-adjoint wave operator, see e[g. [5, p. 26].

Example 3.11 (connection-d’Alembert operator).More generally, leBbe a vec-
tor bundle and lef] be a connection 0% This connection and the Levi-Civita
connection oriT *M induce a connection oh*M ® S, again denoted]. We define
the connection-d’Alembert operatof’ to be the composition of the following three
maps

—treidsg

C°(M,S) HCM,T*"M®S) 5 C*(M,T*"M@ T*M® S) ——% C*(M, S),

where tr :T*M ® T*M — R denotes the metric trace(§r@ n) = (£,n). We com-
pute the principal symbol,

50(§)¢ = —(tr@ids) o 0p(&) e op(§)(¢) = —(reids)(§ ©E@ @) = —(§,£) ¢.

Henceo" is a wave operator.
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Example 3.12 (Hodge-d’Alembert operator). Let S= AKT*M be the bundle

of k-forms. Exterior differentiatiord : C*(M,AKT*M) — C®(M,A1T*M) in-
creases the degree by one while the codiffererdiat d* : C*(M,AT*M) —
C*(M,A*1T*M) decreases the degree by one. Whilds independent of the
metric, the codifferentiab does depend on the Lorentzian metric. The operator
P = —dd — dd is a formally self-adjoint wave operator.

3.4. The Proca equation

The Proca operator is an example of a Green-hyperbolic tggessecond order
which is not a wave operator.

Example 3.13 (Proca operator). The discussion of this example follows [31,
p. 116f]. The Proca equation describes massive vector Bo¥ua takeS= T*M
and letmy > 0. The Proca equation is

P¢ := 6d¢ +ngp =0, 2)
where¢ € C*(M,S). Applying 6 to () we obtain, using? = 0 andmy # 0,
0 =0 3
and hence
(dé+6d)¢ +mge = 0. (4)

Conversely,[(8) and{4) clearly implyl(2).
B SinceP :=dd+ dd + n‘% is minus a wave operator, it has Green’s operators
G.. We define

G.:CP(M,S) = CM,S), G :=(my2ds+id)oGs =Gy o(my2dd+id).
The last equality holds becaus@ndd commute withP, see([4, Lemma 2.16]. For
¢ € CZ(M,S) we compute

G1P¢ = Gu(my2dd +id)(3d + md)p = G.Pp = ¢

and similarlyPG.¢ = ¢. Since the differential operatcmgzd5+ id does not in-
crease supports, the third axiom in the definition of advdrzcel retarded Green’s
operators holds as well.

This shows thaG, andG_ are advanced and retarded Green’s operators for
P, respectively. Thu® is not a wave operator but Green-hyperbolic.

3.5. Dirac type operators
The most important Green-hyperbolic operators of first vade the so-called Dirac
type operators.

Definition 3.14. A linear differential operatob : C*(M,S) — C*(M,S) of first
order is calledf Dirac typeif —D? is a wave operator.

Remark 3.15. If D is of Dirac type, then times its principal symbol satisfies the
Clifford relations

(i00())? = —0p2(§) = —(£,&) -id,

hence by polarization

(ion(&))(ion(n))+(ioo(n))(iop(§)) = —2(<,n) -id.



CCR- versus CAR-quantization on curved spacetimes 11

The bundleSthus becomes a module over the bundle of Clifford algebr&t @)
associated wit{TM, (-,-)). See[[6, Sec. 1.1] of [23, Ch. I] for the definition and
properties of the Clifford algebra () associated with a vector spa¢avith inner
product.

Remark 3.16. If D is of Dirac type, then so is its dual opera®f. On a glob-
ally hyperbolic region leG ;. be the advanced Green’s operators; which exists
since—D? is a wave operator. Then it is not hard to check thatG, is an ad-
vanced Green’s operator f@r, seel[25, Thm. 3.2]. The same discussion applies to
the retarded Green'’s operator. Hence any Dirac type opasa@reen-hyperbolic.

