CHAPTER 1

Preliminaries

1.1. The Spectrum of the Dirac Operator on Compact Manifolds

By CHRISTIAN BAR

1.1.1. Analytic Basics. Let M denote a compact n-dimensional Riemannian
spin manifold without boundary. The Dirac operator maps smooth spinor fields to
smooth spinor fields,

D :C®(M,SM) — C®(M,SM).

A number A € C is called an eigenvalue of D if there exists a nontrivial spinor field
p € C°(M,XM) (called eigenspinor) such that

(1.1) Dy = .

Why are eigenvalues of the Dirac operator interesting? The physical interest
stems from the observation that if (1.1) holds, then the time-dependent spinor
field ®(t,z) := e** - p(x) satisfies the physical Dirac equation

0

— =iD®

ot
on the space-time R x M. Hence A can be interpreted as the frequency or, equiva-
lently, as the energy of the particle whose wave function is .

The standard theory of self-adjoint elliptic differential operators (see e. g. [LM89,
Chapter IIT]) now tells us the following:

e All eigenvalues of D are real, A € R
e The eigenvalues form a discrete subset of R, unbounded from above and
from below,

—OO(—"'<)\72<)\71<)\0<)\1 <Ay < -0 = 0.
e The multiplicities of the eigenvalues are finite,
dlm(E,\) < o0

where By = {p € C®°(M,EM) | Do = Ay} is the corresponding eigenspace.
e The space of finite linear combinations of eigenspinors .., E, is dense
in C*°(M, X M) with respect to the L?-norm.
e The eigenspaces for different eigenvalues A and p are perpendicular, £y L
E,,, with respect to the L?-scalar product.
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4 1. PRELIMINARIES

Here the L2-scalar product on the space of all spinor fields is defined by

(0r9) = /M<<p,w> av

and the L?-norm is the corresponding norm, ||¢|| = 1/(¢, ). The totality of all
eigenvalues of D together with their multiplicities is called the spectrum of D on
M or the Dirac spectrum of M.

1.1.2. Examples for Explicit Computation. Now given a compact Rie-
mannian spin manifold M what is its Dirac spectrum? In general, it is totally
hopeless to try to explicitly compute even one single eigenvalue. Only manifolds of
a high degree of symmetry are accessible for explicit computation.

1.1.2.1. The circle. Already the simplest manifold in question, the circle M =
S' = R/2nZ, is interesting to consider. Give M the standard (counter-clockwise)
orientation. At each point ¢ € M there is exactly one positively oriented orthonor-
mal tangent basis consisting of the unique positively oriented unit tangent vec-
tor. Hence the total space of the oriented frame bundle is again equal to a circle,
Pso(M) = S', the bundle mapping onto M given by the identity.

Now we observe that M has two different spin structures. Recall that a spin
structure is a two-fold covering of Pso(M). We can either choose the trivial two-
fold covering Py := S'UUS! with P, — Pso = S! given by two copies of the identity
or we may choose P, := S! and P, = Pso = S! given by the mapping z — 22 in
complex notation.

Let us first analyze the situation for the trivial spin structure P;. In one dimension
spinor space is simply ¥; = C. Clifford multiplication by the positively oriented
unit vector is multiplication by i. Associating this to the trivial spin structure yields
the trivial complex vector bundle of rank one over S'. In other words, spinor fields
are the same as complex-valued functions. With respect to the standard coordinate
t of S1 the Christoffel symbol of the Levi-Civita connection vanishes and thus the
Dirac operator is
.d
D=3 e

Now the Fourier decomposition of functions on S* is exactly the eigenspace decom-
position for D, the eigenvalues are A\ = k and the corresponding eigenfunctions
are ¢y (t) = e . Hence the spectrum is Z, each eigenvalue having multiplicity 1.

In order to discuss the nontrivial spin structure P, let us rephrase the observations
for the trivial spin structure as follows. Spinor fields were nothing but complex-
valued functions on S'. Equivalently, we can say that spinor fields on S' with
respect to Py are given by periodic complex-valued functions on R with period 27.
When we replace P; by the nontrivial spin structure P, the following will change:
When we move around M = S! one time, then we can lift this path continuously to
P; and we will return to the same point in P;. But when we do this in P, we will
return to the opposite point. Thus spinor fields will now correspond to anti-periodic
complex-valued functions on R:

p(t +2m) = —p(t).
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Nonetheless a Fourier decomposition is also available in this situation, the eigen-
functions are now ¢y (t) = e~#*¥+1/2)t and the eigenvalues are Ay = k 4 1/2. Thus
the spectrum is Z + %, each eigenvalue again having multiplicity 1.

It is remarkable that this simple example already shows that the spectrum of the
Dirac operator will in general depend on the choice of spin structure.

Using Fourier analysis one can treat n-dimensional flat tori in a similar fashion, see
[Fri84].

