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Preface





1. Differential operators on manifolds

1.1. Differential operators

We start by looking at linear differential operators on manifolds. Later we will specialize
to Laplace and Dirac-type operators.

Let M be an n-dimensional differentiable manifold and
let π : E →M be a vector bundle. Recall that a section
of E is a map s :M → E such that π ◦ s = idM .
We define

C∞(M,E) := {smooth sections of E} . π

Ex

x

E

M

bc

|

s(x)s

Definition 1.1.1. Let E and F be K-vector bundles over M , where K = R or C.
A differential operator of order (at most) k is a linear mapping
P : C∞(M,E) → C∞(M,F ) such that for any local coordinate system x1, . . . , xn on

U ⊂M and any local trivializations E|U ≈−→ U ×K
p and F |U ≈−→ U ×K

q there exist
smooth maps Aα : U → Mat(q × p,K) such that

Pv|U =
∑

|α|≤k
Aα(x)

∂|α|v
∂α1x1 . . . ∂αnxn

for all v ∈ C∞(M,E). Here α = (α1, . . . , αn) ∈ N
n
0 and |α| = α1 + . . .+ αn.

Notation 1.1.2. We define

Diff k(E,F ) := {P : C∞(M,E) → C∞(M,F ) | P differential operator of order ≤ k} .

The vector spaces Diff k(E,F ) form a filtration,

· · · ⊃Diff k+1(E,F ) ⊃Diff k(E,F ) ⊃ · · · ⊃Diff 0(E,F ) = C∞(M,Hom(E,F )).



2 1. Differential operators on manifolds

Example 1.1.3. Let M be a Riemannian manifold, let E = M × R be the trivial real
line bundle and F = TM be the tangent bundle of M . The gradient is a differential
operator of order 1 from E to F , grad ∈ Diff 1(M × R, TM). In local coordinates, we
have:

grad v =
∑

i

gij(x)
∂v

∂xi
∂

∂xj
.

Comparing the coefficients in this formula with the coefficients Aα in Definition 1.1.1,
we find:

A(0,...,

i
↓
1 ,...,0) =

(
g1i, . . . , gni

)⊤
, A(0...,0) = (0, . . . , 0)⊤.

Example 1.1.4. Let M be a Riemannian manifold, let E = TM be the tangent bundle
of M and let F =M×R be the trivial real line bundle. The divergence is a differential
operator of order 1 from E to F , div ∈ Diff 1(TM,M × R). In local coordinates, we

have for Y =
∑

i y
i ∂
∂xi

:

div (Y ) =
∑

i

∂yi

∂xi
+
∑

ij

Γiijy
j .

The coefficients are

A(0,...,

i
↓
1 ,...,0) = (0, . . . ,

i
↓

1, . . . , 0), A(0...,0) =
(∑

i

Γii1, . . . ,
∑

i

Γiin

)
.

Here Γkij denote the Christoffel symbols of the Riemannian metric with respect to the

coordinates x1, . . . , xn.

Example 1.1.5. Let M be a Riemannian manifold and consider E = ΛmT ∗M and
F = Λm+1T ∗M . The exterior derivative d is a differential operator of order 1 from
E to F , d ∈Diff 1(Λ

mT ∗M,Λm+1T ∗M).

Example 1.1.6. Let E be an arbitrary vector bundle over M with connection ∇ and
let F = T ∗M ⊗ E. Then ∇ is a differential operator of first order from E to F .

Example 1.1.7. ConsiderM = C and the trivial complex line bundle E = F := M×C.
Then

∂̄ =
∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
, where z = x+ iy,

is a differential operator of order 1 from E to F .

Remark 1.1.8. Let E,F,G → M be vector bundles over a smooth manifold M . If
P ∈Diff k(E,F ) and Q ∈Diff l(F,G) then Q ◦ P ∈Diff k+l(E,G).
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Example 1.1.9. Let M be a Riemannian manifold and consider E = G = M × R and
F = TM . Then ∆ = −div ◦ grad ∈ Diff 2(E,G), where ∆ denotes the Laplace-
Beltrami operator.

For a given differential operator P ∈Diff k(E,F ) and a covector ξ ∈ T ∗
xM we construct

a linear mapping σk(P, ξ) : Ex → Fx as follows: We choose a smooth function f :M → R

such that f(x) = 0 and df(x) = ξ. We then set for e ∈ Ex:

σk(P, ξ) · e :=
1

k!
P
(
fkẽ
)
|x, (1.1)

where ẽ ∈ C∞(M,E) is any extension of e, i.e. ẽ(x) = e. As we shall see, this definition
is independent of the choice of ẽ and f . In local coordinates and local trivializations, we
compute:

σk(P, ξ) · e =
1

k!

∑

|α|≤k
Aα(x)

∂|α|
(
fkẽ
)

∂α1x1 · · · ∂αnxn
(x)

=
1

k!

∑

|α|=k
Aα(x)

∂|α|
(
fk
)

∂α1x1 · · · ∂αnxn
(x) · ẽ(x)

=
∑

|α|=k
Aα(x) · ξα1

1 · · · ξαn
n · e . (1.2)

The second equality holds because by assumption f(x) = 0, so that all terms vanish
in which fk is differentiated less than k times. The last equality holds by a similar
argument: If one of the factors in fk is differentiated more than once, there is another
factor which remains without differentiation and hence vanishes at x.
Since the right hand side of (1.2) is independent of the choice of ẽ and f , so is the left
hand side. This shows that σk(P, ξ) is well defined by (1.1).
For any ξ ∈ T ∗

xM , we have constructed a homomorphism σk(P, ξ) : Ex → Fx. Thus
we have σk(P, ·) ∈ Hom(π∗E, π∗F ), where π : T ∗M → M is the projection to the foot
point.

Definition 1.1.10. Let E,F →M be vector bundles over a smooth manifold M and
let P ∈Diff k(E,F ). Then σk(P, ·) ∈ Hom(π∗E, π∗F ) is called the principal symbol
of the operator P .

Remark 1.1.11. The principal symbol σk(P, ·) contains the coefficients of the highest
order derivatives of P ∈Diff k(E,F ). In particular, we have

σk(P, ξ) = 0 for all ξ ∈ T ∗M ⇔ Aα = 0 for all |α| = k ⇔ P ∈Diff k−1(E,F ).
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In other words: The sequence

0 →Diff k−1(E,F ) −→Diff k(E,F )
σk(P,·)−−−−→ Hom (π∗E, π∗F )

is exact.

Warning. In the literature, the definition of σk(P, ξ) often contains another factor ik.

Convention. If k is clear from the context, we will write σ(P, ξ) instead of σk(P, ξ).

Example 1.1.13. We compute the principal symbol of the gradient, see Example 1.1.3.
We fix a covector ξ ∈ T ∗

xM . Since Ex = R, we have to apply σ(grad , ξ) to a real number,
say 42. A convenient extension of 42 to a smooth section of E is the constant function
x 7→ 42.
Let f : M → R be a smooth function such that f(x) = 0 and df(x) = ξ. By the
definition of σ(grad , ξ), we have1

σ(grad , ξ) · 42 = grad (f · 42)(x)
= 42 · grad f(x)
= 42 · df(x)♯

= 42 · ξ♯.

In short: σ(grad , ξ) = ξ♯. Here ♯ : T ∗M → TM denotes the “musical isomorphism”
induced by the Riemannian metric.

Example 1.1.14. We compute the principal symbol of the divergence. Here Ex = TxM ,
so we have to apply σ(div , ξ) to a tangent vector Y ∈ TxM . Let Ỹ be a smooth vector
field such that Ỹ (x) = Y . Again let f :M → R be a smooth function such that f(x) = 0
and df(x) = ξ. Then we have

σ(div , ξ)Y = div
(
f · Ỹ

)
(x)

= f(x)︸︷︷︸
=0

·div
(
Ỹ
)
(x) +

〈
grad f(x), Ỹ (x)

〉

=
〈
ξ♯, Y

〉

= ξ(Y ).

Thus σ(div , ξ) = ξ.

1Here ξ♯ is the vector in TxM dual to ξ ∈ T ∗
xM with respect to the Riemannian metric, i.e., for any

Y ∈ TxM we have 〈ξ♯, Y 〉 = ξ(Y ).
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Example 1.1.15. We compute the principal symbol of the exterior derivative d. Let
ω ∈ ΛkT ∗

xM and extend ω to a smooth k-form ω̃ ∈ Ωk(M) such that ω̃(x) = ω. Then
we have

σ(d, ξ)ω = d
(
f · ω̃

)
(x)

=
(
df ∧ ω̃ + f · dω̃

)∣∣
x

= df(x) ∧ ω + f(x)︸︷︷︸
=0

·dω̃
∣∣
x

= ξ ∧ ω.

Hence σ(d, ξ) = ξ ∧ ·.

Example 1.1.16. We compute the principal symbol of a connection ∇ on a vector
bundle E. Let e ∈ Ex and extend e to a smooth section ẽ ∈ C∞(M,E) such that
ẽ(x) = e. Then we have

σ(∇, ξ)e = ∇
(
f ẽ
)∣∣
x

2 =
(
df ⊗ ẽ+ f · ∇ẽ

)∣∣
x

= df(x)⊗ e+ f(x)︸︷︷︸
=0

·
(
∇ẽ
)∣∣
x

= ξ ⊗ e.

Thus σ(∇, ξ) = ξ ⊗ ·.

Example 1.1.17. We compute the principal symbol of P = ∂̄. Let z ∈ C and extend z
to a section z̃ ∈ C∞(M,E) such that z̃(x) = z. Then we have

σ
(
∂̄, ξ
)
z = ∂̄

(
f · z̃

)

=
1

2

( ∂
∂x

(
f · z̃

)
+ i

∂

∂y

(
f · z̃

))∣∣∣
x

=
1

2

(∂f
∂x

(x) · z + i
∂f

∂y
(x) · z

)

=
1

2

(
ξ
( ∂
∂x

)
+ i ξ

( ∂
∂y

))
· z

= ξ(∂̄)z.

In the next to last equality, we used ξ
(
∂
∂x

)
= df |x

(
∂
∂x

)
= ∂f

∂x(x). Thus σ(∂̄, ξ) = ξ(∂̄).

Remark 1.1.18. Let E,F,G be vector bundles over a smooth manifold M , let P ∈
Diff k(E,F ) and Q ∈Diff l(F,G). Then we have

σk+l(Q ◦ P, ξ) = σl(Q, ξ) ◦ σk(P, ξ).
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Example 1.1.19. We compute the principal symbol of the Laplace-Beltrami operator
∆ from the principal symbols of div and grad :

σ2(∆, ξ) = σ2(−div ◦ grad , ξ) = −σ1(div ) · σ1(grad ) = −ξ
(
ξ♯
)
= −|ξ♯|2 = −|ξ|2.

In the following let M be a Riemannian manifold and E,F → M be Riemannian or
Hermitian vector bundles.

Lemma 1.1.20. For any P ∈ Diff k(E,F ) there is a unique P ∗ ∈ Diff k(F,E) such
that ∫

M

〈Pu, v〉F dvol =
∫

M

〈
u, P ∗v

〉
E
dvol (1.3)

holds for all u ∈ C∞(M,E), v ∈ C∞(M,F ) with compact supports.

Definition 1.1.21. The operator P ∗ ∈Diff k(F,E) satisfying (1.3) is called the op-
erator formally adjoint to P .

Proof of Lemma 1.1.20. Uniqueness:
Let u ∈ C∞(M,E) and v ∈ C∞(M,F ) be sections with supports in a coordinate neigh-
borhood U ⊂ M . Using local trivializations of E and F over U by orthonormal frames
we compute:

∫

U

〈Pu, v〉F dvol =
∫

U

〈 ∑

|α|≤k
Aα

∂|α|u
∂α1x1 · · · ∂αnxn

, v
〉√

det g dx

=
∑

|α|≤k

∫

U

〈 ∂|α|u
∂α1x1 · · · ∂αnxn

,
√

det g
(
Aα
)⊤
v
〉
dx

integ.
by parts
=

∑

|α|≤k
(−1)|α|

∫

U

〈
u,

∂|α|

∂α1x1 · · · ∂αnxn

(√
det g

(
Aα
)⊤
v
)〉

dx

=

∫

U

〈
u,
∑

|α|≤k
(−1)|α|

∂|α|
(√

det g(Aα)⊤v
)

∂α1x1 · · · ∂αnxn

1√
det g

〉
dvol.

Thus

P ∗v =
1√
det g

∑

|α|≤k
(−1)|α|

∂|α|
(√

det g(Aα)⊤v
)

∂α1x1 · · · ∂αnxn
. (1.4)

Now let v ∈ C∞(M,F ) be an arbitrary section with compact support. We choose an
open covering of M with local trivializations and a partition of unity subordinated to
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it. Then v is a finite sum of sections of the form considered above. Since P ∗ is required
to be linear, it is uniquely determined by the local formula (1.4).

Existence: Let v ∈ C∞(M,F ) be a smooth section with compact support. We now use
formula (1.4) to define P ∗v if v has support in U . For general v we use a partition of
unity to write it as a sum of sections with supports contained in coordinate patches. It
is tedious but straightforward to check that this definition is independent of the choice
of coordinates, trivializations, and partition of unity.

Remark 1.1.22. For any P ∈ Diff k(E,F ) we have (P ∗)∗ = P . This is obvious from
equation (1.3) and the uniqueness of the formal adjoint.

Example 1.1.23. The gradient is a first order operator grad : C∞(M) → C∞(M,TM),
so grad ∗ maps vector fields to functions. By definition, for any function u ∈ C∞(M)
and any vector field Y ∈ C∞(M,TM), both with compact support, we have

∫

M

u(x)
(
grad ∗Y

)
(x) dvol(x) =

∫

M

〈grad u(x), Y (x)〉 dvol(x)

=

∫

M

(
div (uY )− udiv Y

)
dvol(x)

= −
∫

M

udiv Y dvol(x).

In the last step we used the Gauß divergence theorem. Thus grad ∗ = −div . By
Remark 1.1.22 we then also have div ∗ = −grad .

Remark 1.1.24. For differential operators P ∈ Diff k(E,F ) and Q ∈ Diff l(F,G) we
have

(Q ◦ P )∗ = P ∗ ◦Q∗.

Definition 1.1.25. Let M be a Riemannian manifold and let E be a Riemannian or
Hermitian vector bundle over M .
Then P ∈Diff k(E,E) is called formally self-adjoint iff P = P ∗.

Example 1.1.26. We consider the bundle E =M × R and P = ∆. We then have

P ∗ = −(div ◦ grad )∗ = −grad ∗ ◦ div ∗ = −div ◦ grad = P.

Thus the Laplace-Beltrami operator is formally self-adjoint.
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Lemma 1.1.27. Let M be a Riemannian manifold. Let E and F be Riemannian or
Hermitian vector bundles over M , and let P ∈ Diff k(E,F ). Then for any ξ ∈ T ∗M
we have

σk
(
P ∗, ξ

)
= (−1)kσk(P, ξ)

∗. (1.5)

Proof. Since only the terms of order k contribute to the principal symbol σk(P, ·), we
write

Pu =
∑

|α|=k
Aα(x)

∂|α|

∂α1x1 · · · ∂αnxn
u+ l.o.t.

where “l.o.t.” stands for “lower order terms”. By (1.4) the adjoint of P is given by

P ∗v =
1√
det g

∑

|α|=k
(−1)k

∂|α|

∂α1x1 · · · ∂αnxn

(√
det g Aα(x)⊤v

)
+ l.o.t.

=
1√
det g

∑

|α|=k
(−1)k

√
det g Aα(x)⊤

∂|α|v
∂α1x1 · · · ∂αnxn

+ l.o.t.

=
∑

|α|=k
(−1)k Aα(x)⊤

∂|α|v
∂α1x1 · · · ∂αnxn

+ l.o.t.

Thus, by the local formula (1.2) for the principal symbol, we have

σk
(
P ∗, ξ

)
= (−1)k

∑

|α|=k
ξα1
1 · · · ξαn

n Aα(x)⊤ = (−1)kσk(P, ξ)
∗.

1.2. Sobolev spaces

Next we introduce Sobolev spaces which are important function spaces for the analysis
of the kind of differential operators which we will be considering later.

Definition 1.2.1. Let M be a Riemannian manifold, let E → M be a Riemannian
or Hermitian vector bundle. For

u, v ∈ C∞
c (M,E) :=

{
w ∈ C∞(M,E)

∣∣ supp(w) ⋐M
}

we define the L2-scalar product by

(u, v)L2 :=

∫

M

〈
u(x), v(x)

〉
dvol(x).



1.2. Sobolev spaces 9

Here 〈·, ·〉 denotes the Euclidean or Hermitian scalar product in Ex. The L2-norm is
then given by

‖u‖L2 =
√

(u, u)L2 =
( ∫

M

|u(x)|2 dvol(x)
)1/2

.

Remark 1.2.2. The formally adjoint operator P ∗ of P is therefore characterized by the
property

(Pu, v)L2 =
(
u, P ∗v

)
L2 , ∀u ∈ C∞

c (M,E), v ∈ C∞
c (M,F ).

Definition 1.2.3. We define L2(M,E) as the completion of C∞
c (M,E) with respect

to the L2-norm:
L2(M,E) := C∞

c (M,E)
‖·‖L2

,

i.e. elements of L2(M,E) are equivalence classes of Cauchy sequences in the vector
space (C∞

c (M,E), ‖ · ‖L2).

Remark 1.2.4. L2(M,E) is a Hilbert space with scalar product (·, ·)L2 .

Let M = T n = R
n/2πZn be the n-dimensional torus. Let E = M × C be the trivial

complex line bundle. Sections in E are complex functions on the torus. We may also
consider them as 2πZn-periodic functions on R

n. For any k ∈ Z
n put

uk(x) := (2π)−
n
2 ei〈k,x〉.

Then uk : Rn → C is smooth and uk(x + 2πp) = uk(x) for any p ∈ Z
n. Hence uk

descends to a (smooth) function uk : T
n → C on the torus.

Fact. The family (uk)k∈Zn is an orthonormal Hilbert space basis of L2(T n, T n ×C). In
particular, any v ∈ L2(T n, T n × C) can be uniquely written as

v =
∑

k∈Zn

v̂(k)︸︷︷︸
∈C

·uk,

where

v̂(k) = (v, uk)L2 =

∫

Tn

v(x)uk(x) dx = (2π)−
n
2

∫

Tn

v(x)e−i〈k,x〉 dx
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is the k-th Fourier coefficient of v. Moreover,

‖v‖2L2 = (v, v)L2 =

(∑

k

v̂(k)uk,
∑

l

v̂(l)ul

)

=
∑

k,l

v̂(k)v̂(l) (uk, ul)︸ ︷︷ ︸
= δkl

=
∑

k

v̂(k)v̂(k)

=
∑

k

∣∣v̂(k)
∣∣2. (1.6)

The equation (1.6) is known as Parseval’s theorem.

For any v ∈ C1(T n) we find, using integration by parts:

∂̂v

∂xj
(k) =

(
∂v

∂xj
, uk

)

L2

= −
(
v,
∂uk
∂xj

)

L2

= − (v, ikj uk)L2 = i kj(v, uk)L2 = i kj v̂(k).

Hence the Fourier transform turns derivatives into multiplications by polynomials.

Example 1.2.6. For v ∈ C2(T n) we have:

∆̂v(k) = −
∑

j

∂̂2v

∂x2j
= −

∑

j

(i kj)
2v̂(k) =

∑

j

k2j v̂(k) = |k|2v̂(k).

Definition 1.2.7. Let s ∈ R, and let v,w ∈ C∞(T n). We set

(v,w)Hs :=
∑

k∈Zn

v̂(k) · ŵ(k) ·
(
1 + |k|2

)s
.

The norm induced by (v,w)Hs is given by

‖v‖Hs =
√

(v, v)Hs =
( ∑

k∈Zn

∣∣v̂(k)
∣∣2 ·
(
1 + |k|2

)s )1/2
.

Furthermore we define the Sobolev space

Hs(T n) := C∞(T n)
‖·‖Hs

.

The Hilbert space (Hs(T n), (·, ·)Hs ) is called the Sobolev space of degree s.
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Remark 1.2.8. For s = 0 we have ‖ · ‖H0 = ‖ · ‖L2 by Parseval’s theorem, and hence
H0(T n) = L2(T n).

