On the characteristic initial value problem for nonlinear symmetric hyperbolic systems

Joint work with Piotr Chrusciel

Potsdam, 03/02/2014

(D) (A) (A) (A) (A)

Plan of the presentation

• Introduction (Prerequisites).

- Quasi-linear first order hyperbolic system and the energy estimate
- Iterative scheme and the continuity (Bootstrap) argument
- Application to general semi-linear wave equations

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Plan of the presentation

- Introduction (Prerequisites).
- Quasi-linear first order hyperbolic system and the energy estimate
- Iterative scheme and the continuity (Bootstrap) argument
- Application to general semi-linear wave equations

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Plan of the presentation

- Introduction (Prerequisites).
- Quasi-linear first order hyperbolic system and the energy estimate
- Iterative scheme and the continuity (Bootstrap) argument
- Application to general semi-linear wave equations

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Plan of the presentation

- Introduction (Prerequisites).
- Quasi-linear first order hyperbolic system and the energy estimate
- Iterative scheme and the continuity (Bootstrap) argument
- Application to general semi-linear wave equations

< ロ > < 同 > < 三 > < 三 >

Quasi-linear first order hyperbolic system and the energy estimate Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

Cauchy Problems in normal form General Cauchy Problems

Cauchy Problems in normal form

- $u = (u^1, u^2, \dots, u^N)$ is a vector valued function of the n + 1 variables $(t, x) = (x^0, x^1, \dots, x^n)$ of an open subset Ω of \mathbb{R}^{1+n} .
- Consider a system of N partial differential equations for the N unknown functions of order m of the form

$$\frac{\partial^m u}{\partial t^m} = F(t, x, u, \dots, u_\alpha, \dots) \tag{1}$$

where for a multi-index $\alpha = (\alpha_0, \ldots, \alpha_n)$,

$$u_{\alpha} = \frac{\partial^{|\alpha|} u}{(\partial t)^{\alpha_0} (\partial x^1)^{\alpha_1} \dots (\partial x^n)^{\alpha_n}}$$

 $|\alpha| = \alpha_0 + \alpha_1 + \ldots + \alpha_n \le m, \ 0 \le \alpha_0 < m;$

Quasi-linear first order hyperbolic system and the energy estimate Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

Cauchy Problems in normal form General Cauchy Problems

The initial value problem

$$\begin{cases} \frac{\partial^m u}{\partial t^m} = F(t, x, u, \dots, u_{\alpha}, \dots) \\ \frac{\partial^\ell u}{\partial t^\ell} \Big|_{t=t_0} = h_\ell, \quad 0 \le \ell \le m-1; \end{cases}$$
(2)

is said to be in its normal form.

・ロト ・日ト ・ヨト ・ヨト

3

Quasi-linear first order hyperbolic system and the energy estimat Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

Remark

Cauchy Problems in normal form General Cauchy Problems

Given a Cauchy problem in its normal form, one can compute all the (tangential and outwards) derivatives of the unknowns on the initial surface $\{t = t_0\}$. Thus the initial data together with the differential equations completely determined the Taylor series of u along the the initial surface $\{t = t_0\}$ provided that such a solution exists and is analytic which is the case when the data and the right hand side of the equations are analytic functions of all their arguments (Theorem of Cauchy-Kowalewski .

Quasi-linear first order hyperbolic system and the energy estimate Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

Cauchy Problems in normal form General Cauchy Problems

General Cauchy Problems

- In many situations, there is no preferred coordinate and the Cauchy data for a given (system of) partial differential equation(s) are prescribed on generic hypersurfaces (Σ).
- Consider a system of N PDEs in N unknown functions u in the general form:

$$F(x, u, ..., u_{\alpha}, ...) = 0, \quad |\alpha| \le m, I = 1, ..., N,$$
 (3)

• Suppose that the initial hypersurface (Σ) is given by

$$(\Sigma):\phi(x)=0, \qquad (4)$$

where the $F{\rm 's}$ are smooth functions and ϕ is a smooth function with non vanishing gradient.

Cauchy Problems in normal form General Cauchy Problems

Quasi-linear first order hyperbolic system and the energy estimate Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

• Denote by ν the gradient of ϕ then, the normal derivatives of u along (Σ) are given by $(\phi_i = \frac{\partial \phi}{\partial x})$

$$\frac{\partial u}{\partial \nu} = \sum_{i=1}^{n} \phi_i \frac{\partial u}{\partial x} \quad \text{and} \quad \frac{\partial^{\ell} u}{(\partial \nu)^{\ell}} = \underbrace{\frac{\partial}{\partial \nu} \dots \frac{\partial u}{\partial \nu}}_{\ell \ times}$$

• Then an initial value problem for the PDE (3) can be posed on (Σ) as:

$$\begin{cases} F(x, u, \dots, u_{\alpha}, \dots) = 0\\ \frac{\partial^{\ell} u}{(\partial \nu)^{\ell}} \Big|_{\Sigma} = h_{\ell}, & |\alpha| \le m, \quad 0 \le \ell \le m - 1; \end{cases}$$
(5)

イロト イボト イヨト イヨト

Quasi-linear first order hyperbolic system and the energy estimate Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

Cauchy Problems in normal form General Cauchy Problems

Transformation into normal form

Question

Can problem (5) be written in normal form?

