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Abstract. The Dirac spectra and the eta invariants of three-
dimensional Bieberbach manifolds are computed. Compact connected
three-dimensional spin manifolds admitting parallel non-vanishing
spinors are identified as flat tori.
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1 Introduction

Bieberbach manifolds are flat connected compact manifolds. In this article
we study the spectrum of their Dirac operator.

At first, a review of Bieberbach’s theorems is given. One of them states
that every Bieberbach manifold M is covered by a flat torus 7". We will
see that spinors on M correspond to spinors on 7" satisfying a certain
equivariance condition (2). The Dirac eigenvalues of M are contained in the
Dirac spectrum of 7", and in general the multiplicities of the eigenvalues
of M are smaller than those of 7T". The Dirac spectrum of flat tori is
well known, it depends on the choice of the spin structure. This result is
due to T. Friedrich ([7], see also [1]). In order to calculate the eigenvalues
on Bieberbach manifolds we lift the eigenspinors to the universal covering
R™. By representation theory of finite groups we get formulae for the
multiplicities of the Dirac eigenvalues of M. The method we use is related
to the one C. Bar applied to compute the Dirac spectra of spherical space
forms (see [2]).

An explicit classification of three-dimensional orientable Bieberbach mani-
folds is available: There are only six distinct affine equivalence classes
of such manifolds. For every case there exist several distinct spin struc-
tures which are classified in Theorem 3.3. In Theorems 5.4 and 5.7
we compute the Dirac spectra for all these cases. Eigenvalue 0 occurs
only in the case of the flat torus 72 with the trivial spin structure (see
Theorem 5.1). Since the asymmetric components of these Dirac spectra
have very simple forms it is easy to compute the eta invariants (Theorem 5.6)



An interesting observation can be made: There are examples of Bieber-

bach manifolds (G2, G4) for which a change of spin structures causes another
qualitative behaviour of the Dirac spectrum. For some spin structures the
spectrum is symmetric, for other spin structures it possesses an asymmetric
component. This also illustrates the dependence of the eta invariants on the
choice of the spin structure.
The last section is dedicated to parallel spinors. Two characterisations of
flat tori are given: Any three-dimensional compact connected spin manifold
carrying a non-zero parallel spinor is a flat torus (Theorem 6.1). An n-
dimensional oriented Bieberbach manifold for which the kernel of the Dirac
operator has dimension 23! is isometric to a torus (Theorem 6.2).

2 Flat manifolds

It is well known that any flat complete manifold M of dimension n is isometric
to the quotient G\Rn where G is a suitable subgroup of the Euclidean motions
E(n) :=0O(n) x R".

For every element g € E(n) there exist A € O(n) and a € R" such that for
all z € R” we have gz = Az + a, and we write g = (4, a).

One defines homomorphisms r : E(n) — O(n) and t : R* — FE(n) by
r(A,a) = A and t(a) = (1,a). Obviously ¢ is injective, therefore we may
consider R" as a subgroup of E(n), the pure translations.

The subgroup r(G) C O(n) is called the holonomy of G since it is isomorphic
to the holonomy of M (see [5]).

A general result on the holonomy group of connected Riemannian manifolds
states that a manifold is orientable if and only if its holonomy consists of
isometries preserving the orientation of a given tangent space (see [10], p.
123). So we get the following

Lemma 2.1. A flat manifold M = \R" is orientable iff r(G) C SO(n).

Now we take a look at Bieberbach manifolds:

A subgroup G C F(n) acting properly discontinuously on R” such that \R”
is compact is called a Bieberbach group. The structure of Bieberbach groups
is described by the next

Theorem 2.2 (Bieberbach). Let G be a Bieberbach group. Then the holon-
omy r(QG) is finite and the set or pure translations in G defined as T := GNR"
is a lattice.

From the proof given in [5], p. 17ff. also two other things follow: The action
of 7(G) on R" leaves I invariant, i. e. 7(G) acts on I'. Moreover, one has
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a short exact sequence 0 - I' - G — r(G) — 1. Hence I' = ker(r) is a
normal subgroup of G' with r(G) 2 Gr. This implies the

Theorem 2.3 (Bieberbach, [3]). Every Bieberbach manifold is normally
covered by a flat torus, and the covering map is a local isometry.

The flat torus is 7" := 7\R", and the action of A € r(G) on T™ is given
as follows: Chose g € G with r(g) = A and set A - [z]r := [gz]r. Thus we get
M = T(G)\T :

Bieberbach manifolds are well described by their fundamental groups as we
see next.

Proposition 2.4. Let G1,Gy C E(n) be Bieberbach groups, let ¢ : Gy — G
be an isomorphism. Then there is an affine transformation o € GL(n) x R"

such that for all g € Gi: ¢(g) = aga™!.

