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ABSTRACT. We describe the heat kernel asymptotics for roots of a Laplace
type operator ∆ on a closed manifold. A previously known relation between
the Wodzicki residue of ∆ and heat trace asymptotics is shown to hold point-
wise for the corresponding densities.

1. INTRODUCTION

Let ∆ be a positive self-adjoint differential operator of Laplace type acting on
sections in a Hermitian vector bundle over a compact Riemannian manifold
M. Then the corresponding heat operator e � t∆, t � 0, is smoothing and its
Schwartz kernel pt(x � y) is known to have an asymptotic short time expansion
along the diagonal of the form pt(x � x) � ∑

�
j � 0 t j � n � 2a2 j � n(x), t � 0. The coeffi-

cients a2 j � n(x) can in principle be computed recursively in terms of curvature,
the total symbol of ∆ and their derivatives. In this paper we study the short
time asymptotics of the Schwartz kernel of e � t � ∆. For example, if D is an in-
vertible self-adjoint operator of Dirac type, then ∆ : 	 D2 is of Laplace type and
we can apply our analysis to e � t 
 D 
 . It turns out that the behavior of the heat
kernel ht(x � y) of � ∆ depends in a crucial manner on the parity of the dimen-
sion n of the underlying manifold M. If n is even, then there is an expansion

ht(x � x)
t � 0�

n � 2

∑
j � 0

t2 j � n A2 j � n(x) 
�
∑
j � 1

t j A j(x)

where some of the coefficients A j(x) are directly related to the heat coefficients
a j(x) for ∆ itself. In the odd-dimensional case logarithmic terms appear

ht(x � x)
t � 0�

�
∑
j � 0

t2 j � n A2 j � n(x) 
�
∑
j � 0

t2 j � 1 log t B2 j � 1(x) �
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All coefficients B j(x) and some of the A j(x) can again be obtained from the
a j(x). The remaining coefficients are apparently not locally computable. Con-
versely, all heat coefficients a � (x) of ∆ can be obtained from those of � ∆, so that
the short time expansion for � ∆ contains more information than that for ∆,
contrary to statements occasionally found in the literature, see e. g. [10, Sec. 4].
The details can be found in Theorem 7.

In order to relate e � t∆ and e � t � ∆ we look at the complex powers ∆ � s of ∆. The
Mellin transformation ∆ � s 	 1

Γ(s)
� �

0 ts � 1e � t∆dt implies that the heat coefficients
a � (x) can be obtained as residues of poles of the Schwartz kernel q � s(x � y) of
∆ � s, more precisely,

Ress � n � 2 � k � Γ(s)q � s(x � x) � 	 a2k � n(x) �
see Proposition 3. For complex powers it is trivial to pass from ∆ to � ∆ since

� ∆
� s 	 ∆ � s � 2. The inverse Mellin transform e � tQ 	 1

2 � i � Re(s) ��� t � sΓ(s)Q � sds
for Q 	 � ∆ then brings us back to heat operators. The logarithmic terms arise
because in odd dimensions Γ(s)q � s � 2(x � x) has double poles.

Our method also allows us to determine the short time heat asymptotics for
∆1 � m, m 	 1 � 2 � � � � . Logarithmic terms appear only if n is odd and m is even.
See Theorem 8 for details.

An alternative approach could have used the resolvent (∆ �	� ) � 1 instead of
complex powers. This has been proposed e. g. in [10]. For m 	 2 one could
also have used the trace of the wave operator e it∆1 
 2

whose structure as a dis-
tribution is well understood, see [5, 8]. But the approach used here seems to
be simpler.

In the last section we relate the Wodzicki residue density and heat coefficients.
The Wodzicki residue is the unique trace on the algebra of pseudodifferen-
tial operators which extends the Dixmier trace on operators of order ��� n.
Kalau and Walze [12] and Kastler [13] independently showed that the Wodz-
icki residue of ∆ � n � 2 � 1 is essentially given by the integral of the second heat
coefficient

�
M Tr(a � n � 2(x))dx. This fact has attracted attention in noncommu-

tative geometry since it yields an operator-theoretic characterization of the
Einstein-Hilbert action in general relativity, see e. g. [6]. Ackermann [1] noted
that this is a special case of a more general relation between integrals of the
heat coefficients and the Wodzicki residue of suitable powers of ∆. We show in
Theorem 13 that the corresponding equality holds already on the level of den-
sities, i. e. for each x  M the heat coefficient a � 2 j(x) is up to a universal factor
the same as wres(∆ � j)(x). Taking traces and integrating over M then yields the
results of Kalau, Walze, Kastler, and Ackermann.

