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1 Generalized Laplacians and the heat equation

We start by examining the analysis of so-called generalized Laplacians. A detailed
exposition can be found in [2]. Throughout this section let M be a compact Rie-
mannian manifold, let £ — M be a Riemannian or Hermitian vector bundle over
M. Let V be a metric connection on E, i.e. for smooth sections ¢ and ¥ in E and
X € TM we have

aX <<;07 ¢> = <VX()07 ¢) + (Q@, VX,(p)

Here (-,-) denotes the Riemannian resp. Hermitian metric on E. If ¢ is a smooth
section in F, then V¢ is a smooth section in T*M ® E. Note that the Riemannian
metric and the Levi-Civita connection on M together with the metric and V on E
induce a metric and a compatible connection on T* M ® E, again denoted (-, -) and V.
Similarly, the k** covariant derivative, V¥, is a section in T*"M ® ... T*M ®E

k times
and this bundle carries a natural metric and connection. For ¢ a smooth section in

E, p € C*®(E), we define the L?-scalar product

(0, )12 = / (. 1) dV

M
and the associated L?-norm

ol = / (o, 0) dV.

M

More generally, for any k we have the Sobolev-Norms

el = llellze + IVellze +... + IV*0llZ..

The completions of C*(E) with respect to these norms are denoted L?(E) and
H*(E), the spaces of square-integrable sections and Sobolev-sections in E.

The C*-norm is defined in a similar manner,

lllce = suplep,

lellor == max{[lgllco, [IVellco, - -, [VE@llco}-
The two families of norms, || ||g» and || - ||c», are equivalent in the following sense:
It is trivial to see that || - ||g» can be estimated against || - ||c*,

gl < vOl(M)Z - (k +1)% - [|g]|cw.
Conversely, we have [8, Thm. III.2.5]



Proposition 1.1 (Sobolev Embedding Theorem) For each k there exists a con-
stant ¢ = c(k, M, A) such that

lloller < e llellae
whenever £ > k+ 5, n = dim(M).
Now let V* be the L?-adjoint of V, i.e. (V,¥)r2 = (p, V*9) for all ¢ € C*(E),
Y € C®(T*M®E), and let K € C*°(End(E)) be a symmetric endomorphism field.

Then the operator
A:=V*V+K:C®[E)— C>®E)

is called a generalized Laplacian.

Since A* is a differential operator of order 2k we have
A% 0|2 < C - [l@ll o

But A is elliptic and this implies the following converse [8, Thm. I11.5.2]

Proposition 1.2 (Elliptic Estimates) For each k € N there is a constant C =
C(k, M,A) such that

lellmze < C- (llellze + 1A%plLz2) -
Finally, we need the following fundamental result [8, Thm. IT1.5.8]

Theorem 1.3 There exists a Hilbert space orthonormal basis 1,2, ... of L*(E)
and real numbers A1, A, ... such that

Apr = A - ¢k,

A <X < A3 < ... M +4o0o, and each A is repeated only finitely many times. All
@k are smooth, ¢, € C(E).

The theorem says in particular that the eigenvalues tend to +o0o0. To get started we
need some control on how fast they grow. The following proposition will later be
improved considerably, c.f. Theorem 2.6.

Proposition 1.4 There exists a positive constant ¢ = ¢(M,A) such that
A > c- kT 4 A — 1

for all k.

Proof. Replacing K by K — A; - id will shift the spectrum of A by A;. Hence we
can assume w.l.o.g. that Ay = 0. Now let € > 0 and let {p;1,...,pn} be a minimal

N

e-dense subset of M, i.e. M = J B(p;,€) with N minimal. Here B(p,€) denotes
i=1

the ball of radius € about p. It is not hard to see that there is a constant ¢; = ¢; (M)

such that for all € > 0

N=N()<c -e™



k
Let V C L?(E) be the subspace spanned by 1, ..., . Consider p = > a;p; €V

i=1
and assume @(p;) =0, =1,...,N. Given z € M choose p; such that dist(z,p;) <
€. Differentiation along a shortest geodesic from p; to x yields

lp(@)] = le(@)] = lep)l < € [[Vellce < e-lloller
Integration over M gives
lelize < e ligllcr - vol(M)*.
Let £ := [2] + 2. By the Sobolev embedding theorem we have

leller < ez llelle-

By the elliptic estimates
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lellze < es- (lgllza + 1A g 12)

(5521
< o (1 ol ) gl
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Combining these estimates we obtain
lpllzs < ervol(M)% - ca - g+ (14 M) ™5 - ]2
= e-ca-(T+M) -loll e

n+6

For e = 5— - (1+ A\;)~ % we conclude [[¢[lr2 < 1[l¢llz2, hence ¢ = 0. Thus for

2c
this ¢ the linear mapping

V — E,&---®E,
P — (w(pl),---,w(pzv))

is injective. Therefore

E = dimV <dim(E,, ®...® E,,) = N -tk(E)
< crremrk(E) =cs- (1+ M)
4
Hence T4+, > (%)n(w—s) =ca-kﬁ_ 5

The main purpose of this section is to study the heat equation

Oy
9Pt L Ay, =
gt TAee=0

where ¢y is a smooth section in E for each t > 0 and ¢; depends smoothly on ¢.

The connection V on E induces a connection, again denoted V, on the dual bundle
E*. The endomorphism field K of E gives the endomorphism field K* on E*. Hence
we obtain a generalized Laplacion

A=V*V+K*

on F*.



For a section ¢ in E we define the section ¢* in E* by

©* () = {p,) VY €EE.

One easily checks Vx(p*) = (Vxp)* for X € TM, (Kp)* = K*p*, and (Ap)* =
A(p*). Hence if @1, o, . .. is an orthonormal basis of L?(E) consisting of eigenvec-
tors of A, then we get an orthonormal eigenbasis of L?(E*) by ¢, ¢4, ... for the
same eigenvalues.

Now we form the bundle E X E* over M x M whose fiber over (z,y) € M x M is
given by
(EXE*)(s,9) = E; ® E; = Hom(Ey, E;).

Again, we get an induced connection V on EX E*. We put K = K ® id +id ® K*
and obtain the corresponding generalized Laplacian

A=v*V+K.
If v and ¢ are sections in E we get a section ¢ X ¢* in EX E* by

(P ™) (z,y) = o(2) ©Y™(y)-

One sees that A(p; B @) = (Ap;) Rk + ¢; B (Apk) = (A + M) (p; B 5.
Hence ¢; X ¢}, j,k > 1, form an orthonormal basis of L?(E K E*) consisting of
eigensections for A.

Definition. The infinite sum

(o)

ki(z,y) ==Y e ipi(z) ® 95 (),

=1

z,y € M, t> 0, is called the heat kernel of A on M.

Proposition 1.5 Letty > 0. Then the heat kernel and all its t-derivatives converge
uniformly in t > to in all H*-norms and all C*-norms. In particular, ki(x,y) is
smooth in t, x, and y, and we can differentiate term by term.

