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Summary. The(-regularized determinants of the Dirac operator and of its square are computed on
spherical space forms. Q87 the determinant of Dirac operators twisted by a complex line bundle is
also calculated.
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1 Introduction

In classical field theory the physical fielgshave to satisfy certain field equations or, equiv-
alently, have to be critical points of some action functiafigh]. When passing to quantum

field theory this requirement is discarted and one instead looks at partition functions defined
as a functional integral

7= / exp(—S[¢)) Dy

over the space of all fields. It is now a serious problem that in most cases the space of
fields is infinite dimensional and the “measuf®) does not exist. If the space of fields

is a Hilbert space and the action is of the fofifiy] = (L ¢, ¢) whereL is a positive
self-adjoint operator, then one cdafinethe functional integral by

Z = (det L)"Y/2,

This is motivated by the fact that if the Hilbert space is of finite dimengigithen

/ exp(f%(L z,z))dzt - da™ = (2m)N/? det(L)7V/2.
RN

One can then regarBx = \d/% e "f% as a renormalized Lebesgue measure. At first it

may seem that one has simply shifted the problem since in the physical case the aperator
will typically have unbounded spectrum and the product of its eigenvalues will diverge. So
one has to find a reasonable definition for the determinaht @¥e will look at two closely
related definitions for the determinant, the one most commonly used is coming from the
¢-function of L while the proper time regularized determinant makes essential use of the
asymptotic heat kernel expansion. This will be explained in detail in the next section. In
order to distinguish these regularized determinants from the usual ones in finite dimensions
we will denote them by BT and by DET, +..

Even though these concepts are standard in quantum field theory not many of these de-
terminants have been computed explicitly. Due to the somewhat involved nature of their
definition an explicit computation can be achieved only in cases of high symmetry. In this
paper we provide such explicit computation for the Dirac operator and its square on spher-
ical space forms. The square of the Dirac operatdis a non-negative self-adjoint elliptic
differential operator acting on spinor fields. In Theorem 4.1 we present a formula for the de-
terminant ofD? on then-dimensional sphere, > 2, with its standard Riemannian metric

of constant curvaturé. The determinant is given by a linear combination of the Riemann
¢-function and its first derivative evaluated at certain non-positive integers. The proper time
regularized determinant is given in Corollary 4.3.

Since the Dirac operatdp itself has a spectrum unbounded from above and from below
one has to find a reasonable definition for its determinant. Since regularized determinants
are in general not multiplicative,

DET(A B) # DET(A) DET(B),
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it is not sufficient to simply set BT(D) := /DET(D?). In (3) we define ET(D) to be of
the formexp(i¢)+/DET(D?) where the(-invariant of D? and then-invariant of D enter
into the phaser. This definition is motivated in Section 2. We give a simple expression
for the multiplicative anomalyxp(iy) in Theorem 4.2. It turns out to be trivial for odd-
dimensional spheres. The case of the 1-dimensional sphere needs special treatment since
S! has two different spin structures. The results $6rare contained in Theorem 4.4 and
turn out to depend on the choice of spin structure. The numerical values strongly suggest
that the Dirac determinant on tlhedimensional sphere tendsta@s the dimension goes
1o oo,

lim DET(D;S") = 1.

n—o0

We have no rigorous proof for this conjecture.

We then pass to spherical space forms, i. e. to quotients of the sphere. We first look at the
determinant of>? and compute theovering anomaly

DET(D? G\S™)

DET(D?2; Sn)TeT
in Theorem 5.1. Here only odd dimensionshave to be considered. For the example of
real-projective space it turns out that the covering anomaly is trivial,

DET(D?;RP") = /DET(D?; S™).

In Theorem 5.2 we give the formula for the determinantZbitself on spherical space
forms. For the computation of the multiplicative anomaly we need to recall a formula for
then-invariant of spherical space forms which we do in Theorem 3.2.

In the final section we restrict our attention $8 but we twist the Dirac operator with a
complex line bundle. The Chern number of such a bundle can be interpreted as a topological
charge. In Theorem 6.1 we compute the eigenvalues of these twisted Dirac operators and in
Theorem 6.2 we compute their determinants. As a special case this includes the determinant
of the Laplace-Beltrami operator acting on functions.

It is always understood that the spherical space forms are equipped with their standard
metrics of constant curvature 1. G, S, andS® the standard metric is known to have an
interesting criticality property for the determinant®f [4, 5, 13, 15].

Acknowledgement. The first author has been partially supported by the Research and
Training Networks “EDGE” and “Geometric Analysis” funded by the European Commis-
sion.

2 Determinant of the Dirac Operator

Throughout this paper |t be a non-negative self-adjoint elliptic differential operator of
second order acting on sections of a Riemannian or Hermitian vector bundle over a com-
pactn-dimensional Riemannian manifold. See [10] and [14] for the basics on spin and
spectral geometry. The most common regularization scheme for making sense of the deter-
minant of L is the definition via itg-functionwhich reads

DET(L; M) := exp (—(,(0)) 1)

with

SO DR

A€Spec(L)—{0}
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This way of defining the determinant is motivated by the observation that for positive num-
bers\; we haveln )\, = f%)\;ﬂs:o andexp (3, In ;) = ], Ax. The series defining
Cr(s) converges fofi(s) > n/2. It can be shown thaf; extends meromorphically 6

and that it has no pole at= 0.

Note that this definition of the determinant excludes all information on the possible eigen-
value zero. It has to be taken into account separately.