To answer this question, we restrict ourself to the case where (3) is quasi-linear, i.e.

$$F(x, u, \dots, u_{\beta}, \dots) = \sum_{|\alpha|=m} A^{\alpha} u_{\alpha} + G$$
(6)

where

$$A^{\alpha} = A^{\alpha}(x, u, \dots, u_{\beta}, \dots), \quad |\beta| \le m - 1$$

is an $N\times N$ matrix valued function and

$$G = G(x, u, \dots, u_{\beta}, \dots), \quad |\alpha| \le m - 1$$

is a vector valued function.

イロト イヨト イヨト イヨト

Cauchy Problems in normal form General Cauchy Problems

Quasi-linear first order hyperbolic system and the energy estimate Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

> Suppose that $y = (y^1, \ldots, y^n)$ are independent coordinates on (Σ) and complete with $y^0 = \phi(x)$ to a system of coordinates (y^0, y) . Then, computations show that the system of PDE (6) becomes

$$\sum_{|\alpha|=m} \frac{\partial \phi}{(\partial x^0)^{\alpha_0}} \cdots \frac{\partial \phi}{(\partial x^n)^{\alpha_n}} A^{\alpha} \frac{\partial^k \overline{u}}{(\partial y^0)^k} + g(y^0, y, \overline{u}, \dots, \overline{u}_{\beta}) = 0$$
$$|\beta| \le m, \ \beta_0 < m$$

where \overline{u}_{α} are the derivatives of u with respect to the y's coordinates.

Quasi-linear first order hyperbolic system and the energy estimate Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

Cauchy Problems in normal form General Cauchy Problems

Thus the initial value problem, (5) can be recast into the normal form if and only if

$$\det\left(\sum_{|\alpha|=m}\frac{\partial\phi}{(\partial x^0)^{\alpha_0}}\ldots\frac{\partial\phi}{(\partial x^n)^{\alpha_n}}A^{\alpha}(x,u,\ldots,u_{\beta},\ldots)\right)\Big|_{(\Sigma)}\neq 0.$$

In that case the Cauchy-Kowalewski Theorem applies to (5).

イロト イボト イヨト イヨト

Quasi-linear first order hyperbolic system and the energy estimate Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

Definition

Cauchy Problems in normal form General Cauchy Problems

The hypersurface (Σ) is said to be characteristic with respect to the Cauchy problem (5) when

$$\det\left(\sum_{|\alpha|=m} \frac{\partial \phi}{(\partial x^0)^{\alpha_0}} \dots \frac{\partial \phi}{(\partial x^n)^{\alpha_n}} A^{\alpha}(x, u, \dots, u_{\beta}, \dots)\right)\Big|_{(\Sigma)} = 0.$$

In that case, we speak about "Characteristic Cauchy data".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quasi-linear first order hyperbolic system and the energy estimate Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

Remark

Cauchy Problems in normal form General Cauchy Problems

- Initial data on a characteristic surface cannot be prescribed freely: They must satisfy some compatibility conditions some times called the "transport Equations".
- Correspondingly, the solution is not uniquely determined unless certain additional conditions are imposed on a hypersurface transverse to the initial surface.
- Oiscontinuity (singularities) of a solution cannot occur except along characteristic surfaces
- Characteristic surfaces are the only surfaces for which the same initial value problem may have several solutions

イロン イヨン イヨン

Quasi-linear first order hyperbolic system and the energy estimat Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem Application to general semi-linear wave equations

Cauchy Problems in normal form General Cauchy Problems

As example, it is not difficult to see that in the case of semi-linear wave equation, the characteristic surfaces are null hypersurfaces

The Equation

The Equation The energy density The splitting of *f* The energy estimate

- Y is a (n-1)-dimensional compact manifold without boundary.
- We are interested in quasi-linear first order symmetric hyperbolic systems of the form

$$Lf = G , \qquad (7)$$

on subsets of

$$\widetilde{\mathscr{M}} := \left\{ u \in [0,\infty), v \in [0,\infty), y \in Y \right\}.$$

where

- $\bullet~f$ and G are sections of a real vector bundle E over $\widetilde{\mathscr{M}}$
- E is equipped with a scalar product. We will use the same symbol ∇, respectively (·, ·), to denote connections, respectively scalar products, on all relevant vector bundles.

The Equation The energy density The splitting of fThe energy estimate

- Both the scalar product and the connection coefficients are allowed to depend upon f, and we assume that ∇ is compatible with ⟨·, ·⟩.
- $\widetilde{\mathcal{M}}$ will be assumed to be equipped with a measure $d\mu$, possibly dependent upon f.
- L is a first order operator of the form

$$L = A^{\mu} \nabla_{\mu} ,$$

where the A^{μ} 's are self-adjoint (thus the system is symmetric), and are smooth functions of f and of the space-time coordinates.

