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Abstract

In Kaluza-Klein theory one usually computes the scalar curvature of
the principal bundle manifold using the Levi-Civita connection. Here we
consider a natural family of invariant connections on a soldered principal
bundle which is then parallelizable and hence spinable. This 3-parameter
family includes the Levi-Civita connection and the flat connection. By
varying the connection instead of merely scaling the metric on the fibers,
there is greater independence among the coupling constants in the scalar
curvature. In particular, a large cosmological constant can be avoided in
spite of tiny fibers.

1 Preliminaries

For a Lie group G with Lie algebra g, let 7 : P — M be a principal G-bundle
over an n-manifold M. For A € g, there is a fundamental vertical vector field
A* on P given at p € P by

5= 3 pexp 1)) g M

A connection on P is a g-valued 1-form w € Q! (P,g), such that w (4*) = 4
for all A € g and Rjw = Ady-w for all g € G where R, : P — P is given by
the right action R, (p) := pg and Ad : G —End(g) is the adjoint representation.
Generally, we use the notation of [3] or [7]. For an insightful introduction to the
use of bundles and modern geometry in physics which is particularly suited to
this article, see [11].



We assume that there is a representation 7 : G —0(n). More generally, we
could consider the pseudo-orthogonal case 7 : G -O(n — ¢, ), but for the sake
of simplicity, we leave the straightforward modifications to the interested reader.
We mention that for the most common physical applications, G = Gox0(1, 3)
where G is a compact internal symmetry group, such as SU(3)xSU(2)xU(1),
SU(5), Spin(10), etc., and 7 : Gux0(1,3) —0O(1, 3) is just the projection.

A R"-valued 1-form a on P is equivariant with respect to 7 if Rja = Tl
for all g € G, and « is horizontal if oy, (A*) = 0 for all A € g. We denote the
vector space of all such smooth, horizontal, 1-forms equivariant with respect to
T by ﬁ,l. (P,R™). For the space of equivariant forms which are not necessarily
horizontal we write QL (P, R"), and we use similar notation for different repre-

sentations and higher degree forms. A form ¢ € ﬁi (P,R™) is called a soldering
form it ¢, : TP — R" is onto for all p € P. There is a right action of G on

P x R" given by [p,v]-g = [pg,7 (¢7!) v]. Let
V:i=Px;R"=(PxR")/G. (2)

be the quotient space. The obvious projection V' — M defines a vector bundle
over M, the vector bundle associated to P — M via 7. Soldering forms ¢ corre-
spond to isomorphisms TM = V via 7, (X,) < [p, ¢ (Xp)] for X, € T, P. Since
V has a natural Riemannian structure, a soldering form induces a Riemannian
metric on M. Many have profitably regarded soldering forms as more funda-
mental than metrics. Early on, Trautman [10] emphasized that the presence of
a soldering form is what sets gravitational gauge theories apart from the rest.
Suppose that k4 is an Adg-invariant inner product on g and kg~ is the usual

inner product on R”. If p € ﬁi (P,R™) is a soldering form, one can define the
metric

gp = kg (0, w) + krn (¢, ) 3)

on P. This is analogous to the sort of bundle metric used in Kaluza-Klein theory,
except that our P is soldered to M via ¢ and our group G is not usually
interpreted as a purely internal symmetry group Go. In Kaluza-Klein theory one
computes the scalar curvature Rp, of the Levi-Civita connection for a metric on
Py, where mg : By — M is a principal bundle with compact internal symmetry
group Go. The metric on Py is gp, = kg, (wo,wo) + 759m, where kg, is an
Adg,-invariant scalar product on go, wo is a connection 1-form on Fy, and g
is a metric on M. One finds that the scalar curvature for gp, is

1
Rpy = Ra, +mg (Bar) — 7 (kgo ® gur) (270, 9°), (4)

where Rg, is the scalar curvature of the Levi-Civita connection for the bi-
invariant metric on G induced by kq,, R is the scalar curvature of M with
respect to the Levi-Civita connection for the metric gas on M, and Q¥° :=
dwg + % [wo,wo)] € (7R (Py, Go) is the field strength of the gauge potential wo. As
the scalar curvature Rp, is Go-invariant, it projects to a well-defined function



on M which serves as an action density. Setting the first variation of the total
action with respect to gy equal to zero yields Einstein’s equations

(RM)ij - % (Rm + Ra,) (gM)ij

1
= 5 (9m) " kg, (Q;g,n;g;) - é (kgo ® gnr) (0, 9°°) (gur);;  (5)
with Yang-Mills source originating from wo and a cosmological constant due
to Rg, (which many are content to remove by hand). The first variation with
respect to wg yields the Yang-Mills equation §“°Q¥° = 0, where “° is the
covariant codifferential operator. For more details on this, see [3] or [4].

