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Cauchy Problems in normal form

u = (u1, u2, . . . , uN ) is a vector valued function of the n + 1
variables (t , x ) = (x 0, x 1, . . . , xn) of an open subset Ω of
R
1+n .

Consider a system of N partial differential equations for the N

unknown functions of order m of the form

∂mu

∂tm
= F (t , x , u, . . . , uα, . . .) (1)

where for a multi-index α = (α0, . . . , αn),

uα =
∂|α|u

(∂t)α0(∂x 1)α1 . . . (∂xn)αn

|α| = α0 + α1 + . . . + αn ≤ m, 0 ≤ α0 < m ;
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Definition

The initial value problem

{
∂mu
∂tm

= F (t , x , u, . . . , uα, . . .)
∂ℓu
∂tℓ

∣∣∣
t=t0

= hℓ, 0 ≤ ℓ ≤ m − 1 ;
(2)

is said to be in its normal form.
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Remark

Given a Cauchy problem in its normal form, one can compute all
the (tangential and outwards) derivatives of the unknowns on the
initial surface {t = t0}. Thus the initial data together with the
differential equations completely determined the Taylor series of u
along the the initial surface {t = t0} provided that such a solution
exists and is analytic which is the case when the data and the right
hand side of the equations are analytic functions of all their
arguments (Theorem of Cauchy-Kowalewski .
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General Cauchy Problems

In many situations, there is no preferred coordinate and the
Cauchy data for a given (system of ) partial differential
equation(s) are prescribed on generic hypersurfaces (Σ).

Consider a system of N PDEs in N unknown functions u in
the general form:

F (x , u, . . . , uα, . . .) = 0, |α| ≤ m , I = 1, . . . ,N , (3)

Suppose that the initial hypersurface (Σ) is given by

(Σ) : φ(x ) = 0 , (4)

where the F ’s are smooth functions and φ is a smooth
function with non vanishing gradient.

Joint work with Piotr Chrusciel Characteristic Cauchy Problem, Potsdam, 03/02/2014



Introduction (Prerequisites)
Quasi-linear first order hyperbolic system and the energy estimate
Iterative scheme and the continuity (Bootstrap) argument

Statement of the main theorem
Application to general semi-linear wave equations

Cauchy Problems in normal form
General Cauchy Problems

Denote by ν the gradient of φ then, the normal derivatives of
u along (Σ) are given by (φi =

∂φ
∂x

)

∂u

∂ν
=

n∑

i=1

φi
∂u

∂x
and

∂ℓu

(∂ν)ℓ
=

∂

∂ν
. . .

∂u

∂ν︸ ︷︷ ︸
ℓ times

Then an initial value problem for the PDE (3) can be posed
on (Σ) as:

{
F (x , u, . . . , uα, . . .) = 0
∂ℓu
(∂ν)ℓ

∣∣∣
Σ
= hℓ,

|α| ≤ m , 0 ≤ ℓ ≤ m − 1 ;

(5)
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Transformation into normal form

Question

Can problem (5) be written in normal form?

To answer this question, we restrict ourself to the case where (3) is
quasi-linear, i.e.

F (x , u, . . . , uβ , . . .) =
∑

|α|=m

Aαuα +G (6)

where
Aα = Aα(x , u, . . . , uβ, . . .), |β| ≤ m − 1

is an N × N matrix valued function and

G = G(x , u, . . . , uβ, . . .), |α| ≤ m − 1

is a vector valued function.
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Suppose that y = (y1, . . . , yn) are independent coordinates on (Σ)
and complete with y0 = φ(x ) to a system of coordinates (y0, y).
Then, computations show that the system of PDE (6) becomes

∑

|α|=m

∂φ

(∂x 0)α0
. . .

∂φ

(∂xn)αn
Aα

∂ku

(∂y0)k
+ g(y0, y , u , . . . , uβ) = 0

|β| ≤ m, β0 < m

where uα are the derivatives of u with respect to the y ’s
coordinates.
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Thus the initial value problem,(5) can be recast into the normal
form if and only if

det


 ∑

|α|=m

∂φ

(∂x 0)α0
. . .

∂φ

(∂xn)αn
Aα(x , u, . . . , uβ , . . .)



∣∣∣∣∣∣
(Σ)

6= 0 .

In that case the Cauchy-Kowalewski Theorem applies to (5).
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Definition

The hypersurface (Σ) is said to be characteristic with respect to
the Cauchy problem (5) when

det


 ∑

|α|=m

∂φ

(∂x 0)α0
. . .

