
1

Summary. Theζ-regularized determinants of the Dirac operator and of its square are computed on
spherical space forms. OnS2 the determinant of Dirac operators twisted by a complex line bundle is
also calculated.
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1 Introduction

In classical field theory the physical fieldsϕ have to satisfy certain field equations or, equiv-
alently, have to be critical points of some action functionalS[ϕ]. When passing to quantum
field theory this requirement is discarted and one instead looks at partition functions defined
as a functional integral

Z =
∫

exp(−S[ϕ])Dϕ

over the space of all fields. It is now a serious problem that in most cases the space of
fields is infinite dimensional and the “measure”Dϕ does not exist. If the space of fields
is a Hilbert space and the action is of the formS[ϕ] = 1

2 (Lϕ,ϕ) whereL is a positive
self-adjoint operator, then one candefinethe functional integral by

Z = (detL)−1/2.

This is motivated by the fact that if the Hilbert space is of finite dimensionN , then∫
RN

exp(−1
2

(Lx, x))dx1 · · · dxN = (2π)N/2 det(L)−1/2.

One can then regardDx = dx1
√

2π
· · · dx

N
√

2π
as a renormalized Lebesgue measure. At first it

may seem that one has simply shifted the problem since in the physical case the operatorL
will typically have unbounded spectrum and the product of its eigenvalues will diverge. So
one has to find a reasonable definition for the determinant ofL. We will look at two closely
related definitions for the determinant, the one most commonly used is coming from the
ζ-function ofL while the proper time regularized determinant makes essential use of the
asymptotic heat kernel expansion. This will be explained in detail in the next section. In
order to distinguish these regularized determinants from the usual ones in finite dimensions
we will denote them by DET and by DETp.t..

Even though these concepts are standard in quantum field theory not many of these de-
terminants have been computed explicitly. Due to the somewhat involved nature of their
definition an explicit computation can be achieved only in cases of high symmetry. In this
paper we provide such explicit computation for the Dirac operator and its square on spher-
ical space forms. The square of the Dirac operatorD2 is a non-negative self-adjoint elliptic
differential operator acting on spinor fields. In Theorem 4.1 we present a formula for the de-
terminant ofD2 on then-dimensional sphere,n ≥ 2, with its standard Riemannian metric
of constant curvature1. The determinant is given by a linear combination of the Riemann
ζ-function and its first derivative evaluated at certain non-positive integers. The proper time
regularized determinant is given in Corollary 4.3.

Since the Dirac operatorD itself has a spectrum unbounded from above and from below
one has to find a reasonable definition for its determinant. Since regularized determinants
are in general not multiplicative,

DET(AB) 6= DET(A) DET(B),
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it is not sufficient to simply set DET(D) :=
√

DET(D2). In (3) we define DET(D) to be of
the formexp(iϕ)

√
DET(D2) where theζ-invariant ofD2 and theη-invariant ofD enter

into the phaseϕ. This definition is motivated in Section 2. We give a simple expression
for the multiplicative anomalyexp(iϕ) in Theorem 4.2. It turns out to be trivial for odd-
dimensional spheres. The case of the 1-dimensional sphere needs special treatment since
S1 has two different spin structures. The results forS1 are contained in Theorem 4.4 and
turn out to depend on the choice of spin structure. The numerical values strongly suggest
that the Dirac determinant on then-dimensional sphere tends to1 as the dimensionn goes
to∞,

lim
n→∞

DET(D;Sn) = 1.

We have no rigorous proof for this conjecture.

We then pass to spherical space forms, i. e. to quotients of the sphere. We first look at the
determinant ofD2 and compute thecovering anomaly

DET(D2;G\Sn)

DET(D2;Sn)
1
|G|

in Theorem 5.1. Here only odd dimensionsn have to be considered. For the example of
real-projective space it turns out that the covering anomaly is trivial,

DET(D2;RPn) =
√

DET(D2;Sn).

In Theorem 5.2 we give the formula for the determinant ofD itself on spherical space
forms. For the computation of the multiplicative anomaly we need to recall a formula for
theη-invariant of spherical space forms which we do in Theorem 3.2.

In the final section we restrict our attention toS2 but we twist the Dirac operator with a
complex line bundle. The Chern number of such a bundle can be interpreted as a topological
charge. In Theorem 6.1 we compute the eigenvalues of these twisted Dirac operators and in
Theorem 6.2 we compute their determinants. As a special case this includes the determinant
of the Laplace-Beltrami operator acting on functions.

It is always understood that the spherical space forms are equipped with their standard
metrics of constant curvature 1. OnS2, S4, andS6 the standard metric is known to have an
interesting criticality property for the determinant ofD2 [4, 5, 13, 15].

Acknowledgement.The first author has been partially supported by the Research and
Training Networks “EDGE” and “Geometric Analysis” funded by the European Commis-
sion.

2 Determinant of the Dirac Operator

Throughout this paper letL be a non-negative self-adjoint elliptic differential operator of
second order acting on sections of a Riemannian or Hermitian vector bundle over a com-
pactn-dimensional Riemannian manifoldM . See [10] and [14] for the basics on spin and
spectral geometry. The most common regularization scheme for making sense of the deter-
minant ofL is the definition via itsζ-functionwhich reads

DET(L;M) := exp (−ζ ′L(0)) (1)

with

ζL(s) :=
∑

λ∈Spec(L)−{0}

1
λs
.
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This way of defining the determinant is motivated by the observation that for positive num-
bersλk we havelnλk = − d

dsλ
−s
k |s=0 andexp (

∑
k lnλk) =

∏
k λk. The series defining

ζL(s) converges for<(s) > n/2. It can be shown thatζL extends meromorphically toC
and that it has no pole ats = 0.

Note that this definition of the determinant excludes all information on the possible eigen-
value zero. It has to be taken into account separately.

There is the following expression ofζL(s) in terms of its Mellin transform:

ζL(s) =
1

Γ (s)

∫ ∞
0

ts−1 tr(e−tL − P0)dt (2)

whereP0 denotes the projector onto the kernel ofL.

So far we have a definition of the determinant only in case the operatorL is non-negative.
This can be applied to the square of the Dirac operator,L = D2, but not to the Dirac
operator itself. We adopt the following convention for the determinant ofD [20]:

DET(D;M) := exp
(
i
π

2
(ζD2(0)− ηD(0))

)
· exp

(
−
ζ ′D2(0)

2

)
(3)

where theη-functionis given by

ηD(s) :=
∑

λ∈Spec(D)−{0}

sgnλ
|λ|s

for <(s) >> 0. What enters into the phase of the determinant is theη-invariant η(M) :=
ηD(0). It measures the spectral asymmetry and is zero in case of a symmetric spectrum.

Why is the definition in (3) reasonable? Denote the positive eigenvalues ofD by λk and
the negative ones by−νk. We can formally write down aζ-function forD itself as follows:

ζD(s) =
∑
k

λ−sk +
∑
k

(−1)−sν−sk

=
∑
k

(
λ−sk + ν−sk

2
+
λ−sk − ν

−s
k

2

)
+ (−1)−s

∑
k

(
λ−sk + ν−sk

2
−
λ−sk − ν

−s
k

2

)
=
ζD2( s2 ) + ηD(s)

2
+ (−1)−s

ζD2( s2 )− ηD(s)
2

.