Example 3.17 (Classical Dirac operator).If the spacetiméV carries a spin struc-
ture, then one can define the spinor burfsite XM and the classical Dirac operator

m

D:C*(M,ZM) — C*(M,ZM), D¢ =i ngjEj Oe; 9.

=
Here(ej)1<j<mis alocal orthonormal basis of the tangent bungjes (ej,ej) = £1
and “" denotes the Clifford multiplication, see e.gl [6] of [3,6S€]. The principal
symbol ofD is given by

op ()Y =igk-y.

Here&! denotes the tangent vector dual to the 1-fdrwia the Lorentzian metric,
i.e., (§%Y) = &(Y) for all tangent vector¥ over the same point of the manifold.
Hence

02 (&)Y =0p(E)op (&)Y =& & Y= (E.&)y.
ThusP = —D? is a wave operator. Moreovdd, is formally self-adjoint, see e.d.|[3,
p. 552].

Example 3.18 (Twisted Dirac operators).More generally, leE — M be a com-
plex vector bundle equipped with a non-degenerate Hemmitiner product and a
metric connectiori]® over a spin spacetimil. In the notation of Example 3.17,
one may define the Dirac operatorMdftwisted withE by

m

DE =i Zf"ej -OgV“F :C”(M,EM ® E) — C”(M,ZM ® E),
J:

where1*M®E js the tensor product connection BM ® E. Again,DE is a formally
self-adjoint Dirac type operator.

Example 3.19 (Euler operator). In Example[3.1R, replacingkT*M by S:=
AT*M® C = &l JAT*M @ C, the Euler operatdd = i(d — &) defines a formally
self-adjoint Dirac type operator. In calkis spin, the Euler operator coincides with
the Dirac operator d1 twisted with=M if mis even and witlEM & XM if mis odd.

Example 3.20 (Buchdahl operators).On a 4-dimensional spin spacetiiie con-
sider the standard orthogonal and parallel splitiivy=>, M ¢ >_M of the com-
plex spinor bundle o into spinors of positive and negative chirality. The finite d
mensional irreducible representations of the simply-eoted Lie group Spfi3,1)

are given b)biﬂf/z) ® Z&UZ) wherek, ¢ € N. Herezf/z) = Zﬁk is thek-th symmetric
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tensor product of the positive half-spinor representafiorand similarly forzg/a.
Let the associated vector bundﬁg/aM carry the induced inner product and con-
nection.

Forse N, s> 1, consider the twisted Dirac opera®f® acting on sections
of sM @ =5 Y/2M. In the induced splitting

MezEVIM =3, MezEVIMes Mas(TP2M
the operatob® is of the form

o p¥
D¥ o

because Clifford multiplication by vectors exchanges thieadities. The Clebsch-
(52

1
Gordan formulas [11, Prop. 11.5.5] tell us that the repréagon>, @ > ) splits
as

s-1 s S_
s 03,2 =53 g3,
Hence we have the corresponding parallel orthogonal piojes

. (=hH (3) . (h (3-1)
%I MRIZ’'M—-Z2M and m:I,M®I;Z'M—Z2 7M.

1
On the other hand, the representatbn® Z(f?_) is irreducible. NowBuchdahl
operatorsare the operators of the form

B8 ._(ul-rrs+uz-fé Dis))

My, Ho, M3 - Df) Lz id

whereps, uo, 3 € C are constants. By definitionli!;ﬁfl),uz.“3 is of the formD(® + b,

whereb is of order zero. In particuIal?’;if’luz#3 is a Dirac-type operator, hence it is
Green-hyperbolic. For a definition of Buchdahl operatoiagiindices we refer to
[13,[14[35] and to[24, Def. 8.1.4, p. 104].