Proof. See [5], p. 19. O

We call two Bieberbach manifolds M; and M, affine equivalent if there
exists a diffeomorphism F' : M; — M, whose lift to the universal Riemannian
coverings 7y : R® — M, my : R® — M, is an affine linear map o : R* — R”
such that the following diagram commutes:

R* — R

F
Ml D MQ.

A consequence of Proposition 2.4 is the following

Theorem 2.5 (Bieberbach). Two Bieberbach manifolds are affine equiva-
lent if their fundamental groups are isomorphic.

The next theorem states that in principle one should be able to classify
Bieberbach manifolds of a given dimension.

Theorem 2.6 (Bieberbach, [4]). Let n be a positive integer. Then the
number of affine equivalence classes of n-dimensional Bieberbach manifolds
is finite.

Proof. See [5], p. 65. O

In the case of dimension n < 3 there are explicite classifications. Since we
will do spin geometry we are interested in orientable Bieberbach manifolds
only. In dimension one and two the only orientable Bieberbach manifolds are
flat tori (see [12], p. 77). In dimension three the classification is a bit more
interesting.



Theorem 2.7 (Hantzsche, Wendt). Let M be an orientable Bieberbach
manifold of dimension three. Then M is affine equivalent to Gi\R3 where

G, is one of the following siz groups.

In every case a basis of the lattice

R* NG, is denoted by {ay, as, a3}, the translation associated to a; is called t;,
j=1,2,3.

generators of G;

defining relations

G1 | ty, ts, 3 ity = tit; VE, |
with {ay,as,a3} any basis of R

G2 tl,tg,tg,a tltk :tktl Vk,l
with a; € [as, az]*, o? =t
a= (A4, Lar), where atya™t = 15!
Aay = a1, Aay = —as, Aaz = —ag atsa™! =t3!

G3 tl, tg, t3, « tltk = tktl Vk, l
with a; € lag, az]™*, |ag| = |as], a® =1t
as and az generate a plane atya™! = t;
regular hexagonal lattice, atsa™t =1, !
o= (A, ta1) where
Aa1 = aq, ACLQ = as, Aa3 = —ag—as

G4 tl, tg, t3, « tltk = tktl Vk, l
with ay, as, as mutually orthogonal, | a* =t
‘ag‘ = |Cl3|, OétQOé_l = t3
o = (A, Ta1), where atza~l =t,!
Aa1 = aq, ACLQ = as, Aa3 = —Q9

G5 tl, tg, t3, (6% tltk = tktl Vk, l
with a; € lay, az]™, |as| = |as], ab =t
ay and az generate a plane atya™t = t3
reqular hexagonal lattice, atsa™t = t5 ',
o= (A, ;a1), where
Aay = a1, Aay = a3, Aaz =—as+as

G6 tl,tg,t3,a,6,7 tity = trl Vk,l

with aq, as, ag mutually orthogonal,
a = (Aa %a1)7 B = (Ba %GQ + %a?));
v=(C, %al + %ag + %ag), where

Aay = a1, Aay = —as, Aaz = —as,
Ba1 = —aq, BCEQ = Qy, Ba3 = —as,
Ca1 = —ap, CCEQ = —AQa9, Ca3 = a3

1 1

o? =t, atoa” =1, atsa”! =t;
BB~ =t B =1y, BtsfT =ty
vyt =t vy =17, A =t
YBa = 113




Proof. The generators and relations are given in [12], p. 117. In [9] it is
shown that these are defining relations.

O

The affine equivalence classes are denoted by G1, ..., G6, the associated
Bieberbach groups are called Gy, ..., Gg. With some additional elementary
considerations one gets

Theorem 2.8. E3very orientable Bieberbach manifold of dimension three is
1sometric to Gi\R where G; is one of the following groups, the parameters
are to be chosen suitably.

generators of G; basis of lattice parameters
G1 tl,tg,tg, ai, ag, as
any basis of R3
G2 | ty,ta, t3, 0 a; = (0,0, H) A w-rotation | H,L,S >0
with a= (A, 3a;) as = (L,0,0) about z-axis | T € R
as = (T, 5,0)
G3 | ty,ty, 13, a; = (0,0, H) A 2?”—rotatz'on H/L>0
with a= (A, 3a;) as = (L,0,0) about z-axis
az = (_% 7?1170)
G4 | ty,ty, t3, a; = (0,0, H) A Z-rotation | H,L >0
with o= (A, 1a;) as = (L,0,0) about z-axis
az = (0, L, 0)
G5 | ty,ta, t3, 0 a; = (0,0, H) A Z-rotation | H, L >0
with o = (A, $ay) as = (L,0,0) about z-axis
as = (3L, @L, 0)
G6 | t1,ta,t3, 0, 3,7 a; = (0,0, H) A w-rotation | H,L,S >0
with o= (A, %al), as = (L,0,0) about z-axis,
B= (B, 3as+3as3) as = (0,5,0) B m-rotation

v=(C, 301 +3a2+30a3)

about x-axis,
C m-rotation
about y-axis

In particular the holonomy r(G;) is cyclic fori=2,...,5.