There is the following expression ¢f (s) in terms of its Mellin transform:

1

) /0 t5~r(e ™t — Py)dt 2

CL(s) = T

whereP, denotes the projector onto the kernellof

So far we have a definition of the determinant only in case the opetdatnon-negative.
This can be applied to the square of the Dirac operdios: D?, but not to the Dirac
operator itself. We adopt the following convention for the determinaii? ¢20]:

(p2(0)

DET(D: 1) 1= exp (i7 (Co(0) — mn(0) ) - exp (—T) @3)

where they-functionis given by

SgM\

Al®

np(s) =
A€Spec(D)—{0}

for ®(s) >> 0. What enters into the phase of the determinant isjthevariantn(M) :=
np(0). It measures the spectral asymmetry and is zero in case of a symmetric spectrum.

Why is the definition in (3) reasonable? Denote the positive eigenvalugstnf )\, and
the negative ones byv,. We can formally write down g-function for D itself as follows:

Cp(s) =D A"+ > (-1)7*u°
k k

At ATy e S
= —]_ S —_
S (At ) r e (B ;

~ Cp2(3) +np(s)
N 2

_s Cp2(5) — UD(S).

+(-1) 5

This is a meromorphic function well-defined up to the sign ambiguity-ih) = = eF¢™s.
Choosing(—1)~* = =™ we get

thus yielding (3).
We want to compare the above considerations with another way of defining a regularized
determinant. Fog > 0 define

In DET.(L; M) := 7/ t= (et — Py)dt. 4

Since the integrand decays exponentially fast the integral is finite for every pasi@ee
says that BT1.(L; M) is obtained from the (infinite) determinant bfby cutoff in proper
time [17, p. 170]. To motivate this definition note that (2) givesigg) >> 0
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C'L(S) = IJ:ESZ /000 tsfltr(e*tL . Po)dt
L >~ n s—1 eftL _
550 /O ()t~ r( Py)dt.

After replacing the lower integral boundafyby ¢ > 0 we can take the limit — 0. The

Laurent expansion

I'(s) = é +0(1) (5)

giveslim,_.q ﬁ = 0 andlim,_,g (— IE(SQ) = 4 (s)7!]s=0 = 1. This way we obtain
the right hand side of (4).
The proper time regularized determinant is now defined as the “finite parttof (@.; M)

for ¢ \\, 0. To make this more precise we look at the asymptotic expansion of the heat
kernel of L = D2 fort \, 0

oo

tre= ~ N P g (L)t 3.
k=0

In particular, we can plug

[n/2]
= Z Bp_n (L)% + R(t) (6)

into (4) where the remainder terR(t) is of order Qit) if n is even and of order @/%) if
n is odd. After splitting the integral in (4) into one ovier 1] and one ovefl, oo] we get

[n/2]
In DET.(L; M) / (Z Pp_n (L) 27 4 Rt — dimker(L)t1> dt

—/ t~ (et — Py)dt
1

[(n—1)/2] [(n-1)/2] k-2
Dp_n (L) st—% (L)E 2
- kz—o k_2 + Z L— 1 +(¢0(L)

Py_n
Here we use the conventiaiy (L) = 0 if n is odd. The terms'“#ﬁ() k< [(n-—
k 2

1)/2], and ($o(L) — dimker(L))Ine explode fore \, 0 unless they vanish. We now
abandon the terms divergent in the limit\, 0 and we are led to

Definition 1. Theproper time regularized determinaBeT, ;. (L; M) is defined by

[(n—1)/2] By
InDET, (. (L; M) := Z n__ / R(t)t™tat
k=0 2
—/ t~ (et — Py)dt 7
1

where®,._» (L) andR(t) are as in (6).

The following relation (cf. [17, (28.11), p. 171]) shows that the two regularizations do not
differ significantly.
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Proposition 2.1 The(-regularized determinanDeT(L; M) and the proper time regular-
ized determinanDET, ;. (L; M) are related by

InDET(L; M) —InDET, . (L; M) = I'"(1)(Po(L) — dimker L) = I"(1)¢(0).

Proof. In order to compare (7) with the-determinant we insert the heat kernel expansion
(6) into (2) and do the corresponding integral splitting into one d¢@gt] and one over
[1, o0].

[(n—1)/2] . 1
1 djkfg (L) @0([4) — dimker L s—1
CL(S)_F(8)< kZ:O s y +/0 R(t)t>"dt

N /100 ts_ltr(e_tL _ Po)dt>. (8)

Using (5) we find
¢1(0) = §o(L) — dimker L.

Equation (8) gives us for the determinant

[(n—1)/2] . 1
moer(z: i) = -0 = 3. 2B vy ) - / R(t)t™'dt
k=0 2 0
- /OC t~Mr(e tt — Py)dt 9)
1

Comparing (7) and (9) we get Proposition 2.1.

3 Dirac Spectrum of Spherical Space Forms

The Dirac spectrum of the sphe$&, n > 2, with constant curvaturé has been computed
by different methods in [2, 7, 18, 19]. The eigenvalues are

n
+ (5 + k:) : (10)
. L g [k+n—1 o
k € Ny, with multiplicity 2*/2] i . Forn > 2 the sphere is simply connected,

hence has only one spin structure. It is given by the standard projectiofnSpih) —
Spin(n 4+ 1)/Spin(n) = S™.
We now look at spherical space form¢ = G\S™ whereG is a finite fixed point free
subgroup of SOw+1). Spin structures correspond to homomorphism& — Spin(n+1)
such that the diagram
Spin(n + 1)
G—SOn+1)

commutes. The corresponding spin structure is giver(6%\Spin(n+1) — G\ (Spin(n+
1)/Spin(n)) = M. Thus spinors o/ correspond te(G)-invariant spinors ors™.
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Since any eigenspinor ai can be lifted toS™ all eigenvalues o are also eigenvalues of
S™, hence of the form (10). To know the spectrumléfone must compute the multiplicities
pr Of & + Kk andp_p of —(5 + k). Itis convenient to encode them into two power series,
so-calledPoincaté series

Fi(z):= Z k2",
k=0

oo
F_(z):= Zﬂ,kzk.
k=0
To formulate the result recall that in even dimensin the spinor representation is re-
ducible and can be decomposed into two half spinor representations
Spin(2m) — Aut(Z% ),

Som = X @ X, . Denote their characters ky* : Spin(2m) — C.
Theorem 3.1 ([2]) Let M = G\S™, n = 2m — 1, be a spherical space form with spin
structure given by : G — Spin(2m). Then the eigenvalues of the Dirac operator are
+(5 + k), k > 0, with multiplicities determined by

Note that only odd-dimensional spherical space forms are of interest because in even di-
mensions real projective space is the only quotient and in this case it is not even orientable.