One can also compute the scalar curvature of the Levi-Civita connection of
gp in (3), and we will present the result. However, there are many other natu-
ral G-invariant linear metric connections on P for which one can compute the
scalar curvature. Indeed, there is a natural 3-parameter family of G-invariant
linear connections for P which we will examine. We have computed the scalar
curvature of these connections as a quadratic function of these 3 parameters.
Essentially the result generalizes the standard Kaluza-Klein result. Conceivably
this could be useful to modelers who want to get an early start building the next
universe before time runs out.

2 Invariant Connections

A vector v € R™ gives rise to a standard horizontal vector field v* which is
determined by

w(@*)=0and ¢ (v*) =v. (6)

Given an orthonormal basis ey, ...,e, for R” with the usual metric and an or-
thonormal basis uy:, ..., un+ for g relative to the Adg-invariant inner product kg,
we have a globally defined framing u7,, ..., u3, €], ..., e, of fundamental vertical
vector fields and standard horizontal vector fields. Note that we have primed
1',...,N" so that {1',..., N'}n{1,...,n} = ¢. In sums, we let the Greek indices
a, 3,7, ... run from 1’ to N’ and lower-case Latin indices h,1, j, ... run from 1 to
n. Writing

N
w = Z WUy = Zwo‘ua and p = Zn:cpiei = Zgoiei, (7
i=1 i

a=1’ «

we see that w'',..,w™', !, ... " form the coframe field dual to frame field
Ui, ..., Uny, €7, ..oy €5 These are global orthonormal framings with respect to gp.
For non-soldered Kaluza-Klein theories, one does not necessarily have a global
framings, let alone natural ones. It is also convenient to define

(vla -y UN5, UN+1, "'7UN+n) = (u1’7 - UNT, €1, "'7en) ’ (8)



and introduce the (g ® R™)-valued form w := (w, ). This form is an example
of a Cartan connection (see [8]). Via the choice of bases, we can identify w with
the RV*"_valued form (global coframe)

i !
(wl, ...,wN,wN"‘l,...,wN"'”) = (wl L ,gol,...,(pn) . 9)

which is dual to the framing of vertical and horizontal vector fields
(Uf,...,v}“wrn). We let the upper-case Latin indices H,I,J,K,... run from 1
to N +n.

Let V denote the covariant derivative for a linear connection on P. Associ-
ated with V is a globally-defined (N + n) x (N + n) matrix-valued 1-form 6 on
P, defined by

Vo 05 =Y 015 (vic) v} (10)
K
Alternatively (in basis-free notation), for 4, B € g & R"® and with A* :=
w 1 (A), we have
Va-B* = (6 (4*)B)* (11)

for # € Q' (P,End (g ® R")). The flat connection for gp, is the one for which
6 = 0. By definition, a metric connection (relative to gp) is one for which V
satisfies

A*[gp (B*,C*)] = gp (Va-B*,C*) + gp (B*,V.4-C*) (12)
or
0=gp ((0(A")B)",C") +gp (B*,(6(4") C)"), (13)

i.e., the associated matrix 8 of connection 1-forms is anti-symmetric. The torsion
of V is the (g @ R")-valued 2-form T% on P given by

T =dw+ 0N Nw=do@dp+ 0N (WS ). (14)

Here 8 A w is the matrix product of 8 with w, where the entries are multiplied
via wedge product, or equivalently

OA®D) (X,Y)=0(X)w (V) -0(Y)w(X). (15)

For the Levi-Civita connection 7% = 0, and for the flat connection clearly T¢ =
dw. For a given 2-form T € Q? (P, g ® R"), the equation

do+0Aw=T. (16)

determines 6 uniquely. To find 6, we proceed as follows. We define the curvature
of w by

1
0% :=dw + 3 [w,w], (17)



and the torsion of w relative to ¢ by
b :=DYp :=dp+ 7« (W) A . (18)

Here 1 [w,w] € Q2 (P, g) is given by
%[w,w] (X,)Y) = % (wX),w@)] - [w(),wX)) =wX),w)], (19

and for g a Lie algebra of matrices, 1 [w,w] = w Aw. Also, 7, : g — s0 (n) is the
Lie algebra map induced by 7 : G —0(n). We say that w is torsion-free relative
to ¢, if & = 0. This is the usual notion of “torsion-free” when ¢ is the canonical
1-form on the bundle of orthonormal frames (relative to some metric gas on M)
with connection 1-form w (i.e., in this case, if w is torsion-free relative to ¢,
then w is the Levi-Civita connection for gps). We remain in the general setting,
not assuming that ® = 0. We can write (16) as

