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1. Introduction

On a closed n-dimensional Riemannian manifold we have the exterior dif-
ferential d mapping k-forms into (k + 1)-forms, its L?-adjoint § mapping
k-forms into (k — 1)-forms, and the Laplace-Beltrami operator A = dé + dd
respecting the degree of forms. The Laplace operator is an elliptic sec-
ond order differential operator. By general elliptic theory it has a discrete
eigenvalue spectrum. Since A is nonnegative so are the eigenvalues. If one
changes the Riemannian metric the eigenvalues of A will change except for
the eigenvalue zero. Classical Hodge and deRham theory tells us that the
dimension b*(M) of the kernel of the Laplace operator acting on k-forms
is a topological invariant, the k' Betti number. Harmonic k-forms can be
counted topologically! This constitutes a strong link between the analysis
of the Laplace operator and the topology of the underlying manifold.

The question arises whether something similar is true for other nat-
ural differential operators like the Dirac operator acting on spinors on a
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Riemannian spin manifold. Is there topological information stored in the
dimension of the space of harmonic spinors?

Let us start with a few remarks on spinors and the Dirac operator.
For details the reader may consult the excellent introductions [9] or [23].
In contrast to exterior form bundles the spinor bundle does not exist on
every Riemannian manifold. The manifold has to satisfy a certain global
topological condition, the spin condition. This can be thought of as a sharp-
ening of orientability. Many well-known manifolds are spin, such as spheres,
CP™ if m is odd, quaternionic projective spaces, orientable surfaces, and
many more. But there are also familiar nonspin spaces, like nonorientable
manifolds, CP™ if m is even, and others.

From now on let us assume that the manifold M under consideration is
spin. If M is not simply connected there might be different spin structures.
There are # H,(M;Zsy) many different ones just like there are # Hy(M; Zs)
many different orientations. Pick one spin structure. Then we obtain the
spinor bundle S M over M, a complex vector bundle of rank 2*/2. Sections
in this bundle are called spinor fields or simply spinors. There is a pointwise
algebraic action of tangent vectors on spinors, T,M ® X,M — X,M, X ®
¢ — X - ¢, called Clifford multiplication satisfying certain relations. This
can be thought of as similar to the exterior or interior product of forms.

The Dirac operator then acts on spinor fields by the formula

D¢:ielvel¢

=1

where eq,...,e, denotes a local orthonormal basis of TM and V is a co-
variant derivative naturally induced by the Levi-Civita connection.

The Dirac operator is an elliptic first order differential operator. It hence
has a discrete eigenvalue spectrum with eigenvalues tending to 400 and to
—o0. Spinor fields in the kernel of D are called harmonic spinors. Let us
denote the dimension of the space of harmonic spinors by h(M, g, S) where
M denotes the differential manifold, g the Riemannian metric, and S the
spin structure. Since M is closed the kernel of D is the same as that of D?
which is a nonnegative elliptic second order differential operator just like
the Laplace-Beltrami operator acting on forms. Our main question may
now be rephrased as follows:

Does h(M,g,S) really depend on g and/or S, does h(M,g,S) tell us
anything about the topology of M ?

Hitchin showed [16, Prop. 1.3] that h(M, g, S) is a conformal invariant,
ie. h(M,g1,S) = h(M, g2, S) if g1 and g2 are conformally equivalent.
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2. Atiyah-Singer index theorem

Since all Betti numbers b*(M) are topological invariants so is their alter-
nating sum y(M) = Y7_,(—1)¥b¥(M), the Euler number. This has the
following interpretation. The Laplace-Beltrami operator A can be written
as a square, A = (d + d)2. The elliptic first order operator d + 6 does not
respect the grading of the form bundle any more but it still respects the
splitting into even and odd forms. Thus x(M) is the dimension of the kernel
of d + ¢ restricted to even forms minus the dimension of d + ¢ restricted to
odd forms. Hence x(M) is the Fredholm index of d + ¢ restricted to even
forms.