1.1.2.2. Homogeneous Spaces. Now we turn to spaces which have so many sym-
metries that they look the same at all points. Such space are called homogeneous.
More precisely, let G be a compact Lie group acting transitively by orientation
preserving isometries on our compact n-dimensional Riemannian spin manifold M.
Choose g € M. Then we can write M in the form

M=G/H

where H C @ is the subgroup of all elements keeping xo fixed. The differentials of
the isometries in G act on Pso(M). We assume here that this action lifts to the
spin structure of M. Then there is a generalization of the Fourier decomposition
of the previous section which we now describe.

The idea is to regard the space of spinor fields C*(M,XM) (or rather its Hilbert
space completion with respect to the L2-scalar product) as a representation space
for G and to decompose it into irreducible subrepresentations. Denote the set of
all equivalence classes of irreducible unitary representations of G by G. For every
v € G denote the corresponding representation space by V,. It is a fact that
dim(V,) < oo. By the so-called Frobenius reciprocity there is a finite dimensional
space W, such that

Pv,eow,

’yea‘

embeds densely into C*° (M, X M) as a subrepresentation. The group G acts on a
summand V, ® W, by v ® id. The Dirac operator commutes with this G-action
and leaves the decomposition invariant. It acts on a summand V, ® W, by id® D,
where the endomorphism D., of W, can be computed explicitly [Bar92a, Prop. 1].
Hence determining the spectrum of D is now the same as computing the eigenvalues
of D, on W, for all v € G. We have thus reduced the problem to finite dimensional
linear algebra.

In practice this linear algebra can still be quite hard. Moreover, one has to deal
with an infinite number of finite dimensional eigenvalue problems, one for each
v € G. This can be carried out only if one finds some uniform pattern in all the
endomorphisms D,. Formulas get a lot simpler if G/H is a symmetric space. The
Dirac spectrum for many of them is known by now. In the following table we collect
the compact Riemannian spin manifolds for which the Dirac spectrum has been
computed. Not all of them are symmetric but they are all locally homogeneous.
Some of them (spheres and complex projective spaces) have been studied with
various different methods.
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R™/T flat tori [Fri84]
R3/T 3-dim. Bieberbach manifolds [Pfa00]
S spheres of constant curvature [Sul79], [Bar96a],
[Tra93], [CH96]
S™/T spherical space forms [Bar96a)
SZm+L spheres with Berger metrics [Hit74] for m =1
[Bar96b] for general m
S3/Zy, | 3-dim. lens spaces with Berger metric [Bér92a]
G simply connected compact Lie groups [Feg87]
cp?m—t complex projective spaces [CFG89, CFG94],
[SS93],[AB98]
HP™ quaternionic projective spaces [Bun91b] for m = 2
[Mil92] for general m
Gry(R?>™) certain real Grassmannians [Str80b] for m =3
[Str80a] for general m
Grop (R2™) certain real Grassmannians See97]
Gro(C™12) certain complex Grassmannians Mil98
G2/S0(4) [See97, See99]
H3/T 3-dim. Heisenberg manifolds [AB98]
TABLE 1

1.1.3. Eigenvalue Estimates. Even if it is not possible to explicitly compute
the Dirac spectrum of a manifold M one may still hope to get some control on the
eigenvalues in terms of geometric data. For large classes of manifolds one can at
least give geometric estimates. Estimating the modulus of an eigenvalue from above
or from below turns out to be quite different stories.

1.1.3.1. Lower Bounds. We will start by estimating the Dirac eigenvalues from
below on manifolds with positive scalar curvature. A naive bound can be obtained
as follows: Recall the Schrodinger-Lichnerowicz formula for the square of the Dirac
operator

1
(1.2) D? = V'V + S%.

Now assume Scal > S for some positive constant S and let Dy = Ap. We compute
N Scal
(D%p,0) = ((V v+ T) o, w)

S S
> (Vso,VsO)wLZ(so,sO) > Z(%‘P)-

(e, )

Therefore each eigenvalue A of the Dirac operator must satisfy
S
N>
4
What is naive about this estimate? It is not optimal in sense that there are no

manifolds where equality in the estimate is attained. The reason is that we wasted
too much when we estimated (Vy, V) by 0. The right approach was found by
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Friedrich in [Fri80]. One defines a new connection for spinors by

- A
Vxp:=Vxp+ EX - Q.
Now one computes

2 2
V*V = V*V_QAD_}_/\_ — D2—@—25D—|—/\—.
n n

If ¢ is an eigenspinor for the eigenvalue A, then
0 < (Vo, V) = (V'Vp,0)

2

1 A2
= AQ(so,cp)—Z(Scalso,sO)—2;(<p,90)+ (0, )

(n_ S §) ()

n

IN

n 4

and therefore n

2
A4 > =1 S.

This estimate is sharp because equality is attained e. g. for spheres. In case M

is a Kéhler manifold or quaternionic-Kahler it is possible to further improve the

estimate. The basic idea is still the same; one tries to find refined Schrédinger-

