
The Dira spetrumof Bieberbah manifoldsby Frank Pf�affleAbstrat. The Dira spetra and the eta invariants of three-dimensional Bieberbah manifolds are omputed. Compat onnetedthree-dimensional spin manifolds admitting parallel non-vanishingspinors are identi�ed as at tori.Key words: Dira operator, at manifolds, spetrum, eta invariant.1991 Mathematis Subjet Classi�ation: 58G25.1 IntrodutionBieberbah manifolds are at onneted ompat manifolds. In this artilewe study the spetrum of their Dira operator.At �rst, a review of Bieberbah's theorems is given. One of them statesthat every Bieberbah manifold M is overed by a at torus T n. We willsee that spinors on M orrespond to spinors on T n satisfying a ertainequivariane ondition (2). The Dira eigenvalues of M are ontained in theDira spetrum of T n, and in general the multipliities of the eigenvaluesof M are smaller than those of T n. The Dira spetrum of at tori iswell known, it depends on the hoie of the spin struture. This result isdue to T. Friedrih ([7℄, see also [1℄). In order to alulate the eigenvalueson Bieberbah manifolds we lift the eigenspinors to the universal overingRn . By representation theory of �nite groups we get formulae for themultipliities of the Dira eigenvalues of M . The method we use is relatedto the one C. B�ar applied to ompute the Dira spetra of spherial spaeforms (see [2℄).An expliit lassi�ation of three-dimensional orientable Bieberbah mani-folds is available: There are only six distint aÆne equivalene lassesof suh manifolds. For every ase there exist several distint spin stru-tures whih are lassi�ed in Theorem 3.3. In Theorems 5.4 and 5.7we ompute the Dira spetra for all these ases. Eigenvalue 0 oursonly in the ase of the at torus T 3 with the trivial spin struture (seeTheorem 5.1). Sine the asymmetri omponents of these Dira spetrahave very simple forms it is easy to ompute the eta invariants (Theorem 5.6)1



An interesting observation an be made: There are examples of Bieber-bah manifolds (G2; G4) for whih a hange of spin strutures auses anotherqualitative behaviour of the Dira spetrum. For some spin strutures thespetrum is symmetri, for other spin strutures it possesses an asymmetriomponent. This also illustrates the dependene of the eta invariants on thehoie of the spin struture.The last setion is dediated to parallel spinors. Two haraterisations ofat tori are given: Any three-dimensional ompat onneted spin manifoldarrying a non-zero parallel spinor is a at torus (Theorem 6.1). An n-dimensional oriented Bieberbah manifold for whih the kernel of the Diraoperator has dimension 2[n2 ℄ is isometri to a torus (Theorem 6.2).2 Flat manifoldsIt is well known that any at omplete manifoldM of dimension n is isometrito the quotient GnRn where G is a suitable subgroup of the Eulidean motionsE(n) := O(n)n Rn .For every element g 2 E(n) there exist A 2 O(n) and a 2 Rn suh that forall x 2 Rn we have gx = Ax + a, and we write g = (A; a).One de�nes homomorphisms r : E(n) ! O(n) and t : Rn ! E(n) byr(A; a) = A and t(a) = (1; a). Obviously t is injetive, therefore we mayonsider Rn as a subgroup of E(n), the pure translations.The subgroup r(G) � O(n) is alled the holonomy of G sine it is isomorphito the holonomy of M (see [5℄).A general result on the holonomy group of onneted Riemannian manifoldsstates that a manifold is orientable if and only if its holonomy onsists ofisometries preserving the orientation of a given tangent spae (see [10℄, p.123). So we get the followingLemma 2.1. A at manifold M = GnRn is orientable i� r(G) � SO(n).Now we take a look at Bieberbah manifolds:A subgroup G � E(n) ating properly disontinuously on Rn suh that GnRnis ompat is alled a Bieberbah group. The struture of Bieberbah groupsis desribed by the nextTheorem 2.2 (Bieberbah). Let G be a Bieberbah group. Then the holon-omy r(G) is �nite and the set or pure translations in G de�ned as � := G\Rnis a lattie.From the proof given in [5℄, p. 17�. also two other things follow: The ationof r(G) on Rn leaves � invariant, i. e. r(G) ats on �. Moreover, one has2



a short exat sequene 0 ! � ! G ! r(G) ! 1. Hene � = ker(r) is anormal subgroup of G with r(G) �= G=�. This implies theTheorem 2.3 (Bieberbah, [3℄). Every Bieberbah manifold is normallyovered by a at torus, and the overing map is a loal isometry.The at torus is T n := �nRn , and the ation of A 2 r(G) on T n is givenas follows: Chose g 2 G with r(g) = A and set A � [x℄� := [gx℄�. Thus we getMn �= r(G)nT n.Bieberbah manifolds are well desribed by their fundamental groups as wesee next.Proposition 2.4. Let G1; G2 � E(n) be Bieberbah groups, let ' : G1 ! G2be an isomorphism. Then there is an aÆne transformation � 2 GL(n)nRnsuh that for all g 2 G1: '(g) = �g��1.Proof. See [5℄, p. 19.We all two Bieberbah manifolds M1 and M2 aÆne equivalent if thereexists a di�eomorphism F :M1 !M2 whose lift to the universal Riemannianoverings �1 : Rn ! M1, �2 : Rn ! M2 is an aÆne linear map � : Rn ! Rnsuh that the following diagram ommutes:Rn �
//�1