Remark 1.2.9. If s1 ≤ s2 then
(
1 + |k|2

)s1 ≤
(
1 + |k|2

)s2 , hence ‖v‖Hs1 ≤ ‖v‖Hs2

for all v ∈ C∞(T n). Thus the identity on C∞(T n) extends uniquely to a continuous
embedding Hs2(T n) →֒ Hs1(T n).

Example 1.2.10. Let v ∈ C∞(T n). We compute:

‖v‖2H1 =
∑

k

∣∣v̂(k)
∣∣2 (1 + |k|2

)

=
∑

k

∣∣v̂(k)
∣∣2 +

∑

k

|k|2v̂(k)v̂(k)

1.2.6
= ‖v‖2L2 +

∑

k

∆̂v(k)v̂(k)

= ‖v‖2L2 + (∆v, v)L2

= ‖v‖2L2 + ‖grad v‖2L2 . (1.7)

In the last equation, we used div ∗ = −grad . Hence the Sobolev norm ‖ · ‖H1 controls
the derivatives up to first order in the square mean.

More generally, the Sobolev norm ‖ · ‖Hs controls the derivatives up to order s in the
square mean. To have pointwise control on the derivatives, we need another norm:

Definition 1.2.11. For s ∈ N0 and v ∈ Cs(T n) put

‖v‖Cs := max
|α|≤s

max
x∈Tn

∣∣∣∣∣
∂|α|v

∂α1x1 · · · ∂αnxn
(x)

∣∣∣∣∣ .

By definition, the Cs-norm ‖ · ‖Cs controls the first s derivatives pointwise.

Remark 1.2.12. The Cs-norm ‖ · ‖Cs turns the space Cs(T n) of s-times continuously
differentiable functions on T n into a Banach space.

Let us look again at Example 1.2.10. Here we have:

|v(x)|2 ≤ ‖v‖2C1 ,

|grad v(x)|2 =

n∑

j=1

∣∣∣∣
∂v

∂xj
(x)

∣∣∣∣
2

≤ n · ‖v‖2C1 .
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We thus have

‖v‖2H1

(1.7)
=

∫

Tn

(
|v(x)|2 + |grad v(x)|2

)
dx

≤ (n+ 1) · ‖v‖2C1

∫

Tn

dx

= (2π)n(n+ 1) · ‖v‖2C1

and hence

‖ · ‖H1 ≤ (2π)
n
2

√
n+ 1 · ‖ · ‖C1 .

Similarly, for s ∈ N we find constants C(n, s) such that

‖ · ‖Hs ≤ C(n, s) · ‖ · ‖Cs .

These estimates yield continuous embeddings of the Cs-spaces into Sobolev spaces,

Cs(T n) →֒ Hs(T n).

The following theorem yields embeddings of Sobolev spaces into Ck-spaces:

Theorem 1.2.13 (Sobolev embedding theorem). Let l ∈ N and s > l+ n
2 . Then

for each u ∈ Hs(T n) the Fourier series

∑

k∈Zn

û(k) · uk

converges absolutely in the C l-norm and therefore defines a function u ∈ C l(T n).
Moreover, there is a constant C = C(n, l, s) > 0 such that

‖u‖Cl ≤ C · ‖u‖Hs , ∀u ∈ Hs(T n).

Hence the above Fourier expansion defines a continuous embedding

Hs(T n) →֒ C l(T n).
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Proof. A direct computation gives

‖u‖2Cl =
∥∥∥
∑

k

û(k) · uk
∥∥∥
2

Cl

≤
(∑

k

|û(k)| · ‖uk‖Cl

)2

≤ C1

(∑

k

|û(k)| ·
(
1 + |k|2

) l
2

)2

= C1

(∑

k

|û(k)| ·
(
1 + |k|2

) s
2 ·
(
1 + |k|2

) l−s
2

)2

CS
≤ C1

(∑

k

|û(k)|2 ·
(
1 + |k|2

)s
)

︸ ︷︷ ︸
= ‖u‖2

Hs

·
∑

k

(
1 + |k|2

)l−s

For s − l > n
2 , we have

∑
k

(
1 + |k|2

)l−s ≤ c(n)
∫
Rn(1 + |k|2)−(s−l) dk < ∞, hence there

exists a constant C(n, l, s) such that

‖u‖2Cl ≤ C(n, l, s) · ‖u‖2Hs .

Theorem 1.2.14 (Rellich embedding theorem). Let s1 < s2. Then the embed-
ding

Hs2(T n) →֒ Hs1(T n)

is a compact operator, i.e., every bounded sequence in Hs2(T n) has a convergent sub-
sequence in Hs1(T n).

Proof. Let (um)m∈N be a bounded sequence in Hs2(T n). Then we have for all m ∈ N:

‖um‖2Hs1 =
∑

k∈Zn

(
1 + |k|2

)s1 |ûm(k)|2 ≤
∑

k∈Zn

(
1 + |k|2

)s2 |ûm(k)|2 = ‖um‖2Hs2 ≤ C.

In particular, for all k ∈ Z
n and all m ∈ N

(
1 + |k|2

)s1 |ûm(k)|2 ≤ C

and thus for all k ∈ Z
n and all m ∈ N

(
1 + |k|2

) s1
2 |ûm(k)| ≤

√
C.
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Hence there exists a subsequence (umi)mi such that the sequence (
(
1 + |k|2

) s1
2 · ûmi(k))i

of complex numbers converges for a fixed k ∈ Z
n. Since Z

n is countable we can succes-
sively take such a subsequence for any k ∈ Z

n. After taking a diagonal subsequence,

again denoted by (um)m we get that the sequence (
(
1 + |k|2

) s1
2 · ûm(k))m converges as

m→ ∞ for every k ∈ Z
n.

We show that (um)m is a Cauchy sequence in Hs1(T n): Let ε > 0. Choose R > 0
sufficiently large such that (

1 +R2
)s1−s2 < ε

8C
.

Choose N ∈ N sufficiently large such that for all m, l > N we have
∑

k∈Zn

|k|≤R

(
1 + |k|2

)s1 |ûm(k)− ûl(k)|2 <
ε

2
. (1.8)

This is possible because the (finitely many) summands come from the Cauchy sequences
of complex numbers constructed above. We decompose ‖um − ul‖2Hs1 into

‖um − ul‖2Hs1 =
∑

k∈Zn

|k|≤R

(
1 + |k|2

)s1 |ûm(k)− ûl(k)|2 +
∑

k∈Zn

|k|>R

(
1 + |k|2

)s1 |ûm(k) − ûl(k)|2 .

According to (1.8), for m, l ≥ N , the first sum can be estimated by ε
2 . In the second

sum we have |k| > R. Using s1 < s2, we get for the summands of the second sum:

(1 + |k|2)s1 = (1 + |k|2)s1−s2(1 + |k|2)s2 < (1 +R2)s1−s2(1 + |k|2)s2 < ε

8C
(1 + |k|2)s2 .

Thus, for m, l ≥ N , we have:

‖um − ul‖2Hs1 ≤ ε

2
+

ε

8C

∑

k∈Zn

|k|>R

(
1 + |k|2

)s2 |ûm(k)− ûl(k)|2

<
ε

2
+

ε

8C
‖um − ul‖2Hs2

≤ ε

2
+

ε

8C

(
‖um‖Hs2︸ ︷︷ ︸

≤
√
C

+‖ul‖Hs2

)2

≤ ε

2
+

ε

8C
4C = ε.

Thus (um)m is a Cauchy sequence in the Banach space Hs1(T n) and hence converges.

Definition 1.2.15. A sequence (um)m∈N in a Hilbert space H converges weakly to
u ∈ H iff

(um, v) → (u, v) as m→ ∞ ∀ v ∈ H.

One then writes um ⇀ u.
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Lemma 1.2.16. a) Weak limits are unique.

b) If um → u then um ⇀ u, i.e., convergence implies weak convergence.

c) If dim(H) = ∞ then weak convergence does not imply convergence.

d) If A : H1 → H2 is a bounded linear operator and um ⇀ u then Aum ⇀ Au.

e) In a Hilbert space each bounded sequence has a weakly convergent subsequence.

Proof. a) Suppose um⇀u and um⇀u′. Now for every v ∈ H we have

(u− u′, v) = lim
m→∞

(um, v)− lim
m→∞

(um, v) = 0,

hence u− u′ = 0.

b) Suppose um → u in H. For any v ∈ H, the Cauchy-Schwarz inequality yields
|(um, v)− (u, v)| = |(um − u, v)| ≤ ‖um − u‖ · ‖v‖ → 0.

c) Let H be infinite dimensional and let (em)m∈N be an orthonormal basis of H. For
any v ∈ H, we have

∑
m

|(em, v)|2 ≤ |v|2 < ∞. Thus (em, v) → 0 for all v ∈ H and

hence em ⇀ 0. But since ‖em‖ = 1, we have ‖em‖ → 1 so that em 9 0 in H. If
(em)m converged in H then, by a) and b), the limit would have to be 0. Thus (em)m
does not converge at all in H.

d) We have (Aum, v)H2 = (um, A
∗v)H1

→ (u,A∗v)H1
= (Au, v)H2 for all v ∈ H2.

e) For a proof of this part see e.g. Section 14 in [6].

Corollary 1.2.17. Let s1 < s2. For each bounded sequence in Hs2(T n) there exist a
subsequence (um)m∈N and an element u ∈ Hs2(T n) such that

um ⇀ u in Hs2(T n),

um → u in Hs1(T n).

Proof. We use Lemma 1.2.16. Let (um)m be a bounded sequence in Hs2(T n). Then,
by e), after passing to a subsequence, um ⇀ u in Hs2(T n) for some u ∈ Hs2(T n).
Passing again to a subsequence, Rellich’s theorem 1.2.14 yields um → v in Hs1(T n) for
some v ∈ Hs1(T n). By b), um ⇀ v in Hs1(T n). By d) we also have um ⇀ u in Hs1(T n).
Since by a) weak limits are unique, it follows that u = v. In particular, u ∈ Hs1(T n)
and um → u in Hs1(T n).
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Remark 1.2.18. For vector-valued functions u = (u1, . . . , ul) ∈ C∞(T n,Cl) we put

‖u‖2Hs :=

l∑

j=1

‖uj‖2Hs .

Then for the corresponding Sobolev space Hs(T n,Cl) the embedding theorems of
Sobolev 1.2.13 and Rellich 1.2.14 still hold.

Obviously, C∞(T n,Rl) ⊂ C∞(T n,Cl). Since Hs(T n,Rl) ⊂ Hs(T n,Cl) is a closed (real)
subspace, the theorems of Sobolev and Rellich also hold for Hs(T n,Rl).

In the following, let M be a compact manifold and E →M be a K-vector bundle, where
K = R or C. Let x :M ⊃ U → U ′ ⊂ R

n be a chart such that U ′ ⊂ (0, 2π)×· · · × (0, 2π).
Then π : Rn → T n = R

n/2πZn maps U ′ diffeomorphically onto some U ′′ ⊂ T n.

By restricting U if necessary, we can assume that E|U is trivial, i.e., there exists a
diffeomorphism φ : E|U → U ×K

l such that

E|U

  ❇
❇❇

❇❇
❇❇

❇

φ
// U ×K

l

pr1
{{①①
①①
①①
①①
①

U

commutes and φ is a linear map in each fiber.
Put x̃ := π ◦ x. For v ∈ C∞(M,E) with supp(v) ⊂ U define vφ,x ∈ C∞(T n,Kl) by

vφ,x :=

{
pr2 ◦ φ ◦ v ◦ x̃−1 on U ′′,

0 on T n − U ′′ .

Since M is compact, we can cover M by finitely many open sets Uj such that for each
Uj we have a chart x(j) and a local trivialization φ(j) : E|Uj → Uj ×K

l as above.
Choose a partition of unity χj ∈ C∞(M,R) subordinate to the covering (Uj), i.e.,

0 ≤ χj ≤ 1, supp(χj) ⊂ Uj,
∑

j

χj = 1.

For u ∈ C∞(M,E) put

‖u‖2Hs :=
∑

j

∥∥(χj u)φ(j),x(j)
∥∥2
Hs(Tn)

, (1.9)

Hs(M,E) := C∞(M,E)
‖·‖Hs

. (1.10)

The definition of ‖u‖2Hs depends on the choice of the Uj , x(j), φ(j) and χj . But one
can check (not difficult but technical) that different choices of these lead to equivalent
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Hs-norms. Thus the Sobolev space Hs(M,E) does not depend upon the various choices
in its construction.

Similarly, one can define C l-norms ‖ · ‖Cl on C∞(M,E) and put

C l(M,E) := C∞(M,E)
‖·‖

Cl
(1.11)

Then we get continuous embeddings C l(M,E) →֒ H l(M,E) and the theorems of Sobolev
1.2.13 and Rellich 1.2.14 still hold for Hs(M,E) and C l(M,E), i.e.,

Hs2(M,E) →֒ Hs1(M,E) is compact, if s1 < s2,

Hs(M,E) →֒ C l(M,E) is continuous, if s > l +
n

2
.

Remark 1.2.19. The embedding

Hs(M,E) →֒ C l(M,E), (s > l +
n

2
)

is compact.

Proof. Choose s′ with s > s′ > l + n
2 . Then we have the embedding

Hs(M,E)
1.2.14−−−−→ Hs′(M,E)

1.2.13−−−−→ C l(M,E) .

The first embedding is compact by Theorem 1.2.14 whereas the second is continuous by
Theorem 1.2.13. Since both embeddings are extensions of the identity, the composition
coincides with the embedding Hs(M,E) →֒ C l(M,E) in Theorem 1.2.13. Obviously,
the composition of a compact map with a continuous map is again compact.

Let M be a compact Riemannian manifold, let E → M be a Riemannian or Hermitian
vector bundle with connection ∇ : C∞(M,E) → C∞(M,T ∗M ⊗ E). The connection ∇
and the Levi-Civita connection on T ∗M induce a connection

∇ : C∞ (M,T ∗M ⊗E) → C∞ (M,T ∗M ⊗ T ∗M ⊗ E)

on T ∗M ⊗ E.
We define

∇2 := ∇ ◦ ∇ : C∞(M,E) → C∞ (M,T ∗M ⊗2 ⊗E
)
.

Iterating this construction, we obtain differential operators ∇k of order k:

∇k : C∞(M,E) → C∞
(
M,T ∗M ⊗k ⊗ E

)
.

The C l-norm defined above is equivalent to the norm

‖u‖Cl = max
k=0,...,l

max
x∈M

∣∣∣∇ku(x)
∣∣∣
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on C∞(M,E). With this new definition of C l-norms we obtain the same spaces C l(M,E)
as defined in (1.11). Similarly, we can define the Hs-norms for nonnegative integers s by

‖u‖2Hs =

s∑

k=0

∥∥∥∇ku
∥∥∥
2

L2
=

s∑

k=0

∫

M

∣∣∣∇ku(x)
∣∣∣
2
dvol(x) (1.12)

and we obtain the same spaces Hs(M,E) as defined in (1.10)

Lemma 1.2.20. Let M be a compact manifold, let E,F → M be K-vector bundles,
where K = R or C. Then every P ∈ Diff k(E,F ) extends uniquely to bounded linear
maps

C l+k(M,E) → C l(M,F ), l ∈ N0,

and

Hs+k(M,E) → Hs(M,F ), s ∈ R.

Proof. 1) Choose a Riemannian metric on M and connections ∇ on E and F . For each
P ∈Diff k(E,F ) there exist Aj ∈ C∞(M,Hom(T ∗M ⊗j ⊗ E,F )) such that

P =

k∑

j=0

Aj ◦ ∇j.

Then we have

‖Pu‖Cl =
∥∥∥

k∑

j=0

Aj ◦ ∇ju
∥∥∥
Cl

≤
k∑

j=0

∥∥Aj ◦ ∇ju
∥∥
Cl .

Now we estimate
∥∥Aj ◦ ∇ju

∥∥
Cl by ‖u‖Ck+l . For ν ∈ {0, . . . , l} and any j ∈ {0, . . . , k},

we have:

∣∣∇ν
(
Aj ∇ju

)∣∣ ≤ C1

ν∑

µ=0

∣∣∇µAj∇ν−µ+ju
∣∣

≤ C2

ν∑

µ=0

∣∣∇ν−µ+ju
∣∣

≤ C3

ν∑

µ=0

‖u‖Cν−µ+j

≤ C4‖u‖Ck+l .
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Thus ‖Pu‖Cl ≤ C‖u‖Ck+l . Hence P extends to a bounded linear map

P : Ck+l(M,E) → C l(M,F ).

The extension is unique because C∞(M,E) is dense in Ck+l(M,E).

2) The proof that P extends uniquely to a bounded linear map

P : Hs+k(M,E) → Hs(M,F )

is similar.

1.3. Laplace-type and Dirac-type operators

Let M be a Riemannian manifold and let E →M be a Riemannian or Hermitian vector
bundle.

Definition 1.3.1. A differential operator P ∈Diff 2(E,E) is called to be of Laplace-
type iff

σ2(P, ξ) = −|ξ|2 · idEx for all x ∈M and ξ ∈ T ∗
xM.

Example 1.3.2. By Example 1.1.19, the Laplace-Beltrami operator ∆ is a Laplace-type
operator, acting function, i.e., on sections of the trivial line bundle E =M ×R.

Example 1.3.3. Let E be any Riemannian or Hermitian vector bundle and let ∇ be
a connection on E. We put P := ∇∗ ◦ ∇. Then by Remark 1.1.18, Lemma 1.1.27 and
Example 1.1.16, for any covector ξ ∈ T ∗

xM and any e, e′ ∈ Ex we have:
〈
σ2(P, ξ)e, e

′〉
Ex

=
〈
σ1(∇∗, ξ) ◦ σ1(∇, ξ)e, e′

〉
Ex

= −
〈
σ1(∇, ξ)∗ ◦ σ1(∇, ξ)e, e′

〉
Ex

= −
〈
σ1(∇, ξ)e, σ1(∇, ξ)e′

〉
T ∗
xM⊗Ex

= −〈ξ ⊗ e, ξ ⊗ e′〉T ∗
xM⊗Ex

= −〈ξ, ξ〉T ∗
xM · 〈e, e′〉Ex

= −|ξ|2 · 〈e, e′〉Ex .

Since this holds for all e, e′ ∈ Ex, we conclude that σ2(P, ξ) = −|ξ|2 · idE . Thus the
operator P is of Laplace-type. It is called the connection Laplacian.

Remark 1.3.4. For anyD ∈Diff 1(E,E) the operator P̃ := ∇∗∇+D is also of Laplace-
type. This is obvious, since the first order operatorD does not contribute to the principal
symbol σ2(P̃ , ·).
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Lemma 1.3.5. For every formally self-adjoint Laplace-type operator P ∈Diff 2(E,E)
there exists a unique metric connection ∇ on E such that

P = ∇∗∇+K,

where K ∈ C∞(M, symEnd(E)).

Proof. Let ∇̃ be any metric connection on E. ThenD := P−∇̃∗∇̃ is formally self-adjoint
and we have:

σ2(D, ξ) = σ2(P, ξ)− σ2

(
∇̃∗∇̃, ξ

)
= −|ξ|2 + |ξ|2 = 0.

Therefore D is actually a first order operator. Thus we can decompose P as

P = ∇̃∗∇̃+D, (1.13)

where ∇̃∗∇̃ is of second order and D is a first order operator.

Any other metric connection ∇ on E is of the form

∇ = ∇̃+B,

where B ∈ C∞(M,T ∗M ⊗ asymEnd(E)). Inserting this into (1.13) gives

P = (∇−B)∗(∇−B) +D = ∇∗∇−∇∗B −B∗∇+B∗B +D︸ ︷︷ ︸
=:K

We want to choose B in such a way that K is of order zero. Since B∗B is of order zero
we have:

K is of order 0 ⇐⇒ D −∇∗B −B∗∇ is of order 0

⇐⇒ σ1 (D −∇∗B −B∗∇, ξ) = 0 for all ξ ∈ T ∗M. (1.14)

We compute

〈
σ1 (∇∗B +B∗∇, ξ) e, e′

〉
=
〈(
σ1 (∇∗, ξ) ◦B +B∗ ◦ σ1(∇, ξ)

)
e, e′

〉

= −
〈
Be, σ1(∇, ξ)e′

〉
+
〈
σ1(∇, ξ)e,Be′

〉

= −
〈
Be, ξ ⊗ e′

〉
+
〈
ξ ⊗ e,Be′

〉
.

