Oberseminar Analysis in Geometrie und Physik

C. Bär, M. Keller, M. Klein, J. Metzger, S. Paycha, S. Roelly

Sommersemester 2017

Es werden Themen aus dem Grenzbereich zwischen Differentialgeometrie, mathematischer Physik und stochastischer Analysis behandelt.

Seminarthema:

Dirichlet-Formen

Wann:

Montags, 16.15-17.45

Wo:

Campus Golm, Haus 9, Raum 0.14

Seminarplan (Vorträge):

Datum Vortrag Referent Inhalt
08.05.17IntroductionMatthias Keller[FOT] Section 1.1
15.05.17ExamplesAndreas Hermann[FOT] Section 1.2
22.05.17Closed forms and semigroups, part 1Pierre Clavier[FOT] Section 1.3
29.05.17Closed forms and semigroups, part 2, Dirichlet forms and Markovian semigroups, part 1Lucas Delage[FOT] Sections 1.3, 1.4
12.06.17Dirichlet forms and Markovian semigroups, part 2[FOT] Section 1.4
19.06.17Transience, part 1[FOT] Section 1.5
26.06.17Transience, part 2[FOT] Section 1.5
03.07.17Global properties of Markovian semigroups, part 1[FOT] Section 1.6
10.07.17Global properties of Markovian semigroups, part 2[FOT] Section 1.6
17.07.17The Beurling Deny formulaMarkus Klein[FOT]

Literatur:

[FOT] M. Fukushima, Y. Oshima, M. Takeda: Dirichlet forms and symmetric Markov processes, deGruyter, 1994