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Abstract

If G is the structure group of a manifold M it is shown how a certain
ideal in the character ring of G corresponds to the set of geometric ellip-
tic operators on M. This provides a simple method to construct these
operators. For classical structure groups like G = O(n) (Riemannian
manifolds), G = SO(n) (oriented Riemannian manifolds), G = U(m) (al-
most complex manifolds), G = Spin(n) (spin manifolds), or G = Spin‘(n)
(spin® manifolds) this yields well known classical operators like the Euler-
deRham operator, signature operator, Cauchy-Riemann operator, or the
Dirac operator. For some less well studied structure groups like Spin(n)
or Sp(q)Sp(1) we can determine the corresponding operators.

As applications, we obtain integrality results for such manifolds by
applying the Atiyah-Singer Index Theorem to these operators. Finally, we
explain how immersions yield interesting structure groups to which one
can apply this method. This yields lower bounds on the codimension of
immersions in terms of topological data of the manifolds involved.

AMS Subject Classification: 58G30, 57R15

Introduction

Manifolds with different kinds of geometric structure have been studied for a
long time. In particular, one has found certain associated elliptic differential
operators on these manifolds. For example, on any Riemannian manifold there is
the Euler-deRham operator d + ¢ acting on differential forms. If in addition, the
manifold is oriented and even dimensional, then there also exists the signature
operator, also acting on forms. If the manifold is almost complex, then there is
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the Cauchy-Riemann operator 0 + 0* and if the manifold is spin, we can talk
about the Dirac operator acting on spinors.

These operators have been found over the time and they are not only inter-
esting in themselves but they also had numerous applications to the study of the
topology and the geometry of these manifolds. For example, for a long time it
was not clear under what conditions the classical definition of the Dirac operator
on R* could be generalized to manifolds. The discovery of the Dirac operator and
the Atiyah-Singer Index Theorem finally explained the integrality of the A-genus
of closed spin manifolds.

If we want to study other geometric structures on manifolds, like e.g. almost
quaternionic structures, it would obviously be desirable to have a conceptional
way to find the corresponding elliptic operators. Looking at the conditions on
the manifolds for the classical operators to exist we notice that it is always a
condition on the structure group of the manifold.

We say that G is a structure group of the manifold M if the tangent bundle
of M is induced by a G-principal bundle. This is a topological concept and is
not to be confused with the much stronger notion of holonomy group. Being
Riemannian can be expressed by saying that the structure group is G = O(n),
being oriented Riemannian by G = SO(n), being almost complex by G = U(m),
and being spin by G = Spin(n). We get the suspicion that one should be able
to read off the elliptic operators on a manifold with structure group G directly
from G.

In fact, we will see that the set of elliptic operators corresponds to an ideal
R(G, H) in the character ring R(G) of G. For this to be true we need the condition
that G act transitively on the unit sphere via the representation which induces
the tangent bundle. For all groups mentioned above this condition is satisfied.
The ideal R(G, H) is the kernel of a restriction map R(G) — R(H) for a suitable
subgroup H C G and can easily be computed for concrete G. It is not such a big
surprise that in the classical cases the classical operators essentially correspond
to generators of R(G, H).

To get something new from this construction we look at several less well stud-
ied structure groups. We determine the elliptic operators on almost quaternionic
manifolds (G = Sp(q)Sp(1)) and on spin” manifolds (G = Spin”(n)).

Of course, there are potentially many applications of these operators. In
this paper we focus on integrality results. By applying the Atiyah-Singer Index
Theorem to these operators we can express their Fredholm index in topological
data. In particular, the resulting characteristic number must be integral.

As an application we show that the projective Cayley plane does not admit
an almost quaternionic structure. Non-existence of an almost complex structure
was shown by Borel and Hirzebruch in [11].

Spin® manifolds are in some sense the quaternionic analogue to spin® mani-
folds. They constitute a very large class of manifolds. In particular, all spin®
manifolds (hence all spin manifolds and all almost complex manifolds) and all

i



almost quaternionic manifolds are spin®. We will see that any spin® manifold

possesses a twistor space which turns out to be a spin® manifold.

In the last part we look at applications to immersion problems. An immersion
of a manifold into a spin manifold (like Euclidean space) yields a reduction of
the structure group. Applying our results to these reductions yields integrality
of certain expressions in characteristic numbers of the manifold and the normal
bundle. This can be used to derive lower bounds on the codimension of the
immersion. We explain how this method can be adapted to different situations
where one imposes additional structure on the manifold and/or on the normal
bundle. One can also weaken the spin condition on the target manifold to e.g.
the spin® condition.

For all the applications it is very helpful that one no longer needs a direct
construction of the relevant operators in every situation but that one has a general
and simple method for their determination.
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I. Elliptic symbols

We show how to construct elliptic symbols and hence elliptic operators on a
manifold using the representation theory of the structure group. The proof of
Theorem 1 is surprisingly simple and follows directly from an easy reduction
lemma.

Then we reformulate this construction recipe in K-theoretical language. This
makes explicit computations easier and helps to study the question whether we
get all elliptic operators this way (up to deformations and K-theoretically trivial
manipulations).

It turns out that the answer is affirmative for those groups for which a certain
representation theoretical invariant, the surjectivity exponent, vanishes. This
includes for example G = Spin(n) and G = U(m), i.e. spin manifolds and almost
complex manifolds. In general, one cannot expect this because the structure
group may not be optimally chosen. But we will see that up to a suitable power
of 2 the construction method yields all elliptic operators.

There are many applications of elliptic operators to geometry and topology.
We formulate the integrality theorem obtained by applying the Atiyah-Singer
Index Theorem.

Finally, we look at the basic example of spin manifolds and, of course, it turns
out that the Dirac operator is the fundamental elliptic operator in this case.

1. The construction

We begin by constructing elliptic symbols in terms of the representation theory
of the structure group. To make this more precise let us first set up the notation.

Let X be an n-dimensional differentiable manifold, let G be a compact Lie
group, let P be a G-principal bundle over X. Furthermore, let 7: G — O(n) be
an orthogonal representation of G. We assume that the associated vector bundle
equals the cotangent bundle of X, i.e. P x, R" = T*X. In this situation we
say that G is the structure group of X or that X has a G-structure. Since the
representation 7 is orthogonal X inherits a Riemannian metric.

Crucial assumption. We assume that G act transitively on S*~! Cc R" via

Let 2o € S" ! and let H C G be its isotropy subgroup, i.e. H = {g €
G | 7(g9)xo = xo}. Since the action of G on S"! is transitive H is independent
of the choice of xy up to conjugation. We say that X has a transitive structure
group G with isotropy subgroup H.



Let m : T*X — X denote the projection of the cotangent bundle, let m; be its
restriction to the unit sphere bundle 77X C T*X.

Theorem 1. Let X be an n-dimensional differentiable manifold with tran-
sitive structure group G and isotropy subgroup H. Let Vi and V5, be G-modules
over the field K, K = R, C, or H. Let E; denote the associated vector bundles,
re. B, =P xg V.

If Vi and Vs are equivalent as H-modules, then there exists an elliptic symbol
between the bundles Ey and Es. More precisely, there exists a K-linear vector
bundle isomorphism o : i By — 7w Es.

Proof. Let P denote the G-principal bundle over X. By Lemma 1 below
;P can be reduced to an H-principal bundle P over Ty X. Since V; and V, are
H-equivalent there is an isomorphism o : 7] Ey — 7] Es.

