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We study the behaviour of the spectrum of the Dirac operator for sequences of compact
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1 Introduction

The question under consideration in this article is whether the convergence of manifolds implies
the convergence of the spectra of their corresponding natural differential operators. This question
has been studied by many authors for the Laplace operator; in particular for collapsing manifolds
and hyperbolic degenerations. For the collapse of manifolds the behaviour of the Dirac spectra
has been studied by Ammann and Bér in [AB98], by Ammann in [A98] and in great generality
by Lott in [L02].

Here we will consider the degenerations of compact hyperbolic manifolds M; to a non-compact
hyperbolic manifold M. Such sequences (M;); exist only in dimension 2 and 3, due to Teichmiiller
theory and Thurston’s cusp closing theorem (see e.g. [G81]). The Laplace operator of the
limit manifold has an essential spectrum [0, 00) and possibly there are some discrete “small”
eigenvalues below o, where o = i in the 2-dimensional case and ¢ = 1 in the 3-dimensional
case. Colbois and Courtois show in [CC89] and in [CC91] that the small eigenvalues of M are
the limits of the smallest eigenvalues of the approximating manifolds M;. The eigenvalues above
o get denser and denser during the degeneration; one has a clustering, and Ji (in [J93]) and
Chavel and Dodziuk (in [CD94]) compute the accumulation rates.

For Dirac operators one also has to take the spin structure into account. In [B00] Bér obtains
the following results: Depending on the spin structure the Dirac operator D of a complete
non-compact hyperbolic manifold with finite volume has either a discrete spectrum or it holds
spec(D) = essspec(D) = R. If one supposes degenerations M; — M with compatible spin
structures it turns out that for 3-dimensional degenerations M has to have a discrete Dirac
spectrum, and there is no clustering. For 2-dimensional degenerations a continuous limit spec-
trum is possible, and Bar computes the accumulation rate in this case.

We will show the convergence of the Dirac eigenvalues in the case of a discrete limit spectrum.
For this we will use the notion of (A, e)-spectral closeness (compare [BD02]):

Definition 1.1. Let ¢ > 0, A > 0. Two self-adjoint operators are called (A, c)-spectral close,
if

1. In the intervall [—A, A] both operators have only discrete eigenvalues and no other spec-
trum, and +A are not eigenvalues of either operator.



2. Both operators have the same total number m of eigenvalues in (—A,+A).

3. If the eigenvalues in (—A, +A) are denoted by \y < ... < Ay, and py < ... < piyy, respectively
(each eigenvalue repeated according to its multiplicity), then |\; — pj| <e for j =1,..,m.

Our main result is:

Theorem 1.2. Let (M;);>1 be a hyperbolic degeneration in dimension 2 or 3 such that the limit
manifold M has a discrete Dirac spectrum. Denote the Dirac operators on M; and M by D;
and D respectively, i > 1, and let € > 0 and A > 0 with £A & spec(D).

Then for all sufficiently large i the Dirac operators D; are (A, ¢€)-spectral close to D.

This article is organized as follows: In section 2 we will study the identification of spinors for
different Riemannian metrics. In section 3 we will modify Colbois’ and Courtois’ method of
escaping sets (see [CC91]) for the square of the Dirac operator. This will provide a criterion for
the convergence of the small eigenvalues: One has to check that the Dirichlet eigenvalues of the
escaping sets get sufficiently large during the degeneration process. In section 4 the structure
of hyperbolic degenerations is described, and in section 5 Bér’s formula for Dirac operators on
manifolds foliated by hypersurfaces is recalled. We will use this in section 6 to derive some lower
bounds for Dirichlet eigenvalues of the square of Dirac operators on hyperbolic tubes, which
enables us to prove Theorem 1.2 in section 7.

2 Identifying spinors for different metrics

In this section we will briefly describe the identification of spinors for different Riemannian
metrics and we will compare the Rayleigh quotients for the corresponding Dirac operators.

One can define a spin structure for an oriented manifold M™ without using Riemannian met-
rics (see [BG92]): Let GL™ (M) denote the GL™ (n)-principal bundle of oriented frames of the
tangent spaces. A spin structure of M is a reduction 7 : GLT (M) — GLt(M) to a GL™(n)-
principal bundle, where éL*(n) is the connected twofold covering group of GL*(n). Given a
Riemannian metric g on M the SO(n)-principal bundle of oriented orthonormal frames is de-
noted by SO(M, g). Then 7=1(SO(M, g)) — SO(M, g) gives a reduction to a Spin(n)-principal
bundle, i.e. a spin structure in the usual sense ([LM89]). We consider two Riemannian met-
rics ¢ and ¢’ on a compact spin manifold M"™ with (possibly empty) boundary. To describe
the spinor identification given in [BG92] we will follow the presentation in [AD98, section 2.2]:
There is a unique endomorphism of the tangent bundle B such that ¢(BX,Y) = ¢/(X,Y) and
9(BX,Y)=g(X,BY) for all X,Y. Let A:TM — TM be the positive square root of B:

g(AX,AY) = ¢ (X,Y) and g(X,AY) = g(AX,Y) for all X,Y. (1)
This induces an SO(n)-equivariant bundle isomorphism:

A:SOM,q) — SO(M,g), (e1,...,en) — (Aeq, ..., Aey).



If one has a fixed spin structure on M one gets a lift to the Spin(n)-bundles

A
Spin(M,g") —— Spin(M, g)

| |

A

This induces an isomorphism of the spinor bundles A : ¥(M, ¢') — X (M, g) which is a fibrewise
isometry and is compatible with Clifford multiplication: A(X -¢) = A(X) - A(¢) for X € T,M
and ¢ € X,(M,¢’). Let V and V’ denote the Levi-Civita connections for g and ¢’. We introduce
a third connection V by setting

VzX = A(Vy(A'X)).
V is compatible with the metric g, and its torsion is:
T(X,Y)=VxY -VyX - [X,Y]= (VLA)AIX — (Vi A)A~Y. (2)
Using Koszul’s formula one computes:
29(VxY — VxY,2) = o(T(X,Y), Z) - g(T(X, 2),Y) - g(T(V. 2), X). 3)

We choose a local g-orthonormal frame (e;);, i.e. a local section of SO(M, g). For V and V the
corresponding connection 1-forms are given by wi; = g(Ve;, ej) and @;; = g(Ve;, e;). From (3)
and (2) we derive:

(@i —wig) (ex)] = |9 (Verei = Vereirej)]
1. _ _ —
< 5‘9(7Y€k7€07€j)“g(jmek7€j%f%)“g(jmehfﬁ)7€kﬂ
< 3 [[V' Al [IA7 g (4)

where ||.||; denotes the maximum norm. We suppose (e;); lifts to a local section s of Spin(M, g).