We tried to keep the presentation as self-contained as possible. For this reason
we recall some definitions and include a few analytic basics which will be quite
standard to the expert. However, we think that this way the text is much more
coherent.
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2. FROM THE HEAT KERNEL TO COMPLEX POWERS

Let (M � g) be a closed Riemannian manifold, let E be a Hermitian vector bundle
over M and let ∆ be a second-order differential operator acting on the sections
of E. We assume that ∆ is self-adjoint and of Laplace type, i. e. its principal
symbol satisfies �

2(∆)(
�
) 	 g(

� � � ) �
The Schwartz kernel pt(x � y) of the heat operator e � t∆ has the following asymp-
totic behavior as t � 0, where n : 	 dim(M):

(1) (t � x) �� tn � 2pt(x � x) � (t � x)  [0 ��� ) � M �
is a smooth section of E � E � over [0 ��� ) � M, and

(2) (t � x � y) �� pt(x � y) � (t � x � y)  [0 ��� ) � (M � M � Diag) �
is a smooth section of E 	 E � and vanishes at t 	 0 together with all its deriva-
tives. A more standard way of writing (1) is the asymptotic expansion for p t
on the diagonal:

(3) pt(x � x)
t � 0�

�
∑
j � 0

t j � n � 2a2 j � n(x) �

These properties of the Schwartz kernel were first established for the Laplace-
Beltrami operator acting on functions in the fundamental paper [14]. The ver-
sion for generalized Laplacians that we use here can be found e. g. in [2, Ch. 2].

For simplicity we assume throughout the paper that ∆ is strictly positive, un-
less otherwise stated. In this case e � t∆ is a continuous family of bounded op-
erators for t  [0 ��� ) and vanishes exponentially fast in the operator norm as
t �
� . Thus, for Re(s) � 0 the complex powers of ∆ are well-defined via the
Mellin transformation formula

(4) ∆ � s : 	 1
Γ(s)

� �
0

ts � 1e
� t∆dt �

the integral converging absolutely in the operator norm.
Proposition 1. Let K � M � M � Diag be compact and let  �� . Then the restriction
of the Schwartz kernel q � s of ∆ � s to K is an entire function in s with values in the
Banach space C � (K � E 	 E � ) and vanishes for s  ��� , � 	�� 0 � 1 � 2 � � � ��� .
PROOF. We show this by deriving a relationship between the Schwartz kernels
pt(x � y) of e � t∆ and q � s(x � y) of ∆ � s. Consider the � -function � x as a distribution
in E � with values in Ex and similarly � y as a distribution in E with values in
E �y. Then we can write the following element of Ex � E �y as

pt(x � y) 	�� x(e
� t∆( � y)) 	 (e

� t∆ � 2( � y) � e
� t∆ � 2( � x))L2

hence �
pt(x � y)

�
��� e � (t � 1)∆ ����� e � ∆ � 2( � x) � L2 ��� e � ∆ � 2( � y) � L2 �
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Since e � ∆ � 2 is smoothing � e � ∆ � 2( � x) � L2 and � e � ∆ � 2( � y) � L2 are finite, thus pt(x � y)
decays exponentially fast. Similarly,���

k�
tk pt(x � y)

�
� � e � (t � 1)∆ ��� � ∆ke � ∆ � 2( � x) � L2 ��� e � ∆ � 2( � y) � L2 �

so that all t-derivatives of pt(x � y) decay exponentially fast. Since e � ∆ � 2( � x) de-
pends smoothly on x the estimates are uniform in x and y. Moreover, replacing
the � -functions by suitable derivatives of the � -function we obtain the corre-
sponding estimates for all derivatives of pt in x and y. This means that for each
k �   � there is a constant Ck � � such that

� � k�
tk pt � C � (M � M � E � E � ) � Ck � � � e � (t � 1)∆ �

for t � 1. In particular, for any s 	� the integral� �
1

ts � 1pt dt

converges absolutely in all Banach spaces C � (M � M � E 	 E � ).
For K � M � M � Diag we see from (2) that� 1

0
ts � 1pt dt

is also absolutely convergent in C � (K � E 	 E � ) for all s 
� . By (4) it is clear that

(5) q � s(x � y) : 	 1
Γ(s)