We can extend this isomorphism homogeneously in radial directions to 77" X —
{zero section} by oy := tF - o, where £ € Ty X, t > 0, and k € R is an arbitrarily
chosen degree. This yields the desired elliptic symbol. O

Lemma 1 (Reduction Lemma). Let X be a topological space, let G be a
compact Lie group, let P be a G-principal bundle over X. Furthermore, let F' be
a topological space on which G acts transitively. Let fo € F and let H = {g €

G | gfo= fo}. Let m: P xg F — X be the associated fiber bundle.
Then the structure group of P can be reduced to H.

Proof. The associated fiber bundle P X F' is the set of equivalence
classes [b, f] of pairs (b, f), b € P, f € F under the equivalence relation
(b, f) ~ (bg,g7'f), g € G. The pull-back 7*P is given by

TP {([b, f],¥") | b,b" € P having the same base point in X, f € F}
= {([b,fl,bg) |be P, f e FgeG}
{

(b, fol,bg) | b€ P, g € G}.

The reduction P to H is then given by

P = {([b, fo],bh) | b€ P,h € H}.O

This lemma can be applied in many situations. For example, if P is the
O(n)-frame bundle of a not necessarily orientable Riemannian manifold X, take
F=0(n)/SO(n)=1Z, Thenr:X =P Xom) F — X is a twofold covering and
the structure group of the frame bundle 7*P of X can be reduced to SO(n) by
Lemma 1. Hence X is orientable. Of course, X is nothing but the orientation
covering of X.



Another example is given by the splitting principle. If H = T is a maximal
torus of G, F = G/T, then the structure group of the pull-back of P to Y =
P X F can be reduced to T'. Therefore any associated vector bundle splits into
line bundles.

A third example appears in 4-dimensional geometry. If X is an oriented 4-
dimensional Riemannian manifold, i.e. X has structure group G = SO(4), then
take F' = SO(4)/U(2) = CP'. By Lemma 1 the pull-back of the frame bundle
P of X to Z = P Xsow) CP' can be reduced to U(2). This means that the
horizontal tangent bundle of Z — X carries a complex structure. Since the fiber
bundle Z — X has fibers CP! so does the vertical bundle. Thus the twistor space
Z is an almost complex manifold.

We will see another application of Lemma 1 when we show in Section 2 of
Chapter II that the twistor space of a spin® manifold is spin®.

Since to every symbol there exists a pseudodifferential operator having this
symbol as its principal symbol [18, p. 245] we obtain immediately

Corollary. In the situation of Theorem 1 with H -equivalent G-modules Vi
and Vy there exists an elliptic K-linear pseudodifferential operator C*°(X, Ey) —
C*®(X, Ey) of arbitrarily chosen degree. O

EXAMPLE 1. Let X be an oriented 4-manifold. Then G = SO(4) and H =
SO(3). We choose K =R, V; = A' (1-forms) and V5 = 1 + A% (functions and
self-dual 2-forms).

We have to restrict the SO(4)-modules V; and V; to SO(3). A' = R* decom-
poses as an SO(3)-module into a trivial line spanned by z, and its 3-dimensional
orthogonal complement on which SO(3) acts by standard matrix multiplication.
Hence V1|SO(3) = 1 + A'R®. The action of SO(3) on the 3-dimensional space
AZR* is nontrivial, hence A2ZR*|SO(3) = A'R®.

Thus the condition V;|H = V,|H of Theorem 1 is satisfied and we conclude
that there is an elliptic operator C®(X,T*X) — C*°(X,R®A3T*X). Of course,
we know one such operator, namely the half Euler-deRham operator § + d™.

EXAMPLE 2. Let X be a 2m-dimensional spin manifold. Then G = Spin(2m)
and H = Spin(2m — 1). We choose K = C, V; = Xt and V3 = X, the positive
and the negative half spinor representations. Restriction to H yields the spinor
representation of Spin(2m — 1), Vi|H = Vo|H = X.

Therefore there exists an elliptic operator C*(X,X%) — C*(X, £7) for which
we may take the Dirac operator.

In both examples we were able to find an elliptic differential operator. So
the question arises whether this can always be achieved. The answer however is
negative.



To demonstrate this we modify Example 1. Let X be an oriented 4-manifold,
G = SO0(4), H=S0(3), K=R. We choose V; =1+ A! and V, =2+ A%. We
have simply added the 1-dimensional trivial representation to both V; and V5.
Hence by Theorem 1 there is an elliptic pseudodifferential operator between the
associated bundles.

Using additional symmetry properties of differential operators and the Leray-
Hirsch Theorem [16] one can show [5] that the existence of an elliptic differential
operator C*(X,R@®T*X) — C*(X,R@® R & A%T*X) implies vanishing of the
fourth Stiefel-Whitney class, w4(X) = 0. This yields

EXAMPLE 3. There exists an elliptic pseudodifferential operator COO(CIF’Z, R®
T*CP?) — C®(CP?, R®R®A2T*CP?) but there is no elliptic differential operator
because w,(CP?) # 0.

2. K-theoretical formulation

To apply Theorem 1 we need to find G-modules V; and V5 which restrict to
the same H-module. To check this condition by decomposing a G-module into
irreducible H-summands is, though theoretically possible, usually an unpleasant
task in concrete situations. Therefore the following point of view is helpful.

In what follows we will mainly be interested in the index of the operator
that we construct. This index depends only on the Chern character of the virtual
vector bundle F; — F5 and on the differential topology of X. Therefore we should
look at the virtual representation Vi — V5 which is an element of the representation
ring (character ring) R(G) of G. It is always much simpler to work with virtual
representations rather than with actual representations. For the sake of simplicity
we restrict ourselves from now on to the case K = C.

The condition of Theorem 1 says simply that the virtual G-module V; —
V, be mapped to 0 under the restriction mapping R(G) — R(H). Hence we
need to compute the kernel R(G, H) of this restriction mapping. Since R(G)
is Noetherian R(G, H) is finitely generated. Elliptic operators corresponding to
generators of R(G, H) will be called fundamental.

If the dimension n of X is odd, then S"~! = G/H is even dimensional and
the ranks of G and H coincide. Thus R(G, H) = 0 and Theorem 1 does not yield
anything interesting. Therefore we will restrict ourselves to the even dimensional
case n = 2m. In this case the sequence

0— R(G,H) — R(G) — R(H) — 0 (1)

is exact. This can be checked using the classification of transitive and effective
Lie group actions on spheres [7, p. 179], [9], [10], [21]. Before we proceed to
examples we give a K-theoretical formulation of Theorem 1 which actually works
in a slightly more general situation.



Let X be a topological space, let G be a compact Lie group, let P be a G-
principal bundle over X, let 7 : G — O(n) be an orthogonal representation. We
denote the associated Riemannian vector bundle P x, R" by E. The bundle E
replaces the cotangent bundle of X. Again, we assume that G act transitively
on S"! ¢ R” via 7 and denote the isotropy subgroup by H. We say that E
has transitive structure group G with isotropy subgroup H. Denote the unit disk
bundle of E by DE and the unit sphere bundle by SE. Hence 0DE = SE.
Denote all the projections £ — X, DE — X, SE — X, and (DE,SE) — X by
7. Then K*(E), K*(DE), K*(SE), and K*(DE, SE) are modules over K*(X)
via m*.

Given the G-principal bundle P we have the homomorphism assocp : R(G) —
K°(X) which maps a virtual G-module V to its associated virtual vector bundle
P xaV.

Now Lemma 1 implies that the structure group of the pull-back of P to SE
can be reduced to H. Let P denote this reduction. In particular, we have the
map assocy, : R(H) — K°(SE).

The construction in the proof of Theorem 1 associates to G-modules V; and V,
and to an H-isomorphism V; — V5 an element in K°(DE, SE). Since the space
of H-isomorphisms is isomorphic to a product of GL(k,C)’s it is connected and
the element in K°(DE,SE) does not depend on the choice of H-isomorphism
but only on V; — V, € R(G, H). Hence we have a map

symb : R(G,H) — K°(DE, SE).

