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1 Introduction

The question under consideration in this article is whether the convergence of manifolds implies
the convergence of the spectra of their corresponding natural differential operators. This question
has been studied by many authors for the Laplace operator; in particular for collapsing manifolds
and hyperbolic degenerations. For the collapse of manifolds the behaviour of the Dirac spectra
has been studied by Ammann and Bär in [AB98], by Ammann in [A98] and in great generality
by Lott in [L02].

Here we will consider the degenerations of compact hyperbolic manifolds Mi to a non-compact
hyperbolic manifoldM . Such sequences (Mi)i exist only in dimension 2 and 3, due to Teichmüller
theory and Thurston’s cusp closing theorem (see e.g. [G81]). The Laplace operator of the
limit manifold has an essential spectrum [σ,∞) and possibly there are some discrete “small”
eigenvalues below σ, where σ = 1

4 in the 2-dimensional case and σ = 1 in the 3-dimensional
case. Colbois and Courtois show in [CC89] and in [CC91] that the small eigenvalues of M are
the limits of the smallest eigenvalues of the approximating manifolds Mi. The eigenvalues above
σ get denser and denser during the degeneration; one has a clustering, and Ji (in [J93]) and
Chavel and Dodziuk (in [CD94]) compute the accumulation rates.

For Dirac operators one also has to take the spin structure into account. In [B00] Bär obtains
the following results: Depending on the spin structure the Dirac operator D of a complete
non-compact hyperbolic manifold with finite volume has either a discrete spectrum or it holds
spec(D) = ess spec(D) = R. If one supposes degenerations Mi → M with compatible spin
structures it turns out that for 3-dimensional degenerations M has to have a discrete Dirac
spectrum, and there is no clustering. For 2-dimensional degenerations a continuous limit spec-
trum is possible, and Bär computes the accumulation rate in this case.

We will show the convergence of the Dirac eigenvalues in the case of a discrete limit spectrum.
For this we will use the notion of (Λ, ε)-spectral closeness (compare [BD02]):

Definition 1.1. Let ε > 0, Λ > 0. Two self-adjoint operators are called (Λ, ε)-spectral close,
if

1. In the intervall [−Λ,Λ] both operators have only discrete eigenvalues and no other spec-
trum, and ±Λ are not eigenvalues of either operator.
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2. Both operators have the same total number m of eigenvalues in (−Λ,+Λ).

3. If the eigenvalues in (−Λ,+Λ) are denoted by λ1 ≤ ... ≤ λm and µ1 ≤ ... ≤ µm respectively
(each eigenvalue repeated according to its multiplicity), then |λj − µj| < ε for j = 1, ...,m.

Our main result is:

Theorem 1.2. Let (Mi)i≥1 be a hyperbolic degeneration in dimension 2 or 3 such that the limit
manifold M has a discrete Dirac spectrum. Denote the Dirac operators on Mi and M by Di

and D respectively, i ≥ 1, and let ε > 0 and Λ > 0 with ±Λ 6∈ spec(D).
Then for all sufficiently large i the Dirac operators Di are (Λ, ε)-spectral close to D.

This article is organized as follows: In section 2 we will study the identification of spinors for
different Riemannian metrics. In section 3 we will modify Colbois’ and Courtois’ method of
escaping sets (see [CC91]) for the square of the Dirac operator. This will provide a criterion for
the convergence of the small eigenvalues: One has to check that the Dirichlet eigenvalues of the
escaping sets get sufficiently large during the degeneration process. In section 4 the structure
of hyperbolic degenerations is described, and in section 5 Bär’s formula for Dirac operators on
manifolds foliated by hypersurfaces is recalled. We will use this in section 6 to derive some lower
bounds for Dirichlet eigenvalues of the square of Dirac operators on hyperbolic tubes, which
enables us to prove Theorem 1.2 in section 7.

2 Identifying spinors for different metrics

In this section we will briefly describe the identification of spinors for different Riemannian
metrics and we will compare the Rayleigh quotients for the corresponding Dirac operators.

One can define a spin structure for an oriented manifold Mn without using Riemannian met-
rics (see [BG92]): Let GL+(M) denote the GL+(n)-principal bundle of oriented frames of the
tangent spaces. A spin structure of M is a reduction π : G̃L+(M) → GL+(M) to a G̃L+(n)-
principal bundle, where G̃L+(n) is the connected twofold covering group of GL+(n). Given a
Riemannian metric g on M the SO(n)-principal bundle of oriented orthonormal frames is de-
noted by SO(M,g). Then π−1(SO(M,g)) → SO(M,g) gives a reduction to a Spin(n)-principal
bundle, i.e. a spin structure in the usual sense ([LM89]). We consider two Riemannian met-
rics g and g′ on a compact spin manifold Mn with (possibly empty) boundary. To describe
the spinor identification given in [BG92] we will follow the presentation in [AD98, section 2.2]:
There is a unique endomorphism of the tangent bundle B such that g(BX,Y ) = g′(X,Y ) and
g(BX,Y ) = g(X,BY ) for all X,Y . Let A : TM → TM be the positive square root of B:

g(AX,AY ) = g′(X,Y ) and g(X,AY ) = g(AX,Y ) for all X,Y. (1)

This induces an SO(n)-equivariant bundle isomorphism:

A : SO(M,g′) −→ SO(M,g), (e1, ..., en) 7−→ (Ae1, ..., Aen).
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If one has a fixed spin structure on M one gets a lift to the Spin(n)-bundles

Spin(M,g′)

��

A
// Spin(M,g)

��

SO(M,g′)
A

// SO(M,g)

This induces an isomorphism of the spinor bundles A : Σ(M,g′) −→ Σ(M,g) which is a fibrewise
isometry and is compatible with Clifford multiplication: A(X · ψ) = A(X) · A(ψ) for X ∈ TpM
and ψ ∈ Σp(M,g′). Let ∇ and ∇′ denote the Levi-Civita connections for g and g′. We introduce
a third connection ∇ by setting

∇ZX := A
(
∇′
Z(A−1X)

)
.

∇ is compatible with the metric g, and its torsion is:

T (X,Y ) = ∇XY −∇YX − [X,Y ] = (∇′
YA)A−1X − (∇′

XA)A−1Y. (2)

Using Koszul’s formula one computes:

2g(∇XY −∇XY,Z) = g(T (X,Y ), Z) − g(T (X,Z), Y ) − g(T (Y,Z),X). (3)

We choose a local g-orthonormal frame (ei)i, i.e. a local section of SO(M,g). For ∇ and ∇ the
corresponding connection 1-forms are given by ωij = g(∇ei, ej) and ωij = g(∇ei, ej). From (3)
and (2) we derive:

|(ωij − ωij) (ek)| =
∣∣g
(
∇ek

ei −∇ek
ei, ej

)∣∣

≤ 1

2

∣∣g(T (ek, ei), ej) − g(T (ek, ej), ei) − g(T (ei, ej), ek)
∣∣

≤ 3 · ‖∇′A‖g · ‖A−1‖g , (4)

where ‖.‖g denotes the maximum norm. We suppose (ei)i lifts to a local section s of Spin(M,g).

An orthonormal basis (σα)α of Σn = C
2[n/2]

induces an orthonormal frame (ψα)α of the associ-
ated bundle Σ(M,g) = Spin(M,g) ×Spin(n) Σn by ψα = [s, σα]. Any spinor field ϕ can locally
be written as ϕ =

∑
α ϕ

αψα and [LM89, Chap.2, Thm.4.14] gives:

∇ϕ =
∑

α

dϕα ⊗ ψα +
1

2

∑

i<j

ωij ⊗ ei · ej · ϕ and ∇ϕ =
∑

α

dϕα ⊗ ψα +
1

2

∑

i<j

ωij ⊗ ei · ej · ϕ.

By (4) we get for the difference of the connections:

∣∣∇Xϕ−∇Xϕ
∣∣
g
≤ 1

2

∑

i<j

|(ωij − ωij) (X)| |ϕ|g ≤ K · ‖∇′A‖g · ‖A−1‖g · |ϕ|g · |X|g , (5)

where K is a constant only depending on the dimension of M .
Next, we want to compare the Dirac operators Dg and Dg′ of (M,g) and (M,g′). For a spinor
field ϕ ∈ ΓΣ(M,g) we define:

D′
g′ϕ := A

(
Dg′(A

−1ϕ)
)
.
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For some g-orthonormal frame (ei)i we get a g′-orthonormal frame e′i := A−1ei. Locally, D′
g′ is

given by

D′
g′ϕ =

∑

j

A
(
e′j · ∇′

e′j
(A−1ϕ)

)
=
∑

j

A
(
e′j
)
· A
(
∇′
e′j

(A−1ϕ)
)

=
∑

j

ej ·
(
∇e′j

ϕ
)

=
∑

j

ej ·
(
∇A−1ej

ϕ
)
.

Let (aij)i,j be the matrix of A with respect to the basis (ei)i: Aei =
∑

j aijej for all i, and let

(aij)i,j be the matrix for A−1, then we obtain:

(
Dg −D′

g′

)
ϕ =

∑

j

ej ·
(
∇ejϕ−∇A−1ej

ϕ
)

=
∑

i,j

(
δij − aij

)
ej · ∇eiϕ+

∑

i,j

aijej ·
(
∇ei −∇ei

)
ϕ .