3 Spin structures

Let Cl(n) denote the Clifford algebra of R”, i.e. the complex algebra gener-
ated by R" with the relations v-w+w-v+2(v,w) = 0 for all v, w € R*. The



space of an irreducible representation of Cl(n) is ¥, = CK with K = 2051,
For n = 3 the representation can be given by the Pauli matrices (see [8]):

S PR ) R () B

The group Spin(n) sits in Cl(n):
Spin(n) = {vy ... vay |k € N, Jv;| = 1 for all i =1, ..., 2k},
and there is the double covering
A Spin(n) — SO(n)
u — (v»—)u-v-ufl).

Next, we describe the spin structures on an oriented Bieberbach manifold
M = ¢\R". We proceed as in [8]. Since R” is simply connected it carries
only one spin structure - the trivial one:

PspinR" == R" x Spin(n)
l A l idx A\
PS()R“ — R” X SO(n)

where PsoR"™ denotes the set of all oriented orthonormal bases of tangent
spaces of R”. The action of G on PsoR" is given by:

g(a:, (v1, vn)) = (g:r, (dg(v1), .., dg(vn)))
= (92, 7(9)(v1, ..., vn))

for all z € R, (vy,...,v,) € SO(n). We get PsoM =2 \PsoR". Now there
are two lifts g% of ¢ such that

g:l:

PSpian - PSpian

|+ |

PsoRn I PgoRn .



Proposition 3.1. There is a 1-1-correspondence between the spin structures
on M and the actions a of G on Psy, R* with: a(g) € {g=} for all g € G.

Proof. See [8], p. 46. O
The spin structure associated to such an «a is given by
G\ PspinR" —— G\ PsoR" = Pso M .
For g* we can find A* € A71(r~1(g)) such that for all (z,s) € R® x Spin(n)
gF = (gz, Ats).
From Proposition 3.1 one gets

Proposition 3.2. The spin structures on M = G\Rn with the induced ori-
entation are in bijective relation to the homomorphisms € : G — Spin(n)
with

Spin(n)
/ l )
G L SO(n).
Given a homomorphism ¢ with » = A o £ one defines an action a on

R™ x Spin(n) via a(g) : (x,s) — (gz,2(g)s), and one gets a spin structure
as described above.

In order to classify the spin structures on oriented Bieberbach manifolds of
dimension three we have to recall a simple fact concerning groups: Let a
group GG be given by generators and relations, let £ be a map from the set of
the generators of G into a group H. Then ¢ extends to a homomorphism G' —
H if and only if the same relations hold for the e-images of the generators.
Considering the A-preimages of r(g) for every generator g of G and checking
the relations we get

Theorem 3.3. Let G; C SO(3) x R" be a Bieberbach group as in Theorem
2.8. Then one gets every spin structure on M = Gi\R3 by taking one of
the homomorphisms € : G; — Spin(3) with r = X o £ whose values on the
generators of G; are given by the following:



G1 a1|—>51, a2|—>62, a3|—>63 51,(52,(536{:|:1}

G2 a1|—>—1, a2|—>62, a3|—>63, 51,(52,(536{:|:1}
Ot'—>616162

G3 a1|—>—61, a2|—>1, a3»—>1, 61€{i1}
o= 61(% + ?6162)

G4 a1|—>—1, a2|—>62, a3|—>62, 51,(526{i1}
o 51(? + §€162)

G5 a1|—>—1, a2|—>1, a3|—>1, 516{:l:1}
o 51(? + %6162)

G6|ay— -1, ar——1, a3——-1, [0.00.03€{ L1}
o — 616162, ﬂ — 626263, Y = 636361 with 61 . 62 '63 =1

In particular, in the cases G1 and G2 there are eight distinct spin structures,
for G3 and G5 there are two, and for G4 and G6 there are four.

In the cases G2 to G5 one can write £(«) alternatively as
e(a) = 61 (cos £ +sin £ ejey) with ¢ = 2 and k = #r(G;) .

4 Spectra

Now, let M = \R" be a Bieberbach manifold with the spin structure given
by € : G — Spin(n). The spinor bundle of M is the associated bundle
XM := PspinM X spin(n) Xn. For R it is trivial: ¥XR" 2 R" x X,.

