
CHAPTER 1

Preliminaries

1.1. Basic Relevant Algebra

1.2. Introduction to Differential Geometry

By Christian Bär

In this lecture we give a brief introduction to the theory of manifolds and related ba-
sic concepts of differential geometry. Since a lot of material will have to be covered
in a very short time we can hardly give any proofs. Most proofs are fairly straight-
forward anyway. The reader interested in details may consult any introduction to
differential geometry such as [?, ?].

Definition 1.1. A topological space X is called an n-dimensional topological man-
ifold if and only if

i) X is Hausdorff and has a countable basis.
ii) X is locally homeomorphic to Rn , i. e., for every point p ∈ X there

exists an open neighborhood U of p in X , an open subset V ⊂ Rn and
a homeomorphism x : U → V.
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Fig. 1

The first condition is of technical nature and sometimes omitted. For subsets of
RN it is automatically satisfied. The crucial condition for a topological space to be
a manifold is the second one. Topological manifolds are precisely those spaces that
look locally like Rn.

The homeomorphisms x : U → V are called charts. Given a chart x the standard
coordinates on Rn can be used to specify points in U . Namely, a point p in U is
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4 1. PRELIMINARIES

uniquely determined by the n numbers (x1(p), . . . , xn(p)). A collection of charts
xα : Uα → Vα is called an atlas of M if the Uα cover M , i. e., M =

⋃
α Uα.

Examples 1.2. 1. Euclidean space Rn itself is of course an n-dimensional
topological manifold. Here we can use an atlas consisting of only one
chart, namely x = Id : Rn → Rn.

2. The sphere Sn of unit vectors in Rn+1 is an n-dimensional topological
manifold. To find a chart containing a given point p ∈ Sn one can project
the hemisphere about p onto the n-dimensional disk perpendicular to p and
then rotate this disk into Rn.

p

Rn

x(p) = 0rotate

x

Fig. 2

3. 2-dimensional topological manifolds are surfaces. Compact connected ori-
ented1 surfaces are classified up to homeomorphism by their genus (which
can be any number in N0).

Sphere =
surface of genus 0

Torus =
surface of genus 1

Surface of genus 2

Fig. 3

To get a better feeling for the concept of a manifold let us also look at some
topological spaces which are not manifolds.

Non-Examples.

1. The union M of the x-axis and the y-axis in the plane is not a manifold.
The problems arise at the origin where the two lines intersect. In fact,

1see Definition 1.31



1.2. INTRODUCTION TO DIFFERENTIAL GEOMETRY 5

if we remove the origin, then the remaining space M − {(0, 0)} is a 1-
dimensional topological manifold. That M itself is not a manifold can
be seen as follows. If M were a 1-dimensional topological manifold, then
there would be a chart about (0, 0), i. e., a homeomorphism x : U → V

where U is an open neighborhood of (0, 0) and V is some open subset of
R. By restricting x to a smaller open neighborhood if necessary we may
assume that V is an open interval. If we now remove x(0, 0) from V , then
we are left with two components whereas U − {(0, 0)} has at least four
components, a contradiction to x being a homeomorphism.

M

U V

x

Fig. 4

2. Now let us look at the upper half-plane H = {(x1, x2) ∈ R2 | x2 ≥ 0} .
This time the boundary points (x1, 0) are the ones which are not contained
in a chart. H is what is called a manifold-with-boundary, a concept which
we will meet again when we get to the Stokes theorem.

There are some standard methods to construct new manifolds out of given ones.

Examples for construction methods.

1. If M is an m-dimensional topological manifold and N an n-dimensional
one, thenM×N is an (n+m)-dimensional topological manifold. To obtain
charts for M ×N one can simply take the products of charts x : U → V

for M and x̃ : Ũ → Ṽ for N ,

x× x̃ : U × Ũ → V × Ṽ ⊂ R
n × R

m = R
n+m.

2. If M is an n-dimensional manifold and U ⊂ M an open subset, then U

is also an n-dimensional manifold. Charts for U are obtained from charts
for M by restricting their domain to the intersection with U .

For a topological space X it makes sense to talk about continuous functions

f : X −→ R .

Since we plan to do differential geometry we would like to know:
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Question 1.3. What are differentiable functions?

We do know what differentiability of a function means if it is defined on an open
subset of Rn. Since by definition manifolds look locally like Rn the natural attempt
would be to call a function f : M → R defined on a manifold M differentiable
at p ∈ M if and only if f ◦ x−1 : V → R is differentiable at x(p) for some chart
x : U → V whose domain U contains p. But then we have to check if this definition
depends on the choice of chart x. For a second chart y we have near y(p)

f ◦ y−1 = (f ◦ x−1) ◦ (x ◦ y−1).