This kind of encoding the spectrum @f is in fact well-suited for computation of the
n-invariant.

Theorem 3.2 ([3]) Let M = G\S?™~! be a spherical space form with spin structure
given bye : G — Spin(2m). Then thej-invariant of M is given by

2m—1\ __ 2 (X__X+)(€(g))
n(G\S )—Egeg_z{b il )

For the convenience of the reader and since we will need the arguments again we briefly
sketch the proof. We define tifiefunctions

Hi(t) = e 3t F:t(e_t)

e T (e(g) — e xF(elg)
- |G| det(lgmm —et-g) ’ (11

geG

SinceG acts freely the non-trivial elemenjgse G do not havel as an eigenvalue and thus
det(12,,, — g) # 0. Therefore only the summand for= 1,,,, contributes to the pole af;
att = 0. Hence ford := 6, — 6_ the poles at = 0 cancel g is holomorphic at = 0 with

i (x~ —x")((9)
0(0) = ql gEG_Z{W “det(lgm —g) 02
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Next we observe that

ZM e—(ﬂ/?-‘rk‘)t Z 6_)\t7

A>0

where the last sum is taken over all positive eigenvalues. Similarlg_for

Zu e —(n/24+k)t _ Z At

k=0 A<0

Application of the Mellin transformation yields

(t)ts~Lat.

Therefore

2m1 : s—1 s—1
n(G\S gqop /9 7 dt = Re§0</ o(t)t dt)

Sinced decays exponentially fast for— oo the functions — f1°° 6(t)t*~1dt is holomor-
phic ats = 0. Thus

n(G\S*™~ 1) = Res— (/01 G(t)ts_ldt> = 6(0)

which together with (12) proves Theorem 3.2.

Compare this to Goette’s computation of teguivariantn-invariant of spheres in [11,
Satz 6.10]. See also [9, 10] where thévariant of all twisted signature operators on spher-
ical space forms is determined and used to compute fidheory. In [8] then-invariant

of all twisted Dirac operators on 3-dimensional spherical space forms is computed.

Using Theorem 3.2 it is easy to discuss real projective space.
Corollary 3.3 ([3]) For n > 2 real projective spac®P" is spin if and only ifn. = 3 mod
4, in which case it has exactly two spin structures. fkavariant for the Dirac operator

is given by
n(RP™") = £27™, n=2m —1,

where the sign depends on the spin structure chosen.
Let us now look at lens spaces. ko R define the rotation matrix

Rla) = c.os(27roz) —sin(27a)
sin(2ma)  cos(2ma)

For natural numberg, p1, . . ., p,, Wherep; andq are coprime for allj, let G be the cyclic
subgroup of S@m) generated by

R(p1/q) 0

0 R(pm/q)

We denote the resulting lens spacelby;, pi, . .., pm) == G\S?*" 1. Now Theorem 3.1
takes the form (compare [1, Satz 5.3]):
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a) If ¢ is odd, thenL(q, p1, - . ., pm) has exactly one spin structure and the Poiacaries
are given by
Fi(z) =
> exp(mik(q+ )ZEJPJ/Q) -z > exp(mik(g+1)3 €;p;/q)

c1Em

Z —(—1)m+1 =(—1)m J
- )

E[l(exp(%rikpj/q) — z)(exp(—2mikp;/q) — 2)

F_ () =
. Z exp(mik(q + 1) Z €ipi/a) — = - Z exp(mik(q+ 1) Z £;p;i/q)
1 e 21(_15)% J :fil)fﬂ}l J
£ s Hl(exp(Zwikpj/q) — z)(exp(—2mikp;/q) — 2)
J:

b) If ¢ is even andh; + ... + p,, is 0dd (i. e. ifm is odd), thenL(q, p1, ..., pm) has no
spin structures.

c) If gisevenand; + ...+ p,, is even (i. e. ifm is even), ther.(q, p1, - . . , pm) has two
different spin structures. The Poinéaseries for the first spin structure are given by

€1°"Em

Z exp(mik ) €;p;/a) — z- Z exp(mik }_€;p;/q)

m J il_E%
F+<z>=—2 . :
720 H (exp(2mikp;/q) — z)(exp(—2mikp;/q) — z)

ot 2o ORIk Epi/a) =2 3, exp(mik)eip;/)
—1 e1-em 7 €1 Em J
=(—1)m =(—1)m+1

k=0 ﬁl(exp(Qwikpj/q) — z)(exp(—2mikp;/q) — 2)

Q| =

while for the second spin structure they are given by

2. exp(mik ) epi/q) —z- > exp(wikd e;p;/q)

198 j e
Fila) =2 Y (1) - ,
k=0 1 (exp(2mikp;/q) — z)(exp(—2mikp;/q) — =)
j=1
- > exp(mikY epi/a) —z- > exp(mik)_e;p;/q)
1 «— Eam J i J
Foe) = Yy —
k=0 1:[ (exp(2mikp;/q) — z)(exp(—2mikp;/q) — 2)

Here the notation )  indicates that the sum is taken over all choices;of +1 for

€1 €m

=(-nm+1
whiche; - - ¢, = (=1)™*! and similarly for(—1)™. For then-invariant this yields in
case a)
n = 06(0)
> exp(mik(q + )Zegpj/q) > exp(mik(q+1) > e;p;/q)
J

