C. Bär, M. Keller, M. Klein, J. Metzger, S. Paycha, S. Roelly
Sommersemester 2016
Es werden Themen aus dem Grenzbereich zwischen Differentialgeometrie, mathematischer Physik und stochastischer Analysis behandelt.
Einführung in metrische Maßräume
Montags, 16.15-17.45
Campus Golm, Haus 9, Raum 0.14
Datum | Vortrag | Referent | Inhalt |
18.04.16 | Convergence of measures | Moritz Gerlach | [Shioya, chapter 1.2 up to Thm 1.19 and additional references] weak and vague convergence, Prohorov distance |
25.04.16 | Transport plans and convergence in measure | Tania Kosenkova | [Shioya Def 1.20-Lemma 1.27] (Sub-)transport plan, Ky-Fan metric |
02.05.16 | Levy's isoperimetric inequality | Tania Kosenkova | [Shioya 2.1] Maxwell-Boltzmann distribution law, normal law a la Levy |
09.05.16 | mm-spaces and Levy families | Elke Rosenberger | [Shioya 2.2-2.3] Lipschitz order, observable diameter |
23.05.16 | Separation distance | Sara Azzali | [Shioya 2.4 plus Thm 2.31 without proof and Lemma 2.32 with proof] Relation between separation distance and observable diameter, Levy-Gromov isoperimetric inequality |
30.05.16 | Manifolds with positive Ricci curvature | Phillip Thonke | [Shioya 2.5] Bounds for observable diameter, more examples of Levy families |
13.06.16 | Spectrum of the Laplacian | Matthias Ludewig | [Shioya 2.6] Eigenvalue estimates in terms of separation distance |
20.06.16 | Hausdorff distance | Florian Hanisch | [Shioya, 3.1] |
27.06.16 | Gromov-Hausdorff distance | Florian Hanisch | [Shioya 3.2] |
Takashi Shioya: Metric measure geometry, EMS 2016