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ABSTRACT. The Bochner-Lichnerowicz formula and the Atiyah-Singer Index
Formula for the Dirac operator have been used to find an obstruction (the
E—genus) to producing metrics of positive scalar curvature on spin manifolds.
Here the technique is applied to twisted Dirac operators in order to obtain up-
per bounds on the minimum of the scalar curvature for Riemannian manifolds
which admit certain contractive spin mappings into a fixed Riemannian man-
ifold. The principal application is to obtain such upper bounds for algebraic
varieties equipped with arbitrary metrics, which admit contractive maps into
P™(C) homotopic to inclusions.

1. Introduction

We cannot begin to review all of the remarkable work which has been done in
formulating sufficient conditions that a manifold admit a metric with positive scalar
curvature, and exploring the consequences. However, we highly recommend the in-
formative articles [Gro] and [St], and the book [La-Mi], especially §4-7 of Part IV.
The most basic result is that a compact spin 4k-manifold with non-zero X—genus has
no metric of positive scalar curvature. This is an easy consequence of the Bochner-
Lichnerowicz formula for the square of Dirac operator and the Atiyah-Singer Index
Theorem. There is much more evidence of a connection between spin and scalar cur-
vature. For example in [Gro-La] it is shown that every compact, simply-connected
manifold of dimension greater than 4 which is not spin has a metric of positive scalar
curvature. For manifolds (M, g) which have positive scalar curvature k, € C* (M),
there is the question of just how large min(k,y) :=min,enr (kg (z)) € R can be as one
varies the metric. Of course, by a contraction of the metric we can make min(k,)
as large as we like, but suppose that we only consider the set of metrics, say

M (g0, A2) = {g € 8% (M) :|al, > |a],, for all a € A? (TM)} ,

which do not decrease areas relative to a fixed metric go. Some very general results
in [Gro] are the K-area inequality for spin manifolds (p.30) and the K ,-area
inequality for non-spin manifolds (p.57) which show that there is a finite upper
bound on min(x,) for g € M (gg, AZ). It is desirable to find some reasonably good
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specific upper bounds on min(k,) for g € M (go, A2) in terms of the curvature of
go, and this will be our main focus. As a starting point, when gg is the standard
metric on the sphere S™, there is a sharp result of [L1] which states that min(k,)
for g e M (go, A2) is bounded above by n(n — 1) = kg4,. In other words, a change
of metric on S™, which does not decrease areas anywhere, cannot increase the
scalar curvature everywhere. We mention that in [Mi] analogous results for certain
symmetric spaces are obtained. One of our aims here is to see how close we can
come to getting a similar result for complex algebraic varieties (more specifically,
complete intersections). As a special case (contained in Corollary 5.5) of our main
result, we prove:

SAMPLE RESULT. Let M be diffeomorphic to a complete intersection of even
complex dimension v in P* (C) and let f : M — P*(C) be a smooth immersion
which is continuously homotopic to the inclusion. If k is the scalar curvature of
M with the metric induced via f from the Fubini-Study metric (of holomorphic
sectional curvature 4) on P* (C), then

min & (z) < 502 + 4v.
zeEM

The scalar curvature of P” (C) is 402 + 4v, which suggests that this result may not
be sharp, but we hope to have at least brought the picture into better focus.

Note that it is not possible to estimate the maximum of the scalar curvature
from above. It is easy to deform any immersion in such a way that it forms small
bubbles with arbitrarily large scalar curvature.

large
Pros e scalar curvature

In Section 2, we introduce some concepts and perform a computation which en-
ables us to get a bound on the curvature operator that appears in the Bochner-
Lichnerowicz (say B-L) formula for the square of a certain twisted Dirac operator.
Since this bound is somewhat geometrically obscure and awkward to compute, we
replace it in Section 3 by a bound which is in terms of the conventional irreducible
components of the curvature tensor. While this new bound is generally weaker,
it does suffice to recapture the result of [Ll]. A successful application of the B-L
formula requires the existence of a twisted harmonic (or at least nearly harmonic)
spinor. Typically, harmonic spinors are produced by applying the Atiyah-Singer
Index Theorem, once one knows that the relevant index is nonzero. Thus in Sec-
tion 4, we compute indices for the relevant twisted Dirac operators, and state some
general results. In Section 5, we apply our results to complex algebraic varieties
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that are complete intersections. Incidentally, we find that much better bounds on
the scalar curvature can be obtained by essentially lifting the varieties to S2"*! via
the Hopf fibration, even though twisted harmonic spinors on the varieties lift to
spinors which are only nearly harmonic. We are indebted to [Kr] for this uplifting
idea.

It should be mentioned that the technique employed in this paper has also
been used successfully to derive upper eigenvalue bounds for Dirac operators, cf.
[Va-Wi, At, Bu, Ba].

2. Notation and the fundamental estimate

In all of what follows we work within the C*° category. Let (M,gn) and
(N, gn) be compact (and without boundary), oriented Riemannian manifolds of
dimensions n and m, respectively, and let f : M — N be a map. For simplic-
ity, we assume in this section that (M, gar) and (N, gn) are equipped with spin
structures Pgpin(n) (M) = Pso(n) (M) and Pspin(m) (N) = Pso(m) (IV). However,
essentially every result in this section has a natural extension to the case where
M and N are not necessarily spinable, but f : M — N is a spin mapping (i.e.,
f* (w2 (N)) = wa (M)). We have more to say about spin mappings in Section 4.
For a fine introduction to spin geometry, as well as beautiful, advanced applications,
we recommend [La-Mi]. Let

(2-1) Clspin (M) = PSpin(n) (M) x; Cl (n) ’

where C1 (n) is the real Clifford algebra for R* with the standard inner product and
l: Spin (n) - End(Cl(n)) is left multiplication. We define Clgp;y, (IN) similarly.
Let

(2.2) D : T (Clspin (M) @ f*Clspin (N)) <

be the twisted Dirac operator. For any ¢ € I'(Clgpin (M) ® f*Clspin (N)), we
have the B-L formula

(2.3) D*¢ =V*Vé + tuud + R ¢.