Proof. In view of the Sobolev embedding theorem it is sufficient to prove the
proposition for the H¥-norms. All but finitely many A; fulfill A\; > 1. By the
elliptic estimates we then have

leip; R llaa < er-e™™ - (llp; Blre + 1A% (05 8 0))lIz2)
= ¢ -e7 - (14 (2)0)F)
S cy )\‘I; . eitAJ'
< c¢o- )\f ce oA
Since for large enough 2 we have z*e~%%/2 < 1 we have for almost all j:

le™ 0 B @[l gae < cg-e PN/,

By Proposition 1.4 we have

4
A > e - -
j = €3-)° t+ca ,Q n(n+6)’



and therefore '
lle™p; K @}l gae < c5-e %7

Convergence of the series 3" e¢¢7" follows from finiteness of the integral
J
o0 o0

« —a 1
/e_CG't dt =c7 -/e_s-sles =¢ T (—) .
e!
0

0

We have shown that -
DN Ry

=1

converges in each H*¥-norm, uniformly in ¢ > ¢,. The same argument applies to the
t-derivatives

— d " —t\; * — m_—t\; *
T B
j=1 j=1

Since we are allowed to differentiate term by term we compute for y fixed
a 6 —tA; *
akt( y) = azj:e T M p;
6 —tA; 4 *
= > 7€ wi®Y;
J
= Z(—/\j) e N R ;

= —Ze I (Ap;) R g;
= —Awkt(x,y).

For ug € L*(E) we put us(z) := [ ki(z,y)uo(y) dV (y) and we see

Hence u; solves the heat equation. Moreover,

Ze ;- (05, 0k) 12

= e_t)"“ Pk -

/ ez, y) ok (y) AV (y)
M

Thus k(x,y) is the integral kernel of the operator e **. As t \, 0 the heat kernel
becomes singular. Indeed, since e"®* = id we expect the heat kernel to concentrate
along the diagonal {(y,y) € M x M | y € M}. We next want to examine the
asymptotic behavior of ki (x,y) for ¢ \ 0.



2 The formal heat kernel

We start with the Fuclidean heat kernel

3 2
G Mx MR gzy) = @) exp (_M) _

4t

A formal series -
I;t(may) = qt(wﬂy) . th ’ QJ(xay)a
j=0

®; € C°(EXE*), is called a formal heat kernel if for each N € N there exists mq
such that for all m > mg

0 Ui
<a + Az> q 'ZtJ ®; 8 =g - O(tN).
=0

Proposition 2.1 Let ¢y be the injectivity radius of M. Then there exists a unique
formal heat kernel with ®; defined and smooth on (M x M), = {(z,y) € M x
M | dist(z,y) < €0} such that

&y (z,7) = idp, € Hom(E,, E,) = E, ® E*.

Lemma 2.2 Let Ag denote the standard Laplace-Beltrami operator acting on func-
tions. Then
0

(— ; Ao,x) (@ y) = 22 ()

ot t

where a is smooth on (M x M), and a vanishes along the diagonal, a(z,z) = 0.
In geodesic polar coordinates about y we have

a(z,y) = gdir (Indet(d exp, (rX))) ,

r = exp,(rX), X € T,M, || X|| = 1. Hence a is essentially given by the radial
logarithmic derivative of volume distortion of the exponential map.

Here exp, : TyM — M denotes the Riemannian exponential map.

Proof of Lemma. Fix y € M. We express Ag in polar coordinates about y:

0? 0
— ASr _ -1 H- —
Ag=A 52 +(n-1)-H pr

Here S, denotes the distance sphere of radius r, S, = {z € M | dist(z,y) = r}, and
H is its mean curvature. A direct calculation yields

0
(a + AO,z) at

3} s, 07 d n r?
(E—I—A _W_F(n_l).H.E) ((47rt) exp <_4_t>)

1+ Hr
—(n—1
(n=1—%

“qi-

Hence a(z,y) = —251(1 + Hr).



In order to identify this term we fix X € T, M, ||X|| = 1, and let ¢(r) = exp, (rX)
be the unit speed geodesic emanating from y in direction X. Let e; = X, ea,...,€e,
be an orthonormal basis of T;yM. Let V; be the Jacobi field along c¢ determined by
the initial condition V;(0) = 0 and %Vi(O) =e;, ¢ =1,...,n. It is well-known that
[6, 1.2.2] the differential of the exponential map at the point rX is given by

1
dexp, (rX)(e) = 2Vi(r).
Thus (%dexpy(rX)) (i) = =5 V;(r) + L X V;(r). In particular, Vi (r) = rc'(r) and

hence (y-dexp,(rX)) (e1) = 0. For i = 2,...,n we have 2Vi(r) = —B(Vi(r))
where B is the Weingarten map (second fundamental form) of S, [6, 1.2.6]. It

follows
v 1. 1
(Jdexpy(rX)) (€5) = (—T—Qld - ;B) Vi(r)
1,
- <_;ld - B) dexp, (rX)(e:)
and thus
d —
I det(dexp,(rX)) = det(dexp,(rX)) (( dexp, TX)) - (dexp, (rX)) 1)
= det(dexp,(rX)) (——ldxi - )
= det(dexpy(rX))( (n—l)H)
2
= - det(dexp,(rX)) - a.
Hence
r 4, d
@ = 3 det(dexp, (rX)) L. ar det(dexp, (rX))
= Cilndet(dex (rX))
- 2dr Pylr

O

Proof of Proposition. We first show uniqueness of the ®;. To do this we differ-
entiate the formal series k;(x,y) term by term, order the result by powers of ¢ and
equate the resulting coefficients to zero. We use the formula

A(f ) = (Aof) - = 2Vgraarp + fAp

where f is a function and ¢ a section in E. Now
0 ~
—+A; )k
()
ANV P D08 2V S0+ 0 A, Sre,
at ¢ gracde at

a 1 ; ; \pi
- eq-Zth) +2—t Qs * Vgradm(,nz)zt]q)j+qt'ZtJAzCI)j+qt'Z]tJ 1CI>]-
J J J J

o
= Q- Z t] ) {Cl - ¢j-|—1 + TVgradm’r‘(bj—‘,-l + Az(}] + (] + 1)¢J+1}

j=—1



where again r = dist(z,y), y fixed, and with the convention that ®_; := 0. Along
any unit speed geodesic ¢(r) = exp, (rX) emanating from y we obtain the following
singular ordinary differential equations (®;(r) := ®; (exp, (rX), y)):

. \Y
(J+1+a(r) a(r) + T%q)j+1(7') + (A;®;) (r) = 0. 1)
To solve this equation we introduce the integrating factor

R;(r) = -exp /@dp

0

Then we have

R;(r) dr (Rj(r)®j41(r))
= e { T RO + B0 N w00+ B 0
- (A8 ().

We denote parallel translation along ¢(r) from ¢(r1) to ¢(r2) by 7y, ,r, and we obtain
[ Rs(p)
Ri(0)B53(r) = = [ F20m, (As,) (9)dp + 70,

Evaluating this equation for j = —1 at r = 0 yields
1-idg, =0+ C ;.

Hence C_1 = idEy and

a .
(I>0(T) = Rfl(’f‘) s To,r - C_i=exp|— / % dp 7r0,r1dEy

M=

= det (dexp,(rX)) * - mo,,-

We have computed ®g:

[N

Bo(z,y) = det (d(exp, ') (2))* - my0

where 7, , denotes parallel translation from y to z (along the unique shortest
geodesic connecting y and z).

For j > 0 we get at r = 0:
0-‘I>j+1(0) =0+Cj.