An orthonormal basis (04)q of 3, = 2% induces an orthonormal frame (o) Of the associ-
ated bundle X(M, g) = Spin(M, g) X spin(n) Xn DY Ya = [8,04]. Any spinor field ¢ can locally
be written as ¢ = ) ¢*1 and [LM89, Chap.2, Thm.4.14] gives:

1 _ 1
Vo=D de" ®tat5) wij®eiej pand Vo=3 dp® @ta+5 ) Tij@ei e ¢
(7 (7

i<j i<j
By (4) we get for the difference of the connections:
[Vxe—Vxo|, < lZ:!(U' —wij) (X)] lely < K-V Allg - A7 lg - |l - 1X] ()
Xy X‘Pg—2 ij ij Plg = g g 1¥Plg g

1<j
where K is a constant only depending on the dimension of M.
Next, we want to compare the Dirac operators Dy and Dy of (M, g) and (M, g¢'). For a spinor

field p € I'S(M, g) we define:
Dy = A (Dy (A1)
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For some g-orthonormal frame (e;); we get a g’-orthonormal frame e := A~ le;. Locally, D;, is
given by

Dy =3 A (¢ Vi (479)) = > 4(¢)) - 4 (Vi (47'9))

- S () = Ser- (Taree)

J
Let (aij)i,; be the matrix of A with respect to the basis (e;);: Ae; = Zj a;je; for all ¢, and let
(a'7); j be the matrix for A™1, then we obtain:

(DQ - D;') Y = Zej ’ (Veng - vA*lej()o>
J

= Z (5U — aij) ej - Veitp + Zaijej : (vei - vei) ® -
i,J

i7j
Using (5) we get the following pointwise estimate in any point of M:

[(Dg = D) ¢, < Kallid — A7 g - [Vl + Kol ATG - [V Allg - 2l . (6)

where |Vgo|3 =>_;(Ve;0, Ve, ), and where Ky and K> are constants which depend only on the
dimension of M. We define

dy(g') = [lid — A~ +[|V'Al|, (7)
and as an immediate consequence of (6) we obtain:

Lemma 2.1. For any integer n > 1 there exists a continuous function (3 : Rg — ]RS' with
lirr%] B(x) = 0 such that the following holds:
r—

Let M be a compact n-dimensional spin manifold with boundary, and let g and g’ be Riemannian
metrics on M. Then for any spinor field ¢ on (M, g) this pointwise estimate holds:

2 2 2
|(Dy = Dyl < 8 (d()) - (IVl5 + 1) -
Without giving the proof we note:

Lemma 2.2. Let (¢")m>1 be a sequence of Riemannian metrics on M converging to the Rie-
mannian metric g in the C'-topology. Then one has

m—00

dy(g™) = 0.

Next, we will compare the Rayleigh quotients for Dirac operators very explicitly.
In the expression 3(dy(g’)) we will omit the argument d,(¢') and simply write 5. We denote the

scalar curvature of (M, g) by scal, and set

S(M,g) = min {0,;;1]\13[ (—scaly(p)) }.



Proposition 2.3. Let A € R and let ¢’ be so close to g in the C*-topology that one has dgy(g') < 1
and (3 (dg(q')) < 1.

D
For any smooth spinor field ¢ € T'S(M, g) with ¢ |op=0 and n1 = NDs=Nellp2(5)

Moz )

Dy =N AT ol 2o 14+dy(g)\ 2 [—
g||A_1<p||L2(g,L) o) S <1J_rdzg 7 > ’ <771 + \/_ (’)\’ + m + % S(M,g) + 1)) (8)

D_1—X\ /
and for any ¢ € TX(M,g") with ¢ |opr= 0 and ny = %
g

(et Ly ) + 25 (3 sy +1) - O

Proof. As ¢ |gp= 0 in the following partial integration the boundary terms vanish. We apply
the Weitzenbock formula and obtain:

it holds:

we get

N3

I1(Dg =N Al 12, < (1+dg(9’))
A%, 2, 1—dy(g")

19912200 = (V9 V9, 0) 1200y < D50l 220 + 157000 113200
From this and from lemma 2.1 it follows:

1Dy = el 2 = 4Dy = VAT 0] | < 1Dy = ADy Al 125

1
< VB (V%132 + Iel20)) " < VB (IDgllzagg) + (3y/5000) + 1) Iellizgy) — (10)

For the volume elements of g and ¢’ we have dvol, = det(A™!) - dvol,.

By the definition (1) of dy(g’) it is clear that the eigenvalues of A~! are contained in the interval
[1—dy(g"),14+dy(g")]. Thus, (1 —dy(g))" < det(A™!) < (1+dy(¢'))", and one gets for the
L?-norms of a function f: M — R:

(1= dg(0)) % I Fll2) < [ Fli2ig) and [1fllzeg) < (1+dg(a))® - [ fll2gy. (A1)

To prove (8) we deduce from the definition of 7; that HDgcpHLQ(g) (IAl+m1) [lellp2(g)- From
this inequality we derive by using (10) and the triangle inequality:

14Dy =N A7 ¢l oy < (m+ VBN +m) + VB (3y/5hrg) +1)) - ez,

Now, A : X(M,q") — X(M,g) is a fibrewise isometry. We apply (11) and have proved (8).
From (11) it follows for ¢ € I'S(M, ¢'):

IADy =Ntz _ ([ 14dy(g)\ 2
40T, §<1d ) 12 (12)

Then, we set ¢ = A). We see HDgl’l/}HLQ(g,) < (IAl +m2) [[¥ll z2(¢y and apply (11) once more:

|ADy 12y < (14 dyle)) ¥ 1Dyl o) < () ® (1A 4 72) 2



Combined with (10) this yields:
”DgQOHLQ(g) < HADg’l/}HLQ(g) + |l (Dg - ADg/Ail) ‘PHL2(9)

< (EBDYE (0 4+ m) lielia + VB - 1Dl + VB (315500 + 1) Bl

Taking 3 < 1 into account we conclude:

H%MB@SP%<GEﬁ)QWHmﬂ+JX% Mg+0>thy

And using this and (10) we obtain:

||(Dg7ADg/A ‘P||L2(g) ”DQ‘P”L?(g) 1 —
< VBT 2 + VB (350000 + 1)

||80||L2(g)
VB_ [ (Ltdg(a)\? VB_ (1
STV ((wi(gf)) (N +"2)> + 250 (35 +1) (13)
Finally, by the triangle inequality we derive (9) from (12) and (13). O

We can derive from the previous proposition a uniform estimate for the deviation of the square
of the Dirac operator for different metrics.

For a self-adjoint operator L we introduce the following notation:
Let a < b be real numbers such that [a,b] Ness spec(L) = ). For any eigenvalue A we denote the
corresponding eigenspace by Fy (L) and we set

E[a,b}(L) = @ E)\(L)
a<A<b
A€espec(L)

Corollary 2.4. For given numbers n € N, S >0, A > 0, € > 0 und n > 0 there exists some
0 > 0 with the following property:

Let (M, g) be a n-dimensional compact Riemannian spin manifold with boundary whose scalar
curvature satisfies scaly > —S. Let ¢’ be a Riemannian metric on M with d4(g') < ¢ and let
w € [0,A]. Then for the Dirichlet eigenspaces of Dg and Dg, it holds:

dim By i) (Dg)?) < dim By e piinie) (Dg)?)  and

dim Epyyp i) ((Dg’)Z) < dim By e ((DQ)Q) :

Proof. Supposed scal, > —S one has S(ig) < S. As ((dy4(g")) — 0 for dy(g') — 0 one can

conclude from (8) and (9) for A = 0 that there is § > 0 such that for any (M, g) with scaly > =S
and for any ¢ € Ejg 4, (D3) it holds for any Riemannian metric ¢’ on M with dy(g') < 6

1Dyl 1Dy A el2, ) IDgel2a
2 - —1,,|2
TelZ2,, [ESE Tel22,,,

We use the variational characterisation of the eigenvalues of Dg and Dg,. Then we obtain for
the k-th eigenvalues p, (D) and ,uk(Dg/) if pp (D7) < A+

pe(Dy) =& < (DY) < p(Dj) + ¢



which provides the first inequality in the corollary. To verify the second inequality we proceed
analoguously, possibly we have to take a smaller §. U

In a similar way one can use Proposition 2.3 to prove the already known fact that on a fixed
closed spin manifold the convergence of Riemannian metrics in the C'-topology implies the
convergence of Dirac spectra:

Corollary 2.5 ([B96], Prop. 7.1). Let (M,g) be a closed spin manifold and let € > 0 and
A > 0 with £A & spec(Dy). Then there exists 6 > 0 such that for all Riemannian metrics ¢’
with dy(g") < the Dirac operators Dy and Dy are (A, €)-spectral close.