We may identify XM = ¢\ER" where ¢ € G acts on SR* by g(z,0) =
(9z,e(g)o) for all (z,0) € ER". Therefore, one can consider spinors on M
as maps ¥ : R" — ¥, satisfying for all g € G:

U =c(g)Pog . (2)

Let V denote the Levi-Civita connection for spinors, and let D be the
Dirac operator on M.
For T" = T\R" the spectrum of D? is already known (see [7]): Let the spin
structure of 7" be given by ¢ : I' — {£1} C Spin(n), let ai, ..., a}; be a basis
basis of the dual lattice I'* of I'. We define

a, ::% Z a. (3)

! with
e(ay)=-1

The D2?-eigenspinors on T™ are given by:

VR — B, o e2mi<ba> i
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where b € T* + a., and {07 |j = 1,...,2[5!} is the standard basis of ¥,,.
We denote the corresponding D?-eigenspace E,(D?) := span{¥i},. For ® €
Ey(D?), b # 0, the Dirac operator is given by the Clifford multiplication with
2mib:

D® = 27ib - P.

Let Fy4 (D) be the set of all ¥ € FE,(D?) with DU = +27|b|¥. Clearly, we
get: Ey(D?) = Ey (D) & E, (D), i. e. a decomposition into eigenspaces of
D. It is known that the Dirac spectrum of T is symmetric for every possible

spin structure (see [1]). Analogously as in [2] we define projection operators
F*. Eb(DZ) — Ebi(D) by

by ! .
F*0 = (1i2ﬂb|D)\If_ (1:|:z|b‘)\11.

Since F'* is surjective we obtain generators of Fj.(D):

d], = F*0] = (1+ z'%')\pg, j=1,..2%0
In the case b = 0 € T'* + a. one gets Ey(D?) = Ey(D), and generators of
Eo(D) are given by ®! := o7, j =1,...,2[3],
For b # 0 one obtains an isomorphism Ey, (D) = E,_(D) by the following:
Chose ¢ € R" perpendicular to b with |c| = 1. Let M, : Ey(D?) — Ey(D?)
denote the Clifford multiplication with ¢. Then, M, and D anticommute:

M,D® = —DM,® for all ® € E,(D?).

Therefore, M, : Eps (D) = Ey=(D). Now, (M.)* = id implies that M, is an
isomorphism. Consequently, dim(E,.(D)) = 3 2[%).

Next, we consider M = ¢\R" with spin structure given by ¢ : G — Spin(n),
the general case. Theorem 2.3 tells us that M is covered by the flat torus
™ = F\Rn with I' = R” N G. The spin structure on 7" is given by 5‘1" :
[' — Spin(n). The spinors on T™ satisfy the equivariance condition (2) only
for ¢ € T', in general they are not equivariant for all ¢ € G. To find the
G-equivariant spinors we define an action of r(G) on the spinors on 7T™: For
A € r(G) we chose g € G with r(g) = A, and for a spinor ¥ on T" we set:

AV = ¢(g)Vog".

One can show that by this one gets a well defined action on the space of
spinors on T™. Obviously, the r(G)-equivariant spinors on 7™ correspond to
the spinors on M.



Let ay,...,a, be a basis of I and af, ..., a; be the dual basis. For the sake

of simplicity we write a. instead of a... Now, we calculate A®{, for b €

M +a,b#07=1,.,25 Forachosen g € G with r(g) = A, i. e.
= (A, a), we get

Lemma 4.1. AD], = e?mi<Abe> (] 4+ \ﬁZ\) (e(9)¥,)

Before we prove this lemma, it should be noted that the invariance of
[' € R under r(G) C SO(n) implies that ' C R" is invariant under
r(G)* = r(G). From the fact that A®], is a spinor on T" it follows that
Ab € T* + a..

Proof. First we get for all x € R":
(\Iji o g_l)(ib) _ 627ri<b,A*1(9[:—0L)>O.j

o 672m'<Ab,a> \I,{%(x) )

Next, we only use the definitions:
Aq)gi = 5(9)®Zi og!

’ J¥og!

= (g)(liz‘b|

1 ‘
= (1 ieloie(o) el Wog
From r = A o it follows e(g)be(g) ' = (A oe(g))(b) = r(g)b = Ab. Further-
more, A € SO(n) implies |b| = |Ab|. Finally we get:

Ab ) -
A, = (1+ @)( e(g)e P <A g, ).

O

We can write A®], = F* (e 2m<Aba>¢(g)¥/,,). Hence for all ® € By, (D)
we have A® € Fy. (D). The following theorem is useful to compute the
symmetric component of the Dirac spectrum of Bieberbach manifolds.