3.6. The Rarita-Schwinger operator

For the Rarita-Schwinger operator on Riemannian manifoleks refer to [[34,
Sec. 2], see als0][9, Sec. 2]. In this section let the spaedfirhe spin and consider
the Clifford-multiplicationy : T*M @ M — XM, 8 ® g — 6" - i, whereXM is the
complex spinor bundle d¥1. Then there is the representation-theoretic splitting of
T*M ® =M into the orthogonal and parallel sum

T*M® M = (M) & £3/2M,

where=%2M :=ker(y) andi () := -~ 3T 1 €l @ €; - . Here agair(ej)1<j<mis a
local orthonormal basis of the tangent bundle. Zebe the twisted Dirac operator
onT*M ® =M, thatis,Z :=i- (id®y) o O, where denotes the induced covariant

derivative onT *M @ M.

Definition 3.21. TheRarita-Schwinger operatarn the spin spacetind is defined
by 2 :=(id—10y) 0 2 :C°(M,Z%2M) — C*(M, Z%/2M).
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By definition, the Rarita-Schwinger operator is pointwisdained as the or-
thogonal projection ont@3/2M of the twisted Dirac operatd® restricted to a sec-
tion of =3/2M. As for the Dirac operator, its characteristic variety oiites with the
set of lightlike covectors, at least whem> 3, seel[4, Lemma 2.26]. In particular,
[21, Thms. 23.2.4 & 23.2.7] imply that the Cauchy problem f2ris well-posed
in caseM is globally hyperbolic. Since the well-posedness of thedbgproblem
implies the existence of advanced and retarded Green'sstqper(compare e.g.|[4,
Theorem 3.3.1 & Prop. 3.4.2] for wave operators), the operathas advanced and
retarded Green’s operators. Hengas not of Dirac type but is Green-hyperbolic.

Remark 3.22. The equations originally considered by Rarita and Schwing[28]
correspond to the twisted Dirac operatdrrestricted toz®/2M but not projected
back toZ%2M. In other words, they considered the operator

Dcomsyzm - C” (M, 532M) - C°(M, T*"M®@ =M).

These equations are over-determined. Therefore it is notgise that non-trivial
solutions restrict the geometry of the underlying manifadobserved by Gibbons
[19] and that this operator has no Green’s operators.

3.7. Combining given operators into a new one

Given two Green-hyperbolic operators we can form the dseot and obtain a new

operator in a trivial fashion. Namely, I&,S — M be two vector bundles over a
globally hyperbolic manifoldM and letP; andP, be two Green-hyperbolic operators
acting on sections d¥ and$;, respectively. Then

rori= (g p)CoMS0%) - CMS0S)

is Green-hyperboli¢ |5, Lemma 2.27]. Note that the two ofmsaneed not have the
same order. Hence Green-hyperbolic operators need notdezhinlic in the usual
sense.

4. Algebras of observables

Our next aim is to quantize the classical fields governed eGhyperbolic dif-
ferential operators. We construct local algebras of olzg#es and we prove that we
obtain locally covariant quantum field theories in the sesfg&2].

4.1. Bosonic quantization

In this section we show how a quantization process basedmonazal commuta-
tion relations (CCR) can be carried out for formally selfeat Green-hyperbolic
operators. This is a functorial procedure. We define thedatggory involved in the
guantization process.

Definition 4.1. The categoryGlobHypGreen consists of the following objects and
morphisms:

e An object inGlobHypGreen is a triple(M, S P), where
» M is a globally hyperbolic spacetime,
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» Sis a real vector bundle ovérl endowed with a non-degenerate inner
product(-,-) and
» Pis aformally self-adjoint Green-hyperbolic operator agton sections
of S.
e A morphism between objectdl1,S;,P1) and (M2, S;,P,) of GlobHypGreen
is a pair(f,F), where
» f is a time-orientation preserving isometric embeddifig— M, with
f(M1) causally compatible and openliify,
» F is a fiberwise isometric vector bundle isomorphism of/esuch that
the following diagram commutes:

C* (Mg, S) — 2> C* (M, S) (5)

P
Coo(MlaSl) ﬁlcm(MLSl)a
where reép) := F Lo ¢o f for everyd € C*(Mp,S,).

Note that morphisms exist only if the manifolds have equelatision and the
vector bundles have the same rank. Note, furthermore, ltleainher product:, )
on Sis not required to be positive or negative definite.