€1 Em €1 €m

. Z —(—1ym+1 —(—m

1 (exp(2rikp, /g) ~ 1)(exp(~2rikp; /2) ~ 1)
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m

q—1 Z H €j exp(mjk(q + 1)5jpj/q)
m+1 2 E1yeesEm j=1
= (o IS ey

7= 1;[1(2 — 2cos(2mkp;/q))

5 -l (exp(mik(q + 1)p;/q) — exp(—mik(q + 1)p;/q))
— (- 2y I

Lt om ,4];[1(1 — cos(2mkp;/q))

q 1
_ rrL+1 i Z ﬁ SlIl ﬂ-k q + 1 pj/q)

1 — cos(2mkp;/q)

kl]l

If m is odd we see tha} is imaginary, but on the other hand thenvariant is always
real. Hence it must vanish in this case. In fact, ffi@variant of the Dirac operator always
vanishes unless the dimension of the manifold is 3 mod 4. Case c) is treated similarly.
Case b) cannot occur for even We summarize:

Corollary 3.4 Letm € N be even and le¢, p,...,p, € N be such thay andp; are
coprime for allj.

ThenifgisoddL(q, p1, ..., pm) has exactly one spin structure and thénvariant is given
by

o)) = (— 3m/2+1221—[sm77kq+1p]/q)
e 1 — cos(2mkp;/q)

7](L(q7p17 v
k 1j5=1

If ¢ is even, ther.(q, p1, . . ., pm) has two different spin structures. For the first spin struc-
ture thep-invariant is given by

2 " sin(mkp;/q)
I o)) = (1)L L j
77( (qapla » P )) kz:ljl_[ll_COb 27Tkp]/q)

while for the second it is

L@ prs s p)) = (—1)m/241 2 Z )i H sin(mkp;/q)

9 — cos(2mkp;/q)

The case = 2 andp; = ... = p,,, = 1 recovers Corollary 3.3. We collect a few examples
in Tables 1 and 2. For evenwe denote they-invariants for the two spin structures by
andny.

4 Dirac Determinant of the Sphere

In this section we compute the determinant of the square of the Dirac operator and of the
Dirac operator itself over the sphere of constant sectional curvature 1. For this task one
could use the general machinery developped in [6] for homogeneous operators on compact
locally symmetric spaces. We found a direct approach more convenient. Regikthann
¢-function (g and theHurwitz ¢-function ;; defined by meromorphic extension of the

series - -
CR(S):Z% and (s, b) :Z

=17 il
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Table 1.
M dim(M) n

L(3,1,1) 4

L(3,1,2) —4

L(5,1,1) 3 4

L(5,1,2) 0

L(5,2,3) -

L(3,1,1,1,1) —4
L(3,1,1,1,2) 7 Y
L(5,1,1,1,1) _L
L(3,1,1,1,1,1,1) %
L(3,1,1,1,1,1,2) 11 _%
L(5,1,1,1,1,1,1) %
L(3,1,1,1,1,1,1,1,1) _211_3
L(3,1,1,1,1,1,1,1,2) 15 2%
L(5,1,1,1,1,1,1,1,1) _%
L3,1,1,1,1,1,1,1,1,1,1) 7479
L3,1,1,1,1,1,1,1,1,1,2) 19 —%
L(51,1,1,1,1,1,1,1,1,1) %
Table 2.

M dim(M) m 2
L(4,1,1) 53
L(4,1,3) % ,g
L(6,1,1) 8 19
L(6,1,5) %
L(8,1,1) 3 % %
L(8,1,3) % 116
L(8,1,5) _% _1%
L(8,3,5) 1 2
L(10,1,1) B _1

L(4,1,1,1,1) s I
L(4,1,1,1,3) -z 2
L(6,1,1,1,1) 7 —s20 265
L(8,1,1,1,1) ~los w7
L(10,1,1,1,1) ~ 1221 1029
L(4,1,1,1,1,1,1) I _1s
L(6,1,1,1,1,1,1) 11 3611 _ 3355
L(8,1,1,1,1,1,1) % _%
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with b > 0. Observe that the binomial coefficieht, (z) := (**"7') = W
is a polynomial inz of degreen — 1. Hence we can define

1 d*

Ak, n) = o M (@)= (13)
or, equivalently,
n—1
n k
M) =" Alk,n) (x + 5) . (14)
k=0
Moreover, we set
Z;’;‘ll ¥ In(4), if n = 2m is even,

C(k,n) = (15)

Z;ﬁ;ol(j + D)FIn(j + 3), if n=2m+1is odd.

Now we can formulate the result f@? which in different notation is also contained in [4,
Section 8].

Theorem 4.1 The determinant of the square of the Dirac operator onsthdimensional
sphereS™, n > 2, with constant sectional curvature 1 is given by the following formulas:
If n = 2m is even, then

n—1
In DET(D? §%™) = =272 % " A(k, n) (Ch(—k) + C(k,n)), (16)
k=0

and ifn = 2m + 1 is odd, then

n—1
In DET(D?; §2m+1) = _gm+2 Z A(k,n) (g}(—k)(zik -1+ 1121—3 Cr(—k)+ C(k, n))
k=0

17)
where(r, is the Riemani-function, A(k, n) is as in (13) and”'(k, n) is as in (15).
Proof. From (10) we see that ofi”
0o (j+7’f—1)
(pa(s) =2/~ I~
i G+35)°
By (14) we obtain
n—1 00 n
,(s) — oln/21+1 c Mk—2s
Cpa(s) = 20D Ak D G+ 5)
k=0 j=0
n—1 n
= 202N A, ) Cr (25 — K, ) (18)
k=0
In casen = 2m is even we use
m—1
Cu(s,m) = Ca(s) = D J~°
j=1

valid form € N to get
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n—1 m—1
Cp2(0) =242 % " A(k,n) | Cr(—k) + Y j*In(j) | .
k=0

This proves (16). For. = 2m + 1 odd we obtain

n—1

Cbz (0) = om+2 ZA(k,n)C},(—k,m + %).
k=0
From
1, 1 A
CH(57m+ 5) *CH(S *)* Z (]+ 5) y

valid form € N and

(see e.g.[12, 9.535]) we get (17).