If we knew that x ◦ y−1 is a diffeomorphism and not just a homeomorphism we
could conclude differentiability of f ◦ y−1 from differentiability of f ◦ x−1. For this
reason we make the following definitions.

Let M be an n-dimensional topological manifold.

Definition 1.4. Two charts x : U1 → V1 and y : U2 → V2 of a topological
manifold are called C∞-compatible if and only if y ◦x−1 : x (U1∩U2) → y (U1∩U2)
is a C∞-diffeomorphism.

U1

U2

V1 V2

x

y

y ◦ x−1

Fig. 5

Definition 1.5. A collection A = {xα : Uα → Vα} of charts of M is called a
C∞-atlas if and only if ⋃

α

Uα = M

and all charts in A are mutually C∞-compatible.
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Definition 1.6. A pair (M,A) is called an n-dimensional differentiable manifold
if and only if M is an n-dimensional topological manifold and A is a maximal
C∞-atlas of M .

Here maximality of the atlas means that if x is a chart ofM which is C∞-compatible
with all charts in A, then x itself also belongs to A.

All examples of topological manifolds we have seen so far are in fact differentiable
manifolds. In dimensions larger than 3 there exist topological manifolds which do
not have a C∞-atlas but we will not be concerned about them.

Definition 1.7. A function f : M → R is called differentiable (or Ck , C∞, . . . )
if and only if

f ◦ x−1 : V −→ R

is differentiable (or Ck , C∞, . . . ) for all charts (x : U → V ) ∈ A.

More generally,

Definition 1.8. Let (M,A) and (M̃, Ã) be two differentiable manifolds. A con-

tinuous map Φ : M → M̃ is called differentiable (or Ck , C∞, . . . ), if and only
if

x̃ ◦ Φ ◦ x−1 : x(U ∩ Φ−1(Ũ)) −→ Ṽ

is differentiable (or Ck , C∞, . . . ) for all charts (x : U → V ) ∈ A and all charts

(x̃ : Ũ → Ṽ ) ∈ Ã.

M U

Φ−1(Ũ)

V

M̃

Ũ

Ṽ

x

x̃

x̃ ◦Φ ◦ x−1

Φ

Fig. 6

Now that we know what differentiable maps are the next question arises:

Question 1.9. What is the derivative of a differentiable map?
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When dealing with differentiable maps between open subsets of Euclidean spaces
many people think of the derivative as the Jacobi matrix containing the partial
derivatives of the components of the function. This is certainly not a good point
of view for generalizing the concept of derivative to maps defined between mani-
folds because it heavily uses the standard coordinates of Rn. When working with
manifolds we should think in a coordinate independent way. The right interpreta-
tion of the derivative is to consider it as the linear approximation of the map at a
given point. But linear maps are defined between linear spaces (vector spaces) and
manifolds are not vector spaces. So the question that has to be answered first is

Question 1.10. What is the linear approximation of a manifold?

For the sake of simplicity we will from now on use the following

Convention. From now on manifold stands for differentiable manifold. A chart
will mean a chart in the corresponding C∞-atlas A .

Definition 1.11. Let M be a manifold. Fix a point p ∈ M . Let γ : I → M and

γ̃ : Ĩ → M be two differentiable curves with

γ (0) = γ̃ (0) = p ,

where I, Ĩ are open intervals containing 0. We call the two curves equivalent and
write γ ∼ γ̃ if and only if

d

dt
(x ◦ γ)

∣∣∣∣
t=0

=
d

dt
(x ◦ γ̃)

∣∣∣∣
t=0

for some chart x : U → V with p ∈ U .

γ ∼ γ̃:

γ

γ̃

p

V

x ◦ γ

x ◦ γ̃

x

γ 6∼ γ̃:

γ

γ̃

p

V

x ◦ γ

x ◦ γ̃

x

Fig. 7
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Obviously this defines an equivalence relation on the set Cp of differentaible curves
γ with γ(0) = p. We have to check that the definition of ∼ does not depend on the
choice of chart x. If y is another chart containing p, then we get by the chain rule

d

dt
(y ◦ γ)

∣∣∣∣
t=0

=
d

dt
((y ◦ x−1) ◦ (x ◦ γ))

∣∣∣∣
t=0

= D(y ◦ x−1)(x(p))
d

dt
(x ◦ γ)

∣∣∣∣
t=0

.