Here, V is the covariant derivative operator on I' (Clgpin (M) ® f*Clspin (IN)) with
respect to the connection induced by the spin-lifted Levi-Civita connection for M
and the pull-back of the spin-lifted Levi-Civita connection for N; these connections
are also used in the definition of D. Moreover,

(2.4) R’ € End (Clsyin (M) & f*Clspin (N))

is given as follows. Let (ey,...,e;) be an orthonormal frame for T, M and let
(€1,.--,€m) be an orthonormal frame for Ty(,)N. We assume that these frames are

adapted to fi; in the sense that (e, ...,e,) is a basis for ker (f*w)J‘ ,and (1, ...,&;)
is a basis for fi, (T M) . Of course, r is the rank of f.,. By diagonalizing f*gn,
we could assume that f., (e;) = uie;, for positive u;, i = 1,...,7, but we will not
assume this now. For a simple element ¢ ® v € Clspin (M), ® f*Clspin (N), , we
have

(2.5) R (o®v) =3 ) (ei-ej-0) @ RN (fuei, fuej) (v)

i,j=1
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where “” denotes Clifford multiplication, and RY (f.e;, f«e;) €End(Clspin (N)) is
induced by the curvature of the spin-lifted Levi-Civita connection for N. There
is a standard, connection-compatible Riemannian structure (-,-) on Clgpin (M) ®
[*Clspin (N), which is referred to in the following

PROPOSITION 2.1. Let ¢ € T (Clgpin (M) ® f*Clgpin (N)), ¢ # 0, satisfy
|Dg|* < in|q§|2, for some n € C® (M), and let py € C® (M) be a function
such that

(2.6) (R 9,0) > —pr 8]
Then there is a point x € M such that
(2.7) km (2) <n(z)+ py (z).

Moreover, if kx> m+ py everywhere, then kyr =0+ py and Vo = 0.

ProOOF. Taking the L? inner product of D?¢ = V*V¢ + %anﬁ + R ¢ with ¢
yields (where we denote the volume element on M induced by g by dM)

[ dnlo anr > [ 0o ant = [ (0%,0) an
M M M
= [ ((V"V6.0) + ks 6P + (%6, 0)) dmt

(2.8) > [ (IV6 + dmon 61" = 35 16F°) db.
Thus
(29) 0> [ (1Y +% (=0 =pp) 8F) ab.

Assume that £y > 1+ py. Then V¢ = 0, and consequently |¢| is a constant. Since
|¢| is a nonzero constant, it then follows that ky = 1+ py. O

Hence, it is desirable to find a geometrically interesting function py. To this end,
we proceed as follows. One can show that an orthonormal basis for Clspin (M),
is given by elements of the form (where we henceforth drop the dot “” indicating
Clifford multiplication, when the context is clear)

(2.10) O = €§,€4y "~ €4, P,

for suitable ¢ € Clspin (M), with |p| = 1, where I = (i1,--- i) ranges over
increasing multi-indices (1 < 41 < -+ < i < n), and for I empty, we define o1 = ¢.
Given such T = (41,42, - ,%x) and a pair (4, ) with 1 < i < j < n, there is a unique
basis element o, I' = (i},45,--- ,i},), such that

(2.11) [{ejor,eior)| =1,

namely oy = *e;e;jor,where the sign is chosen so that +e;e;jo; reduces to a basis
element, instead of the negative of a basis element. We define I (i,j) to be the
unique increasing multi-index such that

(2.12) (ejor,eionig)| = 1.
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We use similar notation for Clgpp, (N)f(w) , 8&Y Vj 1= €j,€j,...€5, Y for some fixed
1/) € Clsl’in (N)f(z) with |’¢}| = 15 J = (j17j27"' 5jk); 1 Sjl <j2 < - <.7k S m,
and

(2.13) |(ekva, envana )| = 1.

Let fapi := (f« (€:) ,€p), and note that fip; = 0 for ¢ > r or p > r. By definition of
the action of the Lie algebra of Spin(m) on CI(m), we have

r

R (0©v) =5 ) (eiejo) ® RY (fuei, fuej) (v)

ij=1
T T
=3 Z (eiejo) ® Z RN (fupi€p, frqi€q) (v)
i,j=1 p,q=1
T m T
=1 Z (eiejo) ® Z Z f*pif*qu,kapq (—%) enepv
ig=1 h<k p,q=1
T m T
(2.14) =—3 Z Z (eiejo) ® Z Ripg fpi FrqiEnERY.
i<j h<k P,q=1

For ¢ = ZI’J ary (o1 ®vy) € Clspin (M), ® f*Clspin (N),, we then have

2<§Rf¢,d)> = 2<£Rf ZaIJ(O'I(X)’UJ) ,ZGI'J' (or ®UJ/)>
1.7 7
I m T
= - <Z arj Z Z ( Z R;lekqu*pif*qj> (esejor) ® (enervy),
1,J i<j h<k \p,qg=1
S s (ows >>
r,J
T m r
S VI 9 ST § Sp AT B
1,J,I',J’" i<j h<k p,q=1
(ejor,eior) (Exvy,ERV1)
T m T
S99 91 b oR ST P
I,J i<j h<k \p,q=1
(£1){ejor,eior(ij)) (ExVI, ERVI(h 1))
T m T
N
> _ZZ Z Rikpg fapifeqi Z|GIJ| |aI(z',j)J(h,k)|
i<j h<k |p,q=1 ,J
T m T 9
2
> =23 || X Blefaitns| 3 8 (1ansF + larespsnn )
i<j h<k \Ip,q=1 1,J
T m T
2
O e ) 9] (PR 3
i<j h<k \|p,g=1 1,J
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The expression Y ;> )", (‘Z;,qd R%qu*pif*qj‘) depends on the choice of

adapted bases eq,--- ,e, and €1,--- ,€y,. Since this choice has been arbitrary, we
have