This has an analog for the Dirac operator as follows. If the dimen-
sion 1 of M is even then the spinor bundle splits naturally into the so-
called positive and negative half-spinor bundles, XM = X TM @& X~ M. The
Dirac operator interchanges these bundles, hence D? respects the split-
ting. Consequently, there is a splitting of the space of harmonic spinors,
h(M,g,8) = h*(M,g,8) +h~(M,g,S).

The Fredholm index of D restricted to positive half-spinors is then given
by ht(M,g,S) —h~(M,g,S) and can be expressed topologically.

Atiyah-Singer index theorem. [2, Thm. 5.3]
Let M be an even-dimensional closed Riemannian spin manifold. Then the
Fredholm index of the Dirac operator restriced to positive half-spinors is
given by
h’+(MagaS) - h_(Maga S) = A(M)

Here A(M ) is the A—genus of M, a topological invariant computable in
terms of Pontryagin numbers.

Corollary. The dimension of the kernel of D can be bounded from below
by a topological invariant

h(M,g,5) > |A(M)].

A remarkable application of this index theorem was found by Lichnerow-
icz. He proved the formula

D?= V'V + 3

where s : M — R denotes scalar curvature. Hence if the scalar curvature is
positive, s > 0, then D? is strictly positive and (M, g, S) = 0. By the index
theorem A(M) = 0. Scalar curvature is a very weak geometric invariant and
it is not possible to prove this topological obstruction against positive scalar
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curvature without use of harmonic spinors. Nonspin manifolds can carry
positive scalar curvature metrics and still have A(M) # 0, e.g. M = CP?!
See the end of this paper for further discussion of scalar curvature.

The above corollary gives a nontrivial estimate only if n is divisible by
4 because otherwise always A(M) = 0. In certain dimensions there is a
refinement of the index theorem [4] using Milnor’s a-genus [26]:

Ifn=1mod 8 h(M,g,S) =a(M,S) mod 2,
ifn=2mod 8 h*(M,g,S)=a(M,S) mod 2.

The a-genus is a subtle invariant. For n = 1 or 2 mod 8 it takes values
in Zo rather than in Z and it depends on the differential topology of M.
There are exotic spheres with nonvanishing a-genus which proves that these
spheres do not carry metrics of positive scalar curvature.

3. Surfaces

What can we say about h(M,g,S) in case n = dim(M) = 27 Let us start
with the case genus(M) = 0, i.e. M is topologically a 2-sphere. One has
the following eigenvalue estimate for the Dirac operator.

Theorem (Bir [5, Thm. 2]). Let M be a closed surface of genus 0. Then
all eigenvalues A of the Dirac operator on M satisfy
9 4m

> —.
~ area(M)

Equality holds for the eigenvalue of smallest absolute value if and only if
M carries a metric of constant curvature.

In particular, A is never zero, i.e. h(S?,g,5) = 0 for all Riemannian
metrics g. The spin structure is unique in this case because S? is simply
connected.

The conclusion h(S2%,g,5) = 0 can also be deduced from conformal
invariance of h(S52, g, S) and the fact that all metrics on S? are conformally
equivalent. Hence h(S2, g, S) cannot depend on g. Since metrics of positive
scalar curvature don’t admit harmonic spinors we conclude for the canonical
metric go on S? of constant (positive) curvature that h(S?, go, S) = 0.

The 2-torus has four different spin structures one of which is trivial
(biinvariant). Friedrich [11] computed the Dirac spectrum for flat metrics
on T? for all four spin structures. Since every metric on T2 is conformally
equivalent to a flat metric one concludes from this computation
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) [ 2, ifSis trivial
h(T*,g,8) = { 0, otherwise.

Hence h(T2,g,S) depends on S but not on g.

The case genus = 2 turns out to be similar to the torus case, h(M, g, S)
depends on the spin structure S but not on the metric g, [16, Prop. 2.3].
But if the genus of M is larger than 2, then h(M,g,S) depends on both
the spin structure and the metric [16, Thm. 2.6]. The number h(M, g, S)
can be bounded from above in terms of the genus [16, Rem. 4]:

h(M,g,5) <2 [—genus(é”) + 1] .