Example 1.From this theorem we get

DET(D?; 5?) = exp(—8(Rr(—1)),

DET(D%:5%) = exp (3¢h(-1) -~ §¢h(-3))

DET(D?; %) = 275 exp (_g Cr(=2)+ gcﬁ(—@) ;

DET(D%5%) = exp (=15 Ch(-1) + 5 Ch(-3) = 15 Ch(-5) )

DET(D%57) = 2 exp (355 (=) = 35 Chl—) + 105 Gr(=0) ).

DET(D%5%) = exp 38 Ch(~1) = Jo Ch(-3) + 5 Chl=5) ~ 5 GR(-T)).

DET(D%:5%) = 275 exp (g () + 5 () ~ 5 Ch(-0
+1017752 3*(_8)>’

DET(D%5™%) = oxp (51t Chl=1) + o2 Chl(-3) = 1o Ch(~5) + 125 (= T)

1 !
5555 -9

Forn = 2,4, 6 this reproduces the values computed by Branson in [4, Thm. 8.1]. For the
Dirac operator itself we obtain

Theorem 4.2 The determinant of the Dirac operator on thedimensional spher&™,
n > 2, with constant sectional curvature 1 is given by the following:

If n = 2m is even, then
2m—1

DET(D; $*™) = exp (mm > A(k,zm)B’;jl(m)> \/DET(D?; §2m),

k=0 +1
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and ifn is odd, then

DEeT(D;S") = /DET(D?; S™)
whereDET(D?; S™) is as in Theorem 4.14(k,n) as in (13) andBy(z) are the Bernoulli
polynomials.

Proof. By (3) we have
DET(D; 5") = exp (i (Cp2(0) = np (0)) ) /DET(D? 57).

The n-invariant vanishes because the Dirac spectrun§’ofis symmetric. It remains to
computep=(0). Plugging

oy B
(see [12, 9.531 and 9.623(3)]) into (18) we get
n—1 7
Byi1(3)
,(0) = —oln/2]+1 Zkt12)
(p2(0) = -2 kZZOA(k,n) Pl (19)

This proves the even-dimensional casenlfs odd we observe thab,(D?) = 0 and
ker D? = {0} and hence

¢p2(0) = 0. (20)
This concludes the proof.

Using Proposition 2.1 we can combine Theorem 4.1, (19) and (20) to obtain the proper
time regularized determinant @2 on S™.

Corollary 4.3 The proper time regularized determinant of the square of the Dirac operator
on then-dimensional spher§™, n > 2, with constant sectional curvature 1 is given by the
following formulas:

If n = 2m is even, then

2m—1

In DETy... (D% 5%) = —27F1 3~ Ak, 2m) (2 Cr(=k) +2C(k,2m) — F’(l)—Bﬁ(;n))
k=0

and ifn is odd, then

DET,..(D?; S™) = DET(D? S™)
where(y is the Riemani-function,A(k, n) is as in (13),C(k,n) is as in (15) andBy(x)
are the Bernoulli polynomials.

The 1-dimensional case needs to be treated separately bet'ahas two spin structures.

Let us call the spin structure which extends to the unique spin structure of the 2-dimensional
disk theboundingspin structure, the other one then-boundingspin structure. For the first

spin structure formula (10) still holds while the non-bounding spin structur&Zres its

Dirac spectrum. We get

Theorem 4.4 The determinants of the Dirac operator and its square onitidémensional
sphereS*! with length2r take the values

DET(D;S') =2 and DET(D?*S') =4
for the bounding spin structure and
DET(D;S') = —2mi and DET(D?% S') = 4r?

for the non-bounding spin structure.
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Recall that by our convention for the determinant the eigenvaliseignored. Otherwise
the determinant o8 would vanish for the non-bounding spin structure.

Proof. From (10) we get for the bounding spin structure

_ = # _ l _ 2s
Cp2(s) = 2; GroE - 2Cu(2s, 5) = 2(2* = 1)Cr(2s).
Using(r(0) = —1 we obtain

(p2(0) =4In2- ((0) = —2In2

and hence
DET(D?*; S') = exp (—(p2(0)) = 4.

The computation for the non-bounding spin structure is even easiefpkave get
=1
(p2(s) =2 F 2¢r(2s).
j=1

Now (5 (0) = —1 In(27) yields
(p2(0) = 4CR(0) = —21n(2m)

and therefore
DET(D?% S') = 4n?.

This proves the formulas for ©r(D?; S1). Then-invariant vanishes in both cases due to
spectral symmetry. The result fored(D; S*) follows from (3) and

0 for the bounding spin structure
(p2(0) =

—1 for the non-bounding spin structure.

In the following tables we give some results obtained by numerical approximation. The
phasep is defined by _
DeT(D;S™) = |DET(D; S™)|e*”.

Here are the values of the determinant on the first few even dimensional spheres.

We do not need the Drp_t_(DQ;S”)—cqumn in the odd dimensional case because of
Corollary 4.3. The phase vanishes according to Theorem 4.2.