��

Rn �2
��M1 F

// M2:A onsequene of Proposition 2.4 is the followingTheorem 2.5 (Bieberbah). Two Bieberbah manifolds are aÆne equiva-lent if their fundamental groups are isomorphi.The next theorem states that in priniple one should be able to lassifyBieberbah manifolds of a given dimension.Theorem 2.6 (Bieberbah, [4℄). Let n be a positive integer. Then thenumber of aÆne equivalene lasses of n-dimensional Bieberbah manifoldsis �nite.Proof. See [5℄, p. 65.In the ase of dimension n � 3 there are expliite lassi�ations. Sine wewill do spin geometry we are interested in orientable Bieberbah manifoldsonly. In dimension one and two the only orientable Bieberbah manifolds areat tori (see [12℄, p. 77). In dimension three the lassi�ation is a bit moreinteresting. 3



Theorem 2.7 (Hantzshe, Wendt). Let M be an orientable Bieberbahmanifold of dimension three. Then M is aÆne equivalent to GinR3 whereGi is one of the following six groups. In every ase a basis of the lattieR3 \Gi is denoted by fa1; a2; a3g, the translation assoiated to aj is alled tj,j = 1; 2; 3.generators of Gi de�ning relationsG1 t1; t2; t3 tltk = tktl 8k; lwith fa1; a2; a3g any basis of R3G2 t1; t2; t3; � tltk = tktl 8k; lwith a1 2 [a2; a3℄?, �2 = t1� = (A; 12a1), where �t2��1 = t�12Aa1 = a1; Aa2 = �a2; Aa3 = �a3 �t3��1 = t�13G3 t1; t2; t3; � tltk = tktl 8k; lwith a1 2 [a2; a3℄?, ja2j = ja3j, �3 = t1a2 and a3 generate a plane �t2��1 = t3regular hexagonal lattie, �t3��1 = t�12 t�13� = (A; 13a1) whereAa1 = a1; Aa2 = a3; Aa3 =�a2�a3G4 t1; t2; t3; � tltk = tktl 8k; lwith a1; a2; a3 mutually orthogonal, �4 = t1ja2j = ja3j, �t2��1 = t3� = (A; 14a1), where �t3��1 = t�12Aa1 = a1; Aa2 = a3; Aa3 = �a2G5 t1; t2; t3; � tltk = tktl 8k; lwith a1 2 [a2; a3℄?, ja2j = ja3j, �6 = t1a2 and a3 generate a plane �t2��1 = t3regular hexagonal lattie, �t3��1 = t�12 t3� = (A; 16a1), whereAa1 = a1; Aa2 = a3; Aa3 =�a2+a3G6 t1; t2; t3; �; �;  tltk = tktl 8k; lwith a1; a2; a3 mutually orthogonal, �2 = t1, �t2��1 = t�12 , �t3��1 = t�13� = (A; 12a1), � = (B; 12a2 + 12a3), �t1��1 = t�11 , �2 = t2, �t3��1 = t�13 = (C; 12a1 + 12a2 + 12a3), where t1�1 = t�11 , t2�1 = t�12 , 2 = t3Aa1 = a1; Aa2 = �a2; Aa3 = �a3, �� = t1t3Ba1 = �a1; Ba2 = a2; Ba3 = �a3,Ca1 = �a1; Ca2 = �a2; Ca3 = a3
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Proof. The generators and relations are given in [12℄, p. 117. In [9℄ it isshown that these are de�ning relations.The aÆne equivalene lasses are denoted by G1; :::; G6, the assoiatedBieberbah groups are alled G1; :::; G6. With some additional elementaryonsiderations one getsTheorem 2.8. Every orientable Bieberbah manifold of dimension three isisometri to GinR3 where Gi is one of the following groups, the parametersare to be hosen suitably.generators of Gi basis of lattie parametersG1 t1; t2; t3 a1; a2; a3any basis of R3G2 t1; t2; t3; � a1 = (0; 0; H) A �-rotation H;L; S > 0with �=(A; 12a1) a2 = (L; 0; 0) about z-axis T 2 Ra3 = (T; S; 0)G3 t1; t2; t3; � a1 = (0; 0; H) A 2�3 -rotation H;L > 0with �=(A; 13a1) a2 = (L; 0; 0) about z-axisa3 = (�12L; p32 L; 0)G4 t1; t2; t3; � a1 = (0; 0; H) A �2 -rotation H;L > 0with �=(A; 14a1) a2 = (L; 0; 0) about z-axisa3 = (0; L; 0)G5 t1; t2; t3; � a1 = (0; 0; H) A �3 -rotation H;L > 0with � = (A; 16a1) a2 = (L; 0; 0) about z-axisa3 = (12L; p32 L; 0)G6 t1; t2; t3; �; �;  a1 = (0; 0; H) A �-rotation H;L; S > 0with �=(A; 12a1), a2 = (L; 0; 0) about z-axis,�=(B; 12a2+ 12a3) a3 = (0; S; 0) B �-rotation=(C; 12a1+ 12a2+ 12a3) about x-axis,C �-rotationabout y-axisIn partiular the holonomy r(Gi) is yli for i = 2; :::; 5.3 Spin struturesLet C l(n) denote the Cli�ord algebra of Rn , i.e. the omplex algebra gener-ated by Rn with the relations v �w+w �v+2hv; wi = 0 for all v; w 2 Rn . The5