This estimate is sharp. For hyperelliptic metrics g on M one can compute
h(M, g, S) for all spin structures [8, Thm. 3 and 4].

The discussion of surfaces shows that unlike Betti numbers h(M, g, S)
does in general depend on the metric. There is topological information con-
tained in h(M, g, S) however. The 2-sphere is characterised among surfaces
by the fact that h(M,g,S) = 0 for all metrics g and all spin structures S.
But this may simply reflect the fact that on S§? all metrics are conformally
equivalent. Since S? is the only closed manifold with this property we are
led to the

Conjecture. Let M be a closed Riemannian spin manifold of dimension
n > 3. Let S be a spin structure on M. Then there exists a metric g on M
such that there are nontrivial harmonic spinors,

h(M,g,S) > 0.

In other words, we believe that harmonic spinors are not topologically
obstructed in dimension n > 3. We will see in the next two sections that
the conjecture has been proven for n = 0, 1, 3,7 mod 8 while it is still open
in the remaining cases.

4. The topological approach

Even though Hitchin did not explicitly state the conjecture in this generality
he proved it in certain dimensions [16] using topological methods which we
now describe. Let M be a closed spin manifold. To obtain a Riemannian
metric with nontrivial harmonic spinors we proceed in two steps. First show
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Step 1. If M can be put as a fiber into a fiber bundle of spin manifolds,
M — Z — B, such that the total space has nontrivial a-genus, a(Z) # 0,
then there is a Riemannian metric g on M such that h(M,g,S) > 0.

Namely, assume we have such a fiber bundle of spin manifolds, M —
Z — B. Put any metric on the total space Z. Restriction to the fibers gives
us for every b € B a metric on M.

Assume that for all these metrics there are no nontrivial harmonic
spinors. This means that the Dirac operator along the fibers is invertible
for every b € B. Hence the family index of this family of operators is trivial
[3]. One can compute o(Z) in terms of the family index. In particular, if
the family index vanishes so does a(Z), a contradiction.

Hence for some fiber the Dirac operator is not invertible. The metric of
Z restricted to this fiber does the job.

The question now is how to find such fiber bundles M — Z — B. This
is

Step 2. For a closed n-dimensional spin manifold M there exists a fiber
bundle of spin manifolds

M—Z—-58 if n=0,1modSs,
M—Z—5% if n=0,7modS8,

for which a(Z) # 0.

To construct Z start with the trivial fiber bundle M — M x S* — S°.
Of course, this is not good enough because a(M x S) = a(M) - a(S?) =
a(M) -0 = 0. The basic idea is now to pick an exotic sphere X"t¢ with
a(X") # 0 and to put Z = (M x SY)#X"F. Then a(Z) = a(M x S%) +
a(zn—{—i) — a(zn—f—z’) ;é 0.

The problem is that we cannot take every exotic sphere 3" *? because we
have to make sure that Z still fibers over S* with fiber M. Taking the con-
nected sum with an exotic sphere is the same as removing a ball D"** and
gluing it back via some diffeomorphism of the boundary sphere S"**~1. In
order not to loose the fiber bundle structure we must take a diffeomorphism
which, roughly speaking, only twists in the vertical direction. In differential
topological terms this means that the exotic sphere must be in the image
of a suitable Novikov map, in a certain Gromoll group.

Now one has to consult results from differential topology to see for which
n and for which choices of i there are exotic spheres "% in these Gromoll
groups satisfying a(X"1%) # 0.

Combining steps 1 and 2 yields
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Theorem (Hitchin [16, Thm. 4.5(1)]).
Let M™ be a closed spin manifold of dimension n,n =0,1,7 mod 8. Let a
spin structure S on M be fixed. Then there exists a Riemannian metric g
on M such that the corresponding Dirac operator has a nontrivial kernel,
i.€e.

h(M,qg,S) > 0.

5. The analytic approach

Now we describe a different approach to prove the conjecture which will
work in dimension n = 3 mod 4. Details can be found in [6, 7].