Hence C; =0 and

T
1 R;(p)
Baa(r) = g [ T (8a) ().
0
This way we can recursively determine the ®; and uniqueness is proven.
For the existence part simply use the above equations to define the ®; recursively.
O



Remark. By assumption we have
Bo(y,y) =idg,.
Plugging r = 0 into (1) for j = 0 we obtain
21(0) = — (Az o) (0).

Let us compute this term. We use the Taylor expansion of the metric in normal
coordinates about y(=0):

1
9i(@) = 0ij + 3 > Ruu(0)a*z' + O(||«]*). 2)
ki

Hence

N

det (dexp,) = det ((9i)ij=1,....n)

2

1 k.l 4
1+ tr (5 §kl Rirji (0)"z +0(||w||3)> +O(]J| )1
— 1 : k.l 3
= 1- g%:ncm(mx '+ O(||=|*)

_1
2 =

Herericy = Y 9" Rigtj = — Y. 9" Rixji denotes Ricci curvature. Thus det(dexp,))
s -

ij
1+ & Y ricg (0)z*z! + O(||z||®) and therefore
K

AV (det(dexpy)_%) = —é Zrickk(o) + O(]|z])
k

= —éscal(O) + O(||zl])-

Here scal = ) ricg denotes the scalar curvature.
k

Now (A;®¢) (z,y) = (Ao,w (det(dexpy)*%)) “Ty,z +det(dexpy)’% Ky omy,. and
therefore A, ®o(y,y) = —gscal(y) + K-
We have shown

1 :
®4(y,y) = Escal(y) idg, — Ky.

This is of greatest importance to us because this function will give us the Einstein-
Hilbert action.

It remains to see what the formal heat kernel and the true heat kernel have to do
with each other. Pick a smooth cut-off function x : R — R, such that x(r) = 1 for
r< 2, x(r)=0forr> 2%, and 0 < x < 1 everywhere. We define

ki(z,y) = ku(z,y) - x (dist(z,)) .

Hence /15,5 coincides with the formal heat kernel &; on a neighborhood of the diagonal
but k; is defined and smooth on all of M x M (or, more precisely, its finite partial

sums k™ (2, y) == x(dist(z,y)) - g:(2, y) - ) ;- (z,y)).
]:



Proposition 2.3 Et is asymptotic to ki, in symbols

£\ 0~
ki kg,

in the following sense: For each N € N there exists mg € N and tg > 0 such that
for all m > my there is a constant Cn y > 0 with

ke (2,y) = ™ (2,9)] < Onm - £V
for all t € (0,t9), z,y € M.
Proof. Let ¢ € C°(E) such that the support of ¢ is contained in a ball of radius

%. Recall that g¢ is the injectivity radius of M. Since ¢; is the Euclidean heat
kernel we see

ti [ (e, )B0(a,1)elo) V() = Bo(z, 2)p(2) = (o).

A partition of unity argument yields for arbitrary ¢ € C°(E)

im [ 7O B
lim [ (@ 9)0) dV (1) = ().
M

Since higher powers of ¢ do not contribute to the limit for ¢ \, 0 we have

lim [ 5™ (@, 0)0(v) dV () = o(2)
M

for all m € N and ¢ € C°(E). On the other hand, since e~** tends to e~ %2 = id,
we also have

lim / @, )ey) dV(y) = p(a).
Thus for 6™ =k, — k™ we get

hm/é()my y)dV(y) =

N t
Now put (2 + A,) 5™ =: p{™ and 8{™ := [ e~ (=D gr We know that
0

m 0 (m 0 7.(m
0" = (6t+A)k§’=—(8t+A>(X-k§ )

where x(z,y) = x(dist(z,y)). Hence

ot

m 0 7.(m 7.(m 7.(m
i o= —x- ( +A )k§ D+ (Doex) B = 2Vgraa, R

~~

::Rgm)

= Q- O(tN) + R,Em)

Now R,Em) is of the form ¢;x smooth section vanishing for dist(z,y) < <. For
dist(z,y) > ¢ we have

C
@ (z,y) < ¢ -exp (—72) - g2t (, )

10



for suitable constants ¢1,ce > 0. Therefore
™ = g - O(EY).

From the definition of 5™ we have

%~§m) _ e—(t—t)Amnt(m) + j _Awe—(t—‘r)Amns_m)dT
0
= g™ - A5,
Therefore (2 + A,) 5™ = p{™ and (2 +Ag) (gt(m) - 5t(m)) = 0. Since 3™ —
5™ 90 it follows 3{m) — 5™ = e=tAQ = 0, thus

t
5™ = 5im) — /e—(t—T)Am,m(_m)dT
0

and hence

6 e < - sup =5 g sup [0 e = O (1¥+1).
T€[0,t] r€[0,t]

The Sobolev embedding theorem implies for k > %

ke — k™ oo = 16 lloo = O (#VF1).

Corollary 2.4
ke(z, x) t0 Et(a:,w) = %t(a:,a:)

= (4nt)"% -Jidp, +t- (%scal(m) -id g, —ngg) + O(t2)}.

Corollary 2.5

o0

Ze_m = Tr (e=*2) = /tr (k(z, z)) dV(m)tlo

i=1

M
(47rt)—3-{rk(E) -vol(M) +t- (rkéE) /scal(;c) dv(z) — /tr(lCz)dV(a:)> + O(tZ)} .
M M

O

Theorem 2.6 (Weyl) Let A : C*°(E) - C®(E) be a generalized Laplace operator
over an n-dimensional compact Riemannian manifold. For each A € R let N(\) be
the number of eigenvalues of A less than X. Then

Lo N _ rk(E) - vol(M)
Aboe AP (dmE T (2+1)

11



For the proof we need the following tool:

Lemma 2.7 (Karamata) Let du be a positive measure on (0,00), let a > 0 and
C > 0. We assume

o

/e_t)‘du()\) < 0
0
for allt >0 and

o

: a —tA —
}{I(l)t /e du()) = C.
0

Then for all continuous functions f on [0,1] the following holds:

oo C oo

: a —tA) ,—tA _ —t a—1 —t

%%t /f(e ) e A du(A _I‘(a /f t dt.
0 0

Proof of Theorem 2.6. Since a shift of the spectrum by a constant will not alter

the limit )‘lim %%ﬁ we may w.l.o.g. assume that all eigenvalues \; are positive.
— 00

We apply Karamata’s lemma with a = 2, C = (47) " 2rk(E)vol(M), and the
o0 o0 o0

spectral measure dy = ) dy,. Since [e t’\dp =Y et =Tr(e ) < o0
i=1 0 i=1

o0

and }{% t*- [ e A du(X) = }{% t% -Tr (e *A) = C by Corollary 2.5 the assumptions
0

in Karamata’s lemma are satisfied.