イロト イボト イヨト イヨト

The Equation The energy density The splitting of fThe energy estimate

The energy density

- Let q_r , r = 1, ..., m, denote a collection of smooth vector fields on Y such that for each $y \in Y$ the vectors $q_r(y)$ span $T_y Y$; clearly $m \ge \dim Y$.
- For k ∈ N, let 𝒫^k denote the collection of differential operators of the form

$$\overset{\circ}{\nabla}_{q_{r_1}} \dots \overset{\circ}{\nabla}_{q_{r_\ell}}, \quad 0 \le \ell \le k .$$
(8)

イロト イボト イヨト イヨト

Here $\mathring{\nabla}$ is a fixed, arbitrarily chosen, smooth connection which is f, u, and v-independent. We number the operators (8) in an arbitrary way and call them P_r , thus

$$\mathscr{P}^k = \operatorname{Vect}\{P_r, r = 1, \dots, N(k)\},\$$

for a certain N(k).

The Equation The energy density The splitting of fThe energy estimate

• Let w_r be any smooth functions on $\widetilde{\mathcal{M}}$, we set

$$X^{\mu}(k) := \sum_{r=1}^{N(k)} w_r \langle P_r f, A^{\mu} P_r f \rangle , \qquad (9)$$

イロン イヨン イヨン

3

The Equation The energy density The splitting of fThe energy estimate

The splitting of f

We restrict our attention to f's which are of the form

$$f = \left(\begin{array}{c} \varphi \\ \psi \end{array}\right) , \qquad (10)$$

イロト イボト イヨト イヨト

with A^v and A^u satisfying

$$A^{u} = \begin{pmatrix} A^{u}_{\varphi\varphi} & 0\\ 0 & 0 \end{pmatrix} , \ A^{v} = \begin{pmatrix} 0 & 0\\ 0 & A^{v}_{\psi\psi} \end{pmatrix} , \qquad (11)$$

and

$$A^v_{\psi\psi}>0\;, A^u_{\varphi\varphi}>0$$

The Equation The energy density The splitting of fThe energy estimate

Characteristic hyperbolic system

From these hypotheses, we see that:

- the hypersurfaces {u = cst} and {v = cst} are characteristic hypersurfaces for the system (7)
- the first order system (7) is hyperbolic

イロト イポト イヨト イヨト

The Equation The energy density The splitting of fThe energy estimate

We have

$$\nabla_{\mu}(X^{\mu}(k)) = \sum_{r} \left\{ \underbrace{\langle P_{r}f, A^{\mu}P_{r}f \rangle \partial_{\mu}w_{r}}_{I_{r}} + w_{r} \left(\underbrace{\langle P_{r}f, (\nabla_{\mu}A^{\mu})P_{r}f \rangle}_{II_{r}} + \underbrace{2\langle P_{r}f, LP_{r}f \rangle}_{III_{r}} \right) \right\},$$

so that, for

$$\Omega_{a,b} = \underbrace{[0,a]}_{\ni u} \times \underbrace{[0,b]}_{\ni v} \times \underbrace{Y}_{\ni x^B},$$

and

$$d\mu = du \, dv \, d\mu_Y$$

any measure, absolutely continuous with respect to the coordinate Lebesgue measure, on $\Omega_{ab},$

The Equation The energy density The splitting of fThe energy estimate

Stokes' theorem

from Stokes' theorem we have

$$\int_{\partial\Omega_{a,b}} X^{\alpha}(k) dS_{\alpha} = \int_{\Omega_{a,b}} \nabla_{\mu}(X^{\mu}(k)) d\mu ,$$

which is,

$$\begin{split} \int_{u=a} X^{\alpha}(k) dS_{\alpha} &+ \int_{v=b} X^{\alpha}(k) dS_{\alpha} \\ &= \int_{u=0} X^{\alpha}(k) dS_{\alpha} + \int_{v=0} X^{\alpha}(k) dS_{\alpha} \\ &+ \int_{\Omega_{a,b}} \nabla_{\mu}(X^{\mu}(k)) d\mu \;. \end{split}$$

イロン イヨン イヨン

3

The Equation The energy density The splitting of fThe energy estimate

From the hypotheses on the matrices A^u and A^v , we see that for fields supported in a compact K we have:

$$\int_{u=a} X^{\alpha}(k) dS_{\alpha} \geq c(K) \sum_{r} \int_{u=a} w_{r} \langle P_{r}\varphi, P_{r}\varphi \rangle dv d\mu_{Y},$$

$$=: c(K) E_{k,\{w_{r}\}}[\varphi, a], \quad (12)$$

$$\int_{v=b} X^{\alpha}(k) dS_{\alpha} \geq c(K) \sum_{r} \int_{v=b} w_{r} \langle P_{r}\psi, P_{r}\psi \rangle du d\mu_{Y}$$

$$=: c(K) \mathscr{E}_{k,\{w_{r}\}}[\psi, b]. \quad (13)$$

イロト イボト イヨト イヨト

The Equation The energy density The splitting of fThe energy estimate

Thus,

$$E_{k,\{w_r\}}[\varphi, a] + \mathscr{E}_{k,\{w_r\}}[\psi, b] \leq C_1(K) \Big\{ E_{k,\{w_r\}}[\varphi, 0] + \mathscr{E}_{k,\{w_r\}}[\psi, 0] \\ + \int_{\Omega_{a,b}} \sum_r (I_r + w_r(II_r + III_r)) \Big\}.$$
(14)