Step 1 (Gluing Theorem, [7, Thm. 2.1]).
Let My and My be n-dimensional closed Riemannian spin manifolds of
dimension n > 3. Let U; C M; be open balls, let D; be the Dirac operators
of M;. Let A > 0 such that £A ¢ spec (D1) U spec (D3). Let € > 0.

Then there exists a Riemannian metric on X = Mi# My such that X
is a disjoint union X = X;UXoUX3 where
(i) X1 is isometric to My — Un,
(ii) Xy is isometric to My — Uy,
(iii) X3 is diffeomorphic to (0,1) x S™~1
and such that all eigenvalues of the Dirac operator D of M in the range
[—A, A] are e-close to eigenvalues of D1 or Dy and vice versa.

Fig. 1
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In other words, up to a prescribed error ¢, the spectrum of D on X
in the range [—A,A] is the same as the disjoint union of the spectra of
Dy and Ds in this range. The proof uses the variational characterisation
of eigenvalues. To compare test-spinors on X with those on M;UM; one
has to use cut-off functions. These cut-off functions introduce bad error
terms in the Rayleigh quotient. One has to show that these error terms are
over-compensated by smallness of the eigenspinors in the support of the
gradient of the cut-off function. This requires certain a-priori estimates on
the distribution of the L2-norm of eigenspinors on manifolds of the type
(0,1) x S™~! with a suitable warped-product metric.

Step 2 (Computation of the Dirac spectrum of Berger spheres).

The Hopf fibration S?*™*+1 — CP™ is a Riemannian submersion if one equips
S§?m+1 with its standard metric of constant curvature 1 and CP™ with the
Fubini-Study metric. The fibers are circles S'. Now one can rescale the
length of the fibers by some positive constant T' and keep fixed the metric
on the orthogonal complement to the fibers. This yields a one-parameter
family of metrics gr on S?™*! called Berger metrics.

It is important that all Berger metrics are homogeneous under the uni-
tary group U(m+1). Hence one can apply methods from harmonic analysis
to explicitly compute the Dirac spectrum of (S?™*1, g7). The formulas are
given in [6, Thm. 3.1]. For our purposes only the following conclusion is of
importance.

For n =3 mod 4 there is a smooth family gr of Riemannian metrics on
S™, T € [a,b], such that
(i) There is \(T') € spec (Dr) where Dy is the corresponding Dirac oper-
ator on (S™, gr) with M(a) = —1, A(b) = +1 (or vice versa).
(ii) M(T) depends smoothly (actually linearly) on T.
(i1i) The multiplicity k of \(T) is constant in T.
(iv) A(T') is the only eigenvalue of Dt in the range [—2,2].

Steps 1 and 2 yield

Theorem (Bir [6, Thm. A)).
Let M™ be a closed spin manifold of dimension n, n = 3 mod 4. Let a spin
structure S on M be fized. Then there erists a Riemannian metric g on M
such that the corresponding Dirac operator has a nontrivial kernel, i.e.

h(M,g,S) > 0.

Proof. Pick any metric on M. If there are no nontrivial harmonic spinors
for this metric rescale it such that all Dirac eigenvalues become very large,
greater than 10 say.
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By Steps 1 and 2 there exist Riemannian metrics gr on M"#S8" such
that

(i) |ua(T) — MT)| < e =4, i=1,...,k.

Here Dy is the Dirac operator of §r. In particular, z;(a) < 0 and u;(b) > 0,
i=1,... k.

—1+e

14

—1—e¢€
a b

Fig. 2

For some value T' = Tj one of the p;(T)’s must be zero. Hence gr, is a
metric on M"#S5™ with harmonic spinors. But of course, M"#S5™ = M"
and we are done.

Remarks. The topological approach together with the analytic ap-
praoch prove the conjecture in dimension n = 0,1,3,7 mod 8. Can one
extend the analytic approach to the remaining dimensions?