Here, we used σ1(∇∗ ◦B, ξ) = σ1(∇∗, ξ) ◦ σ0(B, ξ) = σ1(∇∗, ξ) ◦B and Lemma 1.1.27.
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Now let b1, . . . , bn be an orthonormal basis of TxM and let b∗1, . . . , b
∗
n be the dual basis

of T ∗
xM . We write Be =

∑
i
b∗i ⊗Bbie and thus obtain:

〈
σ1 (∇∗B +B∗∇, ξ) e, e′

〉
= −

〈∑

i

b∗i ⊗Bbie, ξ ⊗ e′
〉
+
〈
ξ ⊗ e,

∑

i

b∗i ⊗Bbie
′
〉

= −
∑

i

〈b∗i , ξ〉
〈
Bbie, e

′〉+
∑

i

〈b∗i , ξ〉
〈
e,Bbie

′〉

= −
∑

i

ξ(bi)
〈
Bbie, e

′〉+
∑

i

ξ(bi)
〈
e,Bbie

′〉

= −
〈
B∑

i
ξ(bi)bie, e

′〉+
〈
e,B∑

i
ξ(bi)bie

′〉

= −
〈
Bξ♯e, e

′〉+
〈
e,Bξ♯e

′〉

=
〈(
B∗
ξ♯ −Bξ♯

)
e, e′

〉

= −2
〈
Bξ♯e, e

′〉 .

Hence σ1 (∇∗B +B∗∇, ξ) = −2Bξ♯ . Thus by (1.14), we have:

K is of order 0 ⇐⇒ σ1 (D, ξ) = σ1(∇∗B +B∗∇, ξ)
= −2Bξ♯ for all ξ ∈ T ∗M.

Therefore there is only one possible choice for B ∈ C∞(M,T ∗M⊗asymEnd(E)), namely

BX = −1

2
σ1
(
D,Xb

)
for all X ∈ TM.

This show uniqueness. As to existence, we observe that this choice of B is possible, since
by the following remark, the principal symbol σ1(D, ξ) is antisymmetric.

Remark 1.3.6. If D is a formally self-adjoint operator of order k then we have:

σk(D, ξ) = σk(D
∗, ξ)

(1.5)
= (−1)k σk(D, ξ)

∗ .

Hence the principal symbol of D is antisymmetric if the order k is odd.

Definition 1.3.7. Let M be a Riemannian manifold, and let E,F →M be Rieman-
nian or Hermitian vector bundles. An operator D ∈Diff 1(E,F ) is of Dirac-type iff

D∗D ∈Diff 2(E,E) and DD∗ ∈Diff 2(F,F )

are of Laplace-type.

Remark 1.3.8. Let E = F and D = D∗. Then D is of Dirac-type if and only if D2 is
of Laplace-type.
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Example 1.3.9. We consider the bundles E = M × R and F = TM and the operator
D = grad ∈ Diff 1(E,F ). By Example 1.1.23, we have D∗ = grad ∗ = −div . Hence
D∗D = −div grad ∈Diff 2(M ×R,M ×R) is the Laplace-Beltrami operator which is of
Laplace-type by Example 1.3.2.
We check whether DD∗ = −grad div ∈Diff 2(TM,TM) is also an operator of Laplace-

type: ForM = R
n with the Euclidean metric we write a tangent vector v = vj ∂

∂xj
∈ TM

as v = (v1, . . . , vn). Then we have:

−grad div (v) = −grad
n∑

j=1

∂vj

∂xj

= −




n∑

j=1

∂2vj

∂x1∂xj
, . . . ,

n∑

j=1

∂2vj

∂xn∂xj




⊤

.

For the principal symbol of −graddiv , we thus find:

σ2(−grad div , ξ)v = −




n∑

j=1

ξ1ξjv
j , . . . ,

n∑

j=1

ξnξjv
j




⊤

= −



ξ1ξ1 . . . ξ1ξn
...

. . .
...

ξnξ1 . . . ξnξn






v1

...
vn


 .

Thus,

σ2(−grad div , ξ) = −



ξ1ξ1 . . . ξ1ξn
...

...
ξnξ1 . . . ξnξn


 6= −



|ξ|2 0

. . .

0 |ξ|2




for general ξ ∈ T ∗M . Hence DD∗ is not of Laplace-type and thus D not of Dirac-type.
For a general Riemannian manifold M we have by Examples 1.1.13 and 1.1.14:
σ1(grad , ξ) = ξ♯ and σ1(div , ξ) = ξ and thus for all v ∈ TM and all ξ ∈ T ∗M

σ2(DD
∗, ξ)v = −σ1(grad , ξ) ◦ σ1(div , ξ)v = −ξ(v)ξ♯ 6= −|ξ|2v

if v is not a multiple of ξ♯.

Example 1.3.10. We translate the previous example to differential forms and consider
the exterior differential d on E = Λ0T ∗M with values in F = Λ1T ∗M . As we have seen,
d is not of Dirac-type.
Now we enlarge the bundles to

E = ΛevenT ∗M = Λ0T ∗M ⊕ Λ2T ∗M ⊕ Λ4T ∗M ⊕ . . . , and

F = ΛoddT ∗M = Λ1T ∗M ⊕ Λ3T ∗M ⊕ Λ5T ∗M ⊕ . . . .
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On these bundles we consider the Euler operator

D = d+ d∗ : C∞(M,E
)
→ C∞(M,F

)
.

We want to show that D is of Dirac-type. We prove that D∗D is of Laplace-type. For
each ξ ∈ T ∗

xM and each ω ∈ ΛkT ∗
xM we have:

σ2 (D
∗D, ξ)ω = σ2 (d

∗d+ dd∗, ξ)ω

=
(
σ1 (d

∗, ξ) ◦ σ1(d, ξ) + σ1(d, ξ) ◦ σ1 (d∗, ξ)
)
ω. (1.15)

We have computed earlier in Example 1.1.15 that σ1(d, ξ) = ξ ∧ (·). We also know from
(1.5) that σ1(d

∗, ξ) = −σ1(d, ξ)∗. It remains to compute σ1(d, ξ)
∗.

For ξ ∈ T ∗
xM and ω ∈ ΛkT ∗

xM we define ξyω ∈ Λk−1T ∗
xM by

ξyω := ω
(
ξ♯, . . .

)
.

Claim: ξy · is the adjoint of ξ ∧ (·).
Let ξ ∈ T ∗

xM , ξ 6= 0. Let b∗1 = ξ, b∗2, . . . , b
∗
n be an orthogonal basis of T ∗

xM . Then we can
write each ω ∈ ΛkT ∗

xM as

ω =
∑

|I|=k
ωI b

∗
i1 ∧ . . . ∧ b∗ik , I = (1 ≤ i1 < . . . < ik ≤ n) ,

=
∑

|J |=k−1

ω(1,J) ξ ∧ b∗i2 ∧ . . . ∧ b∗ik +
∑

|I|=k
i1>1

ωI b
∗
i1 ∧ . . . ∧ b∗ik

=: ξ ∧ ωξ + ω⊥
ξ .

Thus there is an orthogonal decomposition ΛkT ∗
xM = ξ ∧Λk−1

(
ξ⊥
)
⊕Λk

(
ξ⊥
)
where ξ⊥

denotes the orthogonal complement of ξ in T ∗
xM . Now, on the one hand, we have:

〈ω, (ξ ∧ ·)∗τ〉 = 〈ξ ∧ ω, τ〉 =
〈
ξ ∧ ω⊥

ξ , ξ ∧ τξ
〉
= 〈ξ, ξ〉

〈
ω⊥
ξ , τξ

〉
.

On the other hand, we have:

〈ω, ξy τ〉 =
〈
ω, |ξ|2 · τξ

〉
=
〈
w⊥
ξ , |ξ|2τξ

〉
.

Comparing these two equations yields

(ξ ∧ (·))∗ = ξy (·)

which proves the claim.
For the principal symbol of the codifferential we thus obtain:

σ1(d
∗, ξ) = −σ1(d, ξ)∗ = −(ξ ∧ (·))∗ = −ξy (·).
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Therefore, by (1.15), we have:

σ2 (D
∗D, ξ)ω = −

(
ξy (ξ ∧ ω) + ξ ∧ (ξyω)

)

= −
(
ξy (ξ ∧ ω⊥

ξ ) + ξ ∧ (ξyω)
)

= −
(
|ξ|2ω⊥

ξ + |ξ|2ξ ∧ ωξ
)

= −|ξ|2ω.

Hence D∗D = d∗d + dd∗ =: ∆d is of Laplace-type. The operator DD∗ is also given by
DD∗ = d∗d + dd∗ and the above calculation shows that also DD∗ is of Laplace-type.
Thus the Euler operator D = d+ d∗ is of Dirac-type.

Definition 1.3.11. Let k ∈ {0, . . . , n}. The operator

∆d = D∗D = dd∗ + d∗d : C∞(M,ΛkT ∗M
)
→ C∞(M,ΛkT ∗M

)
(1.16)

is called the Hodge Laplacian in degree k.

For k = 0, the Hodge Laplacian ∆d coincides with the Laplace-Beltrami operator ∆.

Proposition 1.3.12. Let M be a Riemannian manifold. The Hodge Laplacian ∆d in
degree 1 satisfies the Bochner formula

∆d = ∇∗∇+Ric . (1.17)

Here ∇ denotes the Levi-Civita connection of the Riemannian metric and Ric its Ricci-
curvature, considered as an endomorphism field of T ∗M .

Proof. Exercise.

Remark 1.3.13. If we put E = F = Λ•T ∗M = Λ0T ∗M ⊕Λ1T ∗M ⊕Λ2T ∗M ⊕ . . . then
D = d+ d∗ is a formally self-adjoint Dirac-type operator on E.

Remark 1.3.14. Let D be a formally self-adjoint Dirac-type operator on a vector bun-
dle E. Then we have:

σ1(D, ξ)
2 = σ2

(
D2, ξ

)
= σ2 (D

∗D, ξ) = −|ξ|2 · idE.
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By polarization we obtain:

−
(
|ξ|2 + 2〈ξ, η〉 + |η|2

)
idE

= −|ξ + η|2 · idE
= σ1(D, ξ + η)2

=
(
σ1(D, ξ) + σ1(D, η)

)2

= σ1(D, ξ)
2 + σ1(D, ξ)σ1(D, η) + σ1(D, η)σ1(D, ξ) + σ1(D, η)

2

= −|ξ|2 · idE + σ1(D, ξ)σ1(D, η) + σ1(D, η)σ1(D, ξ)− |η|2 · idE .

This yields the Clifford relations

σ1(D, ξ)σ1(D, η) + σ1(D, η)σ1(D, ξ) = −2〈ξ, η〉 · idE . (1.18)

Since these relations impose strong restrictions on the bundle E, it is much more difficult
to construct Dirac-type operators than Laplace-type operators.

Let V be an n-dimensional oriented Euclidean vector space (later we will choose V =
T ∗
xM) and let e1, . . . , en be a positively oriented orthonormal basis of V . Then

ω := e1 ∧ . . . ∧ en ∈ ΛnV

is called the volume element and does not depend on the particular choice of orthonor-
mal basis.

Lemma 1.3.15. Let (V, 〈·, ·〉) be an n-dimensional oriented Euclidean vector space.
For each k ∈ {0, . . . , n} there is a unique isomorphism ∗ : ΛkV → Λn−kV such that

ϕ ∧ ∗ψ = 〈ϕ,ψ〉 · ω, for all ϕ,ψ ∈ ΛkV. (1.19)

The isomorphism ∗ is called the Hodge star operator.

Proof.
Uniqueness:
Let e1, . . . , en be a positively oriented orthonormal basis of V . Then the family

{eI = ei1 ∧ . . . ∧ eik}I=(1≤i1<...<ik≤n)

is an orthonormal basis of ΛkV . Let eI = ei1 ∧ . . . ∧ eik be a basis element. Writing ∗eI
in the corresponding basis of Λn−kV , we have:

∗eI =
∑

|J |=n−k
αJ · eJ . (1.20)
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Now for any ordered multi-index K with |I| = |K| = k, we have:

eK ∧ ∗eI =
∑

|J |=n−k
αJ · eK ∧ eJ = αKc · eK ∧ eKc = sign (K,Kc)αKc · ω.

Here Kc denotes the multi-index complementary to K and sign(K,Kc) is defined by the
equation eK ∧ eKc = sign(K,Kc) · ω. By equation (1.19), we have:

eK ∧ ∗eI = 〈eK , eI〉 · ω = δKI · ω.

Thus αKc = δKI sign(K,K
c) and equivalently, αJ = δJcI sign(J

c, J). Inserting this into
(1.20), we obtain:

∗eI = sign(I, Ic) · eIc . (1.21)

Existence:
We define the Hodge star operator ∗ by formula (1.21) on the basis {eI}I and extend by
linearity to ΛkV . Then equation (1.19) holds for basis vectors and hence, by linearity,
for all ϕ,ψ ∈ ΛkV .

Lemma 1.3.16. Let V be an n-dimensional oriented Euclidean vector space. Then
the following holds:

a) ∗1 = ω and ∗ω = 1.

b) 〈∗ϕ, ∗ψ〉 = 〈ϕ,ψ〉 for all ϕ,ψ ∈ ΛkV .

c) On ΛkV we have: ∗2 = (−1)k(n−k) · idΛkV .

d) 〈ϕ, ∗ψ〉 = (−1)k(n−k) 〈∗ϕ,ψ〉 for all ϕ ∈ ΛkV , ψ ∈ Λn−kV .

Proof.

a) This is clear from the formula (1.21) for the Hodge star operator in terms of an
orthonormal basis of V .

b) We write ϕ =
∑

|I|=k
ϕI eI and ψ =

∑
|J |=k

ψJ eJ . Then 〈ϕ,ψ〉 = ∑
|I|=k

ϕIψI . Applying the

operator ∗ we have:

∗ϕ =
∑

|I|=k
ϕI sign(I, I

c) · eIc and

∗ψ =
∑

|J |=k
ψJ sign(J, J

c) · eJc .
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Now we compute:

〈∗ϕ, ∗ψ〉 =
∑

|I|=k
ϕI ψI sign(I, I

c)2 =
∑

|I|=k
ϕI ψI = 〈ϕ,ψ〉.

c) Let |I| = k. Then by (1.21) we have:

∗2eI = ∗ (sign(I, Ic) · eIc)
= sign(I, Ic) · sign(Ic, I) · eI
= (−1)k(n−k)sign(I, Ic)2 · eI
= (−1)k(n−k) · eI .

d) For any ϕ ∈ ΛkV , ψ ∈ Λn−kV , we have:

〈∗ϕ,ψ〉 b)
= 〈∗ ∗ ϕ, ∗ψ〉 c)

=
〈
(−1)k(n−k)ϕ, ∗ψ

〉
= (−1)k(n−k)〈ϕ, ∗ψ〉.

Let M be an oriented Riemannian manifold. Then we may apply the construction of
the Hodge star operator to the Euclidean vector spaces (T ∗

xM, 〈·, ·〉x), where x ∈ M
and 〈·, ·〉x denotes the scalar product on T ∗

xM induced by the Riemannian metric. The
resulting isomorphisms ∗ : Λk(T ∗

xM) → Λn−k(T ∗
xM) depend smoothly on the point x.

Thus we have the Hodge star operator ∗: Ωk(M) → Ωn−k(M) on differential forms.
Note that the operator ∗ depends on the Riemannian metric.
Combining the Hodge star operator with the exterior derivative we obtain:

Lemma 1.3.17. Let M be an oriented n-dimensional Riemannian manifold. Then
the formal adjoint of d: Ωk−1(M) → Ωk(M) is given by

d∗ = (−1)n(k+1)+1 ∗ d∗ : Ωk(M) → Ωk−1(M). (1.22)

The operator d∗ is called the codifferential.

Proof. Exercise.

Corollary 1.3.18. For n even we have: d∗ = − ∗ d∗.

Example 1.3.19. Let M be an n-dimensional oriented Riemannian manifold and let
n = 2m be even. For any k ∈ {0, . . . , n} and any x ∈M we define

τx := ik(k−1)+m∗ : ΛkT ∗
xM ⊗R C → Λn−kT ∗

xM ⊗R C
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and we obtain τx : Λ•T ∗
xM ⊗R C → Λ•T ∗

xM ⊗R C as an operator on forms of arbitrary
degree. By Lemma 1.3.16, we have τ2x = idΛ•T ∗

xM⊗RC
. Thus, the only eigenvalues of τx

are 1 and −1. We put

E+ :=
⊔

x∈M
ker
(
τx − idΛ•T ∗

xM⊗RC

)
,

E− :=
⊔

x∈M
ker
(
τx + idΛ•T ∗

xM⊗RC

)

Thus E± denotes the bundle of ±1-eigenvectors of τ . Then we have the decomposition

Λ•T ∗M ⊗R C = E+ ⊕ E−.

A simple computation yields (d+ d∗) τ = −τ (d+ d∗). Thus, we have:

d+ d∗ : C∞ (M,E+
)
→ C∞ (M,E−) .

As for the Euler operator above, one can show that d + d∗ ∈ Diff 1(E
+, E−) is a

Dirac-type operator. It is called the signature operator.

Example 1.3.20. LetM be a complex manifold of complex dimensionm with a Hermi-
tian metric on the tangent bundle (considered as a complex vector bundle), i.e., M is a
Hermitian manifold. The complexified cotangent bundle Λ1T ∗M ⊗RC has the following
decomposition:

T ∗M ⊗R C = Λ1,0 T ∗M ⊕ Λ0,1 T ∗M

= {C-linear forms on TM} ⊕ {C-anti-linear forms on TM}.

Given local coordinates z1, . . . , zm, z̄1, . . . , z̄m, we can write any complex-valued 1-form ω
as

ω =

m∑

j=1

αj dz
j +

m∑

j=1

βj dz̄
j ∈ Λ1,0 T ∗M ⊕ Λ0,1 T ∗M.

Now for any f ∈ C∞(M,C), the differential df ∈ Λ1T ∗M ⊗R C splits as

df =

m∑

j=1

∂f

∂zj
dzj

︸ ︷︷ ︸
∈Λ1,0 T ∗M

+

m∑

j=1

∂f

∂z̄j
dz̄j

︸ ︷︷ ︸
∈Λ0,1 T ∗M

=: ∂f + ∂̄f. (1.23)

From complex analysis we have:

∂̄f = 0 ⇐⇒ f is holomorphic.
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Similarly, any complex-valued k-form ω can be decomposed as

ω =
∑

p+q=k

∑

|I|=p
|J|=q

ωIJ dz
i1 ∧ . . . ∧ dzip︸ ︷︷ ︸

=: dzI

∧ dz̄j1 ∧ . . . ∧ dz̄jq︸ ︷︷ ︸
=: dz̄J

.

This defines the decomposition

ΛkT ∗M ⊗R C =
⊕

p+q=k
p,q∈{0,...,m}

Λp,qT ∗M .

Now if ω is a (p, q)-form on M ,

ω =
∑

|I|=p
|J|=q

ωIJ dz
I ∧ dz̄J ,

its exterior derivative splits as

dω =
∑

|I|=p
|J|=q

dωIJ ∧ dzI ∧ dz̄J

(1.23)
=

∑

|I|=p
|J|=q

∂ωIJ ∧ dzI ∧ dz̄J

︸ ︷︷ ︸
=: ∂ω∈Λp+1,qT ∗M

+
∑

|I|=p
|J|=q

∂̄ωIJ ∧ dzI ∧ dz̄J

︸ ︷︷ ︸
=: ∂̄ω∈Λp,q+1T ∗M

.

We have split d into d = ∂ + ∂̄ where

∂ :C∞(M,Λp,qT ∗M) → C∞(M,Λp+1,qT ∗M),

∂̄ :C∞(M,Λp,qT ∗M) → C∞(M,Λp,q+1T ∗M).

The operator ∂̄ is called the Dolbeault operator. Using this decomposition, we have
for any ω ∈ Λp,qT ∗M :

0 = d2ω =
(
∂ + ∂̄

) (
∂ + ∂̄

)
ω = ∂2ω︸︷︷︸

∈Λp+2,q

+ ∂∂̄ω + ∂̄∂ω︸ ︷︷ ︸
∈Λp+1,q+1

+ ∂̄2ω︸︷︷︸
∈Λp,q+2

.