イロン イヨン イヨン

æ

special weight

The Equation The energy density The splitting of fThe energy estimate

Let $\lambda \geq 0$, we choose the weight to be independent of r:

$$w_r = e^{-\lambda(u+v)}$$

and we will write $E_{k,\lambda}$ for $E_{k,\{w_r\}}$ with this choice of weight, similarly for $\mathscr{E}_{k,\lambda}.$

The Equation The energy density The splitting of fThe energy estimate

$$E_{k,\lambda}[\varphi, a] = \sum_{0 \le j \le k} \int_{[0,b] \times Y} |\mathring{\nabla}_{q_{r_1}} \dots \mathring{\nabla}_{q_{r_j}} \varphi(a, v, \cdot)|^2 e^{-\lambda(a+v)} dv d\mu_Y$$

=:
$$\int_0^b e^{-\lambda(a+v)} \|\varphi(a, v)\|_{H^k(Y)}^2 dv , \qquad (15)$$

where one recognises the usual Sobolev norms $H^k({\it Y})$ on ${\it Y}.$ One similarly has

$$\mathcal{E}_{k,\lambda}[\psi, b] = \sum_{0 \le j \le k} \int_{[0,a] \times Y} |\mathring{\nabla}_{q_{r_1}} \dots \mathring{\nabla}_{q_{r_j}} \psi(\cdot, b, \cdot)|^2 e^{-\lambda(u+b)} du d\mu_Y$$

=:
$$\int_0^a e^{-\lambda(u+b)} \|\psi(u, b)\|_{H^k(Y)}^2 du .$$
 (16)

イロン イヨン イヨン

 Introduction (Prerequisites)
 The Equation

 Quasi-linear first order hyperbolic system and the energy estimate
 The Equation

 Iterative scheme and the continuity (Bootstrap) argument
 Statement of the main theorem

 Application to general semi-linear wave equations
 The energy estimate

Writing LP_rf as $P_rLf + [L, P_r]f$, and assuming

$$\langle \varphi, A^{u}_{\varphi\varphi}\varphi \rangle \ge c|\varphi|^{2}, \qquad \langle \psi, A^{v}_{\psi\psi}\psi \rangle \ge c|\psi|^{2},$$
 (17)

with c > 0, one obtains for $k > \frac{n-1}{2}$

$$E_{k,\lambda}[\varphi, a] + \mathscr{E}_{k,\lambda}[\psi, b]$$

$$\leq C_{1}(K) \Big\{ E_{k,\lambda}[\varphi, 0] + \mathscr{E}_{k,\lambda}[\psi, 0] \\
+ \int_{\mathscr{U}} e^{-\lambda(u+v)} \Big\{ \left(\|\nabla_{\mu}A^{\mu}\|_{L^{\infty}(Y)} - c\lambda\right) \|f\|_{H^{k}(Y)}^{2} \\
+ C(Y, k) \|f\|_{H^{k}(Y)} \|G\|_{H^{k}(Y)} \\
+ 2 \int_{\mathscr{U} \times Y} \langle P_{r}f, [L, P_{r}]f \rangle e^{-\lambda(u+v)} d\mu \Big\}.$$
(18)

イロン イヨン イヨン

The Equation The energy density The splitting of fThe energy estimate

Moser type Inequalities

We recall here the following Moser inequalities which will be used repeatedly:

• Moser product inequality:

$$\|fg\|_{H^{k}(Y)} \leq C_{M}(Y,k) \Big(\|f\|_{L^{\infty}(Y)} \|g\|_{H^{k}(Y)} + \|f\|_{H^{k}(Y)} \|g\|_{L^{\infty}(Y)} \Big) .$$

• Moser commutation inequality, for $0 \le r \le k$:

$$\begin{aligned} \|P_r(fg) - P_r(f)g\|_{L^2(Y)} \\ &\leq C_M(Y,k) \Big(\|f\|_{L^{\infty}(Y)} \|g\|_{H^k(Y)} + \|f\|_{H^{k-1}(Y)} \|g\|_{W^{1,\infty}(Y)} \Big) \end{aligned}$$

(D) (A) (A) (A) (A)

The Equation The energy density The splitting of fThe energy estimate

The Moser composition inequality:

$$\|F(f,\cdot)\|_{H^{k}(Y)} \leq \hat{C}_{M}\Big(Y,k,F,\|f\|_{L^{\infty}(Y)}\Big)\Big(\|F(f=0,\cdot)\|_{H^{k}(Y)}+\|f\|_{H^{k}(Y)}\Big) .$$

(ロ) (四) (三) (三)

The Equation The energy density The splitting of fThe energy estimate

Proposition: The main estimate

After analyzing the commutator terms in (18) using the Moser inequalities, we obtain the following:

Proposition

There exists a constant

$$\hat{C}_{1} = C\Big(Y, k, \|f\|_{W^{1,\infty}(Y)}, \|A\|_{W^{1,\infty}(Y)}, \|\tilde{A}\|_{L^{\infty}(Y)}, \|\gamma\|_{W^{1,\infty}}, \|\Gamma\|_{W^{1,\infty}}, \|G\|_{W^{1,\infty}} + \|\tilde{G}\|_{L^{\infty}}\Big) > 0$$
(19)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Equation The energy density The splitting of fThe energy estimate

such that:

$$\begin{split} E_{k,\lambda}[\varphi, a] + \mathscr{E}_{k,\lambda}[\psi, b] \\ &\leq C_1(K) \Big\{ E_{k,\lambda}[\varphi, 0] + \mathscr{E}_{k,\lambda}[\psi, 0] \\ &+ \int_{\mathscr{U}} e^{-\lambda(u+v)} \Big\{ \left(\|\nabla_{\mu} A^{\mu}\|_{L^{\infty}(Y)} - c\lambda \right) \|f\|_{H^k(Y)}^2 \\ &+ \hat{C}_1 \|f\|_{H^k(Y)} \times \left(\|f\|_{H^k(Y)} + \|A\|_{H^k(Y)} + \|\tilde{A}\|_{H^{k-1}(Y)} \\ &+ \|\Gamma\|_{H^k(Y)} + \|\gamma\|_{H^k(Y)} + \|G\|_{H^k(Y)} + \|\tilde{G}\|_{H^{k-1}(Y)} \Big\} \,. \end{split}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

æ

Iterative scheme and the argument

• For the purpose of the arguments, we let

$$\mathcal{N}^{-} := \{ u = 0 , v \in [0, b_0] \} \times Y , \quad \mathcal{N}^{+} := \{ u \in [0, a_0], v = 0 \} \times Y$$

• The initial data $\overline{f} \equiv f|_{\mathscr{N}}$ are prescribed on

$$\mathscr{N} := \mathscr{N}^- \cup \mathscr{N}^+ \; ,$$

• Note that we are free to prescribe $\overline{\varphi}(v) \equiv \varphi(0, v)$ on \mathscr{N}^- and $\overline{\psi}(u) \equiv \psi(u, 0)$ on \mathscr{N}^+ , and then the fields $\psi(0, v)$ on \mathscr{N}^- and $\varphi(u, 0)$ on \mathscr{N}^+ can be calculated by solving transport equations; it is part of our hypothesis that these equations have global solutions on \mathscr{N}^{\pm} .

イロト イボト イヨト イヨト

smooth approximation

- Choose a sequence \overline{f}_i of smooth initial data approaching \overline{f}
- Let f_0 be any smooth extension of \overline{f}_0 to Ω_{a_0,b_0} .
- For given f_i , the field f_{i+1} is defined as the solution of the linear system

$$L_i f_{i+1} = G_i , \qquad (20)$$

where

$$L_i = A^{\mu}(f_i, \cdot) \nabla(i)_{\mu} , \quad G_i = G(f_i, \cdot) , \qquad (21)$$

and where we have used the symbol $\nabla(i)$ to denote $\nabla,$ as determined by $f_i.$

Solution of linear Problem

For smooth initial data and f_i , (20) always has a global smooth solution on Ω_{a_0,b_0} by A. Rendall, 1990.

イロン イヨン イヨン

The argument

Define

$$C_0 = 1 + \sup_{i \in \mathbb{N}, (u,v) \in ([0,a_0] \times \{0\}) \cup (\{0\} \times [0,b_0])} \|\overline{f}_i(u,v)\|_{W^{1,\infty}(Y)} .$$

٩

$$C_{\rm div} := \sup |\nabla_{\mu} A^{\mu}| + 1.$$
(22)

In the second constant, the supremum is taken over all points in $\mathscr{N}^+ \cup \mathscr{N}^-$ and over all $(\varphi, \psi, \nabla \varphi, \nabla \psi)$ satisfying

$$\begin{aligned} (\varphi,\psi) \in \mathscr{K}, |\mathring{\nabla}_B f(u,v)| &\leq 2C_0, |\partial_u \psi| \leq 2\sup_i \|\frac{\overline{\partial \psi_i}}{\partial u}\|_{L^{\infty}(\mathscr{N}^+ \cup \mathscr{N}^+)} \\ |\partial_v \varphi| &\leq 2\sup_i \|\frac{\overline{\partial \varphi_i}}{\partial v}\|_{L^{\infty}(\mathscr{N}^+ \cup \mathscr{N}^-)} + 1. \end{aligned}$$

Let a_i be the largest number in $(0, a_0]$ such that

$$\| (\nabla_{\mu} A^{\mu})_{i} \|_{L^{\infty}(\Omega_{a_{i},b_{0}})} \leq C_{\text{div}} ,$$

$$\sup_{(u,v)\in[0,a_{i}]\times[0,b_{0}]} \| f_{i}(u,v) \|_{W^{1,\infty}(Y)}, \leq 4C_{0}$$
(24)

By continuity,

 $a_i > 0$

・ロト ・回ト ・ヨト ・ヨト

Theorem

Now using the energy estimate of the previous section, we prove

Theorem

There exists $a_*>0$ such that $\forall i\in\mathbb{N},\ a_i\geq a_*,$ so that there is a common domain

$$\Omega_* := \{ u \in [0, a_*] , v \in [0, b_0] \} \times Y$$

on which inequalities (24) are satisfied by all the f_i 's. The sequence (f_i) converges to a solution of the original problem on Ω_* .

