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Abstract

Let M be an oriented connected compact Riemannian 4-manifold. We
show that if the sectional curvature satisfies K ≥ 1 and the covariant
differential of the curvature tensor satisfies ‖∇R‖L∞ ≤ 2

π
, then the inter-

section form of M is definite.
Keywords: Hopf conjecture, 4-manifolds, Bochner technique, Laplace

operator, intersection form
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1 Introduction

The relation between the topology and the geometry of Riemannian manifolds
is currently an object of intense research in differential geometry. To see how
hard this kind of questions can be, one should recall that even the following
classical conjecture still remains unsolved:

Conjecture (H. Hopf).
S2×S2 does not admit a Riemannian metric of positive sectional curvature.

By Synge’s Lemma one knows that on RP 2 × RP 2 there is no Riemannian
metric of positive sectional curvature; the only known examples of positively
curved compact connected 4-manifolds are S4, RP 4, and CP 2.

There have been various attempts to prove or disprove Hopf’s conjecture; one
was to start with the standard product metric (which is nonnegatively curved)
and try to deform it to a positively curved metric, see [3] and [2]. Although
one can make the curvature of mixed planes positive, there appear new planes
of zero or even negative curvature; hence this method seems not to answer the
question.

From the classical Sphere Theorem it is clear that S2 × S2 cannot carry a
metric with sectional curvature K satisfying 1 ≤ K < 4. By adapting a Bochner
type argument by Berger, Bourguignon could show (see [1][p.351])
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Theorem (Berger, Bourguignon).
Let M be an oriented connected compact 4-manifold with indefinite intersec-

tion form (e.g. M = S2×S2). Then there is no Riemannian metric on M such
that

1 ≤ K ≤ 19
4
.

It is not clear, however, how one could get rid of the upper curvature bound.
Since the attempts to explicitely construct positively curved metrics on S2×S2

have also failed, Hopf’s conjecture remains an open question. In the present
paper we are not going to resolve this question either; roughly speaking, we
show that if S2×S2 admits a positively curved metric, then this metric cannot
be very symmetric. More precisely, if we denote by R the Riemannian curvature
tensor and by ∇R its covariant differential, then the result is

Theorem. Let M be an oriented connected compact 4-manifold with indefinite
intersection form (e.g. M = S2×S2). Then there is no Riemannian metric on
M such that

(i) K ≥ 1,
(ii) ‖∇R‖L∞ ≤ 2

π .

In fact, those two known examples with K ≥ 1 and ∇R = 0, namely S4 and
CP 2, have definite intersection form.

2 The proof

In this section we give the proof of the Theorem up to some technical details
which are carried out in the last section.

Let M be an oriented connected compact 4-manifold with a Riemannian
metric such that

(i) K ≥ 1,
(ii) ‖∇R‖L∞ ≤ 2

π .
We want to show that b+2 = 0 or b−2 = 0.
The Riemannian metric on the tangent bundle induces a Euclidean inner

product on each tensor space characterized by the property that if {ei}i is an
orthonormal basis of TpM , then {ei1 ⊗ · · · ⊗ eik

}i1···ik
is orthonormal for the

tensor space. We always work with the norm induced by these inner products.
The Laplace operator 4 acting on 2-forms commutes with the Hodge star

operator ∗, hence it maps (anti-)self-dual forms into (anti-)self-dual forms. Let
4± be the restriction of 4 on sections of Λ±. The decomposition Λ2T ∗M =

2



Λ+⊕Λ− is parallel, hence the rough Laplacian ∇∗∇ also respects this splitting.
We have the Weitzenböck formulas (compare Prop. 1)

4± = ∇∗∇+K±.

At every point p ∈ M let µ±(p) be the smallest eigenvalue of K±; µ+ and µ−

are continuous functions on M .

Case 1: µ− > 0 everywhere.
Let ε > 0 be such that µ− ≥ ε on M . By ‖ · ‖ we denote the L2-norm and

by (·, ·) the L2-scalar product. If ω is a harmonic anti-self-dual 2-form, then

0 = (4−ω, ω)
= (∇∗∇ω, ω) + (K−ω, ω)

≥ ‖∇ω‖2 +
∫

M

µ−|ω|2

≥ ε · ‖ω‖2.

Hence ω = 0 and we have shown b−2 = 0.

Case 2: There exists a point p ∈M such that µ−(p) ≤ 0.
By Proposition 2 we know that µ+ + µ− ≥ 8, hence µ+(p) ≥ 8. Let q ∈ M

be arbitrary. From Grove’s and Shiohama’s Sphere Theorem, see [4], we know
l = d(p, q) ≤ π

2 . Let c : [0, l] → M , c(0) = p, c(l) = q, be a shortest geodesic
from p to q. Let ω be an eigenvector of K+(q) for the eigenvalue µ+(q), |ω| = 1.
By parallel translation we get ω(t) along c(t).