If E is the cotangent bundle of a differentiable manifold X, then elements of
K°(DE, SE) are equivalence classes of elliptic symbols.
The K-theoretical formulation of Theorem 1 is

Theorem 2. Let X be a topological space, let 1 : E — X be a Rie-
mannian vector bundle of even fiber dimension with transitive structure group
G and isotropy subgroup H.

Then the following diagram is commutative with exact columns.



| |

symbgnr*
R(G,H)®@ K'(X) ——— K Y(DE,SE)

| !

aSSOC, .« p@T*
RG)®K (X)) —— K (DE)

| !

assoc ,@n*
RH)QK'(X) —— K (SE)

s l

symbegnr*
R(G,H)® K°(X) ——— K%DE,SE)

| !

assoC, .« p&7*

RG)®K(X) — ", K°DE)

! l

assoc p@m*

RHY®K'(X) — &  KYSE)

o ]

symbegr*
R(G,H)® K}(X) —— K (DE,SE)

The diagram can be extended infinitely by Bott periodicity.
Proof. The right column is the long exact cohomology sequence for K-theory

of the pair (DFE, SE). Tensoring the exact sequence (1) by K*(X) yields the left
column which is also exact because R(G, H) is torsionfree.



Commutativity of

symbgnr*
R(G,H)® K*(X) ——— K*(DE,SE)

| Il

assOC, .« p@r*

RG)®K*(X) —" 5 K*(DE)

| Il

assoc ;@

RH)® K*(X) — 5  K*(SE)

is obvious from the definitions. Diagram chasing using the fact that R(H) ®
Ki(X) —- R(G,H) ® K'*1(X) and the composition K*(DE) — K'(SE) —
K+ (DE, SE) are zero yields commutativity of

) assoc ,@n* )
RH)® Ki(X) ———  K!(SE)

o !

) symbgnr* )
R(G,H)® K""'(X) ——— K“"!(DE,SE)O

REMARK. Example 3 in the previous section was obtained from Example 1 by
adding a trivial G-module to V; and V5. Thus the differences V; — V, € R(G, H)
are the same in Example 1 and 3. It is shown in [5, Satz 1.9] that in general every
element of R(G, H) can be written as a difference V; — V; of actual G-modules
Vi and V5 in such a way that there is an elliptic differential operator of first
order between the associated bundles. Hence we could insist on working with
differential operators. But for our purposes elliptic pseudodifferential operators
will be sufficient.

3. General integrality theorem

We return to the case where X is an n-dimensional manifold and £ = P x, R"
is its cotangent bundle. If X is closed, i.e. compact and without boundary, then
any elliptic operator on X is Fredholm and we can compute its index in terms
of topological data using the Atiyah-Singer Index Theorem. In particular, this
topological expression must be an integer. We are now going to apply this to the
operators constructed in the previous sections.

Note that for the following integrality theorem we do not really need the
Atiyah-Singer Index Formula, we only need the cohomological formula for the
topological index of the elliptic symbol which is an integer by definition.
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Theorem 3. Let X be a closed differentiable manifold of even dimension
n = 2m. Let G be a compact connected Lie group, let T : G — SO(2m) be
an orthogonal representation, let P be a G-principal bundle over X such that
P x, R" =T*X. In particular, X is oriented. We denote the classifying map of
P by ®p : X — BG. Furthermore, assume that G act transitively on Sl R
via T and let H C G be the isotropy subgroup.

Then for any V € R(G, H) and any W € K°(X) the rational number

{ch(W) X > (i}i((‘ef)) ) : A(TX)Q} [X]

1S an integer.

Here e € H*™(BSO(2m);Q) is the universal Euler class, ch : R(G) —
H*(BG;Q) is the universal Chern character, and A(TX) is the total A-class
of X.O

The theorem follows directly from the previous discussion and [4, Sect. 2.
Note that the assumption in [4, Prop. 2.17] that 7*(e) # 0 € H*(BG; Q) follows
from the transitivity of G.

REMARK. If V € RSP(G, H), the quaternionic representation group, then

{@;D(i’i((‘g))) - A(TX)?}[X] is actually an even integer because then the elliptic

operator 1s quaternionic, thus kernel and cokernel have even complex dimension.

4. The basic example

We will study many examples in Chapter II but the fundamental example of (even
dimensional) spin manifolds deserves some extra attention. Let G = Spin(2m)
and let 7 : Spin(2m) — SO(2m) be the twofold covering map. Then the isotropy
subgroup of a point 2o € S*™~ ' is H = Spin(2m — 1).

We want to compute generators for the ideal R(G, H). Recall that

R(Spin(2m)) = Z[A',...,A™ 2, 2T 5]
and
R(Spin(2m — 1)) = Z[A',...,A™ 2 %]].

Here A* is the SO(n)-module of k-forms pulled back to Spin(n) via 7 and ¥ is
the spinor representation. In even dimensions > decomposes into the positive and
the negative half spin representations, ¥ = Xt + X ~. For facts on representation
theory of compact groups see [12], [27]. The restriction homomorphism R(G) —



R(H) is given by
Al
A2

— 1+ AL
— A+ A2
Amf2 SN Am73 +Am72’
>ro— X,
X — 2.

We see that the restriction homomorphism on the A*’s is invertible, thus only
the spinor representations contribute to the kernel. More precisely, the kernel is
generated by one element,

R(Spin(2m), Spin(2m — 1)) = (X* - X7).

Hence there is one fundamental operator for even dimensional spin manifolds,
the Dirac operator.

Theorem. (Atiyah-Hirzebruch [3, Cor. 2])
Let X be a compact spin manifold of even dimension, let W € K°(X). Then

~

{ch(W)A(TX)}[X]

18 an integer.
In particular, the A-genus of a compact spin manifold is an integer.
Furthermore, if n = 4(8), then the A-genus of a compact spin manifold is

divisible by 2.

Proof. The theorem follows from Theorem 3 with V' = Yt —¥~. A short
calculation shows Q*P(ch(2+ —¥7)/m*(e)) = A(TX)™*. O

This integrality theorem is older than the Atiyah-Singer Index Formula and
it was one of the hints on the way to its discovery.

5. Thom isomorphism and surjectivity

We have seen that there is a homomorphism
symb® 7* : R(G,H) ® K*(X) — K*(DT*X, ST*X)

which we can regard as a construction recipe for elliptic symbols naturally asso-
ciated with the G-structure and twisted with an arbitrary coefficient bundle in
K°(X). Now it is natural to ask how good this construction is, more precisely,
can we say anything about surjectivity of this homomorphism ?



In general, we cannot expect the homomorphism symb ® 7* to be surjective
simply because the structure group G' may not be optimally chosen. For exam-
ple, on a spin manifold there is the Dirac operator. But if we forget about the
spin structure and regard the manifold just as an oriented Riemannian manifold,
structure group G = SO(n), then the symbol of the Dirac operator will not be
in the image of symb ® 7*.

However, we will see that up to a suitable power of 2 our homomorphism is
surjective, more precisely

symb ® 7* : R(G, H) ® K°(X) ® Z[2~*] — K°(DT*X, ST*X) ® Z[2™°]

is onto. The number « is a representation theoretical invariant depending on G
and 7 which we are going to explain next.

Let G be a compact connected Lie group, let 7 : G — SO(2m) be an orthog-
onal representation. If 7 lifts to a homomorphism 7 : G — Spin(2m), then we
set a(G, 1) := 0. Otherwise there exists a connected twofold covering group G of
G (the fiber product of G and Spin(2m)) and 7 such that the following diagram
commutes.