イロト イポト イヨト イヨト

The precise statement of the Theorem

The main Theorem

Let Y be a $(n-1)-{\rm dimensional}$ compact manifold without boundary, let a_0 and b_0 two positive real numbers and set

$$\Omega_0 = [0, a_0] \times [0, b_0] \times Y$$

Consider the symmetric hyperbolic system (7) on Ω_0 with the splitting (10) and assume that (11) holds. Let $\overline{\varphi}$ and $\overline{\psi}$ be defined respectively on \mathcal{N}^- and \mathcal{N}^+ , providing Cauchy data for (7):

$$\varphi = \overline{\varphi} \quad \text{on} \quad \mathscr{N}^{-} \quad \text{and} \quad \psi = \overline{\psi} \quad \text{on} \quad \mathscr{N}^{+} \quad (25)$$

Let $\ell \in \mathbb{N}, \ \ell > \frac{n+9}{2}$ and suppose that
 $\overline{\varphi} \in \bigcap_{0 \le j \le \ell} C^{j}([0, b_{0}]; H^{\ell-j}(Y)) \text{ and } \overline{\psi} \in \bigcap_{0 \le j \le \ell} C^{j}([0, a_{0}]; H^{\ell-j}(Y))$

Assume that the transport equations

$$A^{\mu}_{\varphi\varphi}|_{v=0}\partial_{\mu}\varphi|_{v=0} = \left(-A^{\mu}_{\varphi\psi}\partial_{\mu}\psi + G_{\varphi}\right)\Big|_{v=0}, \qquad (26)$$

$$A^{\mu}_{\psi\psi}|_{u=0}\partial_{\mu}\psi|_{u=0} = \left(-A^{\mu}_{\psi\varphi}\partial_{\mu}\varphi + G_{\psi}\right)\Big|_{u=0}, \qquad (27)$$

with initial data

$$arphi|_{u=v=0}=\overline{arphi}|_{v=0}$$
 and $\psi|_{u=v=0}=\overline{\psi}|_{u=0}$,

have a global solution on $([0, a_0] \times Y) \cup ([0, b_0] \times Y)$. Then there exists an ℓ -independent constant $a_* \in (0, a_0]$ such that the Cauchy problem (7), (25) has a unique solution f defined on $[0, a_*] \times [0, b_0] \times Y$ satisfying

$$f \in \bigcap_{0 \le j \le \ell-2} C^j([0, a_*] \times [0, b_0]; H^{\ell-j-2}(Y)) \subset C^1([0, a] \times [0, b_0] \times Y) .$$

The solution f is smooth if $\overline{\varphi}$ and $\overline{\psi}$ are.

Double-null coordinates system The wave-equation in double-null coordinates

Double-null coordinates system

- (ℳ, g) is a smooth (n + 1)-dimensional space-time
 N[±] are two null hypersurfaces in ℳ emanating from a spacelike manifold Y of codimension two.
- Denote by \mathscr{N}^{\pm} the intersection of $\widehat{\mathscr{N}^{\pm}}$ with the causal future of Y.

In order to apply our results above to semi-linear wave equations with initial data on \mathscr{N}^\pm we need to construct local coordinate systems (u,v,x^A) , where the x^A 's are local coordinates on Y, near

 $\mathscr{N}:=\mathscr{N}^+\cup\mathscr{N}^-$

so that

$$\mathcal{N}^- := \{ u = 0 \}, \quad \mathcal{N}^+ := \{ v = 0 \}.$$
 (28)

and

$$g(\nabla u, \nabla u) = 0 = g(\nabla v, \nabla v), \qquad (29)$$

wherever defined.

イロト イボト イヨト イヨト 二日

Double-null coordinates system The wave-equation in double-null coordinates

Construction of the (u, v, x^A) coordinates

- Let ℓ_Y and ω_Y be any smooth null future pointing vector fields defined along Y and normal to Y such that ℓ_Y is tangent to \mathcal{N}^+ and ω_Y is tangent to \mathcal{N}^- .
- Both \$\hat{\mathcal{N}^+}\$ and \$\mathcal{N}^+\$ are threaded by the null geodesics issued from \$Y\$ with initial tangent \$\ell_Y\$ at \$Y\$. These geodesics will be referred to as the *generators* of \$\hat{\mathcal{N}^+}\$, respectively of \$\mathcal{N}^+\$. The associated field of tangents will be denoted by \$\ell^+\$.
- Let r_+ denote the corresponding parameter along the integral curves of ℓ^+ , with $r_+ = 0$ at Y.
- Similarly *N*⁻ and *N*⁻ are threaded by their null geodesic generators issued from *Y*, tangent to ω_Y at *Y*, with field of tangents ω⁻ and parameter *r*₋.