3 Method of escaping sets

In this section we will adapt Colbois’ and Courtois’ method of escaping sets developped for the
Laplace operator in [CC91] to the case of the square of the Dirac operator.

We will consider sequences of closed n-dimensional Riemannian spin manifolds (M;, g;); which
converge to a complete non-compact Riemannian spin manifold (M, g) of the same dimension.

Definition 3.1. The sequence (M;,g;) converges to (M,g) in the sense of local C'-spin
convergence, if in M there are n-dimensional compact submanifolds (By)y with boundary such
that By C By for s <t and |J, By = M, and for all t and i there are maps ®;; : By — M; which
send By diffeomorphically to the image C;y = ®;+(By) preserving orientation and spin structure
such that the pull backs of the metrics converge in the C'-topology

@7, (i lc,.) 2 g, in CL

Let (K;)ien be a sequence or n-dimensional compact submanifolds of M with boundary such
that K; C K41 for all 4 and |J, K; = M.
For any i the distance to the boundary defines a function

di : Ki = R, z+— dist(z,0K;).
One can find R; > 0 such that {d; < R;} C K is open and d; is differentiable on {d; < R;}.
Definition 3.2. We call (€%;);5, a sequence of escaping sets for (M;); if

1. There is a sequence of submanifolds (K;)i>1 and a sequence R; > 0 as above such that
R; — oo for i — oo.

2. For any i there is ®; : K; — M, which maps K; diffeomorphically onto is image L; =
O, (K;) preserving orientation and spin structure such that for the quantity defined in (7)
it holds:

lim dgy (3 (9i |,) = 0.

3. For all i the set Q; is the closure of the complement of L;, i.e. Q; = M; \ L;.



Figure 1: escaping set €2;.

Obviously, L; and Q; C M; are n-dimensional compact submanifolds with boundary.

Condition 1. in Definition 3.2 is more restictive than it might seem at first glance. As the
gradient of a distance function has norm 1 - whenever defined - one has [grad 4d;|; = 1 on
{d; < R;} C K; for alli. Hence, {d; < R;} is foliated by hypersurfaces which are all diffeomorphic
to d; 1(0) = OK;.

We denote the Dirac operators of (M;,g;) and (M, g) by D; and D, respectively. As M is not
compact we cannot assume that D has a discrete spectrum. We set

o = inf ess spec(D?, M),
where inf () = oo, by definition.
The “small” eigenvalues of D? are those below o, in the following we will always denote them:
O<m <. <y <. <o

The only possible limit point of the small eigenvalues is 0. Therefore, for any ¢ < o there is only
a finite number of small eigenvalues below t.

Lemma 3.3. Let ();), be a sequence of escaping sets for (M;);.
For 0 < t < o with t € spec(D? M) we denote the small eigenvalues of D? by

0<m <...<uny<t.



Let 0 < pf < ... < /‘év(i) < t denote the D?-eigenvalues of K; with Dirichlet boundary conditions
below t. Then for sufficiently large i one has N(i) = N and for k=1,...,N:

lim 1, = pu.
1— 00

Proof. For ¢ € I'(M, g) we put: ||1/)||%{1(M) = [y {Iv]? + [Dy|?}. The sets K; = K;\ {d; < 1}
exhaust M, hence, we get for any L2-spinor ¢ € I'(M, g):

Zlirgo Hw”LQ(M\E) =0. (14)
For each i we choose some smooth function w;: M —R with 0<u; <1, [grad ju;|g <2 and u; =1

on f(vz and u; = 0 on M \ K;. By ¢ we denote the D?-eigenspinors corresponding to ju, k =
1,...,N. Then, there is a sequence ¢; with §; — 0 for i — oo such that for ¢ € span{e1,...,on}
with |||l z2(ary = 1 it holds:

l —uill, )y < /M (10 = i)l + (lgrad o (1 = wr) - ¢l + |(1 = ;) Dg])?)
2 12
< N(5+2t+t ) ]:Irll,a}fNHSD]HLQ(M\E)
< 4.
Hence, for arbitrary ¢ € span{¢, ..., on} we have shown:
1 = u)@llr, (ary < BillellF2ary- (15)

Now, u;¢ fulfills Dirichlet conditions on K;, and one has

||uiSDHH1(Ki) = HUWHHl(M) < HSDHHl(M) +[](1 - Uz‘)SDHH1(M) < 0.

Therefore, it makes sense to consider the Rayleigh quotient of u;¢ where ¢ € span{p1, ..., o}
and k € {1,....,N}:

D) 25, ID@)2a,

= 16
e, Moo, (16)
Using (15) and (16) we obain
ID(uiv)l? , .
N2y o 2V i+ < g + pi (17)

|IU¢90||2LQ(KZ,) - (V&)

for some p; > 0 with p; — 0. The min-max principle yields: ,u};, < pr + p;. By domain
monotonicity we get ,u}; > ug and N (i) < N, from which the Lemma follows. U

Next, the Dirichlet eigenvalues or K; and L; are compared. We use property 2. of escaping
sets and apply Corollary 2.4. For this we have to assume a uniform lower bound for the scalar
curvature of all K;.



Lemma 3.4. Let (K;); and (L;); be as in Definition 3.2. Let the scalar curvature of M be
bounded from below, i.e. scal; > —S for some S > 0. For 0 <t < o with t & spec(D?, M) let
the D?-eigenvalues of K; with Dirichlet boundary conditions be denoted by

0<pi<.. S/ﬁ'v(i) <t,

and let the D?—eigem;alues of L; with Dirichlet boundary conditions be denoted by

0

IN

Then for sufficiently large i it follows K (i) = N(i) = N and for allk=1,...,N:

lim (,uf,C — I/]ZC) = 0.

1—00

Proof. Let the distinct D?-eigenvalues of M which are smaller than ¢ be denoted by 0 < p;, <
. < pj, < t. For ¢ > 0 sufficiently small the intervals [u;, — 3¢, uj, + 3¢] are disjoint and
contained in (—oo,t) for all k =1,...,r. For large i Lemma 3.3 gives

; 2 ; Dirichlet 2 ; Dirichlet 2
dim E,; (D*, M) = dim E[ﬂjzrfi,ﬂikﬁ](D , K;) = dim E[MZCZ%E,ZMJF&](D JKG). (18)

Condition 2. of Definition 3.2 says that on K; the Riemannian metrics g |k, and ®7(g; |1,)
satisfy: dg|,. (®7(gi |r,)) — 0 and the associated spin structures are equivalent. As on K; the
scalar curvature is bounded from below by —S Corollary 2.4 gives for large 4:

: Dirichlet 2 . Dirichlet 2 . Dirichlet 2
dim By, 0+ (D7 Ko) < dim By o 0 o (D7 Li) < dim By 540 1ag (D KG). (19)

For large ¢ Corollary 2.4 also yields:

: Dirichlet 2 7 : Dirichlet 2 N
dim E[ij+2€7ﬂjk+172€](‘Di ) Ll) < dim E[,ujk +s,,ujk+1f€} (D ’Kz) =0.