� �
0

ts � 1pt(x � y)dt

defines the Schwartz kernel of ∆ � s wherever the integral converges absolutely.
The vanishing statement for s  ��� follows from the poles of the Gamma func-
tion. �
Vanishing of q � s off the diagonal for s  � � reflects the fact that for these s the
operator ∆ � s is differential. We fix our attention now to the diagonal. From (1)
we see that for all (x � y)  M � M the integral in (5) is absolutely convergent
for Re(s) � n

2 . For such s we have therefore

Γ(s)q � s(x � x) 	
� �

0
ts � n � 2 � 1tn � 2pt(x � x)dt

	 � 1
s � n � 2

� �
0

ts � n � 2
��
t


tn � 2pt(x � x) � dt

	 ( � 1)k

∏k � 1
j � 0(s � n � 2  j)

� �
0

ts � n � 2 � k � 1
�

k�
tk


tn � 2pt(x � x) � dt(6)

where we have repeatedly integrated by parts. The asymptotic properties of p t
ensure that there are no boundary terms. Now the kth derivative of a smooth
function is again a smooth function, in particular bounded as t � 0, so the
integral in (6) is absolutely convergent (hence analytic) for Re(s) � n

2 � k in all
Banach spaces C � (Diag � E 	 E � ). The right-hand side of (6) has simple poles at
s  n � 2 � � . We have shown
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Proposition 2. For each x  M the function � s  � ; Re(s) � n
2 � � s �� q � s(x � x)

extends meromorphically to � with simple poles. This defines meromorphic functions
with values in the Banach space C � (Diag � E 	 E � ) for all   � .

� If n is even, then the poles of q � s(x � x) arise at

s 	 n � 2 � n � 2 � 1 � � � � � 1 �
In particular, the number of poles is finite.� If n is odd, then the poles of q � s(x � x) arise at

s  n � 2 � � �
Moreover, q � s(x � x) has zeroes at s  ��� .

�
Poles of Γ(s): �� Poles of Γ(s)q � s(x � x): �

n even:
0� 1� 2� 3� � � 1 � � � n

2 � 1 n
2���������� ����� � � �

n odd:
0� 1� 2� 3� � � 1

2 � � � n
2 � 1 n

2	
	
	
	
	
 ���� � � �

One crucial observation is now that the coefficients in the asymptotic expan-
sion (3) of the heat kernel can be read off from the poles of the complex powers.
More precisely, we have
Proposition 3. For all x  M we have

Ress � n � 2 � kΓ(s)q � s(x � x) 	 a2k � n(x)

where a2k � n(x) are the heat coefficients in (3).

PROOF. From (6) with k  1 instead of k and from (3) we see that

Ress � n � 2 � kΓ(s)q � s(x � x) 	 � 1
k!

� �
0

� k � 1
�

tk � 1 (tn � 2pt(x � x))dt

	 1
k!

� k
�

tk (tn � 2pt(x � x))
�
t � 0

	 a2k � n(x) � �
Another technical consequence to be used later is the following
Proposition 4. Let ���� and let K � M � M � Diag be compact. Then the re-
striction to K of the meromorphic function s �� Γ(s)q � s is uniformly bounded on� s  � ;  � Re(s) ��� � in each of the Banach spaces C � (K � E 	 E � ).
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Moreover, for any � � 0 the restriction of s �� Γ(s)q � s to the diagonal Diag is uni-
formly bounded on � s  � ;  � Re(s) � � �

�
Im(s)

� ��� � in each of the Banach spaces
C � (Diag � E 	 E � ). If � �  � n

2 , then the same holds on � s  � ;  � Re(s) � � � .
PROOF. The first statement is clear from (5), (2) and the asymptotic properties
of pt. For the second statement choose k  � so large that  � n

2 � k. Then the
integral in (6) converges absolutely in C � (Diag � E 	 E � ) on the region under
consideration and the proposition follows. �

3. FROM COMPLEX POWERS TO THE HEAT KERNEL

Let Q : 	 ∆1 � 2. Through the inverse Mellin transform we write for t � 0, � � 0,

(7) e � tQ 	 1
2 � i

�
Re(s) ��� t � sΓ(s)Q � sds �

Lemma 5. The function Γ(s) is rapidly decreasing on the lines Re(s) 	�� for all �  � ,
uniformly in each strip � s  � ;  � Re(s) � � � for all �� � .