This is a meromorphic function well-defined up to the sign ambiguity in(−1)−s = e∓iπs.
Choosing(−1)−s = e−iπs we get

exp (−ζ ′D(0)) = exp
(
i
π

2
(ζD2(0)− ηD(0))

)
· exp

(
−
ζ ′D2(0)

2

)
thus yielding (3).

We want to compare the above considerations with another way of defining a regularized
determinant. Forε > 0 define

ln DETε(L;M) := −
∫ ∞
ε

t−1 tr(e−tL − P0)dt. (4)

Since the integrand decays exponentially fast the integral is finite for every positiveε. One
says that DETε(L;M) is obtained from the (infinite) determinant ofL by cutoff in proper
time [17, p. 170]. To motivate this definition note that (2) gives for<(s) >> 0
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ζ ′L(s) = − Γ
′(s)

Γ (s)2

∫ ∞
0

ts−1tr(e−tL − P0)dt

+
1

Γ (s)

∫ ∞
0

ln(t)ts−1tr(e−tL − P0)dt.

After replacing the lower integral boundary0 by ε > 0 we can take the limits → 0. The
Laurent expansion

Γ (s) =
1
s

+ O(1) (5)

giveslims→0
1

Γ (s) = 0 andlims→0

(
− Γ ′(s)
Γ (s)2

)
= d

dsΓ (s)−1|s=0 = 1. This way we obtain

the right hand side of (4).

The proper time regularized determinant is now defined as the “finite part” of DETε(L;M)
for ε ↘ 0. To make this more precise we look at the asymptotic expansion of the heat
kernel ofL = D2 for t↘ 0

tr e−tL ∼
∞∑
k=0

Φk−n2 (L) tk−
n
2 .

In particular, we can plug

tr e−tL =
[n/2]∑
k=0

Φk−n2 (L)tk−
n
2 +R(t) (6)

into (4) where the remainder termR(t) is of order O(t) if n is even and of order O(
√
t) if

n is odd. After splitting the integral in (4) into one over[ε, 1] and one over[1,∞] we get

ln DETε(L;M) = −
∫ 1

ε

[n/2]∑
k=0

Φk−n2 (L)tk−
n
2−1 +R(t)t−1 − dim ker(L)t−1

 dt

−
∫ ∞

1

t−1tr(e−tL − P0)dt

= −
[(n−1)/2]∑
k=0

Φk−n2 (L)
k − n

2

+
[(n−1)/2]∑
k=0

Φk−n2 (L)εk−
n
2

k − n
2

+ (Φ0(L)

−dim ker(L)) ln ε−
∫ 1

ε

R(t)t−1dt−
∫ ∞

1

t−1tr(e−tL − P0)dt.

Here we use the conventionΦ0(L) = 0 if n is odd. The terms
Φk−n2

(L)

k−n2
εk−

n
2 , k ≤ [(n −

1)/2], and (Φ0(L) − dim ker(L)) ln ε explode forε ↘ 0 unless they vanish. We now
abandon the terms divergent in the limitε↘ 0 and we are led to

Definition 1. Theproper time regularized determinantDETp.t.(L;M) is defined by

ln DETp.t.(L;M) :=
[(n−1)/2]∑
k=0

Φk−n2 (L)
n
2 − k

−
∫ 1

0

R(t)t−1dt

−
∫ ∞

1

t−1tr(e−tL − P0)dt (7)

whereΦk−n2 (L) andR(t) are as in (6).

The following relation (cf. [17, (28.11), p. 171]) shows that the two regularizations do not
differ significantly.
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Proposition 2.1 Theζ-regularized determinantDET(L;M) and the proper time regular-
ized determinantDETp.t.(L;M) are related by

ln DET(L;M)− ln DETp.t.(L;M) = Γ ′(1)(Φ0(L)− dim kerL) = Γ ′(1)ζL(0).

Proof. In order to compare (7) with theζ-determinant we insert the heat kernel expansion
(6) into (2) and do the corresponding integral splitting into one over[0, 1] and one over
[1,∞].

ζL(s) =
1

Γ (s)

(
[(n−1)/2]∑
k=0

Φk−n2 (L)
s− k + n

2

+
Φ0(L)− dim kerL

s
+
∫ 1

0

R(t)ts−1dt

+
∫ ∞

1

ts−1tr(e−tL − P0)dt

)
. (8)

Using (5) we find
ζL(0) = Φ0(L)− dim kerL.

Equation (8) gives us for the determinant

ln DET(L;M) = −ζ ′L(0) =
[(n−1)/2]∑
k=0

Φk−n2 (L)
n
2 − k

+ Γ ′(1)ζL(0)−
∫ 1

0

R(t)t−1dt

−
∫ ∞

1

t−1tr(e−tL − P0)dt (9)

Comparing (7) and (9) we get Proposition 2.1.

3 Dirac Spectrum of Spherical Space Forms

The Dirac spectrum of the sphereSn, n ≥ 2, with constant curvature1 has been computed
by different methods in [2, 7, 18, 19]. The eigenvalues are

±
(n

2
+ k
)
, (10)

k ∈ N0, with multiplicity 2[n/2]

k + n− 1

k

. Forn ≥ 2 the sphere is simply connected,

hence has only one spin structure. It is given by the standard projection Spin(n + 1) →
Spin(n+ 1)/Spin(n) = Sn.

We now look at spherical space formsM = G\Sn whereG is a finite fixed point free
subgroup of SO(n+1). Spin structures correspond to homomorphismsε : G→ Spin(n+1)
such that the diagram

Spin(n+ 1)

��
G

ε

::uuuuuuuuuu // SO(n+ 1)

commutes. The corresponding spin structure is given byε(G)\Spin(n+1)→ G\(Spin(n+
1)/Spin(n)) = M . Thus spinors onM correspond toε(G)-invariant spinors onSn.
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Since any eigenspinor onM can be lifted toSn all eigenvalues ofM are also eigenvalues of
Sn, hence of the form (10). To know the spectrum ofM one must compute the multiplicities
µk of n2 + k andµ−k of −(n2 + k). It is convenient to encode them into two power series,
so-calledPoincaŕe series

F+(z) :=
∞∑
k=0

µkz
k,

F−(z) :=
∞∑
k=0

µ−kz
k.

To formulate the result recall that in even dimension2m the spinor representation is re-
ducible and can be decomposed into two half spinor representations

Spin(2m)→ Aut(Σ±2m),

Σ2m = Σ+
2m ⊕Σ

−
2m. Denote their characters byχ± : Spin(2m)→ C.

Theorem 3.1 ([2]) LetM = G\Sn, n = 2m − 1, be a spherical space form with spin
structure given byε : G → Spin(2m). Then the eigenvalues of the Dirac operator are
±(n2 + k), k ≥ 0, with multiplicities determined by

F+(z) =
1
|G|

∑
g∈G

χ−(ε(g))− z · χ+(ε(g))
det(12m − z · g)

,

F−(z) =
1
|G|

∑
g∈G

χ+(ε(g))− z · χ−(ε(g))
det(12m − z · g)

.