Let € > 0 and pick a continuous function f : [0,1] — R such that f(z) = 0 for
r<e Ut f(x) =z ' forz >e ' and 0 < f(x) < 2~ ' everywhere. For the left
hand side in Karamata’s lemma we get

(1+e)t~?t

S —tA) A — T gl —tA) —tA
%{%t /f (e7™) e " du(N) %{I(l)t / f(e7) e du(N)
0

> limsupt? /d,u
N0

= hmsupt2N(t b

N0
N
= limsup ()‘)

A—00 Az

For the right hand side we obtain

[e’s} 1+4¢
C a1 _C i\ a1
mo/f(e Btetetdt = —I‘(a)o/f(e Brtetdt
C 1+4¢
a—1
< ) O/t dt

12



Thus

. N _C-(1+e)°
1 — <
WP 3E € Tar D

and € \, 0 yields

, N()\) c rk(E) - vol(M)
1 — < = = .
el AF S T(a+1) (43T (2 +1)

The proof of liminf NQ) > ¢ — is completely analogous. One uses continuous
A—oo A2 F(a+1)

functions f : [0,1] — R satisfying f(z) = 0 for z < e7!, f(z) = z7! for x > e~ 1+¢
and 0 < f(z) < 7! everywhere. |

Proof of Lemma. By Weierstrass’ theorem the polynomials lie dense in C° ([0, 1])
(w.r.t. the C%-norm). Hence it is sufficient to prove the lemma for f a polynomial.
Then we can assume w.l.o.g. that f(z) = z¥. For the left hand side we get

limta/f(eft/\) eit/\dp/()\) }i\rl%ta/e*(k-f-l)t/\d'u/(/\)
0 0

N0
_ : S * —sA
B ?\%(kﬂ) /e N
0
_ C
 (k+1)e

The right hand side turns out to be the same

c r —t\ ja—1_—t _ c ooa—l —(k+1)t
—I‘(a)/f(e Jte e Ttdt = —I‘(a)/t e dt
0 0
e 70 8 ail_ _s _ds
T T ) \k+1 ¢ Tk+1
0

3 Dirac operators and Weitzenbock formulas

Again, let M be a compact Riemannian manifold. Let Cl(M) denote the Clifford
bundle of M, i.e. at each point p € M the fiber Cl(M), is the Clifford algebra of

~ n
T, M. There is a canonical vector bundle isomorphism Cl(M) — € A"TM which
k=0

we use to define the Levi-Civita connection V on Cl(M). For an orthonormal
basis e1, ..., e, of T, M this isomorphism is given by e;; -...-e; > e;; A...Aejy,
11 <1 < ... < 1. Note that this is not an algebra homomorphism.

Now let E — M be a Cl(M)-module bundle, i.e. for each p € M there is an action
of CI(M), on E,. We will assume that this action depends smoothly on p. Suppose

13



furthermore that E carries a Hermitian or Riemannian metric with respect to which
the action of vectors X € T,M C Cl(M), is skew-adjoint,

<X§07¢)=_<¢7X¢>7 ¢7¢EEP7

and a metric connection V¥ which is compatible with the Levi-Civita connection
in the following sense:

VEW-9) = (Vxw) - p+w-VEp

for all X € TM, w € C* (Cl(M)), ¢ € C*(E).
Now the Dirac operator D : C*(E) — C*°(E) is defined by

n
Dy = Zek -Vi(p.
k=1

This definition is independent of the choice of local orthonormal frame ey, ..., e,.

The Dirac operator is an elliptic differential operator of first order. It is self-adjoint
in L?(E) with domain H'(E).

Example. If M is a Riemannian spin manifold, then we can take E := ¥ M, the
spinor bundle. The resulting operator D is the classical Dirac operator, sometimes
also called Atiyah-Singer operator.

Example. If E is a Cl(M)-module bundle as above and V is another Hermitian or
Riemannian vector bundle over M with a metric connection, then £ ® V' is again a
Cl(M)-module bundle. Here the Cl(M)-action is on the first factor,

0 (p®) = (W-9)®v, weCUM),y, € EpveV,

and E®V carries the induced metric and connection, VE®Y = V¥ @id+ide@ VY.

The resulting Dirac operator is called a twisted Dirac operator with coefficients in
V.

For any Dirac operator direct computation yields

D(f-p) =gradf-p+f Dy 3)

for ¢ € C*°(E) and a smooth function f on M. This can also be expressed by
saying that the principal symbol of D is given by Clifford multiplication.

The link to the previous section is now established by

Proposition 3.1 (Bochner-Weitzenb6ck formula) Let E be a Cl(M)-module
bundle over M. Then the square of its Dirac operator is a generalized Laplace

operator
D? = (VEy*VZ + K

where K= % > e;-ej- RP(e;,e5).

ij=1

Proof. Fix p € M and choose an orthonormal frame ey, ..., e, near p synchronous
at p, i.e. (Ver) (p) =0 for all k. Then at p

D%y = Zeivg (eijjcp)
ij
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= Z eieij:Vf;(p

_ ZeQVE'VEQO + Z (eiejveE;VeE;- -+ e]-einj VeE:) 2

i<j
- ZVEV% +3 eie; (vafj _ vgvg) @
i<j
= (VE)*VE(P + Z eiejRE(ei, ej)(p.
i<j

O

Example. In the case of the classical Dirac operator acting on spinors the curvature
endomorphism K takes a very simple form [9, 10]

1 .
Kp = Zscal(p) -idy, p-
Example. In the case of a twisted Dirac operator we have

RE®V(X,Y)=RP(X,Y)®id +id ® RV(X,Y)

and hence

1
KPPV (p@v) = §Zei€jRE®V(€i,€j)(<P®U)

= 2Zezej (eisej)p@u+ 5 ZezejtpébR (ei,ej)v

j

= iCEso®v+fV(so®v),
ie. KE®V = KF gid+ FV.

Here FV is the so-called twisting curvature. If E is the spinor bundle as in the
previous example, then the twisted classical Dirac operator has

1
K= Zscal-id+}'v

as its curvature endomorphism. In particular, we can write down the heat asymp-
totics. By Corollary 2.4 we have for the heat kernel of D?

ki(z,x) E0 (47rt)_% . {idgmM +t- (éscal(x) -ids, M — ICz) + O(tZ)}
= (4mt)"% - {idgmM —t- (11—2scal(m) ids, v + f{) + 0(t2)} )

Since the rank of the spinor bundle is 2(*/?! integration yields
Tr (e_tDz) t N0

2/ 2 (47t)= % - { vol(M) — ¢t - lscal( )+ 272 (FYY ) dV(z) + O(t?)
12
(4)
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4 Integration and Dixmier trace

In noncommutative geometry one replaces a “classical” compact Riemannian spin
manifold M by the tripel (A4, H,D) where A = C*°(M) is the pre-C*-algebra of
smooth functions on M (with respect to the C%-norm), H = L?(XM) is the Hilbert
space of square-integrable spinors, and D is the classical Dirac operator. The algebra
A acts on H by pointwise multiplication. For any f € A the commutator of f and D
is given by Clifford multiplication with the gradient of f, cf. (3). Hence the condition
I[D, flllce < 1 means that the gradient of f is bounded by 1. This observation is
important since it implies that we can reconstruct the distance function and hence
the metric on M from the triple (A, H, D):

dist(z,y) = sup {|f(z) = f(y)] | f €A, D, flllco <1}.

In order to get noncommutative generalizations we have to express classical geomet-
ric operations in terms of the triple (A, H, D). We will do this now for integration
of functions over M.