(日) (四) (三) (三) (三)

- Let x_Y^A be any local coordinates on an open subset \mathscr{O} of Y, we propagate them to functions x_{\pm}^A on \mathscr{N}^{\pm} by requiring the x_{\pm}^A 's to be equal to x_Y^A along the corresponding null geodesic generators of \mathscr{N}^{\pm} . Then (r_{\pm}, x_{\pm}^A) define local coordinates on \mathscr{N}^{\pm} near each of the relevant generators.
- On *N*⁺ we let ω⁺ be any smooth field of null vectors transverse to *N*⁺ and normal to the level-sets of r₊ such that ω⁺|_Y = ω_Y. The function u is defined by the requirement that u is constant along the null geodesics issued from *N*⁺ with initial tangent ω⁺, equal to r₊ at *N*⁺. We denote by ω the field of tangents to those geodesics, normalised in any suitable way. Thus

$$\omega(u) = 0, \quad u|_{\mathcal{N}^-} = 0.$$
 (30)

On can prove that the level sets of u, say 𝒩_u[−], are null hypersurfaces i.e. g(∇u, ∇u) = 0.

Similarly

- on \mathcal{N}^- we let ℓ^- be any smooth field of null vectors transverse to \mathcal{N}^- and normal to the level-sets of r_- such that $\ell^-|_Y = \ell_Y$.
- The function v is defined by the requirement that v is constant along the null geodesics issued from N⁻ with initial tangent ℓ⁻, and with initial value r₋ at N⁻.
- Denote by ℓ the field of tangents to those geodesics.
- It holds that

$$\ell(v) = 0$$
, $v|_{\mathcal{N}^+} = 0$, $g(\nabla v, \nabla v) = 0$. (31)

Double-null coordinates system The wave-equation in double-null coordinates

Note that by construction we have

$$\ell|_{\mathcal{N}^{\pm}} = \ell^{\pm} , \qquad \omega|_{\mathcal{N}^{\pm}} = \omega^{\pm} .$$
(32)

Finally,

• The functions x^A are defined through the requirement that the x^A 's be constant along the null geodesics starting from \mathcal{N}^- with initial tangent ℓ^- , and taking the values x_-^A at the intersection point.

Double-null coordinates system The wave-equation in double-null coordinates

This construction breaks down when the geodesics start intersecting. However, it always provides the desired coordinates in a neighborhood of \mathscr{N} . In particular, given two generators of \mathscr{N}^{\pm} emanating from the same point on Y, there exists a neighborhood of those generators on which (u, v, x^A) form a coordinate system.

Double-null coordinates system The wave-equation in double-null coordinates

Note that

$$g(\omega,\omega) = g(\ell,\ell) = 0 , \qquad (33)$$

and that we also have

$$\ell^{v} = 0 = \ell^{A} \iff \ell = \ell^{u} \partial_{u} , \quad \omega^{u} = 0 \iff \omega = \omega^{v} \partial_{v} + \omega^{A} \partial_{A} .$$
(34)

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

크

Double-null coordinates system The wave-equation in double-null coordinates

Finally, once the coordinates u and v have been constructed, we rescale $\ell,$ or $\omega,$ or both, so that

$$g(\omega,\ell) = -\frac{1}{2}.$$
 (35)

and, by a re-parametrization, we can assume that the functions u and v run from zero to infinity on all generators of \mathcal{N}^+ and \mathcal{N}^- .

Γ

The wave-equation in double-null coordinates

- Let W be a vector bundle over \mathcal{M} .
- We will be seeking a section h of W, defined on a neighborhood of \mathcal{N}^- and of differentiability class at least C^2 there, such that the following hold:

$$\Box_g h = H(h, \nabla h, \cdot) \text{ on } I^+(\mathcal{N}^+ \cup \mathcal{N}^-),$$

$$h = h^+ \text{ on } \mathcal{N}^+, \qquad (36)$$

$$h = h^- \quad \text{on} \quad \mathcal{N}^- \quad . \tag{37}$$

for prescribed fields h^{\pm} , and for some map H, allowed to depend upon the coordinates.

 We assume H to be smooth in all its arguments. but the results here apply to maps of finite, sufficiently large, order of differentiability in h and ∇h, and of Sobolev differentiability in the coordinates.

Double-null coordinates system The wave-equation in double-null coordinates

Let (u, v, x^A) be a coordinate system constructed in previous section, and let ω , and ℓ be the vector fields defined there, with

$$g(\omega,\omega) = g(\ell,\ell) = 0$$
, $g(\omega,\ell) = -\frac{1}{2}$.