spae of an irreduible representation of C l(n) is �n = C K with K = 2[n2 ℄.For n = 3 the representation an be given by the Pauli matries (see [8℄):e1 = �i 00 �i� ; e2 = �0 ii 0� ; e3 = � 0 1�1 0� : (1)The group Spin(n) sits in C l(n):Spin(n) = fv1 � ::: � v2k �� k 2 N ; jvi j = 1 for all i = 1; :::; 2kg;and there is the double overing� : Spin(n) �! SO(n)u 7�! �v 7! u � v � u�1� :Next, we desribe the spin strutures on an oriented Bieberbah manifoldM = GnRn . We proeed as in [8℄. Sine Rn is simply onneted it arriesonly one spin struture - the trivial one:PSpinRn�
��

Rn � Spin(n)id��
��PSORn Rn � SO(n)where PSORn denotes the set of all oriented orthonormal bases of tangentspaes of Rn . The ation of G on PSORn is given by:g�x; (v1; :::vn)� = �gx; (dg(v1); :::; dg(vn))�= �gx; r(g)(v1; :::; vn)�for all x 2 Rn ; (v1; :::; vn) 2 SO(n). We get PSOM �= GnPSORn . Now thereare two lifts g� of g suh thatPSpinRn g�

//�
��

PSpinRn�
��PSORn g

// PSORn :6



Proposition 3.1. There is a 1-1-orrespondene between the spin strutureson M and the ations � of G on PSpinRn with: �(g) 2 fg�g for all g 2 G.Proof. See [8℄, p. 46.The spin struture assoiated to suh an � is given byGnPSpinRn �����! GnPSORn �= PSOM :For g� we an �nd A� 2 ��1(r�1(g)) suh that for all (x; s) 2 Rn � Spin(n)g� = (gx; A�s):From Proposition 3.1 one getsProposition 3.2. The spin strutures on M = GnRn with the indued ori-entation are in bijetive relation to the homomorphisms " : G ! Spin(n)with Spin(n)�
��G r

//

" <<
y

y
y

y
y

y
y

y
y SO(n) :Given a homomorphism " with r = � Æ " one de�nes an ation � onRn � Spin(n) via �(g) : (x; s) 7! (gx; "(g)s), and one gets a spin strutureas desribed above.In order to lassify the spin strutures on oriented Bieberbah manifolds ofdimension three we have to reall a simple fat onerning groups: Let agroup G be given by generators and relations, let " be a map from the set ofthe generators ofG into a groupH. Then " extends to a homomorphismG!H if and only if the same relations hold for the "-images of the generators.Considering the �-preimages of r(g) for every generator g of G and hekingthe relations we getTheorem 3.3. Let Gi � SO(3)n Rn be a Bieberbah group as in Theorem2.8. Then one gets every spin struture on M = GinR3 by taking one ofthe homomorphisms " : Gi ! Spin(3) with r = � Æ " whose values on thegenerators of Gi are given by the following:
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G1 a1 7! Æ1 , a2 7! Æ2 , a3 7! Æ3 Æ1; Æ2; Æ3 2 �� 1	G2 a1 7! �1 , a2 7! Æ2 , a3 7! Æ3 , Æ1; Æ2; Æ3 2 �� 1	� 7! Æ1e1e2G3 a1 7! �Æ1 , a2 7! 1 , a3 7! 1 , Æ1 2 �� 1	� 7! Æ1�12 + p32 e1e2�G4 a1 7! �1 , a2 7! Æ2 , a3 7! Æ2 , Æ1; Æ2 2 �� 1	� 7! Æ1�p22 + p22 e1e2�G5 a1 7! �1 , a2 7! 1 , a3 7! 1 , Æ1 2 �� 1	� 7! Æ1�p32 + 12e1e2�G6 a1 7! �1 , a2 7! �1 , a3 7! �1 , Æ1; Æ2; Æ3 2 �� 1	� 7! Æ1e1e2 , � 7! Æ2e2e3 ,  7! Æ3e3e1 with Æ1 � Æ2 � Æ3 = 1In partiular, in the ases G1 and G2 there are eight distint spin strutures,for G3 and G5 there are two, and for G4 and G6 there are four.In the ases G2 to G5 one an write "(�) alternatively as"(�) = Æ1� os '2 + sin '2 e1e2� with ' = 2�k and k = #r(Gi) .4 SpetraNow, let M = GnRn be a Bieberbah manifold with the spin struture givenby " : G ! Spin(n). The spinor bundle of M is the assoiated bundle�M := PSpinM �Spin(n) �n. For Rn it is trivial: �Rn �= Rn � �n.We may identify �M = Gn�Rn , where g 2 G ats on �Rn by g(x; �) =(gx; "(g)�) for all (x; �) 2 �Rn . Therefore, one an onsider spinors on Mas maps 	 : Rn ! �n satisfying for all g 2 G:	 = "(g)	 Æ g�1: (2)Let r denote the Levi-Civita onnetion for spinors, and let D be theDira operator on M .For T n = �nRn the spetrum of D2 is already known (see [7℄): Let the spinstruture of T n be given by " : �! f�1g � Spin(n), let a�1; :::; a�n be a basisbasis of the dual lattie �� of �. We de�nea" := 12 Xl with"(al)=�1 a�l : (3)The D2-eigenspinors on T n are given by:	jb : Rn ! �n ; x 7! e2�i<b;x>�j;8