The causal compatibility condition, which is not automallig satisfied (see
e.g. [5, Fig. 33]), ensures the commutation of the extenaruh restriction maps
with the Green’s operators. Namely,(if,F) be a morphism between two objects
(M1,S1,P1) and(M2, S, ) in the categorylobHypGreen, and if (G1 )+ and(Gy) +
denote the respective Green'’s operatorgfcandP,, then we have

reso (Gy)+ oext= (Gy)+.

Here extd) € C®(M,,S) is the extensionby O dfo g o f~1: f(My) — S to My,
for everyg € CT(M1,S), seel[4, Lemma 3.2].

What is most important for our purpose is that the Green’saipes for a
formally self-adjoint Green-hyperbolic operator provalsymplectic vector space
in a canonical way. First recall how the Green’s operatosmobperator and of its
formally dual operator are related:M is a globally hyperbolic spacetim&,. ,G_
are the advanced and retarded Green'’s operators for a @Gygembolic operatoP
acting on sections & — M andG’, ,G" denote the advanced and retarded Green’s
operators foP*, then

| @.wav= [ (6,6:w)av ©)
M M
forall ¢ € C¥(M,S") andy € CZ(M,S), see e.gl]4, Lemma 3.3]. This implies:

Proposition 4.2. Let(M, S P) be an object in the categoGlobHypGreen. Set G=
G, — G_, where G.,G_ are the advanced and retarded Green’s operator for P,
respectively.
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Then the pailSYMPL(M, S P), w) is a symplectic vector space, where
SYMPL(M.SP):=C;/(M.9)/keG) and  w([4]. []) = | (G9.y)aV.
M

Here the square bracketg denote residue classes moditr(G).

Proof. The bilinear form(¢, ) — [, (G¢, P)dV onCZ (M, S) is skew-symmetric
as a consequence df] (6) becal®ds formally self-adjoint. Its null space is
exactly ke(G). Therefore the induced bilinear form on the quotient space
SYMPL(M, S,P) is non-degenerate and hence a symplectic form. d

Theoreni 3.8 shows th&(CZ (M, S)) coincides with the space of smooth so-
lutions of the equatio¢ = 0 which have spacelike compact support. In particular,
given an objectM, S P) in GlobHypGreen, the mapG induces an isomorphism

SYMPL(M,S,P) =CZ(M,S)/ker(G) = ker(P) NCZ(M, S).
Hence we may think of SYMP(M, S, P) as the space of classical solutions of
the equatiorP¢ = 0 with spacelike compact support.
Now, let(f,F) be a morphism between obje¢M;,S;,P;) and(M2, S, P) in

the categorlobHypGreen. Then the extension by zero induces a symplectic linear
map SYMPL f,F) : SYMPL(M1,S;,P1) = SYMPL(M2,S,P,) with

SYMPL(idwm,ids) = idsympL(m,sP) (7
and, for any further morphisitf’,F’) : (M2, S, P,) — (M3, S3,P3),
SYMPL((f',F')o (f,F)) = SYMPL(f',F’) o SYMPL(f,F). (8)

Remark 4.3. Under the isomorphism SYMRM, S,P) — ker(P) NCg(M, S) in-
duced byG, the extension by zero corresponds to an extension as alsismlation
of P¢ = 0 with spacelike compact support. In other words, for anyph@m(f,F)
from (M1,S;,P1) to (M2,$,P) in GlobHypGreen we have the following commuta-
tive diagram:

SYMPL(f,F)

SYMPL(My,Sy,Py) SYMPL(Mz, S, P,)

gl lg

ker(Py) NCS(My, Sp) —2XEnSIN3S L ar(py) \C2M, Sp ).

asolution
Summarizing, we have constructed a covariant functor
SYMPL : GlobHypGreen — Sympl,

whereSympl denotes the category of real symplectic vector spaces wiitipkectic
linear maps as morphisms. In order to obtain an algebrasddlinctor, we compose
SYMPL with the functor CCR which associates to any sympteetictor space
its Weyl algebra. Here “CCR” stands for “canonical commiotatelations”. This
is a general algebraic construction which is independeth®fcontext of Green-
hyperbolic operators and which is carried out in Sedfioh &<a result, we obtain
the functor

Apos: = CCRo SYMPL : GlobHypGreen —» C*Alg,
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whereC*Alg is the category whose objects are the unit&lalyebras and whose
morphisms are the injective unit-preserving@orphisms.