Note that only odd-dimensional spherical space forms are of interest because in even di-
mensions real projective space is the only quotient and in this case it is not even orientable.

This kind of encoding the spectrum ofM is in fact well-suited for computation of the
η-invariant.

Theorem 3.2 ([3]) Let M = G\S2m−1 be a spherical space form with spin structure
given byε : G→ Spin(2m). Then theη-invariant ofM is given by

η(G\S2m−1) =
2
|G|

∑
g∈G−{12m}

(χ− − χ+)(ε(g))
det(12m − g)

.

For the convenience of the reader and since we will need the arguments again we briefly
sketch the proof. We define theθ-functions

θ±(t) := e−
n
2 t · F±(e−t)

=
e−(m+ 1

2 )t

|G|
∑
g∈G

χ∓(ε(g))− e−t · χ±(ε(g))
det(12m − e−t · g)

. (11)

SinceG acts freely the non-trivial elementsg ∈ G do not have1 as an eigenvalue and thus
det(12m − g) 6= 0. Therefore only the summand forg = 12m contributes to the pole ofθ±
at t = 0. Hence forθ := θ+ − θ− the poles att = 0 cancel,θ is holomorphic att = 0 with

θ(0) =
2
|G|

∑
g∈G−{12m}

(χ− − χ+)(ε(g))
det(12m − g)

. (12)
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Next we observe that

θ+(t) =
∞∑
k=0

µke
−(n/2+k)t =

∑
λ>0

e−λt,

where the last sum is taken over all positive eigenvalues. Similarly forθ−,

θ−(t) =
∞∑
k=0

µ−ke
−(n/2+k)t =

∑
λ<0

eλt.

Application of the Mellin transformation yields

η(s) =
1

Γ (s)

∫ ∞
0

θ(t)ts−1dt.

Therefore

η(G\S2m−1) = lim
s→0

1
Γ (s)

∫ ∞
0

θ(t)ts−1dt = Ress=0

(∫ ∞
0

θ(t)ts−1dt

)
.

Sinceθ decays exponentially fast fort→∞ the functions 7→
∫∞

1
θ(t)ts−1dt is holomor-

phic ats = 0. Thus

η(G\S2m−1) = Ress=0

(∫ 1

0

θ(t)ts−1dt

)
= θ(0)

which together with (12) proves Theorem 3.2.

Compare this to Goette’s computation of theequivariantη-invariant of spheres in [11,
Satz 6.10]. See also [9, 10] where theη-invariant of all twisted signature operators on spher-
ical space forms is determined and used to compute theirK-theory. In [8] theη-invariant
of all twisted Dirac operators on 3-dimensional spherical space forms is computed.

Using Theorem 3.2 it is easy to discuss real projective space.

Corollary 3.3 ([3]) For n ≥ 2 real projective spaceRPn is spin if and only ifn ≡ 3 mod
4, in which case it has exactly two spin structures. Theη-invariant for the Dirac operator
is given by

η(RPn) = ±2−m, n = 2m− 1,

where the sign depends on the spin structure chosen.

Let us now look at lens spaces. Forα ∈ R define the rotation matrix

R(α) :=

 cos(2πα) − sin(2πα)

sin(2πα) cos(2πα)

 .

For natural numbersq, p1, . . . , pm wherepj andq are coprime for allj, letG be the cyclic
subgroup of SO(2m) generated by

R(p1/q) 0
...

0 R(pm/q)

 .

We denote the resulting lens space byL(q, p1, . . . , pm) := G\S2m−1. Now Theorem 3.1
takes the form (compare [1, Satz 5.3]):
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a) If q is odd, thenL(q, p1, . . . , pm) has exactly one spin structure and the Poincaré series
are given by

F+(z) =

1
q

q−1∑
k=0

∑
ε1···εm

=(−1)m+1

exp(πik(q + 1)
∑
j

εjpj/q)− z ·
∑

ε1···εm
=(−1)m

exp(πik(q + 1)
∑
j

εjpj/q)

m∏
j=1

(exp(2πikpj/q)− z)(exp(−2πikpj/q)− z)
,

F−(z) =

1
q

q−1∑
k=0

∑
ε1···εm
=(−1)m

exp(πik(q + 1)
∑
j

εjpj/q)− z ·
∑

ε1···εm
=(−1)m+1

exp(πik(q + 1)
∑
j

εjpj/q)

m∏
j=1

(exp(2πikpj/q)− z)(exp(−2πikpj/q)− z)
.

b) If q is even andp1 + . . . + pm is odd (i. e. ifm is odd), thenL(q, p1, . . . , pm) has no
spin structures.

c) If q is even andp1 + . . .+ pm is even (i. e. ifm is even), thenL(q, p1, . . . , pm) has two
different spin structures. The Poincaré series for the first spin structure are given by

F+(z) =
1
q

q−1∑
k=0

∑
ε1···εm

=(−1)m+1

exp(πik
∑
j

εjpj/q)− z ·
∑

ε1···εm
=(−1)m

exp(πik
∑
j

εjpj/q)

m∏
j=1

(exp(2πikpj/q)− z)(exp(−2πikpj/q)− z)
,

F−(z) =
1
q

q−1∑
k=0

∑
ε1···εm
=(−1)m

exp(πik
∑
j

εjpj/q)− z ·
∑

ε1···εm
=(−1)m+1

exp(πik
∑
j

εjpj/q)

m∏
j=1

(exp(2πikpj/q)− z)(exp(−2πikpj/q)− z)
,

while for the second spin structure they are given by

F+(z) =
1
q

q−1∑
k=0

(−1)k

∑
ε1···εm

=(−1)m+1

exp(πik
∑
j

εjpj/q)− z ·
∑

ε1···εm
=(−1)m

exp(πik
∑
j

εjpj/q)

m∏
j=1

(exp(2πikpj/q)− z)(exp(−2πikpj/q)− z)
,

F−(z) =
1
q

q−1∑
k=0

(−1)k

∑
ε1···εm
=(−1)m

exp(πik
∑
j

εjpj/q)− z ·
∑

ε1···εm
=(−1)m+1

exp(πik
∑
j

εjpj/q)

m∏
j=1

(exp(2πikpj/q)− z)(exp(−2πikpj/q)− z)
.

