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Abstract

Using Kato's comparison principle for heat semi-groups we derive estimates

for the trace of the heat operator on surfaces with variable curvature. This

estimate is from above for positively curved surfaces of genus 0 and from

below for genus g � 2. It is shown that the estimates are asymptotically

sharp for small time and in the case of positive curvature also for large

time. As a consequence we can estimate the corresponding �-function by

the Riemann �-function.
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0 Introduction

In this paper we want to derive bounds on the Laplace spectrum of closed oriented

surfaces. There is huge literature on estimates for particular eigenvalues �

j

,

especially in the case of hyperbolic surfaces, see [4] and the references therein.

We allow the curvature to vary and look for bounds on the spectrum as a whole.

This can be done in terms of estimates on the trace of the heat operator, i.e. we

try to bound

Tr e

�t�

=

X

j

e

�t�

j

by geometric data. Of course, if one has bounds on all eigenvalues, then one also

has an estimate for Tr e

�t�

. For example, Korevaar [8] shows for the Laplace

eigenvalues on a closed oriented surface M of genus g

�

j

� C

(g + 1)j

area(M)

�
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where C denotes some (nonexplicit) universal constant. This done by covering

arguments and constructing su�ciently many test functions for the Rayleigh

quotient. As a consequence, we obtain

X

j

e

�t�

j

�

X

j

�

e

�

tC(g+1)

area(M)

�

j

=

1

1� e

�

tC(g+1)

area(M)

In the case of a hyperbolic surface this yields

X

j

e

�t�

j

�

1

1� e

�

tC(g+1)

4�(g�1)

A similar estimate has been obtained by Gromov [6] for K�ahler manifolds using

Kato's comparison principle to be explained later.

This is a beautiful estimate because it involves besides genus only the \soft"

geometric invariant area(M) and no curvature assumption is made. On the other

hand, no sharpness discussion can be made because of the nonexplicit constant

C. Moreover, for large g the lower bound does not increase while Tr e

�t�

does

as we shall see. We will show (Theorem 2.1)

X

j

e

�t�

j

�

g � 1

e

�t�

� 1

where � is the in�mum of Gauss curvature. This estimate has the disadvantage

of involving curvature but it is asymptotically sharp for t& 0 if K � � (Theorem

2.2). We see that the lower bound increases with g.

Moreover, in the positively curved case � > 0 we obtain a bound in the

opposite direction

X

j

e

�t�

j

�

1

1� e

�t�

which turns out to be asymptotically sharp for t& 0 (and also for t%1) if the

curvature is constant.

Our proof uses Kato's comparison principle but in a nonstandard way. Usually

one looks for a bundle of rank r equipped with an operator L on the manifold

such that one has a \Weitzenb�ock formula"

L = r

�

r+K

with K � � and one knows (e.g. by index theory) that L has an N -dimensional

kernel. Then Kato's principle immediately yields

N � Tr e

�tL

� r �Tr e

�t(�+�)

;
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hence

Tr e

�t�

�

N

r

� e

t�

:

Gromov's version of Korevaar's estimate is also based on this approach using

some suitable other eigenvalue of L instead of zero.

We will use Kato's inequality to compare Tr e

�t�

with Tr e

�t�

1

where �

1

denotes the Laplace-Beltrami operator acting on 1-forms. Then we observe that

� and �

1

have essentially the same eigenvalues. This is already enough to derive

our estimate.

Once one has a bound on the trace of the heat operator on can immediately

obtain a bound on the associated �-function. Let �

R

be the Riemann �-function.

We will show for �

M

(s) = Tr (P

(0;1)

�)

�s

; s > 1 (Theorems 3.1 and 3.2)

a) If K � 1:

�

M

(s) � �

R

(s):

b) If K � �1 and g = 2:

�

M

(s) �

 

2

p

e

� 1

!

�

 

1

2

s

�(s+ 1)

+

�

1=2

(s)

�(s)

�

R

(s)

!

:

c) If K � �1 and g � 3:

�

M

(s) �

�

g

e

� 1

�

�

 

1

�(s+ 1)

+

�

1

(s)

�(s)

�

R

(s)

!

:

Here �

T

denotes the truncated �-function, see Section 3. We conclude the

article with a remark on higher dimensions, especially dimension 4.

1 Kato's Comparison Principle

Let M be a closed Riemannian manifold, \closed" meaning compact, connected

and without boundary. Let V !M be a Riemannian vector bundle over M with

metric connection r. Denote the rank of V by r. For a symmetric endomorphism

�eld K 2 C

1

(M;End(V )) consider the self-adjoint operator L = r

�

r+K acting

as an unbounded operator on L

2

(M;V ). Let � : M ! R be a smooth function

bounding K pointwise from below,

K � �:

Let � be the Laplace operator acting on functions. Kato's comparison principle

tells us that the eigenvalues of L tend to be larger than those of � + � on r

copies of the trivial line bundle. Roughly speaking, the twisting of the bundle V

increases the energy states of L as compared to the standard operator � + � on

the untwisted bundle of equal rank. More precisely, we have
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Theorem 1.1. [7] The traces of the heat operators satisfy the following esti-

mate for all t > 0 :

Tr e

�tL

� r �Tr e

�t(�+�)

:

Recall that the trace of the heat operator for a self-adjoint operator A bounded

from below can be de�ned by

Tr e

�tA

=

X

j

e

�t�

j

where the �

j

are the eigenvalues of A. In fact, one can estimate the heat kernel

of L itself pointwise on M �M � (0;1) by the one of �+� but we will not need

this stronger version of Theorem 1.1.