We thus have:

∂2 = 0 (1.24)

∂∂̄ + ∂̄∂ = 0 (1.25)

∂̄2 = 0. (1.26)

Hence the operators ∂ and ∂̄ define complexes. The q-th cohomology of the complex
(Ωp,•, ∂̄) is called the Dolbeault cohomology of M in the bidegree (p, q).
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For the Hodge-Laplacian ∆d on Ωp,q(M), we obtain:

∆d = (d+ d∗)2 = dd∗ + d∗d

=
(
∂ + ∂̄

) (
∂∗ + ∂̄∗

)
+
(
∂∗ + ∂̄∗

) (
∂ + ∂̄

)

= ∂∂∗ + ∂∗∂︸ ︷︷ ︸
=:∆∂

values in Ωp,q(M)

+ ∂∂̄∗ + ∂̄∗∂︸ ︷︷ ︸
values in

Ωp+1,q−1(M)

+ ∂̄∂∗ + ∂∗∂̄︸ ︷︷ ︸
values in

Ωp−1,q+1(M)

+ ∂̄∂̄∗ + ∂̄∗∂̄︸ ︷︷ ︸
=:∆

∂̄
values in Ωp,q(M)

.

Thus the principal symbol of ∆d splits into

−|ξ|2 · idΛp,qT ∗M = σ2(∆d, ξ)

= σ2 (∆∂ , ξ) + σ2
(
∂∂̄∗ + ∂̄∗∂

)
+ σ2

(
∂̄∂∗ + ∂∗∂̄

)
+ σ2 (∆∂̄ , ξ) . (1.27)

Since the left hand side is an endomorphism of Λp,qT ∗M , the two middle terms of the
right hand side necessarily vanish. Hence the operators ∂∂̄∗ + ∂̄∗∂ and ∂̄∂∗ + ∂∗∂̄ are
actually of first order, i.e.,

∂∂̄∗ + ∂̄∗∂ ∈Diff 1
(
Λp,qT ∗M,Λp+1,q−1T ∗M

)
and

∂̄∂∗ + ∂∗∂̄ ∈Diff 1
(
Λp,qT ∗M,Λp−1,q+1T ∗M

)
.

For j = 1, . . . m we write zj = xj + iyj and we decompose ξ ∈ T ∗M as

ξ =

m∑

j=1

(ξxjdx
j + ξyjdy

j) =
1

2

m∑

j=1

(ξjdz
j + ξ̄jdz̄

j)

where ξxj , ξyj ∈ R and ξj = ξxj − iξyj . We then compute for ω ∈ Λp,qT ∗M :

σ1(∂, ξ)ω =
1

2

m∑

j=1

ξjdz
j ∧ ω, σ1(∂̄, ξ)ω =

1

2

m∑

j=1

ξ̄jdz̄
j ∧ ω,

σ1(∂
∗, ξ)ω = −1

2

m∑

j=1

ξ̄jdz
j
yω, σ1(∂̄

∗, ξ)ω = −1

2

m∑

j=1

ξjdz̄
j
yω.

It follows that

σ2(∆∂ , ξ) = σ2(∆∂̄ , ξ) = −1

2
|ξ|2 · idΛp,qT ∗M .

Thus, 2∆∂ and 2∆∂̄ are Laplace-type operators.

Now we look for a first order operator whose square is 2∆∂̄ : Fix p ∈ {0, . . . ,m} and
define

E := Λp,evenT ∗M, F := Λp,oddT ∗M.

In analogy to the Euler operator, we put

D∂̄ :=
√
2
(
∂̄ + ∂̄∗

)
: C∞(M,E

)
→ C∞(M,F

)
.
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Then we get

D∗
∂̄D∂̄ = 2

(
∂̄∂̄ + ∂̄∂̄∗ + ∂̄∗∂̄ + ∂̄∗∂̄∗

)

= 2
(
∂̄∂̄∗ + ∂̄∗∂̄

)

= 2∆∂̄

and similarly D∂̄D
∗
∂̄
= 2∆∂̄ . Hence D∂̄ is a Dirac-type operator.

The operator
∆∂̄ : C∞ (M,Λp,qT ∗M) → C∞ (M,Λp,qT ∗M)

is called the Dolbeault Laplacian. The Dirac-type operator D∂̄ is called the Dol-
beault Dirac operator.

Twisting of first order operators with coefficient bundles

Let E and F be Riemannian or Hermitian vector bundles over a manifold M and let
D ∈Diff 1(E,F ). Then for each x ∈M the principal symbol yields a bilinear map

T ∗
xM × Ex → Fx, (ξ, e) 7→ σ1(D, ξ)e.

This corresponds uniquely to a linear map

T ∗
xM ⊗ Ex → Fx, ξ ⊗ e 7→ σ1(D, ξ)e.

Hence the principal symbol σ(D, ·) of D can be considered as an element of
C∞(M,Hom(T ∗M ⊗ E,F )).

Conversely, given a section A ∈ C∞(M,Hom(T ∗M ⊗ E,F )) and a connection ∇ on E,
we define DA,∇ ∈Diff 1(E,F ) by

DA,∇ e :=
n∑

j=1

A
(
b∗j ⊗∇bje

)
, (1.28)

where b1, . . . , bn is a local frame of TM and b∗1, . . . , b
∗
n is the dual frame.

This definition is independent of the choice of the basis b1, . . . , bn:
Let b̃1, . . . , b̃n be another local frame of TM . We express b̃j and b̃∗j by b1, . . . , bn and

b̃1, . . . , b̃n, respectively:

b̃j =

n∑

i=1

αij bi, and b̃∗j =
n∑

k=1

βkj b
∗
k.

Then we have:

δlj = b̃∗l
(
b̃j
)
=

n∑

k=1

βkl b
∗
k

( n∑

i=1

αij bi

)
=

n∑

k,i=1

βkl αij b
∗
k(bi)︸ ︷︷ ︸
δki

=

n∑

i=1

βil αij. (1.29)
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We may write this in matrix form as 1 = β⊤ · α, or equivalently, 1 = α · β⊤. Thus
equation (1.29) is equivalent to

δki =

n∑

j=1

αkj βij . (1.30)

Now we compute:

n∑

j=1

A
(
b̃∗j ⊗∇

b̃j
e
)

=

n∑

j=1

A

(
n∑

k=1

βkj b
∗
k ⊗∇ n∑

i=1
αij bi

e

)

=
n∑

j,k,i=1

βkj αij A (b∗k ⊗∇bie)

(1.30)
=

n∑

k,i=1

δkiA (b∗k ⊗∇bie)

=

n∑

i=1

A
(
b∗i ⊗∇bje

)
.

Hence the definition of DA,∇ is independent of the choice of the basis b1, . . . , bn.

We compute the principal symbol of DA,∇:
Let ξ ∈ T ∗

xM and e ∈ Ex. Choose a function f ∈ C∞(M) such that f(x) = 0 and
df(x) = ξ. Choose a section ẽ ∈ C∞(M,E) with ẽ(x) = e. Then we have:

σ(DA,∇, ξ)e = DA,∇
(
f ẽ
)
(x)

=
n∑

j=1

A
(
b∗j ⊗∇bj

(
f · ẽ

))
(x)

=

n∑

j=1

A
(
b∗j ⊗

(
bj(f) ẽ+ f · ∇bj ẽ

))
(x).

Using bj(f)(x) = df |x(bj) = ξ(bj), and the properties ẽ(x) = e and f(x) = 0, we get:

σ(DA,∇, ξ)e =
n∑

j=1

A
(
b∗j ⊗ ξ(bj) e

)

= A
(∑

j

ξ(bj)b
∗
j ⊗ e

)

= A(ξ ⊗ e). (1.31)

Thus, for a fixed connection ∇ and any operator D ∈ Diff 1(E,F ), the operator

Dσ(D,·),∇ =
n∑
j=1

σ
(
D, b∗j

)
∇bj has the same principal symbol as D. Hence it differs from
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D by a zero-order operator B ∈ C∞(M,Hom(E,F )), i.e.,

D = Dσ(D,·),∇ +B =

n∑

j=1

σ
(
D, b∗j

)
∇bj +B.

Note that the operator B depends on the choice of the connection ∇.

Now let M be a manifold, let E,F,C →M be K-vector bundles over M , and let ∇C be
a connection on C. For D ∈Diff 1(E,F ), choose a connection ∇E on E and write D as

D =
∑

j

σ
(
D, b∗j

)
∇E
bj +B, (1.32)

where the homomorphism field B ∈ C∞(M,Hom(E,F )) depends on the choice of ∇E.

Now define D∇C ∈Diff 1(E ⊗ C,F ⊗ C) by

D∇C
:=
∑

j

(
σ
(
D, b∗j

)
⊗ idC

)
∇E⊗C
bj

+B ⊗ idC . (1.33)

Here ∇E⊗C is the tensor product connection on E ⊗ C, defined by

∇E⊗C(e⊗ c) := ∇Ee⊗ c+ e⊗∇Cc.

We check that the definition of D∇C
does not depend on the choice of the connection

∇E: For any e⊗ c ∈ C∞(M,E ⊗ C), we compute:

D∇C
(e⊗ c) =

∑

j

(
σ
(
D, b∗j

)
⊗ idC

)
∇E⊗C
bj

(e⊗ c) + (B ⊗ idC)(e⊗ c)

=
∑

j

(
σ
(
D, b∗j

)
⊗ idC

)(
∇E
bje⊗ c+ e⊗∇C

bjc
)
+ (B e)⊗ c

=
∑

j

σ
(
D, b∗j

)
∇E
bj
e⊗ c+

∑

j

σ
(
D, b∗j

)
e⊗∇C

bj
c+ (B e)⊗ c

= D e⊗ c+
∑

j

σ
(
D, b∗j

)
e⊗∇C

bjc.

In the last equality we used equation (1.32). We have obtained an expression for D∇C

that is independent of the connection ∇E and B.

Definition 1.3.21. Let M be a differentiable manifold, let E,F,C →M be K-vector
bundles over M and let ∇C be a connection on C.
For a first order operator D ∈Diff 1(E,F ) we say that the operator

D∇C ∈Diff 1(E ⊗ C,F ⊗ C)

defined by (1.33) is obtained from D by twisting with (C,∇C).
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We compute the principal symbol of the twisted operator D∇C
:

For ξ ∈ T ∗
xM choose a function f ∈ C∞(M) with f(x) = 0 and df(x) = ξ. For e ∈ Ex

and c ∈ Cx choose sections ẽ ∈ C∞(M,E) and c̃ ∈ C∞(M,C) with ẽ(x) = e and
c̃(x) = c. Then we have:

σ
(
D∇C

, ξ
)
(e⊗ c) = D∇C(

f · (ẽ⊗ c̃ )
)
(x)

= D∇C(
(f · ẽ )⊗ c̃

)
(x)

=
(
D(f · ẽ )⊗ c̃+

n∑

j=1

σ(D, b∗j )(f · ẽ )⊗∇C
bj
c̃
)
(x)

=
(
D(f · ẽ )

)
(x)⊗ c+

n∑

j=1

σ(D, b∗j ) (f · ẽ )(x)︸ ︷︷ ︸
=0

⊗
(
∇C
bj c̃
)
(x)

= σ(D, ξ) e ⊗ c.

Hence

σ(D∇C
, ξ) = σ(D, ξ)⊗ idC . (1.34)

Corollary 1.3.22. Let (M,g) be a Riemannian manifold, let E,F,C → M be Rie-
mannian or Hermitian vector bundles over M , and let ∇C be a connection on C.
If D ∈Diff 1(E,F ) is of Dirac-type then D∇C

is also of Dirac-type.

Proof. For any ξ ∈ T ∗M , we have:

σ2
(
(D∇C

)∗ ◦D∇C
, ξ
) (1.5)

= −σ1
(
D∇C

, ξ
)∗ ◦ σ1

(
D∇C

, ξ
)

(1.34)
= −

(
σ1(D, ξ)⊗ idC

)∗ ◦
(
σ1(D, ξ)⊗ idC

)

= −σ1(D, ξ)∗σ1(D, ξ)⊗ idC
(1.5)
= σ1(D

∗, ξ)σ1(D, ξ)⊗ idC

= σ2(D
∗D, ξ)⊗ idC

=
(
− |ξ|2 · idE

)
⊗ idC

= −|ξ|2 · idE⊗C .

Similarly, we find σ2(D
∇C ◦ (D∇C

)∗, ξ) = −|ξ|2 · idF⊗C .

Lemma 1.3.23. Let (M,g) be a Riemannian manifold, let E,F,C →M be Rieman-
nian or Hermitian vector bundles over M , and let ∇C be a metric connection on C.
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Let D ∈Diff 1(E,F ). Then
(
D∗)∇C

=
(
D∇C)∗

.

Proof. Exercise.

Remark 1.3.24. If the connection ∇C in Lemma 1.3.23 is not metric then we have:

(
D∗)∇C

=
(
D∇C)∗

+B ⊗ idC

for some B ∈ C∞(M,Hom(F,E)).

Corollary 1.3.25. Let (M,g) be a Riemannian manifold, let E,F,C → M be Rie-
mannian or Hermitian vector bundles over M , and let ∇C be a metric connection
on C. Let D ∈Diff 1(E,F ).
If D is formally self-adjoint then so is D∇C

.

1.4. The analysis of Dirac-type operators

Throughout this section let M be a compact Riemannian manifold. Let E,F → M be
Riemannian or Hermitian vector bundles over M and let D ∈ Diff 1(E,F ). For any
s ∈ R the differential operator D extends uniquely to a bounded linear map

D : Hs+1(M,E) → Hs(M,F ),

i.e., for every u ∈ Hs+1(M,E) we have ‖Du‖Hs ≤ C‖u‖Hs+1 with C independent of u.
If D is of Dirac-type, we will get a kind of inverse to this inequality.

Proposition 1.4.1 (G̊arding inequality). Let M be a compact Riemannian man-
ifold and let E,F → M be Riemannian or Hermitian vector bundles over M . Let
D ∈ Diff 1(E,F ) be a Dirac-type operator. Then there exists a constant C > 0 such
that for all u ∈ H1(M,E), we have:

‖u‖H1 ≤ C (‖Du‖H0 + ‖u‖H0) . (1.35)

Proof. Since D is of Dirac-type, the formally self-adjoint operator D∗D is of Laplace-
type. Thus, by Lemma 1.3.5, we may write

D∗D = ∇∗∇+K (1.36)
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for some metric connection ∇ on E and some K ∈ C∞(M, symEnd(E)). Now for any
smooth section u ∈ C∞(M,E) we have:

‖u‖2H1 = ‖u‖2H0 + ‖∇u‖2H0

= (∇u,∇u)L2 + ‖u‖2H0

= (∇∗∇u, u)L2 + ‖u‖2H0

Inserting (1.36) yields

‖u‖2H1 = ((D∗D −K)u, u)L2 + ‖u‖2H0

= ‖Du‖2H0 −
∫

M

〈Ku(x), u(x)〉 dx + ‖u‖2H0

Since M is compact, there exists a constant C1 such that |K|Ex,Ex ≤ C1 uniformly in x.
This yields

‖u‖2H1 ≤ ‖Du‖2H0 + (1 + C1)‖u‖2H0

≤ ‖Du‖2H0 + 2
√

1 + C1 ‖Du‖H0 · ‖u‖H0 + (1 + C1)‖u‖2H0

=
(
‖Du‖H0 +

√
1 + C1 ‖u‖H0

)2

≤ (1 + C1)
(
‖Du‖H0 + ‖u‖H0

)2
.

Thus we have for any smooth section u ∈ C∞(M,E) the inequality

‖u‖H1 ≤
√

1 + C1

(
‖Du‖H0 + ‖u‖H0

)
.

Since C∞(M,E) is dense in H1(M,E) and the Sobolev norms ‖ · ‖H0 and ‖ · ‖H1 are
continuous on H1(M,E), this estimate holds for all u ∈ H1(M,E).

Proposition 1.4.2 (Elliptic estimates). Let M be a compact Riemannian mani-
fold and let E,F → M be Riemannian or Hermitian vector bundles over M . Let
D ∈Diff 1(E,F ) be a Dirac-type operator.
Then for every k ∈ N0 there exists a constant C > 0 such that the inequality

‖u‖Hk+1 ≤ C (‖Du‖Hk + ‖u‖Hk) (1.37)

holds for all u ∈ Hk+1(M,E).

Proof. We will prove the estimates by induction on k:
For k = 0, the elliptic estimate (1.37) is the G̊arding inequality (1.35).

Let D ∈Diff 1(E ⊗ T ∗M,F ⊗ T ∗M) be the operator obtained from D by twisting with
the Levi-Civita connection on T ∗M . We choose connections ∇E and ∇F on E and F ,
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respectively. Now we consider the operator

P := D ◦ ∇E −∇F ◦D ∈Diff 2
(
E,F ⊗ T ∗M

)
.

For any ξ ∈ T ∗M , we have:

σ2(P, ξ)e =
(
σ1(D , ξ) ◦ σ1(∇E , ξ)− σ1(∇F , ξ) ◦ σ1(D, ξ)

)
e

(1.34)
=

(
σ1(D, ξ)⊗ idT ∗M

)
(e⊗ ξ)− σ1(D, ξ)e ⊗ ξ

= 0.

Thus P is actually a first-order operator.

Now fix k ∈ N and assume that the elliptic estimate (1.37) holds for k − 1. For any
u ∈ Hk+1(M,E) we have:

‖u‖2Hk+1 = ‖∇k+1u‖2H0 + ‖∇ku‖2H0 + . . .+ ‖u‖2H0

= ‖∇k+1u‖2H0 + ‖u‖2Hk , (1.38)

and moreover

‖∇k+1u‖2H0 = ‖∇k∇u‖2H0 ≤ ‖∇u‖2Hk .

We now apply the induction hypothesis for the operator D ∈Diff 1(E⊗T ∗M,F ⊗T ∗M)
and the section ∇Eu ∈ C∞(M,E ⊗ T ∗M) and obtain:

‖∇Eu‖2Hk ≤ C1

(
‖D∇Eu‖Hk−1 + ‖∇Eu‖Hk−1

)2

= C1

(
‖Pu+∇FDu‖Hk−1 + ‖∇Eu‖Hk−1

)2

≤ C1

(
‖Pu‖Hk−1 + ‖∇FDu‖Hk−1 + ‖∇Eu‖Hk−1

)2
.

Since P is a first order operator there is a constant C2 such that ‖Pu‖Hk−1 ≤ C2‖u‖Hk .
Moreover, ‖∇FDu‖Hk−1 ≤ ‖Du‖Hk . Hence

‖∇Eu‖2Hk ≤ C3 (‖Du‖Hk + ‖u‖Hk)2

and thus

‖∇k+1u‖2H0 ≤ C3 (‖Du‖Hk + ‖u‖Hk)2 .

Together with (1.38) we obtain the assertion.
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Lemma 1.4.3. Let M be a compact manifold, and let D ∈ Diff 1(E,F ) be a Dirac-
type operator. Let

D̄ : H1(M,E) → L2(M,F )

be the unique bounded extension of D. Then the graph of D̄,

ΓD̄ :=
{(
x, D̄x

)
|x ∈ H1(M,E)

}
⊂ L2(M,E) ⊕ L2(M,F )

is a closed subspace. In other words: D̄ is a closed operator.

Proof. Let (xj)j∈N be a sequence in H1(M,E) such that (xj , D̄xj) → (x, y) in
L2(M,E) ⊕ L2(M,F ). We need to check that (x, y) ∈ ΓD̄. Since the sequences (xj)j∈N
and (D̄xj)j∈N converge in L2 they are also bounded in L2,

‖xj‖L2 ≤ C1 and
∥∥D̄xj

∥∥
L2 ≤ C2

for constants C1, C2, independent of j. From the G̊arding inequality (1.35) for the
Dirac-type operator D we obtain:

‖xj‖H1 ≤ C3

(
‖D̄xj‖L2 + ‖xj‖L2

)
≤ C4.