Here the notation
∑

ε1···εm
=(−1)m+1

indicates that the sum is taken over all choices ofεj = ±1 for

which ε1 · · · εm = (−1)m+1 and similarly for(−1)m. For theη-invariant this yields in
case a)

η = θ(0)

=
2
q

q−1∑
k=1

∑
ε1···εm

=(−1)m+1

exp(πik(q + 1)
∑
j

εjpj/q)−
∑

ε1···εm
=(−1)m

exp(πik(q + 1)
∑
j

εjpj/q)

m∏
j=1

(exp(2πikpj/q)− 1)(exp(−2πikpj/q)− 1)
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= (−1)m+1 2
q

q−1∑
k=1

∑
ε1,...,εm

m∏
j=1

εj exp(πik(q + 1)εjpj/q)

m∏
j=1

(2− 2 cos(2πkpj/q))

= (−1)m+1 2
q

q−1∑
k=1

m∏
j=1

(exp(πik(q + 1)pj/q)− exp(−πik(q + 1)pj/q))

2m
m∏
j=1

(1− cos(2πkpj/q))

= (−1)m+1 im
2
q

q−1∑
k=1

m∏
j=1

sin(πk(q + 1)pj/q)
1− cos(2πkpj/q)

.

If m is odd we see thatη is imaginary, but on the other hand theη-invariant is always
real. Hence it must vanish in this case. In fact, theη-invariant of the Dirac operator always
vanishes unless the dimension of the manifold isn ≡ 3 mod 4. Case c) is treated similarly.
Case b) cannot occur for evenm. We summarize:

Corollary 3.4 Letm ∈ N be even and letq, p1, . . . , pm ∈ N be such thatq and pj are
coprime for allj.

Then ifq is oddL(q, p1, . . . , pm) has exactly one spin structure and theη-invariant is given
by

η(L(q, p1, . . . , pm)) = (−1)3m/2+1 2
q

q−1∑
k=1

m∏
j=1

sin(πk(q + 1)pj/q)
1− cos(2πkpj/q)

.

If q is even, thenL(q, p1, . . . , pm) has two different spin structures. For the first spin struc-
ture theη-invariant is given by

η(L(q, p1, . . . , pm)) = (−1)3m/2+1 2
q

q−1∑
k=1

m∏
j=1

sin(πkpj/q)
1− cos(2πkpj/q)

while for the second it is

η(L(q, p1, . . . , pm)) = (−1)3m/2+1 2
q

q−1∑
k=1

(−1)k
m∏
j=1

sin(πkpj/q)
1− cos(2πkpj/q)

.

The caseq = 2 andp1 = . . . = pm = 1 recovers Corollary 3.3. We collect a few examples
in Tables 1 and 2. For evenq we denote theη-invariants for the two spin structures byη1

andη2.

4 Dirac Determinant of the Sphere

In this section we compute the determinant of the square of the Dirac operator and of the
Dirac operator itself over the sphere of constant sectional curvature 1. For this task one
could use the general machinery developped in [6] for homogeneous operators on compact
locally symmetric spaces. We found a direct approach more convenient. Recall theRiemann
ζ-function ζR and theHurwitz ζ-function ζH defined by meromorphic extension of the
series

ζR(s) =
∞∑
j=1

1
js

and ζH(s, b) =
∞∑
j=0

1
(j + b)s
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Table 1.

M dim(M) η

L(3, 1, 1) 4
9

L(3, 1, 2) − 4
9

L(5, 1, 1) 3 4
5

L(5, 1, 2) 0

L(5, 2, 3) − 4
5

L(3, 1, 1, 1, 1) − 4
27

L(3, 1, 1, 1, 2) 7 4
27

L(5, 1, 1, 1, 1) − 12
25

L(3, 1, 1, 1, 1, 1, 1) 4
81

L(3, 1, 1, 1, 1, 1, 2) 11 − 4
81

L(5, 1, 1, 1, 1, 1, 1) 8
25

L(3, 1, 1, 1, 1, 1, 1, 1, 1) − 4
243

L(3, 1, 1, 1, 1, 1, 1, 1, 2) 15 4
243

L(5, 1, 1, 1, 1, 1, 1, 1, 1) − 28
125

L(3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 4
729

L(3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2) 19 − 4
729

L(5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 4
25

Table 2.

M dim(M) η1 η2

L(4, 1, 1) 5
8

− 3
8

L(4, 1, 3) 3
8

− 5
8

L(6, 1, 1) 35
36

− 19
36

L(6, 1, 5) 19
36

− 35
36

L(8, 1, 1) 3 21
16

− 11
16

L(8, 1, 3) 3
16

3
16

L(8, 1, 5) − 3
16

− 3
16

L(8, 3, 5) 11
16

− 21
16

L(10, 1, 1) 33
20

− 17
20

L(4, 1, 1, 1, 1) − 9
32

7
32

L(4, 1, 1, 1, 3) − 7
32

9
32

L(6, 1, 1, 1, 1) 7 − 329
432

265
432

L(8, 1, 1, 1, 1) − 105
64

87
64

L(10, 1, 1, 1, 1) − 1221
400

1029
400

L(4, 1, 1, 1, 1, 1, 1) 17
128

− 15
128

L(6, 1, 1, 1, 1, 1, 1) 11 3611
5184

− 3355
5184

L(8, 1, 1, 1, 1, 1, 1) 657
256

− 623
256
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with b > 0. Observe that the binomial coefficientMn(x) :=
(
x+n−1

x

)
= (x+n−1)···(x+1)

(n−1)!

is a polynomial inx of degreen− 1. Hence we can define

A(k, n) :=
1
k!

dk

dxk
Mn(x)|x=−n2 (13)

or, equivalently,

Mn(x) =
n−1∑
k=0

A(k, n)
(
x+

n

2

)k
. (14)

Moreover, we set

C(k, n) :=


∑m−1
j=1 jk ln(j), if n = 2m is even,∑m−1

j=0 (j + 1
2 )k ln(j + 1

2 ), if n = 2m+ 1 is odd.
(15)

Now we can formulate the result forD2 which in different notation is also contained in [4,
Section 8].

Theorem 4.1 The determinant of the square of the Dirac operator on then-dimensional
sphereSn, n ≥ 2, with constant sectional curvature 1 is given by the following formulas:

If n = 2m is even, then

ln DET(D2;S2m) = −2m+2
n−1∑
k=0

A(k, n) (ζ ′R(−k) + C(k, n)), (16)

and ifn = 2m+ 1 is odd, then

ln DET(D2;S2m+1) = −2m+2
n−1∑
k=0

A(k, n)
(
ζ ′R(−k)(

1
2k
− 1) +

ln 2
2k

ζR(−k) + C(k, n)
)

(17)
whereζR is the Riemannζ-function,A(k, n) is as in (13) andC(k, n) is as in (15).

Proof. From (10) we see that onSn

ζD2(s) = 2[n/2]+1
∞∑
j=0

(
j+n−1

j

)
(j + n

2 )2s
.

By (14) we obtain

ζD2(s) = 2[n/2]+1
n−1∑
k=0

A(k, n)
∞∑
j=0

(j +
n

2
)k−2s

= 2[n/2]+1
n−1∑
k=0

A(k, n) ζH(2s− k, n
2

). (18)

In casen = 2m is even we use

ζH(s,m) = ζR(s)−
m−1∑
j=1

j−s

valid form ∈ N to get
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ζ ′D2(0) = 2m+2
n−1∑
k=0

A(k, n)

ζ ′R(−k) +
m−1∑
j=1

jk ln(j)

 .