(2.16) (R/,0) > —5mi ZZ

i<j h<k

Z thqu*mf*qj |<75|2

pyq=1

where the min is taken over the set B of all choices of adapted bases eq,--- , e,
and €1, ,&m,. We remark that for an integer ¢ > 0, Cl (q) regarded as a module
over itself splits into a number of irreducible CI (g) modules (spinor representation
spaces X (q)). For g even, the X (q) decompose further into Spin(q) submodules
by (q)jE . In particular, since the operator D (or D?) and the curvature operator ¥
respect these decompositions, we may consider the related operators

(2.17)

D:T(X(M)® f*S(N)) « n and m odd
D:T(s(M)*t ® f*s (N))—)F( (M )’®f*E(N)> n even and m odd
D:T (M)t ®f*x (N)i) ( (M )_®f*E(N)i) n and m even

Then (2.3), (2.8) and (2.16) hold for ¢ in the domain of any of the above related
operators. A possible choice for py in (2.6) is

(2.18) ps (z) = 2min SN

i<j h<k

.
N
> Bppg Frpifeqi

Pyg=1

In applications, we will sometimes find it necessary to further twist
Clspin (M) ® f*Clgpin (N) by a complex line bundle L over M equipped with a
Hermitian metric and a compatible connection V¥ with curvature F'X € Q2 (M, iR).
We then have a Dirac operator

(2.19) DY T (L ® Clspin (M) ® f*Clspin (N)) +

and a corresponding B-L formula

2200 (DY)’ 4= (VE@V) (VERV)é+ temo+ (IoR) ¢+ RY¢,
where on a simple element ¢ =7 ® (0 ® v) € L ® (Clspin (M) ® f*Clgpin (N))
(2.21)

n
IeR)p+Rlp=10R (cov)+1 Z FE (e;,e5) (1) @ ((eiejo) @ v) .
ij=1
(see [La-Mi], p. 164). In the notation of (2.10), locally for ¢ = 3°; ;a7 ®
(o1 ® vy) with |7| = 1, one checks

n
(2.22) (R0, 8) > =3 [ Y [F" (eiey)| | 101
i,j=1
For the set B of all orthonormal bases of T,, M, we define

(2.23) oL (z) := mr;l’n 2 Z |FL (ei,ej)|

3,j=1
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Then there is an obvious L-twisted extension of Proposition 2.1, namely

PROPOSITION 2.2. Let ¢ € I' (L ® Clgpin (M) ® f*Clspin (N)), ¢ # 0, satisfy
|DL<;S|2 < Ln|g|?, for somen € C® (M), and let p; € C (M) be a function such
that
(2.24) (R 6,0) > —4or ol

Then there is a point x € M such that
(2.25) kum (x) <1 (2) + pr () + pr (2) -

Moreover, if kar > n+py+pr everywhere, then ky = n+ps+pr and (VE@ V) ¢ =
0.

3. Alternative forms

There are other expressions which serve as a suitable p¢, which we now describe.
The full Riemann curvature tensor of N at y € N can be regarded as a symmetric
operator (known as the curvature operator of (N, gyn) at y)

RY : A2(T,N) — A? (TyN) via
(3.1) gy (RN (XAY),ZAW) =gn (RN (X, Y)W, Z)

in terms of the usual RN € A?(N, End (TN)). Moreover, f., : T,M — TN
induces

(3.2) A (fuz) : A (Ty M) = A* (Ty()N) .

The matrix elements of R}, o A* (f.;) €Hom(A? (T, M), A? (Ty(z)N)) with re-
spect to the bases {e;Aej:1<i<j<n}and {ep Aer:1<h<k<m} are de-
noted by

(33)  (Blw oA (f)) = (enAek Ry o A (fua) (es M) ).

»iJ

Then
SONS Rltenieas| = D0 3| (en Ak By 0 A2 (Fur) (i A e) )
i<j h<k |p,g=1 'i<j h<k

(3.4) -y Y (Rie) oA ()., |-

i<j h<k

By Schwarz’s inequality,

2
(ZZ Rjpy oA f*x))hm
<

i<j h<k

Lr(r—=1)m(m—1) ZZ

i<j h<k

(3.5) (B}e) 0 A% (for)

hk,ij

To proceed further we use the elementary
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LEMMA 3.1. Let V and W be inner product spaces of dimensions n and m re-
spectively, and let L : V — W be a linear map of rankr. Then there are orthonormal
bases v1, ..., of V and wy, ..., wy of W and positive a; € R (1 < i <), such that
Lv; = ayw; (1 <@ <), while Lv; = 0 for r + 1 < i < n. The a; are the positive
eigenvalues of VL*L € End(V).

For the proof one simply chooses vy, ..., v, to be an orthonormal basis of eigen-
vectors of the symmetric operator L*L with eigenvalues a7, one puts w; = a%Lvi
for 1 <4 < r and one arbitrarily extends w1, ..., w, to an orthonormal basis of W.

Thus, assuming that AZ(f.,) is contractive, there are orthonormal bases
W1, ooy Wy(r—1)/2 B0 W1, ooy Wp(p—1)/2 Of A? (ker (f*w)L) and A? (image (f«z)), such
that

(3.6) A? (fuo) (o) = Aqwq for1 <a < ir(r—1),

where 0 < A\, < 1. We extend these bases to orthonormal bases for A% (T, M)
and A? (T;)N). The norm of Rﬁcv(z) 0 A? (fuy) €Hom (A2 (T,M),A? (T4, N))
relative to the inner product induced by g (z) and gy (f (z)) is the same whether
it is expressed using the pair of orthonormal bases ({e; Ae;},{e; A €;}) or the pair

({wa},{ws}). Using this fact

>y

i<j h<k

(Rffv(z) o A? (f*a:))

hk,ij

r(r—1)/2m(m—1)/2
= Y Y [ (B o2 () wa))|
a=1 b=1
r(r—1)/2m(m—1)/2
- Y % <wb,R}V(m)()\awa)>‘2
a=1 b=1
r(r—1)/2m(m—1)/2

< (b By @)
a=1 b=1
m(m—1)/2
< X [ )]
a,b=1
(3.7 = Z |Rllzvk,z'j|i(z)'

i<j,h<k
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Combining (3.5) and (3.7), we obtain (under the assumption that A2 (f.;) is con-
tractive),