In the remainder of this section we show that the fun&ggs is a bosonic
locally covariant quantum field theory. We call two subregidl; and M, of a
spacetimeM causally disjointf and only if JM(M1) "M, = ©. In other words, there
are no causal curves joinind; andM,.

Theorem 4.4. The functorlpes : GlobHypGreen — C*Alg is a bosonic locally
covariant quantum field theory, i.e., the following axioroth

(i) (Quantum causality) Let (M;,S;,Pj) be objects irGlobHypGreen, j=1,2,3,
and (fj,Fj) morphisms fromM;,S;,P;j) to (M3, $3,Ps), j = 1,2, such that
fi(M1) and %(Mz) are causally disjoint regions in Bl Then the sub-
algebraslpog( f1, F1) (Apos(M1,S1, P1)) and Apos(f2, F2) (Rpos(M2, S, P2)) of
Apos(M3, S3, P3) commute.

(if) (Timeslice axiom) Let(M;,S;,P;j) be objects inGlobHypGreen, j=1,2, and
(f,F) a morphism fronf{M1,S;,P;) to (M2, S, P») such that there is a Cauchy
hypersurfac& C M; for which f(Z) is a Cauchy hypersurface ofMThen

Apos(f,F) i Apos(M1,S1,P1) = Apos(M2, S, P2)
is an isomorphism.

Proof. We first show[(i). For notational simplicity we assume withlmss of gen-
erality thatf; andF; are inclusionsj = 1,2. Let¢; € CZ(Mj,Sj). SinceM; andM»
are causally disjoint, the sectio@; and¢, have disjoint support, thus

([9a).[¢2]) = [ (G1.92)aV =0.
Now relation [i¥) in Definitiorl 2.B tells us

W([¢1]) - w([92]) = W([$1] + [¢2]) = w([¢2]) - W([¢1])-

SinceApos( f1, F1) (Rbos(M1,S1,P1)) is generated by elements of the fom[¢1])
and Apos( f2, F2) (Apos(M2, S, P2)) by elements of the formv([¢2]), the assertion
follows.

In order to provel(]i) we show that SYMPI, F) is an isomorphism of sym-
plectic vector spaces providddnaps a Cauchy hypersurfaceMf onto a Cauchy
hypersurface oM,. Since symplectic linear maps are always injective, we only
need to show surjectivity of SYMRIf,F). This is most easily seen by replacing
SYMPL(M;,S;,P;) by ker(P)) NC&(Mj,S;) as in Remark4]3. Again we assume
without loss of generality theft andF are inclusions.

Let ¢ € Coo(M2,S) be a solution o,y = 0. Let ¢ be the restriction ofpy
to M;. Then¢ solvesPi¢ = 0 and has spacelike compact supporMp, see [[4,
Lemma 3.11]. We will show that there is only one solutionMa with spacelike
compact support extendirgg It will then follow that g is the image ofp under the
extension map corresponding to SYMHELF) and surjectivity will be shown.
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To prove unigueness of the extension, we may, by lineassyme thap = 0.
Theny, defined by

) = {w(x), if x e M (%),

o, otherwise,

is smooth sincey vanishes in an open neighborhood®oMNow ;- solveskPy, =
0 and has past-compact support. As noticed just below TheBt8, this implies
Y+ =0,i.e.,y vanishes odi"z(Z). One shows similarly thap vanishes 0d™2 (%),
hencey = 0. O

The quantization process described in this subsectioriepipl particular to
formally self-adjoint wave and Dirac-type operators.