This proves (16). Forn = 2m+ 1 odd we obtain

ζ ′D2(0) = 2m+2
n−1∑
k=0

A(k, n)ζ ′H(−k,m+
1
2

).

From

ζH(s,m+
1
2

) = ζH(s,
1
2

)−
m−1∑
j=0

(j +
1
2

)−s,

valid form ∈ N and

ζH(s,
1
2

) = (2s − 1)ζR(s)

(see e.g. [12, 9.535]) we get (17).

Example 1.From this theorem we get

DET(D2;S2) = exp(−8 ζ ′R(−1)),

DET(D2;S3) = 2−
1
2 exp (3 ζ ′R(−2))) ,

DET(D2;S4) = exp
(

8
3
ζ ′R(−1)− 8

3
ζ ′R(−3)

)
,

DET(D2;S5) = 2
3
16 exp

(
−5

4
ζ ′R(−2) +

5
8
ζ ′R(−4)

)
,

DET(D2;S6) = exp
(
−16

15
ζ ′R(−1) +

4
3
ζ ′R(−3)− 4

15
ζ ′R(−5)

)
,

DET(D2;S7) = 2−
5
64 exp

(
259
480

ζ ′R(−2)− 35
96
ζ ′R(−4) +

7
160

ζ ′R(−6)
)
,

DET(D2;S8) = exp
(

16
35
ζ ′R(−1)− 28

45
ζ ′R(−3) +

8
45
ζ ′R(−5)− 4

315
ζ ′R(−7)

)
,

DET(D2;S9) = 2
35

1024 exp
(
− 3229

13440
ζ ′R(−2) +

47
256

ζ ′R(−4)− 21
640

ζ ′R(−6)

+
17

10752
ζ ′R(−8)

)
,

DET(D2;S10) = exp
(
− 64

315
ζ ′R(−1) +

164
567

ζ ′R(−3)− 13
135

ζ ′R(−5) +
2

189
ζ ′R(−7)

− 1
2835

ζ ′R(−9)
)
.

Forn = 2, 4, 6 this reproduces the values computed by Branson in [4, Thm. 8.1]. For the
Dirac operator itself we obtain

Theorem 4.2 The determinant of the Dirac operator on then-dimensional sphereSn,
n ≥ 2, with constant sectional curvature 1 is given by the following:

If n = 2m is even, then

DET(D;S2m) = exp

(
−iπ2m

2m−1∑
k=0

A(k, 2m)
Bk+1(m)
k + 1

)√
DET(D2;S2m),
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and ifn is odd, then
DET(D;Sn) =

√
DET(D2;Sn)

whereDET(D2;Sn) is as in Theorem 4.1,A(k, n) as in (13) andBk(x) are the Bernoulli
polynomials.

Proof. By (3) we have

DET(D;Sn) = exp
(
i
π

2
(ζD2(0)− ηD(0))

)√
DET(D2;Sn).

The η-invariant vanishes because the Dirac spectrum ofSn is symmetric. It remains to
computeζD2(0). Plugging

ζH(−k, b) = −Bk+1(b)
k + 1

(see [12, 9.531 and 9.623(3)]) into (18) we get

ζD2(0) = −2[n/2]+1
n−1∑
k=0

A(k, n)
Bk+1(n2 )
k + 1

. (19)

This proves the even-dimensional case. Ifn is odd we observe thatΦ0(D2) = 0 and
kerD2 = {0} and hence

ζD2(0) = 0. (20)

This concludes the proof.

Using Proposition 2.1 we can combine Theorem 4.1, (19) and (20) to obtain the proper
time regularized determinant ofD2 onSn.

Corollary 4.3 The proper time regularized determinant of the square of the Dirac operator
on then-dimensional sphereSn, n ≥ 2, with constant sectional curvature 1 is given by the
following formulas:

If n = 2m is even, then

ln DETp.t.(D2;S2m) = −2m+1
2m−1∑
k=0

A(k, 2m)
(

2 ζ ′R(−k) + 2C(k, 2m)− Γ ′(1)
Bk+1(m)
k + 1

)
and ifn is odd, then

DETp.t.(D2;Sn) = DET(D2;Sn)

whereζR is the Riemannζ-function,A(k, n) is as in (13),C(k, n) is as in (15) andBk(x)
are the Bernoulli polynomials.

The 1-dimensional case needs to be treated separately becauseS1 has two spin structures.
Let us call the spin structure which extends to the unique spin structure of the 2-dimensional
disk theboundingspin structure, the other one thenon-boundingspin structure. For the first
spin structure formula (10) still holds while the non-bounding spin structure hasZ as its
Dirac spectrum. We get

Theorem 4.4 The determinants of the Dirac operator and its square on the1-dimensional
sphereS1 with length2π take the values

DET(D;S1) = 2 and DET(D2;S1) = 4

for the bounding spin structure and

DET(D;S1) = −2πi and DET(D2;S1) = 4π2

for the non-bounding spin structure.
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Recall that by our convention for the determinant the eigenvalue0 is ignored. Otherwise
the determinant onS1 would vanish for the non-bounding spin structure.

Proof. From (10) we get for the bounding spin structure

ζD2(s) = 2
∞∑
j=0

1
(j + 1

2 )2s
= 2 ζH(2s,

1
2

) = 2(22s − 1)ζR(2s).

UsingζR(0) = − 1
2 we obtain

ζ ′D2(0) = 4 ln 2 · ζR(0) = −2 ln 2

and hence
DET(D2;S1) = exp (−ζ ′D2(0)) = 4.

The computation for the non-bounding spin structure is even easier. ForζD2 we get

ζD2(s) = 2
∞∑
j=1

1
j2s

= 2 ζR(2s).

Now ζ ′R(0) = − 1
2 ln(2π) yields

ζ ′D2(0) = 4ζ ′R(0) = −2 ln(2π)

and therefore
DET(D2;S1) = 4π2.

This proves the formulas for DET(D2;S1). Theη-invariant vanishes in both cases due to
spectral symmetry. The result for DET(D;S1) follows from (3) and

ζD2(0) =

 0 for the bounding spin structure

−1 for the non-bounding spin structure.

In the following tables we give some results obtained by numerical approximation. The
phaseϕ is defined by

DET(D;Sn) = |DET(D;Sn)|eiϕ.

Here are the values of the determinant on the first few even dimensional spheres.

We do not need the DETp.t.(D2;Sn)–column in the odd dimensional case because of
Corollary 4.3. The phase vanishes according to Theorem 4.2.

A view at the numerical values leads us to

Conjecture 1.The determinant of the Dirac operator on then-dimensional sphereSn tends
to 1 forn→∞,

lim
n→∞

DET(D;Sn) = 1.

For example, we have

|DET(D;S200)| ≈ 0.9999999999999999999999999999999023251476,

and for the phase of DET(D;S200) we have

ϕ ≈ 0.8894434790878104795255101869645846589176 · 10−31.