>y

(R oA (1),

i<j h<k
o\ 3
IO | D3| (R 04 (),
i<j h<k "
. 2
<IVr(r-=1)m(m-1) (i Z |th”|f($)>
igihk=1
68 <}/ Dmm-DRY,,
where
1
" 3
2
(3.9) 7= ( 2 |R%|)
igihk=1

is the usual norm of the Riemann curvature tensor RY relative to gn. We get the
best results by applying (3.8) to the trace-free part of RY rather than to RY itself.
More precisely, as in Section 1.G of [Be], decompose the curvature operator R%m)
into a multiple of the identity and trace-free part which further decomposes into a
trace-free Ricci part and a Weyl part, say

(3.10)
_ kv (f (@) N _ kv (f (=) N N N
Ry = m (m — 1)If(z)+Ff(w)_ (m — 1) (o) T TERicC ) + Wits)-
Then,
) IDIE A ol s [(en Aen B,y 0 A2 (£u) (ei A ey) )|
i<j h<k |p,q= 1 1<j h<k
< 33 [{ennen (BN N o k2 () (e ey
= "\m(m—1) f(=@) /AR R
i<j h<k
+303 [(en hew Ffly 0 A% (fuc) (e 1 €)))|
i<j h<k
< MM |+ZZ (F o A2 (f ))
- m(m— ) N (=) e hk,ij
i<j h<k
_ < 1= - 5 |Fy |
(1) < 3 e (@) VT - Dmm D |y

We then get the following more elegant (but possibly weaker) choice for ps

(3.12) pf(x):%pw NI+ 5Vrz (re —1)m(m _1)‘F]J°\(z)7

where 7, (previously r) is the rank of f,,. In view of Proposition 2.1 we have
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THEOREM 3.2. Let (M, gn) and (N, gn) be Riemannian spin manifolds of di-
mensions n and m respectively. Let f : M — N be a smooth area-nonincreasing
map, such that there is a nonzero harmonic section for any of the Dirac operators
in (2.17). If ry (< min(n,m)) denotes the rank of f. at x, then there is a point
x € M such that

(3.13)  km(z) <

)

Te (ry — 1)
m (m —1)

where ‘ch\([w)| is the norm of the trace-free part of Riemann curvature tensor of

e (f @] + 3v/re (re = m (m = 1) |,

(N, gn) at f (z) with respect to gn-.

REMARK 3.3. If (N, gn) is Einstein, FN = W~ . When (N, gn) is conformally
flat or dim N < 3, we have F;\gw) = TFRicciﬁcv(w). If (N, gn) is the standard sphere,

then F'N = 0 and we obtain the sharp estimate of Llarull.

REMARK 3.4. If we did not perform the splitting (3.10), then in place of (3.13)
we obtain the apparently less applicable result

(3.14) ko () < y/ra (ra — )m (m — 1) ‘R}\’(w)

7

where ‘R%m)‘ is the norm of the Riemann curvature tensor of (N,gn) at f (x) with
respect to gn -

4. Index computations

In order that the preceding theorems apply, one needs to guarantee the exis-
tence of nonzero Dirac harmonic sections for the operators in (2.17). In certain
cases, this can be done via the Atiyah-Singer Index Theorem for twisted Dirac op-
erators. However, we will first indicate how to get results for non-spin manifolds by
considering operators which are only locally twisted Dirac operators. We continue
to assume that M and N are compact and orientable. If U C M is a coordinate ball
in M, such that f (U) is contained in a coordinate ball V in N, then the bundles
Y (U) and f*¥(V)|, exist even if M and N are not spin. If transition functions
for local bundles ¥ (U) ® f*¥ (V)| can be found so that there is a global bundle
Ej with E¢|, =X (U) ® f*3(V)|, then the locally defined Dirac operators

(4.1) Dy :T(EU)@ fF2(V)ly) »TEW) e fF2(V)|y)
may be used to define a global first-order elliptic differential operator
(4.2) D:T(Ef) T (Ey).

It is not difficult to verify that Ey exists if ws (M) = f*w2 (N), and in this case
we call f a spin mapping. Note that Ey is just the spin bundle associated with a
spin structure for the Riemannian bundle TM & f*T'N. Furthermore, if n := dim
M is even, there is a splitting Ey = Ef ® Ey, such that

(43) FE| =s@Fe 12 m)ly.

This is a consequence of the assumption that M and N are orientable. If M and N
were both nonorientable and wy (M) = f*w; (N), as well as ws (M) = f*ws (N),
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then Ey would still exist but a splitting Ey = E}' ® E} satisfying (4.3) would not
exist. Returning to the case at hand, we have

(4.4) D*:T (E;r) -7 (Ef—)

Since the n-form (local index form) whose integral is the index of D may be com-
puted locally, the index of DT will be given by the same formula as in the case
where M and N are spin. When M and N are spin, we have

(4.5) index (D*) = (K (M) £* (ch (2 (N)))) [M]

Now the total class A (M) € H* (M, Q) makes sense even when M is not spin, but
we need to express ch (X (IV)) in a form which still makes sense when N is not spin.
According to [Gi], p. 244, for m = 2u even, the Chern character of the spin bundle
¥ (N) is obtained as follows. Expand

(4.6)

p p
11 (e‘“/z + e’“/2) = 2¢ [ [ cosh (wi/2) = 2" + chy (01) + cha (01,05) + -+,
=1 i=1

where o; is the i-th elementary symmetric polynomial in z?,...,22. Then replace

each o; by the Pontrjagin class p;(N). The result can be expressed in terms of
the Hirzebruch polynomial L (N) and A (N). The defining power series for A is
%, while that for L is % Since

z/2

tanh(z/2) _ sinh(z/2)
(4.7) % = Tanh (2/2) cosh (z/2),
we have
_ oLV
(4.8) ch(Z(N)) =2 Ao

Thus, when n = dim M is even, so that the bundle E; exists and splits (E; =
Ef ® E}) as in (4.3), we have

. N N * n f‘ (N)

index (DT) = (A (M) f (2 200 (N))) [M]
A (M)

(&)

When M and N are both spin and even-dimensional, in place of ¥ (V) one could
consider the half-spinor bundles ¥ (N)* and £ (V)™ and the Dirac operators

(4.9) =on | f* (i (N)) [M].