By Lemma 1.2.16, we may pass to a weakly convergent subsequence xj ⇀ z ∈ H1(M,E).
In particular, we have xj ⇀ z in L2(M,E). On the other hand, we also have xj ⇀ x ∈
L2(M,E). Since by Lemma 1.2.16 weak limits are unique, we find x = z ∈ H1(M,E).
Since D̄ is bounded and xj ⇀ x, we also have D̄xj ⇀ D̄x in L2(M,F ). One the other
hand, we also have D̄xj ⇀ y. Therefore y = D̄x. We conclude (x, y) = (x, D̄x) ∈ ΓD̄.

Let M be a compact Riemannian manifold, and let E,F → M be Riemannian or Her-
mitian K-vector bundles over M . Let D ∈Diff 1(E,F ).
Let us assume that u ∈ H1(M,E) and D̄u = f ∈ L2(M,F ). Choose a sequence (uj)j∈N

of smooth sections in E such that uj
H1

→ u. Then for all ϕ ∈ C∞(M,F ) we have:2

(f, ϕ)L2 =
(
D̄u, ϕ

)
L2

=
(
D̄
(
H1− lim

j→∞
uj
)
, ϕ
)
L2

=
(
L2− lim

j→∞
(Duj), ϕ

)
L2

= lim
j→∞

(Duj, ϕ)L2

= lim
j→∞

(uj,D
∗ϕ)L2

2Here and in the following H1− lim
i→∞

and L2− lim
i→∞

denote the limits in H1(M,E) and L2(M,E),

respectively.
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=
(
L2− lim

j→∞
uj,D

∗ϕ
)
L2

=
(
u,D∗ϕ

)
L2 .

We have shown: If D̄u = f with u ∈ H1(M,E) and f ∈ L2(M,F ) then

(
u,D∗ϕ

)
L2 = (f, ϕ)L2 , for all ϕ ∈ C∞(M,F ).

The last equation also makes sense for u ∈ L2(M,E). This motivates the following:

Definition 1.4.4. Let M be a compact Riemannian manifold, and let E,F → M
be Riemannian or Hermitian K-vector bundles over M . Let D ∈ Diff 1(E,F ). Let
u ∈ L2(M,E) and f ∈ L2(M,F ).
We say that the equation Du = f holds in the weak sense if for all ϕ ∈ C∞(M,F )
we have: (

u,D∗ϕ
)
L2 = (f, ϕ)L2 .

Proposition 1.4.5. Let M be a compact Riemannian manifold, and let E,F →M be
Riemannian or Hermitian vector bundles over M . Let D ∈ Diff 1(E,F ) be a Dirac-
type operator, and let D̄ : H1(M,E) → L2(M,F ) be the unique bounded extension
of D.
If for u ∈ L2(M,E) and f ∈ L2(M,F ) the equation Du = f holds in the weak sense
then actually u ∈ H1(M,E) and D̄u = f holds in the usual sense.

Remark 1.4.6. Let f ∈ L2(M,F ). By Proposition 1.4.5, we have that for any Dirac-
type operator D ∈Diff 1(E,F ), the equation

D̄u = f, holds with u ∈ H1(M,E),

if and only if the equation Du = f holds in the weak sense.

In order to prove Proposition 1.4.5, we first introduce smoothing kernels and Friedrichs
mollifiers.

Definition 1.4.7. Let V,W → M be K-vector bundles. Let pr1,pr2 : M ×M → M
be the projections on the first or second factor, respectively. We define the exterior
tensor product V ⊠W by

V ⊠W := pr∗1V ⊗ pr∗2W →M ×M.
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For (x, y) ∈M ×M the fiber of V ⊠W over (x, y) is given by3

(V ⊠W )(x,y) = (pr∗1V )(x,y) ⊗ (pr∗2W )(x,y) = Vx ⊗Wy.

Let M be a Riemannian manifold, and let E,F → M be Riemannian or Hermitian
vector bundles over M . Then the vector bundle F ⊠ E∗ →M ×M has the fibers

(F ⊠ E∗)(y,x) = Fy ⊗ E∗
x = Hom(Ex, Fy).

Definition 1.4.8. An operator A : C∞(M,E) → C∞(M,F ) of the form

(Au)(y) =

∫

M

K(y, x) · u(x) dvol(x) (1.39)

with
K ∈ C∞(M ×M,F ⊠ E∗)

is called a smoothing operator. The section K is called the smoothing kernel
of A.

Remark 1.4.9
i) A smoothing operator operator A extends uniquely to a bounded operator
L2(M,E) → L2(M,F ). In fact, for any u ∈ C∞(M,E), we have:

‖Au‖2L2 =

∫

M

|Au(y)|2 dvol(y)

=

∫

M

∣∣∣
∫

M

K(y, x)u(x) dvol(x)
∣∣∣
2
dvol(y)

C.S.
≤
∫

M

[ ∫

M

|K(y, x)|2 dvol(x) ·
∫

M

|u(x)|2 dvol(x)
]
dvol(y)

=

∫

M

∫

M

|K(y, x)|2 dvol(x) dvol(y) ·
∫

M

|u(x)|2 dvol(x)

= ‖K‖2L2 · ‖u‖2L2 .

Thus ‖A‖L2,L2 ≤ ‖K‖L2 .

ii) A smoothing operator A maps L2-sections to smooth sections, hence the name. In
fact, Au as defined in (1.39) is smooth in y, since K is smooth.

3Let f : X → Y and let E be a vector bundle over Y . Let x ∈ X. Then the fiber (f∗E)x of the
pull-back bundle f∗E is given by (f∗E)x = Ef(x).
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iii) For a smoothing operator A, the induced operator A : L2(M,E) → Hk(M,F ) is
bounded for any k ∈ N:

For any P ∈ Diff k(F,G) the composition P ◦ A : L2(M,E) → C∞(M,G) is again
a smoothing operator: Since M is compact and K(y, x)u(x) is smooth in y, the
differentiations in y commute with integration in x, and we obtain:

(PAu)(y) =

∫

M

PyK(y, x)u(x) dvol(x),

where PyK ∈ C∞(M ×M,G⊠ E∗). In particular, for P = ∇k we have:
∥∥(∇k ◦ A

)
u
∥∥
L2 ≤ Ck‖u‖L2 .

Hence A : L2(M,E) → Hk(M,F ) is bounded because we have

‖Au‖Hk ≤ C
(∥∥∇kAu

∥∥
L2 + . . .+ ‖Au‖L2

)
≤ C‖u‖L2 .

Next we want to approximate any section u ∈ L2(M,E) by smooth sections which are
obtained from u by the application of a particular kind of smoothing operators. For this
purpose, we introduce the notion of a Friedrichs mollifier.

Definition 1.4.10. A family of operators Jε : L2(M,E) → L2(M,E), 0 < ε ≤ ε0,
ε0 > 0, is called a Friedrichs mollifier if the following properties hold:

i) Each Jε is a self-adjoint smoothing operator.

ii) There exists a constant C > 0 such that ‖Jε‖L2,L2 ≤ C holds for all ε ∈ (0, ε0].

iii) For any k ∈ N and any P ∈ Diff k(E,E) the commutators [P, Jε] extend to
bounded operators Hk−1(M,E) → L2(M,E) and there exists a constant C > 0
such that ∥∥[P, Jε]

∥∥
Hk−1,L2 ≤ C for all ε ∈ (0, ε0].

iv) For every u ∈ L2(M,E) we have Jε u ⇀ u in L2(M,E) as ε→ 0.

Example 1.4.11. Choose a smooth function j : Rn → R such that supp(j) ⊂ B1(0),
j ≥ 0, j(−x) = j(x) for all x and

∫
Rn j(x) dx = 1. For ε > 0 put

jε(x) = ε−n j
(x
ε

)
.

Then supp(jε) ⊂ Bε(0), jε ≥ 0, jε(−x) = jε(x) for all x and

∫

Rn

jε(x) dx =

∫

Rn

j
(x
ε

) dx

εn
=

∫

Rn

j(y) dy = 1.
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Now put

(Jεu)(x) :=

∫

Rn

jε(x− y)u(y) dy.

Smooth functions on the n-torus T n = R
n/2π Z

n are in 1−1 correspondence to periodic
smooth functions on R

n, i.e., to smooth functions u : Rn → R satisfying

u(x+ k) = u(x), for all x ∈ R
n, k ∈ 2πZn.

Clearly, the operators Jε preserve periodicity: If u is periodic then we have

(Jεu)(x+ k) =

∫

Rn

jε(x+ k − y)u(y) dx =

∫

Rn

jε(x− ξ)u(ξ + k) dξ

=

∫

Rn

jε(x− ξ)u(ξ) dξ = (Jεu)(x).

The family of operators Jε : C
∞(T n) → C∞(T n) is a Friedrichs mollifier on T n. A proof

of this fact can be found in Appendix A.

Remark 1.4.12. Using the example above, one can construct Friedrichs mollifiers on
arbitrary compact manifolds and vector bundles with the help of a partition of unity
and local trivializations of the bundle.

Proof of Prop. 1.4.5. Let u ∈ L2(M,E) and f ∈ L2(M,F ) be such that the equation
Du = f holds in the weak sense. Let (Jε)0<ε≤ε0 be a Friedrichs mollifier on E. Put
uε := Jεu.

a) We check that u ∈ H1(M,E): For any ε ∈ (0, ε0] and any ϕ ∈ C∞(M,F ) we have

(Duε, ϕ)L2 =
(
uε,D

∗ϕ
)
L2

=
(
Jεu,D

∗ϕ
)
L2

=
(
u, JεD

∗ϕ
)
L2

=
(
u,D∗Jεϕ

)
L2 +

(
u,
[
Jε,D

∗]ϕ
)
L2

=
(
f, Jεϕ

)
L2 +

(
u,
[
Jε,D

∗]ϕ
)
L2

By properties ii) and iii) of Definition 1.4.10 we have:

|(Duε, ϕ)L2 | ≤ |(f, Jεϕ)L2 |+
∣∣(u,

[
Jε,D

∗]ϕ
)
L2

∣∣
≤ ‖f‖L2 · ‖Jεϕ‖L2 + ‖u‖L2 ·

∥∥[Jε,D∗]ϕ
∥∥
L2

≤ C1 · ‖f‖L2 · ‖ϕ‖L2 + C2 · ‖u‖L2 · ‖ϕ‖L2

= C3(f, u) · ‖ϕ‖L2 .
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Setting ϕ = Duε we obtain:

‖Duε‖L2 ≤ C3(f, u).

Moreover, by property ii) of Definition 1.4.10, we have:

‖uε‖L2 = ‖Jεu‖L2 ≤ C1 ‖u‖L2 .

Thus, by the G̊arding inequality (1.35)

‖uε‖H1 ≤ C4 (‖Duε‖L2 + ‖uε‖L2)

≤ C4

(
C3(f, u) + C1 ‖u‖L2

)

≤ C5(f, u).

Thus ‖uε‖H1 is bounded uniformly in ε for ε ∈ (0, ε0]. By Lemma 1.2.16, we may
choose a sequence εi ց 0 and v ∈ H1(M,E) such that uεi ⇀ v in H1(M,E) and
thus also in L2(M,E).

On the other hand, by property iv) of Definition 1.4.10, we also have uεi ⇀ u in
L2(M,E). Again by Lemma 1.2.16, weak limits are unique, hence u = v ∈ H1(M,E).

b) We check that the equation D̄u = f holds in the usual sense: So let ϕ ∈ C∞(M,F ).
Since D̄ : H1(M,E) → L2(M,E) is continuous, by Lemma 1.2.16, we have:4

(
D̄u, ϕ

)
L2 =

(
D̄
(
w−H1− lim

i→∞
uεi
)
, ϕ
)
L2

=
(
w−L2− lim

i→∞

(
D̄uεi

)
, ϕ
)
L2

= lim
i→∞

(
D̄uεi , ϕ

)
L2 .

Since uεi is smooth, D̄uεi = Duεi and thus

(
D̄u, ϕ

)
L2 = lim

i→∞

(
Duεi , ϕ

)
L2

= lim
i→∞

(
uεi ,D

∗ϕ
)
L2

=
(
u,D∗ϕ

)
L2

= (f, ϕ)L2 .

Since this is valid for all ϕ ∈ C∞(M,F ) we conclude that D̄u = f .

4Here and in the following w−H1− lim
i→∞

and w−L2− lim
i→∞

denote the weak limits in H1(M,E) and

L2(M,E), respectively.
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Reminder. Let H be a Hilbert space. An unbounded operator A in H is a linear
map

A : dom(A) → H ,

where dom(A) ⊂ H is a dense linear subspace, called the domain of A. An operator A
with dom(A) ⊂ H dense is also called densely defined.

Let H be a Hilbert space and let A : dom(A) ⊂ H → H be an unbounded operator.
The adjoint operator A∗ of A is the operator such that the relation

(
A∗u, v

)
=
(
u,Av

)

holds for all u ∈ dom(A∗) and all v ∈ dom(A). The domain of the adjoint operator is
by definition the largest possible:

Definition 1.4.14. Let H be a Hilbert space and let A : H ⊃ dom(A) → H be an
unbounded operator. We set

dom
(
A∗
)
:= {u ∈ H | ∃ f ∈ H with (f, v) = (u,Av) for all v ∈ dom(A)}.

On this domain, define A∗ : H ⊃ dom(A∗) → H by A∗u := f .

Remark 1.4.15. The adjoint operator is well defined: For a given u ∈ dom(A∗), the
vector f ∈ H satisfying (f, v) = (u,Av) for all v ∈ dom(A) is uniquely determined by u,
since A is densely defined.
A densely defined operator A is called symmetric iff

(Au, v) = (u,Av) for all u, v ∈ dom(A).

In this case, dom(A) ⊂ dom(A∗) and A∗|dom(A) = A, i.e., A∗ is an extension of A. We
also write A ⊂ A∗.
If A is symmetric and dom(A) = dom(A∗) then A is called self-adjoint.

Proposition 1.4.16. Let M be a compact Riemannian manifold, let E → M be a
Riemannian or Hermitian vector bundle over M , and let D ∈ Diff 1(E,E) be a for-
mally self-adjoint Dirac-type operator.
Then the operator D̄ : H1(M ;E) → L2(M,E) is self-adjoint.

Proof. The fact that D is formally self-adjoint implies that D̄ is symmetric. It remains to
show that dom(D̄∗) ⊂ dom(D̄) = H1(M,E). Now for any u ∈ dom(D̄∗), by definition,
there is an element f ∈ L2(M,E) such that

(u, D̄v)L2 = (f, v)L2 ∀v ∈ H1(M,E) .
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In particular, we have:

(u, D̄v)L2 = (f, v)L2 ∀v ∈ C∞(M,E) .

Hence the equation D∗u = f holds in the weak sense. Proposition 1.4.5 implies u ∈
H1(M,E) = dom(D̄).

Reminder. Let A : dom(A) ⊂ H → H be an unbounded operator on a Hilbert
space H . The resolvent set res(A) of A is defined as:

res(A) :=
{
λ ∈ C | (A− λ) : dom(A) → H is bijective and (A− λ)−1 is bounded

}
.

(1.40)
Here A− λ is a short-hand notation for A− λ · idH .
The spectrum spec(A) of A is defined as the complement of the resolvent set:

spec(A) := C\res(A) (1.41)

For a self-adjoint operator A we have spec(A) ⊂ R and spec(A2) ⊂ [0,∞). A proof of
this fact can be found in books on functional analysis, e. g. in [6], Satz 30.5.

Now let D ∈ Diff 1(E,E) be a formally self-adjoint Dirac-type operator. Then the
operator D̄ : H1(M ;E) → L2(M,E) is self-adjoint. Since −1 /∈ spec(D̄2), the operator

D̄2 + 1 : dom(D̄2) → L2(M ;E)

has an inverse

(D̄2 + 1)−1 : L2(M,E) → dom(D̄2 + 1) ⊂ L2(M,E),

bounded in L2. Let C0 be an L2-L2-bound for (D̄2 + 1)−1. Then we also find an
L2-H1-bound:
∥∥∥
(
D̄2 + 1

)−1
u
∥∥∥
2

H1

(1.37)

≤ C1 ·
{∥∥∥D̄

(
D̄2 + 1

)−1
u
∥∥∥
2

L2
+
∥∥∥
(
D̄2 + 1

)−1
u
∥∥∥
2

L2

}

≤ C1 ·
{(

D̄2
(
D̄2 + 1

)−1
u, (D̄2 + 1)−1u

)
L2

+ C0 · ‖u‖2L2

}

≤ C1 ·
{((

D̄2 + 1
) (
D̄2 + 1

)−1
u−

(
D̄2 + 1

)−1
u,
(
D̄2 + 1

)−1
u
)
L2

+ C0 · ‖u‖2L2

}

≤ C1 ·
{(

u,
(
D̄2 + 1

)−1
u
)
L2

+
∥∥∥
(
D̄2 + 1

)−1
u
∥∥∥
2

L2
+ C0‖u‖2L2

}

≤ C1 ·
{
‖u‖L2 ·

∥∥∥
(
D̄2 + 1

)−1
u
∥∥∥
L2︸ ︷︷ ︸

≤
√
C0·‖u‖L2

+2C0 · ‖u‖2L2

}

≤ C2 · ‖u‖2L2 .
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Hence
(
D̄2 + 1

)−1
factors through H1(M,E). Thus K :=

(
D̄2 + 1

)−1
: L2(M,E) →

L2(M,E) is compact by the Rellich embedding theorem, see Remark 1.2.18 and Theo-
rem 1.2.14.
From the spectral theorem for compact self-adjoint operators we know that the Hilbert
space H = L2(M,E) has an orthogonal decomposition

L2(M,E) =
⊕

n∈N
E(µn,K)

into eigenspaces E(µn,K) = {v ∈ L2(M,E) |Kv = µnv} ofK. Moreover, all eigenspaces
are finite dimensional and the eigenvalues µn are real and µn ց 0. SinceK = (D̄2 + 1)−1

is injective, we have µn 6= 0 for all n and thus:

u ∈ E(µn,K) ⇐⇒
(
D̄2 + 1

)−1
u = µn u

⇐⇒
(
D̄2 + 1

)
u =

1

µn
u

⇐⇒ D̄2u =

(
1

µn
− 1

)
· u .

Moreover, the eigenspaces E(µn,K) are D̄-invariant, since for u ∈ E(µn,K), we have:

D̄2
(
D̄u
)
= D̄

(
D̄2u

)
= D̄

(
1

µn
− 1

)
· u =

(
1

µn
− 1

)
· D̄u .

Therefore, D̄|E(µn,K) is an endomorphism of E(µn,K) and self-adjoint with respect to
(·, ·)L2 . Hence the K-eigenspaces E(µn,K) split L2-orthogonally into eigenspaces for D̄:

E(µn,K) = E
(
λn, D̄

)
⊕ E

(
−λn, D̄

)
,

where λn :=
√

1
µn

− 1.

Summarizing the above discussion we obtain:

Theorem 1.4.18. Let M be a compact Riemannian manifold, let E → M be a Rie-
mannian or Hermitian vector bundle over M , and let D ∈ Diff 1(E,E) be a formally
self-adjoint Dirac-type operator.
Then the spectrum of D̄ : H1(M,E) → L2(M,E) consists of eigenvalues only. Its
eigenvalues λn, n ∈ Z, form a discrete subset of R and satisfy λn

n→∞−−−→ ∞ and

λn
n→−∞−−−−−→ −∞. The eigenspaces E

(
λn, D̄

)
are all finite dimensional, and we have

the L2-orthogonal decomposition:

L2(M,E) =
⊕

n∈Z
E(λn, D̄) . (1.42)
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Example 1.4.19. Let M = S1 = R/2πZ, and let E → M be the trivial complex line
bundle. Let D = i ddx and denote by un(x) := e−inx, n ∈ Z the usual orthonormal basis
of H = L2(S1). Then we have Dun = i · (−in) · e−inx = n · un. Hence spec(D) = Z and
all eigenvalues have multiplicity 1. The orthogonal decomposition in (1.42) of a function
in L2(S1) is nothing but the Fourier decomposition of the corresponding 2π-periodic
function on R.