Let A1, Ag,... be the eigenvalues of a generalized Dirac operator, ordered by in-
creasing absolute values, [A| < |A2] € ... 2 oco. We assume that 0 is not
an eigenvalue of D. The square D? is a generalized Laplacian with eigenval-
ues 0 < A3 < M < ... /" oo. By Weyl’s theorem limy_o0 k/|Ae|® = C with
C = (tk(E) - vol(M))/((47)™/? - T'(n/2 + 1)). In particular, there exists a constant
C' > 0 such that

|)\k| > o4 _kl/n

for all but finitely many k. Therefore

N
1
-n = n < ", -
Tr,(|D|™™) log E A" < C"- lim log kE_ -

The number Tr,, (| D|~") is called the Dizmier trace of |D|~". Let ¥ € C*°(End(E))
be an endomorphism field, for example ¥ = f-id where f € C*°(M). Connes’ trace
theorem tells us that the Dixmier trace is a residue, more precisely

1
Tr,(Po|D| ™) = E;i\r‘ril(p—n)Tr(lIlﬂDrp). (5)

In order to apply this we have to control the integral kernel of |[D|~? with p > n.
Let k; be the heat kernel of the generalized Laplacian D?. We perform the following
Mellin transformation: After restriction to the A-eigenspace of D we have

p - _ -p = p/2—1
F<2)|D| Al /0 e tP/2 gy

o «
= |/\|*”/ e (sX2)P/* 71 X245
0
= /Ooe_S)‘Qsp/z_lds,
0

o0
D
2 0

Therefore |D|~? has the integral kernel

hence

1 *
/ P2 1y (, y) dt.

k(z,y;|D|™?) = W |

16



Then ¥ o |D|~? has integral kernel

k($7y7 ¥o |D|_p) = r (12) /Oroo tp/z_llp(m) o kt(way)dt
Therefore
Te(¥ o |D[?) = /M tr (k(z,2; ¥ o |D[?)) dV (z)
= 1 - p/2-1 r z)ki(z, 2 T
= w o k) v @

For any tp > 0 the integral

/ ~ i / tr (T (@) ke (x, o)) AV (2)dt

to M

remains bounded for p \, n (remember that e~*P” < e~*A% tends to zero exponen-
tially fast for ¢t — oo) and hence does not contribute to the residue. For 0 < t < o,
to sufficiently small, we have by Corollary 2.4 that

ky(x, ) = (4nt)~2id + Ot~ 2 T1).

Thus t
/ /21 / tr (U(2)k (2, z)) dV (z)dt
0 M

(4m)~3 /Oto (/Mt¥—1tr (¥ () dV (z) + O(t"" )) dt

25t /M o ((z)) dV (z) + O(1)

and therefore by (5)

Tr, (¥ o [D|™™) = (4W)—%%n/z) /M tr (¥(z)) dV (z).

We have shown
Proposition 4.1 Let ¥ € C*°(End(E)). Then

Tr,(¥o|D|™") = (47r)—%ﬁn/2) /M tr (¥(z)) dV (z).

In particular, for ¥ = f -id

To (£ 1D ™) = (4m) 7

2rk(E)
oy J, /@)

and for f =1
2rk(E)

nl(n/2)

Tr,(|D|™™) = (47)~ 2 vol(M).

This justifies to call |[D|~" the operator theoretic volume element and to interprete
Tr, as integration, c.f. [4, 5].
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5 Variation formulas and the Einstein-Hilbert ac-
tion

In this section we want to calculate the variation of the gravity action

/ (scaly +A) dV,
M

under changes of the Riemannian metric g. Here ) is a real constant closely related
to the cosmological constant as we will see at the end of this section. The Euler-
Lagrange equations of this functional will turn out to be the Einstein equations of
General Relativity. In this section we follow [3, Ch. 1.K].

At first we fix some notation.

Let M be the space of smooth semi-Riemannian metrics on a manifold M. In
contrast to all other sections of this article the manifold M need not be compact

and g need not be Riemannian. We view the Riemannian curvature tensor R as a
functional M — C>(T3*'M), g = R,, where T%/ M denotes the bundle of (i, j)-
tensors on M.

The corresponding differential R at g is defined as

d
RIMNX,Y)Z = —| Rgun(X,Y)Z
dt |4—o

where h is an arbitrary smooth symmetric (2, 0)-tensor on M. Similarly we consider
the Ricci curvature ric, the scalar curvature scal and the Levi-Civita connection V,
and we denote their differentials by ric,, scal; and V.

Connections are not tensorial in the second slot, but differences of two connections
are. Therefore V}h is a (2, 1)-tensor.

If v and w are symmetric (2,0)-tensors, we define the composition v o w to be the
(2,0)-tensor given by

n
(’l) o U))(X, Y) = ZEiU(X7 e’i)w(eiay) X7Y € TPMJ
i=1

where ey, ..., ey, is an orthonormal basis of T, M, i.e. g(e;, e;) = €;0;; with &; = £1.
In the Riemannian case all ; = +1.

The Riemannian curvature tensor acts on symmetric (2,0)-tensors via
n
R,h(X,Y) = eih(R(e;, X)Y,e;).
i=1

In Corollary 5.3 it will be proven that }aigh is actually a symmetric (2, 0)-tensor.

The Lichnerowicz Laplacian Ay, on symmetric (2,0)-tensors is defined by

Aph :=V*Vh +ric, o h + horic, — 2Rgh.

The semi-Riemannian metric g on M defines a scalar product on the bundle 7*M &
T*M given locally by

<h1,h2)g = Z Ez-ajhl(e,-,ej)hg(e,-,ej)

4,J=1
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where e, ..., e, is an orthonormal frame, i.e. g(e;, e;) = €;0;;.

Now we can formulate the variation formulas for the curvature.

Proposition 5.1 Let (M,g) be a semi-Riemannian manifold and let h be a sym-
metric (2,0)-tensor on M. The differentials of R, ric, scal and V at g, in the
direction of h, are given by the formulas:

(a) Levi-Civita connection

9 (Vah(X,Y),Z) = % {(Vxh)(Y, Z) + (Vyh)(X, Z) = (Vzh)(X,Y)},

(b) Riemannian curvature tensor

RIWX,Y)Z = (VxV,h) (Y, Z) — (VyVih) (X, Z),

(¢) Ricci tensor
. 1 . 1
ricyh = EALh — 0, (65h) — Evgd(trgh),

(d) scalar curvature

scal'gh = Ay(trgh) + d4(d5h) — (ricy, h), .

Proof of (a).
We set g; :== g + th. Then
TW(X,Y, Z) == g(V&Y,Z) — g(VXY, Z)

is a (3,0)-tensor field on M for any ¢t near 0. We want to compute %Tt| o We
can assume that X, Y and Z are vectorfields on M that are synchronous for g at a
fixed point p € M. That is, V)X = V%Y =V}, Z = 0 for any W € T, M. This
implies that the commutators of X, Y and Z vanish at p, too.

By the Koszul formula we get at p

20(VXY,Z) = 29(V%Y,Z)+t{0x(h(Y, Z)) + 3y (h(X, Z)) - 9z(h(X,Y))}
= 29(VXY,2) +t{(Vxh)(Y,2) + (Vyh)(X, Z) = (Vzh)(X,Y)}.