The gluing theorem (Step 1) makes no problems, it holds for n > 3.
The problem is to find a one-parameter family of metrics on S” such that
one Dirac eigenvalue crosses 0. The Berger metrics do the job only for
n = 3 mod 4. This is a serious problem because if n Z 3 mod 4, then
the Dirac spectrum is automatically symmetric about 0 [1]. Even if we can
find a family of metrics on S™ for which one Dirac eigenvalue crosses the
zero line another eigenvalue must cross in the opposite direction. Then the
eigenvalues of M#S5™ = M which are close to them need not cross the zero
line.
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Fig. 3

The analytic approach has the advantage that it is essentially local. It
can therefore easily be adapted to twisted versions of the Dirac operator.
For example, one can show

Theorem (Bir [7]).
Let M™ be a closed spin® manifold of dimension n, n = 3 mod 4. Let a
spin® structure S on M be fized. Let a U(1)-connection A on the canonical
line bundle be fixed. Then there erists a Riemannian metric g on M such
that the corresponding Dirac operator D has a nontrivial kernel, i.e.

h(M, g, A,S) > 0.

Compare the subsection on Seiberg-Witten theory below for the notion
of spin® manifolds and their Dirac operators.

6. Further aspects of harmonic spinors

GENERIC METRICS. Our conjecture, which we have seen to be true in many
dimensions, tells us that for specific choices of the Riemannian metric there
are nontrivial harmonic spinors. On the other hand, all examples which one
can explicitly compute, like the Berger metrics on odd-dimensional spheres,
indicate that for generic metrics the number of linearly independent har-
monic spinors is minimal in the sense that there are not more than there
must be by the index theorems. This has recently proven to be true in low
dimensions at least.
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Theorem (Maier [25]).
Let M be a closed spin manifold of dimension n with fized spin structure
S. For generic metrics g on M we have

0or2, dependingon a(M,S), ifn =2,
h(M,g,S) = O,A if n =3,
|[A(M)|, ifn=4.

KAHLER METRICS. As we have seen our conjecture on existence of
metrics with nontrivial harmonic spinors is not true in dimension 2. One
possible explanation for this special behavior of surfaces could be the fact
that oriented surfaces are automatically Kéahler. Does restriction to the
class of Kahler metrics really change things?

Hitchin [16] studied the case of complex dimension 2. He showed that
h(M,g,S) is minimal (in the sense above) for simply connected algebraic
spin surfaces not of general type, for complete intersections, for rational
surfaces, and for cyclic ramified coverings over CP? branched over a non-
singular curve. Here g always denotes a Kahler metric compatible with the
given complex structure.

Tempted by these examples Hitchin conjectured that h(M, g, S) might
be minimal for generic complex structures on simply connected algebraic
spin surfaces.

But Kotschick [20, 21] gave counterexamples to this conjecture. He
showed that there exist simply connected algebraic surfaces such that for
generic complex structures h(M, g, S) still exceeds the minimal number of
linearly independent harmonic spinors (enforced by the index theorems)
arbitrarily much.

POSITIVE SCALAR CURVATURE. The scalar curvature function of a Rie-
mannian manifold is a very weak geometric invariant. It is known that every
function f on an n-dimensional closed manifold, n > 3, which is negative
somewhere, is the scalar curvature function for some Riemannian metric on
M [18, 19]. In other words, if the scalar curvature s is negative somewhere,
then it contains no topological information at all.

But from Lichnerowicz’s formula [24]

D2=v'v4l
4
it follows that if the scalar curvature is positive, then D? is a strictly pos-
itive operator. Hence, h(M,g,S) = 0. In particular, if n is divisible by 4,
then A(M ) = 0. We see that nonvanishing of the A-genus is a topological
obstruction against existence of a metric of positive scalar curvature. A
similar remark holds for the a-genus in general dimensions.
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The remarkable fact is that for simply connected manifolds this is the
only obstruction. Combining surgery results obtained independently by
Gromov/Lawson and Schoen/Yau with homotopy theoretic work by Stolz
one obtains

Theorem (Gromov-Lawson [13], Schoen-Yau [30], Stolz [32, 33]).
Let M be a simply connected closed manifold of dimension n > 5. Then the
following holds.

(i) If M is not spin, then there is a metric of positive scalar curvature on
M.

(i) If M is spin, then there is a metric of positive scalar curvature on M
if and only if the a-genus vanishes.