We have no explanation for this phenomenon.
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Table 3.

n |DET(D;Sn)| ϕ DETp.t.(D
2;Sn)

2 1.938054383626833 -0.523598775598299 3.098641928647827

4 0.796336885184459 0.191986217719376 0.680506885334576

6 1.096240639130369 -0.0793709255073612 1.167199468652179

8 0.961240935820022 0.0345879931923003 0.935802870851431

10 1.017761616865532 -0.0155276797389130 1.029945138033507

12 0.992018956602283 0.00710558492613086 0.986674523357944

14 1.003708484448039 -0.00329528874347978 1.006211552565484

16 0.998272959376817 0.00154335558060539 0.997114236587699

18 1.000814152574965 -0.000728325704396029 1.001360932301507

20 0.999614434504206 0.000345772030034635 0.999355987552311

Table 4.

n DET(D)

3 0.803354268824629

5 1.090359845142337

7 0.963796369884191

9 1.016473922384390

11 0.992614518464762

13 1.003422630166412

15 0.998408322304586

17 1.000749343263366

19 0.999645452552308

21 1.000168795852563

5 Dirac Determinant of Spherical Space Forms

Next we determine the Dirac determinant of spherical space formsM = G\S2m−1 where
G ⊂ SO (2m) is a fixed point free subgroup. The spin structure is given by a homomor-
phism ε : G → Spin (2m) lifting the inclusion ofG into SO (2m) as explained in Sec-
tion 3. In order to distinguish geometric data for different manifolds we writeζD2 (s;M)
for theζ-function of the square of the Dirac operator onM .

Theorem 5.1 Let M = G\S2m−1 be a spherical space form with spin structure given by
ε : G→ Spin (2m). Then the square of the Dirac operator onM has the determinant

DET (D2;G\S2m−1) = DET
(
D2;S2m−1

) 1
|G| ·

·
∏

g∈G−{12m}

exp

(
−2χ(ε(g))

|G|
·
∫ ∞

0

e−(m− 1
2 )t

det(12m − e−tg)
1− e−t

t
dt

)

where DET (D2;S2m−1) is given by Theorem 4.1 andχ is the character of the spinor
module forSpin (2m) .
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Proof. To compute theζ-function ζD2 (s ;G\S2m−1) we recall theθ-functions

θ± (t) = e−(m− 1
2 )t · F± (e−t) =

e−(m− 1
2 )t

|G|
∑
g∈G

χ∓(ε(g))− e−t · χ±(ε(g))
det(12m − e−t · g)

,

see (11). Hence by the following Mellin transformation

Γ (2s) ζD2 (s;G\S2m−1) =
∑

λ∈Spec(D)

|λ|−2s
∫ ∞

0

u2s−1 e−udu

=
∑

λ∈Spec(D)

∫ ∞
0

t2s−1 e−|λ|tdt

=
∞∑
k=0

(µk + µ−k)
∫ ∞

0

t2s−1 e−(m− 1
2 +k)tdt

=
∫ ∞

0

t2s−1 (θ+ (t) + θ− (t)) dt

=
1
|G|

∑
g∈G

χ(ε(g))
∫ ∞

0

t2s−1 · e−(m− 1
2 )t · (1− e−t)

det(12m − e−t · g)
dt

we obtain

ζD2 (s;G\S2m−1) =
1

|G| · Γ (2s)

∑
g∈G

χ(ε(g))
∫ ∞

0

t2s
e−(m− 1

2 )t

det(12m − e−tg)
1− e−t

t
dt.

The special caseG = {12m} yields

ζD2 (s;S2m−1) =
1

Γ (2s)
· χ(1) ·

∫ ∞
0

t2s
e−(m− 1

2 )t

det(12m − e−t · 12m)
1− e−t

t
dt

and therefore

ζD2

(
s;G\S2m−1

)
=

ζD2(s;S2m−1)
|G|

+
1

|G| · Γ (2s)

∑
g∈G−{12m}

χ(ε(g))
∫ ∞

0

t2s
e−(m− 1

2 )t

det(12m − e−tg)
1− e−t

t
dt .

Since g ∈ G − {12m} does not have any positive real eigenvalues the integral defines a
function ins holomorphic at0. Thus

ζD2 (0;G\S2m−1) =
ζD2(0;S2m−1)

|G|
= 0 (21)

by (20) and

ζ ′D2 (0;G\S2m−1) =
ζ ′D2(0;S2m−1)

|G|

+
2
|G|

∑
g∈G−{12m}

χ (ε(g))
∫ ∞

0

e−(m− 1
2 )t

det(12m − e−tg)
1− e−t

t
dt

by (5). This implies the formula for DET(D2;G\S2m−1) .

Equality of DET (D2;G\S2m−1) and DETp.t.(D2;G\S2m−1) follows from Proposi-
tion 2.1 and (21).
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Example 2.Let us look at real projective spaceM = RP
2m−1. In this caseG =

{12m,−12m}. We assumem to be odd so thatM is spin and has two spin structures.
They are given byε(−12m) = ±ω whereω = e1 · · · e2m is the volume element consid-
ered as an element in Spin(2m) ⊂ Cl(R2m). The volume element acts by multiplication by
±1 on the two half spinor spaces so thatχ+(ω) = −χ−(ω). Hence for both spin structures
we haveχ(ε(−12m)) = 0. It follows that

DET(D2;RP2m−1) =
√

DET(D2;S2m−1) = DET(D;S2m−1).

Example 3.Let us now look at the lens spaceM = L(q, p1, . . . , pm). We assume thatq is
odd so thatM has exactly one spin structure. For

g =


R(k p1/q) 0

...

0 R(k pm/q)


we compute

χ(ε(g)) =
∑

ε1,···,εm

exp

πik(q + 1)
m∑
j=1

εjpj/q


=

∑
ε1,···,εm

m∏
j=1

exp(πik(q + 1)εjpj/q)

= 2m
m∏
j=1

cos
(
π k (q + 1) pj

q

)
and

det
(
12m − e−t g

)
=

m∏
j=1

det
(
12m − e−tR(k pj/q)

)
=

m∏
j=1

(
1− 2 e−t cos(2π k pj/q) + e−2t

)
.

Now Theorem 5.1 yields

DET(D2;L(q, p1, . . . , pm)) = DET(D2;S2m−1)1/q · exp(A)

where the covering anomalyexp(A) is given by

A = −2m+1

q

q−1∑
k=1

∫ ∞
0

(1− e−t) e−(m−1/2)t dt

t
∏
j (1− 2 e−t cos(2π k pj/q) + e−2t)

m∏
j=1

cos
(
π k (q + 1) pj

q

)
.

Theorem 5.2 Let M = G\S2m−1 be a spherical space form with spin structure given by
ε : G→ Spin(2m) . Then the Dirac operator onM has the determinant

DET (D;G\S2m−1)

= exp

 iπ

|G|
∑

g∈G−{12m}

(χ+ − χ−)(ε(g))
det(12m − g)

 ·√DET(D2;G\S2m−1) ,

where DET (D2;G\S2m−1) is given by Theorem 5.1 andχ± are the characters of the
half spinor modules ofSpin (2m) .

