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1. Introduction

In a famous series of papers [3] - [7] Atiyah and Singer solved the problem to
compute the Fredholm index of elliptic operators on closed manifolds in terms
of topological data. Applications have been numerous; for example applying
the index formula to the Dirac operator on a closed spin manifold shows that
on such a spin manifold the Â-genus is an integer. To understand this fact was
part of the motivation to work out the index formula.

Now it is natural to ask how one can get interesting elliptic operators.
So far operators have always been constructed ‘by hand’. For example, on a
Riemannian manifold we have the Euler operator d+ δ mapping even forms to
odd forms and vice versa, on an oriented Riemannian manifold of appropriate
dimension we have the signature operator, on a Riemannian spin manifold
there is the Dirac operator, and on an almost complex manifold there is the
Cauchy-Riemann operator.

We see that the condition for existence of a certain operator is always a
condition on the structure group of the manifold, for example being spin or
being almost complex. Thus we suspect that there should be a conceptional
way to determine elliptic operators associated to a given structure group. This
is in fact possible and will be carried out in the next section. In some sense the
natural elliptic operators associated to a structure group G are parametrized by
a certain ideal in the representation ring of G which can easily be calculated
in concrete situations. In particular, the ideal is finitely generated and the
generators correspond to operators which we may well call fundamental for G.

2. The construction

Let us first set up the notation. Let M be a Riemannian manifold of dimension
n. For the moment we do not make any assumption on compactness or even
completeness. Let G be a compact Lie group, let P → M be a principal bundle
with structure group G. Moreover, we need an orthogonal representation τ :
G → O(n) and we assume that the associated vector bundle P ×τ Rn is the
tangent bundle of M . In such a situation we say that G is the structure
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group of M . For example, G = Spin(n) means that the manifold is spin,
G = U(m), n = 2m, means that the manifold is almost complex.

We emphasize that we do not assume that the holonomy group be reduced
to G. In the case G = U(m) this would mean that M is Kähler which is much
stronger than being almost complex.

We call the G-structure on M transitive if G acts transitively on Sn−1 ⊂ Rn

via τ . The examples we have mentioned so far are all transitive. Now pick
an arbitrary point x0 ∈ Sn−1 and look at the isotropy subgroup H = {g ∈
G | τ(g)x0 = x0}. Since G acts transitively H is unique up to conjugation.
Now we can formulate the main existence result.

Theorem 1. Let M , G, P, and H be as above. Let V1 and V2 be two
G-modules, let Ei = P ×G Vi be the associated vector bundles.

If V1 and V2 are equivalent as H-modules, then there exists an elliptic
pseudodifferential operator C∞(M, E1) → C∞(M, E2) (of arbitrary order).

Sketch of proof. It is enough to construct an elliptic symbol. So if
π : T 1M → M is the unit tangent bundle we need to construct a vector
bundle isomorphism σ : π∗E1 → π∗E2. This σ will be the asymptotic principal
symbol; it can be extended to the whole tangent bundle minus the zero section
by just extending it homogeneously of some arbitrary degree. This degree is
then the order of the operator. At this point it should be mentioned that we
use the Riemannian metric to identify tangent and cotangent bundle so that
we don’t need to make any difference here.

The construction of σ can be carried out pointwise over the manifold. Let
us think of Sn−1 as being the fibre of T 1M over some point. We want to have
a natural function on Sn−1 mapping each point of the sphere to an isomor-
phism V1 → V2 since those are the fibres of E1 and E2 resp. At x0 there is
a natural choice, namely just take the H-isomorphism A which we have by
assumption. Any other point on Sn−1 may be written in the form τ(g)x0 and
we take τ(g) ◦A ◦ τ(g−1). Since A is H-equivariant the whole mapping is well
defined. 2

Remark. In Theorem 1 we did not specify over which field we have to
take the modules V1 and V2. In fact, we can use R, C and even H and we get
real, complex, or quaternionic operators. For simplicity, we will from now on
restrict our attention to complex G-modules.

Example 1. Let M be a spin manifold of dimension n = 2m. Then
G = Spin(2m) and H = Spin(2m− 1). We choose V1 = Σ+ and V2 = Σ− the
positive and negative half-spinor representations of Spin(2m). Restricted to
H, Σ+ and Σ− both yield the spinor representation of Spin(2m−1). Hence V1
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and V2 are equivalent over H and we can apply Theorem 1. Thus there is an
elliptic operator C∞(M, Σ+) → C∞(M, Σ−). Of course, we are not surprised
because we know that there is the Dirac operator.