1

(Q‘” —3 [w,w]) & D —Tu (W AP)+OIN (WD) =T. (20)

We also write

1 A | C
=32 ' =55 Qaijuag’ A Y (21)
4,5 3,j,a
and
1 A | C
D =8=33 ®iyp' Apd =353 Dujers’ A, (22)
,J 4,5,k

The structure constants cp, are defined by
[ug, uy] = Z CapyUa- (23)
o

For any Adg-invariant metric k; on g, we have cog4 totally antisymmetric in
a, B,7. Now

dw = dw@dcpz(Q“’—%[w,w])@(D‘”gp—n(w)/\cp)

1 : -1
= Z §ZQQ,~]-<,0’/\<,OJ - 520a57wﬁ/\w7 Uq
a i,j Byy

1 . o )
@ E B} E ik’ A o* — E Tx (ua)i]’ w* A’ e (24)
i gk a,j

In general, suppose that

1
de = §Zb1JKwJ/\wK, (25)
K



where byyjx = —brkj. Then the unique constants 07k, such that

Ory = Z Orrxw™
K

satisfies
_ i 1 I J K
do+0Nw=T = 3 Z Trigv w’ ANw
1,JLK
for given Tryk (With Trkg = —TIJK), are given by

1 1
Oy = —5 (brsx + bxrs —bskr) + 3 (Trox + Trrs — Tykr) -

Writing

(28) yields

Oapy
00pi
00ji
9am
Ojai
Ojap
Oik;

Oika

S >
Q Q
<. =

Il I

R
<&
I

Z eaﬂ’yw’y + Z 9aﬂk<Pk
el k
—Gja = Z Gamw’y + Z gajk(pk
¥ k

Z Oij w7 + Z 0k ",
v %

1 1
§Ca7ﬂ + 3 (Toars + Tpay — Thpa)

1

2
1

_iﬂaz’j +

(Twig + Tai — Tiga)

1

2

(Ta'm' + Tjav - T’yja)
1

Qaij + 5 (Tjia + Taji — Tiaj)

5 Tipa +Tajs = Tpaj)
1 1
=5 (@ijr + Prij — ji) + 5 (

1 1
Tx (Ua) i — §Qaik t3 (Tiak + Thia — Taki) -

(Twij + Tjai — Tija)

=N =N =

Tijk + Trij — Tjri)

(26)

(30)

We obtain the Levi-Civita connection, say 6%, by setting all components of 7'



equal to 0. Thus,

1
L
bap = 5D Cays’
v
1 .
L L
Oi = —bja=-5D ais$’
&
L 1 o1 1 k
oL = Z Tu (Uy);; — §Q,m- W—3 Z (Pirj + Pjix — Prjs) " (31)
v &
If 4o = kg (uq,-) and é; := krn (e;,-) , then
0F = ) O0lpua®is+ Y 05 (ua @ —e; @iia) + >0 @€
a,B a,j 4,
1 . 1 ; N N
= 3 Z CaypW! ® Uq ® lig — B Z.Qm-jtp’ ® (ua ®é; —e; ®Uy)
a,Byy a,j,
1 .
+ Z (T* (uq);j — §QW) w' Qe ®E;
4,J,Y
1 A
2 Z (®Birj + Pjix — Prji) @ @ e; @ €5 (32)
.5,k

Besides the Levi-Civita connection and the flat connection (where 8 = 0), there
are other natural choices. For example, even if ® # 0, we may choose T}, = ®;i
to produce ;;; = 0. We can also choose Toyg = —Caqg t0 get 8apy = $Cayg —
1 (ang + CBay — Cypa) = 0. We study more general possibilities below. For the
Levi-Civita connection, we have

* 1 * 1 *
Vusug = 3 ch,guv =3 [Ua,ug]
v
* 1 *
Veug = 5 Z Qpjie;
K3

* 1 *
Vuyge; = z (T* (ua)ij - §Qaij) €;

i

k3

1 1
VE;ez = 2 E kaju: ~3 E ((I)ijk + (I)kij - ‘D]kz) e;*. (33)
Y

Since we want the scalar curvature for V to be G-invariant, it is desirable to
require that the covariant derivative operator V determined by 6 be G-invariant
on P, in the sense that

Rgu (Va-B*) = Vg, (a+) (B« (BY)) - (34)



One can show that this is equivalent to the Ad(44xr)-equivariance of #, where
Ad(pdaxr) : G — O(s0 (g ® R)) is given (for E €End(g ® R")) by