∂φ

(∂xn)αn
Aα(x , u, . . . , uβ , . . .)



∣∣∣∣∣∣
(Σ)

= 0 .

In that case, we speak about ”Characteristic Cauchy data”.
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Remark

1 Initial data on a characteristic surface cannot be prescribed
freely: They must satisfy some compatibility conditions some
times called the ”transport Equations”.

2 Correspondingly, the solution is not uniquely determined
unless certain additional conditions are imposed on a
hypersurface transverse to the initial surface.

3 Discontinuity (singularities) of a solution cannot occur except
along characteristic surfaces

4 Characteristic surfaces are the only surfaces for which the
same initial value problem may have several solutions
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Example

As example, it is not difficult to see that in the case of semi-linear
wave equation, the characteristic surfaces are null hypersurfaces
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The Equation

Y is a (n − 1)-dimensional compact manifold without
boundary.

We are interested in quasi-linear first order symmetric
hyperbolic systems of the form

Lf = G , (7)

on subsets of

M̃ := {u ∈ [0,∞), v ∈ [0,∞), y ∈ Y } .

where
f and G are sections of a real vector bundle E over M̃

E is equipped with a scalar product. We will use the same
symbol ∇, respectively 〈·, ·〉, to denote connections,
respectively scalar products, on all relevant vector bundles.
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Both the scalar product and the connection coefficients are
allowed to depend upon f , and we assume that ∇ is
compatible with 〈·, ·〉.

M̃ will be assumed to be equipped with a measure dµ,
possibly dependent upon f .

L is a first order operator of the form

L = Aµ∇µ ,

where the Aµ’s are self-adjoint (thus the system is
symmetric), and are smooth functions of f and of the
space-time coordinates.
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The energy density

Let qr , r = 1, . . . ,m, denote a collection of smooth vector
fields on Y such that for each y ∈ Y the vectors qr (y) span
TyY ; clearly m ≥ dimY .

For k ∈ N, let Pk denote the collection of differential
operators of the form

∇̊qr1
. . . ∇̊qrℓ

, 0 ≤ ℓ ≤ k . (8)

Here ∇̊ is a fixed, arbitrarily chosen, smooth connection which
is f , u, and v–independent. We number the operators (8) in
an arbitrary way and call them Pr , thus

P
k = Vect{Pr , r = 1, . . . ,N (k)} ,

for a certain N (k).
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Let wr be any smooth functions on M̃ , we set

X µ(k) :=

N (k)∑

r=1

wr 〈Pr f ,A
µPr f 〉 , (9)
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The splitting of f

We restrict our attention to f ’s which are of the form

f =

(
ϕ

ψ

)
, (10)

with Av and Au satisfying

Au =

(
Au
ϕϕ 0

0 0

)
, Av =

(
0 0
0 Av

ψψ

)
, (11)

and
Av
ψψ > 0 ,Au

ϕϕ > 0
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Characteristic hyperbolic system

From these hypotheses, we see that:

the hypersurfaces {u = cst} and {v = cst} are characteristic
hypersurfaces for the system (7)

the first order system (7) is hyperbolic
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We have

∇µ(X
µ(k)) =

∑

r

{
〈Pr f ,A

µPr f 〉∂µwr︸ ︷︷ ︸
Ir

+wr

(
〈Pr f , (∇µA

µ)Pr f 〉︸ ︷︷ ︸
IIr

+2〈Pr f ,LPr f 〉︸ ︷︷ ︸
IIIr

)}
,

so that, for
Ωa,b = [0, a]︸ ︷︷ ︸

∋u

× [0, b]︸︷︷︸
∋v

× Y︸︷︷︸
∋xB

,

and
dµ = du dv dµY

any measure, absolutely continuous with respect to the coordinate
Lebesgue measure, on Ωab ,

Joint work with Piotr Chrusciel Characteristic Cauchy Problem, Potsdam, 03/02/2014



Introduction (Prerequisites)
Quasi-linear first order hyperbolic system and the energy estimate
Iterative scheme and the continuity (Bootstrap) argument

Statement of the main theorem
Application to general semi-linear wave equations

The Equation
The energy density
The splitting of f
The energy estimate

Stokes’ theorem

from Stokes’ theorem we have
∫

∂Ωa,b

X α(k)dSα =

∫

Ωa,b

∇µ(X
µ(k))dµ ,

which is,
∫

u=a

X α(k)dSα +

∫

v=b

X α(k)dSα

=

∫

u=0
X α(k)dSα +

∫

v=0
X α(k)dSα

+

∫

Ωa,b

∇µ(X
µ(k))dµ .
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From the hypotheses on the matrices Au and Av , we see that for
fields supported in a compact K we have:

∫

u=a

X α(k)dSα ≥ c(K )
∑

r

∫

u=a

wr 〈Prϕ,Prϕ〉 dv dµY ,

=: c(K )Ek ,{wr}[ϕ, a] , (12)∫

v=b

X α(k)dSα ≥ c(K )
∑

r

∫

v=b

wr 〈Prψ,Prψ〉 du dµY

=: c(K )Ek ,{wr}[ψ, b] . (13)
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Thus,

Ek ,{wr}[ϕ, a] + Ek ,{wr}[ψ, b] ≤ C1(K )
{
Ek ,{wr}[ϕ, 0] + Ek ,{wr}[ψ, 0]

+

∫

Ωa,b

∑

r

(Ir + wr (IIr + IIIr ))
}
. (14)
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special weight

Let λ ≥ 0, we choose the weight to be independent of r :

wr = e−λ(u+v) ,

and we will write Ek ,λ for Ek ,{wr} with this choice of weight,
similarly for Ek ,λ.
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From (12) we find

Ek ,λ[ϕ, a] =
∑

0≤j≤k

∫

[0,b]×Y

|∇̊qr1
. . . ∇̊qrj

ϕ(a, v , ·)|2e−λ(a+v)dvdµY

=:

∫ b

0
e−λ(a+v)‖ϕ(a, v)‖2H k (Y )dv , (15)

where one recognises the usual Sobolev norms H k (Y ) on Y . One
similarly has

Ek ,λ[ψ, b] =
∑

0≤j≤k

∫

[0,a]×Y

|∇̊qr1
. . . ∇̊qrj

ψ(·, b, ·)|2e−λ(u+b)dudµY

=:

∫ a

0
e−λ(u+b)‖ψ(u, b)‖2H k (Y )du . (16)
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Writing LPr f as PrLf + [L,Pr ]f , and assuming

〈ϕ,Au
ϕϕϕ〉 ≥ c|ϕ|2 , 〈ψ,Av

ψψψ〉 ≥ c|ψ|2 , (17)

with c > 0, one obtains for k > n−1
2

Ek ,λ[ϕ, a] + Ek ,λ[ψ, b]

≤ C1(K )
{
Ek ,λ[ϕ, 0] + Ek ,λ[ψ, 0]

+

∫

U

e−λ(u+v)
{ (

‖∇µA
µ‖L∞(Y ) − cλ

)
‖f ‖2H k (Y )

+C (Y , k)‖f ‖H k (Y )‖G‖H k (Y )

+2

∫

U ×Y

〈Pr f , [L,Pr ]f 〉e
−λ(u+v) dµ

}
. (18)
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Moser type Inequalities

We recall here the following Moser inequalities which will be used
repeatedly:

Moser product inequality:

‖fg‖H k (Y )

≤ CM (Y , k)
(
‖f ‖L∞(Y )‖g‖H k (Y ) + ‖f ‖H k (Y )‖g‖L∞(Y )

)
.

Moser commutation inequality, for 0 ≤ r ≤ k :

‖Pr (fg)− Pr (f )g‖L2(Y )

≤ CM (Y , k)
(
‖f ‖L∞(Y )‖g‖H k (Y ) + ‖f ‖H k−1(Y )‖g‖W 1,∞(Y )

)
.

and
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The Moser composition inequality:

‖F (f , ·)‖H k (Y )

≤ ĈM

(
Y , k ,F , ‖f ‖L∞(Y )

)(
‖F (f = 0, ·)‖H k (Y ) + ‖f ‖H k (Y )

)
.
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Proposition: The main estimate

After analyzing the commutator terms in (18) using the Moser
inequalities, we obtain the following:

Proposition

There exists a constant

Ĉ1 = C
(
Y , k , ‖f ‖W 1,∞(Y ), ‖A‖W 1,∞(Y ), ‖Ã‖L∞(Y ), ‖γ‖W 1,∞ ,

‖Γ‖W 1,∞ , ‖G‖W 1,∞ + ‖G̃‖L∞

)
> 0 (19)
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such that:

Ek ,λ[ϕ, a] + Ek ,λ[ψ, b]

≤ C1(K )
{
Ek ,λ[ϕ, 0] + Ek ,λ[ψ, 0]