4.2. Fermionic quantization

Next we construct a fermionic quantization. For this we naédgnctorial construc-
tion of Hilbert spaces rather than symplectic vector spageswe shall see this
seems to be possible only under much more restrictive asgamspThe underlying
Lorentzian manifoldV is assumed to be a globally hyperbolic spacetime as before.
The vector bundIl&is assumed to be complex with Hermitian inner product)
which may be indefinite. The formally self-adjoint Greerpbybolic operatoP is
assumed to be of first order.

Definition 4.5. A formally self-adjoint Green-hyperbolic operatBrof first order
acting on sections of a complex vector bun8lever a spacetim# is of definite
typeif and only if for anyx € M and any future-directed timelike tangent vector
n € TyM, the bilinear map

Sx&—=C,  (¢,¢) > (iop(W)- . 4),
yields a positive definite Hermitian scalar product®n

Example 4.6. The classical Dirac operat®& from Exampld_3.17 is, when defined
with the correct sign, of definite type, see eLg. [6, Sec5]dr.[3, Sec. 2].

Example 4.7. If E — M is a semi-Riemannian or semi-Hermitian vector bundle
endowed with a metric connection over a spin spaceMménhen the twisted Dirac
operator from Example_3.118 is of definite type if and only ié titmetric onE is
positive definite. This can be seen by evaluating the temsdrinner product on
elements of the fornor ® v, wherev € Ey is null.

Example 4.8. The operatoP =i(d — d) on S= AT*M @ C is of Dirac type but
not of definite type. This follows from Examgle #4.7 applied®wampld_3.1D, since
the natural inner product cBM is not positive definite. An alternative elementary
proofis the following: for any timelike tangent vectoon M and the corresponding
covectom’, one has

<iap(nb)nb,nb> =—(WAY —ni’, W) = (n,n)(l,nb> =0.

Example 4.9. An elementary computation shows that the Rarita-Schwingera-
tor defined in Sectioin 3.6 is not of definite typemf> 3, seel[4, Ex. 3.16].
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We define the categorglobHypDef, whose objects are triplegM, S P),
whereM is a globally hyperbolic spacetim8js a complex vector bundle equipped
with a complex inner product-,-), and P is a formally self-adjoint Green-
hyperbolic operator of definite type acting on sectionsSoffhe morphisms are
the same as in the categd&lobHypGreen.

We construct a covariant functor fro@iobHypDef to HILB, whereHILB de-
notes the category whose objects are complex pre-Hilbexespand whose mor-
phisms are isometric linear embeddings. As in Sedfioh #4 underlying vector
space is the space of classical solutions to the equBtpoa 0 with spacelike com-
pact support. We put

SOL(M, S P) :=kern(P)NC(M, S).

Here “SOL” stands for classical solutions of the equattgn= 0 with spacelike
compact support. We endow SQM, S P) with a positive definite Hermitian scalar
product as follows: consider a smooth spacelike Cauchyrsypicez C M with
its future-oriented unit normal vector fieldand its induced volume element dA
and set

(0. 0):= [[(on(s)- ., ;) OA ©

for all ¢, € C(M,S). The Green’s formula for formally self-adjoint first-order
differential operators [32, p. 160, Prop. 9.1] (see alsd.ptnma 3.17]) implies that
(-,-) does not depend on the choiceXfOf course, it is positive definite because
of the assumption tha® is of definite type. In cas® is not of definite type, the
sesquilinear forng- ,-) is still independent of the choice &afbut may be degenerate,
see[[4, Remark 3.18].

For any objectM, S P) in GlobHypDef we equip SOIM, S, P) with the Her-
mitian scalar product ii{9) and thus turn S®L, S,P) into a pre-Hilbert space.