where b 2 �� + a", and f�j j j = 1; :::; 2[n2 ℄g is the standard basis of �n.We denote the orresponding D2-eigenspae Eb(D2) := spanf	jbgj. For � 2Eb(D2), b 6= 0, the Dira operator is given by the Cli�ord multipliation with2�ib: D� = 2�ib ��:Let Eb�(D) be the set of all 	 2 Eb(D2) with D	 = �2�jbj	. Clearly, weget: Eb(D2) = Eb+(D) � Eb�(D), i. e. a deomposition into eigenspaes ofD. It is known that the Dira spetrum of T n is symmetri for every possiblespin struture (see [1℄). Analogously as in [2℄ we de�ne projetion operatorsF� : Eb(D2)! Eb�(D) byF�	 := �1� 12�jbjD�	 = �1� i bjbj�	:Sine F� is surjetive we obtain generators of Eb�(D):�jb� := F�	jb = �1� i bjbj�	jb; j = 1; :::; 2[n2 ℄:In the ase b = 0 2 �� + a" one gets E0(D2) = E0(D), and generators ofE0(D) are given by �j0 := �j; j = 1; :::; 2[n2 ℄.For b 6= 0 one obtains an isomorphism Eb+(D) �= Eb�(D) by the following:Chose  2 Rn perpendiular to b with jj = 1. Let M : Eb(D2) ! Eb(D2)denote the Cli�ord multipliation with . Then, M and D antiommute:MD� = �DM� for all � 2 Eb(D2):Therefore, M : Eb�(D) ! Eb�(D). Now, (M)2 = id implies that M is anisomorphism. Consequently, dim�Eb�(D)� = 12 2[n2 ℄.Next, we onsider M = GnRn with spin struture given by " : G! Spin(n),the general ase. Theorem 2.3 tells us that M is overed by the at torusT n = �nRn with � = Rn \ G. The spin struture on T n is given by "��� :�! Spin(n). The spinors on T n satisfy the equivariane ondition (2) onlyfor g 2 �, in general they are not equivariant for all g 2 G. To �nd theG-equivariant spinors we de�ne an ation of r(G) on the spinors on T n: ForA 2 r(G) we hose g 2 G with r(g) = A, and for a spinor 	 on T n we set:A	 := "(g)	 Æ g�1:One an show that by this one gets a well de�ned ation on the spae ofspinors on T n. Obviously, the r(G)-equivariant spinors on T n orrespond tothe spinors on M . 9



Let a1; :::; an be a basis of � and a�1; :::; a�n be the dual basis. For the sakeof simpliity we write a" instead of a"j�. Now, we alulate A�jb� for b 2�� + a"; b 6= 0; j = 1; :::; 2[n2 ℄. For a hosen g 2 G with r(g) = A, i. e.g = (A; a), we getLemma 4.1. A�jb� = e2�i<Ab;a>�1� AbjAbj��"(g)	jAb�Before we prove this lemma, it should be noted that the invariane of� � Rn under r(G) � SO(n) implies that �� � Rn is invariant underr(G)� = r(G). From the fat that A�jb� is a spinor on T n it follows thatAb 2 �� + a".Proof. First we get for all x 2 Rn :�	jb Æ g�1�(x) = e2�i<b;A�1(x�a)>�j= e�2�i<Ab;a>	jAb(x):Next, we only use the de�nitions:A�jb� = "(g)�jb� Æ g�1= "(g)�1� i bjbj�	jb Æ g�1= �1� i 1jbj"(g)b"(g)�1�"(g)	jb Æ g�1:From r = � Æ " it follows "(g)b"(g)�1 = �� Æ "(g)�(b) = r(g)b = Ab. Further-more, A 2 SO(n) implies jbj = jAbj. Finally we get:A�jb� = �1� AbjAbj��"(g)e�2�i<Ab;a>	jAb�:We an write A�jb� = F��e�2�i<Ab;a>"(g)	jAb�. Hene for all � 2 Eb�(D)we have A� 2 EAb�(D). The following theorem is useful to ompute thesymmetri omponent of the Dira spetrum of Bieberbah manifolds.Theorem 4.2. Suppose that for b 2 ��+a"; b 6= 0, one has #r(G) = #r(G)b,i. e. r(G) ats on the r(G)-orbit of b without �xed points. ConsiderV := MA2r(G)EAb(D2):10