Theorem 4.2. Suppose that forb € I +a., b # 0, one has #r(G) = #r(G)b,
i. e. (G) acts on the r(G)-orbit of b without fized points. Consider

@ E (D

Aer (G
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Then, the dimensions of the subspaces of V' consisting of D-eigenspinors of
M associated to the eigenvalues +27|b| are given by:

mult( £ 27 |b|, D‘V) = %2[%}.

Proof. Theorem 2.2 states that r(G) is finite: 7(G) = {Ay, ..., Ay} with k =
#r(G). As by assumption the points A;b, ..., Axb are pairwise distinct, the
spaces E4,(D?) are mutually orthogonal. Therefore, V' is a direct sum. We

define:
V:t = @ EAb:I:(D)-
Aer(G)
The action of r(G) induces representations p* : r(G) — GL(V*). Let x*
denote the associated characters. From Lemma 4.1 it follows: x*(A) =
tr(pT(A)) =0 for A € r(G), A # id. The subspace of D-eigenspinors is the
space on which r(G) acts trivially. Hence,

1
mult(£27(b], D)) =< x*,1>= ——= > x*(4)
#T(G) Aer(G)
1 1 11 .
= oxX*(id) = dim(VF) = oo k-2l

Corollary 4.3. Assume the action of r(G) on T* + a. is free, then the spec-
trum of the Dirac operator on M is symmetric.

In the case of b =0 € T'™* + a. the action of A € r(G) is given by
AV = £(g) ¥ € Ey(D)

for every ¥ € Ey(D) =3, and g € r'(A) C G. The kernel of the Dirac op-
erator on M is the subspace of r(G)-invariant spinors in Ey(D), its dimension
is

dim (ker(D)) = #rt ) > x4,
Aer(G)

where y denotes the character of the representation r(G) — GL(Ey(D)).
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5 Spectra in dimension three

In the following we will use the preceding preparations to compute the Dirac
spectrum of three-dimensional Bieberbach manifolds.
For ay,as, as given in Theorem 2.8 we get the dual basis aj, a3, a3:

G2 aT:(O:07%)7 a;:(%:_s%ao): az = (0% )
G3 aT:(O:07%)7 a;:(%:% 3%: )7 a3 = (:g\/_% )
G4 ayf:(o’07%)7 a;Z(%,O,U), § (0’% )
G5 | ai =(0,0,5), a5=(7,—3V37.0), a5=(0.3V37.0)
G6 | a; =(0,0,%), a3 =(7,0,0), a; = (0,,0)

We obtain distinct a. for the distinct spin structures given by §; € {£1}
as in Theorem 3.3:

spin structures a.
G2 | 6 e{£l}, =1, =1 |30 = (0,0, 7

o e{£1}, dh=-1, d&=1 |zaf+3a} ey e p— i

0 € {£1}, 09 =1, Js = —1 %aﬂ{ + %a;; = (0, %, ﬁ)

6 € {+1}, bo=-1, d=—1|aj+3a5+1a} = (5 5% — 557 35
G3 |6, =1 %a’{ (0,0,ﬁ)

0y = —1 0 0,0,0)
G4 |6 € {£1}, & =1 la; 0,0, 5-)

0 € {£1}, dp=-1 1+ a3+ iay = (55, 55 5)
G5 |6, € {:l:l} %a’{ — (0,0, ﬁ)
G6 | 01,05, 05 € {£1} with 616205 = 1 | 2a} + Laj + La} = (. %, 55)

We consider the case G6: For b € I'* + a. one has #r(G)b = 4 = #r(G).
Therefore, r(G) acts on T'* 4+ a, without fixed points. We apply Corollary 4.3
and note that in this case the spectrum is symmetric.

The computation of the Dirac spectra is done in three steps:

First, we investigate when the kernel of D is non-trivial. Then we observe
in which cases I'* + a. possesses some non-maximal r(G)-orbits, i. e. orbits
r(G)b with #r(G)b < #r(G). Theorem 4.2 tells us that only these orbits can
have a contribution to the asymmetric component of the spectrum of D. At
last, we just have to count the maximal orbits in I' 4+ a. to get the symmetric
component.