G ;> Spin(2m)

l l

G —— SO(2m)

There is a central subgroup Z C G isomorphic to Zs such that G /Z = G. Denote
the nontrivial element in Z by —1.

Since Z lies in the center of G Schur’s lemma implies that the action of
—1 on an irreducible complex G-module is either trivial or multiplication by
—1 depending on whether the module descends to a G-module or not. Hence

N

—1 acts on R(G) and decomposes it into eigenspaces for the eigenvalues +1,

N A N A

R(G) = R*(G) ® R™(G) where R*(G) can be identified with R(G).
Let dim : R(G) — Z be the homomorphism which maps each virtual module

to its dimension. The image of R~ (G) under dim is an ideal in Z, hence generated
by some k > 1. Now we have 7*(X7) € R™(G) and dim(X*) = 2™~!. Thus k = 2°
where 0 < a < m — 1. We will call & = a(G, 7) the surjectivity exponent of G.

Theorem 4. Let X be a compact CW-complez, let 1 : E — X be a Rie-
mannian vector bundle of fiber dimension 2m with compact connected transitive
structure group G and isotropy subgroup H.

Then the map

R(G,H)® K*(X)® Z[3] — K*(DE,SE) ® Z[3]

1s surjective. If the surjectivity exponent vanishes, a = 0, then the assertion holds
also without inverting 2, i.e.

R(G, H)® K*(X) — K*(DE, SE)
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1S surjective.

EXAMPLE. Let G = U(m) and let 7 : U(m) — SO(2m) be the stan-
dard inclusion. Then U(m) has a one-dimensional representation (A%™)2 whose
square yields the module of (0, m)-forms A%™. Thus (A%™)z € R~(U(m)) and
a(U(m)) = 0 even though 7 : U(m) — SO(2m) does not lift to Spin(2m). Hence
if X is an almost complex manifold, then every elliptic symbol class comes from
R(U(m),U(m — 1)) twisted by coefficients in K°(X).

At the end of Chapter II we will present Table 2 containing the surjectivity
exponents for many groups G.

Proof of Theorem 4. If 7 : G — SO(2m) lifts to Spin(2m) put o :=
(2t —X7) € R(G, H). Otherwise, pick V € R™(G) of dimension 2* and put
o:=72t—27)®V e RY(GQ) & R(G). We will show

CLAIM: The map K*(X) ® Z[27%] — K*(DFE, SFE) ® Z[2~*] mapping W €
K*(X) to m*W - symb(o) is an isomorphism.

We start with the case that the bundle F is trivial, F = X x R?*™. Then the
Thom space DE/SFE is homeomorphic to X x $?™/X x {point}. The long exact

sequence for K-theory of the pair (X x S?™ X x {point}) yields

K™Y(X x §") — K" Y(X) — K'(DE,SE) — K'(X x $) — K'(X)
(2)

The Kiinneth formula for K-theory [1] yields an isomorphism
K*(X)® K°(5*™) — K*(X x §™)

whose composition with the restriction mapping K*(X x $*™) — K*(X) is simply
id®dim. The map id® dim : K*(X) ® K°(5*") — K*(X) is onto and its kernel
is K*(X) ® K°(S?™). Thus sequence (2) breaks up to

0 — K'(DE,SE) — K'(X) ® K°(5*™) — 0.

It is well known that K°(S?") = K°(D?™, §?™1) 2 Z is generated by symb(S+ —
¥7), see [2]. Hence symb(o) generates K°(D?*™ S*™~1)® Z[27*]. Thus the claim
is proved if F is a trivial bundle.

Now let X be a compact CW-complex. We prove the claim by induction on
the number of cells of X.

Let X be obtained from X' by attaching one k-cell. We assume that the claim
be true for X’. We can cover X by two compact sets A and B such that

(i) The interior of A and B still cover X, i.e. AUB = X.

(ii) A is contained in the interior of the new k-cell.

(iii) B contains X' and the inclusion mapping X’ < B is a homotopy equiv-
alence.
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By (ii) the bundle E is trivial over A and AN B. Hence the claim is true for A
and AN B.

By (iii) and the induction hypothesis the claim is also true for B.
Now we use the Mayer-Vietoris sequence for K-theory [17]

oo — K'(X) — K'(A) @ K'(B) — K'(ANB) — K"(X) — --.

Tensoring by Z[2™ %] again yields an exact sequence because Z[27°| is a flat Z-
module. We obtain the following commutative diagram with exact columns.

| |

(K™' (A e K'(B) | (K'7H(DE|a, SE[4) © K (DE|g, SE|p))

QZ[27°] ®Z[27°]
Ki_l(Aﬂ\B) QZ27Y —— K'Y (DE| snp, SE|ans) @ Z[27°]
K'(X) é z2°] — K'(DE,SE) ® Z[27°]

(K'(4) ® K'(B)) (K/(DE| 1, SE|4) ® K'(DE|3, SE|))

QZ[2°] QZ[2"°]
K(ANB)®Z[2™%] —— K*(DE| ang, SE|anp) ® Z[27°]

: :

We know that the outer four horizontal arrows are isomorphisms, hence by
the 5-lemma we conclude that so is the middle one.
Since Z[27*] = Z if @ = 0 and Z[27*] = Z[}] if & > 0, the theorem follows. O

REMARK. What we have actually shown in the proof of Theorem 4 is the fact
that K*(DE, SE)®Z[2“] is a free module over K*(X)®Z[2~*] of rank one with
generator symb(c). For certain special groups G with o = 0, i.e. G = U(m), this
can be found in the literature and is then called Thom isomorphism in K-theory.
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II. Examples

We compute the ideal R(G, H) for the most important structure groups G. For
the most classical examples like (oriented) Riemannian manifolds (G = O(n),G =
SO(n)), almost complex manifolds (G = U(m)), spin manifolds (G = Spin(n)),
and spin® manifolds (G = Spin®(n)) the corresponding fundamental elliptic op-
erators (Euler-deRham operator, signature operator, Cauchy-Riemann operator,
Dirac operator) have been found over the years.

For some less well studied groups like G = Spin”(n) and G = Sp(q) - Sp(1)
(almost quaternionic manifolds) we use our method to systematically determine
the fundamental elliptic operators. In particular, we obtain new integrality results
for such manifolds. As an application, we show that the projective Cayley plane
does not admit an almost quaternionic structure. In the case of spin® manifolds
we digress somewhat from our path and include a short study of the corresponding
twistor space.

In the end we summarize the results in Table 2.

1. Some classical examples

In this section we compute R(G, H) for some well studied structure groups G.
For these groups we cannot expect to find new elliptic operators but it is still
interesting to see how they fit into our framework.

We start with G = SO(2m),m > 2, corresponding to 2m-dimensional ori-
ented Riemannian manifolds. We have already seen in the previous chapter
that R(Spin(2m)) = Z[AY,...,A™2, 5+ %] and R(Spin(2m), Spin(2m —1)) =
(2T —%7). Now R(SO(2m)) can be identified with the subring of R(Spin(2m))
consisting of those polynomials which are even in ¥t and ¥~. Thus we obtain

R(SO(2m),SO(2m —1)) = R(SO(2m))N R(Spin(2m), Spin(2m — 1))
= {(ZT=X7) -4 | ¢ is odd in £*}
= (Et-2)-xH,Zt-2)-2)
(1—A" x4 (-1)™AT,
L—A'd -+ (=1)™A™).
Hence we get two fundamental operators, two half Fuler-deRham operators the
sum of which is just the ordinary Euler-deRham operator corresponding to 1 —

At £ ... — A?™=1 1+ 1 and the difference is the signature operator corresponding
to AT — A™.