Hence, for large i the operator D? on L; has no Dirichlet eigenvalues in [0, £)\U,.[11, —2¢, 5, +2¢].
For s ufficiently large i we get by (18) and (19): K (i) = N(i) = N and |u} — vi| < 3¢, from
which the Lemma follows. U

Theorem 3.5. Let (M;, g;) — (M, g) in the sense of local C*-spin convergence and let the scalar
curvature of (M, g) be bounded from below. Suppose for all k for which there is a k-th small
eigenvalue py, < o one has R(i) > k for sufficiently large i and lim;_, )\}'€ = ux. Then for any
sequence of escaping sets (§;); for (M;); it follows:

lim inf APkt (Q, D2) > 0.

1—00

Proof. We assume for some 7 < o:

lim inf AP M (Q; DY) = 7. (20)

1—00

We choose some t>0 with 7<t<c, t € spec(D?, M). Keeping the notions of Lemma 3.4 we denote
the Dirichlet eigenvalues of D? on K; by

10



and the the Dirichlet eigenvalues of Di2 on L; by
0<vf < < vk <t

Lemma 3.3 and Lemma 3.4 give for large i: K (i) = N(i) = N, where N denotes the number of
D2-cigenvalues of M being smaller than ¢, and Zlir& ph = px and ZIE& (py —vi) =0for k < N.
Hence, A A A

Tim (A, — ) = Tim (N — jug) + lim (ug — ) + Tim (s, — vj) = 0.

i—00 1—00 1—00 1—00
On L; we choose orthonormal eigenspinors !, ...,gp’}v associated to the eigenvalues vi, ...,V}V,
and on §; we choose some eigenspinor ¢ for the smallest Dirichlet eigenvalue 1. We extend
¢y, ...,% and ¥ by zero to get piecewise smooth spinors on M ¢ which have finite H;-norms
and which we will denote again by ¢, ..., o4 and 9. Now, supp(pt) N supp(y') C Ly is a zero
set for any k. Hence, the spinors ¢i, ..., cpﬁv, Y are mutually perpendicular with respect to the
L?-scalar product, in particular they are linearly independent. By assumption (20) for infinitely
many i one has v} < t. Hence, for infinitely many i on the (N + 1)-dimensional vector space
V= Spcm{goil, s Py, '} the Rayleigh quotient bounded by ¢, i.e. ||[Dio2, < t-|lo||2, for all
o € V*'. By the min-max principle one has at least N + 1 eigenvalues below ¢, which contradicts
the fact that N (i) = N for large 1. O

One also has a reverse of this.

Theorem 3.6. Let (M;,g;) — (M, g) in the sense of local C*-spin convergence and let the scalar
curvature of (M, g) be bounded from below. N

Let (£2;); be a sequence of escaping sets for (M;); such that ; = Q;U{d;o CIDZ._l < %} also gives
a sequence of escaping sets for (M;); with the property:

lim inf APehlet(Q; D?) > 0. (21)

1—00

Then for all k for which there exists a k-th small eigenvalue p, < o one has for sufficiently large
i: R(i) > k and lim \¢ = py.

Proof of Theorem 3.6. Consider t < o, t ¢ spec(D? M). Let M (i) denote the number of (D;)%-
eigenvalues of M; being smaller than ¢:

0 <A} <o < Xy <

By Lemma 3.3 and Lemma 3.4 we get K (i) = N(i) = N for large i and lim v} = .
1—00
We will show M (i) = N for large i and lim (A, — ) =0 for k =1,...,N.
1—00

First, we get rom domain monotonicity: A; < vj for all k, and hence M (i) > K(i) = N.

Next, we consider ky > N such that M (i) > k¢ for infinitely many i. W.l.o.g. we can assume

M (i) > ko for all i. We choose eigenspinors ¢}, with [|¢} || 12(as,) = 1 associated to the eigenvalues
153 A, - For any spinor ¢ on €; we set

Il = [ (ol? + Do) dvoly.
Q;

11



Proposition 3.7. Let k € N such that )\2, < t for all i. Then, for the associated normed
ergenspinors it holds

Tim [, ) = 0.

Before proving this proposition we will finish the proof of Theorem 3.6. We choose some smooth

functions v; : M; — [0,1] with v; |M,\S~2,E 1, v; |o,= 0 and |grad g4, v;|g, < 2, which is possible for

large ¢ because % > 2. Then, we get for ¢ € span{tt, ..., ¢t} with lellz2an) = 1t

k
e = il amy < 2- 19112, 6 <20 0 I, 6
j=1

Proposition 3.7 shows that this tends to zero as i — oo. Therefore, v;p has finite Hy(M;)-norm
and Dirichlet boundary conditions on L; are fulfilled. The same Rayleigh quotient argument as
in (17) yields some null sequence (p;);>1 such that for all k =1, ..., ko:

v <N+ pi. (22)

It follows that all v, ..., Vlio are smaller than ¢, and therefore kg < N and M (i) = N for any
sufficiently large i. Furthermore, (22) gives lim (At — i) =0 for all k = 1,..., N. O
71— 00

Next, we will prove Proposition 3.7.

We recall the notions from Definition 3.2: A non-compact manifold M is exhausted by compact
submanifolds with boundary (K;);. The distance to the boundary of K; is denoted d; : K; — R
and it is assumed that d; is differentiable on {d; < R;}. Using the diffeomorphisms ®; : K; — L;
we define some modified distance functions:

fiiLi—=R, fi=dio® "
Then, f; is differentiable on {f; < R;}. For 0 <r < s < R; we define
Ci(r,s) = f;l([r, s)).
As f; has only regular points in {f; < R;}, for 0 < r < R; the set f; '(r) C M; is a hypersurface.

Lemma 3.8. Lett > 0. Then one can find some null sequence (8;); s.t. the following holds:
Let A\ < t be a (D;)?-eigenvalue and let 1 be some associated normed eigenspinor on M;. Then
there is a v € [1, 2] such that:

2
L%, -1,y < i and
2. HDiwuiQ(fi_l(r)) + ”wHiQ(ffl(r)) <0

Proof. Given 1 and i, we set F' = [1)|? 4 |Ds1p|?. From X < t it follows:

/ Fdvolg, <1+t.
M

K3
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Let I; denote the smallest integer below (% —1). Then, for I =0, ...,; the sets C;(2l,2( + 2) are

well defined. For | we set B; = / F dvoly, and get:
C;(21,2142)

l;
ZBlg/ F dvoly, g/ Fdvoly,, <1+t.
=0 Ci(0,73) M;

Therefore, there exists some m € {0, ...,[; } satisfying B,, < Ht . As f; is a differentiable function
on C;(2m,2m + 2) the coarea formula (see [C84, Chap. IV. ]) yields:

2m+-2 F
B, :/ F dvoly, :/ dr/ ———— darea,.
Ci(2m,2m+2) 2m, 1) lgrad g, filg;

From this we conclude that for some r € [2m + 1,2m + 2) C [1, %] one has

F 1+t
/ ——— darea, < it . (23)
AR |gradg¢fi|g¢ li

Now, d; is the Riemannian distance with respect to g, it is differentiable on {d; < R;}, and
therefore we get: \gradgdi]g = 1. We consider the endomorphisms A; of TK; as in (1), being
self adjoint with respect to g and satisfying g(A4; X, 4;Y) = ®7g(X,Y"). Then, we get:

‘Az grad ‘:ngidi‘g = ‘grad @;‘gidi

Brg; = |grad gifi|gi and
grad 4d; = (AZ-)2 grad oz4,d;.
This gives the following pointwise estimate on C;(0, R;):
‘1 — gradngl ‘ “ grad org;d; ‘ |A,~ grad <I>;‘g¢di‘g‘
< |[(id = A7Y) - (Ai)? grad o, di]
< [lid = A7, - |(A)* grad erg,di]
< dg|y, (®7(gi |1.)) -

1- < g; for all 7.