Then, the dimensions of the subspaes of V onsisting of D-eigenspinors ofM assoiated to the eigenvalues �2�jbj are given by:mult�� 2�jbj; D��V � = 122[n2 ℄:Proof. Theorem 2.2 states that r(G) is �nite: r(G) = fA1; :::; Akg with k =#r(G). As by assumption the points A1b; :::; Akb are pairwise distint, thespaes EAjb(D2) are mutually orthogonal. Therefore, V is a diret sum. Wede�ne: V � := MA2r(G)EAb�(D):The ation of r(G) indues representations �� : r(G) ! GL(V �). Let ��denote the assoiated haraters. From Lemma 4.1 it follows: ��(A) =tr(��(A)) = 0 for A 2 r(G); A 6= id. The subspae of D-eigenspinors is thespae on whih r(G) ats trivially. Hene,mult�� 2�jbj; D��V � =< ��; 1 >= 1#r(G) XA2r(G)��(A)= 1k��(id) = 1kdim(V �) = 1k � 12 � k � 2[n2 ℄:Corollary 4.3. Assume the ation of r(G) on ��+ a" is free, then the spe-trum of the Dira operator on M is symmetri.In the ase of b = 0 2 �� + a" the ation of A 2 r(G) is given byA	 = "(g)	 2 E0(D)for every 	 2 E0(D) = �n and g 2 r�1(A) � G. The kernel of the Dira op-erator onM is the subspae of r(G)-invariant spinors in E0(D), its dimensionis dim�ker(D)� = 1#r(G) XA2r(G)�(A);where � denotes the harater of the representation r(G)! GL�E0(D)�.
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5 Spetra in dimension threeIn the following we will use the preeding preparations to ompute the Diraspetrum of three-dimensional Bieberbah manifolds.For a1; a2; a3 given in Theorem 2.8 we get the dual basis a�1; a�2; a�3:G2 a�1 = (0; 0; 1H ), a�2 = ( 1L ;� TSL ; 0), a�3 = (0; 1S ; 0)G3 a�1 = (0; 0; 1H ), a�2 = ( 1L ; 13p3 1L ; 0), a�3 = (0; 23p3 1L ; 0)G4 a�1 = (0; 0; 1H ), a�2 = ( 1L ; 0; 0), a�3 = (0; 1L ; 0)G5 a�1 = (0; 0; 1H ), a�2 = ( 1L ;�13p3 1L ; 0), a�3 = (0; 23p3 1L ; 0)G6 a�1 = (0; 0; 1H ), a�2 = ( 1L ; 0; 0), a�3 = (0; 1S ; 0)We obtain distint a" for the distint spin strutures given by Æi 2 f�1gas in Theorem 3.3:spin strutures a"G2 Æ1 2 f�1g, Æ2 = 1, Æ3 = 1 12a�1 = (0; 0; 12H )Æ1 2 f�1g, Æ2 = �1, Æ3 = 1 12a�1 + 12a�2 = ( 12L ;� T2SL ; 12H )Æ1 2 f�1g, Æ2 = 1, Æ3 = �1 12a�1 + 12a�3 = (0; 12S ; 12H )Æ1 2 f�1g, Æ2 = �1, Æ3 = �1 12a�1 + 12a�2 + 12a�3 = ( 12L ; 12S � T2SL ; 12H )G3 Æ1 = 1 12a�1 = (0; 0; 12H )Æ1 = �1 0 = (0; 0; 0)G4 Æ1 2 f�1g, Æ2 = 1 12a�1 = (0; 0; 12H )Æ1 2 f�1g, Æ2 = �1 12a�1 + 12a�2 + 12a�3 = ( 12L ; 12L ; 12H )G5 Æ1 2 f�1g 12a�1 = (0; 0; 12H )G6 Æ1; Æ2; Æ3 2 f�1g with Æ1Æ2Æ3 = 1 12a�1 + 12a�2 + 12a�3 = ( 12L ; 12S ; 12H )We onsider the ase G6: For b 2 �� + a" one has #r(G)b = 4 = #r(G).Therefore, r(G) ats on ��+a" without �xed points. We apply Corollary 4.3and note that in this ase the spetrum is symmetri.The omputation of the Dira spetra is done in three steps:First, we investigate when the kernel of D is non-trivial. Then we observein whih ases �� + a" possesses some non-maximal r(G)-orbits, i. e. orbitsr(G)b with #r(G)b < #r(G). Theorem 4.2 tells us that only these orbits anhave a ontribution to the asymmetri omponent of the spetrum of D. Atlast, we just have to ount the maximal orbits in �+a" to get the symmetriomponent.To determine the kernel of D we only have to observe the ases with 0 2�� + a": These are the at torus with the trivial spin struture and G3with the spin struture given by Æ1 = �1. In the seond ase the holonomy12