Using (5) we get the following pointwise estimate in any point of M :

∣∣(Dg −D′
g′

)
ϕ
∣∣
g
≤ K1‖id−A−1‖g · |∇ϕ|g +K2‖A−1‖2

g · ‖∇′A‖g · |ϕ|g , (6)

where |∇ϕ|2g =
∑

j〈∇ejϕ,∇ejϕ〉, and where K1 and K2 are constants which depend only on the
dimension of M . We define

dg(g
′) :=

∥∥id−A−1
∥∥
g
+
∥∥∇′A

∥∥
g

(7)

and as an immediate consequence of (6) we obtain:

Lemma 2.1. For any integer n ≥ 1 there exists a continuous function β : R
+
0 → R

+
0 with

lim
x→0

β(x) = 0 such that the following holds:

Let M be a compact n-dimensional spin manifold with boundary, and let g and g′ be Riemannian
metrics on M . Then for any spinor field ϕ on (M,g) this pointwise estimate holds:

∣∣(Dg −D′
g′)ϕ

∣∣2
g
≤ β

(
dg(g

′)
)
·
(
|∇ϕ|2g + |ϕ|2g

)
.

Without giving the proof we note:

Lemma 2.2. Let (gm)m≥1 be a sequence of Riemannian metrics on M converging to the Rie-
mannian metric g in the C1-topology. Then one has

dg(g
m)

m→∞−−−−→ 0.

Next, we will compare the Rayleigh quotients for Dirac operators very explicitly.

In the expression β(dg(g
′)) we will omit the argument dg(g

′) and simply write β. We denote the
scalar curvature of (M,g) by scalg and set

s−(M,g) = min
{
0, sup
p∈M

(−scalg(p))
}
.
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Proposition 2.3. Let λ ∈ R and let g′ be so close to g in the C1-topology that one has dg(g
′) < 1

and β (dg(g
′)) < 1.

For any smooth spinor field ϕ ∈ ΓΣ(M,g) with ϕ |∂M≡ 0 and η1 =
‖(Dg−λ)ϕ‖L2(g)

‖ϕ‖L2(g)
it holds:

‖(Dg′−λ)A−1ϕ‖L2(g′)

‖A−1ϕ‖L2(g′)
≤
(

1+dg(g′)
1−dg(g′)

)n
2 ·
(
η1 +

√
β ·
(
|λ| + η1 + 1

2

√
s−(M,g) + 1

))
(8)

and for any ψ ∈ ΓΣ(M,g′) with ψ |∂M≡ 0 and η2 =
‖(Dg′−λ)ψ‖L2(g′)

‖ψ‖L2(g′)
we get

‖(Dg−λ)Aψ‖L2(g)

‖Aψ‖L2(g)
≤
(

1+dg(g′)
1−dg(g′)

)n
2 ·
(
η2 +

√
β

1−
√
β

(|λ| + η2)
)

+
√
β

1−
√
β
·
(

1
2

√
s−(M,g) + 1

)
. (9)

Proof. As ϕ |∂M≡ 0 in the following partial integration the boundary terms vanish. We apply
the Weitzenböck formula and obtain:

‖∇gϕ‖2
L2(g) = 〈(∇g)∗ ∇gϕ,ϕ〉L2(g) ≤ ‖Dgϕ‖2

L2(g) + 1
4s

−
(M,g) ‖ϕ‖

2
L2(g) .

From this and from lemma 2.1 it follows:
∣∣∣‖(Dg − λ)ϕ‖

L2(g) −
∥∥A(Dg′ − λ)A−1ϕ

∥∥
L2(g)

∣∣∣ ≤ ‖(Dg −ADg′A
−1)ϕ‖L2(g)

≤
√
β ·
(
‖∇gϕ‖2

L2(g) + ‖ϕ‖2
L2(g)

) 1
2 ≤

√
β
(
‖Dgϕ‖L2(g) +

(
1
2

√
s−(M,g) + 1

)
‖ϕ‖L2(g)

)
(10)

For the volume elements of g and g′ we have dvolg = det(A−1) · dvolg′ .

By the definition (1) of dg(g
′) it is clear that the eigenvalues of A−1 are contained in the interval

[1 − dg(g
′), 1 + dg(g

′)]. Thus, (1 − dg(g
′))n ≤ det(A−1) ≤ (1 + dg(g

′))n, and one gets for the
L2-norms of a function f : M → R:

(
1 − dg(g

′)
)n

2 · ‖f‖L2(g′) ≤ ‖f‖L2(g) and ‖f‖L2(g) ≤
(
1 + dg(g

′)
)n

2 · ‖f‖L2(g′). (11)

To prove (8) we deduce from the definition of η1 that ‖Dgϕ‖L2(g) ≤ (|λ| + η1) ‖ϕ‖L2(g). From

this inequality we derive by using (10) and the triangle inequality:

∥∥A(Dg′ − λ)A−1ϕ
∥∥
L2(g)

≤
(
η1 +

√
β (|λ| + η1) +

√
β
(

1
2

√
s−(M,g) + 1

))
· ‖ϕ‖L2(g).

Now, A : Σ(M,g′) → Σ(M,g) is a fibrewise isometry. We apply (11) and have proved (8).

From (11) it follows for ψ ∈ ΓΣ(M,g′):

‖A(Dg′−λ)ψ‖L2(g)

‖Aψ‖L2(g)
≤
(

1+dg(g′)
1−dg(g′)

)n
2 · η2 . (12)

Then, we set ϕ = Aψ. We see
∥∥Dg′ψ

∥∥
L2(g′)

≤ (|λ| + η2) ‖ψ‖L2(g′) and apply (11) once more:

‖ADg′ψ‖L2(g) ≤
(
1 + dg(g

′)
)n

2 ‖Dg′ψ‖L2(g′) ≤
(

1+dg(g′)
1−dg(g′)

)n
2

(|λ| + η2) ‖ϕ‖L2(g).
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Combined with (10) this yields:

‖Dgϕ‖L2(g) ≤ ‖ADg′ψ‖L2(g) + ‖ (Dg −ADg′A
−1)ϕ‖L2(g)

≤
(

1+dg(g′)
1−dg(g′)

)n
2

(|λ| + η2) ‖ϕ‖L2(g) +
√
β · ‖Dgϕ‖L2(g) +

√
β
(

1
2

√
s−(M,g) + 1

)
‖ϕ‖L2(g).

Taking β < 1 into account we conclude:

‖Dgϕ‖L2(g) ≤ 1
1−

√
β

((
1+dg(g′)
1−dg(g′)

)n
2 (|λ| + η2

)
+
√
β
(

1
2

√
s−(M,g) + 1

))
‖ϕ‖L2(g).

And using this and (10) we obtain:

‖(Dg−ADg′A
−1)ϕ‖L2(g)

‖ϕ‖L2(g)
≤
√
β
‖Dgϕ‖L2(g)

‖ϕ‖L2(g)
+
√
β
(

1
2

√
s−(M,g) + 1

)

≤
√
β

1−
√
β

((
1+dg(g′)
1−dg(g′)

)n
2 (|λ| + η2

))
+

√
β

1−
√
β

(
1
2

√
s−(M,g) + 1

)
. (13)

Finally, by the triangle inequality we derive (9) from (12) and (13).

We can derive from the previous proposition a uniform estimate for the deviation of the square
of the Dirac operator for different metrics.

For a self-adjoint operator L we introduce the following notation:
Let a < b be real numbers such that [a, b]∩ ess spec(L) = ∅. For any eigenvalue λ we denote the
corresponding eigenspace by Eλ(L) and we set

E[a,b](L) =
⊕

a≤λ≤b
λ∈spec(L)

Eλ(L).

Corollary 2.4. For given numbers n ∈ N, S ≥ 0, Λ > 0, ε > 0 und η > 0 there exists some
δ > 0 with the following property:
Let (M,g) be a n-dimensional compact Riemannian spin manifold with boundary whose scalar
curvature satisfies scalg ≥ −S. Let g′ be a Riemannian metric on M with dg(g

′) < δ and let
µ ∈ [0,Λ]. Then for the Dirichlet eigenspaces of D2

g and D2
g′ it holds:

dim E[µ−η,µ+η]

(
(Dg)

2
)

≤ dim E[µ−η−ε,µ+η+ε]

(
(Dg′)

2
)

and

dim E[µ−η,µ+η]

(
(Dg′)

2
)

≤ dim E[µ−η−ε,µ+η+ε]

(
(Dg)

2
)
.

Proof. Supposed scalg ≥ −S one has s−(M,g) ≤ S. As β(dg(g
′)) → 0 for dg(g

′) → 0 one can

conclude from (8) and (9) for λ = 0 that there is δ > 0 such that for any (M,g) with scalg ≥ −S
and for any ϕ ∈ E[0,µ+η](D

2
g) it holds for any Riemannian metric g′ on M with dg(g

′) < δ:

‖Dgϕ‖2
L2(g)

‖ϕ‖2
L2(g)

− ε <
‖Dg′A

−1ϕ‖2
L2(g′)

‖A−1ϕ‖2
L2(g′)

<
‖Dgϕ‖2

L2(g)

‖ϕ‖2
L2(g)

+ ε.