A view at the numerical values leads us to

Conjecture 1.The determinant of the Dirac operator on thdimensional spherg™ tends
to 1 forn — oo,
lim DET(D;S™) = 1.
For example, we have
|DET(D; SQOO)| ~ 0.9999999999999999999999999999999023251476,
and for the phase of Br(D; $2°°) we have
© ~ 0.8894434790878104795255101869645846589176 - 10731,

We have no explanation for this phenomenon.
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Table 3.

n |DET(D; S™)| %) DETp,t,(DQ;S")

2 1.938054383626833 -0.523598775598299 3.098641928647827
4 0.796336885184459 0.191986217719376 0.680506885334576
6 1.096240639130369 -0.0793709255073612 1.167199468652179
8 0.961240935820022 0.0345879931923003 0.935802870851431
10 1.017761616865532 -0.0155276797389130 1.029945138033507
12 0.992018956602283 0.00710558492613086 0.986674523357944
14 1.003708484448039 -0.00329528874347978 1.006211552565484
16 0.998272959376817 0.00154335558060539 0.997114236587699
18 1.000814152574965 -0.000728325704396029 1.001360932301507
20 0.999614434504206 0.000345772030034635 0.999355987552311

Table 4.

n DEeT(D)

3 0.803354268824629
5 1.090359845142337
7 0.963796369884191
9 1.016473922384390
11 0.992614518464762
13 1.003422630166412
15 0.998408322304586
17 1.000749343263366
19 0.999645452552308
21 1.000168795852563

5 Dirac Determinant of Spherical Space Forms

Next we determine the Dirac determinant of spherical space fafms G\ S*™~1 where

G C SO (2m) is a fixed point free subgroup. The spin structure is given by a homomor-
phisme : G — Spin (2m) lifting the inclusion ofG into SO (2m) as explained in Sec-
tion 3. In order to distinguish geometric data for different manifolds we wije (s; M)

for the ¢-function of the square of the Dirac operator bh

Theorem 5.1 Let M = G\ S?*™~! be a spherical space form with spin structure given by
¢ : G — Spin (2m). Then the square of the Dirac operator 8t has the determinant

L

DET <D2;G\52m_1) _ DET (D2;52m—1> G
2 00 lf(mfl)t 1—et
II oo <_ X(é(g» / d t€1 _2 = te dt)
G Tiam} Gl o det(lam —e7'g)

where DET (D?; $?™~1) is given by Theorem 4.1 angdis the character of the spinor
module forSpin (2m) .
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Proof. To compute th&-function ¢p= (s; G\S?™~!) we recall thed-functions

)

1 e—(m—%)t c etk
0 (t) = ="V Fe(e7) = — > Xﬂdg& ef.g(g»
eG m

see (11). Hence by the following Mellin transformation

I (25) (p2 (5;G\S*™ 1) = Z IA| 7% / u** e "du
0

A€Spec(D)
9
/ t2s—1 e—\Mtdt
0
oo

_ Z (/ik +ka) / t2sfl ef(mf%Jrk)tdt

k=0 0

= /OO 2571 (04 (1) +0_ () dt
0

00 42s—1 e—(m,—%)t A (1 _ et

1 t
-G 3 xelo) / (e ) 4t

A€Spec(D)

geG 0
we obtain
1 o0 e—(m=—3)t 1—et
2 (5;G\S*" Y = —— € / 128 dt.
CD ( \ ) |G| . F(QS) gEZG X( (g)) 0 det(lgm _ e_tg) t
The special cas€’ = {12,,} yields
1 &0 e—(m=3)t 1—et
5 (g §2m—1) — (1) - 128 dt
Cp2 (5 577) = Fggy - x(1) /0 det(Tom — et - 1om) ¢
and therefore
2(s: SQm—l
<D2 (S;G\SQm_l) CD (87 )
1G]
1 ) ) ef(mfé)t 1— eft
+ = x(e(g / te° — dt .
|G| - I'(2s) gecg{:lzm} (£(g)) 0 det(le,, —e7tg) ¢

Sinceg € G — {12,,} does not have any positive real eigenvalues the integral defines a
function ins holomorphic at. Thus

_ CD2 (0; Smel)

e G| =0 (21)
by (20) and
Cpe (0;G\S*™1) %5'2—1)
e
e > x| det(el;_;_tg)l -,

geG_{IQnL}

by (5). This implies the formula for Br(D?; G\S?*™~1).

Equality of DET(D? G\S?*™~') and DET, (D?* G\S*" 1) follows from Proposi-
tion 2.1 and (21).
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Example 2.Let us look at real projective spackl = RP?™~!, In this caseG =
{12/, —1om}. We assumen to be odd so thaf\/ is spin and has two spin structures.
They are given by(—1s,,) = +w wherew = e; - - - ea,, is the volume element consid-
ered as an element in Spn) C CI(R*™). The volume element acts by multiplication by
+1 on the two half spinor spaces so thdt(w) = —x~ (w). Hence for both spin structures
we havey(e(—12,,)) = 0. It follows that

DET(D*RP*™ ") = \/DET(D? §2"~1) = DET(D; S*™ ).

Example 3.Let us now look at the lens spadé = L(q, p1, ..., pm). We assume thatis
odd so that\/ has exactly one spin structure. For

R(kp1/q) 0
g g
0 R(kpm/q)
we compute
X)) =Y exp | mik(g+1)> eipi/a
E1,\Em j=1
- Z H exp(mik(g + 1)e;p;/q)
€1, 9Em ]:1
— 2m H COS (w)
=1 1
and

det (1o — e~ g) det (12 —¢" R(kp;/q))

L

<
I
—

(1—2e " cos(2mkp;/q) +e ).

=1

<.
I
—

Now Theorem 5.1 yields
DET(D? L(¢,p1, - - -, pm)) = DET(D? 8™~ 1)1/9 . exp(A)
where the covering anomadxp(A) is given by

gm+1 471 roo 1 — e—t) e—(m=1/2)t gy m i Do
Ao Z/ (1-efe I] cos mklg+1)p; )
¢ {=Jo tII;(1=2e7" cos(2mkp;/q) +e72) 25 q

Theorem 5.2 Let M = G\ S?™~! be a spherical space form with spin structure given by
¢ : G — Spin(2m) . Then the Dirac operator o has the determinant

DET (D; G\S*™ 1)

— el gEGz{:lz , det(lam —g) VDETDH ST,

where DET (D?; G\S?™~!) is given by Theorem 5.1 ang* are the characters of the
half spinor modules ofpin (2m) .