To determine the kernel of D we only have to observe the cases with 0 €
['* 4+ a.: These are the flat torus with the trivial spin structure and G3
with the spin structure given by ¢; = —1. In the second case the holonomy
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is r(G) = {1, A, A’} where A is the Z-rotation around the z-axis. As an
r-preimage of A we chose a = (A, za;) (compare Theorem 2.8). Then by
Theorem 3.3, £(a) = 1(1+ v/3ejez). Using the representation defined by (1)
we get:

o) =3 (g V) and == -3 (g )

2
The associated character is given by:
x(1) =2, x(A)=-1 and x(A?) = -1.
Hence, dim(ker(D)) = £(2—1—1) = 0, and we have shown

Theorem 5.1. The only Bieberbach manifolds of dimension three which are
spin and on which D has a non-trivial kernel for a suitable choice of the spin
structure are flat tori.

Next, we will compute the asymmetric component of the Dirac spectrum.
As for GG6 the spectrum of D is symmetric it suffices to study the cases G2
to G5 which are very similar: r(G) is cyclic and consists of rotations around
the z-axis. Consequently, an orbit r(G) is maximal if and only if b sits on the
z-axis which means b is of the form b = fes, 8 € R. For I'* 4+ a. possessing
points on the z-axis the only possibilities are a. = 0 or a. = %a’{. We get:

Lemma 5.2. Asymmetric D-spectra are only possible in the following eight
cases:

G2 |6, €{xl} dr=1 d3=1
G3 | §; € {1}

G4 | 6, € {1} =1

G5 | 6, € {:l:l}

Next, we will only consider these eight cases. For b € I'*+a, sitting on the
z-axis, b # 0, one has Ab = b for all A € r(G). Hence, Ey (D) = Eqps (D),

and by Lemma 4.1 one gets representations p* : r(G) — GL(Ey+ (D)) with

characters x*. As dimcEy+(D) = %2[%} = 1, we have representations of a
cyclic group on a one-dimensional linear space. Let the order of r(G) be
denoted by k = #r(G), let A be a generator of r(G) as in Theorem 2.8. The

dimension of the subspace of r(G)-equivariant spinors in E,y (D) is

<xh1m= S = 3 (). ()



We write b = fes with b € R\{0} and get a basis of Ey1(D):

b
P, = (1+ im)\lf; = fy(1£i-sgn(B)es)c’,

where f, denotes the map R* — C, z +— ?™<%:t> Using (1) we get
By, = fo(o! Fi-sgn(B)o?) #0.

Just like in Theorem 2.8 we take a = (A, ;a;) as an r-preimage of A. By
Lemma 4.1 it follows:

. b
Ad, = e7?miE<ha> (14 im)e(a)wg . (5)

For the representation given in (1) the actions of e; - e; and —e3 on 33 are

the same. Using Theorem 3.3 and setting ¢ := 27” we obtain:

(1+ i%)e(a)\ll; =(1xi- sgn(ﬁ)eg)(sl(cosg + sing eres) 0,

=(1=+i- sgn(ﬂ)eg)él(cosg — sing e3)V,

= 61(c0s§ +i - sgn(B) sin g) (1+i-sgn(B)es)V,

_ 616(11‘%5%(5)) (1 + Z|%)\Ij;

_ 516(:|:i4$—5gn(,8)) cI)I%i .
Plugging this into (5) one gets: A®l, = §e 2mr<bar> . 2mide (sam(5) I

In each case of Lemma 5.2 we can find H > 0 with e3 = Haj, and thus
b= (SH)a;. Hence the character of A is

YE(A) = 6, exp (m%( _BH+ %Sgﬂ(ﬁH))). (6)

The next lemma is a direct consequence of the geometric summation, and it
will be useful in the following computations.

Lemma 5.3. Let £ € C be a k-th root of 1, £¥ =1, then
k-1 .
1 l _ 1 ) fo = 1;
k ;5 B {0 , otherwise.
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Theorem 5.4. Only in the eight cases of Lemma 5.2 the spectrum of D
has an asymmetric component B. Let k = #r(G) denote the order of the
holonomy. Then one gets for G2, G3, G4, G5 with the spin structure given by
51 =1:

1 1
B ={2no(kp+3)u €2},

for all p € Z the multiplicities are:

1 1
It(2r—(k =), D) = 2.
mu ( 7rH( u+2), )
If one choses the spin structure given by 6, = —1, one obtains:

1 kE+1
B= {QWﬁ(ku—l— T)\u €},

and for p € Z the multiplicity is:

1 E+1
It(2r—(k —),D) =2.
mu (WH(M+ 5 ),D)
Proof. We only have to plug (6) into (4) and consider the distinct cases. We
note that in all cases except G3 with §; = —1 one gets b = (z + 3)a} with
z € Z. For G3 with §; = —1 one can write b = za}, where z € Z, z # 0.

1. 0 =1: For b= (z + 3)a}, i. e. (BH) = z + £ it follows from (6):

1 1 1 1
xT(A) = exp (27”;( i + §sgn(z + 5)))
We put
1 *
vE = mult(i27r|(z+§)a1| : D‘Vzi) where V4 := E(( +§)a1)i(D)'

Together with (4) Lemma 5.3 yields:

0 , otherwise.