+

∫

U

e−λ(u+v)
{ (

‖∇µA
µ‖L∞(Y ) − cλ

)
‖f ‖2H k (Y )

+Ĉ1‖f ‖H k (Y ) ×
(
‖f ‖H k (Y ) + ‖A‖H k (Y ) + ‖Ã‖H k−1(Y )

+‖Γ‖H k (Y ) + ‖γ‖H k (Y ) + ‖G‖H k (Y ) + ‖G̃‖H k−1(Y )

)}
.
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Iterative scheme and the argument

For the purpose of the arguments, we let

N
− := {u = 0 , v ∈ [0, b0]}×Y , N

+ := {u ∈ [0, a0], v = 0}×Y

The initial data f ≡ f |N are prescribed on

N := N
− ∪ N

+ ,

Note that we are free to prescribe ϕ(v) ≡ ϕ(0, v) on N − and
ψ(u) ≡ ψ(u, 0) on N +, and then the fields ψ(0, v) on N −

and ϕ(u, 0) on N + can be calculated by solving transport
equations; it is part of our hypothesis that these equations
have global solutions on N ±.
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smooth approximation

Choose a sequence f i of smooth initial data approaching f

Let f0 be any smooth extension of f 0 to Ωa0,b0 .

For given fi , the field fi+1 is defined as the solution of the
linear system

Li fi+1 = Gi , (20)

where
Li = Aµ(fi , ·)∇(i)µ , Gi = G(fi , ·) , (21)

and where we have used the symbol ∇(i) to denote ∇, as
determined by fi .
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Solution of linear Problem

For smooth initial data and fi , (20) always has a global smooth
solution on Ωa0,b0 by A. Rendall, 1990.
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The argument

Define

C0 = 1 + sup
i∈N,(u,v)∈([0,a0]×{0})∪({0}×[0,b0])

‖f i(u, v)‖W 1,∞(Y ) .

Cdiv := sup |∇µA
µ|+ 1 . (22)

In the second constant, the supremum is taken over all points
in N + ∪ N − and over all (ϕ,ψ,∇ϕ,∇ψ) satisfying

(ϕ,ψ) ∈ K , |∇̊B f (u, v)| ≤ 2C0 , |∂uψ| ≤ 2 supi ‖
∂ψi

∂u
‖L∞(N +∪N −

|∂vϕ| ≤ 2 supi ‖
∂ϕi

∂v
‖L∞(N +∪N −) + 1 .

Joint work with Piotr Chrusciel Characteristic Cauchy Problem, Potsdam, 03/02/2014



Introduction (Prerequisites)
Quasi-linear first order hyperbolic system and the energy estimate
Iterative scheme and the continuity (Bootstrap) argument

Statement of the main theorem
Application to general semi-linear wave equations

Let ai be the largest number in (0, a0] such that

‖(∇µA
µ)i‖L∞(Ωai ,b0

) ≤ Cdiv ,

sup(u,v)∈[0,ai ]×[0,b0] ‖fi (u, v)‖W 1,∞(Y ),≤ 4C0 (24)

By continuity,
ai > 0
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Theorem

Now using the energy estimate of the previous section, we prove

Theorem

There exists a∗ > 0 such that ∀i ∈ N, ai ≥ a∗, so that there is a
common domain

Ω∗ := {u ∈ [0, a∗] , v ∈ [0, b0]} ×Y

on which inequalities (24) are satisfied by all the fi ’s.
The sequence (fi) converges to a solution of the original problem
on Ω∗.
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The precise statement of the Theorem

The main Theorem

Let Y be a (n − 1)−dimensional compact manifold without
boundary, let a0 and b0 two positive real numbers and set

Ω0 = [0, a0]× [0, b0]× Y

Consider the symmetric hyperbolic system (7) on Ω0 with the
splitting (10) and assume that (11) holds. Let ϕ and ψ be defined
respectively on N − and N +, providing Cauchy data for (7):

ϕ = ϕ on N
− and ψ = ψ on N

+ . (25)

Let ℓ ∈ N, ℓ > n+9
2 and suppose that

ϕ ∈ ∩0≤j≤ℓC
j ([0, b0];H

ℓ−j (Y )) and ψ ∈ ∩0≤j≤ℓC
j ([0, a0];H

ℓ−j (Y )) .
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Assume that the transport equations

A
µ
ϕϕ|v=0∂µϕ|v=0 =

(
− A

µ
ϕψ∂µψ +Gϕ

)∣∣
v=0

, (26)