Proof. Follows directly from (3), Theorem 3.2, and (21).
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6 Spectrum and Determinant of twisted Dirac operators onS?

In this section we compute the spectrum and determinant of certain twisted Dirac operators
on the two-spherg?. Recall that complex line bundles ovét are in 1-1 correspondence

with Z via their Chern numbers. Hence each complex line bundle is of the firior
somek € Z wherec; (L) = 1. The spinor bundleZS? decomposes into a sum of two
complex line bundlesy S? = X*5% @ ¥~ 52, the bundles of spinors of positive and

of negative chirality. Since;(X*52?) = 41 we haveL = X*52. The metric and the
Levi-Civita connection on*S? induce Hermitian metrics and metric connections on all
the line bundlesC*. Using these connections we can form the twisted Dirac operfagor
acting on sections of the bundies? @ £*.

Theorem 6.1 The eigenvalues of the twisted Dirac operaf@y acting on sections of the
spinor bundle tensored with the line bundle of Chern number k 6¥eare given by

£V i(|kl + 9), 7=0,1,2,...

with multiplicity
2j + |k|.

Proof. We start by computing the relevant curvatures. The curvature te8sr of the
spinor bundle can be expressed in terms of the curvature t&isorof the tangent bundle
by

2 1 2 2

R (X,Y) = 1 ) <RTS (X,Y)es, ej> eie;
i,j=1

whereeq, e5 is an orthonormal tangent frame acting on spinors via Clifford multiplication.
Since in our casé? is of constant sectional curvature 1 we have

R™S(X,Y)Z =(Y,Z2) X —(X,Z)Y
and therefore 1

RS (X)Y) = L (VX —XY).

Hence

2 1
RES (61,62) = —561 - €9.

Since the area elemeat - e, acts on~* 52 by multiplication by+i we get

1

RE(er,e2) = R (er,02) = —5
and thus .
Rﬁm(61762) = —%,

The decomposition®S? = £ @ £~ yields the parallel decompositioBS? ® £F =
L+ @ £F~1 with respect to which the curvature tensor has the form

RESQ@ﬁk(el,eg)Z—i kK+1 0

2V 0 k-1
The Dirac operator interchanges the chirality of spinors and hence has the form

0 D
Dy 0

Dy, =
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whereD, = (D,j)*. Denote the connection Laplace operator@h by V*V =: A,,.
The curvature endomorphism in the Weitzéok formula forD? is given by
K:k = €1 €2 " RESz@Lk (617 62)
i [t 0 k+1 0

2\0—i 0 k-1

1[{k+1 0
2\ 0 —k+1

The Weitzenbck formuIaD,i = V*V + K now says

kE+1

DDy = Apyr+ ——, (22)
Dy D} = Apq + 7k2+ L (23)

Taking the difference of (22) and (23) with+ 2 instead oft we obtain
D;D; = D,CJrQD,H_2 +k+1. (24)

Since D} D,, = (D, )*D;,, and D, D} = (D{")*D;" are non-negative operators they
do not have negative eigenvalues. Denote the positive eigenvaluQﬂﬁ;{D,;) and
Xj(Dy D), 7 = 1,2,3,..., and their multiplicities by.; (D} D, ) andu; (D, D) re-
spectively. Write\o (D} D; ) = \o(D;, D}Y) = 0 and letuo(D;f D, ) anduo(D,, D) be
the multiplicities of the eigenvalue 0. Herg (D} D, ) = 0 or uo(D; D;) = 0 is not
excluded.

From now on assumke > 0. The case of negativiecan be treated similarly by interchang-
ing the roles ofD;” and D;, . For non-negativé equation (22) shows

no(Dyy D) = 0. (25)
The Atiyah-Singer index formula yields
po(Dy, D) = po(D Dy) = ind(Dyf) = e1 (LF) = k

and thus
po(Dy DY) = k. (26)

Since D} intertwines the operator®; D} and D; D, it induces isomorphisms on the
eigenspaces for non-zero eigenvalues. Hencg forl

N(DED) = XD D) and p;(Dyf Dyy) = p;(Dy; DyY). @7
Combining equations (24) and (27) yields fop 1
Xj(Dy D) = Xj-1(Dy oDy p) + k +1andu; (D DY) = pj—1(Dyy 5 Dyys)- (28)
The parameter shift fromito j — 1 is due to the fact thdl is counted as an eigenvalue (of

multiplicity 0) for D,jD,:. Using (28) inductivelyj times we get

J
Ai(Dy D) = Ao(Dyyg; Do) + Y (k+2m = 1) = j(k + j)
m=1

and by (26)
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.Uj(DIZD]—:) = #O(D1€_+2jD1:_+2j) =k+2j
DfD, 0
0 D;Df
of multiplicity k andj(k + j) has multiplicity2(k + 25), j = 1,2,3, .. ..

We have computed the spectrum/of = , hamely0 is an eigenvalue

It remains to observe that the spectrumiof is symmetric about O because for each
eigenspinor ofD;, of the formey = ¢, + +»_ with respect to the splitting’S? @ L£F =
Y+t82 @ £F ¢ X852 @ £F the spinor) = ¢, — 1_ is an eigenspinor for the opposite
eigenvalue. Taking square roots proves the theorem.