Ad(aaxr) (9) (B) = (Adg x 7(g)) 0 Eo (Adg-1 x 7 (g77)) . (35)

To say that 6 € Qy, ,, (P50 (g ® R")) means that for all A € g& R" and
g € G, we have

*

(Ady x 7(9)) 7 0(4) (Ady x 7 (9)) =0 (((Ady x 7(9) " (4)) ). (36)
A straightforward computation shows that
T’ € Wyyxr (PO R") &0 € Qyy,,, (Pso(g®R")). (37)

In particular, the Levi-Civita connection form 8% is in Qg ., (Prso(g ®RY)).
The last two sums in (32) each split into two separate sums in
Qg (Poso(g@R™)), and hence 9% is a sum of six terms, each one of

which is in Q}, =~ (P,so(g@®R")). There is actually another element of

th“xf (P,s0 (g ® R™)) not occurring in 6%, but worthy of consideration,
namely

DT (a)y 0 ® (ua ® &5 — €5 ®ilg) - (38)

a7j

By giving each of the six sums in 8" its own real coefficient and including the
term (38) as well, we have a connection form 6 (a, bq, b;, cq,cr,c1,c2) defined
by

1
0 (a,bq,b,,cq,cr,c1,c2) = 24 Z CaypwW! @ uq ® Ug

a,Byy
1 ; A N
—ibg Z Daij@" ® (Uua ® € — € ® Uq)
a,j
1 ; R N
+§b7— Z T % (ua)” 901 & (ua ® ej - ej X ua)
a,j
1 . -
—5¢0 Z Qyijw’ Qe ®é; +cr Z T (u,y)ij W ®e; ® é;
4,3, (2% Fa
1 R 1 R
+§Cl Z (q)ijk - (I)jz'k) (,Ok Qe de; — 502 Z (I’kz'jcpk ®e;®e;. (39)
id,k 1,5,k

It is possible (although not necessarily desirable) to construct more terms in-
volving contracted polynomial expressions of higher degree in Q4;;, T« (u'Y)z'j ,
®1ij, and cqqg. For simplicity (and the fact that time did not permit us to



sufficiently check our computations in the more general case), we will consider
the restricted family

0 = 0> 0lgua®@ig+bY 0L (ua®éj—ej @)+ Ohei®¢;
a,f i ij
1 N 1 ; R .
= 5(1 ; ca,yﬁuﬂ Q Uq ®Ug — 51)(12” Qm’jgo’ ® (Ua Rej—e; & ua)
a7 77 9,

_10 .. Y
+CZ ( 127 (T* (2)yg QQW) N k > ®e; ®é;. (40)
77 \ T3 2k (Pije — jie — Prij) @

The Levi-Civita connection 87 is (11,

3 The Scalar Curvature

The curvature 2-form Q(:5:¢) € 02 (P, s0 (g ® R")) of 8(*"°) with respect to the
global coframe field w is given by

Q(a’bvc) — da(avbac) + o(aabac) A a(a,b,C)_ (41)

Ultimately, Q(@¢) can be written as
1
Qb =2 3 Riglon @0 0w’ Awk. (42)
H,IJK
We have actually computed all of the components Rg}bji%, and we will gladly
furnish them along with the Ricci tensor (symmetric if (a,b,¢) = (1,1,1)) via
email. However, here we provide the scalar curvature.

Theorem 1 The scalar curvature for the metric connection 9(20) on P is
b, _ (a,b,c)
RO = % Ry
H,T

1 1
= 3@ (1 - Ea) Z CapryCapy + (b(1 —c) +¢) Z T (Ua) i Qaij

a,B,y a,i,j
1 1 *
+§ (C (b - 1) - §b2> Z Qaianij + 2cZei [(I>“z]
1,J,x 1,5
1, 1 1
—5¢ Z (®1ij @ity + 2% Pjj1) — 3¢\ 1-3¢ Z @i Prij- (43)
lyi,g l,i,j
We remark that to simplify as much as possible, we used the Bianchi iden-
tities

0=d0 +[w,Q] and 0=d®+ 7. (W)ADP -7, () Ao, (44)



which are easily derived from the definitions Q% = dw + % [w,w] and & =
dy + w A ¢ by exterior differentiation. In particular, although one expects
to see derivatives of {,;; in R(@®b:¢) none appear, due to the Bianchi identities.
Moreover, the only sum }_, , €; [®;;;] involving derivatives vanishes in the case
where the torsion is traceless as is often the case in applications (e.g., when
®;;1, is totally antisymmetric). For example, in Uy and ECSK theories with
Dirac fields, ®;;, is proportional to the spin-angular momentum of the Dirac
field, which is a 3-form or axial vector (see [2] or [5]).