We use the variational characterisation of the eigenvalues of D2
g and D2

g′ . Then we obtain for

the k-th eigenvalues µk(D
2
g) and µk(D

2
g′) if µk(D

2
g) < Λ + η:

µk(D
2
g) − ε < µk(D

2
g′) < µk(D

2
g) + ε
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which provides the first inequality in the corollary. To verify the second inequality we proceed
analoguously, possibly we have to take a smaller δ.

In a similar way one can use Proposition 2.3 to prove the already known fact that on a fixed
closed spin manifold the convergence of Riemannian metrics in the C1-topology implies the
convergence of Dirac spectra:

Corollary 2.5 ([B96], Prop. 7.1). Let (M,g) be a closed spin manifold and let ε > 0 and
Λ > 0 with ±Λ 6∈ spec(Dg). Then there exists δ > 0 such that for all Riemannian metrics g′

with dg(g
′) < δ the Dirac operators Dg and Dg′ are (Λ, ε)-spectral close.

3 Method of escaping sets

In this section we will adapt Colbois’ and Courtois’ method of escaping sets developped for the
Laplace operator in [CC91] to the case of the square of the Dirac operator.

We will consider sequences of closed n-dimensional Riemannian spin manifolds (Mi, gi)i which
converge to a complete non-compact Riemannian spin manifold (M,g) of the same dimension.

Definition 3.1. The sequence (Mi, gi) converges to (M,g) in the sense of local C1-spin
convergence, if in M there are n-dimensional compact submanifolds (Bt)t with boundary such
that Bs ⊂ Bt for s < t and

⋃
tBt = M , and for all t and i there are maps Φi,t : Bt →Mi which

send Bt diffeomorphically to the image Ci,t = Φi,t(Bt) preserving orientation and spin structure
such that the pull backs of the metrics converge in the C1-topology

Φ∗
i,t

(
gi |Ci,t

) i→∞−−−→ g |Bt in C1.

Let (Ki)i∈N be a sequence or n-dimensional compact submanifolds of M with boundary such
that Ki ⊂ Ki+1 for all i and

⋃
iKi = M .

For any i the distance to the boundary defines a function

di : Ki → R, x 7−→ dist (x, ∂Ki).

One can find Ri > 0 such that {di < Ri} ⊂ Ki is open and di is differentiable on {di < Ri}.

Definition 3.2. We call (Ωi)i≥1 a sequence of escaping sets for (Mi)i if

1. There is a sequence of submanifolds (Ki)i≥1 and a sequence Ri > 0 as above such that
Ri → ∞ for i→ ∞.

2. For any i there is Φi : Ki → Mi which maps Ki diffeomorphically onto is image Li =
Φi(Ki) preserving orientation and spin structure such that for the quantity defined in (7)
it holds:

lim
i→∞

dg|Ki
(Φ∗

i (gi |Li)) = 0.

3. For all i the set Ωi is the closure of the complement of Li, i.e. Ωi = Mi \ Li.
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Ki Li

Ωi

Φi

M Mi

{di < Ri}

Figure 1: escaping set Ωi.

Obviously, Li and Ωi ⊂Mi are n-dimensional compact submanifolds with boundary.

Condition 1. in Definition 3.2 is more restictive than it might seem at first glance. As the
gradient of a distance function has norm 1 - whenever defined - one has |grad gdi|g ≡ 1 on
{di < Ri} ⊂ Ki for all i. Hence, {di < Ri} is foliated by hypersurfaces which are all diffeomorphic
to d−1

i (0) = ∂Ki.

We denote the Dirac operators of (Mi, gi) and (M,g) by Di and D, respectively. As M is not
compact we cannot assume that D has a discrete spectrum. We set

σ = inf ess spec(D2,M),

where inf ∅ = ∞, by definition.

The “small” eigenvalues of D2 are those below σ, in the following we will always denote them:

0 ≤ µ1 ≤ ... ≤ µk ≤ ... < σ

The only possible limit point of the small eigenvalues is σ. Therefore, for any t < σ there is only
a finite number of small eigenvalues below t.

Lemma 3.3. Let (Ωi)i be a sequence of escaping sets for (Mi)i.
For 0 < t < σ with t 6∈ spec(D2,M) we denote the small eigenvalues of D2 by

0 ≤ µ1 ≤ ... ≤ µN < t.
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Let 0 ≤ µi1 ≤ ... ≤ µi
N(i) < t denote the D2-eigenvalues of Ki with Dirichlet boundary conditions

below t. Then for sufficiently large i one has N(i) = N and for k = 1, ...,N :

lim
i→∞

µik = µk.

Proof. For ψ ∈ Γ(M,g) we put: ‖ψ‖2
H1(M) =

∫
M

{
|ψ|2 + |Dψ|2

}
. The sets K̃i = Ki \ {di < 1}

exhaust M , hence, we get for any L2-spinor ψ ∈ Γ(M,g):

lim
i→∞

‖ψ‖
L2(M\fKi)

= 0. (14)

For each i we choose some smooth function ui :M→R with 0≤ui≤1, |grad gui|g≤2 and ui ≡ 1

on K̃i and ui ≡ 0 on M \Ki. By ϕk we denote the D2-eigenspinors corresponding to µk, k =
1, ..., N . Then, there is a sequence δi with δi → 0 for i→ ∞ such that for ϕ ∈ span{ϕ1, ..., ϕN}
with ‖ϕ‖L2(M) = 1 it holds:

‖ϕ − uiϕ‖2
H1(M) ≤

∫

M

(
|(1 − ui)ϕ|2 + (|grad g(1 − u1) · ϕ| + |(1 − ui)Dϕ|)2

)

≤ N(5 + 2t+ t2) · max
j=1,...,N

‖ϕj‖2
L2(M\fKi)

≤ δi.

Hence, for arbitrary ϕ ∈ span{ϕ1, ..., ϕN } we have shown:

‖(1 − ui)ϕ‖2
H1(M) ≤ δi‖ϕ‖2

L2(M). (15)

Now, uiϕ fulfills Dirichlet conditions on Ki, and one has

‖uiϕ‖H1(Ki) = ‖uiϕ‖H1(M) ≤ ‖ϕ‖H1(M) + ‖(1 − ui)ϕ‖H1(M) <∞.

Therefore, it makes sense to consider the Rayleigh quotient of uiϕ where ϕ ∈ span{ϕ1, ..., ϕk}
and k ∈ {1, ..., N}:

‖D(uiϕ)‖2
L2(Ki)

‖uiϕ‖2
L2(Ki)

=
‖D(uiϕ)‖2

L2(M)

‖uiϕ‖2
L2(M)

(16)

Using (15) and (16) we obain

‖D(uiϕ)‖2
L2(Ki)

‖uiϕ‖2
L2(Ki)

≤ µk+2
√
δi
√
µk+δi

(1−
√
δi)

2 ≤ µk + ρi (17)

for some ρi > 0 with ρi → 0. The min-max principle yields: µik ≤ µk + ρi. By domain
monotonicity we get µik ≥ µk and N(i) ≤ N , from which the Lemma follows.

Next, the Dirichlet eigenvalues or Ki and Li are compared. We use property 2. of escaping
sets and apply Corollary 2.4. For this we have to assume a uniform lower bound for the scalar
curvature of all Ki.
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Lemma 3.4. Let (Ki)i and (Li)i be as in Definition 3.2. Let the scalar curvature of M be
bounded from below, i.e. scalg ≥ −S for some S ≥ 0. For 0 < t < σ with t 6∈ spec(D2,M) let
the D2-eigenvalues of Ki with Dirichlet boundary conditions be denoted by

0 ≤ µi1 ≤ ... ≤ µiN(i) < t,

and let the D2
i -eigenvalues of Li with Dirichlet boundary conditions be denoted by

0 ≤ νi1 ≤ ... ≤ νiK(i) < t.

Then for sufficiently large i it follows K(i) = N(i) = N and for all k = 1, ...,N :

lim
i→∞

(
µik − νik

)
= 0.

Proof. Let the distinct D2-eigenvalues of M which are smaller than t be denoted by 0 ≤ µj1 <
... < µjr < t. For ε > 0 sufficiently small the intervals [µjk − 3ε, µjk + 3ε] are disjoint and
contained in (−∞, t) for all k = 1, ..., r. For large i Lemma 3.3 gives

dim Eµjk
(D2,M) = dim E Dirichlet

[µjk
−ε,µjk

+ε](D
2,Ki) = dim E Dirichlet

[µjk
−3ε,µjk

+3ε](D
2,Ki). (18)

Condition 2. of Definition 3.2 says that on Ki the Riemannian metrics g |Ki and Φ∗
i (gi |Li)

satisfy: dg|Ki
(Φ∗

i (gi |Li)) → 0 and the associated spin structures are equivalent. As on Ki the
scalar curvature is bounded from below by −S Corollary 2.4 gives for large i:

dim E Dirichlet
[µjk

−ε,µjk
+ε](D

2,Ki) ≤ dim E Dirichlet
[µjk

−2ε,µjk
+2ε](D

2
i , Li) ≤ dim E Dirichlet

[µjk
−3ε,µjk

+3ε](D
2,Ki). (19)

For large i Corollary 2.4 also yields:

dim E Dirichlet
[µjk

+2ε,µjk+1
−2ε](D

2
i , Li) ≤ dim E Dirichlet

[µjk
+ε,µjk+1

−ε](D
2,Ki) = 0.