is r(G) = f1; A; A2g where A is the 2�3 -rotation around the z-axis. As anr-preimage of A we hose � = (A; 13a1) (ompare Theorem 2.8). Then byTheorem 3.3, "(�) = 12(1 +p3e1e2). Using the representation de�ned by (1)we get:�(A) = �12 � 1 �p3p3 1 � and �(A2) = �(A)2 = �12 � 1 p3�p3 1 � :The assoiated harater is given by:�(1) = 2; �(A) = �1 and �(A2) = �1:Hene, dim�ker(D)� = 13(2� 1� 1) = 0, and we have shownTheorem 5.1. The only Bieberbah manifolds of dimension three whih arespin and on whih D has a non-trivial kernel for a suitable hoie of the spinstruture are at tori.Next, we will ompute the asymmetri omponent of the Dira spetrum.As for G6 the spetrum of D is symmetri it suÆes to study the ases G2to G5 whih are very similar: r(G) is yli and onsists of rotations aroundthe z-axis. Consequently, an orbit r(G) is maximal if and only if b sits on thez-axis whih means b is of the form b = �e3; � 2 R. For �� + a" possessingpoints on the z-axis the only possibilities are a" = 0 or a" = 12a�1. We get:Lemma 5.2. Asymmetri D-spetra are only possible in the following eightases: G2 Æ1 2 f�1g Æ2 = 1 Æ3 = 1G3 Æ1 2 f�1gG4 Æ1 2 f�1g Æ2 = 1G5 Æ1 2 f�1gNext, we will only onsider these eight ases. For b 2 ��+a" sitting on thez-axis, b 6= 0, one has Ab = b for all A 2 r(G). Hene, Eb�(D) = EAb�(D),and by Lemma 4.1 one gets representations �� : r(G) ! GL(Eb�(D)) withharaters ��. As dimCEb�(D) = 122[ 32 ℄ = 1, we have representations of ayli group on a one-dimensional linear spae. Let the order of r(G) bedenoted by k = #r(G), let A be a generator of r(G) as in Theorem 2.8. Thedimension of the subspae of r(G)-equivariant spinors in Eb�(D) is< ��; 1 >= 1k k�1Xl=0 ��(Al) = 1k k�1Xl=0 ���(A)�l: (4)13



We write b = �e3 with b 2 Rnf0g and get a basis of Eb�(D):�1b� = �1� i bjbj�	1b = fb�1� i � sgn(�)e3��1;where fb denotes the map R3 ! C ; x 7! e2�i<x;b>. Using (1) we get�1b� = fb��1 � i � sgn(�)�2� 6= 0 :Just like in Theorem 2.8 we take � = (A; 1ka1) as an r-preimage of A. ByLemma 4.1 it follows:A�1b� = e�2�i 1k<b;a1>�1� i bjbj�"(a)	1b : (5)For the representation given in (1) the ations of e1 � e2 and �e3 on �3 arethe same. Using Theorem 3.3 and setting ' := 2�k we obtain:�1� i bjbj�"(a)	1b = �1� i � sgn(�)e3�Æ1� os '2 + sin '2 e1e2�	1b= �1� i � sgn(�)e3�Æ1� os '2 � sin '2 e3�	1b= Æ1� os '2 � i � sgn(�) sin '2 ��1� i � sgn(�)e3�	1b= Æ1e��i'2 sgn(�)��1� i bjbj�	1b= Æ1e��i'2 sgn(�)��1b� :Plugging this into (5) one gets: A�1b� = Æ1e�2�i 1k<b;a1> � e2�i 12k��sgn(�)��1b�.In eah ase of Lemma 5.2 we an �nd H > 0 with e3 = Ha�1, and thusb = (�H)a�1. Hene the harater of A is��(A) = Æ1 exp�2�i1k�� �H � 12sgn(�H)��: (6)The next lemma is a diret onsequene of the geometri summation, and itwill be useful in the following omputations.Lemma 5.3. Let � 2 C be a k-th root of 1, �k = 1, then1k k�1Xl=0 �l = (1 ; if � = 1;0 ; otherwise.14



Theorem 5.4. Only in the eight ases of Lemma 5.2 the spetrum of Dhas an asymmetri omponent B. Let k = #r(G) denote the order of theholonomy. Then one gets for G2; G3; G4; G5 with the spin struture given byÆ1 = 1: B = �2� 1H (k�+ 12)��� 2 Z	;for all � 2 Z the multipliities are:mult�2� 1H (k�+ 12); D� = 2:If one hoses the spin struture given by Æ1 = �1, one obtains:B = �2� 1H (k�+ k + 12 )��� 2 Z	;and for � 2 Z the multipliity is:mult�2� 1H (k�+ k + 12 ); D� = 2:Proof. We only have to plug (6) into (4) and onsider the distint ases. Wenote that in all ases exept G3 with Æ1 = �1 one gets b = (z + 12)a�1 withz 2 Z. For G3 with Æ1 = �1 one an write b = za�1, where z 2 Z; z 6= 0.1. Æ1 = 1: For b = (z + 12)a�1, i. e. (�H) = z + 12 it follows from (6):��(A) = exp�2�i1k�� z � 12 � 12sgn(z + 12)��:We put��z := mult��2�j(z+ 12)a�1j ; D��Vz�� where Vz� := E�(z+ 12 )a�1��(D) :Together with (4) Lemma 5.3 yields:��z = (1 ; if ��(A) = 10 ; otherwise.Sine ��(A) = 1 is equivalent to �z � 12 � 12sgn(z + 12) 2 kZ, we get
15