(4.10) DHE.T (2 (M)* @ f*5 (N)i) ~T (2 (M)” ® f*S (N)i) :

In fact, if M and N are not necessarily spin but f is a spin mapping, we have
global bundles E** and D** : T (Et*) — T (E—%) which are locally of the
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form (4.10). If vy € H™ (N,Z) denotes the generating orientation class of N and
X (V) the Euler characteristic of N, then (see [Gi], p. 244)

(411) = (=1 x (V) (A (M), £ (v8)) [M] = (=1)" X (N) A-deg(f).
Here, the so-called K—degree of f
(4.12) A-deg (f) := (A (M), _,, f* (vn)) [M]

is introduced in [La-Mi], p.309. It is just the ordinary degree of f when n = m.
We have

: I e A (M)
index (D™%) = 2¢=1 [ /(L (V) — [M]
o = 2 (o) )
(4.13) +1 (—1)" x (V) A-deg(f).

Thus, we have

THEOREM 4.1. Let (M, gnm) and (N, gn) be compact, orientable Riemannian
manifolds of dimensions n and m respectively, with n even. Let f : M — N be a
smooth area-nonincreasing spin mapping, such that either

(4.14) (f* (Tw) %) M) £0,

or

(4.15) X (N) A-deg (f) #0.

If r,, denotes the rank of f. at x, then there is a point x € M such that, in the
notation of Theorem 3.2,

re (ry — 1)

(4.16)  kum(z) < m(m—1)

o (F @)] + 37 (re = Dm (m = 1) |FJY

?

REMARK 4.2. The inequality (4.16) may be replaced by
(4.17) kot () < 2/rg (ra — 1) m (m — 1) ‘Rjy(z)

7

where ‘R;V(w) is the norm of the Riemann curvature tensor of (N,gn) at f (x) with

respect to gn .
Since the identity map of an orientable manifold is a spin mapping, we have

COROLLARY 4.3. Let M be a compact, orientable manifold of even dimension
n and let go and g1 be Riemannian metrics on M, such that the identity (M, g1) —
(M, go) is area-nonincreasing. Suppose that either

(4.18) sign(M) =L (M) [M] # 0,
where sign(M) is the signature of M, or
(4.19) x (M) #0.
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If k1 (z) denotes the scalar curvature of (M, g1) at x € M and F? is the trace-free
part of Riemann curvature tensor RO of (M, go) at =, then there is a point x € M
such that

(4.20) k1 (z) < |ko (z)| + 3n(n—1) |FS| .
In particular,
(4.21) min k; < max (|no|+%n(n—1)|F0|).

so that there is an upper bound on min k1 over all metrics g1 on M which give each
subsurface no smaller area than some fized metric gy does.

REMARK 4.4. Alternatively, under the assumptions, there is a point x € M,
such that

(4.22) k1 (z) < tn(n—1) |R2| .

5. Applications

Our aim is to obtain upper bounds on the minimum of the scalar curvature
kg for a wide class of smooth Riemannian manifolds (M, g) which are diffeomor-
phic to smooth algebraic varieties (more specifically, complete intersections) (V, go)
via length-nonincreasing diffeomorphisms (M, g) — (V, go), where go is the metric
induced on V from the standard Fubini-Study metric on the ambient P# (C). Ac-
tually, we do somewhat more, but it is best to directly consult the main result,
Theorem 5.4.

A complete intersection is a nonsingular algebraic variety in P# (C), which
is the transverse intersection of nonsingular hypersurfaces defined by homogeneous
polynomials. We denote by V#~" (ai,--- ,a,) a complete intersection in P (C),
which is defined by homogeneous polynomials of degrees ay,---,a,. Let M =
VE="(ay,--- ,a,) with an arbitrary Riemannian metric gys, and let f : M — P# (C)
be a smooth map homotopic to the inclusion ¢ : V#~" (a1, - ,a,) C P#(C). Our
first goal will be to show

LEMMA 5.1. The map f : M — P* (C) is a spin mapping if |a| := a1 +--- +a,
18 even.

PrOOF. We may assume that f is the inclusion V. = V#~ 7" (aq,--- ,a,) C
P# (C), since the notion of spin mapping is invariant under homotopy. Let x be the
standard generator of H2 (P* (C) ,Z), namely x = ¢; (£*) = —c; (§) where £ is the
tautological line bundle over P# (C) . It is well-known [Hi, p. 159] that

(5.1) c(TV)=(1+x)" f[ I+ax) ' =1+@u+1—-la)x+...
Since ¢; (V# " (a1, -+ ,a,)) = (u+1—la|])x and ¢; (P*(C)) = (p+ 1) x,
(5:2) wa (P*(C) = [(u+ 1)x]y = [(+1 = a)) x|, = ws (V¥ (a1, ,ar))

if |a| is even. Hence, the inclusion ¢ : V#~" (aq,--- ,a,) C P#(C) is a spin mapping
if |a| is even. O
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For the time being we assume that |a| is even, so that f : M — P# (C) is a spin
mapping. Recall that we then have a global first-order elliptic differential operator

(5.3) D :T (Ef) = T (Ef)
which is locally of the form
(5.4) Dy, :T (Z(Us) ® f*T (Va)|Ua) «

where {U,} is a covering of M and {V,} is a covering of P* (C) with f (Uy) C V4.
We let SM be the pull-back via f of the Hopf bundle S?#*! — P#(C). The
connection 1-form @ pulls back, via fs: SM — S2#*! covering f : M — P* (C), to
a connection 7 := f&0 on SM. If mpr : SM — M denotes the projection, we give
SM the Riemannian metric

(5.5) gsm = mhgn + (=i6)”.