Hence d
dt
(x ◦ γ)

∣∣
t=0

and d
dt
(x ◦ γ̃)

∣∣
t=0

coincide if and only if d
dt
(y ◦ γ)

∣∣
t=0

and
d
dt
(y ◦ γ̃)

∣∣
t=0

coincide. Here D(y ◦ x−1)(x(p)) denotes the Jacobi matrix of the

diffeomorphism y ◦ x−1 at the point x(p).

Denote the equivalence class of γ by γ̇(0) . We think of γ̇(0) as being the velocity
vector of γ at p. Now we are ready to define the linear approximation of a manifold
at a given point p.

Definition 1.12. The set TpM := {γ̇(0) | γ ∈ Cp} is called the tangent space of
M at p .

M

TpM

Fig. 8

In case the manifold happens to be a (finite dimensional real) vector space, then
the tangent space of V at any point p ∈ V can be canonically identified with V

itself by the isomorphism

V → TpV, v 7→ γ̇v,p(0),

where γv,p(t) = p+ t · v.

Definition 1.13. For X = γ̇(0) ∈ TpM and a differentiable function f : M → R

define the directional derivative of f in direction X by

∂Xf :=
d

dt
(f ◦ γ)

∣∣∣∣
t=0

.

Properties.

1. ∂Xf is well-defined, that is, it gives the same result for all γ ∈ Cp with
γ̇(0) = X .
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2. ∂X is local, i.e., if f and g coincide in a neighborhood of p, then ∂Xf =
∂Xg.

3. ∂X is linear, i.e.,

∂X (α · f + β · g) = α · ∂Xf + β · ∂Xg

for all differentiable functions f and g and constants α and β.
4. ∂X satisfies the Leibnitz rule,

∂X (f · g) = ∂Xf · g(p) + f(p) · ∂Xg .

for all differentiable functions f and g.

An operator mapping differentiable functions defined near p to real numbers which
satisfies properties 2., 3. and 4. is called a derivation. Hence ∂X is a well-defined
derivation. Write Derp for the set of all derivations (at p).

Facts.

1. The map TpM → Derp , X 7→ ∂X , is bijective.
2. For a chart x : U → V with p ∈ U the derivations

∂

∂xi
(p) : f 7−→

∂f

∂xi
(p) :=

∂(f ◦ x−1)

∂xi
(x(p))

form a basis of the vector space Derp, i = 1, . . . , n, where n is the dimen-
sion of M .

Corollary 1.14. Derp is an n-dimensional vector space.

Because of Fact 1 we can identify TpM and Derp which we will from now on
do. This means that we will not distinguish between a tangent vector X and the
corresponding derivation ∂X . In particular, the tangent space TpM inherits the
structure of an n-dimensional vector space from Derp. Very often in the literature
TpM is simply defined to be Derp.

Definition 1.15. Let f : M → N be a differentiable map. Fix p ∈ M . Then the
differential of f at p is the linear map

df(p) : TpM → Tf(p)N, γ̇(0) 7−→
˙̂

(f ◦ γ)(0).
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γ

M TpM

f ◦ γ

N

Tf(p)N

f

df(p)

Fig. 9

Many other notations for the differential of a map are used in the literature, e. g.
df(p) = Df(p) = Tpf = f∗,p.

Expression with respect to charts. Given a chart x on M and a chart y on
N one easily computes

df(p)

(
∂

∂xi
(p)

)
=
∑

j

∂(yj ◦ f ◦ x−1)

∂xi
(x(p)) ·

∂

∂yj
(f(p)) .

Hence with respect to the basis ∂
∂xi (p) of TpM and the basis ∂

∂yj (f(p)) of Tf(p)N

the linear map df(p) is given by the Jacobi matrix of y ◦ f ◦ x−1 at x(p).

Definition 1.16. A vector field on M is a map X mapping each point p ∈ M

to a tangent vector X(p) ∈ TpM .

M

p
X(p)

Fig. 10
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Expression in charts. If x : U → V is a chart, then X can be written on U

as

X(p) =

n∑

i=1

fi(p) ·
∂

∂xi
(p)

with uniquely determined functions

fi : U −→ R .

Definition 1.17. A vector field is called continuous (or differentiable, Ck, C∞, . . . )
if and only if for each chart the corresponding functions f1, . . . , fn are continuous
(or differentiable, Ck, C∞, . . . ).

After so many definitions it is time for a result.

Theorem 1.18 (Hedgehog Combing Theorem). Every continuously combed hedge-
hog has at least one bald point.

Perhaps we should give a more mathematical formulation of this theorem. The
surface of the hedgehog is modelled by a (fairly deformed) 2-dimensional sphere.
When combed the pricks of the hedgehog form a continuous vector field. A bald
point is a point at which the vector field has a zero. Hence the mathematical way
of expressing Theorem 1.18 is

Theorem 1.19. Every continuous vector field on S2 has at least one zero.