Lichnerowicz formulas in order to loose less in the estimate. Technically things

become a lot more complicated. We summarize the results:

THEOREM 1.1. Let M be a compact Riemannian spin manifold of (real) dimension

n. Suppose the scalar curvature satisfies Scal > S > 0. Then all Dirac eigenvalues
A satisfy

S

)‘2 2 Cn Z

where

a) (Friedrich [Fri80]) In general,

oo N
" n=1
b) (Kirchberg [Kir86, Kir90]) If M is Kahler, then
_f 2 if 2 s odd
n = s, if 5 is even.
c) (Kramer, Weingart, Semmelmann [KSW99]) If M is quaternionic-Kdihler,

then
_n+ 12

n+8°

Cn

The estimate is sharp in all cases. Recalling the proof of the estimate in the general
case we see that if a Dirac eigenvalue satisfies \2 = ﬁs , then the corresponding

eigenspinor must satisfy %gp = 0, or equivalently,

A
= —_— -
Vxop nX o)

for all tangent vectors X. Such spinor fields are called Killing spinors. The Killing
spinor equation is overdetermined, thus a generic manifold will not have nontriv-
ial Killing spinors. The simplest example of a manifold with Killing spinors is
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the sphere S™ with the standard metric of constant curvature. In even dimen-
sions m # 6 this is the only example. In the other dimensions there are differ-
ent geometric types of manifolds admitting nontrivial Killing spinors. A complete
classification of those types has been achieved by Bér in [Bar93] after previous

work on construction methods for examples and partial classification results in
[FG85, CGLS86, Hij86a, Fra87, FK88, FK89, FK90, Gru90, BFGK91].

Complex-projective space CP? is a Kihler manifold and it is spin if its complex
dimension 7 is odd. In this case it indeed provides an example where equality
is attained in case b). If § = 1 mod 4, then this is the only example but if
5 = 3 mod 4, then equality is attained if and only if M is the twistor space
of a quaternionic-Kéhler manifold. For example, CP% is the twistor space of

. . . . n_ 1
quaternlonlc—prOJectlve space HP4<~2.

If % is even, then complex-projective space is not spin and this is the reason why the
case distinction is necessary for Kéhler manifolds. The manifolds for which equality
holds in the estimate are then the twisted products of T? and twistor spaces. These
results were achieved by Moroianu [Mor95, Mor99] after preliminary work by
Kirchberg, Lichnerowicz, and Friedrich [Kir88, Lic90, Fri93].

For quaternionic-K&hler manifolds Kramer, Semmelmann, and Weingart have shown
[KSW98] that equality is attained only for quaternionic-projective space HIP .

The estimates obtained so far yield nontrivial results only if the manifold has strictly
positive scalar curvature. One may suspect that if the scalar curvature is negative
on a small part of the manifold and sufficiently large on the rest one should still
be able to obtain a positive lower bound. In a way this is true. To formulate the
result suppose n > 3 and denote the Yamabe operator acting on smooth functions
on M by

n —

1
A + Scal.

n—2

Yy = 4

Here A is the usual Laplace-Beltrami operator. Let p;(Y) be the smallest eigen-
value of Y.

THEOREM 1.2 (Hijazi [Hij86b]). Let M be a compact Riemannian spin manifold
of dimension n > 3. Then all Dirac eigenvalues \ of M satisfy

n NI(Y)‘

A2
n—1 4

Note that p;(Y) > minys Scal so that Theorem 1.2 implies Friedrich’s estimate.
But p1(Y) is still positive if there is a little bit of negative scalar curvature. The
equality case turns out to be the same as in Friedrich’s case; equality holds in
Hijazi’s estimate if and only if the corresponding eigenspinor is a Killing spinor.

Hijazi’s original proof combined Friedrich’s modification of the spinor connection
with a clever conformal change of the metric. There is now a completely different
proof available based on a so-called refined Kato inequality [CGHOO, Prop. 3.4].
This is a general principle allowing to estimate spectral data for operators acting
on sections in a vector bundle (here D?) against spectral data of a comparison
operator acting on functions (here Y).
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There is one manifold where one can give a nontrivial estimate for the Dirac eigen-
values without any geometric assumption. This is the 2-dimensional sphere.

THEOREM 1.3 (Bér [Bar91, Biar92b)). Let M = S? be equipped with any Rie-
manmnian metric. Then all Dirac eigenvalues satisfy

47

> —
—  area(M)

Equality holds for the smallest eigenvalue if and only if M has constant curvature.