2 The Estimate for Surfaces

Now we restrict our attention to closed 2-dimensional Riemannian manifolds M .

The estimate for Tr e

�t�

will follow from an application of Kato's principle to

the Laplace operator on 1-forms together with the observation that the Laplace

operator on 1-forms has essentially the same eigenvalues as the Laplace operator

on functions.

Theorem 2.1. Let M be a closed oriented 2-dimensional Riemannian mani-

fold with Gauss curvature K � �; � 2 R. Let � be the Laplace operator acting

on functions. Then the following estimates hold for all t > 0 :

If � > 0 :

Tr e

�t�

�

1

1� e

�t�

If � < 0 :

Tr e

�t�

�

g � 1

e

�t�

� 1

where g denotes the genus of M .

Proof. Let �

0

= 0; �

1

; �

2

; : : : denote the eigenvalues of �. The Laplace

operator �

2

acting on 2-forms has the same eigenvalues as � because the Hodge

star operator � maps eigenfunctions into eigen-2-forms. The operator d + � :




0

(M)�


2

(M)! 


1

(M) yields an isomorphism on the Laplace-eigenspaces for

nonzero eigenvalues � with inverse

1

�

(d + �). Hence each nonzero eigenvalue �

j

of � is also an eigenvalue for the Laplace operator �

1

acting on 1-forms with

double multiplicity. Hodge theory tells us that the multiplicity of the eigenvalue

zero for �

1

is given by the �rst Betti number b

1

(M) = 2g. Thus �

1

has the

spectrum

0; : : : ; 0

| {z }

2g

; �

1

; �

1

; �

2

; �

2

; : : :
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Using the Bochner formula �

1

= r

�

r+K we get from Kato's inequality

Tr e

�t�

1

� 2 �Tr e

�t(�+�)

;

2g + 2 �

1

X

j=1

e

�t�

j

� 2 �

1

X

j=0

e

�t(�

j

+�)

= 2 � e

�t�

�

1

X

j=0

e

�t�

j

;

g � 1 � (e

�t�

� 1) �

1

X

j=0

e

�t�

j

:

If � > 0, then necessarily g = 0 and since e

�t�

� 1 < 0 we obtain

�1

e

�t�

� 1

�

1

X

j=0

e

�t�

j

:

If � < 0 we have e

�t�

� 1 > 0 and we get

g � 1

e

�t�

� 1

�

1

X

j=0

e

�t�

j

:

This is a nontrivial estimate only if g � 2. 2

Next we examine how sharp these bounds on Tr e

�t�

are. Let A;B : (a; b)!

R be two positive functions. We say that the estimate A(t) � B(t) is asymptoti-

cally sharp for t& a if

lim

t&a

B(t)

A(t)

= 1;

similarly for t% b. Asymptotic sharpness of the estimates in Theorem 2.1 can of

course only be expected if there is sharpness in the assumptions of the theorem,

i.e. if the Gauss curvature is equal to �, K � �.

Theorem 2.2. Let M be a closed oriented 2-dimensional Riemannian mani-

fold with constant Gauss curvature K � �; � 2 R.

If � > 0, then the estimate of Theorem 2.1 is asymptotically sharp for t& 0

and also for t%1.

If � < 0, then the estimate of Theorem 2.1 is asymptotically sharp for t& 0

but not for t%1.

Proof. We �rst examine the behavior for t%1. Since e

�t�

converges to the

orthogonal projection onto the kernel of �, i.e. the space of constant functions,

we see that

lim

t%1

Tr e

�t�

= 1:

The RHS of the estimate in Theorem 2.1 converges to 1 if � > 0 and to 0 if � < 0.

This proves the assertion for t%1.
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To study the behavior for t & 0 we look at the asymptotic expansion of

Tr e

�t�

, see e.g. [5]

Tr e

�t�

� (4�t)

�1

� (area(M) + O(t)) ; t& 0:

Hence

lim

t&0

t �Tr e

�t�

=

area(M)

4�

:

As for the RHS we get

lim

t&0

t �

g � 1

e

�t�

� 1

=

1� g

�

=

�(M)

2�

=

(2�)

�1

R

M

K

2�

=

area(M)

4�

:

Here we used the Gauss-Bonnet formula to express the Euler number �(M) as

the integral over the constant Gauss curvature K = �.

This concludes the proof of Theorem 2.2. 2

This proof actually shows that the estimates in Theorem 2.1 are asymptoti-

cally sharp for t& 0 if and only if K � �.