Example 2. Let M be an oriented 4-manifold. Then G = SO(4) and
H = SO(3). We choose V1 = Λ1 and V2 = 1 + Λ2

+ where 1 is the triv-
ial G-module, Λ1 is the standard representation of SO(4), and Λ2

+ are self-
dual 2-forms. Restricting V1 = Λ1 to SO(3) yields a one-dimensional trivial
subspace spanned by x0 and the three-dimensional orthogonal complement
which is just the standard representation Λ1 for SO(3). On the other hand,
Λ2

+ restricts to a nontrivial three-dimensional SO(3)-modul and there is only
one, namely Λ1. We have seen that V1 and V2 both restrict to 1 + Λ1, i.e.
they are equivalent over SO(3). By Theorem 1 there is an elliptic operator
C∞(M, Λ1) → C∞(M, 1 + Λ2

+). In fact, we can choose half the Euler operator
d+ + δ.

In both examples we have been able to choose elliptic differential operators.
Is it possible to replace the word pseudodifferential operator in Theorem 1 by
differential operator?

In the setting of Theorem 1 this is not possible in general. One can show
that for the complex projective plane M = CP2 there is no elliptic differential
operator C∞(CP2, R ⊕ R ⊕ Λ2

+T ∗CP2) → C∞(CP2, R ⊕ T ∗CP2) but applying
Theorem 1 as in Example 2 one sees that there exists an elliptic pseudo-
differential operator, see [8] for the details.

Algebraically it is much simpler to work with virtual G-modules rather than
with actual G-modules. Let R(G) be the representation ring (character ring)
of G. The elements of R(G) are virtual finite dimensional complex G-modules.
If we look at the difference V1 − V2, then the condition for existence of elliptic
operators in Theorem 1 is that under the restriction mapping R(G) → R(H)
the virtual G-module V1 − V2 is mapped to 0. Hence every element of the
kernel R(G, H) of this restriction mapping gives rise to an elliptic operator.

In the following table we list generators of R(G, H) for some geometri-
cally significant groups G. We call the operators corresponding to generators
fundamental.
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G n gener. of R(G, H) fundam. op.s

SO(2m) 2m
1− Λ1 ± · · · − Λ2m−1 + 1,

Λm
+ − Λm

−

Euler op.
signature op.

O(2m) 2m 1− Λ1 ± · · ·+ Λ2m Euler op.
Spin(2m) 2m Σ+ − Σ− Dirac op.
Spinc(2m) 2m (Σ+ − Σ−)z twisted Dirac op.

Spinh(2m) 2m
1− Λ1 ± · · · − Λ2m−1 + 1,

Λm
+ − Λm

− , (Σ+ − Σ−)ρ

Euler op.
signature op.

twisted Dirac op.
U(m) 2m 1− Λ1,0 ± · · ·+ (−1)mΛm,0 Cauchy-Riemann op.

SU(m) 2m
1− Λ1,0 ± · · ·

+(−1)m−1Λm−1,0 + (−1)m

= Σ+ − Σ−

Cauchy-Riemann op.
∼= Dirac op.

Sp(q)Sp(1),
q even

4q Σ+ − Σ− Dirac op.

Sp(q)Sp(1),
q odd

4q

(Σ+ − Σ−) · ρ,
(Σ+ − Σ−) · Λ1,0,
(Σ+ − Σ−) · Λ3,0,

...
(Σ+ − Σ−) · Λq,0

q+3
2

twisted
Dirac op.s

Sp(q)U(1),
q even

4q Σ+ − Σ− Dirac op.

Sp(q)U(1),
q odd

4q (Σ+ − Σ−) · z twisted Dirac op.

Sp(q) 4q Σ+ − Σ− Dirac op.

Notation should be self-explaining, Λk denotes k-forms, Λm
± are (anti-) self-

dual m-forms, Λp,q denotes (p, q)-forms, Σ± are half-spinor representations, ρ is
the canonical representation of Sp(1) = SU(2) on C2, and z denotes the stan-
dard representation of U(1) on C. For background on representation theory
see [9]. Spinh will be explained in the next section.

3. Spinh manifolds

The class of Spinc manifolds can be considered the natural class containing
spin manifolds and almost complex manifolds. Now we enlarge the class once
more and add almost quaternionic manifolds. What we get is the class of Spinh

manifolds.
A Spinh manifold is an n-dimensional manifold with structure group

Spinh(n) = (Spin(n) × Sp(1))/Z2 where Z2 = {(1, 1), (−1,−1)}. We just re-
place U(1) in the definition of Spinc(n) by Sp(1). The inclusion U(1) ⊂ Sp(1)
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induces an inclusion Spinc(n) ⊂ Spinh(n), hence all Spinc manifolds are Spinh.
In dimension n = 4q there is an inclusion Sp(q) · Sp(1) ⊂ Spinh(n) which im-
plies that every almost quaternionic manifold is Spinh.