This estimate was conjectured by Lott in [Lot86] where he had shown that for some
positive constant C' the estimate A2 > C/area(M) must hold. It turned out that
Theorem 1.3 can also be deduced from Hijazi’s results, see [Hij91]. Interestingly,
there is a similar estimate for the Laplace operator on the 2-sphere going in the
opposite direction. Hersch [Her70] proved that the first positive Laplace eigenvalue
p1(A) of S? equipped with any Riemannian metric satisfies

8

m(d) < area(M)’

It is believed that an estimate like in Theorem 1.3 is impossible for any manifold
of dimension n > 3. More precisely, it is conjectured that given any compact spin
manifold M of dimension n > 3 and given a spin structure on M, then one can
find a Riemannian metric such that 0 is a Dirac eigenvalue. Eigenspinors for the
eigenvalue 0 are called harmonic spinors. This conjecture is known to be true in
dimensions n = 0,1,3,7 mod 8 [Hit74, Bar96b]. Moreover, one knows that S
carries metrics with harmonic spinors also in dimensions n = 0 mod 4 [See01,
Thm. 3.27].

The situation for surfaces of higher genus is more subtle. The spin structure is
then no longer unique. It turns out that there are two types of spin structures on
surfaces which can be distinguished by the so-called Arf-invariant. For one type
(Arf = —1) one has metrics with harmonic spinors. Hence a result like Theorem 1.3
is out of question. For the other type (Arf = 1) there is a lower estimate similar to
the one in Theorem 1.3 but it is not sharp [AB02, Thms. 5.1 and 6.1].

Let us now sketch the proof of Theorem 1.3.

PRrROOF. We modify the spinor connection once more. Let f : M — R be a smooth
function. We set Vxy :=Vxp+ %X ~p — X - Vgrads — 2(gradf, X)¢. Let K be
the Gauss curvature of M. An elementary but tedious calculation yields

- ~ . K 2
V(e 2Vyp) = e_Zf{D2 -5 — D + /\7 + Af —2gradf - D + Agradf -

(1.3) -2 [vgradf + (Vgradf)*]}‘p-
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Now let A be a Dirac eigenvalue and ¢ a corresponding eigenspinor, Dy = Ap. By
a partial integration and by (1.3) we obtain

eIl = (FeT,0)

= [ el - Tl = Nl + S 1ol + (DI~ 2\(gradf )
+M{gradf - ¢, ) = 2([Vigrads + (Vgraar)le, )}dV

= [ e Sol — Rl + (A1)l ~ Mgrad -,

(14) —2<[Vgradf + (vgradf)*](paso)}d‘/'

For the last term we get

0

IN

/M e_2f<[vgradf + (Vgradf)*]‘Pa pydv. = (vgrade@a e_zf‘P) + (Vgradf)*SOa e_zf‘P)
= (Vgradeoa ei2fcp) + (‘P: vgradf (ei2f90))

/M(gradf, grad(p, e 27 p))dV

| @aneipar.
M

(L.5)

Since the term (gradf - ¢, p) = —(p,gradf - p) = (gradf - ¢, ¢) is purely imaginary
and all other terms are real we conclude from (1.4) and (1.5)

2
(16) 0< [ e { ol = Flel? - (APIeF Jav

Now we will make an optimal choice for the function f. Define the function

) = 25 - s | K@ v

/ h(z)dV (z) = 0.
M

This means that h is perpendicular to the constant functions with respect to the
L2-scalar product. The constant functions form the kernel of the Laplace operator,
a self-adjoint differential operator. Thus h (and hence —h) lies in the image of the
Laplace operator, i. e. there exists a smooth function f such that

Af = —h.

and observe

Plugging this into (1.6) yields by the Gauss-Bonnet theorem

/ (fzf{)\2 / K(y)dV(y |g0|2 av
M 2 2area(M

_ 2mx (M)

2f 2
/Me {)\ area(M) } lel” aV

. 4n .
_ 1 —2ffy2 _ _ M 2
2 /Me {)\ area(M)} lel” av

0

IN

= N =



1.1. THE SPECTRUM OF THE DIRAC OPERATOR ON COMPACT MANIFOLDS 11

We have proved the estimate
4
area(M)’
It remains to discuss the equality case. If the curvature K is constant, then one
easily checks that equality holds. Conversely, if there is an eigenvalue satisfying
4
area(M)’
then the previous proof shows that the corresponding eigenspinor ¢ must satisfy
Vxp=0,i.e.

)\2
)\2

Vxp= —%X-cp—gradf-X-ap.
Using this one easily computes for the spinorial curvature
R¥(e1,e2)0 = (A(e1(f)ea —ea(f)er) + (—A?/2+ Af)er - €2) -
where eq,e2 denotes an orthonormal basis of the tangent plane. On the other

hand, using the usual formula relating spinorial curvature to the standard Riemann
curvature tensor we obtain

RE(el,eg)go = —%Kel -eg - Q.
Combining these two equations we get
(1.7) [Me1(f)ez — ea(f)er) + (K/2 = A?/2+ Af)er - e2] - 9 = 0.
Taking the (pointwise) scalar product with es - ¢ yields
0 = (Mer(flez—ea(fler) + (K/2=N/2+ Af)er - es] - 9,2 - )
Aer(f)lpl? + Aea(f){p, €1 - e2 - 9) +0,

hence
e1(Nlpl* +ea(f){p e1-e2 - 9) = 0.
Similarly, multiplying with e; - ¢ we see

e1(f){p,e1-ea-p) —ea(f)|p]> = 0.