Proof. Follows directly from (3), Theorem 3.2, and (21).
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6 Spectrum and Determinant of twisted Dirac operators onS2

In this section we compute the spectrum and determinant of certain twisted Dirac operators
on the two-sphereS2. Recall that complex line bundles overS2 are in 1-1 correspondence
with Z via their Chern numbers. Hence each complex line bundle is of the formLk for
somek ∈ Z wherec1(L) = 1. The spinor bundleΣS2 decomposes into a sum of two
complex line bundles,ΣS2 = Σ+S2 ⊕ Σ−S2, the bundles of spinors of positive and
of negative chirality. Sincec1(Σ±S2) = ±1 we haveL = Σ+S2. The metric and the
Levi-Civita connection onΣ+S2 induce Hermitian metrics and metric connections on all
the line bundlesLk. Using these connections we can form the twisted Dirac operatorDk

acting on sections of the bundleΣS2 ⊗ Lk.

Theorem 6.1 The eigenvalues of the twisted Dirac operatorDk acting on sections of the
spinor bundle tensored with the line bundle of Chern number k overS2 are given by

±
√
j(|k|+ j), j = 0, 1, 2, . . .

with multiplicity
2j + |k|.

Proof. We start by computing the relevant curvatures. The curvature tensorRΣS
2

of the
spinor bundle can be expressed in terms of the curvature tensorRTS

2
of the tangent bundle

by

RΣS
2
(X,Y ) =

1
4

2∑
i,j=1

〈
RTS

2
(X,Y )ei, ej

〉
eiej ·

wheree1, e2 is an orthonormal tangent frame acting on spinors via Clifford multiplication.
Since in our caseS2 is of constant sectional curvature 1 we have

RTS
2
(X,Y )Z = 〈Y, Z〉X − 〈X,Z〉Y

and therefore

RΣS
2
(X,Y ) =

1
4

(Y X −XY )·

Hence

RΣS
2
(e1, e2) = −1

2
e1 · e2.

Since the area elemente1 · e2 acts onΣ±S2 by multiplication by±i we get

RL(e1, e2) = RΣ
+S2

(e1, e2) = − i
2

and thus

RL
m

(e1, e2) = − im
2
.

The decompositionΣS2 = L ⊕ L−1 yields the parallel decompositionΣS2 ⊗ Lk =
Lk+1 ⊕ Lk−1 with respect to which the curvature tensor has the form

RΣS
2⊗Lk(e1, e2) = − i

2

k + 1 0

0 k − 1

 .

The Dirac operator interchanges the chirality of spinors and hence has the form

Dk =

 0 D+
k

D−k 0


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whereD−k = (D+
k )∗. Denote the connection Laplace operator onLm by ∇∗∇ =: ∆m.

The curvature endomorphism in the Weitzenböck formula forD2
k is given by

Kk = e1 · e2 ·RΣS
2⊗Lk(e1, e2)

= − i
2

 i 0

0 −i

k + 1 0

0 k − 1


=

1
2

k + 1 0

0 −k + 1

 .

The Weitzenb̈ock formulaD2
k = ∇∗∇+Kk now says

D+
k D
−
k = ∆k+1 +

k + 1
2

, (22)

D−k D
+
k = ∆k−1 +

−k + 1
2

. (23)

Taking the difference of (22) and (23) withk + 2 instead ofk we obtain

D+
k D
−
k = D−k+2D

+
k+2 + k + 1. (24)

SinceD+
k D
−
k = (D−k )∗D−k andD−k D

+
k = (D+

k )∗D+
k are non-negative operators they

do not have negative eigenvalues. Denote the positive eigenvalues byλj(D+
k D
−
k ) and

λj(D−k D
+
k ), j = 1, 2, 3, . . ., and their multiplicities byµj(D+

k D
−
k ) andµj(D−k D

+
k ) re-

spectively. Writeλ0(D+
k D
−
k ) = λ0(D−k D

+
k ) = 0 and letµ0(D+

k D
−
k ) andµ0(D−k D

+
k ) be

the multiplicities of the eigenvalue 0. Hereµ0(D+
k D
−
k ) = 0 or µ0(D−k D

+
k ) = 0 is not

excluded.

From now on assumek ≥ 0. The case of negativek can be treated similarly by interchang-
ing the roles ofD+

k andD−k . For non-negativek equation (22) shows

µ0(D+
k D
−
k ) = 0. (25)

The Atiyah-Singer index formula yields

µ0(D−k D
+
k )− µ0(D+

k D
−
k ) = ind(D+

k ) = c1(Lk) = k

and thus
µ0(D−k D

+
k ) = k. (26)

SinceD+
k intertwines the operatorsD−k D

+
k andD+

k D
−
k it induces isomorphisms on the

eigenspaces for non-zero eigenvalues. Hence forj ≥ 1

λj(D+
k D
−
k ) = λj(D−k D

+
k ) and µj(D+

k D
−
k ) = µj(D−k D

+
k ). (27)

Combining equations (24) and (27) yields forj ≥ 1

λj(D−k D
+
k ) = λj−1(D−k+2D

+
k+2) + k + 1 andµj(D−k D

+
k ) = µj−1(D−k+2D

+
k+2). (28)

The parameter shift fromj to j − 1 is due to the fact that0 is counted as an eigenvalue (of
multiplicity 0) for D+

k D
−
k . Using (28) inductivelyj times we get

λj(D−k D
+
k ) = λ0(D−k+2jD

+
k+2j) +

j∑
m=1

(k + 2m− 1) = j(k + j)

and by (26)
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µj(D−k D
+
k ) = µ0(D−k+2jD

+
k+2j) = k + 2j.

We have computed the spectrum ofD2
k =

D+
k D
−
k 0

0 D−k D
+
k

, namely0 is an eigenvalue

of multiplicity k andj(k + j) has multiplicity2(k + 2j), j = 1, 2, 3, . . ..

It remains to observe that the spectrum ofDk is symmetric about 0 because for each
eigenspinor ofDk of the formψ = ψ+ + ψ− with respect to the splittingΣS2 ⊗ Lk =
Σ+S2 ⊗ Lk ⊕ Σ−S2 ⊗ Lk the spinorψ̂ = ψ+ − ψ− is an eigenspinor for the opposite
eigenvalue. Taking square roots proves the theorem.

Fork = 0 Theorem 6.1 gives the spectrum of the classical Dirac operator which we used in
the previous sections. Similarly, fork = 1 we recover the spectrum of the Laplace operator
acting on functions∆ = D−1 D

+
1 .

Theorem 6.1 can also be proved by trivialising the twisted spinor bundle overS2 minus
a point and then solving the eigenvalue equation explicitly using spin-weighted spherical
harmonics. See [16, Sec. 3.1] for this approach.

Knowing the eigenvalues ofDk explicitly we can compute its determinant.

Theorem 6.2 The determinant of the twisted Dirac operatorDk acting on sections of the
spinor bundle tensored with the line bundle of Chern numberk overS2 is given by

DET(Dk;S2) = exp
(
i
π

2
(−|k| − 1

3
)
)
e−4 ζ′R(−1)+k2/2 ·

|k|∏
m=1

m|k|−2m,

the determinant of its square is

DET(D2
k;S2) = e−8 ζ′R(−1)+k2

·
|k|∏
m=1

m2|k|−4m

and the proper time regularized determinant

DETp.t.(D2
k;S2) = e−8 ζ′R(−1)+k2+Γ ′(1)(|k|+ 1

3 ) ·
|k|∏
m=1

m2|k|−4m.