for z � 0: �+z = (1 ; if z � 0 mod k;0 ; otherwise;��z = (1 ; if z � �1 mod k;0 ; otherwise;and for z < 0 : �+z = (1 ; if z � �1 mod k;0 ; otherwise;��z = (1 ; if z � 0 mod k;0 ; otherwise:Consequently, only z = �k and z = �k�1 , � 2 Z, make a ontributionto the spetrum. One gets the positive eigenvalues exatly from thosez with z = �k and z = ��k� 1 , � � 0 , and the negative ones exatlyfrom z = �k and z = ��k� 1 for � < 0 . As ja�1j = 1H , the eigenvaluesare 2� 1H (�k + 12) , � 2 Z . For � � 0 the multipliities are:mult�2� 1H (k�+ 12); D� = �+z1 + �+z2 = 1 + 1 = 2;where z1 = k� and z2 = �k� � 1. In the same way one obtains themultipliities 2 for � < 0.2. Æ1 = �1: As Æ1 = exp(2�i12), the harater is given by��(A) = exp�2�i1k�� (�H)� 12sgn(�H) + k2�� :Hene, ��(A) = 1 () �(�H)� 12sgn(�H) + k2 � 0 mod k;then the following omputations are analogous as above. One has toobserve that for G2; G4; G5 one has (�H) 2 Z+ 12 and k2 2 Z, and forG3: (�H) 2 Z and k2 = 1 + 12 .Now, the eta invariants are easily omputed. It is lear that for symmetrispetra the eta invariants vanish.Lemma 5.5. Assume the spetrum has an asymmetri omponent of theform B = �r(� + �)��� 2 Z	 with � 2 (0; 1) and r > 0 suh that eaheigenvalue in B has the same multipliity A. Then the eta invariant is � =A(1� 2�). 16



Proof. For Re(z) >> 0 one gets for the eta funtion:�(z) = X�2spe(D)�6=0 sgn(�) mult(�;D)j�jz =X�2B sgn(�) Aj�jz= A 1rz � 1Xk=0 1(k + �)z � 1Xk=0 1(k + 1� �)z�:These two series are known as generalized zeta funtions (see [11℄, p. 265�.).They have meromorphi extensions on C without poles in z = 0. Let �(z; a)denote the funtion de�ned byP1k=0 1(k+�)z for Re(z) >> 0. One gets for theextension: �(0; a) = 12 � �.Hene, the eta invariant is �(0) = A�12 � �� 12 + (1� �)�.Theorem 5.4 tells us that only in the ases of Lemma 5.2 an asymmetriomponent B ours, B has the form as in Lemma 5.5 if one takes r = 2� kHand � = 12k for Æ1 = 1, and r = 2� kH and � = k+12k in the ase Æ1 = �1. Thisyields:Theorem 5.6. The eta invariant of a three-dimensional oriented Bieberbahmanifold is zero exept in the eight ases of Lemma 5.2: For G2; G3; G4; G5with the spin struture given by Æ1 = 1 the eta invariant is � = 2�1 � 1k� =2� 2k , and for Æ1 = �1 it is � = 2(1� k+1k ) = � 2k .It remains to determine the symmetri omponents of the spetra. Sofar, we have just onsidered the points in �� + a" sitting on the z-axis. Allthe other points belong to maximal orbits. By Theorem 4.2 every maximalorbit r(G)b ontributes the eigenvalues 2�jbj and �2�jbj, with multipliity1 = 122[ 32 ℄ respetively, to the spetrum. We have to ount these maximalorbits to obtainTheorem 5.7. Let M = GinR3 be a three-dimensional Bieberbah manifoldas in Theorem 2.8. Let M arry the spin struture given by Æ1; Æ2; Æ3 2 f�1g.Then the symmetri omponent A of the Dira spetrum isA = ���klm�� (k; l;m) 2 I	;where ��klm 2 R and I � Z3 are to be hosen as follows:
17