On the other hand, the left hand side is equal to

29(V%Y, Z) + 2th( V&Y , Z) + O(t?).
N——

=0 at p
Therefore
0 1
5| (XY, 2) = {(Vx)(Y, 2) + (Vyh)(X, Z) = (Vzh)(X,Y)}
=0
which proves part (a). O
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Proof of (b). The Riemannian curvature tensor is defined as
Ry(X,Y)Z :=VxVyZ-VvVxZ — Vixy1Z.

We will calculate its differential (Rjh) at the point p € M. For the calculation of
(Ryh)(X,Y, Z) we can assume that X, Y and Z are synchronous vector fields at p.

(Rh)(X,Y, Z)

(Voh)(X,VyZ) + VX((V'gh)(Y, 7))
—(Voh)(Y,Vx Z) = Vy (Vih)(X, 2)) = (Vah)([X,Y], Z)
(Vx(Vy)(Y, Z) = (Vv (Vyh)(X, 2)

Before we go on proving the proposition, we will prove a lemma and a corollary.

Lemma 5.2 Let h be a symmetric (2,0)-tensor, let ey, ..., e, be a locally defined
orthonormal frame, i. e. g(e;,e;) = €05, €; = £1.

Then for any X € TM
Zﬁih(VXei, e,-) =0.

Proof of Lemma 5.2. We write Vxe; = 2?21 ajzej. Differentiation of the
orthogonality relation yields

0 = O0x(glei,e;)) = 9(Vxei,ej) + glei, Vxe;)
= Z (ari€rOkj + Ok jERORi)
k=1

= ;i€ + Q€.

Using this we calculate

n n
E e,-h(VXei,ei) = E Ezh akzekaez
=1

7

~.

I
N~
0

(arigs + airer)h(er, ;)
1

.

&

I
N | =
AR

i€k (arier + aire;) h(er,e;) = 0.

N
=~
Il

1 -0

Corollary 5.3 Let h be a symmetric (2,0)-tensor. Then Io%gh, defined as above, is
a symmetric (2,0)-tensor.

Proof of the corollary. We have to show that

(}"zgh) (X,Y) = (fi’gh) (¥, X).
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By definition

( ) Zeh (e;, X)Y, €;)

for any orthonormal frame ey, ...,e,. Usmg the Bianchi identity this is equal to
n
- ZE, R(X,Y)ei,ei) — Y eih(R(Y, €)X, €;)).
i=1

The second term is just (]a%gh)(Y, X), so we have to show that the first term vanishes.

hMR(X,Y)ei,ei) = h(VxVyeie;)) —h(VyVxes, e) — M(Vix yiesei)
= Ox(h(Vyei,ei)) — (Vxh)(Vyei,e;) — h(Vye;, Vxe;)
=0y (h(Vxeie)) + (Vyh)(Vxe;, e) + h(Vxei, Vye;)
—h(Vix,vi€i, €i)-

If we apply Lemma 5.2 to the symmetric (2,0)-tensors h, Vxh and Vyh we get

Zs, R(X,Y)e;, e;) = 0. o

We return to the proof of Proposition 5.1.

Proof of (c). The Ricci curvature is defined as
ricg(X,Y) :=trRy(-, X)Y.

Since here tr denotes the trace of a linear map it does not depend on the metric.
Therefore tr commutes with differentiation in direction h. Using (b) we get

I‘lC h X, Y 251 61 C h (X7Y7 ez’) - (VX(Cgh)) (ei,Y, 6,’)}, (6)

with Cyh(X,Y, Z) := g(V,h(X,Y), Z).

The second term can easily be computed using (a). We will suppose that X and YV
and the orthonormal frame ey, ...,e, are synchronous at p. Then we get at p:

> e (Vx(Ch)) (ei, Y, e5)

i=1

= = Zszax ve,h Y 61) (vyh)(ei; ei) - (vei h)(e’ia Y)}

= SOxdy(ir,h) = § (Va(ir,h)) (X,Y).

Now we turn to the first term of (6). Applying (a) shows that the first term is equal
to

%Zai {(vgi,Xh) (Y7 ei) + (vgi,Yh) (X7 61') - (Vz elh) (X, Y)} - (7)

The last term hereof is one half the connection Laplacian

V*Vh = — Za,
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The first term of (7) can be rewritten using the curvature tensor on the bundle of
(2,0)-tensors:
Rxy = V%( Yy — VYXa

(Vgi,Xh') (Y’ el) (VX e; ) (Ya ei) (REi ,Xh) (Ya ei)' (8)

The curvature of a (2,0)-tensor can be expressed in terms of the Riemannian cur-
vature tensor:

(Ra,h) (V,W) =—h(R(A,B)V,W) — h(V,R(A, B)W).

On the other hand note that

(hOI‘ng)(X, Y) = i Eigjh(Xa ei)g(RQ(ejaei)Ya €j)

i,j=1

= iEjh(X;Rg(Y’ e]')ej)

j=1
and similarly
(ricg o h)(X,Y) ZEJ . (X,ej)e;,Y).
Altogether we obtain
e h(X,Y) = —% (Vd(tr,h) (X,Y)

+ % [V*Vh +xicy o b+ horic, — 2R,h] (X,Y)
+ % Zn:ai [(Vk.eh) (Vie) + (Vi k) (X, e)] - 9)
i=1
Now we calculate the divergence of h
dgh = — iei (Vesh) (es, -)
i=1

and applying the formal adjoint, J;, we get

(6:0,h) (X ——Zez {(VXeih) (e1,Y) + (V3. h) (e1, X) }

which is up to a sign the last term of (9). As the second term of (9) is one half the
Lichnerowicz Laplacian, we have

. 1 N 1
ric,h = §ALh — 0,04 — §Vd(trgh)
which proves (c). O
In the following we will generalize our previous definition of the composition: If A

and B are tensors, then A o B means contraction of A® B in the last slot of A with
the first slot of B.

For the semi-Riemannian metric g which is a (2,0)-tensor there is a unique (0, 2)-
tensor L(g) such that L(g) o g =id|;y,. If e1,..., e, are orthonormal with respect
to g, i.e. g(ei,ej) = siéi,-, then L(g) = Z:-L:l gie; Qe;.
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Now the metric trace try(h) of a (2,0)-tensor h can be expressed as a metric-
independent trace via

trg(h) = tr(L(g) o h)

and the metric on symmetric (2, 0)-tensors hq, he fulfills

(h1, ha), = tr(L(g) ohioL(g)o hz).

Lemma 5.4 For symmetric (2,0)-tensors h and r we have

d
— | topen(r) = —(hr),.
dt|,_o °’ g
Proof. Because of
d
= — L
0 |, ( (g+th)o (g+th))
= L;hog+L(g)oh
we get
Lyh = —L(g) o ho L(g)
and therefore
d d
— trgen(r) — tr(L(g +th) or)
dt|—y ° dt |,
= tr(Lyhor)
= —tr(Lig)ohoL(g)or)
= - (ha T‘)g

Now we are ready to calculate the variation of the scalar curvature.

Proof of (d).