PROOF. For Re(s) � 0 make the change of variable t 	 ev in the integral defining
the Gamma function,

Γ(s) : 	
� �

0
ts � 1e � tdt �

Writing s 	��  i
�

we get

Γ(s) 	
�
� eiv � ev � � ev

dv

which is the inverse Fourier transform of a Schwartz function, hence Schwartz
itself (in

�
). For Re(s) � 0 use the functional equation of the Gamma function.�

The integral (7) is therefore absolutely convergent in the operator norm for � �
0 and is independent of such � by the Cauchy residue formula. This implies
that Qke � tQ is bounded for all k  � and so e � tQ is smoothing (always for t � 0).

We want now to derive from (7) an identity relating Schwartz kernels. Since
Q � s 	 ∆ � s � 2 we can use the results of the previous section. For Re(s) � n
the operators Q � s have continuous Schwartz kernels q � s � 2(x � y). Recall the
Legendre duplication formula for the Gamma function:

Γ(s)
Γ(s � 2)

	 (2 � )
� 1 � 22s � 1 � 2Γ � s � 1

2 � �
Together with Proposition 4 and Lemma 5 we see that the heat kernel h t(x � y)
of Q satisfies

ht(x � y) 	 1
2 � i

�
Re(s) ��� t

� sΓ(s)q � s � 2(x � y)ds

	 1
4 � 3 � 2i

�
Re(s) ��� �

t
2 � � s Γ � s � 1

2 � Γ(s � 2)q � s � 2(x � y)ds(8)
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for all � � n. The point is now that the integrand in the right-hand side has
an analytic extension which decays rapidly in all vertical strips  � Re(s) � � .
This follows again from Proposition 4 and Lemma 5. Thus we can move the
line of integration in (8) to the left across poles, provided that we account for
these poles using the residue formula:

ht(x � y) 	 1
2 � i

�
Re(s) � n � k ��� t � sΓ(s)q � s � 2(x � y)ds


k � 1

∑
j � 0

Ress � n � j(t
� sΓ(s)q � s � 2(x � y)) �(9)

Note that all the poles are of the form s 	 n � j but some of these points are in
fact regular. We first examine the off-diagonal behavior.

Proposition 6. The heat kernel ht(x � y) of ∆1 � 2 is smooth for (t � x � y)  [0 ��� ) �
(M � M � Diag) with only odd Taylor coefficients at t 	 0.

PROOF. Let K be a compact subset of M � M � Diag. Then the integral in
� k
�

tk ht 	
�

Re(s) � n ���
( � 1)ks(s � 1) � � � (s � k � 1))

2k � 2 � 3 
 2 i � t
2 � � s � k Γ � s � 1

2 � Γ(s � 2)q � s � 2 ds

converges absolutely in C � (K � E 	 E � ) by Proposition 4. Thus ht(x � y) is smooth
for (t � x � y)  (0 ��� ) � (M � M � Diag). The integral term in (9) is of order
O(tk � n � � ) and q � s � 2

�
K is entire by Proposition 1. Thus (9) yields an asymptotic

expansion in C � (K � E 	 E � )
ht

�
K

t � 0�
�
∑
j � 0

t j q j � 2

�
K

( � 1) j

j!

where we used Ress � � j(Γ(s)) 	 ( � 1) j � j!. This shows that ht

�
K is also smooth

at t 	 0. Since q j � 2

�
K vanishes for even j by Proposition 1 only odd Taylor

coefficients occur at t 	 0. �
The behavior on the diagonal of ht(x � x) depends on parity. Again the restric-
tion to Diag of the integral in the right-hand side of (9) is of order O(tk � n � � )
in C � (Diag � E 	 E � ) for all  . Assume first that n is even. From Proposition
2 we know that Γ(s)q � s � 2(x � x) has simple poles at s  � n � n � 2 � � � � � 2 � � ��� ,
thus the residue at s 	 n � j in (9) is a multiple of t j � n. However, if n is odd
then Γ(s)q � s � 2(x � x) has simple poles at s 	 n � n � 2 � � � � � 1 and double poles at
s 	�� 1 � � 3 � � � � . Accordingly, ht(x � x) will have an asymptotic expansion con-
taining singular terms t � n � t � n � 2 � � � � � t � 1, odd Taylor terms t � t3 � t5 � � � � and log
terms t log t � t3 log t � t5 log t � � � � . Moreover, some of the coefficients can be writ-
ten down in terms of the coefficients (3) of the asymptotic expansion of p t.
Theorem 7. Let M be an n-dimensional compact Riemannian manifold, let ∆ be a
positive self-adjoint differential operator of Laplace type acting on sections in a Her-
mitian vector bundle over M. Let a j be the heat kernel coefficients for ∆ and let q � s be
the Schwartz kernel of ∆ � s.
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Then the heat kernel ht of the operator ∆1 � 2 restricted to Diag has the following as-
ymptotic expansion as t � 0:

� For even n

ht(x � x)
t � 0�

n � 2 � 1

∑
j � 0

t2 j � n A2 j � n(x) 
�
∑
j � 0

t j A j(x)

where the smooth coefficient functions A � are

A2 j � n(x) 	 a2 j � n(x) 2n � 2 � j (n � 2 j � 1)!! for j 	 0 � � � � � n � 2 � 1 �
A2 j(x) 	 a2 j(x)

( � 2) � j

(2 j � 1)!!
for j � 0 �

A2 j � 1(x) 	 � q j � 1 � 2(x � x)
(2 j  1)!

for j � 0 �
� For odd n

ht(x � x)
t � 0�

�
∑
j � 0

t2 j � n A2 j � n(x) 
�
∑
j � 0

t2 j � 1 log t B2 j � 1(x)

where

A2 j � n(x) 	 a2 j � n(x)
2n � 2 j

� �
�

n � 2 j � 1
2 � ! for j 	 0 � � � � � n � 1

2 �

B2 j � 1(x) 	 a2 j � 1(x)
( � 1) j � 1

22 j � � j!
for j � 0 �

A2 j � 1(x) 	 a2 j � 1(x) � ( � 1) j log 2
22 j � � j!

 FPs � � 2 j � 1(Γ( s � 1
2 ))

22 j � 1 � � �
 FPs � � 2 j � 1(Γ( s

2 )q � s � 2(x � x))
( � 1) j

22 j � 1 � � j!
for j � 0 �

where FP denotes the finite part.

PROOF. It was noted above that the integral term from (9) is of order O(tk � n � � )
in C � (Diag � E 	 E � ) for all  . Clearly the residues in (9) are some powers of t,
possibly multiplied with log t when the poles are double, and our task is to
identify the coefficients. For this we use Proposition 3 and (8), where Γ(s) has
been substituted by the Legendre duplication formula. Assume first n is even.
Then for j  � 0 � 1 � � � � � n � 2 � 1 � we have

Ress � n � 2 j(t
� sΓ(s)q � s � 2(x � x)) 	 1

2 � � Ress � n � 2 j � t
2 � � s Γ � s � 1

2 � Γ( s
2 )q � s � 2(x � x)

	 � t
2 � 2 j � n 1

2 � � Γ


n � 2 j � 1
2 � 2a2 j � n(x) �

This gives the asymptotic term t2 j � n A2 j � n(x) if we use the functional equation
of the Gamma function to write

Γ


n � 2 j � 1
2 � 	 Γ � 12 � 2 j � n

2 (n � 2 j � 1)!!
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and the identity Γ( 1
2 ) 	 � � . Similarly for j � 0,

Ress � � 2 j(t
� sΓ(s)q � s � 2(x � x)) 	 � t

2 � 2 j 1
2 � � Γ( � j  1 � 2)2a2 j(x)

	 t2 j A2 j(x)

because of the identity

Γ
 � 2 j � 1

2 � 	 Γ � 12 � ( � 2) j

(2 j � 1)!!
�

Finally around the pole s 	�� 2 j � 1, j � 0 we do not use the duplication for-
mula but rather we write

Ress � � 2 j � 1(t � sΓ(s)q � s � 2(x � x)) 	 t2 j � 1q j � 1 � 2(x � x)Ress � � 2 j � 1(Γ(s))

	 t2 j � 1q j � 1 � 2(x � x)
( � 1)2 j � 1

(2 j  1)!
�

This yields the asymptotic term t2 j � 1 A2 j � 1(x).