13



Let us take a look at even dimensional not necessarily orientable Rie-
mannian manifolds, i.e. G = O(2m). It is well known [12] that

R(O(n)) = Z[AY, ..., A"/I,

where I,, is generated by A*A® — A" % k = 1,...n. The restriction mapping
R(O(2m)) — R(O(2m — 1)) is given by

A = 1+ AN

A2 o A4 A,

A2m—1 N A2m—2 +A2m—1’
A2m = A2m71_

Since the relation ideal I, is mapped onto I, 1 one sees easily that
R(O(2m),0(2m — 1)) is generated by 1 — A' & --- + A?*™. Hence the Euler-
deRham operator is the fundamental operator.

The next classical example is given by almost complex manifolds, i.e.
G = U(m). The representation ring is

R(U(m)) = Z[A, ... A% A™0]/(A%™A™0 — 1)

where AP denotes the U(m)-module of (p, g)-forms. Since 7 : U(m) — SO(2m)
is the standard imbedding, H is just U(m — 1). A similar calculation as in the
previous example yields

R(Um),Um —1)) = (1 — A% £ ... 4 (=1)™A"™).
Again, there is one fundamental operator, the Cauchy-Riemann operator.

As a generalization of almost complex manifolds as well as of spin manifolds
we can look at spin® manifolds. The group Spin‘(n) is defined by

Spin(n) x U(1)

o) = 4w, (1 -0y

We have the commutative diagram

Spin(n) x U(1) —— Spin(n)

J J

Spin‘(n) — SO(n).
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Hence if G = Spin®(n), then H = Spin®(n — 1). For G = Spin(2m) x U(1) and
H = Spin(2m — 1) x U(1) we have R(G) = Z[A},...,A™ 2.5+ % 2 2] /(22 —
1) and R(H) = Z[A',...,A™ 2%, 2,2]/(2Z — 1). Here z denotes the standard
representation of U(1). The restriction mapping is given by

A = 14+ AL
A2 o AL+ A2

Am72
EJr
-

z

Am73 + Am72,

bl

M ™

7

U A

N

z

1

Hence we obtain R(G, H) = (X+ — 7). Since (=1, —1) acts trivially on the A¥’s
and via multiplication by —1 on X%, 2, and z we can identify R(G) with the
subring of R(G’) consisting of those polynomials which are even in %, z, and Z.
This yields four generators for R(G, H), namely

RG,H)=((E"-S7) -2, (8t —£7) -2, (S —£7) - O+, (8 = £7) - 27).

Now we note that we can express all generators by the first one, namely (X7 —
Y)z=Et-X)-z- (%) and (Xt -% ) -ZEF= (U -¥7) -2 (2%%). Thus

R(G, H) = (St —%7) - 2).

Hence we obtain one twisted Dirac operator as the fundamental operator. We
note that since the G-module z is 1-dimensional the surjectivity exponent is zero,
a(Spin¢(2m), ) = 0.

The corresponding integrality theorem is in this case

Theorem. (Atiyah-Hirzebruch [3, Cor. 1])
Let X be a compact spin® manifold of even dimension, let W € K°(X), let
c € H*(X;Z) such that ¢ = wy(X) mod 2. Then

{ch(W)e2 A(TX)YX]
1S an integer.

Proof. The theorem follows from Theorem 3 with V = (X* — X7) - 2. The
condition ¢ = wy(X) mod 2 insures that c is the first Chern class of the canonical
line bundle for some spin® structure. In other words, a spin® structure P can be
chosen so that ¢ = ¢1(P X gpine(n) 2°). O
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It turns out that for those connected compact groups G for which 7 : G —
SO(2m) lifts to 7 : G — Spin(2m) the ideal R(G, H) has one generator, namely
7*(3T—X 7). Hence in these cases the Dirac operator is the fundamental operator.
This applies in particular to simply connected groups G such as SU(m) (almost
complex manifolds with vanishing first Chern class), Sp(g), and exotic Spin(7)
or Spin(9).

2. Spin” manifolds

We call an n-dimensional differentiable manifold X spin” if it has structure group

Spin(n) x Sp(1)
{(17 1)’ (_1’ _1)}.

In other words, Spin®(n) is the quaternionic analogue to Spin‘(n), we simply
replace the U(1)-factor by an Sp(1)-factor. The orthogonal representation 7
is induced by projection 7 onto the Spin(n)-factor, i.e. the following diagram
commutes.

G = Spin®(n) =

Spin(n) x Sp(1) é) Spin(n)

J J

Spin®(n) — SO(n)

Spin” manifolds form a very big class of manifolds because all spin® manifolds
and all almost quaternionic manifolds are spin”. The exact sequence

0 — Zy — Spin"(n) — SO(n) x SO(3) — 0 (3)

shows that spin” manifolds carry a canonical SO(3)-bundle E. This SO(3)-bundle
is analogous to the canonical line bundle of spin® manifolds.
Sequence (3) yields the exact cohomology sequence

H'(X; Spin"(n)) — HY(X;SO(n))® H'(X;SO(3)) =% H*(X;Z2)  (4)

which shows that the condition that an SO(3)-bundle E be canonical for some
spin” structure is exactly
we(E) = wy(X). (5)

To obtain elliptic operators on even dimensional spin” manifolds we compute
R(Spin(2m), Spin*(2m — 1)). Put G = Spin*(2m), H = Spin"(2m —1),G =
Spin(2m) x Sp(1), and H = Spin(2m — 1) x Sp(1). We know

R(G) =ZIA',...,A™ 2 %" 27 p|
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and A

R(H)=ZIA',...,A™ % %, p]
where p is the standard representation of Sp(1) = SU(2) on C?. As in the case
of spin® manifolds we see easily that R(G, H) = (X% — X7) and since R(G) is the
subring of R(G) consisting of those polynomials which are even in ¥* and p we
get

R(G,H) = ((Z*=X7)p, (B —X7)z*, (5 ~x7)x7)
= (Et-Z)p 1 —-At £+ (—=1)™A™,
1_A1:t"'+(—1)mAT),

We thus obtain three fundamental operators, two half Euler-deRham operators
and one twisted Dirac operator.
Now we can formulate the corresponding integrality theorem.

Theorem 5. Let X be a compact spin” manifold of dimension n = 2m with
canonical SO(3)-bundle E. Let W € K°(X) and let p,(E) € H*(X;Z) be the
first Pontrjagin class of E.

Then p1(E) = wa(M)? mod 2 and the rational number

18 an integer.
In particular,

2 {cosh <7"1’;(E)> A(TX)} [X]

1S an integer.

Proof. Since the reduction of p;(F) modulo 2 is wy(F)?, the first part of the
assertion follows from (5). We now apply Theorem 3 with V = (Xt —X7) - p.
The only thing left to do is to compute ch(p).

Denote the global weights of the Sp(1)-module p by 2, and z;' say. Accord-
ingly, we write for the Chern character

ch(p) = €™ + e = 2 cosh(zy).

The complexification of E is associated to the module p? — 1 having the weights
22, zy? and 1. Therefore

c(E®C) = (1+2x)(1 — 2x0) = 1 — 4z,
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Hence the first Pontrjagin class is given by

p1(E) = 422,

ch(p) = 2 cosh (%) .

Theorem 5 now follows from Theorem 3. O

which implies

p1(E)

5 ) is actually

Note that cosh(z) is an even power series so that cosh (

a power series in p;(F).
Theorem 5 is a special case of K. H. Mayer’s integrality theorem [20] to which
we will return in the third chapter. The following two conclusions are immediate.