Proof. By Theorem 6.1 we obtain for theζ-function

ζD2
k
(s) = 2

∞∑
j=1

2j + |k|
js(j + |k|)s

= 2
∞∑
j=1

(j−s(j + |k|)1−s + j1−s(j + |k|)−s).

For j > |k| we can expand(1 + |k|
j )α into a binomial series and we get

ζD2
k
(s) =

= 2
|k|∑
j=1

2j + |k|
js(j + |k|)s

+ 2
∞∑

j=|k|+1

j1−2s
∞∑
i=0

[(
1− s
i

)
+
(
−s
i

)](
|k|
j

)i

= 2
|k|∑
j=1

2j + |k|
js(j + |k|)s

+ 2
∞∑
i=0

[(
1− s
i

)
+
(
−s
i

)]
|k|iζH(2s+ i− 1, |k|+ 1)
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Now we partly follow a similar calculation of Weisberger [21, Appendix C]. For the coef-
ficients

di(s) :=
(

1− s
i

)
+
(
−s
i

)
we have

d0(s) = 2,
d1(s) = −2s+ 1,
d2(s) = s2,

di(s) = (−1)i
i− 2
i(i− 1)

s+ O(s2), i ≥ 3.

Hence

ζD2
k
(0) = 2

|k|∑
j=1

(2j + |k|) + 2 (2ζH(−1, |k|+ 1) + |k|ζH(0, |k|+ 1))

= 4ζR(−1) + 2|k|ζR(0)

= −1
3
− |k| (29)

and sinceζH(s, |k|+ 1) has only one pole of first order ats = 1 with residue1 we have

ζ ′D2
k
(0) =

= −2
|k|∑
j=1

(2j + |k|)(ln j + ln(j + |k|)) + 8ζ ′H(−1, |k|+ 1) + 4|k|ζ ′H(0, |k|+ 1)

−4|k|ζH(0, |k|+ 1) + |k|2 + 2
∞∑
i=3

(−1)i
i− 2
i(i− 1)

|k|iζH(i− 1, |k|+ 1)

= −2
|k|∑
j=1

(2j + |k|)(ln j + ln(j + |k|)) + 8ζ ′H(−1, |k|+ 1) + 4|k|ζ ′H(0, |k|+ 1)

+2|k|+ 5|k|2 + 2
∞∑
i=3

(−1)i
i− 2
i(i− 1)

|k|iζH(i− 1, |k|+ 1). (30)

For the evaluation of the last sum we use the Mellin transform of the Hurwitzζ-function

ζH(s, a) =
1

Γ (s)

∫ ∞
0

ts−1e−at(1− e−t)−1dt. (31)

This yields

I :=
∞∑
i=3

(−1)i
i− 2
i(i− 1)

|k|iζH(i− 1, |k|+ 1)

=
∞∑
i=3

(−1)i
i− 2
i(i− 1)

|k|i 1
(i− 2)!

∫ ∞
0

ti−2e−(|k|+1)t(1− e−t)−1dt

= |k|
∫ ∞

0

t−1(−e−(2|k|+1)t + e−(|k|+1)t(1− |k|t))(1− e−t)−1dt

−2
∫ ∞

0

t−2(e−(2|k|+1)t − e−(|k|+1)t(1− |k|t+
1
2

(|k|t)2))(1− e−t)−1dt.

To compute these integrals we multiply the integrand byts, evaluate the integral using (31)
and then lets→ 0.
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I = lim
s→0
{|k|Γ (s)(−ζH(s, 2|k|+ 1) + ζH(s, |k|+ 1))

−|k|2Γ (s+ 1)ζH(s+ 1, |k|+ 1)− 2[Γ (s− 1)(ζH(s− 1, 2|k|+ 1)
−ζH(s− 1, |k|+ 1)) + |k|Γ (s)ζH(s, |k|+ 1)

−1
2
|k|2Γ (s+ 1)ζH(s+ 1, |k|+ 1)]}

= lim
s→0
{|k|Γ (s)(−ζH(s, 2|k|+ 1)− ζH(s, |k|+ 1)) + 2Γ (s− 1)h(s− 1)}

with the definition

h(s) :=
|k|∑
j=1

(j + |k|)−s = ζH(s, |k|+ 1)− ζH(s, 2|k|+ 1).

Using−2ζH(0, |k|+ 1) = 1 + 2|k|, h(0) = |k|, and Ress=−lΓ (s) = (−1)l

l! we conclude

I =

= lim
s→0

{
|k|sΓ (s)

(
−2

ζH(s, |k|+ 1)− ζH(0, |k|+ 1)
s

+
h(s)− h(0)

s
+

1 + 3|k|
s

)

+2Γ (s− 1)h(s− 1)

}
= −2|k|ζ ′H(0, |k|+ 1) + |k|h′(0)

+ lim
s→0
{2Γ (s− 1)[h(s− 1) + (s− 1)

|k|
2

(1 + 3|k|)]}

= −2|k|ζ ′H(0, |k|+ 1) + |k|h′(0)− 2h′(−1)− |k|(1 + 3|k|)

= −2|k|ζ ′H(0, |k|+ 1)− |k|
|k|∑
j=1

ln(j + |k|) + 2
|k|∑
j=1

ln(j + |k|)(j + |k|)

−|k|(1 + 3|k|)

= −2|k|ζ ′H(0, |k|+ 1) +
|k|∑
j=1

ln(j + |k|)(2j + |k|)− |k|(1 + 3|k|).

Inserting this into (30) we get

ζ ′D2
k
(0) = −2

|k|∑
j=1

(2j + |k|) ln j + 8ζ ′H(−1, |k|+ 1) + 2|k|+ 5|k|2

−2|k|(1 + 3|k|)

= 8ζ ′R(−1)− |k|2 + 2
|k|∑
j=1

(2j − |k|) ln j,

therefore

DET(D2
k;S2) = e−8ζ′R(−1)+k2

·
|k|∏
m=1

m2|k|−4m.

The formula for DET(Dk;S2) now follows from (29) and from the vanishing of theη-
invariant. Proposition 2.1 yields the formula for DETp.t.(D2

k;S2).

Remark 1.The casek = 0 yields Theorem 4.1, 4.2 and 4.3 forn = 2. Since the Laplace-
Beltrami operator acting on functions is given by∆ = D−1 D

+
1 it has the same spec-

trum asD2
1 except that all non-zero eigenvalues have only half the multiplicity. Hence

DET(∆;S2) =
√

DET(D2
1;S2) and we get (compare [4, Thm. 8.1])
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Corollary 6.3 The determinant of the Laplace-Beltrami operator∆ acting on functions on
S2 is given by

DET(∆;S2) = e−4ζ′R(−1)+ 1
2 .
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