In fact, this theorem is true for all even-dimensional spheres.

Exercise 1.20. Find continuous vector fields on Sn , n odd, which vanish nowhere.

Definition 1.21. A k-covector at p is a multilinear alternating map

TpM × · · · × TpM︸ ︷︷ ︸
k factors

−→ R.

We write ΛkT ∗

pM := {k-covectors at p} .

Examples 1.22. 1. By convention we put Λ0T ∗

pM := R .

2. ΛkT ∗

pM = 0 for k > n .

3. Λ1T ∗

pM = (TpM)∗ = dual space of TpM .

3’. Let f : M → R be differentiable. Then the differential of f at p, TpM
df(p)
−→

Tf(p) R
∼= R, is a linear map from tangent space to R, hence we may

consider df(p) as a 1-covector, df(p) ∈ Λ1 T ∗

pM .

For a chart x we know that ∂
∂x1 (p), . . . ,

∂
∂xn (p) is basis of TpM . Since the coor-

dinate functions x1, . . . , xn are smooth functions defined near p we can form the
differentials dx1(p), . . . , dxn(p) ∈ Λ1T ∗

pM . It turns out that they form the dual

basis of Λ1T ∗

pM = (TpM)∗. Namely,

dxi(p)

(
∂

∂xj
(p)

)
=

∂xi

∂xj
(p) = δij .
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Hence every 1-covector at p can be expressed in a unique way as a linear combination
of the dx1(p), . . . , dxn(p). For the differential of a function one checks

df(p) =

n∑

j=1

∂f

∂xj
(p) · dxj(p) .

Wedge product. For 1-covectors ϕ1, . . . , ϕk ∈ Λ1 T ∗

pM we define the k-covector

ϕ1 ∧ · · · ∧ ϕk ∈ Λk T ∗

pM by

(ϕ1 ∧ · · · ∧ ϕk) (X1, . . . , Xk) := det (ϕi (Xj))i,j=1,...,k .

By the properties of the determinant we see that with this definition ϕ1∧· · ·∧ϕk is
indeed a k-covector, namely it is multilinear and alternating in the Xj . Moreover,
it is also multilinear and alternating in the ϕj . It is a standard result of multilinear
algebra [?] that suitable wedge products of the basis vectors for the space of 1-
covectors yields a basis for the space of k-covectors. More precisely,

dxi1(p) ∧ · · · ∧ dxik (p) , 1 ≤ i1 < · · · < ik ≤ n,

form a basis of Λk T ∗

pM .

Hence every k-covector ω at p can be written in a unique manner in the form

ω =
∑

i1<···<ik

fi1···ik︸ ︷︷ ︸
∈R

dxi1(p) ∧ · · · ∧ dxik (p) .

Definition 1.23. A differential form of order k (briefly k-form) is a map ω

sending each point p ∈ M to a k-covector ω(p) at p, ω(p) ∈ Λk T ∗

pM .

Examples 1.24. 1. 0-forms = functions.
2. For a differentiable function f , its differential df is a 1-form.

Exercise 1.25. Show that for all X ∈ TpM

df(p)(X) = ∂Xf.

Definition 1.26. A k-form is called continuous (or differentiable, Ck, C∞, . . . ) if
and only if for all charts the corresponding functions fi1···ik : U → R are continuous
(or differentiable, Ck, C∞, . . . ).

Write Ωk(M) for the space of all smooth k-forms defined on M . Differentiating
functions is a map

d : Ω0(M) −→ Ω1(M) , f 7→ df .

This has a generalization to forms of higher order

d : Ωk(M) −→ Ωk+1(M) , ω 7→ dω ,

defined with respect to a local chart x by

d

(
∑

i1<···<ik

fi1···ik dx
i1 ∧ · · · ∧ dxik

)
:=

∑

i1<···<ik

dfi1···ik ∧ dxi1 ∧ · · · ∧ dxik .

One checks that this definition of d is independent of the choice of the chart x. The
operator d : Ωk(M) −→ Ωk+1(M) is called exterior differentiation.
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Example 1.27. Let us look at the case M = R2. We work with the chart x =
Id : R2→R2. In other words, we work with the usual Cartesian coordinates. We
compute the differential of the 1-form ω = x1x2dx1.

dω = d (x1x2dx1) = d (x1x2) ∧ dx1

= (x1dx2 + x2dx1) ∧ dx1

= x1dx2 ∧ dx1 + x2dx1 ∧ dx1

= −x1dx1 ∧ dx2 + 0 .