A
µ
ψψ|u=0∂µψ|u=0 =

(
− A

µ
ψϕ∂µϕ+Gψ

)∣∣
u=0

, (27)

with initial data

ϕ|u=v=0 = ϕ|v=0 and ψ|u=v=0 = ψ|u=0,

have a global solution on ([0, a0]×Y ) ∪ ([0, b0]× Y ). Then there
exists an ℓ-independent constant a∗ ∈ (0, a0] such that the Cauchy
problem (7), (25) has a unique solution f defined on
[0, a∗]× [0, b0]× Y satisfying

f ∈ ∩0≤j≤ℓ−2C
j ([0, a∗]×[0, b0];H

ℓ−j−2(Y )) ⊂ C 1([0, a]×[0, b0]×Y ) .

The solution f is smooth if ϕ and ψ are.
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Double-null coordinates system
The wave-equation in double-null coordinates

Double-null coordinates system

(M , g) is a smooth (n + 1)-dimensional space-time

N̂ ± are two null hypersurfaces in M emanating from a
spacelike manifold Y of codimension two.

Denote by N ± the intersection of N̂ ± with the causal future
of Y .

Joint work with Piotr Chrusciel Characteristic Cauchy Problem, Potsdam, 03/02/2014



Introduction (Prerequisites)
Quasi-linear first order hyperbolic system and the energy estimate
Iterative scheme and the continuity (Bootstrap) argument

Statement of the main theorem
Application to general semi-linear wave equations

Double-null coordinates system
The wave-equation in double-null coordinates

In order to apply our results above to semi-linear wave equations
with initial data on N ± we need to construct local coordinate
systems (u, v , xA), where the xA’s are local coordinates on Y , near

N := N
+ ∪ N

−

so that
N

− := {u = 0} , N
+ := {v = 0} . (28)

and
g(∇u,∇u) = 0 = g(∇v ,∇v) , (29)

wherever defined.
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Construction of the (u, v , xA) coordinates

Let ℓY and ωY be any smooth null future pointing vector
fields defined along Y and normal to Y such that ℓY is
tangent to N + and ωY is tangent to N −.

Both N̂ + and N + are threaded by the null geodesics issued
from Y with initial tangent ℓY at Y . These geodesics will be
referred to as the generators of N̂ +, respectively of N +.
The associated field of tangents will be denoted by ℓ+.

Let r+ denote the corresponding parameter along the integral
curves of ℓ+, with r+ = 0 at Y .

Similarly N̂ − and N − are threaded by their null geodesic
generators issued from Y , tangent to ωY at Y , with field of
tangents ω− and parameter r−.
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Let xA
Y be any local coordinates on an open subset O of Y ,

we propagate them to functions xA
± on N ± by requiring the

xA
± ’s to be equal to xA

Y along the corresponding null geodesic
generators of N ±. Then (r±, x

A
± ) define local coordinates on

N ± near each of the relevant generators.
On N̂ + we let ω+ be any smooth field of null vectors
transverse to N̂ + and normal to the level-sets of r+ such
that ω+|Y = ωY . The function u is defined by the
requirement that u is constant along the null geodesics issued
from N̂ + with initial tangent ω+, equal to r+ at N̂ +. We
denote by ω the field of tangents to those geodesics,
normalised in any suitable way. Thus

ω(u) = 0 , u|N − = 0 . (30)

On can prove that the level sets of u, say N −
u , are null

hypersurfaces i.e. g(∇u,∇u) = 0.
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Similarly

on N − we let ℓ− be any smooth field of null vectors
transverse to N − and normal to the level-sets of r− such
that ℓ−|Y = ℓY .

The function v is defined by the requirement that v is
constant along the null geodesics issued from N − with initial
tangent ℓ−, and with initial value r− at N −.

Denote by ℓ the field of tangents to those geodesics.

It holds that

ℓ(v) = 0 , v |N + = 0 , g(∇v ,∇v) = 0 . (31)
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Note that by construction we have

ℓ|N ± = ℓ± , ω|N ± = ω± . (32)

Finally,

The functions xA are defined through the requirement that
the xA’s be constant along the null geodesics starting from
N − with initial tangent ℓ−, and taking the values xA

− at the
intersection point.
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Remark

This construction breaks down when the geodesics start
intersecting. However, it always provides the desired coordinates in
a neighborhood of N . In particular, given two generators of N ±

emanating from the same point on Y , there exists a neighborhood
of those generators on which (u, v , xA) form a coordinate system.
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Note that
g(ω, ω) = g(ℓ, ℓ) = 0 , (33)

and that we also have

ℓv = 0 = ℓA ⇐⇒ ℓ = ℓu∂u , ωu = 0 ⇐⇒ ω = ωv∂v + ωA∂A .