Functional calculus

Let M be a compact Riemannian manifold, let E → M be Riemannian or Hermitian
vector bundle over M , and let D ∈ Diff 1(E,E) be a formally self-adjoint Dirac-type
operator. Let f : spec(D) → R be a function on the spectrum of D.
We define an operator f(D̄) : dom(f(D̄)) ⊂ L2(M,E) → L2(M,E) as follows: By (1.42)
we may decompose any u ∈ L2(M,E) into u =

∑
n∈Z un with un ∈ E(λn, D̄). We then

put

f
(
D̄
)
u :=

∑

n∈Z
f(λn)un . (1.43)

The largest possible domain of f(D̄) is the set of those u for which the right hand side
of (1.43) converges in L2(M,E). We thus set:

dom
(
f
(
D̄
))

:=
{
u =

∑

n∈Z
un

∣∣∣
∑

n∈Z
f(λn)un converges in L2(M,E)

}

=
{
u =

∑

n∈Z
un

∣∣∣
∑

n∈Z
|f(λn)|2 · ‖un‖2L2 <∞

}
. (1.44)

The equality holds, since the eigenvectors un, n ∈ Z, are mutually perpendicular and
hence

∥∥∑
n∈Z f(λn)un

∥∥2
L2 =

∑
n∈Z |f(λn)|2‖un‖2L2 .

Examples 1.4.20
1) For f ≡ 1, we have f(D̄) = idL2(M,E).

2) Let f(λ) = akλ
k + . . .+ a1λ+ a0 be a polynomial. Then

f
(
D̄
)
= akD̄

k + . . .+ a1D̄ + a0 · idL2(M,E) .

Here
(
D̄k
)
:= D̄ ◦ . . . ◦ D̄︸ ︷︷ ︸

k times

.

Proposition 1.4.21. Let M be a compact Riemannian manifold, and let E →M be
a Riemannian or Hermitian vector bundle over M . Let D ∈Diff 1(E,E) be a formally
self-adjoint Dirac-type operator, and let f be a bounded function on spec(D).
Then we have: ∥∥f

(
D̄
)∥∥
L2,L2 = sup

λ∈ spec(D)
|f(λ)| . (1.45)
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In particular, dom
(
f
(
D̄
))

= L2(M,E).

Proof. Let u =
∑
n∈Z

un ∈ L2(M,E). We compute:

∥∥f
(
D̄
)
u
∥∥2
L2 =

∑

n∈Z
|f(λn)|2 · ‖un‖2L2

≤ sup
λ∈ spec(D)

|f(λ)|2 ·
∑

n∈Z
‖un‖2L2

= sup
λ∈ spec(D)

|f(λ)|2 · ‖u‖2L2 .

This shows
∥∥f
(
D̄
)∥∥
L2,L2 ≤ sup

λ∈ spec(D)
|f(λ)| and dom

(
f
(
D̄
))

= L2(M,E). Now assume

∥∥f
(
D̄
)∥∥

L2,L2 ≤ sup
λ∈ spec(D)

|f(λ)| − ε for some ε > 0. Choose λn ∈ spec(D) such that

|f(λn)| > sup
λ∈ spec(D)

|f(λ)| − ε.

Then for un ∈ E(λn, D̄)\{0} we find:

∥∥f
(
D̄
)
un
∥∥2
L2 = ‖f(λn) · un‖2L2

= |f(λn)|2 · ‖un‖2L2

> ( sup
λ∈spec(D)

|f(λ)| − ε)2 · ‖un‖2L2

≥ ‖f(D̄)‖2L2,L2 · ‖un‖2L2 ,

a contradiction. Hence ‖f(D̄)‖L2,L2 = sup
λ∈spec(D)

|f(λ)|.

Remark 1.4.22
For any two functions f1, f2 on spec(D), the operators f1(D̄) and f2(D̄) commute. This
follows directly from the definition.

Example 1.4.23. For a fixed t > 0, put f(λ) := e−tλ
2
. Then we have

1 = sup
λ∈R

|f(λ)| ≥ sup
λ∈ spec(D)

|f(λ)|.

Hence the operator norm of exp(−tD̄2) : L2(M,E) → L2(M,E) is bounded by 1.
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Proposition 1.4.24. Let M be a compact Riemannian manifold, and let E →M be
a Riemannian or Hermitian vector bundle over M . Let D ∈Diff 1(E,E) be a formally
self-adjoint Dirac-type operator.
For any u ∈ L2(M,E), we have:

exp
(
− tD̄2

)
u

L2

−→ u as tց 0.

Proof. For any ε > 0, there exists an N ∈ N such that
∑

|n|>N ‖un‖2L2 < ε. We compute:

∥∥exp
(
− tD̄2

)
u− u

∥∥2
L2

=
∑

|n|≤N

∣∣ exp(−tλ2n)− 1
∣∣2 · ‖un‖2L2 +

∑

|n|>N

∣∣ exp(−tλ2n)− 1
∣∣2

︸ ︷︷ ︸
≤1

·‖un‖2L2

︸ ︷︷ ︸
≤ε

≤
∑

|n|≤N

∣∣ exp(−tλ2n)− 1
∣∣2 · ‖un‖2L2 + ε.

Since the first term is a finite sum, we obtain lim supt→0

∥∥ exp(−tD̄2)u− u
∥∥2
L2 ≤ 0 + ε.

By taking εց 0, we end up with:

exp
(
− tD̄2

)
u

L2

−→ u as t ց 0.

Now for any u =
∑

n∈Z un ∈ L2(M,E), we have

∥∥∥D̄k exp
(
− tD̄2

)
u
∥∥∥
2

L2
=
∑

n∈Z
λ2kn exp

(
− 2tλ2n

)
︸ ︷︷ ︸

≤C(t,k)

· ‖un‖2L2

≤ C(t, k) ·
∑

n∈Z
‖un‖2L2

= C(t, k) · ‖u‖2L2 . (1.46)

Remark 1.4.25. a) We have for all k ∈ N0:

Hk(M,E) = dom
(
D̄k
)
=

{
u =

∑

n∈Z
un ∈ L2(M,E)

∣∣∣
∑

n∈Z
λ2kn ‖un‖2L2 <∞

}
.

b) For every t > 0 the operator exp(−tD̄2) is a smoothing operator:

exp
(
− tD̄2

)
: L2(M,E) → C∞(M,E).
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Proof. a) The second equation and the inclusion “⊂” in the first equation are obvious.
We prove the inclusion “⊃” in the first equation, i.e., we show by induction on k: if
u ∈ L2(M,E) is such that D̄ku ∈ L2(M,E), then u ∈ Hk(M,E).
For k = 1 this follows from Proposition 1.4.5. Therefore let k ≥ 2 and assume that
the assertion holds for k − 1. We have D̄ku = f ∈ Hk(M,E) ⊂ Hk−1(M,E), thus
by the induction hypothesis we may assume that u ∈ Hk−1(M,E). Let (Jε)ε be a
Friedrichs mollifier on M . We put uε := Jεu ∈ C∞(M,E). Then we have

D̄kuε = JεD̄
ku+ [D̄k, Jε]u,

and since D̄ku = f and by properties ii) and iii) of a Friedrichs mollifier we get

‖D̄kuε‖L2 ≤ ‖JεD̄ku‖L2 + ‖[D̄k, Jε]u‖L2 ≤ C1 ‖f‖L2 + C2 ‖u‖Hk−1 ,

where C1, C2 > 0 are independent of ε. Moreover by property ii) of a Friedrichs
mollifier we have

‖uε‖L2 ≤ C1‖u‖L2 .

By applying the elliptic estimates (1.37) iteratively it follows that

‖uε‖Hk ≤ C3(‖D̄kuε‖L2 + ‖uε‖L2) ≤ C4(‖f‖L2 + ‖u‖Hk−1),

where C3, C4 > 0 are independent of ε as ε → 0. Therefore, the sequence (uε)ε is
bounded in Hk(M,E) as ε→ 0. Hence there exists a weakly convergent subsequence

uεj
Hk

⇀ w ∈ Hk(M,E). On the other hand, we have uεj
L2

−→ u by property iv) of a
Friedrichs mollifier. Since weak limits are unique, we conclude that w = u, and in
particular that u ∈ Hk(M,E).

b) The equation (1.46) now shows that for every u ∈ L2(M,E) we have exp(−tD̄2)u ∈
dom(D̄k) = Hk(M,E) for all k ∈ N and thus exp(−tD̄2)u ∈ C∞(M,E) by the
Sobolev embedding theorem.

Theorem 1.4.26 (Elliptic regularity). LetM be a compact Riemannian manifold,
and let E,F → M be Riemannian or Hermitian vector bundles over M . Let D ∈
Diff 1(E,F ) be a Dirac-type operator. Let u ∈ L2(M,E) and f ∈ L2(M,F ) be sections
such that the equation Du = f holds in the weak sense.
If f ∈ Hk(M,F ) then u ∈ Hk+1(M,E).

Proof. a) Let us first assume that E = F and D is formally self-adjoint. Put
Jε := exp(−εD̄2). By equation (1.45), we have ‖Jε‖L2,L2 ≤ 1, since the function
λ 7→ exp(−ελ2) is bounded by 1. Further, [Jε, D̄] = 0 by Remark 1.4.22. For any

v ∈ L2(M,E), we have Jεv
L2

−→ v by Proposition 1.4.24. Finally, by Remark 1.4.25,
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we have Jεv ∈ C∞(M,E) for any v ∈ L2(M,E). Hence the family Jε is a Friedrichs
mollifier.

We show by induction on k ∈ N0 that the maps Jε : Hk(M,E) → Hk(M,E) are
bounded, uniformly in ε. We have just seen that ‖Jε‖L2,L2 ≤ 1.

Assume that ‖Jε‖Hk,Hk ≤ C0 for some constant C0 independent of ε. For any

v ∈ Hk+1(M,E), we have by Proposition 1.4.2:

‖Jεv‖Hk+1 ≤ C1 ·
(∥∥D̄Jεv

∥∥
Hk + ‖Jεv‖Hk

)

≤ C1 ·
(∥∥JεD̄v

∥∥
Hk + C0‖v‖Hk

)

≤ C2 ·
(∥∥D̄v

∥∥
Hk + ‖v‖Hk

)

≤ C3‖v‖Hk+1 ,

where C3 is independent of ε.

b) Now let u ∈ L2(M,E) be a weak solution of Du = f with f ∈ Hk(M,E), where we
still assume D to be formally self-adjoint. We prove by induction on k ∈ N0 that
f ∈ Hk(M,E) implies u ∈ Hk+1(M,E).

For k = 0, the implication coincides with Proposition 1.4.5. So let k ≥ 1 and let
f ∈ Hk(M,E). We have f ∈ Hk−1(M,E) and thus by the induction hypothesis we
have u ∈ Hk(M,E). Then we have by Proposition 1.4.2

‖Jεu‖Hk+1 ≤ C4 ·
(
‖D̄Jεu‖Hk + ‖Jεu‖Hk

)

= C4 ·
(
‖JεD̄u‖Hk + ‖Jεu‖Hk

)

a)

≤ C5 ·
(
‖D̄u‖Hk + ‖u‖Hk

)

= C5 ·
(
‖f‖Hk + ‖u‖Hk

)

≤ C6(u, f) .

Thus the family Jεu is bounded in Hk+1, uniformly in ε. Hence there exists a weakly

convergent subsequence Jεju
Hk+1

⇀ w ∈ Hk+1(M,E). On the other hand, we have

Jεju
L2

−→ u. Since weak limits are unique, we conclude that w = u, and in particular
that u ∈ Hk+1(M,E).

c) Now we drop the assumption that E = F and D be formally self-adjoint. Instead,
we consider the operator

D :=

(
0 D∗

D 0

)
∈Diff 1(E ⊕ F,E ⊕ F ) ,

which is obviously formally self-adjoint. We check that D is of Dirac-type:

D∗D =

(
0 D∗

D 0

)
·
(
0 D∗

D 0

)
=

(
D∗D 0
0 DD∗

)
= DD∗ .
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Hence we have for the principal symbol:

σ2(DD∗, ξ) = σ2(D∗D, ξ) =
(
σ2(D

∗D, ξ) 0
0 σ2(DD

∗, ξ)

)

=

(
−|ξ|2 · idE 0

0 −|ξ|2 · idF

)

= −|ξ|2 · idE⊕F .

For the sections
(
u
0

)
∈ L2(M,E ⊕ F ) and

(
0
f

)
∈ Hk(M,E ⊕ F )

D
(
u
0

)
=

(
0 D∗

D 0

)
·
(
u
0

)
=

(
0
Du

)
=

(
0
f

)

holds in the weak sense. We conclude from part b) that
(
u
0

)
∈ Hk+1(M,E ⊕F ) and

hence u ∈ Hk+1(M,E).

Corollary 1.4.27. Let M be a compact Riemannian manifold, and let E → M be a
Riemannian or Hermitian vector bundle over M . Let D ∈ Diff 1(E,E) be a formally
self-adjoint Dirac-type operator.
Then all eigensections of D are smooth.

Proof. If Du = λu holds in the weak sense with u ∈ L2(M,E) then Theorem 1.4.26
implies u ∈ H1(M,E). Similarly, if Du = λu with u ∈ Hk(M,E), then Theorem 1.4.26
implies u ∈ Hk+1(M,E).
Hence u ∈ ⋂

k∈N0

Hk(M,E) ⊂ C∞(M,E) by the Sobolev embedding theorem.

Corollary 1.4.28 (Fredholm alternative). Let M be a compact Riemannian man-
ifold, let E → M be a Riemannian or Hermitian vector bundle and let D ∈
Diff 1(E,E) be a formally self-adjoint Dirac-type operator. Then we have

C∞(M,E) = ker(D)⊕D(C∞(M,E))

and the sum is orthogonal with respect to (·, ·)L2 .

Proof. One checks that D(C∞(M,E)) = {u ∈ C∞(M,E) | (u, v)L2 = 0 for all v ∈
ker(D)}. The details are left as an exercise.
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1.5. Hodge theory

Definition 1.5.1. Let M be a smooth manifold, and let Ej → M , j = 0, . . . , N + 1,
be vector bundles over M . Let dj ∈ Diff 1(Ej , Ej+1), j = 0, . . . , N , be first order
operators satisfying dj+1 ◦ dj ≡ 0 for j = 0, . . . , N − 1. Then the sequence

C∞(M,E0)
d0−→ C∞(M,E1)

d1−→ . . .
dN−1−−−→ C∞(M,EN )

dN−−→ C∞(M,EN+1) (1.47)

is called a complex of differential operators and is denoted by (E•, d•).
The vector space

Hj(E•, d•) :=
ker dj : C

∞(M,Ej) → C∞(M,Ej+1)

im dj−1 : C∞(M,Ej−1) → C∞(M,Ej)
(1.48)

is called the j-th cohomology of the complex (E•, d•).
A complex (E•, d•) is called a Dirac complex, iff the manifold M and the bundles
Ej →M , j = 0, . . . , N + 1, carry metrics such that the operator

D := d+d∗ :=
N⊕

j=0

dj⊕
N⊕

j=0

d∗j : C
∞(M,E0⊕ . . .⊕EN+1) → C∞(M,E0⊕ . . .⊕EN+1)

is of Dirac-type.

Remark 1.5.2. The condition dj+1 ◦ dj ≡ 0 is equivalent to im(dj) ⊂ ker(dj+1); thus
the definition of cohomology makes sense.

Example 1.5.3. The de Rham complex consists of the bundles Ej := ΛjT ∗M with
the exterior derivative dj : C∞(M,ΛjT ∗M) → C∞(M,Λj+1T ∗M) on j-forms as j-th
differential operator. For any Riemannian metric on M and the induced metrics on the
bundles ΛjT ∗M , the de Rham complex is a Dirac complex, since the Euler operator
D = d+ d∗ is of Dirac-type by Example 1.3.10.
Obviously, the j-th cohomology of the de Rham complex is nothing but the j-th de
Rham cohomology of M .

Example 1.5.4. Let M be a complex manifold of complex dimension m. For a fixed
p ∈ {0, . . . ,m} set Ej := Λp,jT ∗M and dj :=

√
2 · ∂̄. This defines the Dolbeault

complex of M . By Example 1.3.20, for any Hermitian metric on M and the induced
metrics on the bundles Λp,jT ∗M , the Dolbeault complex is a Dirac complex, since the
Dolbeault operator D =

√
2 · (∂̄ + ∂̄∗) is a Dirac-type operator.

In the following, let M be a compact manifold, and let (E•, d•) be a Dirac complex
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on M . The aim of Hodge theory is to find particularly nice representatives of the
cohomology classes of (E•, d•). The idea is to do this by minimizing the L2-norm: For
any cohomology class ω ∈ Hj(E•, d•), we look for α ∈ C∞(M,Ej) that minimizes ‖ · ‖L2

on ω ⊂ C∞(M,Ej). Thus for any η ∈ C∞(M,Ej−1), we set

0 =
d

dt

∣∣∣
t=0

∥∥∥α+ t dj−1 η
∥∥∥
2

L2

=
d

dt

∣∣∣
t=0

∫

M

〈
α+ t dj−1 η, α+ t dj−1 η

〉
dvol

=

∫

M

[
〈α, dj−1η〉+ 〈dj−1η, α〉

]
dvol

= 2Re

∫

M

〈α, dj−1η〉 dvol

= 2Re

∫

M

〈d∗j−1α, η〉 dvol.

Thus, ∫

M

〈d∗j−1α, η〉 dvol = 0 for all η ∈ C∞(M,Ej−1),

hence d∗j−1α = 0. By assumption, α represents a cohomology class ω ∈ Hj(E•, d•),
hence djα = 0. We thus conclude

Dα = 0.

Definition 1.5.5. Let (E•, d•) be a Dirac complex on M . The operator

∆d := D∗D = D2

is called the Hodge Laplacian of the Dirac complex.

For the de Rham complex, we had already defined the Hodge Laplacians ∆d in degree k
in (1.16).

Remark 1.5.6. Let M be a compact manifold, and let D be a self-adjoint Dirac-type
operator, acting on sections of a vector bundle E over M . Then we have Dα = 0 ⇐⇒
D2α = 0:
For, if D2α = 0, we have

0 =
(
D2α,α

)
L2 = (Dα,Dα)L2 = ‖Dα‖2L2 ,

and thus, Dα = 0. The reverse implication is obvious.
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We have seen above that a dj-closed section α ∈ C∞(M,Ej) that minimizes the L2-
norm in its cohomology class necessarily satisfies ∆dα = 0. In the case of the de Rham
complex, this means that α is a harmonic form. For the general case we define:

Definition 1.5.7. Let D be a formally self-adjoint Dirac-type operator, acting on
sections of a vector bundle E over M .
A section α ∈ C∞(M,E) is called harmonic iff Dα = 0.

Remark 1.5.8. Let D be a self-adjoint Dirac-type operator, acting on sections of a
vector bundle E over a compact manifoldM . By Remark 1.5.6, a section α ∈ C∞(M,E)
is harmonic iff ∆dα = 0.

Theorem 1.5.9 (Hodge). Let M be a compact Riemannian manifold, and let
(E•, d•) be a Dirac complex on M . Then any cohomology class in H∗(E•, d•) has
a unique harmonic representative.
More precisely, the map

ker
(
∆d : C

∞(M,Ej) → C∞(M,Ej)
)

→ Hj(E•, d•)

α 7→ [α]

is a vector space isomorphism.

Remark 1.5.10. Let α ∈ C∞(M,Ej). By Remark 1.5.6, the condition ∆dα = 0 is
equivalent to α being harmonic, i.e. to

0 = Dα = djα︸︷︷︸
∈Ej+1

+ d∗j−1α︸ ︷︷ ︸
∈Ej−1

.

Thus ∆dα = 0 yields djα = 0 and d∗j−1α = 0. In particular, α represents a cohomology
class.

Proof of Theorem 1.5.9.

a) By definition, D = d+ d∗ : C∞(M ;E) → C∞(M,E) is a formally self-adjoint Dirac-

type operator, where E :=
N+1⊕
j=0

Ej .

Let f be the function

f(λ) :=

{
1
λ2
, if λ 6= 0,

0 if λ = 0.
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Then f |spec(D) is bounded. Thus G := f(D̄) : L2(M,E) → L2(M,E) is a bounded
operator. It is called the Green operator for D2, i.e., G is an inverse to D2 on the
complement of its kernel.

Note that d and d∗ commute with D2 = ∆d = dd∗ + d∗d. Thus the eigenspaces
E(D2, λ2) are invariant under d and d∗, and hence d and d∗ both commute with G.