The nonsimply connected case is still a topic of active research [12].
The corresponding conjecture is known as Gromouv-Lawson-Rosenberg con-
jecture. See [28] or [34] for a survey, see also [14] for the noncompact case.
Very recently, the Gromov-Lawson-Rosenberg conjecture in its original (un-
stable) form has been shown to fail in dimension 5,6, and 7 [29].

In the case of zero scalar curvature, s = 0, there can be nontrivial har-
monic spinors, h(M, g, S) can be positive. But then, again by Lichnerowicz’s
formula D? = V*V, every harmonic spinor must be parallel. This means
that the holonomy group of the manifold must have fixpoints under the
spinor representation. A holonomy reduction is a very strong restriction on
the manifold. Since all possible holonomy groups of Riemannian manifolds
are classified one can do a case by case check to see which holonomy groups
can occur, see [16, 35, 36].

SEIBERG-WITTEN THEORY. The physicists Seiberg and Witten [31] in-
troduced equations which led recently to spectacular results in differential
topology of 4-manifolds. It seems that most theorems proved by Donald-
son’s instanton theory such as his theorem on smooth 4-manifolds with def-
inite intersection form [17] can also be proved using Seiberg-Witten theory,
only in a simpler way. Moreover, there have been new important applica-
tions such as a proof of Thom’s conjecture on the minimal genus of an
embedded surface representing a given homology class in CP? [22].

To set up the Seiberg-Witten equations one first has to relax the spin
condition and replace it by the spin® condition. The spin® condition has the
advantage of automatically being fulfilled on oriented closed 4-manifolds
[15]. Then one can still form the spinor bundle but the definition of the Dirac
operator requires the choice of an additional piece of data, a connection A
on a certain U(1)-bundle. Let us denote the resulting Dirac operator by
Dy.
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The Seiberg-Witten equations are equations on a closed 4-manifold M
for the pair (¢, A) where ¢ is a positive spinor field and A is the U(1)-
connection mentioned above. The first equation is simply the harmonic
spinor equation for ¢ with respect to D 4:

Da¢ = 0. (1)

Denote the curvature of A by F4 and its self-dual part by F{. By Clifford
multiplication one can identify exterior forms with endomorphisms of the
spinor space. Taking a suitable part of this identification map yields a
canonical map o : 7 ® ¥ — A2 . The second equation is then

F{ =io(¢® ). (2)

The solution space of these two equations is naturally acted upon by the
gauge group Map(M, S*). Dividing out this group action yields the Seiberg-
Witten moduli space. Topological invariants of this moduli space are im-
portant invariants for the differential structure of M. In the simplest case
the moduli space is just a finite set. Counting points with the right sign
yields the celebrated Seiberg-Witten invariants. See [10] for a survey or [27]
for a detailed introduction.

References

1. M.F. Atiyah, V.K. Patodi, I.M. Singer, Spectral asymmetry and Riemannian Ge-
ometry I, Math. Proc. Camb. Phil. Soc. 77 (1975), 43-69
2. M.F. Atiyah, I.M. Singer, The indez of elliptic operators: III, Ann. Math. 87 (1968),
546-604
3. M.F. Atiyah, I.M. Singer, The indez of elliptic operators: IV, Ann. Math. 93 (1971),
119-138
4. M.F. Atiyah, I.M. Singer, The indez of elliptic operators: V, Ann. Math. 93 (1971),
139-149
5. C. Bér, Lower eigenvalue estimates for Dirac operators, Math. Ann. 293 (1992),
39-46
6. C. Bar, Metrics with harmonic spinors, GAFA 6 (1996), 899-942
7. C. Bar, Harmonic spinors for twisted Dirac operators, to appear in Math. Ann.
8. C. Bir, P. Schmutz, Harmonic spinors on Riemann surfaces, Ann. Glob. Anal.
Geom. 10 (1992), 263-278
9. N. Berline, E. Getzler, M. Verne, Heat kernels and Dirac operators, Springer 1991
10. S.K. Donaldson, The Seiberg- Witten equations and 4-manifold theory, Bull. Amer.
Math. Soc. 3 (1996), 45-70
11. T. Friedrich, Zur Abhdngigkeit des Dirac-Operators von der Spin-Struktur, Collect.
Math. 48 (1984), 57-62
12. M. Gromov, H.-B. Lawson, Spin and scalar curvature in the presence of a funda-
mental group I, Ann. Math. 111 (1980), 209-250
13. M. Gromov, H.-B. Lawson, The classification of simply connected manifolds of pos-
itive scalar curvature, Ann. Math. 111 (1980), 423-484
14. M. Gromov, H.-B. Lawson, Positive scalar curvature and the Dirac operator on
complete Riemannian manifolds, Publ. Math. I.H.E.S. 58 (1983), 295-408



