Seminar Geometrie, Wintersemester 2009/10 bei Prof. Dr. C. Bär Institut für Mathematik der Universität Potsdam

Das Riemannproblem

Steffen Fröhlich, 27.01.2010

In diesem Vortrag behandeln wir folgende drei Themen.

1. Das Riemannproblem

Wir lösen ohne Benutzung der Lax-Oleinik-Formel explizit ein spezielles Anfangswertproblem für die Erhaltungsgleichung

$$u_t + F(u)_x = 0.$$

2. Langzeitverhalten I: Konvergenz in der L^{∞} -Norm Unter Verwendung der Lax-Oleinik-Formel beweisen wir

$$|u(x,t)| \leq \frac{C}{\sqrt{t}} \quad \text{für alle } x \in R, \ t > 0,$$

für Lösungen der Erhaltungsgleichung.

Langzeitverhalten II: Konvergenz in der L¹-Norm
 Wir zeigen die Konvergenz einer solchen Lösung in der L¹-Norm gegen ein sogenanntes N-Wellenprofil.

Das Riemannproblem

Definition 1. Das Anfangswertproblem

$$u_t + F(u)_x = 0 \text{ in } \mathbb{R} \times (0, \infty)$$

 $u = q \text{ auf } \mathbb{R} \times \{t = 0\}$

mit den speziellen Anfangsdaten

$$g(x) = \begin{cases} u_{\ell} & \text{für } x < 0 \\ u_{r} & \text{für } x > 0 \end{cases}$$

mit Konstanten u_ℓ und u_r heißt Riemannproblem für die skalare Erhaltungsgleichung.

Folgender Satz wird durch explizite Integration einer schwachen Lösung der Differentialgleichung gezeigt:

Satz 2. Es bezeichne u eine Entropielösung des Riemannproblems.

1. Die eindeutige Entropielösung im Fall $u_{\ell} > u_r$ lautet

$$u(x,t) = \begin{cases} u_{\ell}, & \text{falls } x < \sigma t \\ u_{r}, & \text{falls } x > \sigma t \end{cases}$$

 $f\ddot{u}r \ x \in \mathbb{R} \ und \ t > 0 \ mit$

$$\sigma := \frac{F(u_\ell) - F(u_r)}{u_\ell - u_r} \,.$$

2. Die eindeutige Entropielösung im Fall $u_{\ell} < u_r$ lautet

$$u(x,t) := \begin{cases} u_{\ell}, & \text{falls } \frac{x}{t} < F'(u_{\ell}) \\ G(x/t), & \text{falls } F'(u_{\ell}) < \frac{x}{t} < F'(u_{r}) \\ u_{r}, & \text{falls } \frac{x}{t} > F'(u_{r}) \end{cases}$$

 $f\ddot{u}r \ x \in \mathbb{R} \ und \ t > 0, \ wobei \ G = (F')^{-1}$

Im ersten Fall werden die beiden Zustände u_{ℓ} und u_{r} durch einen Schock getrennt, welcher sich mit der Geschwindigkeit σ bewegt. Im zweiten Fall tritt eine Verdünnungswelle statt eines Schocks auf.

Langzeitverhalten I: Asymptotik in der L^{∞} -Norm

Satz 3. Sei F glatt und gleichmäßig konvex mit F(0) = 0. Sei ferner g beschränkt und L^1 -regulär. Dann gilt für jede Entropielösung u(x,t) der Erhaltungslgeichung

$$|u(x,t)| \le \frac{C}{\sqrt{t}}$$
 für alle $x \in \mathbb{R}, \ t > 0,$

 $mit\ einer\ reellen\ Konstante\ C>0.$

In den Beweis geht wesentlich die gleichmäßige Konvexität von F ein. Die Konstante C enthält insbesondere die Lipschitzkonstante der Funktion G. Der Beweis wird unter Benutzung der Lax-Oleinik-Formel geführt.

Langzeitverhalten II: L^1 -Konvergenz gegen ein N-Wellenprofil

Die Lax-Oleinik-Formel ist auch wesentliches Hilfsmittel zum Beweis dieses dritten Resultats: Mit reellen Konstanten p, q, d und σ , wobei $p, q \ge 0$ und d > 0, definieren wir das N-Profil

$$N(x,t) := \begin{cases} \frac{1}{d} \left(\frac{x}{t} - \sigma \right) & \text{für } - (pdt)^{\frac{1}{2}} < x - \sigma t < (qdt)^{\frac{1}{2}} \\ 0 & \text{sonst} \end{cases}.$$

Dabei bedeutet σ die Geschwindigkeit der N-Welle. Die Konstanten werden wie folgt spezifieziert:

$$d := F''(0) > 0$$

sowie

$$p:=-2\min_{y\in\mathbb{R}}\int\limits_{-\infty}^y g\,dx,\quad q:=2\max_{y\in\mathbb{R}}\int\limits_y^\infty g\,dx.$$

Unter der Voraussetzung

g besitzt kompakten Träger

sind $p, q \ge 0$. Ausserdem gilt

$$G'(\sigma) = \frac{1}{d}$$
.

Satz 4. Seien sogar p,q>0. Dann existiert eine Konstante C>0, so dass für jede Entropielösung der Erhaltungsgleichung unter den gemachten Voraussetzungen gilt

$$\int_{-\infty}^{\infty} |u(x,t) - N(x,t)| dx \le \frac{C}{\sqrt{t}}.$$