In matrix notation
(0) - ( o (eer-e -w)) (el(f))

0 (p,e1-€2-p) ~lel? e2(f)

2
Since det [l {pren e (‘0)) = —(l¢|* + {p,e1 - s - ©)?) is nonzero

(e (ot + (e - 2 o))
wherever ¢ does not vanish (hence on an open dense subset of M) we conclude
that the gradient of f vanishes everywhere. Thus Af = 0 and by multiplying (1.7)
with e; - es - o we obtain
K/2-)%/2=0.

Hence the curvature is constant and the proof is complete.

Given this estimate on the 2-sphere and the fact 47 = 2mx(S?) = § [, Scal dV one
might be tempted to conjecture a more general estimate on n-dimensional manifolds

of the form
s M Sy Scal dV

~4(n—-1) vol(M)
However such an estimate is not possible as is shown by the following theorem.
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THEOREM 1.4 (Ammann-Bér [ABO00]). Let M be a closed spin manifold of dimen-
sion n > 3. Then there exist constants 0 < C1 < Cy < C3 < ... and there exist
Riemannian metrics g1, 92, 9s3,-.. on M such that

Ak(g;)” < Ck

for all k and j while

fM Scalg; dVy; j—o0
volg, (M) e

The proof is based on the variational characterization of the eigenvalues. In general,
we have

. D¢,D
A = infySup,evy oy Ep )

llell
where the infimum is taken over all k-dimensional vector subspaces V.C C®°(M,XM).
This characterization follows easily from the properties of the spectrum as described
in the beginning of this section. Let us now prove Theorem 1.4.

ProOF. We start by choosing a Riemannian metric go on M such that (M, g)
contains an embedded Euclidean ball B of radius 1.

Fig. 1

Write the Euclidean ball B as a union of two annuli and one smaller ball, B =
A1UAUA;z, where A; = {2z € R" |2/3 < |z| <1}, Ay ={z e R*"|1/3 < |z| < 2/3}
and A; = {x € R | |z| < 1/3}. Now fix two parameters 0 < r < 1 and L > 0.
Choose a Riemannian metric g, 1 on M with the following properties:

e g, coincides with go on M — B

e g, 1 is independent of L on A; and on As

e (As,gr1) is isometric to S"~!(r) x [0, L] with the product metric where
S™=1(r) denotes the round sphere of constant sectional curvature 1/r2.
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Fiag. 2

Heuristically, there is a nose of radius r and length L growing out of the ball. For
this reason we call these metrics Pinocchio metrics.

Claim 1. The k' eigenvalue Ay, (r, L)? of the square D3, of the Dirac operator
(w.r.t. the metric gr,1.) is bounded from above by a constant Cj > 0 independent of
r and L.

The proof is very simple. Choose a k-dimensional vector space V}, of spinors 1 on
M vanishing on B. Then ¢ € Vj, can be considered a spinor for all metrics g, 1.
We plug it into the Rayleigh quotient for the Dirac operator to get

fM ¢ ¢ grL
)‘k (lr7 L)2 S Sup gr -
YEVE ,Y#0 fM ,¢ ,(p ot

_ S fM ¢ ,(p g0 dV
- UPy eV, p#0 fM ¢7w o dv
= Ck

Claim 2. The normalized total scalar curvature is unbounded from above for r €
(0,1) and L € (0,00).

Let wy denote the volume of the k-dimensional unit sphere. We compute
JyuScaly,, AV Janmuaua, Scaly,, dV + [ Scaly, , dV
volg, , (M) a volg, . (M \ B)U Ay U A3) +woly, , (As)
Jonsyoaroa, Scaly, , dV + L - (n=)(n=2) _ pn-1
volg, ,(M\B)UA 1 UA3)+L-r"=1-w,
(n—1)(n-2)

r2

*Wn—1

—

for L — oo because on M\ A, the metric g, 1, does not depend on L by construction.
Hence f
Scalg, , dV _ (n—1)(n—2)
S M gr,L >
UPL>0 voly, (M) = r2

and therefore f
Scal, , dV
S M 9r,L — .
P00 g0l L (M)
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This proves the theorem.

Another very nice lower eigenvalue estimate can be achieved for manifolds bounding
manifolds of nonnegative scalar curvature.