Hence, for large i the operatorD2
i on Li has no Dirichlet eigenvalues in [0, t)\⋃k[µjk−2ε, µjk+2ε].

For s ufficiently large i we get by (18) and (19): K(i) = N(i) = N and |µik − νik| < 3ε, from
which the Lemma follows.

Theorem 3.5. Let (Mi, gi) → (M,g) in the sense of local C1-spin convergence and let the scalar
curvature of (M,g) be bounded from below. Suppose for all k for which there is a k-th small
eigenvalue µk < σ one has R(i) ≥ k for sufficiently large i and limi→∞ λik = µk. Then for any
sequence of escaping sets (Ωi)i for (Mi)i it follows:

lim inf
i→∞

λDirichlet

1 (Ωi,D
2
i ) ≥ σ.

Proof. We assume for some τ < σ:

lim inf
i→∞

λDirichlet

1 (Ωi,D
2
i ) = τ. (20)

We choose some t≥0 with τ<t<σ, t 6∈spec(D2,M). Keeping the notions of Lemma 3.4 we denote
the Dirichlet eigenvalues of D2 on Ki by

0 ≤ µi1 ≤ ... ≤ µiN(i) < t,

10



and the the Dirichlet eigenvalues of D2
i on Li by

0 ≤ νi1 ≤ ... ≤ νiK(i) < t.

Lemma 3.3 and Lemma 3.4 give for large i: K(i) = N(i) = N , where N denotes the number of
D2-eigenvalues of M being smaller than t, and lim

i→∞
µik = µk and lim

i→∞
(µik − νik) = 0 for k ≤ N .

Hence,
lim
i→∞

(λik − νik) = lim
i→∞

(λik − µk) + lim
i→∞

(µk − µik) + lim
i→∞

(µik − νik) = 0.

On Li we choose orthonormal eigenspinors ϕi1, ..., ϕ
i
N associated to the eigenvalues νi1, ..., ν

i
N ,

and on Ωi we choose some eigenspinor ψi for the smallest Dirichlet eigenvalue νi0. We extend
ϕi1, ..., ϕ

i
N and ψi by zero to get piecewise smooth spinors on M i which have finite H1-norms

and which we will denote again by ϕi1, ..., ϕ
i
N and ψi. Now, supp(ϕik)∩ supp(ψi) ⊂ ∂Lk is a zero

set for any k. Hence, the spinors ϕi1, ..., ϕ
i
N , ψ

i are mutually perpendicular with respect to the
L2-scalar product, in particular they are linearly independent. By assumption (20) for infinitely
many i one has νi0 < t. Hence, for infinitely many i on the (N + 1)-dimensional vector space
V i = span{ϕi1, ..., ϕiN , ψi} the Rayleigh quotient bounded by t, i.e. ‖Diσ‖2

L2 < t · ‖σ‖2
L2 for all

σ ∈ V i. By the min-max principle one has at least N + 1 eigenvalues below t, which contradicts
the fact that N(i) = N for large i.

One also has a reverse of this.

Theorem 3.6. Let (Mi, gi) → (M,g) in the sense of local C1-spin convergence and let the scalar
curvature of (M,g) be bounded from below.
Let (Ωi)i be a sequence of escaping sets for (Mi)i such that Ω̃i = Ωi ∪{di ◦Φ−1

i ≤ Ri
2 } also gives

a sequence of escaping sets for (Mi)i with the property:

lim inf
i→∞

λDirichlet

1 (Ω̃i,D
2
i ) ≥ σ. (21)

Then for all k for which there exists a k-th small eigenvalue µk < σ one has for sufficiently large
i: R(i) ≥ k and lim

i→∞
λik = µk.

Proof of Theorem 3.6. Consider t < σ, t 6∈ spec(D2,M). Let M(i) denote the number of (Di)
2-

eigenvalues of Mi being smaller than t:

0 ≤ λi1 ≤ ... ≤ λiM(i) < t.

By Lemma 3.3 and Lemma 3.4 we get K(i) = N(i) = N for large i and lim
i→∞

νik = µk.

We will show M(i) = N for large i and lim
i→∞

(λik − νik) = 0 for k = 1, ...,N .

First, we get rom domain monotonicity: λik ≤ νik for all k, and hence M(i) ≥ K(i) = N .
Next, we consider k0 ≥ N such that M(i) ≥ k0 for infinitely many i. W.l.o.g. we can assume
M(i) ≥ k0 for all i. We choose eigenspinors ψik with ‖ψik‖L2(Mi) = 1 associated to the eigenvalues

λi1, ..., λ
i
k0

. For any spinor ϕ on Ωi we set

‖ϕ‖2
H1(Ωi)

=

∫

Ωi

(
|ϕ|2 + |Diϕ|2

)
dvolgi .

11



Proposition 3.7. Let k ∈ N such that λik < t for all i. Then, for the associated normed
eigenspinors it holds

lim
i→∞

‖ψik‖H1(Ωi) = 0.

Before proving this proposition we will finish the proof of Theorem 3.6. We choose some smooth
functions vi : Mi → [0, 1] with vi |Mi\eΩi

≡ 1, vi |Ωi≡ 0 and |grad givi|gi ≤ 2, which is possible for

large i because Ri
2 > 2. Then, we get for ϕ ∈ span{ψi1, ..., ψik} with ‖ϕ‖L2(Mi) = 1:

‖ϕ − viϕ‖2
H1(Mi)

≤ 2 · ‖ϕ‖2
H1(eΩi)

≤ 2 ·
k∑

j=1

‖ψij‖2
H1(eΩi)

.

Proposition 3.7 shows that this tends to zero as i→ ∞. Therefore, viϕ has finite H1(Mi)-norm
and Dirichlet boundary conditions on Li are fulfilled. The same Rayleigh quotient argument as
in (17) yields some null sequence (ρi)i≥1 such that for all k = 1, ..., k0:

νik ≤ λik + ρi. (22)

It follows that all νi1, ..., ν
i
k0

are smaller than t, and therefore k0 ≤ N and M(i) = N for any

sufficiently large i. Furthermore, (22) gives lim
i→∞

(λik − νik) = 0 for all k = 1, ...,N .

Next, we will prove Proposition 3.7.

We recall the notions from Definition 3.2: A non-compact manifold M is exhausted by compact
submanifolds with boundary (Ki)i. The distance to the boundary of Ki is denoted di : Ki → R

and it is assumed that di is differentiable on {di < Ri}. Using the diffeomorphisms Φi : Ki → Li
we define some modified distance functions:

fi : Li → R, fi = di ◦ Φ−1
i .

Then, fi is differentiable on {fi < Ri}. For 0 ≤ r < s ≤ Ri we define

Ci(r, s) = f−1
i

(
[r, s)

)
.

As fi has only regular points in {fi < Ri}, for 0 < r < Ri the set f−1
i (r) ⊂Mi is a hypersurface.

Lemma 3.8. Let t > 0. Then one can find some null sequence (δi)i s.t. the following holds:
Let λ < t be a (Di)

2-eigenvalue and let ψ be some associated normed eigenspinor on Mi. Then
there is a r ∈ [1, Ri

2 ] such that:

1. ‖ψ‖2
H1(Ci(r−1,r)) < δi and

2. ‖Diψ‖2
L2(f−1

i (r))
+ ‖ψ‖2

L2(f−1
i (r))

< δi.

Proof. Given ψ and i, we set F = |ψ|2 + |Diψ|2. From λ < t it follows:

∫

Mi

F dvolgi < 1 + t.

12



Let li denote the smallest integer below (Ri
4 − 1). Then, for l = 0, ..., li the sets Ci(2l, 2l+ 2) are

well defined. For l we set Bl =
∫

Ci(2l,2l+2)

F dvolgi and get:

li∑

l=0

Bl ≤
∫

Ci(0,
Ri
2

)
F dvolgi ≤

∫

Mi

F dvolgi < 1 + t.

Therefore, there exists some m ∈ {0, ..., li} satisfying Bm < 1+t
li

. As fi is a differentiable function
on Ci(2m, 2m + 2) the coarea formula (see [C84, Chap. IV.1]) yields:

Bm =

∫

Ci(2m,2m+2)
F dvolgi =

∫ 2m+2

2m
dr

∫

f−1
i (r)

F

|grad gifi|gi

d arear.

From this we conclude that for some r ∈ [2m+ 1, 2m+ 2) ⊂ [1, Ri
2 ] one has

∫

f−1
i (r)

F

|grad gifi|gi

d arear <
1 + t

li
. (23)

Now, di is the Riemannian distance with respect to g, it is differentiable on {di < Ri}, and
therefore we get: |grad gdi|g ≡ 1. We consider the endomorphisms Ai of TKi as in (1), being
self adjoint with respect to g and satisfying g(AiX,AiY ) = Φ∗

i g(X,Y ). Then, we get:
∣∣Ai grad Φ∗

i gi
di
∣∣
g

=
∣∣grad Φ∗

i gi
di
∣∣
Φ∗

i gi
= |grad gifi|gi

and

grad gdi = (Ai)
2 grad Φ∗

i gi
di.

