Seminar Geometrie, Wintersemester 2009/10 bei Prof. Dr. C. Bär Institut für Mathematik der Universität Potsdam

Cauchy-Kowalevskaja-Theorem

Christoph Stephan, 10. Februar 2010

Erinnerung

Im Vortrag vom 3. 2. 2010 wurde gezeigt, dass für Lösungen der in Definition 4 gegebenen quasilineare PDE (unter Annahme der Cauchy-Bedingungen), alle partiellen Ableitungen auf der nicht-charakteristischen Hyperfläche Γ (in einer Umgebung um einen Punkt $x_0 \in \Gamma$) berechnet werden können. Formal lässt sich also in einer Umgebung um einen Punkt $x_0 \in \Gamma$ eine Lösung u(x) der PDE als Potenzreihe schreiben:

$$u(x) = \sum_{\alpha} u_{\alpha} (x - x_0)^{\alpha} \tag{1}$$

Es soll im Folgenden gezeigt werden, dass u(x) wirklich eine Lösung ist. D.h. es existiert ein r > 0, so dass u(x) für alle x mit $|x - x_0| < r$ konvergiert.

Satz 1. Sei $\Gamma \subset U$ eine nicht-charakteristische, analytische Hyperfläche für die quasilineare PDE (Def. 4, Vortrag 3.2.2010). Seien alle Koeffizienten a_{α} , a_0 der PDE und alle Cauchy-Daten g_i (i = 1, ..., k - 1) analytisch in einer Umgebung von $x_0 \in \Gamma$.

Dann existieren ein r > 0 und eine Lösung u(x) der PDE, die den Cauchy-Bedingungen genügt, so dass die Potenzreihe (1) für alle x mit $|x - x_0| < r$ konvergiert. Die Lösung u(x) ist somit analytisch auf dem offenen Ball $B(x_0, r)$.

Beweisskizze: Der Beweis lässt sich in drei Schritte unterteilen.

- 1. "Begradigen" der Hyperfläche Γ in der Umgebung von x_0 . Außerdem Subtraktion einer geeigneten analytischen Funktion g(x) von u(x), so dass alle Cauchy-Daten identisch Null sind (in der Umgebung von x_0) .
- 2. Transformation der quasilinearen PDE in ein System von PDEs erster Ordnung.
- 3. Abschätzen des PDE-Systems und der Lösung mit einer explizit gegebenen konvergenten Majorante.

Zu Punkt 1: Da Γ in einer Umgebung $U \in \mathbb{R}^n$ von x_0 analytisch ist, existiert eine Funktion $\Phi : \mathbb{R}^n \to \mathbb{R}^n$, so dass $\Phi(\Gamma) \subset \{y_n = 0\}$. Mit einer passenden Koordinatentransformation gilt $\Phi(x_0) = y_0 = 0 \in \{y_n = 0\}$

Wir wählen außerdem eine geeignete analytische Funktion $g: \mathbb{R}^n \to \mathbb{R}$ und ersetzen u durch $\tilde{u} := u - g$, um die Cauchy-Bedingungen auf $\{y_n = 0\}$ identisch Null zu setzen.

Wir erhalten eine neue quasilineare PDE

$$\sum_{|\alpha|=k} a_{\alpha}(D^{k-1}\tilde{u}, ..., \tilde{u}, y)D^{\alpha}\tilde{u} + a_{0}(D^{k-1}\tilde{u}, ..., \tilde{u}, y) = 0 \quad \text{in}\{y_{n} = 0\}$$
 (2)

und die neuen Cauchy-Bedingingungen:

$$\tilde{u} = \frac{\partial \tilde{u}}{\partial y_n} = \dots = \frac{\partial^{k-1} \tilde{u}}{\partial y_n^{k-1}} = 0$$
 (3)

auf $\{y_n = 0\}$. Um die Notation zu vereinfachen bezeichnen wir die transformierten Koordinaten weiterhin mit x und die Koeffizienten der PDE mit a_{α} bzw. a_0 . Man sieht sofort, dass die k-1-ten partiellen Ableitungen von $\tilde{u}(0)$ identisch Null sind.

Zu Punkt 2: Wir führen als neue Variable den Vektor $\mathbf{u} := (\tilde{u}, \frac{\partial \tilde{u}}{\partial y_1}, ..., \frac{\partial \tilde{u}}{\partial y_n}, \frac{\partial^2 \tilde{u}}{\partial y_1^2}, ..., \frac{\partial^{k-1} \tilde{u}}{\partial y_1^{k-1}}),$ $\mathbf{u} = \mathbb{R}^n \to \mathbb{R}^m$, ein und Lösen die PDE nach den partiellen Ableitung nach y_n auf. Dann können wir die quasilineare PDE als PDE-System erster Ordnung für \mathbf{u} umschreiben:

$$\mathbf{u}_{y_n} = \sum_{j=1}^{n-1} B_j(\mathbf{u}, y') \mathbf{u}_{y_j} + c(\mathbf{u}, y')$$

$$\tag{4}$$

mit $y'=(y_1,...,y_{n-1})$ und |y|< r. Die neuen Koeffizienten $B_j:\mathbb{R}^m\times\mathbb{R}^{n-1}\to Mat(m\times m,\mathbb{R})$ und $c:\mathbb{R}^m\times\mathbb{R}^{n-1}\to\mathbb{R}^m$ sind analytisch. Sollten B_j bzw. c von y_n abhängen, so führt man einen Koeffizienten $u^{m+1}=y_n$ in \mathbf{u} ein. Die Chauchy-Bedingungen sind jetzt einfach $\mathbf{u}(y)=0$ für |y'|< r und $y_n=0$.

Zu Punkt 3: Es werden nun Majoranten B_j^* und c^* für B_j und c gewählt und eine entsprechende Lösung \mathbf{u}^* des PDE-Systems

$$\mathbf{u}_{y_n}^* = \sum_{i=1}^{n-1} B_j(\mathbf{u}^*, y') \mathbf{u}_{y_j}^* + c(\mathbf{u}^*, y')$$
(5)

unter Annahme der Cauchy-Bedingungen $\mathbf{u}^*(y) = 0$ für |y'| < r und $y_n = 0$ explizit berechnet. Die Lösung \mathbf{u}^* konvergiert für geeignetes r > 0 und ist eine Majorante der Lösung \mathbf{u} des ursprünglichen Systems, die somit ebenfalls konvergiert. Aus der Konvergenz von \mathbf{u} lässt sich sukzessive durch Rücktransformation auf die Konvergenz der Lösungen \tilde{u} und schlielich u des ursprünglichen Cauchy-Problems im Cauchy-Kowalevskaja-Theorem schließen.

Literatur

[1] L. C. Evans: Partial Differential Equations, AMS 1998