THEOREM 1.5 (Hijazi-Montiel-Zhang [HMZO00, Thm. 6]). Let N be an (n + 1)-
dimensional compact Riemannian spin manifold with boundary M = ON. Suppose
the scalar curvature of N is nonnegative, Scaly > 0 and the mean curvature of M
(w. 7. t. the inner normal) is nonnegative, H > 0. Then all nonnegative eigenvalues
of the Dirac operator on M satisfy

A> ginfMH.

This estimate is sharp for the standard sphere bounding a Fuclidean ball. Let us
sketch the proof of the theorem.

PrOOF. From the Schrédinger-Lichnerowicz formula (1.2) applied to the manifold
N and the assumption Scaly > 0 we get for each spinor ¢ on N

/(D?vzb,w) de/W*w,zp) dav.
N N

Now one does a partial integration on both sides to remove the second derivatives.
The resulting boundary terms can be arranged in such a manner that one obtains
n

H
[ (@wvey - ") aaz -2 [ o av

Then one argues that given an eigenspinor ¢ on M for the eigenvalue A one can
solve the boundary value problem

Dnyy =0 on N,
T =@ on M.

Here ny : C®°(M,XM) — C*°(M,XM) denotes the projection onto the subspace
generated by the D ys-eigenspaces for nonnegative eigenvalues. The theorem then
follows immediately.

A slightly improved version of this estimate can be found in [HMZ02].

1.1.3.2. Upper Bounds. Theorem 1.4 already gives upper bounds on the Dirac
eigenvalues for certain metrics to be constructed. Here is a geometric upper bound
for hypersurfaces in Euclidean space.

THEOREM 1.6 (Bar [Bar98]). Let M be a closed oriented immersed hypersurface
in R*1 . We give M the induced Riemannian metric and spin structure. Let H
be the mean curvature of M. Then there are 2("/?1 Dirac eigenvalues (counted with
multiplicity) satisfying

\2 < n_2 S H 2dv
~ 4 wol(M)

The proof is again based on the variational characterization of the eigenvalues.
One inserts restrictions of parallel spinors on R**! to M into the Rayleigh quotient

%_ The general formula

n n n
DMy = _y.DR"p 4 EHw—VR i
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relating the Dirac operators DM on M and DR"™" on R"*+! yields for a parallel ¢

n
DMy = EHcp

and therefore
(DM, DMp) _ n? [y H*|p|*dV _ n? [y, H? dV
llell? 4 [y lplPdv 4 wvol(M)

since || is constant for parallel ¢. This proves the theorem up to some technical
details concerning the identification of spinors on R**! with spinors on M.

The estimate in Theorem 1.6 is sharp in the sense that equality is attained for
M a sphere of any radius in R**!. Tt is an open question whether or not there
are other hypersurfaces M in R™*! for which equality holds. If one assumes that
the mean curvature H is constant, then the lower bound in Theorem 1.5 and the
upper bound in Theorem 1.6 agree. One can then deduce the classical Alexandrov
Theorem stating that the only embedded compact hypersurfaces in Euclidean space
of constant mean curvature are the round spheres, see [HMZO00, Thm. 7].

There are similar results for hypersurfaces of spheres and hyperbolic spaces, see
[Bar98, Gin01].

1.1.3.3. Further results. More involved Dirac eigenvalue bounds can e. g. be
found in [Bar91, Bar92c¢, AmmO00a, AmmO00b, HZ01a, HZ01b, FK02, Kir02].
There are also Dirac eigenvalue bounds for compact manifolds with boundary
[HMZ01, HMRO1].

The spectrum of the Dirac operator does not fully determine the underlying mani-
fold. This can be seen from the existence of Dirac isospectral manifolds, i. e. pairs of
nonisometric Riemannian spin manifolds having the same Dirac spectrum. Known
examples are certain flat tori, certain spherical space forms [Béar96a, Thm. 5] and
certain nilmanifolds. In [AB98, Thm. 5.6] a 1-parameter family of Riemannian
metrics is constructed on a 7-dimensional nilmanifold such that the Dirac spec-
trum is constant (as a function of the parameter) for some spin structures while it
changes for the other spin structures.

1.2. The Spectrum of the Dirac Operator on Open Manifolds

From now on let M denote an n-dimensional complete noncompact Riemannian
spin manifold.

1.2.1. Analytic Basics. The spectral theory is now more involved than in
the compact case. Again, a complex number A is called an eigenvalue of the Dirac
operator D, if there exists a nonzero ¢ € C®(M,XM) N L*(M,XM) satisfying

Note that in the compact case smooth spinors are automatically square integrable
while here we additionally impose it. The set of eigenvalues together with their
multiplicities is called the point spectrum spec,(D) of D. Again, eigenvalues are
necessarily real and eigenspaces E) for different eigenvalues are mutually perpen-
dicular. But the multiplicity dim E) of an eigenvalue A may now be infinite, the
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point spectrum need no longer be discrete, and Aespec, (D) E) need no longer be
dense in C®°(M,XM) N L*(M,XM).