This gives the following pointwise estimate on Ci(0, Ri):
∣∣∣1 − |grad gifi|gi

∣∣∣ =
∣∣∣
∣∣(Ai)2 grad Φ∗

i gi
di
∣∣
g
−
∣∣Ai grad Φ∗

i gi
di
∣∣
g

∣∣∣

≤
∣∣(id−A−1

i

)
· (Ai)2 grad Φ∗

i gi
di
∣∣
g

≤
∥∥id−A−1

i

∥∥
g|Ki

·
∣∣(Ai)2 grad Φ∗

i gi
di
∣∣
g

≤ dg|Ki
(Φ∗

i (gi |Li)) .

Therefore, there is some null sequence (εi)i such that sup
Ci(0,Ri)

∣∣∣∣1 − 1

|grad gi
fi|gi

∣∣∣∣ < εi for all i.

We define δi = 1+t
li

· 1
1−εi

. For i → ∞ this converges to 0 because Ri and li i → ∞ tend to ∞.
One gets ∫

Ci(r−1,r)

F dvolgi ≤ Bm < 1+t
li
< δi.

The inverse triangle inequality gives 1

|grad gifi|gi

≥ 1 − εi. Combined with (23) this yields:

∫

f−1
i (r)

F d arear ≤ 1
1−εi

∫

f−1
i (r)

F

|grad gifi|gi

d arear < δi.

13



Proof of Proposition 3.7. For a normed eigenspinor ψik there is some rik ∈ [1, Ri
2 ] with the prop-

erties 1. and 2. in Lemma 3.8. The set Xi
k = Ωi ∪Ci(0, rik) ⊂Mi is a smooth submanifold with

boundary f−1
i (rik). Let ν denote the outward unit vector field. Then, by Green’s formula (see

e.g. [B90, p.5]) we get:

∫

Xi
k

|Diψ
i
k|2 =

∫

Xi
k

〈(Di)
2ψik, ψ

i
k〉 +

∫

f−1
i (ri

k)
〈ν · ψik,Diψ

i
k〉 ,

where scalar product, norm, volume, integral and Clifford multiplication are taken with respect
to gi. The Cauchy-Schwarz inequality and property 2. of Lemma 3.8 yield:

∣∣∣∣∣

∫

Xi
k

|Diψ
i
k|2 − λik

∫

Xi
k

|ψik|2
∣∣∣∣∣ =

∣∣∣∣∣

∫

f−1
i (ri

k)
〈ν · ψik,Diψ

i
k〉
∣∣∣∣∣

≤
(∫

f−1
i (ri

k)
|Diψ

i
k|2
) 1

2

·
(∫

f−1
i (ri

k)
|ψik|2

) 1
2

< δi.

We assume that there exists some positive constant c and a subsequence (ψjk)j such that

∫

X
j
k

|ψjk|2 ≥ c > 0. (24)

Setting ρi = 1
c
· δi we get:

R
X

j
k

|Djψ
j
k|2

R
X

j
k

|ψj
k|2

≤ λjk + ρj for all j.

We choose a smooth function uj : Mj → [0, 1] vanishing on Mj \Xj
k and being constantly 1 on

Ωj∪Ci(0, rik−1) with |grad gjuj |gj ≤ 2. Then, ϕik = ujψ
i
k satisfies Dirichlet boundary conditions

on Xi
k and its H1-norm is finite. Using property 1. in Lemma 3.8 we find a null sequence (ηj)j

such that R
X

j
k

|Djϕ
j
k|2

R
X

j
k

|ϕj
k|2

≤
R
X

j
k

|Djψ
j
k|2

R
X

j
k

|ψj
k|2

+ ηj ≤ λjk + ηj + ρj .

It follows that for large j the first Dirichlet eigenvalue of Xj
k is smaller than t. On the other

hand, Xi
k ⊂ Ω̃j and by domain monotonicity we get:

lim inf
j→∞

λDirichlet
1

(
Xj
k, (Dj)

2
)
≥ lim inf

j→∞
λDirichlet

1

(
Ω̃j, (Dj)

2
)
≥ σ > t,

which yields a contradiction. Hence, (24) is false, and we have proved the desired result:

‖ψik‖2
H1(Ωi)

< (1 + t) · ‖ψik‖2
L2(Xi

k)

i→∞−−−→ 0.

The next theorem gives a criterion for the convergence of Dirac operators in the sense of (Λ, ε)-
spectral closeness. We will apply this to hyperbolic degenerations in the following sections.
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Theorem 3.9. Let (Mi, gi) → (M,g) in the sense of local C1-spin convergence and let the scalar
curvature of (M,g) be bounded from below.
Let (Ωi)i be a sequence of escaping sets for (Mi)i such that Ω̃i = Ωi ∪{di ◦Φ−1

i ≤ Ri
2 } also gives

a sequence of escaping sets for (Mi)i with the property:

lim inf
i→∞

λDirichlet

1 (Ω̃i,D
2
i ) ≥ σ.

Then for all ε > 0 and Λ > 0 with ±Λ 6∈ spec(D,M) and Λ2 < σ and for all sufficiently large i
the Dirac operators Di and D are (Λ, ε)-spectral close.

Proof. By Theorem 3.6, for large i the total multiplicities of eigenvalues in [−Λ,+Λ] is the same
for D and Di. The Dirac operator D on M is defined as the closure of its restriction to smooth
spinors with compact support. Therefore, for each eigenvalue λ one can find a smooth compactly
supported spinor ψ on M such that

‖(D−λ)ψ‖L2(M)

‖ψ‖L2(M)
< ε

2 .

Then one identifies ψ with a compactly supported spinor ϕi on Mi. Condition 2. in Definition
3.2 and Proposition 2.4 imply that for large i one has

‖(Di−λ)ϕi‖L2(Mi)

‖ϕ‖L2(Mi)
< ε,

from which the claim follows.

4 Hyperbolic manifolds of finite volume

In this section we will recall the structure of complete hyperbolic manifolds with finite volume
and hyperbolic degenerations. A thorough treatment of this subject can be found in [T80], a
shorter description is given in [CD94] and in [B00].

Let (M,g) be a complete hyperbolic manifold, i.e. M has constant negative curvature −1. For
δ > 0 we define the δ-thin part of M :

Mδ = {x ∈M | injrad (x) ≤ δ}

where injrad denotes the injectivity radius. The complement M0,δ = M \Mδ is called the δ-thick
part of M .

For small δ > 0 the δ-thin part of an n-dimensional complete oriented hyperbolic manifold M
of finite volume is a disjoint union of a finite number of cusps:

Mδ =
.⋃

j=1,...,k

Ej

such that for any j one has a compact connected manifold Nj carrying a flat metric gNj such
that the cusp is Ej = Nj × [0,∞) with a warped product metric gEj = e−2t · gNj + dt2.

In dimensions 2 und 3 non-compact complete oriented hyperbolic manifolds (M,g) of finite
volume can be approximated by compact hyperbolic manifolds (Mi, gi). In dimension 2 this is
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M0,δ

N1

N2

E1

E2

Figure 2: decomposition into δ-thin and δ-thick part.

due to Teichmüller theory and in three dimensions this is true because of Thurston’s cusp closing
theorem. Such sequences of compact hyperbolic manifolds are called hyperbolic degenerations.
The structure of the approximation (Mi, gi) → (M,g) is the following.

First, we describe the 3-dimensional case: For small δ > 0 let M δ
0 = M0,δ denote the δ-thick

part of M . The δ-thin part consists of cusps Eδ1 , ..., Eδk . For the compact manifold Mi we get the
decomposition into δ-thick and δ-thin part:

Mi = M δ
i,0 ∪̇

⋃̇

j

T δi,j,

where each T δi,j is a closed tubular neighbourhood of radius Rδi,j about a simply closed geodesic

γi,j in Mi whose length is li,j = L[γi,j]. The boundary N δ
i,j = ∂T δi,j is a flat torus.

There are diffeomorphisms Φδ
i : M δ

0 → M δ
i,0 between compact manifolds with boundary such

that the pull back metrics converge in the C1-topology:

(Φδ
i )

∗(gi|Mδ
i,0

) → g|
Mδ

0

for i→ ∞ .

For i → ∞ the lengths of the geodesics tend to zero and the radii of the tubes tend to infinity:
li,j → 0 and Rδi,j → ∞. Each tube degenerates into one cusp.

In two dimensions it is possible to find even continuous degenerations: We consider the Teich-
müller space of a closed surface of genus at least two. Hyperbolic degenerations correspond to
paths in the Te ichmüller space converging to the boundary. For each sequence (Mi, gi)i on such
a path with limit point (M,g) the structure of approximation is essentially the same as in the
3-dimensional case: For each small δ > 0 we get a decomposition of Mi:

Mi = M δ
i,0 ∪̇

⋃̇

j=1,...,k

T δi,j
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where again the T δi,j are closed tubular neighbourhood around simply closed geodesics γi,j with

length li,j = L[γi,j]. The boundary of such a tube consists of two disjoint circles: ∂T δi,j = S1∪̇S1.
For i → ∞ the lengths of the geodesics tend to zero and the radii of the tubes tend to infinity:
li,j → 0 and Rδi,j → ∞. Here each tube degenerates into two cusps. The thin-thick decomposition
of M for small δ is:

M = M δ
0 ∪̇

⋃̇

j=1,...,2k

Eδj .