From the exact sequence

0 −→ Z2 −→ Spinh(n) −→ SO(n)× SO(3) −→ 0 (1)

we see that a Spinh manifold has a canonical SO(3)-bundle E. This canonical
SO(3)-bundle is analogous to the canonical line bundle of Spinc manifolds.

From the exact cohomology sequence

H1(M ; Spinh(n)) −→ H1(M ; SO(n))⊕H1(M ; SO(3))
w2−→ H2(M ; Z2) (2)

we deduce that the condition on an SO(3)-bundle E to be canonical for a
Spinh-structure is

w2(M) = w2(E) (3)

where w2 denotes the second Stiefel-Whitney class. Applying the Atiyah-
Singer index theorem to the third generator of R(G, H), G = Spinh(n), in the
table of the previous section, we obtain the following integrality theorem.

Theorem 2. Let M be a closed Spinh manifold of dimension n = 2m with
canonical SO(3)-bundle E. Let p1(E) ∈ H4(M ; Z) be the first Pontrjagin class
of E.

Then p1(E) ≡ w2(M)2 mod 2 and the rational number

2
∫

M

cosh


√

p1(E)

2

 Â(TM)


is an integer.2

Since cosh is an even power series cosh
(√

p1(E)

2

)
is in fact a power series

in p1(E), not just in
√

p1(E).
Theorem 2 is analogous to well known integrality theorems for spin and for

Spinc manifolds due to Atiyah and Hirzebruch [1].

Remark. At the conference in Sendai I learnt from M. Nagase that he
had studied Spinh manifolds independently (he calls them Spinq manifolds) in-
cluding the construction of the twisted Dirac operator and the corresponding
integrality theorem, see [11] and [12].

Corollary 1. Let M be a closed Spinh manifold of dimension n = 2m with
canonical SO(3)-bundle E. If the first Pontrjagin class p1(E) of E is a torsion

5



class, then 2Â(M) is an integer.2

Corollary 2. Let M be a closed Spinh manifold of dimension n = 2m with
with vanishing forth Betti number, b4(M ; Q) = 0. Then 2Â(M) is an integer.2

Example. Let us consider the 4q-dimensional manifold M =
S4 × · · · × S4︸ ︷︷ ︸

q factors

. Let E be any SO(3)-bundle over M .

Then the characteristic number
∫
M p1(E)q is divisible by 22q−1 · (2q)!.

The proof is as follows. Since trivially w2(E) = 0 = w2(M) we know that E
is canonical for some Spinh structure on M . Theorem 2 and Â(M) = Â(S4)q =
1 tells us that the following expression is an integer

2
∫

M
cosh


√

p1(E)

2

 = 2
∫

M

(
√

p1(E)/2)2q

(2q)!

=
1

22q−1 · (2q)!

∫
M

p1(E)q.2

4. Immersions

To give another application of Theorem 1 we derive topological restrictions on
closed manifolds with transitive G1-structure immersed into a spin manifold
such that the normal bundle carries a G2-structure.

More precisely, let G1 ⊂ SO(n), n = 2m, and G2 ⊂ SO(k) be con-
nected Lie subgroups such that G1 acts transitively on Sn−1 ⊂ Rn. For
x0 ∈ Sn−1 denote the isotropy subgroup by H1 ⊂ G1. We look at the pre-
images Ĝ1 = π−1

1 (G1), Ĥ1 = π−1
1 (H1), and Ĝ2 = π−1

2 (G2) under the twofold
coverings π1 : Spin(n) → SO(n) and π2 : Spin(k) → SO(k). The two central
elements ±1 ∈ Spin(n or k) are also contained in Ĝ1, Ĥ1, and Ĝ2.

Theorem 3. Let M be an n-dimensional closed manifold with transitive
G1-structure, n = 2m even. Let M be immersed into an (n + k)-dimensional
spin manifold, e.g. Rn+k, such that the normal bundle carries a G2-structure.
Let ΦTM : M → BG1 and ΦN : M → BG2 be classifying maps for tangent and
normal bundle.

If σ ∈ R(Ĝ1, Ĥ1) and V ∈ R(Ĝ2) are such that (−1,−1) acts trivially on
σ · V , then∫

M

{
Φ∗

N

(
(π∗2)

−1ch(V )
)
· Φ∗

TM

(
(π∗1)

−1ch(σ)

e|BG1

)
· Â(TM)2

}
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is an integer.

Proof. M carries a G1-structure and hence a G1 × G2-structure. Since
M is immersed into a spin manifold the G1 × G2-structure can be lifted to a
G-structure where G is the preimage of G1×G2 ⊂ SO(n + k) in Spin(n + k).