14

Since x*(A) = 1 is equivalent to —z — % + %sgn(z + %) € k7, we get
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for z > 0:

N 1, if 2=0mod k,
1% —=
‘ 0 , otherwise,
_ 1 ,ifz=—-1modk,
1% =
‘ 0 , otherwise,
1 if z=—1mod k
and for 2 < 0 : vl = e . e,
0 , otherwise,

_ {1 , if z =0 mod k,
o=

0 , otherwise.

Consequently, only z = pk and 2 = pk—1, u € Z, make a contribution
to the spectrum. One gets the positive eigenvalues exactly from those
z with 2 = pk and 2z = —puk — 1, > 0, and the negative ones exactly
from z = pk and z = —pk — 1 for < 0. As |aj| = &, the eigenvalues
are 2m 4 (uk 4+ 3), 1 € Z . For pu > 0 the multiplicities are:

1 1
mult(?wE(/ﬂu-i- 5),D) =vi+uvf=1+1=2,

where z; = kp and 29 = —kp — 1. In the same way one obtains the
multiplicities 2 for pu < 0.

. 61 = —1: As &, = exp(2mig), the character is given by

xE(A) = exp <2m%( — (BH) + %sgn(ﬁH) + g)) .

Hence, x*(A) =1 <= —(BH)x1isgn(BH)+ % =0modk,

then the following computations are analogous as above. One has to
observe that for G2, G4, G5 one has (BH) € Z + % and g € 7Z, and for
G3: (BH) € Z and =1+ 1.

O

Now, the eta invariants are easily computed. It is clear that for symmetric
spectra the eta invariants vanish.

Lemma 5.5. Assume the spectrum has an asymmetric component of the
form B = {r(p+ a)|p € Z} with a € (0,1) and r > 0 such that each
eigenvalue in B has the same multiplicity A. Then the eta invariant is n =

A(l = 2a).

16



Proof. For Re(z) >> 0 one gets for the eta function:

1= 3 sgn() %ﬁ;mzzsgnm 4

AEspec(D) AeB |)\‘Z
A#£0
1 [ 1 - 1
:AT_Z (Z(k—i—a)z _Z(k—i-l—oz)z)

These two series are known as generalized zeta functions (see [11], p. 265ff.).
They have meromorphic extensions on C without poles in z = 0. Let ((z,a)
denote the function defined by > m for Re(z) >> 0. One gets for the
extension: ¢(0,a) =1 — o

Hence, the eta invariant is n(0) = A(3 —a — 3 + (1 — @)). O

Theorem 5.4 tells us that only in the cases of Lemma 5.2 an asymmetric
component B occurs, B has the form as in Lemma 5.5 if one takes r = 2%%
and a = ﬁ for 6y =1, and r = 2#% and a = kQ—*];l in the case §; = —1. This
yields:

Theorem 5.6. The eta invariant of a three-dimensional oriented Bieberbach
manifold is zero except in the eight cases of Lemma 5.2: For G2,G3,G4,G5
with the spin structure given by 61 = 1 the eta invariant is n = 2(1 — l) =

k
2—%, and for 6, = —1 itisnzg(l_%):_%_

It remains to determine the symmetric components of the spectra. So
far, we have just considered the points in ['* + a. sitting on the z-axis. All
the other points belong to maximal orbits. By Theorem 4.2 every maximal
orbit 7(G)b contributes the eigenvalues 27|b| and —2r|b|, with multiplicity

1= %2[%} respectively, to the spectrum. We have to count these maximal
orbits to obtain

Theorem 5.7. Let M = Gi\R3 be a three-dimensional Bieberbach manifold
as in Theorem 2.8. Let M carry the spin structure given by 01, 09,03 € {£1}.
Then the symmetric component A of the Dirac spectrum is

A= {\gn| (k. 1,m) € I},

where )\kilm € R and I C Z? are to be chosen as follows:

17



b)

d)

b)

b)

61 S {:I:l},62 = 1,63 =1:

I= {(k,l,m)‘k,l,mEZ,mZ I}U{(k,l,m)‘k,lEZ,lz l,m:O}

Moy = 220\ sk + )2 + 512 + 5 (m — F1)°

61 S {:I:l},62 = —1,63 =1:
I={(k,l,m)|k,l,meZ,1>0}

M ﬂW%uﬁ Fle L4 bz L(m— L0+ 1))

(51 € {:i:l},(SQ = 1,53 =—1:
I={(k,l,m)|k,l,m € Z,m>0}

Nim = 227/ gk + 12+ 582+ & (0n +3) = )’

61 S {:I:l},62 = —1,63 =—1:
I={(k,l,m)|k,l,meZ1>0}

Nin = 22 [ofs (k4 47+ (04 52+ S (m ) = £+

(51 =1:
I={(k,l,m)|klmeZI>1,m=0,.,1—1}

b= :tQﬁ\/#(k + 32+ 12+ o5 (1 — 2m)?