And again there are diffeomorphisms Φδ
i : M δ

0 →M δ
i,0 such that for i→ ∞ one obtains

(Φδ
i )

∗(gi|Mδ
i,0

) → g|
Mδ

0
in the C1-topology.

For any degeneration there is δ0 > 0 such that for each δ < δ0 one can find such diffeomorphisms
(Φδ

i )i.

As we want to compare the associated Dirac operators we will from now on assume that all
manifolds Mi and M are spin and that all diffeomorphisms Φδ

i respect the spin structures. This
means we consider the case that the hyperbolic degeneration converge in the sense of local
C1-spin convergence.

One observes that then there exists a sequence of escaping sets such that the ecsaping sets are
finally contained in the δ-thin parts (see [P03]):

Lemma 4.1. Let (Mi, gi)i → (M,g) be a hyperbolic degeneration in dimension 2 or 3. Then
there is a sequence of escaping sets (Ωi)i such that Ω̃i = Ωi ∪ {di ◦ Φ−1

i ≤ Ri
2 } gives again a

sequence of escaping sets and for any δ < δ0 one gets for sufficiently large i:

Ω̃i ⊂
⋃̇

j

T δi,j ⊂ Mi .

In order to apply theorem 3.9 we need lower bounds for the Dirichlet eigenvalues of the square of
the Dirac operator on Ω̃i. We will derive estimates for the tube T δi,j and use domain monotonicity.

5 Dirac operators on manifolds foliated by hypersurfaces

As described above the δ-thin parts consist of tubes and cusps. All cusps and all 2-dimensional
tubes are warped products. After removing the central geodesic any 3-dimensional tube is
foliated by tori. This is the reason why one is interested in foliations by hypersurfaces in this
context.

Let M be a Riemannian spin manifold of dimension n foliated by oriented hypersurfaces {N}.
Any spin structure on M induces one on N in a natural way: We denote the normal unit vector
field of the foliation by ν, the associated form operator by B, i.e. B(X) = −∇Xν, and the mean
curvature by H = 1

n−1 tr(B).

We restrict the spinor bundle ΣM to a hypersurface N , we have to distinguish two cases: For
n odd ΣM |N is just the spinor bundle of N , and for n even ΣM |N is isomorphic to ΣN ⊕ ΣN ,
the sum of two copies of the spinor bundle of N . The Clifford multiplication with respect to N
is given by

X ⊗ ϕ 7→ X · ν · ϕ,
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where “·” denotes the Clifford multiplication with respect to M .

The spinorial Levi-Civita connections ∇M and ∇N of M and N are related by the following
formula: Let X be a tangential vector of N and let ϕ be a section of ΣM |N , then one has ([B96,
Prop.2.1]):

∇M
X ϕ = ∇N

Xϕ+ 1
2B(X) · ν · ϕ. (25)

Let DM be the Dirac operator of M . For odd n let DN denote the Dirac operator of N and
for even n let DN denote the direct sum of the Dirac operator of N and its negative. Then DN

acts on sections in ΣM |N and one gets the following relation between DM and DN (see [B96,
Prop.2.2]):

DMϕ = ν ·DNϕ− n−1
2 Hϕ+ ∇M

ν ϕ for ϕ ∈ Γ (ΣM |N ) . (26)

Furthermore, we define the operator D
B acting on sections ϕ of ΣM |N as follows: For some

orthonormal frame e1, ..., en−1 of TpN we set

D
Bϕ|p =

n−1∑

i=1

ei · ν · ∇N
B(ei)

ϕ =

n−1∑

i=1

B(ei) · ν · ∇N
ei
ϕ .

Applying the hypersurface formula (26) twice and identifying all occuring terms one gets the
following formula for foliations:

Proposition 5.1 ([B00], Prop. 4). Let M be an n-dimensional Riemannian spin manifold
foliated by oriented hypersurfaces {N}. Then it holds:

(DM )2 = (DN )2 − (∇M
ν )2 − D

B + (n− 1)H ∇M
ν + ∇M

∇νν

−n−1
2 (gradNH) · ν − (n−1)2

4 H2 + 1
2 |B|2 − 1

2ν ·Ric(ν).
Here gradNH denotes the gradient of H along N , Ric is the Ricci tensor of M and |B| denotes
the Hilbert-Schmidt norm of B, i.e. |B|2 =

∑
j λ

2
j , where λ1, ..., λn−1 are the eigenvalues of B.

Next, we will state Bär’s results on the Dirac spectra of hyperbolic degenerations. The depen-
dence on the spin structure is crucial.

Definition 5.2. Let M be a complete non-compact hyperbolic manifold of finite volume, and let
E = N × [0,∞) be a cusp of M . A spin structure on M is called trivial along E if the induced
Dirac operator DN on N has a non-trivial kernel.

Theorem 5.3 ([B00], Thm. 1). Let M be a complete non-compact hyperbolic manifold of
finite volume equipped with a spin structure.
If the spin structure is trivial along some cusp of M the spectrum of the Dirac operator is

spec(D) = ess spec(D) = R.

Otherwise, if the spin structure is non-trivial along all cusps the Dirac operator has a discrete
spectrum.

For any self-adjoint operator A with discrete spectrum we define the eigenvalue counting function

NA(−x, x) = #
(
(−x, x) ∩ spec(A)

)
for x > 0.

Now, we consider hyperbolic degenerations (whose identification maps Φδ
i respect the spin struc-

tures). If the limit manifold has Dirac spectrum R one expects a clustering which can occur in
dimension 2. Whereas in the 3-dimensional case there is no clustering:
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Theorem 5.4 ([B00], Thm. 2 and 3). 1. Let (Mi)i≥1 be a 2-dimensional hyperbolic de-
generation such that the spin structure of the limit manifold is trivial along all cups. Then,
for the associated Dirac operators Di the following holds for any x > 0:

NDi(−x, x) =
4x

π

k∑

j=1

log
(

1
lij

)
+ Ox(1) for i→ ∞

where li,j denotes the length of the closed geodesic inside the tube T δi,j.

2. For any 3-dimensional hyperbolic degeneration the spin structure of the limit manifold in
non-trivial along all cusps. The Dirac spectrum of the limit manifold is discrete and one
gets for the Dirac operators Di for any x > 0: NDi(−x, x) = Ox(1) for i→ ∞.

We will cover the case of a discrete limit spectrum and we will show that the spectra converge
in the sense of (Λ, ε)-spectral closeness.

6 Lower eigenvalue bounds for hyperbolic tubes

The geometry of distance tubes of closed geodesics in hyperbolic manifolds of dimension 2 and
3 is well understood. In this section we will derive estimates for the Dirichlet eigenvalues of the
square of the Dirac operator on such tubes.

6.1 The 2-dimensional case

In dimension 2 any distance tube is a warped product T [0, R] = [−R,R] × S1 with the metric
ds2 = dr2+l2 cosh2(r)dθ2 where θ ∈ S1 = R/Z and l is the length of the simply closed geodesic γ.

γ

Figure 3: distance tube T [0, R] for a simply closed geodesic γ.

Hence T [0, R] is foliated by circles N = S1. The normal unit vector field is ν = ∂
∂r

and

for the corresponding shape operator B one gets B( ∂
∂θ

) = − tanh(r) ∂
∂θ

. Therefore, we have
|B|2 = tanh2(r) and H = − tanh(r) and, in particular, gradNH ≡ 0. Furthermore, ∇M

ν ν ≡ 0
and Ric = −id. Plugging all this into the formula of proposition 5.1 we obtain:

(DM )2 = (DN )2 − D
B − (∇M

ν )2 − tanh(r)∇M
ν + 1

4 tanh2(r) − 1
2 . (27)
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For spinors ϕ on T [0, R] ⊂M we compute using the Leibniz rule:

∇M
ν ∇M

ν

(√
cosh(r)ϕ

)
=

√
cosh(r)

(
(1
2 − 1

4 tanh2(r))ϕ+ tanh(r)∇M
ν ϕ+ ∇M

ν ∇M
ν ϕ
)
.

Defining Bϕ = − 1√
cosh(r)

(
∇M
ν ∇M

ν

(√
cosh(r)ϕ

))
we get by (27):

(DM )2 =
(
(DN )2 − D

B
)

+ B.

Let ϕ be a spinor field on T [0, R] satisfying ϕ |∂T [0,R]≡ 0. The volume element of T [0, R] is given
by dvol = l cosh(r)drdθ. Then we ge by performing a partial integration with respect to r and
by noticing that the term |∇M

ν

√
cosh(r)ϕ|2 is non-negative:

〈ϕ,Bϕ〉L2(T [0,R]) = −l
∫

S1

dθ

∫ +R

−R
〈∇M

ν ∇M
ν

√
cosh(r)ϕ,

√
cosh(r)ϕ〉dr

≥ l

∫

S1

dθ

∫ +R

−R

(
− ∂

∂r
〈∇M

ν

√
cosh(r)ϕ,

√
cosh(r)ϕ〉

)
dr

= −l
∫

S1

dθ
(
〈∇M

ν

√
cosh(r)ϕ,

√
cosh(r)ϕ〉

∣∣+R
−R

)
= 0 . (28)

Hence,

∥∥DMϕ
∥∥2

L2(T [0,R])
= 〈ϕ, (DM )2ϕ〉L2(T [0,R]) ≥ 〈ϕ,

(
(DN )2 − D

B
)
ϕ〉L2(T [0,R]) . (29)

Denoting the circle {r} × S1 by Tr we notice (DTr)2 = (∇Tr)∗∇Tr as the induced metric on

Tr is flat. For Tr we have |B| = | tanh(r)| ≤ 1 and therefore
∥∥DBϕ

∥∥2

L2(Tr)
≤
∥∥∇Trϕ

∥∥2

L2(Tr)
=

∥∥DTrϕ
∥∥2

L2(Tr)
.