Corollary 1. Let X be a compact spin” manifold of dimension n = 2m with
canonical SO(3)-bundle E. If the first Pontrjagin class p1(E) of E is a torsion
class, then 2A(X) is an integer.O

Corollary 2. Let X be a compact spin” manifolcj of dimension n = 2m whose
forth Betti number vanishes, by(X;R) = 0. Then 2A(X) is an integer.O

One can use Theorem 5 to derive divisibility properties of SO(3)-bundles.

EXAMPLE 1. We consider the 4¢-dimensional manifold X = S* x --- x S%.
N~——— ——

g factors
Let E be an arbitrary SO(3)-bundle over X.

Then the characteristic number {p,(E)1}[X] is divisible by 22771 . (2q)!

The proof is as follows. Since trivially wy(E) = 0 = wy(X), E is canonical for

~

some spin” structure. We note that A(X) = A(S*)? = 1 and we know that the
following expression is an integer:

o Leosh [ VLI Uiy — o ] WR(B)/ 2P L o
cosh | YZLZ2 ) 4[] gl (¥
1

= gy P (K]0

In the case ¢ = 1 this means that the Pontrjagin number of any SO(3)-bundle
over S* is divisible by 4. It is true in general that the Pontrjagin number of an
SO(3)-bundle E over a 4-manifold with wy(E) = 0 is divisible by 4 because F

18



can be lifted to an SU(2)-bundle F' and p,(E) = —4co(F'), compare [13, App.
EXAMPLE 2. Let E be an arbitrary SO(3)-bundle over X = CP”.

Then either wy(E) = 0 and p1(E)[X] = 0(4) or wa(E) = a and p1(E)[X]| =
1(4).
Here @ is the mod2-reduction of the generator a € H*(X;Z).

The case wy(E) = 0 follows from the remark at the end of Example 1. If
wo(E) = @ = wy(X), then E is canonical for some spin” structure and we can
again apply Theorem 5. The following expression must be an integer:

2 {cosh(\/;TE)/z)fl(X)} X] = 2 { (1 + pléE)) (1 - %2) } [X]

(P (E)[X]-1).0

B~ =

Spin® manifolds form the natural class of spaces containing all spin® manifolds
as well as the almost quaternionic manifolds just like spin® manifolds contain all
spin and all almost complex manifolds. We have seen that spin” manifolds share
one property with spin® manifolds, there is an integrality theorem. There are also
vanishing theorems for spin” manifolds [5] [23] analogous to Hitchin’s vanishing
theorem for spin® manifolds [15]. To conclude this section we study one property
of spin” manifold which they inherit from almost quaternionic manifolds, namely
they have a twistor space.

DEFINITION. Let X be a spin” manifold with canonical SO(3)-bundle E.
Then the unit sphere bundle Z C F is called twistor space of X.

Proposition. The twistor space of a spin® manifold is a spin® manifold.

Proof. Let m: Z — M be the projection of the twistor space Z to X, let P
be the Spin®(n)-principal bundle over X. The tangent bundle of Z decomposes
into TZ =7n*TX &V, where V is the vertical bundle along the fibers in Z. The
fibers are S = CP', hence V is an SO(2)-bundle. V has a “square root”, the
complex dual of the tautological Hopf bundle along the fibers. In other words, V'
is associated to the U(1)-principal bundle of the Hopf bundle to the representation
22

By Lemma 1 the structure group of 7*P can be reduced to Spin®(n). Hence
the structure group of Z can be reduced to Spinf(n) x U(1). Composing the
canonical embedding Spin®(n) — Spin®(n + 2) with the map U(1) = Spin(2) —
Spin(n + 2) — Spin(n +2) x U(1) — Spin®(n + 2) we obtain the commutative
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diagram
Spin®(n) x Spin(2) — Spin‘(n+ 2)
+ +
SO(n) xSO(2) <= SO(n+2)

This yields the spin® structure on Z. O
The more structure there is on the original manifold X the more structure we

can expect on the twistor space. We collect the proposition and some results by
Bérard Bergery [7] and Salamon [24] in the following table.

‘ X ‘ twistor space £
spin” spin®
almost quaternionic almost complex
quaternionic complex
quaternionic-Kahler with Ric # 0 | complex contact structure
quaternionic-Kahler with Ric > 0 Kahler-Einstein
Tab. 1

Spin® manifolds have been studied independently by Nagase [22] [23]. He calls
them spin? manifolds.

3. Almost quaternionic manifolds

We are now going to study a class of manifolds which are a quaternionic analogue
of almost complex manifolds. We start with some definitions, compare [8], [24],
[25].

A 4g-dimensional manifold with structure group GL(gq, H)-Sp(1) C GL(4q,R)
is called almost quaternionic. Such a manifold is characterized by local exis-
tence of almost complex structures I, J, and K = IJ = —JI such that the
SO(3)-bundle E spanned by I, J, and K is defined globally. FE is then the
canonical SO(3)-bundle. One can always reduce the structure group GL(q, H) -
Sp(1) to the maximal compact subgroup Sp(q) - Sp(1) = Sp(q) x Sp(1)/Zs,
Zs = {(1,1),(—1,—1)}. In other words, one can always choose a quaternionic-
hermitian metric.

If the GL(q,H)Sp(1)-principal bundle carries a torsionfree connection, then
the manifold is called quaternionic. If even the Sp(q) - Sp(1)-bundle carries a tor-
sionfree connection which then is the Levi-Civita connection of the quaternionic-
hermitian metric, then the manifold is called quaternionic-Kdhler. In other words,
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a manifold is quaternionic-Kéahler if and only if its holonomy is contained in

Sp(q) - Sp(1).
We will only be concerned with almost quaternionic manifolds, special metrics
or connections play no role.

Lemma 2. Let X be an almost quaternionic manifold of dimension n = 4q.
Then X is spin® and if q is even, then X is spin.

Proof. For any g there is the commutative diagram

Sp(g) x Sp(1) %> Spin(n)
! !
Sp(g) - Sp(1) <C  SO(n)

For q even ¢(—1,—1) =1 holds, i.e. the embedding Sp(q) - Sp(1) C SO(n) lifts
to an embedding Sp(q) - Sp(1) C Spin(n).
If ¢ is odd, then ¢(—1,—1) = —1. Thus the embedding

® = ¢ x pry : Sp(q) x Sp(1) < Spin(n) x Sp(1),
satisfies ®(—1,—1) = (=1, —1). Hence ® induces an embedding
@ : Sp(q) - Sp(1) = Spin(n) - Sp(1).
This proves the lemma. O

To find elliptic operators for almost quaternionic manifolds we have to com-
pute R(G,H) where G = Sp(q) - Sp(1) and H = Sp(qg — 1) - Sp(1). Set
G = Sp(q) x Sp(1) and H = Sp(q — 1) x Sp(1). In the first section we men-
tioned that R(Sp(q), Sp(¢—1)) = (X* —¥7) where XF denotes restriction of the
half-spin representations via the inclusion Sp(q) C Spin(4q). Thus

R(G, H) = (=t —%7).
The representation rings are

R(G) = ZIA™Y,... A% ]
R(T) = ZAM,.. AT g
where A®! is the restriction of the SU(2g)-module of (k,)-forms to Sp(q) and p

is the standard 2-dimensional representation of Sp(1) = SU(2).
Expressed in these generators ¥© — ¥~ can be written as

q
SP—2 =) pr(p) AT (6)
k=0
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where p; are polynomials defined recursively by

m(t) = 1,

pi(t) = —t,

p(t) = t* -2,

Pe(t) = —pr—1(t)t — pr—2(t), k > 3.