61 =—1:
I={(k,l,m)|klmeZ1I>1,m=0,..,1—1}

N = 427\ k2 + 512 + 5L (1 — 2m)?

6, € {£1},0, = 1:
I={(k,l,m)|klmeZI>1,m=0,.,20—1}

AL = i?ﬂ\/%(lﬁ + 32+ L2+ (m—1)?)

6y € {£1},0y = —1:
I={(k,l,m)|k,l,meZ1I>1,m=0,..,20 -2}

N = 421\ (b + 12 + & (1= 12 + (m— 1+ 1)2)

(51 € {:l:l}
I={(k,l,m)|klmeZ1I>1,m=0,.,1—1}

N = 227\ [ (b + )2+ 12 + 7L (2 — m)?

18
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@ 61,62,63 € {:i:l} with 61 ‘62 '63 =1:
I={(k,l,m) k,l,meZ1>0k>0}

Mo = 221\ ahs (b + 52 + 51+ 1)? + 5 (m + )2

For G3 the multiplicity for every )\,flm s given by:

mult (A, D) = 2 - #{(K',I',m') € I| Ay = Nim
For all the other cases one has
mult (A, D) = #{ (K", I',m') € I| Xy = Npim

Proof. We need concrete procedures to count the maximal orbits. For G2
to G5 the holonomies consist of rotations around the z-axis. In these cases
the orbits sit in planes which are parallel to the x-y-plane. The following
pictures illustrate how to find representing elements of the orbits in these
planes. They are marked by the filled circles.

G2:

G2a) G20)
1=0 1=0

In the case G2a) we take the system of representatives:
{bklm‘ (k,l,m) € T} with I as in the theorem

where bym = (k + 3)ai + la} + maj.

For G2c) we chose the representatives by, = (k + 3)aj + lad + (m +
%)a’g,k,l,m € Z,m > 0.

In the cases G2b) one has to replace | by (I + 1) and (m + 1) by m to get
suitable by;,,. The case G2d) is analogous.

G4 and Gb5:

Gab)

Somel

G4a)

I AN
N G5
=0 I=1
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For these cases we chose the following representatives:

bim
G4a) | (k+ )ai + laj + (m — D)aj k€Z,1>1,m=0,.,2l—1
GI) | (k+3)aj+(—-Day+ (m—1+3)a; | k€Z,1>1,m=0,..20—2
G5 | (k+ 3)a} + las — maj keZ,>1,m=0,..,1—1

For G3a) one has the same I'* + a. as in the case of G5. Every maximal
r(G5)-orbit is the disjoint union of two maximal r(G3)-orbits. Therefore, we
get the same spectrum as in the case G5, but the multiplicities are doubled.
For G3b) replace (k + 1) by k.

° Again, the case G6 differs from the other cases: Every
'Y maximal orbit consists of four points which do not sit in
+ a common plane. We take the representing elements:

bem = (k+3)at+(1+3)as+ (m+3)a} withm € Z,k,1 >
0.
U

6 Parallel spinors

The remaining section deals with parallel spinors.

Theorem 6.1. Let M be a three-dimensional compact connected spin man-
ifold carrying a non-zero parallel spinor. Then M is a flat torus.

Proof. Friedrich showed in [6] that manifolds admitting non-vanishing par-
allel spinors are Ricci flat. In the case of dimension three this implies flat-
ness. Therefore M is Bieberbach. The kernel of the Dirac operator is non-
trivial since parallel spinors are harmonic. Applying Theorem 5.1 finishes
the proof. O

The last theorem gives a characterisation of flat tori in the class of Bieber-
bach manifolds:

Theorem 6.2. Let M = G\Rn be a Bieberbach manifold carrying the induced
orientation and the spin structure associated to € : G — Spin(n). If the

n
2

kernel of the Dirac operator has dimension 221, M is a flat torus.

Proof. A consequence of dimension 2[2) is that ker(D) = X,,. Hence for all
g € G,o € ¥, we have 0 = £(g) - 0. Since the representation of Spin(n)

20



on ¥, is faithful, it follows that ¢ = 1. The condition r = X o ¢ for spin
structures implies » = 1. This means that G = ker(r) is a lattice, and M is
a torus. U
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