Now define for j = 0, . . . , N + 1:

Hj := ker
(
∆d : C

∞(M,Ej) → C∞(M,Ej)
)

and let

π : L2(M,E) → H0 ⊕ . . .⊕HN+1 =: H = ker(D)

be the orthogonal projection.

Then we have D2G = id−π, since G is the Green operator for D2. We now put
H := d∗G. This yields

id−π = D2G =
(
dd∗ + d∗d

)
G = dH +Hd. (1.49)

b) We show that the map Hj → Hj(E•, d•), α 7→ [α], is injective:

For α ∈ Hj with [α] = 0, there exists a section β ∈ C∞(M,Ej−1) satisfying α = dβ.
We then have

α = dβ = d(id β)
(1.49)
= d

(
(dH +Hd+ π)β

)
= dHdβ = dHα = dd∗ Gα︸︷︷︸

=0

= 0.

c) We show that the map Hj → Hj(E•, d•), α 7→ [α], is surjective:

Let ω ∈ Hj(E•, d•). Choosing any representative γ ∈ ω and putting α := π(γ) ∈ Hj,
we obtain:

γ − α = (id−π)(γ) = (dH +Hd)(γ) = dHγ.

Thus, α = γ − dHγ and hence [α] = [γ] = ω.

Corollary 1.5.11. The cohomologies Hj(E•, d•) of a Dirac-complex over a compact
manifold are finite-dimensional.

Proof. By Theorem 1.4.18, the eigenspace H = ker(∆d) is finite dimensional. By the
Hodge Theorem 1.5.9, it is isomorphic to the direct sum of the cohomologies.
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Definition 1.5.12. Let M be a compact Riemannian manifold, and let (E•, d•) be
a Dirac complex on M . Let ∆d be the Hodge Laplacian of the complex. The set of
harmonic sections in degree j is denoted as

Hj(E•, d•) := ker
(
∆d : C

∞(M,Ej) → C∞(M,Ej)
)

(1.50)

Corollary 1.5.13 (Hodge decomposition). Let M be a compact Riemannian
manifold and let (E•, d•) be a Dirac complex on M . Then for all j we have

C∞(M,Ej) = Hj(E•, d•)⊕ dj−1(C
∞(M,Ej−1))⊕ d∗j (C

∞(M,Ej+1))

and the sum is orthogonal with respect to (·, ·)L2 .

Proof. Put E := ⊕N+1
j=0 Ej . Then the Dirac-type operator D ∈ Diff 1(E,E) is formally

self-adjoint. By the Fredholm alternative Corollary 1.4.28 we have

C∞(M,E) = ker(D)⊕D(C∞(M,E)) = ker(∆d)⊕D(C∞(M,E))

and the sum is orthogonal with respect to (·, ·)L2 . The corollary now follows easily by
considering the degree j.

Example 1.5.14. The dimension dimRH
j
dR(M) =: bj(M) of the j-th cohomomology

of the de Rham complex is called the j-th Betti number of M . The Betti numbers are
topological invariants of the manifold M .

Example 1.5.15. LetM be a compact complex manifold of complex dimension m. For
a fixed p ∈ {0, . . . ,m}, the dimension dimHp,q(M) =: hp,q(M) of the q-th cohomology
of the Dolbeault complex (as defined in Example 1.5.4) is called the (p, q)-th Hodge
number of M .

Let M be a compact connected 2-dimensional Riemannian manifold, and let K be the
Gauß curvature of M . Then by the Gauß-Bonnet Theorem we have

∫

M

K dA = 2π χ(M) = 4π
(
1− g(M)

)
, (1.51)

where χ(M) is the Euler characteristic and g(M) = 1
2b1(M) is the genus of M . Both

χ(M) and g(M) are topological invariants of the manifold M , i.e. they only depend on
the homotopy type of M . A proof of these statements is postponed to Section 3.4.
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As a consequence of the Gauß-Bonnet theorem, we observe that if g(M) ≥ 2 then M
does not admit a metric of nonnegative Gauß curvature K ≥ 0. If g(M) ≥ 1 then M
does not admit a metric of positive Gauß curvature K > 0.
The following theorem may be regarded as a generalization of this observation:

Theorem 1.5.16 (Bochner). LetM be a compact connected n-dimensional Rieman-
nian manifold. Then the following holds:

a) If Ric > 0 then b1(M) = 0.

b) If Ric ≥ 0 then b1(M) ≤ n.

Proof. Let ∆d be the Hodge Laplacian, restricted to C∞(M,Λ1T ∗M
)
. By the Hodge

Theorem 1.5.9, we have b1(M) = dimker(∆d).

a) Assume that Ric > 0, and let α be a harmonic 1-form. By the compactness of M ,
there is a κ > 0 such that Ric ≥ κ. Using the Bochner formula (1.17) and integration
by parts, we conclude:

0 = (∆dα,α)L2

=
(
∇∗∇α+Ric(α), α

)
L2

= (∇α,∇α)L2 +
(
Ric(α), α

)
L2

≥ ‖∇α‖2L2 + κ‖α‖2L2

≥ κ‖α‖2L2 .

Thus, ‖α‖L2 = 0 and hence α = 0.

b) Now assume Ric ≥ 0, and let α1, . . . , αn+1 be harmonic 1-forms. We show that they
are linearly dependent. From the estimate in a), we conclude

0 = (∆dαj , αj)L2 ≥ ‖∇αj‖2L2 .

Hence ∇αj = 0.

Now fix x0 ∈ M and consider α1(x0), . . . , αn+1(x0) ∈ T ∗
x0M . Since dim(T ∗

x0M) = n,

there exist c1, . . . , cn+1 ∈ R which are not all equal to 0 such that
∑n+1

j=1 cj αj = 0.

Since M is connected, for any x ∈ M , we find a smooth curve γ : [0, 1] → M such
that γ(0) = x0 and γ(1) = x. We then have

∇
dt

n+1∑

j=1

cj αj(γ(t)) =

n+1∑

j=1

cj ∇γ̇(t)αj︸ ︷︷ ︸
=0

= 0.
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Since
n+1∑
j=1

cj αj(γ(0)) = 0, it follows that

n+1∑

j=1

cj αj(γ(t)) = 0, for all t ∈ [0, 1].

In particular,
n+1∑
j=1

cj αj(x) = 0 holds for any x ∈ M . Thus, the 1-forms α1, . . . , αn+1

are linearly dependent.

Remark 1.5.17. The inequality in b) is sharp: The n-torus M = T n carries a flat
metric, in particular Ric = 0, and it has b1(T

n) = n. Moreover, by a small modification
of the proof of Theorem 1.5.16 one can show a stronger statement: If Ric ≥ 0 on M and
Ric > 0 somewhere on M , then b1(M) = 0.

Intersection form and signature

Definition 1.5.18. Let M be a compact oriented manifold of dimension n and let
k ∈ {0, . . . , n}. The intersection pairing is the bilinear form

B : Hk
dR(M)×Hn−k

dR (M) → R

(
[α], [β]

)
7→

∫

M

α ∧ β.

Remark 1.5.19. The intersection pairing is well-defined, since for closed forms α ∈
Ωk(M) and β ∈ Ωn−k(M), the integral

∫
M α∧β only depends on the de Rham cohomol-

ogy classes of α and β: Replacing α in the first entry by α + dγ, where γ ∈ Ωk−1(M),
we find ∫

M

(α+ dγ) ∧ β −
∫

M

α ∧ β =

∫

M

dγ ∧ β =

∫

M

d(γ ∧ β)

︸ ︷︷ ︸
=0 by Stokes

±
∫

M

γ ∧ dβ︸︷︷︸
=0

= 0

and similarly for the second entry.

Theorem 1.5.20 (Poincaré duality). For a compact oriented manifold M of di-
mension n, the intersection pairing

B : Hk
dR(M)×Hn−k

dR (M) → R
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is non-degenerate. In particular,

bk(M) = bn−k(M) (1.52)

Proof. Let [α] ∈ Hk
dR(M) be a class such that for all [β] ∈ Hn−k

dR (M), we have

B
(
[α], [β]

)
= 0.

We show that [α] = 0.
Choose a Riemannian metric on M . By the Hodge Theorem 1.5.9 we choose a har-
monic representative α of the class [α]. Put β := ∗α ∈ Ωn−k(M). Then β is a harmonic
representative5 of the cohomology class [β] ∈ Hn−k

dR (M). We thus have

0 = B
(
[α], [β]

)
=

∫

M

α ∧ β =

∫

M

α ∧ ∗α =

∫

M

〈α,α〉 dvol = ‖α‖2L2 .

Hence α = 0 and thus the map Hk
dR(M) → (Hn−k

dR (M))∗, [α] 7→ B([α], ·) is injective.

It follows that bk(M) ≤ bn−k(M). Analogously one shows that the map Hn−k
dR (M) →

(Hk
dR(M))∗, [β] 7→ B(·, [β]) is injective and that bn−k(M) ≤ bk(M).

Corollary 1.5.21. For a compact oriented manifold M of odd dimension n the Euler

characteristic

χ(M) :=
n∑

k=0

(−1)k bk(M)

vanishes.

Proof. Since n is odd, we have that k is odd iff n − k is even. By Poincaré duality, we
have bk(M) = bn−k(M), thus the k-th summand cancels with the (n − k)-th summand
for k = 0, . . . , n−1

2 .

In the following let M be a compact oriented manifold of dimension dimM = n = 4k.
Then n

2 = 2k is even, so that the intersection pairing

B : H2k
dR(M)×H2k

dR(M) → R ,
(
[α], [β]

)
7→

∫

M

α ∧ β ,

5The Hodge star operator ∗ maps harmonic forms to harmonic forms: If α is harmonic then we have

d(∗α) = ± ∗ ∗d∗
︸︷︷︸

=±d∗

α = ± ∗ d
∗
α

︸︷︷︸

=0

= 0 and d
∗(∗α) = ± ∗ d ∗(∗

︸︷︷︸

=± id

α) = ± ∗ dα
︸︷︷︸

=0

= 0.



1.5. Hodge theory 61

is symmetric. The corresponding quadratic form on H2k
dR(M) is called the intersection

form.

Choose a Riemannian metric on M and consider the Hodge star operator

∗ : H2k(M) → H2k(M)

on the space H2k(M) of harmonic 2k-forms on M .
By Lemma 1.3.16 c), we have that ∗2 = 1 on the space of 2k-forms of a 4k-dimensional
manifold.
Thus we may put

H+ := +1-eigenspace for ∗,
H− := −1-eigenspace for ∗ .

Now for α ∈ H±, we have

B
(
[α], [α]

)
=

∫

M

α ∧ α = ±
∫

M

α ∧ ∗α = ±‖α‖2L2

For α ∈ H+ and β ∈ H−, we have

B
(
[α], [β]

)
=

∫

M

α ∧ β =

∫

M

∗α ∧ β =

∫

M

β ∧ ∗α =

∫

M

〈β, α〉 dvol =
∫

M

α ∧ ∗β

= −
∫

M

α ∧ β = −B
(
[α], [β]

)

and thus, B
(
[α], [β]

)
= 0. Hence in the splitting H2k

dR(M) = H+ ⊕H−, the intersection
form B is positive definite on H+, negative definite on H−, and the two subspaces are
perpendicular with respect to B.

Definition 1.5.22. Let M be a compact oriented Riemannian 4k-dimensional man-
ifold. The harmonic 2k-forms in H+ are called self-dual, those in H− are called
anti-self-dual. We set

b+(M) := dimH+,

b−(M) := dimH−.

The signature of M is defined as

sign(M) := b+(M)− b−(M) .
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In the following let M be a compact complex manifold of complex dimension m and
consider the map

B : Hp,q(M)×Hm−p,m−q(M) → C

([α], [β]) 7→
∫

M

α ∧ β

As for the intersection pairing in de Rham cohomology, the map B is well-defined:
Replacing α in the first entry by α+ ∂̄γ, with γ ∈ Ωp,q−1(M), we find

∫

M

(
α+ ∂̄γ

)
∧ β −

∫

M

α ∧ β =

∫

M

(
∂̄γ
)
∧ β =

∫

M

(dγ) ∧ β −
∫

M

(∂γ) ∧ β

=

∫

M

d(γ ∧ β)

︸ ︷︷ ︸
=0

±
∫

M

γ ∧ dβ = ±
∫

M

γ ∧ ∂̄β︸︷︷︸
=0

±
∫

M

γ ∧ ∂β

︸ ︷︷ ︸
=0 since

γ∧∂β∈Ωm+1,m−1

.

and similarly for the second entry. We have used that ∂γ ∧β, γ ∧∂β ∈ Ωm+1,m−1 = {0}.
For any Hermitian metric on M , the Hodge star operator induces a map

∗ : Λp,qT ∗M → Λm−p,m−qT ∗M.

For if α ∈ Λp,qT ∗
xM and β ∈ Λk,lT ∗

xM , with (k, l) 6= (m− p,m− q), we have

〈∗α, β〉 vol = ±β ∧ α ∈ Λk+p,q+lT ∗
xM = {0},

since vol ∈ Λk+p,q+lT ∗
xM implies k + p+ q + l = 2m and thus k + p > m or q + l > m.

Now let α ∈ Ωp,q(M). Then we have

d∗α = ∂∗α︸︷︷︸
∈Ωp−1,q(M)

+ ∂̄∗α︸︷︷︸
∈Ωp,q−1(M)

.

On the other hand, we also have

d∗α = − ∗ d ∗ α
= − ∗∂ ∗ α︸ ︷︷ ︸

∈Ωp−1,q(M)

− ∗∂̄ ∗ α︸ ︷︷ ︸
∈Ωp,q−1(M)

.

Thus
∂∗ = − ∗ ∂ ∗ and ∂̄∗ = − ∗ ∂̄ ∗ .

Now the same argument as in the proof of the Poincaré duality Theroem 1.5.20 yields
the following:
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Theorem 1.5.23 (Kodaira-Serre duality). Let M be a compact complex manifold
of complex dimension m. Then the bilinear form

B : Hp,q(M)×Hm−p,m−q(M) → C

is non-degenerate. In particular,

hp,q(M) = hm−p,m−q(M).





2. Spinors and the classical Dirac operator

2.1. Clifford algebras

Definition 2.1.1. Let K = R or C and let V be a finite-dimensional K-vector space
equipped with a symmetric bilinear form β.
A Clifford algebra for (V, β) is a unital K-algebra A together with a linear map
ı : V → A such that the following properties hold:

i) ı(v)2 = −β(v, v) · 1, for all v ∈ V ,

ii) (A, ı) is universal with respect to i), i.e.:

Whenever A′ is a unital K-algebra with a linear map ı′ : V → A′ satisfying i) then
there exists a unique algebra homomorphism φ : A→ A′ such that the diagram

A

φ

��

V

ı
>>⑥⑥⑥⑥⑥⑥⑥⑥

ı′   ❆
❆❆

❆❆
❆❆

A′

commutes. In other words: A is the smallest algebra that satisfies property i).

Remark 2.1.2. By a polarization argument, one immediately sees that property i)
above is equivalent to the Clifford relation

i′) ı(v) · ı(w) + ı(w) · ı(v) = −2β(v,w) · 1, for all v,w ∈ V . (2.1)

Remark 2.1.3. Let (M,g) be a Riemannian manifold and let D ∈ Diff 1(E,E) be
a formally self-adjoint Dirac-type operator. By equation (1.18), property i) holds for
(V, β) = (T ∗

xM,g|x), A = End(Ex), and ı = σ1(D, ·). However, ii), does not hold in
general.

Example 2.1.4. Let β = 0. The Clifford relation (2.1) yields ı(v) · ı(w) = −ı(w) · ı(v)
for all v,w ∈ V . Let n = dim(V ) and let A := Λ•V =

⊕n
k=0Λ

kV be the exterior algebra
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of V . The map ı : V
∼=−→ Λ1V →֒ Λ•V = A obviously satisfies property i).

Now let ı′ : V → A′ be any map from V to a K-algebra A′ satisfying property i). A
morphism φ : A = ΛkV → A′ as in property ii) necessarily satisfies

φ(v1 ∧ . . . ∧ vk) = φ(ı(v1) ∧ . . . ∧ ı(vk))
= φ(ı(v1)) · . . . · φ(ı(vk))
= ı′(v1) · . . . · ı′(vk) .

Hence φ is uniquely determined. Clearly, φ : ΛkV → A′ defined by this formula yields a
homomorphism with φ ◦ ı = ı′.

Proposition 2.1.5. Let V be a finite-dimensional K-vector space and let β be a sym-
metric bilinear form on V .
Then there exists a Clifford algebra (A, ı) for (V, β). The pair (A, ı) is unique up to
isomorphism.

Proof.
Uniqueness: Let (A, ı) and (A′, ı′) be two Clifford algebras for (V, β).

By the universal property for A, there exists
an algebra homomorphism

φ : A→ A′,

such that diagram 1 commutes.

A

φ

��

V

ı
>>⑥⑥⑥⑥⑥⑥⑥⑥

ı′   ❆
❆❆

❆❆
❆❆

A′

Diag. 1

Similarly, by the universal property for A′,
there exists an algebra homomorphism

ψ : A′ → A,

such that diagram 2 commutes.

A′

ψ

��

V

ı′
>>⑥⑥⑥⑥⑥⑥⑥⑥

ı
  ❆

❆❆
❆❆

❆❆
❆

A

Diag. 2
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We now combine both diagrams to the alongside commu-
tative diagram. The uniqueness in the universal property
of (A, ı) yields

ψ ◦ φ = idA .

A

φ

��
V

ı

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦
ı′ //

ı

  ❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
A′

ψ

��
A

Analogously, we combine the first two diagrams to the
alongside commutative diagram. Then the uniqueness in
the universal property of (A′, ı′) yields

φ ◦ ψ = idA′ .

A′

ψ

��
V

ı′

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦
ı //

ı′

  ❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
A

φ

��
A′

Thus φ is an isomorphism with inverse ψ.

Existence: We consider the tensor algebra T (V ) :=
∞⊕
k=0

⊗kV and define the inclusion

ı0 : V
∼=−→ ⊗1V →֒ T (V ). Let I ⊂ T (V ) be the two-sided ideal generated by all elements

of the form
v ⊗ w + w ⊗ v + 2β(v,w) · 1, v, w ∈ V.

Put A := T (V )/I and denote by π : T (V ) → A
the quotient homomorphism. Then define ı by the
alongside commutative diagram, i.e., ı = π ◦ ı0.

V
ı0 //

ı

!!❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
T (V )

π

��
A

We check that the Clifford relation 2.1 (property i’) in Definition 2.1.1) holds:

ı(v) · ı(w) + ı(w) · ı(v) = π(ı0(v)) · π(ı0(w)) + π(ı0(w)) · π(ı0(v))
= π

(
ı0(v)⊗ ı0(w) + ı0(w)⊗ ı0(v)

)

= π(v ⊗ w + w ⊗ v)

= π(−2β(v,w) · 1)
= −2β(v,w) · 1.

We check that property ii) of Definition 2.1.1 holds: Let A′ be any unital K-algebra,
together with a linear map ı′ : V → A′ satisfying property i) of Definition 2.1.1.
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a) Uniqueness of φ: Let φ : A = T (V )/I → A′ be a homomorphism satisfying φ ◦ ı = ı′.
Then we have:

φ(π(v1 ⊗ . . . ⊗ vk)) = φ
(
π(ı0(v1))

)
· . . . · φ

(
π(ı0(vk))

)

= φ
(
ı(v1)

)
· . . . · φ

(
ı(vk)

)

= ı′(v1) · . . . · ı′(vk) .

Thus φ is uniquely determined.

b) Existence of φ: Consider the unique homomorphism
ψ : T (V ) → A′, such that the following diagram commutes.
Then we have:

ψ
(
v1 ⊗ . . .⊗ vk

)
= ı′(v1) · . . . · ı′(vk).

V
ı0 //

ı′

!!❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈ T (V )

ψ

��
A′

We need to check that the diagram factorizes through A, i.e., ψ vanishes on the ideal
I and hence descends to the quotient A = T (V )/I. For v,w ∈ V , we compute:

ψ(v ⊗ w + w ⊗ v + 2β(v,w)1)

= ψ(ı0(v)⊗ ı0(w) + ı0(w)⊗ ı0(v) + 2β(v,w)1)

= ψ(ı0(v)) · ψ(ı0(w)) + ψ(ı0(w)) · ψ(ı0(v)) + 2β(v,w)1

= ı′(v) · ı′(w) + ı′(w) · ı′(v) + 2β(v,w) · 1
= 0.