To pass to the group Sp(q) - Sp(1) = Sp(q) x Sp(1)/{(1,1),(—1,—1)} we have
to look at the action of (—1,—1). It is easy to see that (—1, —1) acts on A*? via
multiplication by (—=1)F and on p by —1. If we give A®? degree k and p degree
—1, then R(G) consists of all polynomials in R(G) of even degree. Equation (6)
and a simple induction show that ¥* — ¥~ has even degree if ¢ is even and odd

degree if ¢ is odd. This implies

(Xt —=%7), if ¢ is even
R(G.H)={ ((Zt=3") AW (St —27) A% .. | .. . (7)
(B —5)- A2, (SF =) p), ¢ s odd

We see that if ¢ is even, then almost quaternionic manifolds are automatically spin
and the Dirac operator is the fundamental operator and if ¢ is odd the situation
is more complicated. In the latter case we obtain ‘1;—3 fundamental operators.
Moreover, it is clear that we have for the surjectivity exponent

| 0, ifgiseven
11, ifgisodd

To formulate the integrality theorem for almost quaternionic manifolds we
need one more notation. For a topological space X let p, : H*(X;Q) —
H?*(X; Q) be the Adams operation, i.e. py is multiplication by ™ on H*™(X; Q).
It can be shown by induction [5, Lemma 3.7] that for any complex vector bundle
E over X

(=1 pu(ch(E)) - ch(A*"E)

;| =
]~

ch(A*E) =

1

=
Il

holds. Hence if we define for any mixed cohomology class z € H**(X; Q)

Aoz 1,
Mz = =z,
T
Mg = z Z(—l)‘”’lpu(x) Nehy k> 2
p=1

then
ch(A*E) = Xech(E).
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Now we turn to the integrality theorem for almost quaternionic manifolds. We
begin with the case that ¢ is odd because for ¢ even we are in the class of spin
manifolds.

Theorem 6. Let X be a closed almost quaternionic manifold of dimension
n = 4q with q odd. Let E be the canonical SO(3)-bundle with first Pontrjagin
class pi(E) € HY(X;Z). Let W € K°(X).

Then the following rational numbers are integers:

2 {ch(W) cosh(y/p1 (E) /2),21(TX)} X],

c A Jk=1,3,...,q.
{ h(W)A (2cosh( pl(E)/2)> (TX)} (X],k=1,3,....q

Proof. This follows from Theorem 3 with V = (X" —=X7)-por V = (Xt —
™) - A®0 resp. We have seen in the previous section on spin” manifolds that the
first expression is an integer because

ch(p) = 2cosh(v/p1(E)/2).

It remains to compute ch(A¥?). The tangent bundle is induced by 7 where
7® C = A%, Hence

h(t @ C)
ch(AMW) = ERT 2L
A=)
and for the higher powers
Ch(ARD) = ch(AF(AM)) = Nrch(AL0) = AF (%) O
ch(p

Corollary 1. Let X be a closed almost quaternionic manifold of dimension
n = 4q with q odd. Let E be the the canonical SO(3)-bundle whose first Pontrjagin
class pi(E) € H*(X;Z) be a torsion class.

Then 2A(X) is an integer as well as the numbers

{/\’“ (%ch(TX ® (C)) A(TX)} [X],k=1,3,...,¢.0

Corollary 2. Let X be a closed almost quaternionic manifold of dimension
n = 4q with q odd. Let the fourth Betti number vanish, by(X;R) = 0.

23



Then 2A(X) is an integer as well as the numbers

{)\’“ (%ch(TX ® C)) A(TX)} [X],k=1,3,...,¢.0

A proof analogous to the one of Theorem 6 yields

Theorem 7. Let X be a closed almost quaternionic manifold of dimension
n = 4q with q even. Let E be the canonical SO(3)-bundle with first Pontrjagin
class p1(F) € HY(X;Z). Let W € K°(X).

Then the A—genus of X and the following rational numbers are integers:

f ch(TX ® C) - B
{ch(W))\ (2cosh(m/2)> A(TX)} (X],k=2,4,...,q.0

EXAMPLE. In [11] it has been shown that the projective Cayley plane does
not admit an almost complex structure. We use Theorem 7 to show that the pro-
jective Cayley plane CaP? = F,/Spin(9) does not admit an almost quaternionic
structure.

To start we express the Chern character of the complexified tangent bundle
of an arbitrary 16-dimensional manifold X in terms of its Pontrajagin classes.

1
ch(TX ®C) = 16+ p1 + —(p? — 2p»)

12
1 3
+53 32,5 (PL — 3PPz + 3ps)
+;(p‘i — 4pips + 4Ap1ps + 2p3 — 4ps).
26.32.5-7

This can be shown using standard calculations with characteristic classes. For
X = CaP? cohomology and the Pontrjagin class are known [11], namely there is
an element u € H®(CaP? Z) such that

H°(CaP%Z) = Z,
H¥CaP*%Z) = Z-u,
HY(CaP%7Z) = Z-u?
H/(CaP*Z) = 0, otherwise,
p = 1+ 6u+ 39>

From this we get

1
2 _ 2
ch(TCaP ®C)—16—u+24.3_5u.
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Using the recursive formula for A? we obtain

)\2(%ch(TC'aP2 ®C)) =28 — éu?

Since CaP? is spin and has a metric of positive curvature the A-genus of CaP?
must vanish. Hence the total A-class is of the form

A(CaP?) =1+ A,
where A, € H¥(CaP?;Q). Thus
2,1 2 i 2 1, i
A (§ch(TC’aP ®C))- A(CaP?) = (28— gu )1+ Ap)
p 1
= 28+ 284, — §u2.
Integration yields
1 . 1
{)\2(§ch(TC’aP2 ® C)) - A(CaP?)}[CaP?] = ~3
If CaP? had an almost quaternionic structure, then by Theorem 7
1 .
{)\2(§ch(TCaP2 ® C)) - A(CaP?)}|CaP?
would have to be an integer, a contradiction.

In this examples it helps that H*(CaP? Z) = 0 so that we need not worry
about the possible values of the first Pontrjagin class of the canonical SO(3)-
bundle.

REMARK. For quaternionic manifolds some of the twisted Dirac operators
have already been studied because some of them can be expanded into elliptic

complexes similar to the deRham complex for the Euler-deRham operator and
the Dolbeault complex for the Cauchy-Riemann operator, see [26], [6].
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4. Table

To finish this chapter we collect a few examples of possible structure groups in
the table below. The notation has been explained in the previous sections. In
particular, a denotes the surjectivity exponent.

| G | r@C | n | [ generators of R(G, H) fundam. operators
T—AT L F (—1)AT two half
1 _ +
50(2m) A Zm | m—1 L= Al g (—])ymAm Euler-deRham op.s
O(2m) AT 2m - 1—AT ... A% Euler-deRham op.
Spin(2m) AT 2m 0 >t %~ Dirac op.
Spin(2m) Al 2m 0 (ET-—%7) 2 twisted Dirac op.
1—AT L+ ...+ (-1)™AT, two half
Spin®(2m) Al 2m 1 1Al 4. 4 (—1)mA™, Euler-deRham op.s,
Zt-%7)-p twisted Dirac op.
U(m) ALO L ADT 2m 0 1—ALO L. (—1)mA™D Cauchy-Riemann op.
I—ADOL .. Cauchy-Riemann op
1,0 m—1,0 _1ym—1Am—1,0 _1\ym - .
SU(m) ALY+ A 2m 0 +(-1) - A+ - + (-1) ~ Dirac op.
Sp(9)Sp(1), AVO . p 4q 0 >t —x- Dirac op.
g even
(E+ - 27) P
(TF - £7)-ALO, e
Sp(a)Sp(1), AV 4q 1 (2t —x7)- A0 qT. twisted
g odd . Dirac op.s
(E"‘ —¥7)- A4:0
Sp(q)U(1), 1,0 . + - i
q even A (24 2) 4q 0 yT—X% Dirac op.
Sp((}q())([if(gl), ALO (2 4+2) | 4q 0 (Zt-%7).2 twisted Dirac op.
Sp(q) 2AT0 4q 0 >t _%- Dirac op.