We denote the smallest (DTr)2-eigenvalue by µr and get:

〈
(
(DTr)2 − D

B
)
ϕ,ϕ〉L2(Tr) ≥ ‖DTrϕ‖2

L2(Tr) − ‖DTrϕ‖L2(Tr) · ‖ϕ‖L2(Tr)

≥ (µr −
√
µr)‖ϕ‖2

L2(Tr) .

As r 7→ µr is decreasing on [0, R] and increasing on [−R, 0] integration with respect to r yields

〈
(
(DTr)2 − D

B
)
ϕ,ϕ〉L2(T [0,R]) ≥ (µR −√

µR)‖ϕ‖2
L2(T [0,R]) ,

where we have used that x 7→ x − √
x gives an increasing function on [1,∞). Using (29) we

have proved the following:

Proposition 6.1. Let T be a distance tube of a simply closed geodesic in a 2-dimensional
hyperbolic spin manifold M . Let µ denote the smallest eigenvalue of the square of the induced
Dirac operator on the boundary ∂T . Then for any smooth spinor field ϕ on T with ϕ |∂T≡ 0 it
holds:

‖DMϕ‖2
L2(T ) ≥ (µ−√

µ) · ‖ϕ‖2
L2(T ). (30)

The proof given above works only for µ = µR ≥ 1. But we notice that (30) is trivially true for
µR ≤ 1 because the right hand side is non-positive in this case.
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6.2 The 3-dimensional case

Let T [0, R] denote a distance tube of radius R for a simply closed geodesic γ in a hyperbolic
3-manifold M . For 0 ≤ r1 < r2 ≤ R we set T [r1, r2] = {x ∈ M |r1 ≤ dist(x, γ) ≤ r2}. The
geometry of T [0, R] is well understood (see [CD94, section 2]): We consider a geodesic γ̃ in the
3-dimensional hyperbolic space H

3 with | d
dt
γ̃| ≡ 1. Let T̃ denote the distance tube of radius

R around γ̃. We choose a parallel vector field V along γ̃ which has constant length 1 and is
perpendicular to γ̃. The corresponding Fermi coordinates are given as follows: Let r denote the
distance to γ̃, and let t denote the arc length along γ̃. Define θ ∈ S1 as the angle taken with
respect to V in the unit circle perpendicular to γ̃. In these coordinates the hyperbolic metric is
given by: gH3 = dr2 + cosh(r)2 dt2 + sinh(r)2 dθ2.

γ̃
θ

t
r

V

Figure 4: Fermi coordinates for T̃ ⊂ H
3.

Now, A : (r, t, θ) 7→ (r, t+L[γ], θ+α) defines a decktransformation for T [0, R] where L[γ] is the
length of γ and α is a fixed angle. Then we get T [0, R] as quotient T̃ /〈A〉.
For 0 < r ≤ R the distance tori Tr = {x ∈ M | dist(x, γ)} define a foliation of T [0, R] \ {γ}.
The associated normal unit vector field ν is given by ∂

∂r
. For the shape operator B we compute:

B( ∂
∂θ

) = − coth(r) ∂
∂θ

and B( ∂
∂t

) = − tanh(r) ∂
∂t

. Hence, the mean curvature of Tr is given by
H = −1

2 (tanh(r) + coth(r)) = − coth(2r) and consequently gradNH ≡ 0. Furthermore, we get
|B|2 = tanh(r)2 + coth(r)2 = 2

(
2 coth(2r)2 − 1

)
and Ric = −2 · id. We plug all this into the

formula of proposition 5.1 and obtain:

(DM )2 = (DN )2 − D
B − (∇M

ν )2 − 2 coth(2r)∇M
ν + coth(2r)2 − 2 .

For any spinor field ψ on {r > 0} the Leibniz rule yields:

∇M
ν ∇M

ν

(√
sinh(2r)ψ

)
=
√

sinh(2r)
( (

2 − coth(2r)2
)
ψ + 2coth(2r)∇M

ν ψ + ∇M
ν ∇M

ν ψ
)

Setting Bψ = − 1√
sinh(2r)

(
∇M
ν ∇M

ν

(√
sinh(2r)ψ

))
for spinors ψ on {r > 0} we get:

(DM )2 =
(
(DN )2 − D

B
)

+ B. (31)

Now, we consider a spinor ϕ on T [0, R] which vanishes on ∂T [0, R] = TR. We fix K ∈ (0, R)
and write:

‖DMϕ‖2
L2(T [0,R]) = 〈ϕ, (DM )2ϕ〉L2(T [0,K]) + 〈ϕ, (DM )2ϕ〉L2(T [K,R]).
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Next, we want to provide a lower bound for 〈ϕ, (DM )2ϕ〉L2(T [K,R]).

By the definition of D
B we have |DBϕ| ≤ |B| · |∇Nϕ|. By the Weitzenböck formula we obtain

‖∇Nϕ‖2
L2(Tr) = ‖DNϕ‖2

L2(Tr) as N = Tr is a flat torus. Consequently, for r ∈ [K,R] one gets

|B|2 = 2(2 coth(2r)2 − 1) ≤ 4 coth(2K)2 and hence:

‖DBϕ‖2
L2(Tr) ≤ 4 coth(2K)2 ‖DNϕ‖2

L2(Tr).

Let µr denote the smallest eigenvalue of the square of the induced Dirac operator on Tr. It
follows:

〈ϕ,
(
(DN )2 − D

B
)
ϕ〉L2(Tr) ≥ (µr − 2

√
µr coth(2K)) ‖ϕ‖2

L2(Tr) .

As the Dirac eigenvalues of flat tori are explicitely known (see [Fr84]) one can show that r 7→ µr
is monotonic decreasing on [K,R] (see [B00, Lemma 2]). Assuming µR ≥ 4 coth(2K)2 we have
µr − 2

√
µr coth(2K) ≥ µR − 2

√
µR coth(2K) for all r ∈ [K,R] and therefore:

〈ϕ,
(
(DN )2 − D

B
)
ϕ〉L2(T [K,R]) ≥ (µR − 2

√
µR coth(2K)) ‖ϕ‖2

L2(T [K,R]) . (32)

Then, we consider 〈ϕ,Bϕ〉L2(T [K,R]).

In Fermi coordinates the volume element is dvolM = 1
2 sinh(2r)dr dt dθ. We perform a partial

integration with respect to r, notice that the term |∇M
ν

√
sinh(2r)ϕ|2 is non-negative and get

〈ϕ,Bϕ〉L2(T [K,R]) = 1
2

∫

(t,θ)
d(t, θ)

∫ R

K

〈∇M
ν ∇M

ν

√
sinh(2r)ϕ,

√
sinh(2r)ϕ〉dr

≥ −1
2

∫

(t,θ)
d(t, θ)

[
〈∇M

ν

√
sinh(2r)ϕ,

√
sinh(2r)ϕ〉

]R
K

= 1
2

∫

(t,θ)
d(t, θ) 〈∇M

ν

√
sinh(2r)ϕ,

√
sinh(2r)ϕ〉

∣∣∣
r=K

= 1
2

∫

(t,θ)
d(t, θ)

(
sinh(2K)〈∇M

ν ϕ,ϕ〉 + cosh(2K)|ϕ|2
)

=

∫

TK

〈∇M
ν ϕ,ϕ〉 + coth(2K)‖ϕ‖2

L2(TK) (33)

as dvolTK
= 1

2 sinh(2K)dt dθ in these coordinates.