Let us now pass to the odd-dimensional case. For j  � 0 � � � � � n � 1
2 �

Ress � n � 2 j(t
� sΓ(s)q � s � 2(x � x)) 	

�
t
2 � 2 j � n 1

2 � � Γ


n � 2 j � 1
2 � 2a2 j � n(x) �

Since n � 2 j  1 is even we have Γ


n � 2 j � 1
2 � 	


n � 2 j � 1

2 � ! so the residue is

t2 j � n A2 j � n(x). The most complicated case is at s 	 � 2 j � 1, j � 0 since the
pole there is double. We write the limited development around s 	 � 2 j � 1 of
the functions involved:

(
t
2

)
� s 	 (

t
2

)2 j � 1(1 � (s  2 j  1) log t
2 )  O(s  2 j  1)2 �

Γ � s � 1
2 � 	 2( � 1) j

j!
(s  2 j  1)

� 1  FPs � � 2 j � 1(Γ( s � 1
2 ))  O(s  2 j  1) �

Γ � s2 � q � s � 2(x � x) 	 2a2 j � 1(x)
s  2 j  1

 FPs � � 2 j � 1(Γ( s
2 )q � s � 2(x � x))  O(s  2 j  1) �

From this one computes

Ress � � 2 j � 1

�
1

2 � � (
t
2

)
� sΓ � s � 1

2 � Γ � s
2 � q � s � 2(x � x) �

	 t2 j � 1 A2 j � 1(x)  t2 j � 1 log tB2 j � 1(x)

as claimed. �
It is remarkable that in the even-dimensional case there are no logarithmic
terms in the expansion.

Note that all the heat invariants of ∆ appear among the asymptotic terms of
Theorem 7, but the converse is not true since A2 j � 1(x) is not expressible in
terms of the a � (x) alone.

The asymptotic heat coefficients a � (x) of a Laplace type operator can in princi-
ple be computed recursively and be expressed in terms of curvature, the total
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symbol of ∆ and their derivatives at x. This has been worked out in many
cases, see e. g. [3, 4, 7, 9, 11].

Let us look at the Dirac operator D on a closed Riemannian spin manifold
acting on sections in the spinor bundle E 	 ΣM. Then ∆ : 	 D2 is of Laplace
type and we can apply Theorem 7 to Q : 	

�
D
�
provided D has trivial kernel so

that ∆ is positive. It is well-known that in this case

a � n(x) 	 (4 � )
� n � 2 � idΣx M �

a � n � 2(x) 	 � (4 � )
� n � 2 � scal(x)

12
� idΣx M �

where scal(x) denotes scalar curvature at x. Hence in the even-dimensional
case the asymptotic expansion in Theorem 7 for the kernel of e � t 
 D 
 starts as

ht(x � x)
t � 0� t � n � (2 � )

� n � 2 � (n � 1)!! � idΣx M

� t � n � 2 � (2 � )
� n � 2 � (n � 3)!! � scal(x)

24
� idΣx M  � � �

Our method can be applied to show the existence of and examine the small-
time asymptotic expansion for the heat kernel of ∆1 � m for all m � 0. The only
difference from the above analysis is the use of the Gauss multiplication for-
mula

Γ(z)Γ(z  1
m ) � � � Γ(z  m � 1

m ) 	 (2 � )(m � 1) � 2m1 � 2 � mzΓ(mz) �
We state the result without proof.
Theorem 8. Let M be an n-dimensional compact Riemannian manifold, let ∆ be a
positive self-adjoint differential operator of Laplace type acting on sections in a Her-
mitian vector bundle over M, let m be a positive integer. Let a j be the heat kernel
coefficients for ∆ and let q � s be the Schwartz kernel of ∆ � s.

Then the heat kernel hm � t of the operator ∆1 � m restricted to Diag has the following
asymptotic expansion as t � 0:

� For n even

hm � t(x � x)
t � 0�

n � 2 � 1

∑
j � 0

tm( j � n � 2) � (m(n � 2 � j))!
(n � 2 � j)!

� a2 j � n(x)


�
∑
j � 0

t j � ( � 1) j

j!
� q j � m(x � x)

with qk(x � x) 	 ( � 1)k � k! � a2k(x) for all integral k � 0.� For n and m odd

hm � t(x � x)
t � 0�

�
∑
j � 0

tm( j � n � 2) � m � Γ(m(n � 2 � j))
Γ(n � 2 � j)

� a2 j � n(x)


�
∑
j � 0

t j � ( � 1) j

j!
� q j � m(x � x)

with qk(x � x) 	 0 for all integral k � 0.
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� For n odd and m even

hm � t(x � x)
t � 0�

(n � 1) � 2

∑
j � 0

tm( j � n � 2) � m � Γ(m(n � 2 � j))
Γ(n � 2 � j)

� a2 j � n(x)


�
∑
j � 0

j 
 m � n 
 2 ����
t j � ( � 1) j

j!
� q j � m(x � x)


�
∑

j � (n � 1) � 2
tm( j � n � 2) � � ( � 1)m � 2

(m( j � n � 2))!
� FPs � m(n � 2 � j)(q � s � m(x � x))

 m � a2 j � n(x)
Γ(n � 2 � j)

� FPs � m(n � 2 � j)(Γ(s)) �
�

�
∑

j � (n � 1) � 2
tm( j � n � 2) log t � ( � 1)m � 2

(m( j � n � 2))!
� m � a2 j � n(x)

Γ(n � 2 � j)

with qk(x � x) 	 0 for all integral k � 0.