14

15.

16.
17.

18.
19.

20.

21.
22.
23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

CHRISTIAN BAR

F. Hirzebruch, H. Hopf, Felder von Flichenelementen in 4-dimensionalen Mannig-
faltigkeiten, Math. Ann. 186 (1958), 156-172

N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1-55

M. Katz, A proof via the Seiberg- Witten moduli space of Donaldson’s theorem on
smooth 4-manifolds with definite intersection form, Preprint

J.L. Kazdan, F.W. Warner, Ezistence and conformal deformation of metrics with
prescribed Gaussian and scalar curvatures, Ann. Math. 101 (1975), 317-331

J.L. Kazdan, F.W. Warner, Scalar curvature and conformal deformation of Rie-
mannian structure, J. Diff. Geom. 10 (1975), 113-134

D. Kotschick, Non-trivial harmonic spinors on certain algebraic surfaces, in “Ein-
stein metrics and Yang-Mills connections”, ed. T. Mabuchi and S. Mukai, Marcel
Dekker, New York, Basel, Hong Kong 1993

D. Kotschick, Non-trivial harmonic spinors on generic algebraic surfaces, Proc. Am.
Math. Soc. 124 (1996), 2315-2318

P.B. Kronheimer, T.S. Mrowka, The genus of embedded surfaces in the projective
plane, Math. Res. Lett. 1 (1994), 797-808

H.-B. Lawson, M.-L. Michelsohn, Spin Geometry, Princeton University Press,
Princeton 1989

A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris 257 (1963), 7-9

S. Maier, Generic Metrics and Connections on Spin- and Spin®-Manifolds, Preprint
1996

J.W. Milnor, Remarks concerning spin manifolds, in: S. Cairns (Ed.), Differential
and Combinatorial Topology, Princeton 1965, 55-62

J.W. Morgan, The Seiberg-Witten equations and applications to the topology of
smooth four-manifolds, Mathematical Notes 44, Princeton University Press, Prince-
ton 1996

J. Rosenberg, S. Stolz, Manifolds of positive scalar curvature, In: G.E. Carlsson et
al. (Ed), Algebraic Topology and its Applications, Springer Math. Sci. Res. Inst.
Publ. 27 (1994), 241-267

T. Schick, A counterezample to the (unstable) Gromov-Lawson-Rosenberg conjec-
ture, Preprint 1997

R. Schoen, S.T. Yau, On the structure of manifolds with positive scalar curvature,
Manuscripta Math. 28 (1979), 159-183

N. Seiberg, E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2
supersymmetric QCD, Nuclear Phys. B 431 (1994), 484-550

S. Stolz, Simply connected manifolds of positive scalar curvature, Bull. Amer. Math.
Soc. 23 (1990), 427-432

S. Stolz, Simply connected manifolds of positive scalar curvature, Ann. Math. 136
(1992), 511-540

S. Stolz, Positive scalar curvature metrics - existence and classification questions,
Proc. Intern. Congr. of Mathematicians ZirichVol. 1 (1994), 625-636

M. Wang, Parallel spinors and parallel forms, Ann. Glob. Anal. Geom. 7 (1989),
59-68

M. Wang, On non-simply connected manifolds with non-trivial parallel spinors, Ann.
Glob. Anal. Geom. 13 (1995), 81-42