Therefore, there is some null sequence (g;); such that sup

1
C;(0,Ry) |grad gifi|9i

We define §; = lltt . 1%5, For i — oo this converges to 0 because R; and I; i — oo tend to oo.
One gets
/ Fdvoly, < By, < L < 6;.
Ci(r—1,r)
The inverse triangle inequality gives m > 1 —¢g;. Combined with (23) this yields:
gi;J
F
/ F darea, < 1—15- / ————— darea, < 6.
) C e lerad g, filg:

13



Proof of Proposition 3.7. For a normed eigenspinor 1/)1%g there is some T,i € [1, %] with the prop-
erties 1. and 2. in Lemma 3.8. The set X} = Q; U C;(0,7},) C M; is a smooth submanifold with
boundary fi_l(r,i). Let v denote the outward unit vector field. Then, by Green’s formula (see
e.g. [B90, p.5]) we get:

/ DL = /
X X

where scalar product, norm, volume, integral and Clifford multiplication are taken with respect
to g;. The Cauchy-Schwarz inequality and property 2. of Lemma 3.8 yield:

‘/w&%ﬁ—%/wﬁf
X Xk

(v + [ vk D),

i
k

/f_l( l)<ywllc7D2¢IZc>
i g

1 1
2 2
(/fl“)lezP) -(/fl(i)wm?) < 3.
i \Tk i g

7

IN

We assume that there exists some positive constant ¢ and a subsequence (1/1%) j such that

| i ze>o (24)
XJ
k
. 1 fxi DR j .
Setting p; = ¢ - §; we get: TR < X, + pj for all j.
Xk

We choose a smooth function wu; : M; — [0, 1] vanishing on M; \leg and being constantly 1 on
Q;UC;(0,ry —1) with |grad g,u;[g; < 2. Then, ¢} = u;i} satisfies Dirichlet boundary conditions
on X; and its Hi-norm is finite. Using property 1. in Lemma 3.8 we find a null sequence (1;);
such that . ,
fxi |Dje|? fxi | D]

T VAP = T WP

+n; < AL+ nj + pj.

It follows that for large j the first Dirichlet eigenvalue of X,z is smaller than ¢t. On the other
hand, X,i C Q; and by domain monotonicity we get:

1mnﬁAPmmm(X§u%f>zlmnﬁAPmmm(ﬁﬁa%f>za>ﬁ,

j—00 im in
which yields a contradiction. Hence, (24) is false, and we have proved the desired result:
||¢12||§{1(Qz) <(1+t)- H%Z“H%?(X;C) imoo g
O

The next theorem gives a criterion for the convergence of Dirac operators in the sense of (A, ¢)-
spectral closeness. We will apply this to hyperbolic degenerations in the following sections.

14



Theorem 3.9. Let (M;,g;) — (M, g) in the sense of local C*-spin convergence and let the scalar
curvature of (M, g) be bounded from below. _
Let (€;); be a sequence of escaping sets for (M;); such that Q; = Q; U{d; o <I>i_1 < %} also gives
a sequence of escaping sets for (M;); with the property:

lim inf APPriehlet(Q, D?) > 0.

1—00

Then for all e > 0 and A > 0 with +A & spec(D, M) and A?> < o and for all sufficiently large i
the Dirac operators D; and D are (A, e)-spectral close.

Proof. By Theorem 3.6, for large i the total multiplicities of eigenvalues in [—A, +A] is the same
for D and D;. The Dirac operator D on M is defined as the closure of its restriction to smooth
spinors with compact support. Therefore, for each eigenvalue A\ one can find a smooth compactly
supported spinor 1 on M such that

||(D*>\)¢||L2(M) 5
— T < £.
||¢||L2 (M)

Then one identifies ¢ with a compactly supported spinor ¢; on M;. Condition 2. in Definition
3.2 and Proposition 2.4 imply that for large i one has

1(Di=N)ep; “LQ(MH
”SOHLQ(MN

from which the claim follows. O

4 Hyperbolic manifolds of finite volume

In this section we will recall the structure of complete hyperbolic manifolds with finite volume
and hyperbolic degenerations. A thorough treatment of this subject can be found in [T80], a
shorter description is given in [CD94] and in [B0O].

Let (M, g) be a complete hyperbolic manifold, i.e. M has constant negative curvature —1. For
6 > 0 we define the §-thin part of M:

Ms ={x € M | injrad (z) < 6}
where injrad denotes the injectivity radius. The complement Mg s = M\ Mjs is called the §-thick
part of M.

For small 6 > 0 the -thin part of an n-dimensional complete oriented hyperbolic manifold M
of finite volume is a disjoint union of a finite number of cusps:

M5 = U 5j
j=1,...k

such that for any j one has a compact connected manifold Nj carrying a flat metric gy, such
that the cusp is £ = N; x [0,00) with a warped product metric gg; = e 2 “gn; + dt?.

In dimensions 2 und 3 non-compact complete oriented hyperbolic manifolds (M, g) of finite
volume can be approximated by compact hyperbolic manifolds (M, g;). In dimension 2 this is

15



Figure 2: decomposition into é-thin and §-thick part.

due to Teichmiiller theory and in three dimensions this is true because of Thurston’s cusp closing
theorem. Such sequences of compact hyperbolic manifolds are called hyperbolic degenerations.
The structure of the approximation (M;,g;) — (M, g) is the following.

First, we describe the 3-dimensional case: For small § > 0 let Mg = My denote the d-thick
part of M. The é-thin part consists of cusps 5{5 s eeny Eg. For the compact manifold M; we get the
decomposition into é-thick and J-thin part:

M; = My U Ty,
j

where each TZ-‘?]» is a closed tubular neighbourhood of radius Ri ; about a simply closed geodesic
7vij in M; whose length is I; ; = L[v; ;]. The boundary Ni‘s’j = BTi‘fj is a flat torus.

There are diffeomorphisms <I>§s : Mg — Z\Ii‘s0 between compact manifolds with boundary such
that the pull back metrics converge in the C''-topology:

(®?)*(‘gi’M—f50) — g!M—g for 1 — 0.

For i — oo the lengths of the geodesics tend to zero and the radii of the tubes tend to infinity:
l;;; — 0 and Rfj — 00. Each tube degenerates into one cusp.