In particular, we see that logarithmic terms appear only for odd n and even m.
Some of the values in these expansions seem to have been computed in [10].

4. THE WODZICKI RESIDUE

For the sake of completeness we recall the definition of classical pseudodif-
ferential operators. We identify densities with functions on M using the fixed
metric g.
Definition 9. Let p : V � M be a vector bundle with Riemannian metric h and
E � M another vector bundle. A classical symbol on V with coefficients in E of
order s  � is a smooth section f in p � (End(E)) over V admitting an asymptotic
expansion

f (x � � ) 
 � 
 � �
�

�
∑
j � 0

�
� j(x � �
 � 
 )

� � � s � j

for suitable smooth sections
�

� j in p � (End(E)) on the h-unit-sphere bundle in
V.

The definition is independent of h. Let now � : M � M � � be a cut-off func-
tion such that �	� 1 in a neighborhood of Diag and the support of � is con-
tained in an open set diffeomorphic to a neighborhood of the zero section of
the normal bundle NDiag. For any distribution k on M � M with singular sup-
port on Diag and wave front set in N � Diag (i. e. k conormal to Diag) we denote
by F ( � k) the Fourier transform of the pull-back of � k to NDiag.
Definition 10. An operator A : C

�
(M � E) � C

�
(M � E) is called classical pseu-

dodifferential of order s if its Schwartz kernel kA(x � y) satisfies

� kA is conormal to Diag.
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� The Fourier transform of � kA in the fibers of NDiag is a classical symbol
of order s on N � Diag.

The definition is independent of the choice of � , of the collar neighborhood
diffeomorphism and of the trivialization of E 	 E � over the fibers of NDiag
needed for the purpose of Fourier transform. We fix these choices and call�

A : 	 F ( � kA) the full symbol of A. Note that the full symbol does depend on
the choices.

Let A(s) be an entire family of classical pseudodifferential operators of or-
der � s. By this we mean that for all k �� ,

�
A(s)�

s̄ 	 0 for Re( � s) �
k inside the Banach space of bounded operators between Sobolev spaces
L(Hk(M � E) � H0(M � E)). For such a family it follows that (1 � � )kA(s) is an entire
family of sections of E 	 E � over M � M and that the family of symbols

�
A(s)

is entire in s. In turn this implies that the coefficients
�

� j(s) are entire families
of sections in p � (End(E)) over the sphere in the conormal bundle:

(10)
�

A(s)(x � � ) 
 � 
 � �
�

�
∑
j � 0

�
� j(s � x � �
 � 
 )

� � � � s � j �

Proposition 11. The restriction to Diag of the Schwartz kernel of an entire family
A(s) of classical pseudodifferential operators of order � s is well-defined and holo-
morphic for Re(s) � n 	 dim(M), with values in the space of smooth sections of
End(E) over Diag. This family extends analytically to � with possible simple poles at
s  n � � . The residues are given by

(11) Ress � n � j � kA(s)(x � x) � 	 1
(2 � )n

�
S �xDiag

�
� j(n � j � x ��� )d � �

PROOF. It is a well-known fact that an operator A(s) of order � s with Re(s) �
n has a continuous Schwartz kernel kA(s)(x � y) so the restriction makes sense.
For classical pseudodifferential operators this fact can be seen as follows: the
Fourier transform of the kernel � kA(s) is a symbol of order � s, thus it is in
L1 for Re(s) � n. Therefore � kA(s) is continuous since it is the inverse Fourier
transform of an L1-function. Using the inverse Fourier transform in the normal
directions we write

kA(s)(x � x) 	 1
(2 � )n

�
N �xDiag

�
A(s)(x � � )d � �

Let us show that for all k �� , kA(s)

�
Diag extends to � Re(s) � n � k � with possible

poles at s 	 n � n � 1 � � � � � n � k  1. Let � :
� � � be a smooth function so that