To compare the result (43) with the Kaluza-Klein result (4), first assume
that G = GoxO(n), and P is the fibered product of a principal bundle P,
with group Gy with the bundle F(M) of orthonormal frames of a Riemannian
n-manifold M with metric gps. The go @ so(n)-valued connection form w splits
into two components, say w = wo @ wyr. Next assume that ¢ is the lift of the
canonical 1-form on F(M) to P and that was is the lift to P of the Levi-Civita
connection of gar. We then have ® = D¥p = D“°¢p = 0. Note that the terms
in the sum 7, ;- 7« (Ua);; Qaij vanish for o < dim (Go), and this sum is the
scalar curvature R,,, of gp. In what follows, the constant K is the scale that
one chooses for the scalar product ks, on s0(n), namely kg, (4, B) = KA;;BY =
—K trace(A o BT), and Roy,) is the scalar curvature of O(n) when K is chosen
to be 1. With these choices,

ab.c 1 1
Rlabe)  — 5@ (1 - 5(1) CaprCapy + (b(1—c)+¢) Z s (Ua);j Qaij
a,Byy a,i,J
1 1,
+§ C(b_l)_ib ZQO‘UQO‘U
i,J,x
1 1 .
= 5(1 1-— 5(1 (RGo + K Ro(n)) + OBl =-c¢)+c) R,
1 wo w 2
2 ( (b - 1 _b2) Z Qagyﬂa(z]] +K Z (R’%’U) (45)
ij,a hykyiyj
When (a,b,c) = (1,1,1), we obtain
1
ROGMY = (RGO = 7 (kgo ® gar) (20, Q%) + RgM)
1
+K ' Ro(ny — K |Riem||? (46)

The terms in parentheses constitute the scalar curvature of Py in standard
Kaluza-Klein theory. Note that had a been chosen to be 0 or 2 instead of
1, then the constant terms Rg, and Ro(y) in R(a:5:) " which ultimately yield
a cosmological constant in Einstein’s equations, would be absent. Generally
speaking, the scalar curvature function on P can be naturally altered, not only
by scaling the scalar product on the group-like fibers, but also by using different
G-invariant connections on P. In particular, contrary to popular belief, tiny

10



curled-up fibers do not necessary have to produce huge cosmological constants.
There are also the additional terms in K~'Ro,) — 1 K |Riem||>. One would
not have K _lRo(n), if @ was chosen to be 0 or 2. People have found uses for
terms such as —1 K ||Riem u||?, such as in regularizing quantum gravity, but the
consensus seems to be that they are a mixed blessing at best.

4 Further directions and speculations

One of the attractive features of working on a soldered principal bundle 7 :
P — M is that it has a natural parallelization depending only on the choice of
basis for g @ R™. Thus, one has a trivial spin structure, say Spin(P) — F(P),
associated with this trivialization of the frame bundle F(P), even if the base
M has no spin structure. One may then consider spinor fields on P, and we
are investigating the harmonic analysis of spinor fields on P. The space of such
spinor fields decomposes into invariant subspaces under the group action of G,
and these subspaces can be identified with various types of particle fields on
M (sections of vector bundles over M, associated with various representations
of G). A program of this sort in the Kaluza-Klein context was started in [6].
Recently, a harmonic analysis of spinor fields on circle bundles was carried out
in [1].

One tantalizing prospect occurs in the special case where P = F (M), the
oriented orthonormal frame bundle of an oriented Riemannian 4-manifold M.
Then, dim(P) = 4 + dim (SO(4)) = 10, and the group of the bundle F(P) — P
is SO(10), while the group of the composed bundle Spin(P) — F(P) — P is
Spin(10). One of the most elegant of the grand unified theories (GUTSs) is the
SO(10) theory which neatly “explains” some mysterious features of the original
SU(5) theory [9]. Any one of the three generations of 16 fundamental fermions
(including a right-handed neutrino) fits perfectly in 16-dimensional fundamental
spinor representation of Spin(10). Actually, SO(10) GUT is a misnomer, since
the fundamental spinor representation of Spin(10) does not descend to a single-
valued representation of SO(10). Although the group for the frame bundle
7w : P — M is SO(4) which is regarded as an external symmetry group, it would
be nice if the group Spin(10) for the composed bundle Spin(P) — F(P) — P
could be interpreted as an internal symmetry group. Note that the further
composition Spin(P) — F(P) — P — M is a soldered principal bundle with
group Spin(10) xSO(4) (regarded as “internal x external”). This is exactly what
one wants in a grand unified euclidean field theory. Have we GUEFT or goofed?
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