In two dimensions it is possible to find even continuous degenerations: We consider the Teich-
miiller space of a closed surface of genus at least two. Hyperbolic degenerations correspond to
paths in the Te ichmiiller space converging to the boundary. For each sequence (M;, g;); on such
a path with limit point (M, g) the structure of approximation is essentially the same as in the
3-dimensional case: For each small § > 0 we get a decomposition of M;:

M; =M, 0 |J T
=1,k

16



where again the Tz‘?j are closed tubular neighbourhood around simply closed geodesics v; ; with
length l; ; = L[v; j]. The boundary of such a tube consists of two disjoint circles: aT;fj = Stust.
For i — oo the lengths of the geodesics tend to zero and the radii of the tubes tend to infinity:
l;,; — 0and Rg ; — 00. Here each tube degenerates into two cusps. The thin-thick decomposition
of M for small ¢ is: )
M=MU |J &
j=1,....2k

And again there are diffeomorphisms <I>§S : ﬁg — M z‘60 such that for i — oo one obtains
(@f)*(gz‘m) — g\M—g in the C''-topology.

For any degeneration there is §g > 0 such that for each § < §y one can find such diffeomorphisms
(®9):.

As we want to compare the associated Dirac operators we will from now on assume that all
manifolds M; and M are spin and that all diffeomorphisms @f respect the spin structures. This
means we consider the case that the hyperbolic degeneration converge in the sense of local
Cl-spin convergence.

One observes that then there exists a sequence of escaping sets such that the ecsaping sets are
finally contained in the d-thin parts (see [P03]):

Lemma 4.1. Let (M;,g;); — (M,g) be a hyperbolic_degeneration in dimension 2 or 3. Then
there is a sequence of escaping sets (€;); such that Q; = Q; U {d; o <I>;1 < %} gives again a
sequence of escaping sets and for any § < &y one gets for sufficiently large i:

J

In order to apply theorem 3.9 we need lower bounds for the Dirichlet eigenvalues of the square of
the Dirac operator on €2;. We will derive estimates for the tube TZ‘?] and use domain monotonicity.

5 Dirac operators on manifolds foliated by hypersurfaces

As described above the d-thin parts consist of tubes and cusps. All cusps and all 2-dimensional
tubes are warped products. After removing the central geodesic any 3-dimensional tube is
foliated by tori. This is the reason why one is interested in foliations by hypersurfaces in this
context.

Let M be a Riemannian spin manifold of dimension n foliated by oriented hypersurfaces {N}.
Any spin structure on M induces one on NN in a natural way: We denote the normal unit vector
field of the foliation by v, the associated form operator by B, i.e. B(X) = —Vxv, and the mean
curvature by H = - tr(B).

We restrict the spinor bundle XM to a hypersurface N, we have to distinguish two cases: For
n odd XM |y is just the spinor bundle of N, and for n even XM |y is isomorphic to XN & XN,
the sum of two copies of the spinor bundle of N. The Clifford multiplication with respect to N
is given by

XQp— X -v-p,

17



where “” denotes the Clifford multiplication with respect to M.

The spinorial Levi-Civita connections VM and V¥ of M and N are related by the following
formula: Let X be a tangential vector of N and let ¢ be a section of ¥ M|y, then one has ([B96,
Prop.2.1)):
VX =Vie+3B(X) v e (25)
Let DM be the Dirac operator of M. For odd n let DV denote the Dirac operator of N and
for even n let D™V denote the direct sum of the Dirac operator of N and its negative. Then DV
acts on sections in X M|y and one gets the following relation between D™ and DV (see [B96,
Prop.2.2)):
DMpo=v.-DNo -2 Hp+VMy  for el (EMy). (26)

Furthermore, we define the operator ® acting on sections ¢ of YXM|y as follows: For some
orthonormal frame ey, ...,e,—1 of T, N we set

n—1 n—1
D0l = Zei v Vg(ei)go = ZB(ei) ‘v Vggo.
i=1 i=1

Applying the hypersurface formula (26) twice and identifying all occuring terms one gets the
following formula for foliations:

Proposition 5.1 ([B00], Prop. 4). Let M be an n-dimensional Riemannian spin manifold
foliated by oriented hypersurfaces {N}. Then it holds:

(DM)? = (DY) = (V)1 =DP + (n-1)H V) +Vy,,

—2-d (grad yH) - v — @HZ + %|B|2 — v Ric(v).
Here grad yH denotes the gradient of H along N, Ric is the Ricci tensor of M and |B| denotes
the Hilbert-Schmidt norm of B, i.e. |BJ?> = zj A?, where A1, ..., \n_1 are the eigenvalues of B.

Next, we will state Béar’s results on the Dirac spectra of hyperbolic degenerations. The depen-
dence on the spin structure is crucial.

Definition 5.2. Let M be a complete non-compact hyperbolic manifold of finite volume, and let
E =N x[0,00) be a cusp of M. A spin structure on M is called trivial along & if the induced
Dirac operator DY on N has a non-trivial kernel.

Theorem 5.3 ([B00], Thm. 1). Let M be a complete non-compact hyperbolic manifold of
finite volume equipped with a spin structure.
If the spin structure is trivial along some cusp of M the spectrum of the Dirac operator is

spec(D) = ess spec(D) = R.

Otherwise, if the spin structure is non-trivial along all cusps the Dirac operator has a discrete
spectrum.

For any self-adjoint operator A with discrete spectrum we define the eigenvalue counting function
Na(—z,x) = #((—z, z) N spec(A)) for x > 0.

Now, we consider hyperbolic degenerations (whose identification maps <I>§S respect the spin struc-
tures). If the limit manifold has Dirac spectrum R one expects a clustering which can occur in
dimension 2. Whereas in the 3-dimensional case there is no clustering:

18



Theorem 5.4 ([B00], Thm. 2 and 3). 1. Let (M;);>1 be a 2-dimensional hyperbolic de-
generation such that the spin structure of the limit manifold is trivial along all cups. Then,
for the associated Dirac operators D; the following holds for any x > 0:

k
4
Np,(—z,x) = Fx Zlog (%) + 0,(1) for i — 0
i=1

where l; ; denotes the length of the closed geodesic inside the tube Ti‘fj.

2. For any 3-dimensional hyperbolic degeneration the spin structure of the limit manifold in
non-trivial along all cusps. The Dirac spectrum of the limit manifold is discrete and one
gets for the Dirac operators D; for any x > 0: Np,(—z,z) = O(1) for i — oo.

We will cover the case of a discrete limit spectrum and we will show that the spectra converge
in the sense of (A, e)-spectral closeness.

6 Lower eigenvalue bounds for hyperbolic tubes

The geometry of distance tubes of closed geodesics in hyperbolic manifolds of dimension 2 and
3 is well understood. In this section we will derive estimates for the Dirichlet eigenvalues of the
square of the Dirac operator on such tubes.

6.1 The 2-dimensional case

In dimension 2 any distance tube is a warped product T[0, R] = [~ R, R] x S! with the metric
ds® = dr?+1? cosh?(r)d#? where € S' = R/Z and [ is the length of the simply closed geodesic 7.

————

Figure 3: distance tube T[0, R] for a simply closed geodesic 7.

Hence T[0, R] is foliated by circles N = S'. The normal unit vector field is v = % and
for the corresponding shape operator B one gets B(%) = —tanh(r)%. Therefore, we have

|B|? = tanh?(r) and H = —tanh(r) and, in particular, grad yH = 0. Furthermore, VMv = 0
and Ric = —id. Plugging all this into the formula of proposition 5.1 we obtain:

(DM)?2 = (D)2 = ©F — (V)1)? — tanh(r) V2 + L tanh?(r) — 3. (27)
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For spinors ¢ on T'[0, R] C M we compute using the Leibniz rule:

vﬂ”vy <\/COSh(’I“) gp) = cosh(r) ((% - i tanhQ(r))go + tanh(r)vygo + v]yvﬂ%) .
Defining By = ———~— <VMVM ( cosh(r) go)) we get by (27):
y/ cosh(r) v

(DM)? = (DV)? — DF) + ®.