3 Application to the �-Function

Let �

R

denote the Riemann �-function,

�

R

(s) =

1

X

n=1

n

�s

for s > 1. Associated to the Laplace operator � on a closed Riemannian manifold

M there is another �-function,

�

M

(s) = Tr (P

(0;1)

�)

�s

=

1

X

j=1

�

�s

j

=

1

�(s)

Z

1

0

(Tr e

�t�

� 1)t

s�1

dt

where P

(0;1)

denotes the spectral projection onto the sum of the eigenspaces for

the positive eigenvalues �

1

; �

2

; : : : of � and �(s) is the usual �-function. See [2]

or [9] for more details.
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We study the two cases in Theorem 2.1 separately.

Theorem 3.1. Let M be a closed oriented 2-dimensional Riemannian mani-

fold with Gauss curvature K � 1. Then the following estimate holds for all

s > 1 :

�

M

(s) � �

R

(s)

Proof. The estimate in Theorem 2.1 tells us

Tr e

�t�

� 1 �

1

1� e

�t

� 1

=

1

X

n=1

e

�nt

:

Using this we get

�

M

(s) =

1

�(s)

Z

1

0

(Tr e

�t�

� 1)t

s�1

dt

�

1

�(s)

Z

1

0

 

1

X

n=1

e

�nt

!

t

s

dt

t

=

1

�(s)

1

X

n=1

Z

1

0

e

�u

�

u

n

�

s

du

u

=

1

�(s)

1

X

n=1

n

�s

Z

1

0

e

�u

u

s�1

du

= �

R

(s):

This proves the theorem. 2

In the case K � 1 the �-eigenvalues are explicitly known [1], namely they are

�

n

= n(n+ 1) with multiplicity 2n+ 1. Therefore Theorem 3.1 then simply says

1

X

n=1

(2n+ 1)(n(n+ 1))

�s

�

1

X

n=1

n

�s

for s > 1.

We de�ne the truncated �-function for T > 0; s > 1 by

�

T

(s) :=

Z

T

0

e

�t

t

s�1

dt:

Now we can formulate an estimate for the �-function for surfaces of genus g � 2.
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Theorem 3.2. Let M be a closed oriented 2-dimensional Riemannian mani-

fold with Gauss curvature K � �1. Then the following estimates hold for all

s > 1 :

If g = 2, then

�

M

(s) �

 

2

p

e

� 1

!

�

 

1

2

s

�(s+ 1)

+

�

1=2

(s)

�(s)

�

R

(s)

!

If g � 3, then

�

M

(s) �

�

g

e

� 1

�

�

 

1

�(s+ 1)

+

�

1

(s)

�(s)

�

R

(s)

!

Proof. The estimate in Theorem 2.1 says

Tr e

�t�

� 1 �

g � 1

e

t

� 1

� 1

= (ge

�t

� 1) �

1

X

n=0

e

�nt

:

For T 2 (0; ln g) we obtain

�

M

(s) =

1

�(s)

Z

1

0

(Tr e

�t�

� 1)t

s�1

dt

�

1

�(s)

Z

T

0

(Tr e

�t�

� 1)t

s�1

dt

�

1

�(s)

Z

T

0

(ge

�t

� 1) �

1

X

n=0

e

�nt

� t

s�1

dt

�

ge

�T

� 1

�(s)

 

Z

T

0

t

s�1

dt+

1

X

n=1

Z

T

0

e

�nt

� t

s

dt

t

!

=

ge

�T

� 1

�(s)

 

T

s

s

+

1

X

n=1

Z

nT

0

e

�u

�

�

u

n

�

s

du

u

!

=

ge

�T

� 1

�(s)

 

T

s

s

+

1

X

n=1

n

�s

� �

nT

(s)

!

�

ge

�T

� 1

�(s)

�

T

s

s

+ �

R

(s) � �

T

(s)

�

= (ge

�T

� 1) �

 

T

s

�(s+ 1)

+

�

T

(s)

�(s)

� �

R

(s)

!

:

Choosing T =

1

2

in case g = 2 and T = 1 in case g � 3 proves the theorem. 2
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4 Higher Dimensions

In dimension n � 3 the Laplace operator �

1

acting on 1-forms has also eigenvalues

which are not related to those of �. This is the reason why Theorem 2.1 is special

for surfaces. In higher dimensions Kato's principle can give us only estimates

between traces of heat operators for di�erent Laplace operators. For example, in

dimension 4 we can show

Theorem 4.1. Let M be a closed oriented 4-dimensional Riemannian mani-

fold. Let � 2 R be a lower bound for the Ricci curvature, Ric � �. Let �(M)

denote the Euler number of M . Then the following estimates hold for all t > 0 :

a)

Tr e

�t�

1

� 4 � e

�t�

�Tr e

�t�

b)

Tr e

�t�

2

� 2 � (4e

�t�

� 1) �Tr e

�t�

+ �(M):

Statement a) is a direct application of Kato's inequality and is true for all

dimensions whereas b) has a proof similar to the one for Theorem 2.1 and is

special for dimension 4.

Note that the limit t !1 in Theorem 4.1 yields b

1

= 0 if � > 0 and b

1

� 4

if � = 0, the well-known Bochner theorem [3].
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