If f: M — P*(C) does not increase lengths, the mapping fs : SM — S2#*! does
not increase areas. We can locally pull back ¥ (U,) to mp*E (Ua) on st (Ua),
and we can use 7 : S2#t! — P# (C) to pull back X (V,) to 7*X (V,) on 7 1 (Va).
Recall that the two irreducible modules ¥ (R*"+!) of CI (R*"*+!) are obtained from
the unique irreducible modules ¥ (R?") of CI (R?") by simply letting ¥ (R2"*+!) =
¥ (R*") and defining the action of esnt1 to be multiplication by +i on £2™% and
Fi on ¥2™~. For definiteness, we choose es,11 to act as +i on X2+, Thus,
S (s (Ua)) = Yy (S (Ua)) and E (1L (Vo)) = 7* (Z (Ua)) , and s0

E (mu ™ (Ua) © £5 (S (7 (V) | p=r o)
i (B (Uy)) @ i 5 (2 (Va))|7rM—1(Ua)
(5.6) =73 (2 (Ua) © f*Z (Va)ly,) -

Consequently, we may take the bundle Ef, — SM for the map fs : SM — S +1
to be the pull back of Ey — M via mps. Let

(5.7) D® :F(Efs) %F(Efs)a

be the corresponding operator which is locally the Dirac operator
(5.8) D:T (2 (rar ' (Ua)) ® f5 (S (x (Va)))|m_1(Ua)) o

LEMMA 5.2. Let w be the Kdhler form of P (C). If ¢ € T'(Epp), then i €
I'(Efs) and
(5.9) D¥ (mir) = why (DY) — §Tf - (w3 f*w) - whrtd,

where “” is Clifford multiplication and Ty is the Killing field generating the S*
action on SM.

The proof is contained in Lemma 4.3 and the proof of Theorem 4.1 in [Am-Ba4].
Note that the “dw” in the proof of Theorem 4.1 in [Am-B4] is 27}, f*w, where w
denotes the Kahler form in the present paper.

LEMMA 5.3. Assume that f : M — P# (C) is area-nonincreasing. Ify € T (Ey)
and Dy =0, then forv:=pu—1r = %dimR M, we have

(5.10) \D® (w3 0)| < 3v Y| = Sv|mil.
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ProoOF. By (5.9), we have
(5.11) DS (mhh) = —2Cout1 Ty (wf) -,

Since w! = f* (w), is a 2-form (or equivalently an antisymmetric transformation)
on T, M of dimension 2v, the orthonormal forms 1, -+ , 2, can be chosen such
that there are nonnegative constants Ay, --- , A, for which

(512) w£ = f* (w)w = )‘1901 A ©2 +--+ )\V(p21/—1 A Pov-

By Lemma 3.1, we may assume that gy (f«e2r—1, fxe2x) = 0, and since f is area-
nonincreasing, |frear—1| |frear| < 1. Note that

A = " (W), (e2n—1,€2k) = Wr(z) (fre2r—1, fre2r) = gn (J fuear_1, frear)
(5.13) < |Jfre2n—1| | fxe2r| = |frear—1| | frear] < 1.

Thus,
D% ()| = 3 |Ty - iy (W) - miup| = 3 [y () - migp| = 3 [ -0
=5 1er Az 4+ Ao Apa) - Y
< 5llor Aw2) W+ + 5 (P21 Apau) - ¢
(5.14) < ivlyl.
([l
THEOREM 5.4. Let M = V* " (a1,--- ,a,) be a complete intersection in P (C)
defined by polynomials of degrees ai,--- ,a, and equipped with an arbitrary Rie-
mannian metric gy with scalar curvature kpr. Let f: M — P (C) be a smooth
length-nonincreasing map homotopic to the inclusion + : VF~" (a1, -+ ,a,) C
P (C). Then forv:=p—r =dimc V* " (a1, - ,a,)
. 502 +4v  for v even
. <
(5.15) min (k) < { 502 +12v  for v odd.
Before the proof we state a special case.
COROLLARY 5.5. Let f : M = V*" (ay,--- ,a,) = P*(C) be an immersion
homotopic through continuous maps to the inclusion ¢ : V*=7" (ay,--- ,a,) C P*(C),

and let ks be the scalar curvature of the metric on M induced by f. Then (5.15)
holds.

PRrOOF. (of Theorem 5.4) The scalar curvature of gsys is given (see [Be], p.
253) by

(5.16) mgszaM—%|f*d9|zM =/€M—2|f*w|zM > kM — 2v,

where we have used (5.12). Note that ky < ks + 2v, and in the special case
M = P+ (C), SM = S§?*! and f is the identity, we obtain the known result
kpue) = (21 +1)2p+ 2p = 4p (u + 1) . We will assume until further notice that
a1 +---+a, is even so that f is a spin mapping. Suppose that there exists a nonzero
¢ € ker (D : T (E;) - T (Ey)). We apply Proposition 2.1, with fg : SM — §2#+1
playing the role of f : M — N and w34 playing the role of ¢. By virtue of Lemma
5.3 we may take 7 = v2. Moreover, by the computation (3.11), we may choose py
to be 2v (2v + 1), since kgzu+1/ (24 + 1) (20 +2)) = 1. Thus, by (5.16) and an
application of Proposition 2.1, we obtain

(5.17) min (k) < min (ksu) + 2v < (V¥ + 20 (2v + 1)) + 2v = 50° + 4w
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Thus, it suffices to show that ker (D : ' (E¢) = T' (Ef)) # 0. In fact, we will show
that index (D+ :T (E;{) - T (Ef_)) > 0. For this, we may assume that f is

the inclusion ¢ : V¥~7 (a4, -+ ,a,) = P#(C), since the index is invariant under
homotopy. Again, let x = ¢; (£*) be the standard generator of H2 (P (C) ,Z). The
A-class of a complete intersection is easily computed to be

Agf)t! _( x/2 )““ " sinh (ai%/2)
) S/ 2)