Fork = 0 Theorem 6.1 gives the spectrum of the classical Dirac operator which we used in
the previous sections. Similarly, fér= 1 we recover the spectrum of the Laplace operator
acting on functionsA = D} Dy

Theorem 6.1 can also be proved by trivialising the twisted spinor bundleS¥veminus
a point and then solving the eigenvalue equation explicitly using spin-weighted spherical
harmonics. See [16, Sec. 3.1] for this approach.

Knowing the eigenvalues dp, explicitly we can compute its determinant.

Theorem 6.2 The determinant of the twisted Dirac operatby, acting on sections of the
spinor bundle tensored with the line bundle of Chern nunibaver S? is given by

k]
1 ,
DET(Dy; 8?) = exp (ig(—w - §)> e 1CREDFRE/2 T lkl=2m

m=1
the determinant of its square is

|kl
DET(D2; §%) = e 8Cr(=1+A* H 2kl —4m

m=1
and the proper time regularized determinant

K|
DET, .. (D?;5?%) = o8 CR(=D)+K>+I"(1)(|kl+3) | H m2lkl—4m

m=1

Proof. By Theorem 6.1 we obtain for thiefunction

oo

_ N AR
o (5) = QZ G+ IkD?

=2 GG+ KD TG RD ).
Jj=1

Forj > |k| we can expandl + 1) into a binomial series and we get

CD,%(S) =
Sy 3 S (D)] ()
k|

B () ()] e

Jj= 1
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Now we partly follow a similar calculation of Weisberger [21, Appendix C]. For the coef-

ficients .
— S —S
e (7))
we have
do(s) = 2,
dl(S) = —-2s+1,
da(s) = s2,
difs) = (-1 225+ 0(s?), i3
(i—1)
Hence

k|
(pz(0) = 22 2j + |k]) +2(2¢u (=1, [k| + 1) + |k|Cu (0, [K] + 1))
Jj=1
= 4Cr(—1) + 2|k|Cr(0)

1
—_Z _ |k 29
3~ K (29)
and since&y (s, |k| + 1) has only one pole of first order at= 1 with residuel we have

(p2(0) =
[Kk|
= =2 (25 + k) j +In(j + [k])) + 8¢ (=1, [k] + 1) + 4|k[Ch (0, [k] + 1)

Jj=1

—4|k|Car (0, |k| + 1) + |k[? +2Z \kl ‘Cor(i — 1, |k + 1)

|k|
= =2 (25 + [k)(Ing + In(j + [k]) + 8¢ (=1, [k] + 1) + 4|k|¢5 (0, k] + 1)
j=1

2 = Vi i—2 i S
+2[k| + 5|k| +2;( 1) i(i71)‘k| Culi—1,]k| +1). (30)

For the evaluation of the last sum we use the Mellin transform of the Hutwiimction

Cu(s,a) = % /000 t5tem (1 — e~ )" Ldt. (31)

This yields

|k‘| Crr(i— 1, k| + 1)

i. | |z( 2) /Ootif2ef(\k\+1)t(1_eft)fldt
i_

\k:|/ (e CIRHDE 4 =D k)1 — e~ ) Ldt
‘2/ £ (e IR =KD 4 (k1) (- o)
0

To compute these integrals we multiply the integrand®valuate the integral using (31)
and then let — 0.
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I = Y {[k|1(s)(~Ca (s, 21K] + 1) + G (s, [k + 1))

— kT (s + 1)Cr (s + 1, k| + 1) = 2[["(s — 1)(Crr (s — 1, 2]k| + 1)
—Cu(s =1, k| + 1)) + |k[L'(5)Cu (s, |k] + 1)

S IHPI (s + (s + 1, [kl + 1))
= i {JF11°(5)(~Cor (s, 206 + 1) — Car(s, [+ 1)) + 205 — (s — 1))

with the definition
k|
h(s) Z (J+ 1k Ca(s, |kl +1) — Cu(s,2|k] +1).

Using—2¢y (0, |k| + 1) = 1 4 2|k, h(0) = |k|, and Res__;I'(s) = (_l—,l)l we conclude
I =
- {W( ) (_2cH<s, [k +1) = Cur(0,[k] +1) | h(s) = h(0) 1+3|k|>

S S S

+2I'(s — 1)h(s — 1)}
= —2fk|C (0, k] + 1) + [kl (0)
+ T {20 (s = 1)[h(s = 1) + (s - )l |(1 + 3|k}

= —2/k|C (0, [k| + 1) + || (0) — 21 (— ) — [KI(1 + 3[k[)
|| k|
= —2[k[Cr (0, [k + 1) = [E] Y G+ [k]) +2 ) (G + k)G + |k])
j=1 j=1
—[k[(1 4 3|k[)
|F|
= —2[k[C7 (0, [k + 1) + Y In(j + [k|)(2 + |k]) — (1 + 3[k|).
j=1
Inserting this into (30) we get

||
(p2(0) = =2 (2j + [k) Inj + 8¢y (1, [k] + 1) + 2[k| + 5|k[*
j=1
—2|k[(1 + 3|k]|)
||
= 8CR(=1) = [k[* +2) (2 — [k]) Inj,
j=1
therefore "
k
DET(D};5%) = e~ 8CR(=D+k H m2Ikl=4m,
m=1
The formula for DET(Dy,; S?) now follows from (29) and from the vanishing of the
invariant. Proposition 2.1 yields the formula foeB,  (D%; S?).

Remark 1.The casé: = 0 yields Theorem 4.1, 4.2 and 4.3 far= 2. Since the Laplace-
Beltrami operator acting on functions is given by = D; D it has the same spec-
trum asD? except that all non-zero eigenvalues have only half the multiplicity. Hence

DET(A; S?) = \/DET(D?; S2) and we get (compare [4, Thm. 8.1])
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Corollary 6.3 The determinant of the Laplace-Beltrami operatbacting on functions on
S? is given by
DET(4;S?) = e 4R(=1+3
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