(34)
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Finally, once the coordinates u and v have been constructed, we
rescale ℓ, or ω, or both, so that

g(ω, ℓ) = −
1

2
. (35)

and, by a re-parametrization, we can assume that the functions u
and v run from zero to infinity on all generators of N + and N −.
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The wave-equation in double-null coordinates

Let W be a vector bundle over M .
We will be seeking a section h of W , defined on a
neighborhood of N − and of differentiability class at least C 2

there, such that the following hold:

2gh = H (h,∇h, ·) on I+(N + ∪ N −),

h = h+ on N
+ , (36)

h = h− on N
− . (37)

for prescribed fields h±, and for some map H , allowed to
depend upon the coordinates.
We assume H to be smooth in all its arguments. but the
results here apply to maps of finite, sufficiently large, order of
differentiability in h and ∇h, and of Sobolev differentiability
in the coordinates.
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Let (u, v , xA) be a coordinate system constructed in previous
section, and let ω, and ℓ be the vector fields defined there, with

g(ω, ω) = g(ℓ, ℓ) = 0 , g(ω, ℓ) = −
1

2
.
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ON-basis

Every vector orthogonal to ℓ is tangent to the level sets of v .
Similarly, a vector orthogonal to ω is tangent to the level sets
of u. Hence vectors orthogonal to both have no u- and
v -components in the coordinate system above.

We can thus write
(Vect{ω, ℓ})⊥ = Vect{eB ; B = 1, . . . ,n − 1}, where the eB ’s
form an ON-basis of TY . Thus

g(eA, eB ) = δAB , and eA = eA
B∂B ⇐⇒ eA

u = 0 = eA
v .
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The inverse metric in terms of this frame reads

g♯ = −
1

2
(ℓ⊗ ω + ω ⊗ ℓ) +

∑

B

eB ⊗ eB ,

Then, the wave operator takes the form

−
1

2
∇ω∇ℓ −

1

2
∇ℓ∇ω +

∑

C

∇eC∇eC + . . . ,

where . . . denotes first- and zero-derivative terms arising from
the precise nature of the field h.

Setting

ϕ0 = ψ0 = h, ϕA = ψA = eA(h), ϕ+ = ω(h), ψ− = ℓ(h) ,
(38)

leads to the following set of equations:
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wave Equation as a symmetric system of first order
PDE

ℓ(ϕ0) = ψ0 ,

ℓ(ϕ+)−
∑

C

eC (ψC ) = Hϕ+
, (39)

ℓ(ϕC )− eC (ψ−) = HϕC
,

ω(ψ−)−
∑

C

eC (ϕC ) = Hψ−
, (40)

ω(ψC )− eC (ϕ+) = HψC
,

ω(ψ0) = ϕ0 ,

where Hϕ+
, etc., contains H and all remaining terms that do not

involve second derivatives of h.
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This system is a first-order system of PDEs in the unknown

f =

(
ϕ

ψ

)
, with ϕ =



ϕ0

ϕ+

ϕA


 and ψ =



ψ0

ψ−

ψA


. System (39)-(40)

can be written as
Aµ∇µf = G(f ) ,

or equivalently as

(
A
µ
ϕϕ A

µ
ϕψ

A
µ
ψϕ A

µ
ψψ

)
∇µ

(
ϕ

ψ

)
=

(
Gϕ

Gψ

)
, (41)

with
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Au
ϕϕ = ℓu · Id , Au

ϕψ = Au
ψϕ = Au

ψψ = 0 ,

Av
ψψ = ωv · Id , Av

ϕψ = Av
ψϕ = Av

ϕϕ = 0 ,

AB
ϕψ = AB

ψϕ = −




0 0 0 . . . 0
0 0 δB1 . . . δBn−1

0 δB1 0 . . . 0
...

...
...

...
0 δBn−1 0 . . . 0




,

AB
ϕϕ = 0 , AB

ψψ = ωB · Id ,

Gϕ(ϕ,ψ) =



ψ0

Hϕ+

HϕC


 and Gψ(ϕ,ψ) =



Hψ−

HψC

ϕ0


 .
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