We have G = (G1 × G2)/Z2 where Z2 = {(1, 1), (−1,−1)}. Since Z2 acts
trivially on σ · V by assumption we can consider σ · V as an element of R(G).
Since σ ∈ R(Ĝ1, Ĥ1) the element σ ·V is actually contained in R(G, H) where
H = (H1 ×G2)/Z2 is the isotropy subgroup of G.

Theorem 1 together with the Atiyah-Singer index formula applied to the
operator corresponding to σ · V finishes the proof. 2

In the following tables we list a few examples. We can consider G1 and G2

separately and then combine them arbitrarily. V and σ are always such that
−1 ∈ Ĝ1 or Ĝ2 acts by multiplication with -1 so that Z2 acts trivially on σ ·V .

G1 σ Φ∗
TM

(
(π∗1)−1ch(σ)

e|BG1 · Â
2
)

SO(n) Σ+ − Σ− Â(TM)

U(m) (1− Λ1,0 ± · · ·) · (Λm,0)1/2 (−1)mec1(TM)/2 · T D(TM)
Sp(q)Sp(1),

q even
(Σ+ − Σ−) · ρ 2cosh(

√
p1(E)/2) · Â(TM)

(Σ+ − Σ−) · Λk,0,
k odd

λk

(
ch(TM⊗C)

2cosh(
√

p1(E)/2)

)
Â(TM)

Sp(q)Sp(1),
q odd

Σ+ − Σ− Â(TM)

(Σ+ − Σ−) · Λk,0,
k even

λk

(
ch(TM⊗C)

2cosh(
√

p1(E)/2)

)
Â(TM)

Sp(q)U(1),
q even

(Σ+ − Σ−) · z ec1(L)/2 · Â(TM)

Sp(q)U(1),
q odd

Σ+ − Σ− Â(TM)

Some explanations: L denotes the canonical U(1)-bundle, E denotes the
canonical SO(3)-bundle, c1 is the first Chern class, p1 the first Pontrjagin
class, and T D the total Todd class. λk : Heven(M ; Q) → Heven(M ; Q) is a
homomorphism with the property

ch(ΛkE) = λkch(E),

see [8] for more details.
Now let us look at the structure group G2 of the normal bundle. Here we

could also take groups which do not act transitively on the unit sphere, but
for the sake of simplicity we restrict ourselves to G2 = SO(k) and G2 = U(l).
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G2 V Φ∗
N ((π∗2)

−1ch(V ))

SO(k),
k = 2l even

Σ+ − Σ− e(N) · Â(N)−1

Σ+ + Σ− 2l · M(N)
SO(k),

k = 2l + 1 odd
Σ 2l · M(N)

U(l) (Λl,0)1/2 ec1(N)/2

Here e(N) denotes the Euler class and M(N) is the multiplicative class for
the power series cosh(x/2), i.e. if we write the Pontrjagin class p(N) formally
as p(N) =

∏l
j=1(1 + x2

j), then

M(N) =
l∏

j=1

cosh(xj/2). (4)

Combining G1 = SO(n) and G2 = SO(k) we get

Theorem 4. (K.H. Mayer [10, Satz 3.2])
Let M be an n-dimensional closed oriented manifold, n = 2m even, which can
be immersed into an (n+k)-dimensional spin manifold with normal bundle N .

If k = 2l is even, then the following expressions are integers:∫
M

e(N)Â(N)−1Â(TM)

and
2l
∫

M
M(N)Â(TM).

If k = 2l + 1 is odd, then

2l
∫

M
M(N)Â(TM)

is an integer. 2

Of course, one can still twist with coefficient bundles or examine for which
n and k the resulting elliptic operators are quaternionic thus improving the
integrality result by a factor 2. Applications for immersions of projective spaces
into Euclidian spaces may be found in [10].

As a further example let us combine G1 = Sp(q)Sp(1), q even, with
G2 = U(l). Then we obtain

Theorem 5. Let M be a 4q-dimensional closed almost quaternionic mani-
fold, q even, which can be immersed into a (4q+2l)-dimensional spin manifold
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such that the normal bundle N carries an almost complex structure. Let E
denote the canonical SO(3)-bundle of M .

Then the following expressions are integers:

2
∫

M
ec1(N)/2cosh(

√
p1(E)/2)Â(TM),

∫
M

ec1(N)/2λk

 ch(TM ⊗ C)

2cosh(
√

p1(E)/2)

 Â(TM), k odd.2

Remark. With this method one can also study immersions into different
manifolds such as Spinc manifolds for example. Then one has to look at mod-
ules for the preimages of G1 and G2 in Spinc(n or k) and one obtains in the
case G1 = SO(n) and G2 = SO(k) the second integrality theorem by K. H.
Mayer [10, Satz 3.1].
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