G2 a) Æ1 2 f�1g; Æ2 = 1; Æ3 = 1:I = �(k; l;m)�� k; l;m 2 Z; m � 1	 [ �(k; l;m)�� k; l 2 Z; l � 1; m = 0	��klm = �2�q 1H2 (k + 12)2 + 1L2 l2 + 1S2 �m� TL l�2b) Æ1 2 f�1g; Æ2 = �1; Æ3 = 1:I = �(k; l;m)�� k; l;m 2 Z; l � 0	��klm = �2�q 1H2 (k + 12)2 + 1L2 (l + 12)2 + 1S2 �m� TL(l + 12)�2) Æ1 2 f�1g; Æ2 = 1; Æ3 = �1:I = �(k; l;m)�� k; l;m 2 Z; m � 0	��klm = �2�q 1H2 (k + 12)2 + 1L2 l2 + 1S2 �(m + 12)� TL l�2d) Æ1 2 f�1g; Æ2 = �1; Æ3 = �1:I = �(k; l;m)�� k; l;m 2 Z; l � 0	��klm = �2�q 1H2 (k + 12)2 + 1L2 (l + 12)2 + 1S2 �(m+ 12)� TL (l + 12)�2G3 a) Æ1 = 1:I = �(k; l;m)�� k; l;m 2 Z; l � 1; m = 0; :::; l � 1	��klm = �2�q 1H2 (k + 12)2 + 1L2 l2 + 13L2 (l � 2m)2b) Æ1 = �1:I = �(k; l;m)�� k; l;m 2 Z; l � 1; m = 0; :::; l � 1	��klm = �2�q 1H2k2 + 1L2 l2 + 13L2 (l � 2m)2G4 a) Æ1 2 f�1g; Æ2 = 1:I = �(k; l;m)�� k; l;m 2 Z; l � 1; m = 0; :::; 2l� 1	��klm = �2�q 1H2 (k + 12)2 + 1L2 �l2 + (m� l)2�G4 b) Æ1 2 f�1g; Æ2 = �1:I = �(k; l;m)�� k; l;m 2 Z; l � 1; m = 0; :::; 2l� 2	��klm = �2�q 1H2 (k + 12)2 + 1L2 �(l � 12)2 + (m� l + 12)2�G5 Æ1 2 f�1g:I = �(k; l;m)�� k; l;m 2 Z; l � 1; m = 0; :::; l � 1	��klm = �2�q 1H2 (k + 12)2 + 1L2 l2 + 13L2 (2l �m)218



G6 Æ1; Æ2; Æ3 2 f�1g with Æ1 � Æ2 � Æ3 = 1:I = �(k; l;m)�� k; l;m 2 Z; l � 0; k � 0	��klm = �2�q 1H2 (k + 12)2 + 1L2 (l + 12)2 + 1S2 (m+ 12)2For G3 the multipliity for every ��klm is given by:mult���klm; D� = 2 �#�(k0; l0; m0) 2 I����k0l0m0 = ��klm	 :For all the other ases one hasmult���klm; D) = #�(k0; l0; m0) 2 I����k0l0m0 = ��klm	 :Proof. We need onrete proedures to ount the maximal orbits. For G2to G5 the holonomies onsist of rotations around the z-axis. In these asesthe orbits sit in planes whih are parallel to the x-y-plane. The followingpitures illustrate how to �nd representing elements of the orbits in theseplanes. They are marked by the �lled irles.G2:
l=0

m=0

G2a)

m=1

G2c)
 l=0

m=0

m=1

In the ase G2a) we take the system of representatives:�bklm�� (k; l;m) 2 I	 with I as in the theoremwhere bklm = (k + 12)a�1 + la�2 +ma�3.For G2) we hose the representatives bklm = (k + 12)a�1 + la�2 + (m +12)a�3; k; l;m 2 Z; m � 0.In the ases G2b) one has to replae l by (l + 12) and (m + 12) by m to getsuitable bklm. The ase G2d) is analogous.G4 and G5:
G4a)  m=1

m=0 l=1

 m=1

 m=0
l=1

G4b)
G5

l=1

m=0
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For these ases we hose the following representatives:bklmG4a) (k + 12)a�1 + la�2 + (m� l)a�3 k 2 Z; l � 1; m = 0; :::; 2l� 1G4b) (k + 12)a�1 + (l � 12)a�2 + (m� l + 12)a�3 k 2 Z; l � 1; m = 0; :::; 2l� 2G5 (k + 12)a�1 + la�2 �ma�3 k 2 Z; l � 1; m = 0; :::; l� 1For G3a) one has the same �� + a" as in the ase of G5. Every maximalr(G5)-orbit is the disjoint union of two maximal r(G3)-orbits. Therefore, weget the same spetrum as in the ase G5, but the multipliities are doubled.For G3b) replae (k + 1) by k.Again, the ase G6 di�ers from the other ases: Everymaximal orbit onsists of four points whih do not sit ina ommon plane. We take the representing elements:bklm = (k+ 12)a�1+(l+ 12)a�2+(m+ 12)a�3 withm 2 Z,k; l �0.
6 Parallel spinorsThe remaining setion deals with parallel spinors.Theorem 6.1. Let M be a three-dimensional ompat onneted spin man-ifold arrying a non-zero parallel spinor. Then M is a at torus.Proof. Friedrih showed in [6℄ that manifolds admitting non-vanishing par-allel spinors are Rii at. In the ase of dimension three this implies at-ness. Therefore M is Bieberbah. The kernel of the Dira operator is non-trivial sine parallel spinors are harmoni. Applying Theorem 5.1 �nishesthe proof.The last theorem gives a haraterisation of at tori in the lass of Bieber-bah manifolds:Theorem 6.2. LetM = GnRn be a Bieberbah manifold arrying the induedorientation and the spin struture assoiated to " : G ! Spin(n). If thekernel of the Dira operator has dimension 2[n2 ℄, M is a at torus.Proof. A onsequene of dimension 2[n2 ℄ is that ker(D) = �n. Hene for allg 2 G; � 2 �n we have � = "(g) � �. Sine the representation of Spin(n)20
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