� (r) 	 0 for r � 1
2 and � (r) 	 1 for r � 1. Formula (10) implies the limited

expansion �
A(s)(x � � ) 	

k � 1

∑
j � 0

�
� j(s � x � �
 � 
 )

� � � � s � j � (
� � �

)  w � k(s � x � � )
where w � k(s � x � � ) is defined by the above equality and is an entire fam-
ily of classical symbols of order � s � k. We have already seen that�

N �xDiag w � k(s � x � � )d � is analytic for Re(s  k) � n, i. e. for Re(s) � n � k. Let
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us examine the integrals
�

N �x Diag

�
� j(s � x � �
 � 
 )

� � � � s � j � (
� � �

)d
�
. The integral on the

unit ball � � � � � 1 � is uniformly convergent for all s, hence it is entire. For the
integral on the complement of the unit ball in N �xDiag introduce polar coordi-
nates r : 	

� � �
, � : 	 �
 � 
 . Notice that � (

� � �
) is identically 1 on

� � � � 1, thus we are
left with �

� 
 � 
 � 1 �

�
� j(s � x � �
 � 
 )

� � � � s � j � (
� � �

)d
�

	
�

S �xDiag

�
� j(s � x ��� )d �

� �
1

r
� s � jrn � 1dr

	 1
s � n  j

�
S �xDiag

a � j(s � x ��� )d � �
The integral on the sphere is entire in s so the whole thing extends to � with a
simple pole at s 	 n � j. �
Definition 12. Let A(s) be any entire family of classical pseudodifferential op-
erators of order � s such that A(0) 	 idE. For any classical pseudodifferential
operator P define the Wodzicki residue density of P by

wres(P)(x) : 	 Ress � 0(kA(s)P(x � x)) �
We have applied Proposition 11 to the entire family A(s)P of order � s  k. Let�

P(x � � ) 
 � 
 � �
�

�
∑
j � 0

pk � j(x � �
 � 
 )
� � � k � j

be the asymptotic expansion of the full symbol
�

P. Clearly
�

P(x � � ) 	�
A(0)P(x � � ). Formula (11) at s 	 0 shows that

wres(P)(x) 	 1
(2 � )n

�
S �xDiag

p � n(x ��� )d � �

So wres(P)(x) is independent of the family A(s) used in the definition and co-
incides with the Wodzicki residue density defined in [16] up to a constant.

Let A be an elliptic self-adjoint positive classical pseudodifferential operator of
order m � 0. It was proved by Seeley [15] that the family of complex powers
A � s is an entire family of classical pseudodifferential operators of order � s.
Since A0 	 idE we can use the family A(s) : 	 A � s to construct the Wodzicki
residue density.

Combining Proposition 3 and the above facts we can refine the results of Kalau
and Walze [12], Kastler [13] and Ackermann [1].
Theorem 13. Let M be an n-dimensional compact Riemannian manifold, let ∆ be a
positive self-adjoint differential operator of Laplace type acting on sections in a Her-
mitian vector bundle over M. Let a j be the heat kernel coefficients for ∆.

If n is even then for j 	 n � 2 � n � 2 � 1 � � � � � 1 we have

(12) wres(∆ � j)(x) 	 2a � 2 j(x)
Γ( j)

�
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If n is odd then the same identity holds for j  n � 2 � � .

PROOF. Use the complex powers of A : 	 Q 	 ∆1 � 2 in the definition of wres.
Then for j  � and P 	 ∆ � j we have

(13) wres(∆ � j)(x) 	 Ress � 0(q � s � 2 � j(x � x)) 	 Ress � 2 j(q � s � 2(x � x))

in the notation of Section 2. From Proposition 2 we see that the poles occur
only for j 	 n � 2 � n � 2 � 1 � � � � � 1 if n is even, respectively for j  n � 2 � � if n
is odd. Moreover, for such j (12) follows immediately from Proposition 3 and
(13). �
Through integration over M our results transform into statements regarding
the zeta function and the heat trace asymptotics. The Wodzicki residue is de-
fined by

Wres(P) : 	 Ress � 0Tr(A(s)P)

for any entire family of order � s with A(0) 	 idE as above. Clearly then
Wres(P) 	 �

M wres(P)(x)dx � Thus Theorem 13 implies the main result of
[12, 13, 1]:

Ress � 2 j � (∆ � s) 	 Wres(∆ � j) 	 2
Γ( j)

�
M

Tr(a � 2 j(x))dx

for j depending on parity as above (recall the definition � (∆ � s) : 	 Tr(∆ � s � 2)).
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