Let ¢ be a spinor field on T'[0, R] satisfying ¢ |ar(0,zj= 0. The volume element of T'[0, 1] is given
by dvol = [ cosh(r)drdf. Then we ge by performing a partial integration with respect to r and
by noticing that the term |VM/cosh(r)y|? is non-negative:

+R
(B ooy = =1 [ a0 [ (0TI ok, ook dr

> l/sl do /;R ( - % (VM /cosh(r)e, \/COSh(T)g0>)dr

= - /S1 do ((Vl],\/[ \/cosh(r)p, Jcosh(r)gp)tﬁ) =0. (28)

Hence,

2

HDM(PHLQ(T[O,R}) = (p, (DM)2<P>L2(T[0,R}) > (¢, ((DN)2 - QB) <P>L2(T[0,R]) . (29)

Denoting the circle {r} x S' by T, we notice (D7) = (V1r)*VT" as the induced metric on
. 2 2
T, is flat. For T, we have |B| = [tanh(r)| < 1 and therefore H@B@HLQ(TT) < HVTMpHLQ(TT) -
1%
L2(Ty)"
We denote the smallest (D7)2-eigenvalue by p, and get:
(DT> =DP) ) 12(1,) > ”DTT(:OH%Q(TT) — D™ @l 2 - lell2(r)

> (e = Vi)l 227, -

As r+— p, is decreasing on [0, R] and increasing on [—R, 0] integration with respect to r yields

(D) =27) o) r2(rio ) 2 (nr = ViRl Z2 0.1

where we have used that © — x — \/x gives an increasing function on [1,00). Using (29) we
have proved the following:

Proposition 6.1. Let T be a distance tube of a simply closed geodesic in a 2-dimensional
hyperbolic spin manifold M. Let i denote the smallest eigenvalue of the square of the induced

Dirac operator on the boundary OT. Then for any smooth spinor field ¢ on T with ¢ |gr=0 it
holds:

IDY el 220y = (= VB - ]2 0. (30)

The proof given above works only for = pur > 1. But we notice that (30) is trivially true for
ur < 1 because the right hand side is non-positive in this case.
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6.2 The 3-dimensional case

Let T'[0, R] denote a distance tube of radius R for a simply closed geodesic v in a hyperbolic
3-manifold M. For 0 < 7 < ry < R we set T'[ry,ra] = {z € M|r; < dist(z,y) < ra}. The
geometry of T'[0, R] is well understood (see [CD94, section 2]): We consider a geodesic 7 in the
3-dimensional hyperbolic space H? with |%7| = 1. Let T denote the distance tube of radius
R around 7. We choose a parallel vector field V' along 7 which has constant length 1 and is
perpendicular to 4. The corresponding Fermi coordinates are given as follows: Let r denote the
distance to ¥, and let t denote the arc length along 7. Define § € S! as the angle taken with
respect to V' in the unit circle perpendicular to 7. In these coordinates the hyperbolic metric is
given by: ggs = dr? + cosh(r)? dt? + sinh(r)? d6?.

4
/

AT

Figure 4: Fermi coordinates for T C H3.

Now, A: (r,t,0) — (r,t+ L[], 0 + ) defines a decktransformation for T'[0, R] where L[v] is the
length of v and « is a fixed angle. Then we get T'[0, R] as quotient T'/(A).

For 0 < r < R the distance tori T, = {& € M |dist(z,7)} define a foliation of T'[0, R] \ {~v}.
The associated normal unit vector field v is given by % For the shape operator B we compute:
B(%) = —coth(r)% and B(%) = —tanh(r)%. Hence, the mean curvature of T, is given by
H = —1 (tanh(r) + coth(r)) = — coth(2r) and consequently grad yH = 0. Furthermore, we get
|B|> = tanh(r)? 4 coth(r)? = 2 (2coth(2r)? — 1) and Ric = —2 - id. We plug all this into the
formula of proposition 5.1 and obtain:

(DM2 = (DN)? — 2P — (VM)2 — 2coth(2r) VY + coth(2r)? — 2.
For any spinor field ¢ on {r > 0} the Leibniz rule yields:

vMygM ( sinh(2r) 1/)) = 4/sinh(2r) ( (2 — coth(2r)?) 1 + 2 coth(2r) VM + vi”vﬂ%)

Setting B = _\/ﬁTﬂ <V¥Vﬂ4 ( sinh(2r) 1/1)) for spinors ¢ on {r > 0} we get:

(DM)? = ((DV)? - DB) + . (31)

Now, we consider a spinor ¢ on 7’0, R|] which vanishes on 07T'[0, R] = Tr. We fix K € (0, R)
and write:

IDY 01122 p0.m)) = (2 (DM)20) L2(ri0,x1) + {25 (DM)?0) L2 (116, -
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Next, we want to provide a lower bound for (¢, (DM)Q@L?(T[K,R})-

By the definition of D we have |DBy| < |B| - |V ¢|. By the Weitzenbock formula we obtain
HVNSOH%%TT) = HDNSDH%%TT) as N =T, is a flat torus. Consequently, for r € [K, R] one gets
|B|? = 2(2coth(2r)? — 1) < 4coth(2K)? and hence:

19501227, < 4coth2K)? [DV |2 s,

Let p, denote the smallest eigenvalue of the square of the induced Dirac operator on 7,. It
follows:

{0, (D) =DP) ) 21,y = (1 — 2v/r c0th(2K) (|0l 72(1, -
As the Dirac eigenvalues of flat tori are explicitely known (see [Fr84]) one can show that 7 +— f,

is monotonic decreasing on [K, R] (see [B00, Lemma 2]). Assuming pgr > 4 coth(2K)? we have
tr — 2y/pir coth(2K) > pugr — 2/fig coth(2K) for all r € [K, R] and therefore:

(o, (DY) = D7) @) o (rii,m)y = (R — 2v/BR coth(2K)) (10122 1.y, - (32)
Then, we consider (¢, B¥) 2 (1, R])-

In Fermi coordinates the volume element is dvoly; = %sinh(Qr)dr dt df. We perform a partial
integration with respect to 7, notice that the term |VM,/sinh(2r)p|? is non-negative and get

R
(0, Bo) 21K, R) = %/(9) d(t@)/K (VI /sinh(2r) ¢, \/sinh(2r)p)dr
t

N . R
> —% /(t,e) d(t,0) [(Vy \/smh(ZT)QD, \/Slnh(27")80>] X

_ 1 / d(t,6) (VM \/Smh(2r)p, /sinb(2r) )
(t6)

r=K

= %/(t 0 d(t, ) (Sinh(2K)<Vﬂ/1gp, ©) + COSh(2K)|Sp|2)

= [ e + com@R)lplan, (33)
K

as dvolr, = %sinh(QK )dt df in these coordinates.
Combining (32) and (33) and assuming again ug > 4 coth(2K)? we get by (31):

(0, (D) sy > (pr = 2v/BR coth(2K)) @l 72 ik a1

+ [ (9 ee) + coth @) el (39
K
To treat the term (p, (D™)2¢p) r2(7(0,K]) We use the Weitzenbock formula once more, here the
scalar curvature is scalpy; = —6, and we get:
(0, (Do) ooy = (0 (VM) VMO p2 0,57 — 2||80||L2 T(0,K])