We say that a number A € C lies in the essential spectrum spec,(D) if there exists
a sequence ¢; of smooth spinors with compact support which are orthonormal with
respect to (-, )2 such that

(D = Ngjll2 =0

for j — oo. The ¢; can be regarded as approximate eigenspinors for D. Such a
sequence is called a Weyl sequence for \. We have spec, (D) C R.

The point spectrum together with the essential spectrum form the spectrum spec(D)
of D. Note that the point spectrum and the essential spectrum need not be dis-
joint. For example if A is an eigenvalue of infinite multiplicity, then it lies in both
the point spectrum and in the essential spectrum. Here an orthonormal basis of
the infinite dimensional eigenspace can be used as a Weyl sequence. If one removes
all essential spectrum (e. g. all eigenvalues of infinite multiplicity) from the point
spectrum, then one is left with the discrete spectrum,

specy(D) := spec, (D) \ spec, (D).

Removing all eigenvalues from the essential spectrum yields the continuous spec-
trum,

spec.(D) := spec,(D) \ spec, (D).
Hence we have two disjoint decompositions of the spectrum,
spec(D) = spec, (D) U spec, (D) = spec, (D) U spec,(D).

Given a compact subset K C M and X € spec, (D) one can choose a Weyl sequence
¢; for A such that K Nsupp(p;) = 0. This shows that spec,(D) is unaffected by
changes of the manifold in compact sets.

THEOREM 1.7 (Decomposition Principle). Let My and My be two complete Rie-
mannian spin manifolds, let K; C M; be compact. Suppose there is a spin structure
preserving isometry between My \ K1 and My \ K2. Then the Dirac operators on
M; and on Ms have the same essential spectrum.

Note that M; and Ms need not even be homeomorphic. This robustness of spec, (D)
contrasts strongly with the behavior of the discrete spectrum. Eigenvalues are very
sensitive to changes of the geometry of the manifold.

1.2.2. Examples for Explicit Computation. The Dirac operator has been
studied much less on noncompact manifolds than on compact ones. So we do
not have many examples of noncompact manifolds for which we know the Dirac
spectrum explicitly.

1.2.2.1. Euclidean space. The Dirac operator on Euclidean space is a differ-
ential operator with constant coefficients. The classical method to determine the
spectrum of such operators is to apply Fourier transformation turning the differ-
ential operator into a multiplication operator. The spectrum can then be read off
easily.
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THEOREM 1.8. Let M = R™ with the Fuclidean metric. Then the Dirac operator
has no eigenvalues, spec,(D) =0, and spec.(D) = R.

We give an elementary direct proof in the 1-dimensional case, n = 1. Recall from
Section 1.1.2.1 that spinors on M = R can be identified with complex-valued func-
tions and that the Dirac operator is then given by D = i%. Suppose A € R and
p € C*°(R,C) such that

d )

i ® =g

This ordinary differential equation has the general solution p(t) = C-e~®, C € C.
Therefore |p| = |C| and ¢ cannot be square-integrable unless it is identically zero.
This proves spec,(D) = 0.

Fix A € R Choose a nonnegative smooth function x : R — R such that supp(x) C
[~2,2] and x =1 on [~1,1]. For j,k € N set ¢;x(t) := x(% — k) - e *. From
sk (8)] = x(£ — k) we see

o

Wsallis = [ x(t=wPat=j- [ xw?du

Since supp(¥;,x) C [j(k—2),5(k+2)] we can choose k = k(j) such that 9); x(;) have
mutually disjoint support. In particular, they are orthogonal with respect to the

~1/2
L?-scalar product. Thus ¢, := (j 70 x(u)? du) ¥} k(j) are orthonormal.

Moreover, |(D = \jthy| = [£x'(5 — K)e=¥| = L|x'(% — k)| yields

1 o0 1 [
1D = Nl = / X(& =Rt =1 / X' (w)? du.

—oo JJ_e
Hence
Jooo X' (W) du
7% [50 x(u)? du
for j = co. Thus ¢; is a Weyl sequence for A. Since A € R was arbitrary this shows
spec, (D) = R and since the point spectrum is empty also spec,(D) = R.

(D = Nwjllze =

In the physically motivated literatur the Dirac operator with potential, D 4+ V', has
attracted much attention where the potential V' is a Hermitian endomorphism field
of IR™, see e. g. [Tha92, Sec. 4.7] and the references therein.