イロト イボト イヨト イヨト

Double-null coordinates system The wave-equation in double-null coordinates

ON-basis

- Every vector orthogonal to ℓ is tangent to the level sets of v. Similarly, a vector orthogonal to ω is tangent to the level sets of u. Hence vectors orthogonal to both have no u- and v-components in the coordinate system above.
- We can thus write

 $(Vect\{\omega, \ell\})^{\perp} = Vect\{e_B; B = 1, ..., n-1\}$, where the e_B 's form an ON-basis of TY. Thus

$$g(e_A,e_B)=\delta^A_B\ ,$$
 and $e_A=e_A{}^B\partial_B\iff e_A{}^u=0=e_A{}^v\ .$

Double-null coordinates system The wave-equation in double-null coordinates

• The inverse metric in terms of this frame reads

$$g^{\sharp} = -\frac{1}{2}(\ell \otimes \omega + \omega \otimes \ell) + \sum_{B} e_{B} \otimes e_{B} ,$$

• Then, the wave operator takes the form

$$-\frac{1}{2}\nabla_{\omega}\nabla_{\ell}-\frac{1}{2}\nabla_{\ell}\nabla_{\omega}+\sum_{C}\nabla_{e_{C}}\nabla_{e_{C}}+\ldots,$$

where ... denotes first- and zero-derivative terms arising from the precise nature of the field h_{\cdot}

Setting

$$\varphi_0 = \psi_0 = h, \ \varphi_A = \psi_A = e_A(h), \ \varphi_+ = \omega(h), \ \psi_- = \ell(h) ,$$
(38)

leads to the following set of equations:

(D) (A) (A) (A) (A)

Introduction (Prerequisites) Quasi-linear first order hyperbolic system and the energy estimatu Iterative scheme and the continuity (Bootstrap) argument Statement of the main theorem

Application to general semi-linear wave equations

Double-null coordinates system The wave-equation in double-null coordinates

wave Equation as a symmetric system of first order PDE

$$\ell(\varphi_{0}) = \psi_{0} ,$$

$$\ell(\varphi_{+}) - \sum_{C} e_{C}(\psi_{C}) = H_{\varphi_{+}} ,$$

$$\ell(\varphi_{C}) - e_{C}(\psi_{-}) = H_{\varphi_{C}} ,$$

$$\omega(\psi_{-}) - \sum_{C} e_{C}(\varphi_{C}) = H_{\psi_{-}} ,$$

$$\omega(\psi_{C}) - e_{C}(\varphi_{+}) = H_{\psi_{C}} ,$$

$$\omega(\psi_{0}) = \varphi_{0} ,$$
(39)
$$(39)$$

where H_{φ_+} , etc., contains H and all remaining terms that do not involve second derivatives of h.

Joint work with Piotr Chrusciel

Characteristic Cauchy Problem, Potsdam, 03/02/2014

Double-null coordinates system The wave-equation in double-null coordinates

This system is a first-order system of PDEs in the unknown

$$f = \begin{pmatrix} \varphi \\ \psi \end{pmatrix}$$
, with $\varphi = \begin{pmatrix} \varphi_0 \\ \varphi_+ \\ \varphi_A \end{pmatrix}$ and $\psi = \begin{pmatrix} \psi_0 \\ \psi_- \\ \psi_A \end{pmatrix}$. System (39)-(40)

can be written as

$$A^{\mu}\nabla_{\mu}f = G(f) ,$$

or equivalently as

$$\begin{pmatrix} A^{\mu}_{\varphi\varphi} & A^{\mu}_{\varphi\psi} \\ A^{\mu}_{\psi\varphi} & A^{\mu}_{\psi\psi} \end{pmatrix} \nabla_{\mu} \begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \begin{pmatrix} G_{\varphi} \\ G_{\psi} \end{pmatrix} , \qquad (41)$$

with

・ロト ・日ト ・ヨト ・ヨト

Double-null coordinates system The wave-equation in double-null coordinates

•

イロン イヨン イヨン 一日

$$\begin{split} A^{u}_{\varphi\varphi} &= \ell^{u} \cdot Id \ , \quad A^{u}_{\varphi\psi} = A^{u}_{\psi\varphi} = A^{u}_{\psi\psi} = 0 \ , \\ A^{v}_{\psi\psi} &= \omega^{v} \cdot Id \ , \quad A^{v}_{\varphi\psi} = A^{v}_{\psi\varphi} = A^{v}_{\varphi\varphi} = 0 \ , \\ A^{B}_{\varphi\psi} &= A^{B}_{\psi\varphi} = - \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & \delta^{B}_{1} & \dots & 0 \\ 0 & \delta^{B}_{1} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \delta^{B}_{n-1} & 0 & \dots & 0 \end{pmatrix} \ , \\ A^{B}_{\varphi\varphi} &= 0 \ , \quad A^{B}_{\psi\psi} = \omega^{B} \cdot Id \ , \\ G_{\varphi}(\varphi, \psi) &= \begin{pmatrix} \psi_{0} \\ H_{\varphi_{+}} \\ H_{\varphi_{C}} \end{pmatrix} \quad \text{and} \quad G_{\psi}(\varphi, \psi) = \begin{pmatrix} H_{\psi_{-}} \\ H_{\psi_{C}} \\ \varphi_{0} \end{pmatrix} \end{split}$$