Exterior differentiation has an important property, its square is zero, d2 = 0 . Note
that d2 increases the order by two,

Ωk (M)
d
→ Ωk+1 (M)

d
→ Ωk+2 (M) .

Property d2 = 0 can also be expressed as Im(Ωk−1(M)
d
→ Ωk(M)) ⊂ Ker(Ωk(M)

d
→

Ωk+1(M)). This allows us to define deRham cohomology by taking the quotient
space

Hk
dR(M) :=

Ker(Ωk(M)
d
→ Ωk+1(M))

Im(Ωk−1(M)
d
→ Ωk(M))

.

For compact manifolds M these cohomology spaces turn out to be finite dimen-
sional,

bk(M) := dim Hk
dR(M) < ∞ .

The dimension bk(M) is called the kth Betti number of M .

Let Φ : M → N be a smooth map. The map Φ can be used to pull back functions
defined on N to functions defined on M as follows: For f : N → R put

Φ∗f := f ◦ Φ : M → R .

This has a generalization to differential forms: Define the pull back

Φ∗ : Ωk (N) → Ωk (M)

by
(Φ∗ ω) (p) (X1, . . . , Xk︸ ︷︷ ︸

∈TpM

) := ω (Φ (p)) (dΦ(p)(X1), . . . , dΦ(p)(Xk)︸ ︷︷ ︸
∈TΦ(p)N

).

Pull back has the following properties:

1. Φ∗ is linear.
2. (Φ ◦Ψ)∗ = Ψ∗ ◦ Φ∗ and (IdM )∗ = IdΩk(M) .
3. The diagram

Ωk(N) Ωk(M)

Ωk+1(N) Ωk+1(M)

d d

Φ∗

Φ∗
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commutes.

Corollary 1.28. Φ∗ induces well-defined linear map

Φ♯ : Hk
dR(N) −→ Hk

dR(M)

mapping the cohomology class of ω to the cohomology class of Φ∗(ω). This map has
the properties

(Φ ◦Ψ)♯ = Ψ♯ ◦ Φ♯ and (IdM )♯ = IdHk
dR

(M).

Corollary 1.29. If M and N are diffeomorphic, then

bk (M) = bk (N) .

Proof. Let Φ : M → N be a diffeomorphism. Then Φ♯ ◦ (Φ−1)♯ = (Φ−1 ◦
Φ)♯ = (IdM )♯ = IdHk

dR
(M) and similarly (Φ−1)♯ ◦ Φ♯ = IdHk

dR
(N). Therefore

Φ♯ : Hk
dR(N) → Hk

dR(M) is an isomorphism with inverse (Φ−1)♯. Qed

Example 1.30. If M is a compact surface of genus g , then it is known that

b0 (M) = b2 (M) = 1 , b1 (M) = 2g .

Hence surfaces of different genera cannot be diffeomorphic.

Definition 1.31. A C∞-atlas of M is called oriented if and only if for any two
charts x and y

detD (y ◦ x−1) > 0 .

A pair (M,A) where M is a topological manifold and A is a maximal oriented
atlas is called an oriented differentiable manifold.

Let M be an n-dimensional oriented manifold, let ω ∈ Ωn (M) (with compact
support). Then ∫

M

ω ∈ R

can be defined using oriented charts x : U → V by∫

U

ω :=

∫

V

(f ◦ x−1) dx1 · · · dxn ,

where we have written
ω = f · dx1 ∧ · · · ∧ dxn

and the right hand side
∫
V
(f ◦ x−1) dx1 · · · dxn is the usual Lebesgue integral of a

function defined on an open subset of Rn.

In the zero dimensional case the underlying manifold is a discrete and countable
set of points, M = {p1, p2, p3, . . .}. The orientation consists of attaching a sign
ε(p) = ±1 to each point p. The integral of a function f is then given by

∫

M

f =
∑

p∈M

ε(p) f(p).

Theorem 1.32 (Stokes). Let M be an n-dimensional compact oriented manifold
with boundary ∂M . Let ω ∈ Ωn−1 (M) . Then

∫

M

dω =

∫

∂M

ω



16 1. PRELIMINARIES

M

∂M

Fig. 11

Example 1.33. Let us look at the Stokes Theorem in the simplest case where M

is a 1-dimensional interval, M = [a, b]. Then the boundary consists of two points,
∂M = {a, b}. We pick a smooth 0-form, i. e. a function ω = f : [a, b] → R. Its
differential then is dω = f ′ · dx. The Stokes Theorem now says

∫ b

a

f ′ dx = f (b)− f (a) .

Hence the Theorem of Stokes is a generalization of the fundamental theorem of
calculus to higher dimensions.