! .
scal,h = trgn (riCgten)

4
dt|,_q

_ (4
- dt |,

1 1
= —(h,ricy), +try (EALh — 6,05h — §Vd(trgh)> .

trg+th(ricg)) + try (ricyh)

Note that Ay f = —try(Vdf). Furthermore for any 1-form w we have

(X, ) = & (V) (X, ¥) = (Ve)(¥, X))

n
= trg(fw) = Zai(Vw)(e,-,e,-) = —04w.
i=1
Now we want to compute tryArh. It is straightforward to show that

tr,(h oric,) = try(ric, o h) = try(Ryh).
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So we have tryAph = try(V*Vh). On the other hand, since L(g) is parallel we get

Agltrgh) = Ag(tr(L(g) o h))

n

= - Z €iVe, o tr (L(g) o h)
i=1

= —tr (L(g) o (Z EiVi,eih))
= trg(V*Vh)- )

Hence
Agy(trgh) = try(ALh).

Putting everything together we obtain
scalygh = Ay (trgh) + d,0,h — (ricy, h),

and therefore the proposition is proven. |

As a next step we want to calculate the variation of the volume element.

Proposition 5.5 Let (M, g) be a semi-Riemannian manifold. Then the differential
of the volume element dV, is given by

1
dVyh = 5 (txgh)dV;.

Proof. We consider dV as a map from symmetric (2,0)-tensors to volume densi-
ties, locally given by

Z gijdz’ ® dz? > /| det(gy;)| datda® - - - dz™.

ij=1

For A € End(T M) we write g&A(X,Y) := g(AX, AY"). Then
dVgg.a = dVy - | det Al.
If h is a symmetric (2,0)-tensor, then H := L(g) o h € End(T'M) satisfies

h(X,Y) = g(HX,Y) = g(X, HY)

and
hOh(X,Y) = g(HX,HY)Zg&H(X,Y),
g&(id+tH) = g+2th+t*hoh,
dVyrothte2hon = AV |det(id + tH))|.

We differentiate w.r.t. t at ¢ = 0 and get

2dV!h = dV,, tr(H) = (tryh) V. O
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Now we calculate the Euler-Lagrange equations for the gravity action [(scal, +
A)dvy,.

In order to have a finite integral, we suppose that the variation h of the metric has
compact support contained in an open and relatively compact subset U C M.

The variation of Sy, := [, (scaly + X) dV, is given by

Sih = Sih

/ scaly h dVy + / (scaly + X) dVh
M M

/ {Ag(trgh) +6,(5,h) — (ric, h)g} av,
M
+ % /M (scalg + A) (trgh) dV.

The first two summands of the first integral vanish since they are divergences. We
rewrite (trgh) as (g, h),.

1 1
Sj\,[hz—/ <ricg—§scalg-g—§)\-g,h> dVy.
M g

We have shown

Proposition 5.6 Stationarity of the functional Sy at g is equivalent to the Ein-
stein equations

1
ricg—iscalg-g—A-gzo

of the vacuum with cosmological constant A = \/2.

6 Einstein-Hilbert action and Wodzicki residue

In the fourth section we have seen how to characterize integration of functions over
a closed Riemannian manifold using the Dirac operator and the Dixmier trace.
This was based on the first coefficient ®g in the heat asymptotics. In the previous
section we have shown that the total scalar curvature functional gives rise to the
field equations of General Relativity. But this is exactly the second term ®; in the
heat asymptotics. Therefore the question arises if we can extract the second heat
coeflicient using some kind of a trace. This is what we do in this section. Here we
follow closely the work of Kalau and Walze [5].

Let P : C*°(E) — C*°(E) be a classical pseudo-differential operator of order m over
the closed Riemannian manifold M. After choosing a system of local coordinates
and a trivialization of the bundle E we can look at the total sysmbol o of P and
develop it into a formal series

o0

Up(maé-) ~ Zarfm—k(mag)ﬂ (10)

k=0

where each (TJP is a matrix valued function homogeneous of degree j in & (for £ >

€ > 0) and satisfies an estimate

105070} (,€)| < cap(L+ [I€])"~7
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for all multiindices a and 8. Conversely, given a formal series as in (10) there exists a
classical pseudodifferential operator with this development. The pseudodifferential
operator is unique up to smoothing operators.

The “Leibnitz rule” gives us a multiplication in the space of formal developments
of symbols which corresponds to the composition of operators [8, Ch. IIT]

oo
1
oProP2 (z,€) ~ Pl oot = Z (_i)la\aagaﬂa‘;gﬁ_ (11)

la|=0

Except for the leading part o,,, the principal symbol, the total symbol does depend
on the choice of local coordinates and trivialization. However, for p € M the
quantity

| o (em.) de
s

is invariantly defined and independent of the choices [11]. Here integration is over
the unit sphere S{,‘_l in the cotangent bundle T, M. One further integration over
the manifold gives us the Wodzicki residue,

Res(P) = -y [ /S (0P, 0,8) deav(p).

Now the main result is

Theorem 6.1 (Kalau-Walze[5],Kastler[7]) Let M be a compact Riemannian
manifold of dimension n, n even, n > 4. Let

A=V'V+K
be an invertible generalized Laplacian over M. Then for each p € M

(%) A—(n/2)+1 _
/2 /93—1 tr( (p7 )) dé =

In particular,

"2 (@1(p,p)

Res (A~C/21) = 222 [ ox (@95 dV 9,

Before we can prove the theorem we need to show a lemma

Lemma 6.2 In Riemannian normal coordinates x” based at the point p we have
for the Christoffel symbols I},

Eé"zp ==
=1

where §*Y is the Kronecker symbol.

Proof of Lemma 6.2. We use the Einstein summation convention in order to keep
notation at a reasonable size. The Koszul formula for the Levi-Civita connection
reads in coordinates

2 FZV = gm\(az#guk + az"gu/\ - 6w>\guu)
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which together with (2) implies
1
Ffw = 6 gnA (Ruu)\d + Rué)\p, + Rul/)\é

+ R;ui)\u - Ru)\ué - Ryéuz\)x(s + O(”m”Q)

So we get

1
Oze FZV = 6 gn)\ (Ruu)\p + RupAu + R;w)\p

+ Rupku - Rukup - Rupl/k) + 0(”.’13'”)
and therefore at the base point p (corresponding to z* = 0)

2 2
M 8gp T, = 3 g™ric,) = 3 ricy

Proof of Theorem 6.1.

(i) With respect to any system of local coordinates and to any local trivialization
of the bundle E we write down the total symbol of A, o2 (x,§) := 03 + 01 + 00 .
In particular, o2 is proportional to idEnd( B = 1. We introduce a new pseudo-

differential operator P by inverting the principal symbol of A, of(z,£) = o, :=
(02)7L. By (11) we have

o0
1
AP~ Y (i)l = opo” agoy! 1

|or|=0

2 k
~ DD e _65‘7|a|+2 K Opoy!

k=1 |a|=0

= —r(z,§)

In other words 2 o (¥ o (1—7)~1) ~ 1. Using the geometric series in symbol-space
(this can be done because r is of order —1) we obtain

o
o (2,8) ~ o5 OZT’Ok
k=0
We begin to compute

k
e 1 _
-2 (=) — 080laar OG0y,

’f'_k(ﬂf,é.) =
|a|=0
“1(2,6) = —o03'01—i057 0,00 Oguoa
‘ (12)
—o(z,&) = —02_100 — UQ_Z(Z' 55#(71 Ogn0g + % (9@6@02 OpnOgv 02)
+ 053 O¢, O¢, 09 Opu02 Oyr 02,
r_p(z,&) = 0 VEk>2.
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Furthermore we write
o o
E rok = E 5_; with so=1, s_1=r_1, s_a=r2+71_3,