IV elscrony = [ (V2000 — olacroy-

Tk

22



This and (34) implies the following, again under the assumption pg > 4 coth(2K)?:

(@, (DM)20) La(rio,r)) > (R — 2v/Br coth(2K)) ol 22 (e m)y — 310072 (0.5

+(vM ‘pHLQ(T[O,K]) + COth(QK)H<PHL2(TK) - (35)

In the next step we will will find a lower bound for the last two terms in (35) by means of
]2 (Tl0.5]): For this we consider p € (0, K), write <pH%2(T[p7 ) I Fermi coordinates and
perform a partial integration:

[ o=t
T[p, K] (t,0)

)

K
d(t79)/ dr |¢|? sinh(2r)
P
= i/ d(t,@)((\<p\2(K) cosh(2K) — |¢|*(p) cosh(2p))
(t.0)

K
—/ dr(?l,|g0|2cosh(2r))

p

K
= —%/ dy|p)? coth(2r) + %/ d(t,@)/ dy||? cosh(2p)
T(p,K] (¢,0) p
+1 / d(t,0) |¢|*(K) (cosh(2K) — cosh(2p)) .
(t,0)

Defining  f,(r) = W for p > 0 this can be rewritten as

2_1r (K 2_1 |02, 36
/T el =5 509) /TKM ! A e (36)

We observe that f,(r) is monotonic increasing in r and monotonic decreasing in p, which gives
lin%] fo(r) =0. As lim coth(r) = oo there exists some Ky > 0 such that for any K € (0, K] the
7T T—00

following holds:

coth(2K) > coth(2Kp) > 1 and f,(K) < fo(K) < 1 for any p > 0. (37)

As %‘8,,|g0|2{ < VM| |p| the Cauchy-Schwarz inequality yields

2
G ’ r) VMol | - ) el ] .
</T[p,m2fp”a“'*”'> S(/TM £,V 90|> ( [ . fp()|s0|>

Taking the square root and using f,(r) < f,(K) for r < K this shows that

[ 50 uel] < 2,() 19 sy Il 2 iy
T[p,K]
We combine this and (36) and let p — 0 to get

”<P”L2 ri0,kx)) < Jo(K) H“PH%Q(TK) + 2 fo(K) el 2 (rjo,x7) - ”VM@HL?(T[O,K])- (38)

To proceed we need an elementary lemma.
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Lemma 6.2. Let £,n,(, f > 0 such that

E<f n+2f VENVC (39)
Then it holds: E<2f-(n+2f-Q).

Proof. By (39) we get (\/E—f-\/Z)z25—2f-\/§-\/z+f2-g§f-77+f2-C.Wetakethe
square root |\/€ — f-+/C| </ f-vn+ f-C and obtain v < VF- (Vn+F-C+VFC). We

square this and use that (z + y)? < 2(22 4 y?) for all 2,y € R to finish the proof. O

Let 0 < K < K( with Ky as in (37). Then from Lemma 6.2 and from (38) it follows that

IN

H@H%Q(T[O,K]) 2fo(K) - (H“PH%Q(TK) + 2fO(K)HvM(PH%2(T[O,K})>

< 2fo(K) - (COth@K)H@H%?(TK) + HVMSDH%Q(T[O,K}))

and, hence, coth(2K) 122 ) + 1V 6122 000 sy 2 27705 101220100

This is a lower bound for the last two terms in (35) and we have proved the following:
Proposition 6.3. Let T be a distance tube of radius R around a simply closed geodesic in a
3-dimensional hyperbolic spin manifold M. The boundary 0T is a flat torus, and let u denote
the smallest eigenvalue of the square of the induced Dirac operator of OT. Let K € (0, R) with

K < K where Kg is as in (37), and let u > 4coth(2K)?. Then for every smooth spinor on T
satisfying Dirichlet boundary conditions it holds:

1DY 6 rio ) 2 1 = 2/ coth KO [l ri.

sinh(2K
+3 (cosh(Z(K_)ll - 3) 1172 ¢r0.57) -

7 Proof of Theorem 1.2

We will apply Theorem 3.9 with o = inf ess spec(D?, M) = oo as the spectrum is purely discrete.
The limit manifold M is hyperbolic, its scalar curvature has a lower bound.

We consider the sequences of escaping sets (€2;); and (€2;); of Lemma 4.1. We have to show that
for any arbitrarily large 7 > 0 it holds:

ADirichlet . D2y >+ for all sufficiently large i . (40)

For all § < g lemma 4.1 gives Q; C U TZ-‘?]» for sufficiently large ¢, and by domain monotonicity:
J

)\Dlmchlet (Q D2> > )\Dzrzchlet U]vf]’ D2 — min )\Dzrzchlet <T'25J,D2)
J

To prove (40) we have to find a small § > 0 such that for all j = 1,...,k and for all sufficiently
large i we have

o
)\Dlmchlet(th s D2) T (41)

24



First, we will prove (41) for the 2-dimensional case: The function z — = — \/x is monotonic
increasing on [1,00) and tends to co for z — co. Hence, there is 29 > 1 such that © — \/z > 7
for any x > zg. If we have found a small § > 0 such that the first eigenvalue of the square of
the induced Dirac operator on 8T£j is larger than xg for all j and all sufficiently large ¢ we get
(41) by applying Proposition 6.1 and a Rayleigh quotient argument.

We can find such a § by the following observation: Let the cusp & = N x [0, 00) carry the warped
product metric ge = e~ %! gy + dt? and let the spin structure along £ be non-trivial. Then we get
for the smallest eigenvalue u; of the square of the induced Dirac operator on the leaf N x {t}:

lim py = oo.
t—o0

For any cusp there exists t© > 0 such that for all leaves N x {t} with ¢ > ¢ the smallest
eigenvalue p; is bigger than zy. For small § the boundary of the d-thick part Mg of M is the
disjoing union of such leaves. If § is sufficiently small the corresponding parameter t is larger
than t©. As the pull back metrics of the d-thick parts Mz‘é,o of the compact manifolds converge
in the C'-topology one gets also the convergence of the pull back metrics of the boundaries
3M§0. By Corollary 2.5 the smallest eigenvalues of the square of the Dirac operator of aM;fO
converge to the smallest eigenvalue of the square of the Dirac operator of 9MZ, and therefore
these eigenvalues are larger than xg for i sufficiently large.

sinh(2K)
cosh(2K)—1
decreasing on (0,00) and tends to oo for K — 0. Therefore, there exists a K; € (0, Ky) such

that )
1 inh(2K
2 (COSSIE(ZKl)l—l - 3) > T

As lim, o, (x — 24/ coth(2K7)) = oo we can find an zy with (x — 2y/x coth(2K7)) > 7 for
all x > xp. In analogy to the 2-dimensional part there is § > 0 such that for all j and for
all sufficiently large ¢ the first eigenvalue of the square of the Dirac operator of aT;fj is bigger
than zo and also bigger than 4 coth(2K7)2. For i — oo the radii of the tubes TZ-‘?]» tend to oo,
hence, for sufficiently large i they are bigger than K. By Propositon 6.3 we get for all j and
all sufficiently large i:

In the 3-dimensional case we proceed in a similar way: The function K — is monotonic

“DMi90|’i2(Ti§j) > T H@Hi?(ng)a

for any smooth spinor ¢ on Ti‘?j, which implies (41). O
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