Using Proposition 3 we get

µ+(q) = 〈K+(q) · ω, ω〉

= 〈K+(p) · ω, ω〉 −
∫ l

0

d

dt
〈K+(c(t)) · ω(t), ω(t)〉

≥ µ+(p)−
∫ l

0

〈∇ċ(t)K+ · ω, ω〉

≥ 8− l · 16
π
.

Hence µ+ ≥ 0 and µ+(q) = 0 only if d(p, q) = π
2 . Now an argument similar to

that of Case 1 yields b+2 = 0.

3 The calculations

We keep the notations of the previous section. The following Weitzenböck for-
mula is well known, see [1][p. 319 and p. 328].
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Proposition 1. In dimension 4 the Laplace operator acting on 2-forms decom-
poses into

4 = ∇∗∇+K
where

K(ω)(X,Y ) =
4∑

i,j=1

(
1
2
Ric • g −R)(ei, ej , X, Y )ω(ei, ej)

=
4∑

i,j=1

(
1
12
Sg • g −W )(ei, ej , X, Y )ω(ei, ej).

Here W is the Weyl tensor, S the scalar curvature, g the Riemannian metric,
• the Kulkarni-Nomizu product, and e1, . . . , e4 an orthonormal basis.

Corollary. If K ≥ 1 and if ω ∈ Λ2T ∗pM is decomposable, then

〈Kω, ω〉 ≥ 4 · |ω|2.

Proof. We write ω = e1 ∧ e2 where e1, . . . , e4 is an orthonormal basis. By Kij

we denote the sectional curvature of the plane spanned by ei and ej .

〈Kω, ω〉 = Ric(e1, e1) +Ric(e2, e2)− 2K12

= K12 +K13 +K14 +K12 +K23 +K24 − 2K12

= K13 +K14 +K23 +K24

≥ 4.

Elementary linear algebra yields

Lemma. ω ∈ Λ2R4 is decomposable if and only if 〈∗ω, ω〉 = 0.

Proposition 2. If K ≥ 1, then µ+ + µ− ≥ 8.

Proof. Let φ be an eigenvector of K+ for µ+ and let ψ be an eigenvector of
K− for µ−, |φ| = |ψ| = 1. We set ω = φ+ψ. By the Lemma ω is decomposable
because 〈∗ω, ω〉 = |φ|2 − |ψ|2 = 0. Using the Corollary to Proposition 1 we
obtain

8 = 4 · |ω|2

≤ 〈Kω, ω〉
= 〈K+φ, φ〉+ 〈K−ψ,ψ〉
= µ+ + µ−.
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Proposition 3. Let p ∈M be fixed, ω ∈ Λ+
p , X ∈ TpM , |X| = 1. Then

|〈(∇XK)ω, ω〉| ≤ 16
π
|ω|2.

Proof. W.l.o.g. we assume |ω|2 = 2. Choose an orthonormal basis e1, . . . , e4
such that ω = e1 ∧ e2 + e3 ∧ e4. We extend e1, . . . , e4 to a local orthonormal
frame such that ∇ej(p) = 0. Set T := W − S

12g • g.

|〈(∇XK)ω, ω〉| = |∂X(〈K(e1 ∧ e2), e1 ∧ e2〉+ 2〈K(e1 ∧ e2), e3 ∧ e4〉
+〈K(e3 ∧ e4), e3 ∧ e4〉)|

= |∂X(2T (e1, e2, e1, e2) + 4T (e1, e2, e3, e4)
+2T (e3, e4, e3, e4))|

= 2|(∇XT )(e1, e2, e1, e2) + 2(∇XT )(e1, e2, e3, e4)
+(∇XT )(e3, e4, e3, e4)|

≤ 8|∇XT |
= 4|∇XT ||ω|2.

The Riemannian curvature tensor R decomposes

R = W +
1
2
Ric0 • g +

S

24
g • g

where Ric0 is the traceless Ricci tensor. Since the corresponding decomposition
of the curvature tensor bundle is parallel we get

|∇XR|2 = |∇XW |2 + |1
2
∇X(Ric0 • g)|2 + |∂XS

24
g • g|2

and
|∇XT |2 = |∇XW |2 + |∂XS

12
g • g|2.

From |∇R| ≤ 2
π we conclude |∇XT | ≤ 4

π . Hence |〈(∇XK)ω, ω〉| ≤ 16
π |ω|

2 .

Remark. The proof shows that we don’t really need a bound on the covariant
differential of the whole curvature tensor in our Theorem. An L∞-bound on
∇S and on ∇W+ or ∇W− is sufficient.
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1-16

[4] K. Grove, K. Shiohama, A generalized sphere theorem, Ann. Math.
106(1977), 201-211

Mathematisches Institut der Universität Bonn
Meckenheimer Allee 160
W-5300 Bonn 1
Germany

6