Tab. 2
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III. Immersions

We apply the integrality results of the previous sections to immersion problems.
The point is that immersions (e.g. into spin manifolds) yield reductions of the
structure group. Then we can apply our construction method for elliptic oper-
ators and obtain integrality of certain topological expressions. This yields lower

bounds on the codimension. As a special case we obtain a classical theorem of
K. H. Mayer.

1. The integrality theorem

Immersions with certain properties yield structure groups for the manifolds un-
der consideration from which we can obtain elliptic symbols and corresponding
integrality theorems. This leads to lower bounds for the codimension. We con-
sider closed manifolds with transitive G x-structure which can be immersed into
a spin manifold such that the normal bundle carries a G,-structure. From this
we deduce integrality of certain topological expressions.

More precisely, let Grx C SO(n), n = 2m, and G, C SO(k) be connected Lie
subgroups and let Grx act transitively on S® ! C R™. There is no transitivity
assumption on G,. For 2y € S ! let Hrx C Grx denote the isotropy subgroup.
We consider the preimages of these groups under the twofold covering mappings
m : Spin(n) — SO(n) and m, : Spin(k) — SO(k) and we obtain Grx =
7Y Grx), Hrx = 77 (Hrx), and G, = 75;4(G,). The two central elements
+1 € Spin(n) or Spin(k) are also contained in Grx, Hrx, and G,,.

The main result of this section is

Theorem 8. Let X be an n-dimensional closed manifold with a transitive
Grx-structure, n = 2m even. Let X be immersed into an (n + k)-dimensional
spin manifold Y, e.q. Y = R such that the normal bundle v carries a G,,-
structure. Let ®px : X — BGrx and ®, : X — BG,, be the classifying maps for
the tangent and the normal bundle.

Let 0 € R(Grx, Hrx) and V € R(G,) such that (—1,—1) acts trivially on
o-V. Then

{cp; ((m3) " eh(V)) - By (%TC:S)) -A(TX)2} [X]

1S an integer.

As in Theorem 3, e € H*™(BSO(2m);Q) is the universal Euler class, ch :
R(G) — H*(BG;Q) is the universal Chern character, and A(TX) is the total
A-class of X.
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Proof. X has a Grx-structure and thus also a Grx X G,-structure. Since
X is immersed in a spin manifold this Grx X G,-structure can be lifted to a
G-structure where G is the preimage of Grx X G, C SO(n + k) in Spin(n + k).

We have G = % where Z, = {(1,1),(—1,—1)}. Since Z, acts trivially
ono-V byAassquptio2n, o -V can be regarded as an element of R(G). Because
of 0 € R(Grx,Hryx) the virtual representation o - V is actually contained in
R(G, H) where H = HT%i’;G" is the isotropy subgroup of G.

Theorem 3 yields the assertion. O

In the following two tables we list a few examples. We can consider Grx and
(G, separately and combine them arbitrarily. We choose the virtual modules o
and V such that —1 € GT xand —1¢€ é,, act via multiplication by -1. Then Zy
acts trivially on o - V.

)" 1ch(o 12
Grx o D1y <( el|)B_GTh)§ LA )
SO(n) St x- A(TX)
U(m) (1 AL .. ) - (Am,0)1/2 (_1)m661(TX)/2 . T’D(TX)
S Sp(1), _ 4
p((fivflf ) (S-S p 2cosh(v/p1(E)/2) - A(TX)
(T —%7) - AP, j h(Tx3C) i
' e ae )L A(TX
j odd A 2cosh(4/p1(E)/2) ATX)
Sp(q)Sp(1), + oy A
L I A(TX)
(EF —%7) - AT, i _errxeC) | | ;
j even A 2cosh(+/p1(E)/2) ATX)
Sp(q)U(1), (St —%7) -2 e1@)/2 . A(TX)
q even
Sp(Q)U(l)’ + _ - A
o nt -3 A(TX)
Tab. 3

Some explanations: L denotes the canonical U(1)-bundle, E the canonical
SO(3)-bundle, ¢; the first Chern class, p; the first Pontrjagin class, and 7D the
total Todd class. The group U(m) is a twofold cover of U(m). It has a module
whose square is A™°. We denote it by (A™°)/2.

The structure group G, of the normal bundle need not act transitively on the
unit sphere. Thus many choices of G, are possible. For the sake of simplicity we
restrict ourselves to the cases G, = SO(k) and G, = U(l).
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| G, [V 1 (m) eh(V)) |

SO(k), _ AoN_
k= 2l( e)ven R e(v) - Aw)™
43T 2L M(v)
SO(k)a l
k=20+1 odd > 2 M)
U(l) (Al,0)1/2 ecl(u)/2

Tab. 4

Here M(v) is the multiplicative class for the power series cosh(z/2), i.e. if
we write the Pontrjagin class p(v) formally as p(v) = Hé‘:1(1 + 27), then

l

H cosh(z;/2). (8)

J=1

Let us call M the Mayer class.

2. Mayer’s theorem
As an example we combine Grx = SO(n) with G, = SO(k) and we obtain

Theorem 9. (K.H. Mayer [20, Satz 3.2])
Let X be an n-dimensional closed oriented manifold, n = 2m even, which can be
immersed in an (n + k)-dimensional spin manifold with normal bundle v.

If k = 2l 1s even, then the following expressions are integers:

{e(y)A(y)—lA(TX)} X]

and

! {M(V)A(TX)} X].
If k =20+ 1 is odd, then

18 an integer. O
Of course, one can still twist by arbitrary coefficient bundles and one can

examine for which n and k the resulting elliptic operators are quaternionic, thus
improving the integrality result by a factor 2.
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If the target space is Euclidean space R"™ then M(TX) - M(v) = M(TX &
v) = M(TR"™|x) = 1 because the Mayer class M is multiplicative. Thus
M(v) = M(TX)~! and integrality of 2 {M(TX)_IA(TX)} [X] yields a lower
bound on [/ (and hence on the codimension k) in terms of Pontrjagin numbers

of X. In [20] one can find applications to immersions of projective spaces into
Euclidean space.

3. Immersions with special structure

We have seen that Mayer’s theorem follows from Theorem 8 by combing Grx =
SO(n) and G, = SO(k). By imposing additional structure on X and/or v one
can obtain many more integrality results of this kind. For example, combining

Grx = Sp(q)Sp(1), q even, and G, = U(l) yields

Theorem 10. Let X be a 4q-dimensional compact almost-quaternionic mani-
fold, q even, immersed into a (4q + 21)-dimensional spin manifold. Assume that
the normal bundle v carries a complez structure. Let E be the canonical SO(3)-

bundle of X.
Then the following expressions are integers:

2 {ecl(”)/Qcosh(\/pl (E)/Q)A(TX)} [X],

c1(v)/215 ch(T'X ® C) 2 o
{e S (2cosh( mﬁ))A(TX)}[X], j odd.O

Of course, many more combinations of Gx and GG, are possible. With this
method one can also study immersions into other kinds of manifolds rather than
spin manifolds. For example, one can study immersions into spin® manifolds.
Then one has to regard modules of the preimages of Grx and G, in Spin®(n or k).
In the case of Grx = SO(n) and G, = SO(k) one obtains K.H. Mayer’s second
integrality theorem [20, Satz 3.1]. Again, many other choices for Grx and G,
are possible.

This technique allows to derive topological restrictions against immersions
for such manifolds for which one is able to explicitely compute the characteristic
numbers involved. In particular, it should give interesting non-immersion results
for many homogeneous spaces.
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