Combining (32) and (33) and assuming again µR ≥ 4 coth(2K)2 we get by (31):

〈ϕ, (DM )2ϕ〉L2(T [K,R]) ≥ (µR − 2
√
µR coth(2K)) ‖ϕ‖2

L2(T [K,R])

+

∫

TK

〈∇M
ν ϕ,ϕ〉 + coth(2K)‖ϕ‖2

L2(TK ) (34)

To treat the term 〈ϕ, (DM )2ϕ〉L2(T [0,K]) we use the Weitzenböck formula once more, here the
scalar curvature is scalM ≡ −6, and we get:

〈ϕ, (DM )2ϕ〉L2(T [0,K]) = 〈ϕ, (∇M )∗∇Mϕ〉L2(T [0,K]) − 3
2‖ϕ‖2

L2(T [0,K])

= ‖∇Mϕ‖2
L2(T [0,K]) −

∫

TK

〈∇M
ν ϕ,ϕ〉 − 3

2‖ϕ‖2
L2(T [0,K]) .
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This and (34) implies the following, again under the assumption µR ≥ 4 coth(2K)2:

〈ϕ, (DM )2ϕ〉L2(T [0,R]) ≥ (µR − 2
√
µR coth(2K)) ‖ϕ‖2

L2(T [K,R]) − 3
2‖ϕ‖2

L2(T [0,K])

+ ‖∇Mϕ‖2
L2(T [0,K]) + coth(2K)‖ϕ‖2

L2(TK) . (35)

In the next step we will will find a lower bound for the last two terms in (35) by means of
‖ϕ‖2

L2(T [0,K]). For this we consider ρ ∈ (0,K), write ϕ‖2
L2(T [ρ,K]) in Fermi coordinates and

perform a partial integration:

∫

T [ρ,K]
|ϕ|2 = 1

2

∫

(t,θ)
d(t, θ)

∫ K

ρ

dr |ϕ|2 sinh(2r)

= 1
4

∫

(t,θ)
d(t, θ)

( (
|ϕ|2(K) cosh(2K) − |ϕ|2(ρ) cosh(2ρ)

)

−
∫ K

ρ

dr∂ν |ϕ|2 cosh(2r)
)

= −1
2

∫

T [ρ,K]
∂ν |ϕ|2 coth(2r) + 1

4

∫

(t,θ)
d(t, θ)

∫ K

ρ

∂ν |ϕ|2 cosh(2ρ)

+ 1
4

∫

(t,θ)
d(t, θ) |ϕ|2(K) (cosh(2K) − cosh(2ρ)) .

Defining fρ(r) = cosh(2r)−cosh(2ρ)
sinh(2r) for ρ ≥ 0 this can be rewritten as

∫

T [ρ,K]
|ϕ|2 = 1

2 fρ(K)

∫

TK

|ϕ|2 − 1
2

∫

T [ρ,K]
fρ(r) ∂ν |ϕ|2. (36)

We observe that fρ(r) is monotonic increasing in r and monotonic decreasing in ρ, which gives
lim
r→0

f0(r) = 0. As lim
r→∞

coth(r) = ∞ there exists some K0 > 0 such that for any K ∈ (0,K0] the

following holds:

coth(2K) ≥ coth(2K0) ≥ 1 and fρ(K) ≤ f0(K) ≤ 1
2 for any ρ > 0. (37)

As 1
2

∣∣∂ν |ϕ|2
∣∣ ≤ |∇Mϕ| · |ϕ| the Cauchy-Schwarz inequality yields

(∫

T [ρ,K]

1
2fρ(r) ∂ν |ϕ|2

)2

≤
(∫

T [ρ,K]
fρ(r) |∇Mϕ|2

)
·
(∫

T [ρ,K]
fρ(r) |ϕ|2

)
.

Taking the square root and using fρ(r) ≤ fρ(K) for r ≤ K this shows that

∣∣∣
∫

T [ρ,K]
fρ(r) ∂ν |ϕ|2

∣∣∣ ≤ 2 fρ(K) · ‖∇Mϕ‖L2(T [ρ,K]) · ‖ϕ‖L2(T [ρ,K]) .

We combine this and (36) and let ρ→ 0 to get

‖ϕ‖2
L2(T [0,K]) ≤ f0(K) ‖ϕ‖2

L2(TK) + 2 f0(K) ‖ϕ‖L2(T [0,K]) · ‖∇Mϕ‖L2(T [0,K]). (38)

To proceed we need an elementary lemma.
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Lemma 6.2. Let ξ, η, ζ, f ≥ 0 such that

ξ ≤ f · η + 2f ·
√
ξ ·
√
ζ. (39)

Then it holds: ξ ≤ 2f · (η + 2f · ζ).

Proof. By (39) we get
(√
ξ − f · √ζ

)2
= ξ − 2f · √ξ · √ζ + f2 · ζ ≤ f · η + f2 · ζ. We take the

square root |√ξ − f · √ζ| ≤ √
f · √η + f · ζ and obtain

√
ξ ≤ √

f ·
(√
η + f · ζ +

√
f · ζ

)
. We

square this and use that (x+ y)2 ≤ 2(x2 + y2) for all x, y ∈ R to finish the proof.

Let 0 < K ≤ K0 with K0 as in (37). Then from Lemma 6.2 and from (38) it follows that

‖ϕ‖2
L2(T [0,K]) ≤ 2f0(K) ·

(
‖ϕ‖2

L2(TK) + 2f0(K)‖∇Mϕ‖2
L2(T [0,K])

)

≤ 2f0(K) ·
(
coth(2K)‖ϕ‖2

L2(TK) + ‖∇Mϕ‖2
L2(T [0,K])

)

and, hence, coth(2K)‖ϕ‖2
L2(TK) + ‖∇Mϕ‖2

L2(T [0,K]) ≥ 1
2f0(K) ‖ϕ‖2

L2(T [0,K]).

This is a lower bound for the last two terms in (35) and we have proved the following:

Proposition 6.3. Let T be a distance tube of radius R around a simply closed geodesic in a
3-dimensional hyperbolic spin manifold M . The boundary ∂T is a flat torus, and let µ denote
the smallest eigenvalue of the square of the induced Dirac operator of ∂T . Let K ∈ (0, R) with
K ≤ K0 where K0 is as in (37), and let µ ≥ 4 coth(2K)2. Then for every smooth spinor on T
satisfying Dirichlet boundary conditions it holds:

‖DMϕ‖2
L2(T [0,R]) ≥ (µ− 2

√
µ coth(2K)) ‖ϕ‖2

L2(T [K,R])

+ 1
2

(
sinh(2K)

cosh(2K)−1 − 3
)
‖ϕ‖2

L2(T [0,K]) .

7 Proof of Theorem 1.2

We will apply Theorem 3.9 with σ = inf ess spec(D2,M) = ∞ as the spectrum is purely discrete.
The limit manifold M is hyperbolic, its scalar curvature has a lower bound.
We consider the sequences of escaping sets (Ωi)i and (Ω̃i)i of Lemma 4.1. We have to show that
for any arbitrarily large τ > 0 it holds:

λDirichlet1 (Ω̃i,D
2
i ) > τ for all sufficiently large i . (40)

For all δ < δ0 lemma 4.1 gives Ω̃i ⊂
.⋃
j

T δi,j for sufficiently large i, and by domain monotonicity:

λDirichlet1

(
Ω̃i,D

2
i

)
≥ λDirichlet1




.⋃

j

T δi,j,D
2
i


 = min

j
λDirichlet1

(
T δi,j,D

2
i

)
.

To prove (40) we have to find a small δ > 0 such that for all j = 1, ..., k and for all sufficiently
large i we have

λDirichlet1 (T δi,j ,D
2
i ) > τ. (41)
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First, we will prove (41) for the 2-dimensional case: The function x 7→ x − √
x is monotonic

increasing on [1,∞) and tends to ∞ for x → ∞. Hence, there is x0 > 1 such that x −√
x > τ

for any x > x0. If we have found a small δ > 0 such that the first eigenvalue of the square of
the induced Dirac operator on ∂T δi,j is larger than x0 for all j and all sufficiently large i we get
(41) by applying Proposition 6.1 and a Rayleigh quotient argument.

We can find such a δ by the following observation: Let the cusp E = N× [0,∞) carry the warped
product metric gE = e−2tgN +dt2 and let the spin structure along E be non-trivial. Then we get
for the smallest eigenvalue µt of the square of the induced Dirac operator on the leaf N × {t}:

lim
t→∞

µt = ∞.

For any cusp there exists tE > 0 such that for all leaves N × {t} with t > tE the smallest
eigenvalue µt is bigger than x0. For small δ the boundary of the δ-thick part M δ

0 of M is the
disjoing union of such leaves. If δ is sufficiently small the corresponding parameter t is larger
than tE . As the pull back metrics of the δ-thick parts M δ

i,0 of the compact manifolds converge

in the C1-topology one gets also the convergence of the pull back metrics of the boundaries
∂M δ

i,0. By Corollary 2.5 the smallest eigenvalues of the square of the Dirac operator of ∂M δ
i,0

converge to the smallest eigenvalue of the square of the Dirac operator of ∂M δ
0 , and therefore

these eigenvalues are larger than x0 for i sufficiently large.

In the 3-dimensional case we proceed in a similar way: The functionK 7→ sinh(2K)
cosh(2K)−1 is monotonic

decreasing on (0,∞) and tends to ∞ for K → 0. Therefore, there exists a K1 ∈ (0,K0) such
that

1
2

(
sinh(2K1)

cosh(2K1)−1 − 3
)
> τ.

As limx→∞ (x− 2
√
x coth(2K1)) = ∞ we can find an x0 with (x− 2

√
x coth(2K1)) > τ for

all x > x0. In analogy to the 2-dimensional part there is δ > 0 such that for all j and for
all sufficiently large i the first eigenvalue of the square of the Dirac operator of ∂T δi,j is bigger

than x0 and also bigger than 4 coth(2K1)
2. For i → ∞ the radii of the tubes T δi,j tend to ∞,

hence, for sufficiently large i they are bigger than K1. By Propositon 6.3 we get for all j and
all sufficiently large i: ∥∥DMi ϕ

∥∥2

L2(T δ
i,j)

> τ · ‖ϕ‖2
L2(T δ

i,j ) ,

for any smooth spinor ϕ on T δi,j , which implies (41). �
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