From this we can read off the symbol of A~ :

[e) -2
—1 -1 . -1 . ]- —
o® (x,8) ~ E of with o (2,6) = E (=)l ol O¢ oy ' 97 8| al+2—1 -

=2 |a|=0

We will only need the first three non-vanishing terms :

_ -1 AT _ -1
o2 —2 ('Z' § = oy, 0Z; (2,8) =0y 11,
(13)
AL _ —1,,2 - —2
02y (x,8) = oy (rZ;+7r_2)+ i0y" 0,02 Opur_1 .
More generally we get
oo
—_m _m+1 m+1 -1 —m
o2 " (z,6) ~ 0P ~ Z —q)lel = 60‘ AT ot = Z o,
|a[=0 l=2m
I—2m  24l—|a|—2m
) — m+1 o A-1
with o2, Z Z (=)ol = 6§0|a|+k L0502, .
|or|=0
Using this and ¢2,, = 0;™ we get the recursion relations
A—k+2 —k+3 A 1 . —k+3 —1
05 o (3,6) =05 o 05 +05 Dy — 10,05 Oz (14)
and
4—|af
—kt1 _ —kt2 o A-1
oy (2,6) = Z Z (=) l_a C’\alﬂ ok 070
la|=0 j=2
A—k+2 A—k+2  A-1 _ A-1 A—k+2 _1
= 05 op 05 05 o 025 +oyFe8, — 10,03 o, Ognoy
k+2 -1 —k+2 -1
-1 0,05 Dpuoy — 1 0¢,0¢,05 "7 0yu0yv 05
(15)

(i) Since the formula for Res(A~("/2)+1) in an arbitrary coordinate system contains
a lot of terms it is more convenient to specialize our formulas to Riemannian normal
coordinates £* about the base point p for which z# = 0. We will also use the Einstein
summation convention for all Greek indices. By (2) the (0, 2)-tensor corresponding
to the metric has the Taylor expansion

9" =" — 3 R" "5(p) 272° + O(||z|°) -
We also have to trivialize the bundle E. Then the connection is given by Vg =
Ozn + A, with A, matrix-valued functions. We choose the trivialization such that

it simplifies the calculations. Parallel translation of a basis of E, along the radial
geodesics emanating from p yields a trivialization such that A4, (p) = 0.
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In these coordinates the generalized Laplacian takes the form
A = V'V+K
= —g"{V,V,—Vyv,s.}+K
= —g" {(Opn + Ap) (Bpv + Ay) — Fﬁy (Ops + Ag)} +K
= g" {—0.n0pv — 24,0, + 10,0, — (OprAy) — Ay Ay + T8, Ag} + K.

Therefore A has the symbols

02 = g’“’fufu
g1 = —22'9‘“/14;“5,, + Zg“urg”é'ﬂ
o0 = —g"(OprAy) —g" A AL+ g’“’l"ﬁyAg + K.
At p we get
o2(p,§) = L&
01 (p: 6) =0
oo(p,§) = —0"OwmA,+K (16)
Ozno1(p,€) = —2i(0pnA,)E +i 6PV6E“F§V &p
—_——
=(2/3)rich
63,;#0'2 (p, 5) = 0
2 uw
a:c’y 81;6 02( 76) = _5 Ru'y ) §H§V
Og,02(p,§) = 2¢&"
So we obtain
4
Os72(p, €) O 0ps02(p, €) = — 3 B, £u6065 = 0. (17)

With these quantities we can calculate

ra(p,§) = 0,  r2(p§)=—03 00+ 30570 RV, &6y,
Ozer_1(p, &) = —a;l Ognoy — ia;z 2£Y QpnOyv 02
= —0,'0mor + §i0," R, €76,6
. _ 02_1 Ogr o1
o1 = o3l B (=0
094_1(;0, ) = —o0,%00+0,° (— 24 Oguoy EF + %(5"" Rt §u§,,) .

= —057 00405 (—4(0prAy) EPE” + 2- Zric,s £46P — Zricy, E1EY)
= —o0,%00+05° (—46zuA,, + %ricu,,) Erev.

(18)
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We define

— k42
ak =050 (9, )-

It is easy to check that as = 0'9, (p,&) = 0. The recursion formula (14) reads as
ar = ag-103 ",

and therefore

ay = oy ¥ 2ay = 0.

Now we set
br =02 —2k (P, )Uz(pa £).

Obviously, we have b; = 0 and the recursion formula (15) yields for by,

1 —1
b = br—1 +U§Cfé4 —10'265 Oy S k2 6mu0 3
1 _ _
_§U§6€u 851'0.2 e 637”6-'3”0.2 ! (19)
The term aé_l can be expressed in quantities we know alread
3 p q y
- (13) _
93 = Ty 17‘—1

(12) _ .
= -0, 25, — ioy 38§V028wu02,

so its xH-derivative at p is

_9 . 3
(zua_g )(p, ) = —0'2 6mu01—Z0'2 (95”026,”# v O9

= =05 %001
= 20,2 (OpAy) & — giag%icﬁ £s.
Now we are ready to calculate the summands of the recursion formula (19). We
already know the second summand. The third one yields
T2 90ty '

= 2ok (—k+2)o T er (azu 093_1)

—io¥ Ok, 05

4(=k+2) o,  E* (OnA,)E —2- ; (=k +2) gy ¢*ric,s €°.

It is straightforward to transform the last summand of (19).

1 2
—5 ok 0, O, 05 "2 Opu Opv 05t = 3 (=k + 2) o5 'ric,, £4¢".

The above formulas yield

—1 4
by, b1+ 0202, + 07" (=k+2)Ere” {4 Opn A, — 3 ricu,,}

2
g( k+2)oy rlcu,,E“.f

—1 2
by + 0202, +o5 ! (—k+2)£re” {4 Opn Ay, — 3 ricu,,} .
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Using b; = 0 and an induction over k we get
-1 ].
by = (k—1)0202, —o3'(k—1)(k—2) {239;#A,, ~ 3 ric,“,}
2
(1% (k=1 {— o, + 02_1 <(— 4 (0 A) + 3 ricu,,) E".f")

—2 ric,w) 5”5”}

= (k-1) {—Uo+021 (—Zk((‘?qu,,)+§ricm,) E”f”}.

+o,t ((—2k+4) (O Ay) + b

Now we want to integrate End(E)-valued (0, 2)-tensors over the unit sphere in 7* M.
For this we have the formula

271-"/2

Note that I?(”n—"//;) is the volume of S"~! C R”. We get for every fixed p

/ dfaé;(n/zwl = / dé by, /5(6)
Sn—l Sn—l

27/ (5 -1 . "
W {—noo —n ((5 6;#‘141/) + gscal} .

From (16) we know that K = o¢ + (§*V9,A.), hence

27m/2 (2 —1) 1
/5""_1 dfbn/g(f) = T/Q) {—}C+ Escal} .

Remark 1 [t was noted by Ackermann [1] that Theorem 6.1 is a special case of
a more general relationship between the Wodzicki residue of certain powers of an
elliptic operator and the asymptotic expansion of the trace of the corresponding heat
operator.
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