Given a morphism(f,F) from (M1,S,P1) to (M2,$,P,) in GlobHypDef,
then this is also a morphism iGlobHypGreen and hence induces a homomor-
phism SYMPL f,F) : SYMPL(M1,S;,P1) — SYMPL(M,$,P). As explained
in Remark[4.B, there is a corresponding extension homonsmBOL(f,F) :
SOL(My1,S;,P1) — SOL(M2, S, P). In other words, SOUf, F) is defined such that
the diagram

SYMPL(f,F)

SYMPL(My,S;,Py) SYMPL(M2, S, P,) (10)
SOLMy, 1. P1) — T SOL(Mp, S, Py)

commutes. The vertical arrows are the vector space isorsonghinduced be the
Green’s propagatofs; andG,, respectively.

Lemma 4.10. The vector space homomorphiS®OL(f,F) : SOL(My,S,P1) —
SOL(My, S, ) preserves the scalar products, i.e., it is an isometricdinembed-
ding of pre-Hilbert spaces.

We refer to [4, Lemma 3.19] for a proof. The functoriality oY MPL and
diagram[(1D) show that SOL is a functor fro&tobHypDef to HILB, the category
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of pre-Hilbert spaces with isometric linear embeddingsn@osing with the functor
CAR (see Section 21.1), we obtain the covariant functor

QAterm := CAR o SOL : GlobHypDef — C*Alg.

The fermionic algebra®irm(M, S,P) are actuallyZ,-graded algebras, see Propo-

sition[2.3 ().

Theorem 4.11. The functoBlserm : GlobHypDef — C*Alg is a fermionic locally
covariant quantum field theory, i.e., the following axioroth
(i) (Quantum causality) Let (Mj,S;j,P;) be objects inGlobHypDef, j =1,2,3,
and (fj,Fj) morphisms from(M;,S;,Pj) to (M3, 3,Ps), j = 1,2, such that
f1(M1) and £(M,) are causally disjoint regions in B Then the subalge-
bras Aserm( f1, F1) (2Aterm(M1,S1,P1)) and 2Uterm( f2, F2) (Uterm(M2, S, P2)) of
Aterm(M3, S3,P3) super-commu
(i) (Time slice axiom) Let (M;,S;,Pj) be objects inGlobHypDef, j = 1,2, and
(f,F) amorphism fron{M1, S, P1) to (M, S, P») such that there is a Cauchy
hypersurfac& C M; for which f(Z) is a Cauchy hypersurface ofdMThen

Aterm(f,F) - Aterm(M1,S1,P1) = Aerm(M2, S, P2)
is an isomorphism.

Proof. To show [[j), we assume without loss of generality thaandF; are inclu-
sions. Letp, € SOL(My,S;,Pr) andyn € SOL(M,, S, P,). Denote the extensions
to M3 by ¢, := SOL(f1,F1)(¢1) and @, := SOL(f2,F)(yn). Choose a compact
submanifoldK; (with boundary) in a spacelike Cauchy hypersurfagef M1 such
that supp¢1) N2y C Ky and similarlyKy for ¢. SinceM; and M, are causally
disjoint, K1 UK> is acausal. Hence, byl[8, Thm. 1.1], there exists a Cauchy hy-
persurfacezs of M3z containingK; andK,. As in the proof of Lemm&a4.10 one
sees that sugpz) N3 = supf¢1) NZ1 and similarly for g». Thus, when re-
stricted toXz, ¢, andy), have disjoint support. Hende-, Y») = 0. This shows that
the subspaces SOQfy,F;)(SOL(M1,S;,P1)) and SOL f2, ) (SOL(M2, S, P»)) of
SOL(M3, S3,Ps) are perpendicular. Since the even (resp. odd) part of tHeoli
algebra of a vector spadé with quadratic form is linearly spanned by the even
(resp. odd) products of vectors \h, Definition[2.1 shows that the corresponding
CAR-algebras must super-commute.