(518) A (TV) = —

A (@::1 Qi §*|V) ~ \sinh (X/2 Pty aix/2
Moreover,
* (T (Pu x/2 ptl
1 rLEen©)  (wbm) s
(5.19) = = G cos (x/2).
v (A (pe(0)) (sl2)
Thus, using the fact that x*~" [V#~" (a,--- ,a,)] = a1 - - - ar, We have
- A
I(waq,--- ,ar) ;= index (DT) = 2# (L* (L (P~ (C))) m) V]
L*
" sinh (a;x/2)
= 2* (1xcoth (x/2) wHl S taax/2) V]
(2 ) z:Hl alx/2
= a; ---a, - coefficient of x*~" in 2* (Lx coth (x/2))" " 11 %
i=1 i
—(u—r)—1 1 ut1 1 sinh (a;x/2)
=ay-- Gy T€Sp—g | TV 2# (Jz coth (z/2)) H a2
i=1 i
= resy—o (%w_(”_’")_lx’“rl coth**! (z/2) H 78111}1;%33/2))
i=1
(5.20)
= resz—o (% coth** (2/2) H 2sinh (aim/2)> i
i=1

Letting z = /2, we have

(5.21)  Lcoth**!(z/2) H 2sinh (a;x/2) dz = coth”T* () H 2sinh (a;2) dz.
i=1 i=1
Thus,

T
(5.22) I(p;a1, -+ ,a,) =res,—g (co‘ch’“rl (2) H 2 sinh (aiz)> .
i=1

Since coth z has a pole of order one at z = 0, coth®*™ (z) has a pole of order u + 1.
As a consequence of Lemma, 5.6 below, the singular part of the Laurent expansion
of coth”* (2) is of the form
[4] w1 (1)
cak (B) _co(p) | c2(p) =28y odd
(5.23) dorim = ot o T i jeven
z

k=0
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where ¢o (1) = 1 and ¢z (1) > 0 (strict!) for all integers k with 0 < k < [4]. We
have

,

h(
HQSinh (aiz) = HZ sinh (a;z)
i=1

[
(524) = 2Tal e arzr 2921 (ala o 7a7') z2j

for some constants gy, (a1, - ,ar,). The go; (ag,--- ,a,) are strictly positive, since
sinh (a;2) / (a;2) has strictly positive Taylor coefficients multiplying the even powers
of z. Hence, if we assume that v := y —r = dim¢c V#~" (aq,--- ,a,) is even,

I(p;a1,--- ar)

=res,—g (cothqul (2) ﬁ 2sinh (aiz)>
[5]

Cok
= res,—g Z z;+1(i*)k ’ 2923 ag,--- ;ar)z J
k=0
=2"ay -+ a, res,—o ZZC% 1) g2; (a1, - ’ar)zr+2j+2k7ufl
k=0 j=0
(n—=m)/2
(5.25) =2"a1---a, Z cak (1) 9u—r—2k (@1, -+ ,a,) > 0.
k=0

We will consider the case v odd momentarily, but let us first address the case
that a; + --- + a, is odd. We proceed as follows. Regard P (C) as the hyper-
surface z,4> = 0 in P#¥*! (C) with homogeneous coordinates zq,--- , z,42. Then
VE"(a1,--- ,a,) may be regarded as VD=0 (g, ... a, a,;1) C P#(C),
where a,y; = 1 is the degree of the polynomial 2,42 which is adjoined to
the polynomials of degree ai,---,a, in zi,---,%,41 which originally defined
Ve (ay,--- ,a.). Since a3 + -+ ar + ary1 is now even and g+ 1 =r + 1 mod 2,
our considerations thus far may be applied to V{(#+1)—(r+1) (a1, -+ ,ar,ar41). The
inequality (5.17) only involves v (i.e., it is independent of u), and so it still holds
even though we have replaced p by p + 1.

If 4 —r is odd, then (without loss of generality) we assume that aq + - -- + a,
is even, but in place of D : ' (Ef) — ' (Ef), we consider

(5.26) D:T(f* (€)@ Ep) =T (f7 (&) © Ey),

where £&* — P# (C) is the dual of the tautological line bundle £ — P# (C) . Note
that ¢ is the associated bundle S?#*! x4 C, where Id : U (1) — End(C) is the
identity. We need to choose £* instead of £ in order that we have e* instead of e
in (5.28) below. We now apply Proposition 2.2 with fs: SM — S2#*! playing the
role of f: M — N, with L = 7w}, f*(£*), and with 3,4 € T (7}, (f* (£*) ® Ef))
playing the role of ¢. Note that the curvature FL is —2in}, f*w. If we choose the



18 CHRISTIAN BAR AND DAVID BLEECKER

basis ey, -+ , ez, 50 as to put (f*w), in canonical form (see (5.12)), we have
2v
pr(2) <2 ) |2 (i f*w) (€h,er)| < 8v,
h,k=1

where we used the fact that f is area-nonincreasing in order to obtain the
last inequality. Thus, assuming that there is a nonzero harmonic section ¥ €
I (f*(§*) ® Ey), by Proposition 2.2 and Theorem 4.1 we get (as in (5.17) but with
the extra term 8v) the result

(5.27) min (k) < min (ksar) +2v < (V¥ + 20 (20 + 1) + 8v) + 2v = 5v° + 12,
when v is odd. To produce a nonzero harmonic section ¢ it suffices to prove that
index (Df*<€*>+ T (f* ) ® E;) T (f* ) ® Ef‘)) > 0. We have
A (M)
r(AE ()

sinh (a;x/2)
aix/2

index (D/€0+) =21 [ e (f* () f* (T (P (©))) [M]

(5.28) = 2" (e*}x coth ()(/2))“—’_1 ﬁ

i=1

[V].
Hence, the same computation that led to (5.22) yields
(5.29) index (Df*(E*H) =res,—g (e 2 coth** (2 H2smh a;z )

However, the coefficients of the power series of /2 are all positive and the sin-

gular part of the coth”t" () [T}_, 2sinh (a;2) has positive coefficients for the even
negative powers in the Laurent expansion (and coefficients 0 on the odd powers).
Note that the singular part of coth**™ () [}_, 2sinh (a;2) is nontrivial since r < p.
Thus, index(D? ¢)+) > 0. O

