Seminar Geometrie, Wintersemester 2009/10 bei Professor Bär Institut für Mathematik der Universität Potsdam

Nichtlineare PDEs erster Ordnung

Frank Pfäffle, 4. November 2009

Der Vortrag lehnt sich eng an der Literaturvorlage [1, S. 91-96] an.

Eine partielle Differentialgleichung (PDE) erster Ordnung ist ein Ausdruck der Form

$$F(Du, u, x) = 0. (*$$

Dabei ist $x \in U$ und $U \subset \mathbb{R}^n$ eine offene Teilmenge, und eine (im Allgemeinen nichtlineare) Funktion $F : \mathbb{R}^n \times \mathbb{R} \times \overline{U} \to \mathbb{R}$ ist vorgegeben. Gesucht ist eine Funktion $u : \overline{U} \to \mathbb{R}$, die die Gleichung (*) erfüllt, d.h.

$$\forall x \in U: \quad F(Du(x), u(x), x) = 0.$$

Dabei bezeichnet Du(x) den Gradienten von u im Punkt x.

Typisches Problem (Randwertproblem):

Finde zu vorgegebenen $\Gamma \subset \partial U$ und $g: \Gamma \to \mathbb{R}$ eine Lösung u von (*) mit $u|_{\Gamma} = g$.

Vollständige Integrale und Einhüllende

Definition 1. Sei $A \subset \mathbb{R}^n$ eine offene Teilmenge. Eine C^2 -Funktion $u: U \times A \to \mathbb{R}$ heißt vollständiges Integral, falls gilt:

- 1. Für jedes $a \in A$ ist die Funktion $x \mapsto u(x; a)$ eine Lösung von (*), und
- 2. auf $U \times A$ hat in jedem Punkt die $n \times (n+1)$ -Matrix

$$(D_a u, D_{a,x}^2 u) = \begin{pmatrix} \frac{\partial u}{\partial a_1} & \frac{\partial^2 u}{\partial x_1 \partial a_1} & \cdots & \frac{\partial^2 u}{\partial x_n \partial a_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial u}{\partial a_n} & \frac{\partial^2 u}{\partial x_1 \partial a_n} & \cdots & \frac{\partial^2 u}{\partial x_n \partial a_n} \end{pmatrix}$$

maximalen Rang n.

Bemerkung 2. Die Bedingung 2. in der Definition stellt sicher, dass $a \mapsto u(x; a)$ von allen n unabhängigen Parametern a_1, \ldots, a_n abhängt und sich die Zahl der unabhängigen Parameter nicht reduzieren lässt.

Definition 3. Seien $U \subset \mathbb{R}^n$ und $A \subset \mathbb{R}^m$ offene Teilmengen. Sei $u: U \times A \to \mathbb{R}$ eine C^1 -Funktion, und sei $\phi: U \to A$ eine weitere C^1 -Funktion mit

$$D_a u(x; \phi(x)) = 0 \quad \forall x \in U.$$

Dann bezeichnet man die Funktion $v: U \to \mathbb{R}$, die durch $v(x) = u(x; \phi(x))$ definiert ist, als Einhüllende der Funktionenmenge $\{u(\cdot; a)\}_{a \in A}$.

Mit Hilfe von Einhüllenden kann man, wenn man für (*) bereits eine Familie von Lösungen gefunden hat, weitere Lösungen finden. Dies besagt der folgende Satz.

Satz 4. Für jedes $a \in A$ erfülle $u = u(\cdot; a)$ die partielle Differentialgleichung (*), und für die Funktionenmenge $\{u(\cdot; a)\}_{a \in A}$ existiere eine Einhüllende v, die C^1 ist. Dann ist auch v eine Lösung von (*).

Eine solche Einhüllende v nennt man auch singuläres Integral von (*).

Noch mehr Lösungen für (*) erhält man aus einem vollständigen Integral $\{u(\cdot;a)\}_{a\in A}$ durch die folgende Konstruktion:

Sei $A' \subset \mathbb{R}^{n-1}$, und sei $h: A' \to \mathbb{R}$ eine C^1 -Funktion, deren Graph in A enthalten ist. Wir schreiben $a = (a_1, \ldots, a_n) = (a', a_n)$ mit $a' = (a_1, \ldots, a_{n-1}) \in \mathbb{R}^{n-1}$.

Definition 5. Eine Einhüllende v' = v'(x) für die Funktionenmenge $\{u'(\cdot; a')\}_{a' \in A'}$ mit u'(x; a') = u(x; a', h(a')) heißt allgemeines Integral (von der Wahl von h abhängig), sofern eine solche Einhüllende existiert und C^1 ist.

Bemerkung 6. Durch die Konstruktion allgemeiner Integrale findet man im Allgemeinen nicht alle Lösungen von (*), selbst wenn man alle möglichen Funktionen h in Betracht zieht.

Literatur

[1] L. C. Evans: Partial Differential Equations, AMS 1998