To see [(ii) we recall thatf,F) is also a morphism irGlobHypGreen and
that we know from Theorem 4.4 that SYMPL F) is an isomorphism. ¢ From dia-
gram [10) we see that SQL F) is an isomorphism. Henc#em(f,F) is also an
isomorphism. O

Remark 4.12. Since causally disjoint regions should lead to commuting ob
servables also in the fermionic case, one usually considels the even part
frm(M,S,P) as the observable algebra while the full algeRitgm(M,S,P) is

called thefield algebra

1This means that the odd parts of the algebras anti-commutke whe even parts commute with
everything.
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There is a slightly different description of the func@y,m. LetHILBg denote
the category whose objects are the real pre-Hilbert spawsvaose morphisms
are the isometric linear embeddings. We have the functorlRBAILB — HILBy
which associates to each complex pre-Hilbert spaté ,-)) its underlying real
pre-Hilbert spacgV,Re(-,-)). By Remark2J7,

Aterm = CARsqo REAL 0 SOL

Since the self-dual CAR-algebra of a real pre-Hilbert sgadbe Clifford algebra
of its complexification and since for any complex pre-Hiltsggace/ we have

REAL(V)®gC =V @ V*,

Aterm(M, S,P) is also the Clifford algebra of SGM,S P) ¢ SOL(M,S P)* =
SOL(M,Sa S, P& P*). This is the way this functor is often described in the physic
literature, see e.d.[31, p. 115f].

Self-dual CAR-representations are more natural for reladie_etM be glob-
ally hyperbolic and le§— M be areal vector bundle equipped with a real inner
product(-,-). A formally skew-adjoirﬁ differential operatoP acting on sections
of Sis called ofdefinite typdf and only if for anyx € M and any future-directed
timelike tangent vectar € TyM, the bilinear map

S(XS(%H& (¢a¢’)H<UP(n7)'¢aw>,

yields a positive definite Euclidean scalar producB8amn example is given by the
real Dirac operator

m
D= Z &jej - |:|ej
=1

acting on sections of the real spinor bungfev.

Given a smooth spacelike Cauchy hypersurface M with future-directed
timelike unit normal fielch, we define a scalar product on SQIL S P) = ker(P)N
Cs(M, S, P) by

(6.9):= [ (o0(w) 0., Y} dA

With essentially the same proofs as before, one sees thatstialar product
does not depend on the choice of Cauchy hypersurfaaed that a morphism
(f,F): (M1,S1,P1) — (M2, S, P) gives rise to an extension operator SOLF) :
SOL(My1,S;,P1) — SOL(M2, S, P,) preserving the scalar product. We have con-
structed a functor
SOL : GlobHypSkewDef — HILBy,

whereGlobHypSkewDef denotes the category whose objects are triphdsS, P)
with M globally hyperbolicS— M a real vector bundle with real inner product and
P a formally skew-adjoint, Green-hyperbolic differentiglezator of definite type
acting on sections d. The morphisms are the same as before.

Now the functor

A4 := CARgqo SOL : GlobHypSkewDef —3 C*Alg

2instead of self-adjoint!
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is a locally covariant quantum field theory in the sense th&oreni 4. 711 holds with
Aserm replaced by2(sd

ferm-

5. Conclusion
We have constructed three functors,

Apos: GlobHypGreen — C*Alg,
Q[ferm . GlObHpref — C*Alg,

A4 GlobHypSkewDef —s C*Alg.

The first functor turns out to be a bosonic locally covariamamtum field theory
while the second and third are fermionic locally covariamagtum field theories.

The categoryGlobHypGreen seems to contain basically all physically rele-
vant free fields such as fields governed by wave equationscl@quations, the
Proca equation and the Rarita-Schwinger equation. It amtgperators of all or-
ders. Bosonic quantization of Dirac fields might be congdarnphysical but the
discussion shows that there is no spin-statistics theorethelevel of observable
algebras. In order to obtain results like Theorem 5.1 in [38 needs more struc-
ture, namely representations of the observable algebtagywod properties.

The categorie&lobHypDef and GlobHypSkewDef are much smaller. They
contain only operators of first order with Dirac operatorsiasn examples. But even
certain twisted Dirac operators such as the Euler operatootbelong to this class.
The categorlobHypSkewDef is essentially the real analogue@bbHypDef.
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