LEMMA 5.6. For u > 1, let

(5.30) coth” (2 Z di (1) 25,

k=—o0
where dy, (1) =0 for k < —p. Then di (1) >0 for —u < k < =1 and k = pmod 2.
PrOOF. We have
4 (coth®*™ (2)) = = (u + 1) coth” z (coth® z — 1)
(5.31) = — (u + 1) (coth”** z — coth” z),

or

(5.32)

Z kdy (n+1) —|—1)< f: di, (u+2) 2% — i dk(p)zk>.

k=—c0 k=—oc0 k=—oc0



SCALAR CURVATURE OF ALGEBRAIC VARIETIES 19

Thus,

Yo (k4 Ddpa (p+1)2" == (n+1) (Z dy, (p+2) 2* - Z dy, (p )

k=—00 k=—o00 k=—o0

(k+1)dir1 (p+1)=—(p+1)dp(p+2) + (p+1)di (1), or
(5.33) dy, (p+2) = dy, () — B dpyr (p+1)

We wish to prove that dg (1) > 0 for —u < k < —1 and k¥ = pmod 2. We see that
this is true for p =1 and p = 2, since

(5.34) cothz=z'+1z— L2+ .- and coth® 2 =272+ 2+ L2+ ...

Assume that we have the result for g and g + 1. We need to show that
(5.35) dy, (1 +2) = dy, () = ¥ dgya (+1) > 0,

for —(u+2) <k<-land k= (p+2)mod2. If k = —1
(i-e., p odd), then dy (u + 2) = dg (1) > 0 (in fact d_; (u ):
w). If—(p+2)<k<—-2and k = (p+ 2) mod 2, then—(u

)Sk 1§—land
k+1=p+ 1mod2, in which case—k+1dk+1 (r+1) >0 and dg () > 0 (Indeed
di () > 0 for —u < k < -1 and dk( ) =0for k= —(u+1) or —(u+2))
Thus, dy, (u+2) = dy () — gdpr (p+1) > 0 for —p < k < ~1 and k =
(1 + 2) mod 2. O

6. Concluding remarks

We close with some useful observations with respect to the scalar curvature
of certain metrics on complete intersections. For a Ké#hler manifold (M,g,J) of
complex dimension v with Kéhler form w, there is the following formula which has
been attributed to Chern (see [Gro], p. 58)

(6.1) /M kg dM = w 4_7T1)! (cl [M] ~ [w]V—1) [M].

For v = 1, this is the Gauss-Bonnet theorem. We give a short proof. It is well-
known (see [Be], p. 79) that ¢; [M] is represented by the 2-form 5-p where p is the
Ricci form associated with the Ricci tensor via p (X,Y) := Ricci (JX,Y). Thus



20 CHRISTIAN BAR AND DAVID BLEECKER
(where {eA,-, Je,-} is the basis dual to {e;, Je;}),

oy (e - 1)

4:7T 1 1 2 ~ — 1
- _ /\ v —_ . ) N . v—
Ty / 5P AW oo / Zz plei,Je))é; ANJe; Aw

2 1 wY
= m/M (Zp(e“"ei)> P /M (22”(@""’@)) Pl
:/ (22Ricci (Je,',Jei)) aM

M i
= / (Z Ricci (e, €;) + Ricci (Je;, Jei)> dM
Mo\

62) = /Mmg dM.

This was generalized in [BI] to the case of quasi-K&hler manifolds (where J is not
necessarily parallel, but still with w (X,Y) = ¢(JX,Y) and w closed), where it is
shown that

a7
1 2 — o v—1
©3) [ (v +41vIP) am g (o)~ ) ).
Specializing to the case M is a complete intersection V¥ (ag,--- ,a,) with the in-
duced Kéhler metric gg from PY*" (C) with the usual Fubini-Study metric, we
compute

/M Koo AM = ﬁ (c1 [M] - [w]”_l) [M]

= s (e = labx ) )

47

- G - 2] e

(v
4(u+1_|a|) _4(p+1—|a|) vV

= W[W]H[M]—WW x” [M]

_ 4eptl—la))

We also have Wirtinger’s formula (see [Gra], p. 125) for the volume

(6.5) /M dM:%/Mwu:$ M(ﬂ(;))v:%XV[M]:%GI_..GT.

Thus,

ai - - Qp.

Jop ogo dM 4T M(J,r,l__l)? ap---ar
(6.6) ave (kgy) = “4 = e
fM dM Teay---ar

In the case |a| = p — v and a; = 1, we have M isometric to P” (C) and the known
result

(6.7) ave (kgy) =4v(p+1—|a)) =4v(p+1—(p—v)) =4 (v +1).

=4dv(p+1—|al).
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We offer the

CONJECTURE 6.1. Let g be any metric on the complete intersection
V¥ (ay, - ,a,) C P*(C) that satisfies g > go, where go is the metric induced
by the Fubini-Study metric. Then

min (kg) <4v (v +1).

Blair’s result (6.3) verifies this in the case where g is associated with w via an
almost complex structure J. In fact, in this case 4v (v + 1) can be replaced by
4v(p+1—|a]). However, 4v (v + 1) cannot be replaced by 4v(u+1—|a|) in
general, for the following reason. Consider the case of a nonsingular hypersur-
face V#~! (a;) C P*(C) of degree a;. If u > 4, then the Lefschetz Hyperplane
Theorem (see [Gri-Ha], pp. 156-159) implies not only that V#~! (ay) is simply-

connected, but also that H? (P* (C) ,Z) ~ 2 (V#=1(a1),Z), and hence x|;, gen-
erates H? (V#~!(a1),Z). Then by (5.2), V¥ ! (a;) is not spin if s and a; have
the same parity. Hence, for g > 4 and a1 = pmod 2, a result in [Gro-La] implies
that the simply-connected, nonspin V#~! (a;) of dimension 2u — 2 > 6 admits a
metric of positive scalar curvature, whereas 4v (u + 1 — a;) is negative for a; suf-
ficiently large. Of course, there is a sizable gap between the Conjecture and what
may be concluded from Theorem 5.4, which begs to be closed if possible. We also

mention that in his forthcoming thesis [Kr], W. Kramer has verified the conjecture
for V¥ (ay,--- ,a,) = PY (C).
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