1.2.2.2. Hyperbolic space. In [Bun91a] the spectrum of the Dirac operator on
real hyperbolic space RH" is determined regarding RH™ as a homogeneous space,
RH"™ = SO*(n,1)/SO(n) where SOT(n,1) denotes the group of orientation- and
timeorientation preserving Lorentz transformations. One can then use representa-
tion theoretic methods similar to the ones in Section 1.1.2.2. These methods are
technically somewhat involved and in fact there is an incorrect statement about the
eigenvalue 0 in [Bun91a]. A much simpler and more geometric computation of the
Dirac spectrum on RH™ uses the warped product structure, see e. g. [Bai97]. The
result is

THEOREM 1.9. Let M = RH"™ be real hyperbolic space. Then the Dirac operator
has no eigenvalues, spec,(D) =0, and spec.(D) = R.
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So the result is the same as for Euclidean space.

1.2.2.3. Further examples. Both Euclidean and real hyperbolic space are ex-
amples of a class of manifolds called Riemannian symmetric spaces. These spaces
are classified and in principle they are particularly well-suited for representation
theoretic methods.

The point spectrum of these spaces is understood. Goette and Semmelmann show in
[GS02] that the point spectrum of the Dirac operator on a Riemannian symmetric
space of noncompact type is either empty or {0}. They give different characteriza-
tions for when the eigenvalue 0 appears.

The continuous spectrum has been determined by Camporesi and Pedon in [CP02]
for hyperbolic spaces (Riemannian symmetric spaces of noncompact type and rank
1). The result says that if M is a hyperbolic space, then
R, if M € {RH",HH™,QOH?}
spec.(D) = R, if M = CH™ with n odd
(o0, —3]U[5,00), if M =CH™ with n even

The exceptional case M = CH™ with even complex dimension n is precisely the
case when 0 is an eigenvalue.

1.2.3. Qualitative Results. As for compact manifolds an explicit computa-
tion of the eigenvalues of the Dirac operator is possible only in exceptional cases.
Due to its robustness the essential spectrum is more accessible. As an illustration
let us look at hyperbolic manifolds which are, by definition, complete Riemannian
manifolds with constant sectional curvature —1. Such manifolds are always of the
form M = RH™ /T for some suitable discrete group I' of isometries of real hyper-
bolic space. There is up to now no hyperbolic manifold of finite volume for which
one can compute the point spectrum neither for the Dirac operator nor for any
other geometric elliptic operator like the Laplace-Beltrami operator.

Nevertheless, one can say something about the essential spectrum. For the sake of
simplicity, let us concentrate on the 3-dimensional case. A 3-dimensional hyperbolic
spin manifold of finite volume is known to be decomposable in the form

M=DMyUE;U---UE}

where M, is compact with boundary and the E; are the cusps. They have the form
E; = (0,00) x T? with the Riemannian metric g = dt? + e ' - gaa, where ¢ denotes
the variable in [0, 00) and gaa is a flat metric on the 2-torus 72.

All topological information is contained in My but by the decomposition principle
it is irrelevant for the essential spectrum. Hence the essential spectrum can be de-
termined by looking the cusps alone and they are very simple and given completely
explicitly. One gets

THEOREM 1.10 (Bar [Bar00]). Every complete oriented hyperbolic manifold M of
dimension 3 and finite volume has a spin structure for which
spec(D) = specy(D).
Some also have a spin structure such that
spec(D) = R.
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There are no other possibilities.

In other words, either spec,(D) = 0 or spec,(D) = R and it is the spin structure
which is responsible for the presence or the absence of essential spectrum.

One of the main sources for the construction of examples of 3-dimensional hyper-
bolic manifolds of finite volume is as follows: Take a knot or link L in R3. Add one
point to R® to obtain S® and regard L as sitting in the 3-sphere, L C S®. It can be
shown that for “most” links the manifold M := S3 \ L can be given a hyperbolic
metric of finite volume. Each component of the link corresponds to one cusp. For
such an M there is a simple criterion for whether or not there exists a spin structure
with spec(D) = R.

THEOREM 1.11 (Bér [Bar00, Thm. 4]). Let L C S® be a link, let M = S®\ L carry
a hyperbolic metric of finite volume.

If the linking number of all pairs of components (L;, L;) of L is even,

Lk(L;, L;) = 0 mod 2,

i # j, then the spectrum of the Dirac operator on M is discrete for all spin struc-
tures,

spec(D) = specy(D).

If there exist two components L; and L; of L, i # j, with odd linking number, then
M has a spin structure such that the spectrum of the Dirac operator satisfies

spec(D) = R.

Determining linking numbers modulo 2 is equivalent to counting overcrossings mod-
ulo 2 in planar link diagrams, hence extremely simple.

The complements of the following links possess a hyperbolic structure of finite
volume. All linking numbers are even. Count e. g. the overcrossings of blue over
red. Hence the Dirac spectrum on those hyperbolic manifolds is discrete for all spin
structures.
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This example includes the Whitehead link (5?) and the Borromeo rings (63).

The complements of the following links possess a hyperbolic structure of finite
volume. There are odd linking numbers. Hence those hyperbolic manifolds have a
spin structure for which the Dirac spectrum is the whole real line.
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