In the last equality we have used property i) from Definition 2.1.1 for ı′ : V → A′.

Thus ψ : T (V ) → A′ descends to a homomorphism

φ : A = T (V )/I → A′,

such that the alongside diagram commutes. Clearly, the homo-
morphism φ is uniquely determined by the homomorphism ψ.

T (V )
π //

ψ
!!❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉

A

φ

��
A′

Moreover, the alongside diagram commutes.
We have thus constructed a homomorphism
φ : A→ A′ satisfying φ ◦ ı = ı′.

V

ı

!!ı0 //

ı′

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇ T (V )

ψ

��

π // A

φ

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

A′
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Definition 2.1.6. Let V be a finite-dimensional K-vector space, equipped with a
symmetric bilinear form β. We denote the Clifford algebra for (V, β) by Cl(V, β).

Remark 2.1.7. Let V be a finite-dimensional K-vector space, and let β be a symmetric
bilinear form on V . For any Clifford algebra (A, ı) the map ı : V → A is injective:

If the symmetric form β is definite then this is clear from i) of
Definition 2.1.1:

ı(v)2 = −β(v, v) · 1.
In the general case, we have the alongside commutative dia-
gram. Since ı1(v) = v /∈ I, the map ı1 is injective. Hence so
is ı.

V
ı //

ı1
""❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋ A

∼=
��

T (V )/I

Remark 2.1.8. Let V be a K-vector space, and let b1, . . . , bn ∈ V be a basis of V . Then

{bi1 ⊗ . . . ⊗ bik} k∈N0
1≤i1,...,ik≤n

is a basis of the vector space T (V ). Thus the elements

{bi1 · . . . · bik} k∈N0
1≤i1,...,ik≤n

generate the Clifford algebra T (V )/I as a vector space. We use the Clifford relations
bi · bj = −bj · bi − 2β(bi, bj) · 1 to express all elements of T (V )/I as linear combinations
of

{bi1 · . . . · bik} k∈N0
1≤i1≤i2≤...≤ik≤n

.

Moreover, we use the relation bi · bi = −β(bi, bi) · 1 to express all elements of T (V )/I as
linear combinations of

{bi1 · . . . · bik}k=0,1,...n
1≤i1<i2<...<ik≤n

.

In particular, dimA ≤ 2n <∞. We will see later that dimA = 2n, hence this generating
system is a basis of the Clifford algebra Cl(V, β).

Example 2.1.9. Consider V = R with the symmetric bilinear form β(x, y) := x · y.
Let e1 be the standard basis of R.

• The elements 1 and e1 generate Cl(R, β) as a vector space. If 1, e1 ∈ Cl(R, β) were
linearly dependent, i.e., e1 = α · 1 for some α ∈ R then it would follow

α2 · 1 = e21 = −β(e1, e1) · 1 = −1.  

• The vector space isomorphism φ : Cl(R, β) → C, defined by

φ(α1 + βe1) = α · 1 + β · i,
is also an algebra homomorphism. Hence, Cl(R, β) ∼= C.
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Example 2.1.10. Consider V = R with the symmetric bilinear form γ(x, y) := −x · y.
Let e1 be the standard basis of R. Then e21 = −γ(e1, e1)1 = 1.

• Again, 1 and e1 generate Cl(R, γ) as a vector space. If 1, e1 ∈ Cl(R, γ) were linearly
dependent, i.e., e1 = α · 1 for some α ∈ R then it would follow that

e1 − α · 1 as an element of T (R) was contained in I,

in other words,

e1 − α · 1 = x⊗ (e1 ⊗ e1 − 1)⊗ y, for some x, y ∈ T (R).

We write
x = xmax + xlower and y = ymax + ylower,

where xmax 6= 0 and ymax 6= 0 are homogeneous of maximal degree. Then

e1 − α · 1︸ ︷︷ ︸
degree ≤1

= xmax ⊗ e1 ⊗ e1 ⊗ ymax︸ ︷︷ ︸
degree =deg(xmax)+2+deg(ymax)≥ 2

+ l.o.t.︸︷︷︸
lower degree

Thus,
xmax ⊗ e1 ⊗ e1 ⊗ ymax = 0  to xmax 6= 0, ymax 6= 0.

Hence, 1, e1 form a vector space basis of Cl(R, γ). Thus, 1
2(1 + e1),

1
2 (1− e1) is also a

vector space basis. Moreover, we have:

1

2
(1± e1) ·

1

2
(1± e1) =

1

4

(
1± e1 ± e1 + e21

)
=

1

2
(1± e1)

1

2
(1 + e1) ·

1

2
(1− e1) =

1

4

(
1− e1 + e1 − e21

)
= 0. (2.2)

• Consider the vector space isomorphism φ : Cl(R, γ) → R⊕ R,

α · 1
2
(1 + e1) + β · 1

2
(1− e1) 7−→ (α, β).

We check that φ is also an algebra homomorphism, where the multiplication in R⊕R

is defined componentwise:

φ
((
α · 1

2
(1 + e1) + β · 1

2
(1− e1)

)
·
(
α′ · 1

2
(1 + e1) + β′ · 1

2
(1− e1)

))

(2.2)
= φ

(
αα′

2
(1 + e1) +

ββ′

2
(1− e1)

)

=
(
αα′, ββ′

)

= (α, β) · (α′, β′)

= φ

(
α · 1

2
(1 + e1) + β · 1

2
(1− e1)

)
· φ
(
α′ · 1

2
(1 + e1) + β′ · 1

2
(1− e1)

)
.
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The tensor algebra T (V ) is Z-graded, i.e., it admits a decomposition

T (V ) =
⊕

i∈Z
T i(V ),

such that the multiplication of the homogeneous components corresponds to the addition
of the degrees:

T i(V ) · T j(V ) ⊂ T i+j(V ),

where

T i(V ) =

{
⊗iV, i ≥ 0

0 i < 0.

This Z-grading does not descend to a Z-grading of Cl(V, β), unless β = 0, because
the ideal I is not generated by homogeneous elements. In the generating elements
v ⊗ w + w ⊗ v + 2β(v,w)1 of the ideal I, the part v ⊗ w + w ⊗ v has degree 2, whereas
β(v,w) · 1 has degree 0.
Instead of the Z-grading of the tensor algebra, consider the Z2-grading

T (V ) = T even(V )
⊕

T odd(V ),

where

T even(V ) =
⊕

i even

T i(V ), T odd(V ) =
⊕

i odd

T i(V ) .

This grading descends to the Clifford algebra Cl(V, β), since the ideal I is generated by
elements in the even part.
A more intrinsic definition of the Z2-grading is given as follows: Let ı : V → Cl(V, β) be
the standard embedding. Consider ı′ : V → Cl(V, β), defined by

ı′(v) = −ı(v), ∀ v ∈ V.

Then ı′ satisfies
ı′(v)2 = ı(v)2 = −β(v, v) · 1.

Thus, there exists an algebra homomorphism
φ : Cl(V, β) → Cl(V, β), such that the alongside dia-
gram commutes.
Upon identification of ı(V ) ⊂ Cl(V, β) with V we have
φ|V = − id.

Cl(V, β)

φ

��

V

ı
;;✈✈✈✈✈✈✈✈✈

ı′ ##❍
❍❍

❍❍
❍❍

❍❍

Cl(V, β)
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This yields a decomposition

Cl(V, β) = Cl0(V, β)⊕ Cl1(V, β),

where

Cl0(V, β) = +1− eigenspace of φ

Cl1(V, β) = −1− eigenspace of φ.

Definition 2.1.11. Let A = A0 ⊕ A1 and B = B0 ⊕ B1 be Z2-graded K-algebras,
where K = R,C, i.e.

A0A0 +A1A1 ⊂ A0, A0A1 +A1A0 ⊂ A1.

Then the Z2-graded tensor product A ⊗̂B of Z2-graded algebras is given by

A ⊗̂B = A⊗B as a vector space,

where

(
A ⊗̂B

)0
= A0 ⊗B0 ⊕A1 ⊗B1

(
A ⊗̂B

)1
= A0 ⊗B1 ⊕A1 ⊗B0

with the multiplication

(a⊗ b)(a′ ⊗ b′) = (−1)ijaa′ ⊗ bb′, a ∈ A, a′ ∈ Ai, b ∈ Bj, b′ ∈ B.

Let (Vi, βi) , i = 1, 2, be finite dimensional K-vector spaces, equipped with symmetric
bilinear forms. By β1 ⊕ β2, we denote the uniquely determined symmetric bilinear form
on V1⊕V2 which restricts to βi on Vi and for which the subspaces Vi ⊂ V1⊕V2, i = 1, 2,
are mutually orthogonal.

Proposition 2.1.12. Let Vi, i = 1, 2, be finite-dimensional K-vector spaces, and let βi
be symmetric bilinear forms on Vi. Then we have:

Cl(V1 ⊕ V2, β1 ⊕ β2) ∼= Cl(V1, β1) ⊗̂Cl(V2, β2).

Proof.
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a) Consider the linear map

j : V1 ⊕ V2 → Cl(V1, β1) ⊗̂Cl(V2, β2)

v1 + v2 7→ ı1(v1)⊗ 1 + 1⊗ ı2(v2).

By Definition 2.1.11, we have:

j(v1 + v2)
2 =

(
ı1(v1)⊗ 1 + 1⊗ ı2(v2)

)2

=
(
ı1(v1)⊗ 1

)(
ı1(v1)⊗ 1

)
+
(
ı1(v1)⊗ 1

)(
1⊗ ı2(v2)

)

+
(
1⊗ ı2(v2)

)(
ı1(v1)⊗ 1

)
+
(
1⊕ ı2(v2)

)(
1⊗ ı2(v2)

)

= ı1(v1)
2 ⊗ 1 + ı1(v1)⊗ ı2(v2)− ı1(v1)⊗ ı2(v2) + 1⊗ ı2(v2)

2

= −β1(v1, v1)1⊗ 1 + 1⊗
(
− β2(v2, v2)1

)

= −
(
β1(v1, v1) + β2(v2, v2)

)
1⊗ 1

= −(β1 ⊕ β2)(v1 + v2, v1 + v2)1⊗ 1.

In the last step we used the fact that the mixed terms in β1 ⊕ β2(v1 + v2, v1 + v2)
cancel, since V1, V2 ⊂ V1 ⊕ V2 are mutually perpendicular with respect to β1 ⊕ β2.

Thus, by the universal property for Cl(V1 ⊕ V2, β1 ⊕ β2) there exists an algebra
homomorphism

φ : Cl(V1 ⊕ V2, β1 ⊕ β2) → Cl(V1, β1) ⊗̂Cl(V2, β2),

such that the diagram

Cl(V1 ⊕ V2, β1 ⊕ β2)

φ

��

V1 ⊕ V2

ı
55❧❧❧❧❧❧❧❧❧❧❧❧❧

j ))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

Cl(V1, β1) ⊗̂Cl(V2, β2)

commutes.

b) To show that φ is an isomorphism, we construct its inverse:

By the universal property for Cl(Vi, βi), i = 1, 2, there exist unique algebra homo-
morphisms ψi such that the diagrams

Cl(Vi, βi)

ψi

��

Vi

ıi
77♦♦♦♦♦♦♦♦♦♦♦♦♦

ı|Vi ''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

Cl(V1 ⊕ V2, β1 ⊕ β2)
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commute for i = 1, 2.

We define the map ψ : Cl(V1, β1) ⊗̂Cl(V2, β2) → Cl(V1 ⊕ V2, β1 ⊕ β2) by

ψ(a⊗ b) := ψ1(a) · ψ2(b), for all a ∈ Cl(V1, β1), b ∈ Cl(V2, β2).

The map ψ is linear and also multiplicative: By Definition 2.1.11, we have for all
a ∈ Cl(V1, β1), a

′ ∈ Cl(V1, β1)
i, b ∈ Cl(V2, β2)

j , b′ ∈ Cl(V2, β2):

ψ
(
(a⊗ b)(a′ ⊗ b′)

)
= ψ

(
(−1)ijaa′ ⊗ bb′

)

= (−1)ijψ1(aa
′) · ψ2(bb

′)

= (−1)ijψ1(a) · ψ1(a
′) · ψ2(b) · ψ2(b

′)

= ψ1(a) · ψ2(b) · ψ1(a
′) · ψ2(b

′)

= ψ(a⊗ b) · ψ(a′ ⊗ b′).

Hence, ψ : Cl(V1, β1) ⊗̂Cl(V2, β2) → Cl(V1⊕V2, β1⊕β2) is an algebra homomorphism.

c) We check that ψ is the inverse to φ. We have the following commutative diagram:

Cl(V1 ⊕ V2, β1 ⊕ β2)

φ

��
V1 ⊕ V2

ı

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ j
//

ı
((◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
Cl(V1, β1) ⊗̂Cl(V2, β2)

ψ

��
Cl(V1 ⊕ V2, β1 ⊕ β2)

The uniqueness in the universal property for Cl(V1 ⊕ V2) yields ψ ◦ φ = id.
To show that φ ◦ ψ = id, we compute:

φ
(
ψ
(
ı1(v1)⊗ ı2(v2)

))
= φ

(
ψ1

(
ı1(v1)

)
· ψ2

(
ı2(v2)

))

= φ
(
ı|V1(v1) · ı|V2(v2)

)

= φ
(
ı(v1)

)
· φ
(
ı(v2)

)

= j(v1) · j(v2)
=
(
ı1(v1)⊗ 1

)(
1⊗ ı2(v2)

)

= ı1(v1)⊗ ı2(v2).

Corollary 2.1.13. Let (V, β) be a finite dimensional K-vector space, equipped with a
symmetric bilinear form β. Then we have dimKCl(V, β) = 2dimK V .
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Proof. a) If (Vi, βi), i = 1, 2, are K-vector spaces with symmetric bilinear forms βi
and if f : V1 → V2 is a K-linear isomorphism such that for all v,w ∈ V1 we have
β2(f(v), f(w)) = β1(v,w), then the Clifford algebras Cl(V1, β1) and Cl(V2, β2) are
isomorphic. The proof of this statement is an exercise.

b) We prove the statement of the corollary by induction on n := dimK V .

Let n = 1. By part a) we may assume that V = K and that there exists a ∈ K such
that for all v,w ∈ K we have β(v,w) = a · v · w.
For K = R and a 6= 0 the map f : R → R, f(x) :=

√
|a| · x is an isomorphism

such that β(v,w) = ±f(v) · f(w) for all v,w ∈ V . By part a) it is thus sufficient
to consider β(x, y) = ±x · y and β = 0. We have already computed these Clifford
algebras Cl(V, β) in Examples 2.1.4, 2.1.9 and 2.1.10. In either case, we obtained
dimRCl(V, β) = 2 = 21.
For K = C it is by part a) sufficient to consider β(x, y) = −x · y and β = 0. For
β(x, y) = −x · y an argument as in Example 2.1.10 shows that Cl(C, β) ∼= C⊕C, for
β = 0 we have the result from Example 2.1.4. Again, we have dimCCl(V, β) = 21.

Now let n ∈ N be arbitrary. Assume that dimKCl(W,β′) = 2n−1 for any (W,β′)
with dimKW = n − 1. Let b1, . . . , bn ∈ V be a basis such that the bi are mutually
perpendicular with respect to β. Consider the splitting

V = K · b1︸ ︷︷ ︸
=:V1

⊕ (K · b2 ⊕ . . .⊕K · bn)︸ ︷︷ ︸
=: V2

.

By Proposition 2.1.12, we have:

Cl(V, β) ∼= Cl(V1, β|V1×V1) ⊗̂Cl(V2, β|V2×V2).

In particular, we have:

dimCl(V, β) = dim
(
Cl(V1, β|V1×V1) ⊗̂Cl(V2, β|V2×V2)

)

= dimCl(V1, β|V1×V1) · dimCl(V2, β|V2×V2)
= 2 · 2n−1

= 2n.

Example 2.1.14. Let βeucl denote the standard Euclidean scalar product on R
n for any

n ∈ N. Consider Cl(R2, βeucl). By Proposition 2.1.12, we have:

Cl(R2, βeucl) ∼= Cl(R, βeucl) ⊗̂Cl(R, βeucl) ∼= C⊗ C.

Let e1, e2 be the standard othonormal basis of R
2. Then a vector space basis of

Cl(R2, βeucl) is given by 1, e1, e2, e1 · e2. We then have the following identities for the
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basis elements:

e21 = −1

e22 = −1

(e1 · e2)2 = e1 · e2 · e1 · e2 = −e21 · e22 = −1

Hence there is an algebra isomorphism Cl(R2, βeucl) → H, given by

1 7→ 1

e1 7→ i

e2 7→ j

e1 · e2 7→ k.

Here H denotes the quaternions. Hence Cl(R2, βeucl) ∼= H.

Remark 2.1.15. Let V be a K-vector space with a symmetric bilinear form β and let
Λ•V := ⊕n

k=0Λ
kV be the exterior algebra of V . If v1, . . . , vn is a basis of V then the

vectors
vi1 ∧ . . . ∧ vik ∈ Λ•V, vi1 · . . . · vik ∈ Cl(V, β),

1 ≤ i1 < . . . < ik ≤ n, 0 ≤ k ≤ n, form a basis of Λ•V and Cl(V, β) respectively. One
shows easily by induction on n = dimV that there exists a β-orthogonal basis v1, . . . , vn
of V , i.e., β(vi, vj) = 0 for i 6= j. For such a basis v1, . . . , vn of V the map

Φ : Λ•V → Cl(V, β) given by vi1 ∧ . . . ∧ vik 7→ vi1 · . . . · vik
and linear extension is independent of the choice of β-orthogonal basis. Φ is an isomor-
phism of vector spaces but not an isomorphism of algebras.

2.2. The Spin Group

Notation 2.2.1. In the following, we denote the Clifford algebra of Rn with the
standard Euclidean scalar product by Cln := Cl(Rn, βeucl).

Remark 2.2.2. Upon identifying R
n with ı(Rn) ⊂ Cln, for every v ∈ R

n \ {0}, we have
v2 = −|v|2 · 1 and thus

− v

|v|2 · v = v ·
(
− v

|v|2
)

= 1.

Thus, Rn \ {0} is contained in the subgroup of (multiplicatively) invertible elements
of Cln.
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Definition 2.2.3. We define the Pin group Pin(n) by

Pin(n) :=
{
v1 · . . . · vm ∈ Cln

∣∣ vj ∈ Sn−1 ⊂ R
n,m ∈ N0

}
.

Remark 2.2.4. The subset Pin(n) ⊂ Cln is a group with respect to the multiplication
in Cln. The inverse element to v1 · . . . · vm is given by

(v1 · . . . · vm)−1 = (−vm) · . . . · (−v1) ∈ Pin(n).

Definition 2.2.5. We define the Spin group Spin(n) by

Spin(n) := Pin(n) ∩ Cl0n

=
{
v1 · . . . · vm ∈ Cln

∣∣ vj ∈ Sn−1,m ∈ 2N0

}
.

Remark 2.2.6. By the argument from Remark 2.2.4, Spin(n) is a subgroup of Pin(n).

For a fixed v ∈ Sn−1 ⊂ R
n and any x ∈ R

n, we have:

v · x · v−1 = −v · x · v = −
(
− x · v − 2〈x, v〉1

)
· v = −

(
x− 2〈x, v〉 v

)
.

The map x 7→
(
x − 2〈x, v〉 v

)
is the reflection about the hyperplane v⊥ perpendicular

to v. In particular, (x 7→ v · x · v−1) ∈ O(n). For any a := v1 · . . . ·vm ∈ Spin(n), the map

x 7→ a · x · a−1 = v1 · . . . · vm · x · v−1
m · . . . · v−1

1

consists of an even number of hyperplane reflections and is thus contained in SO(n). We
have thus defined a group homomorphism ̺ : Spin(n) → SO(n) by

̺(a)x := a · x · a−1. (2.3)

Example 2.2.7. Let n = 1. Then we have SO(1) = {1} and

Spin(1) =
{
v1 · . . . · vm | vj ∈ S0,m ∈ 2N0

}

= {ε1e1 · . . . · εmem | εj = ±1,m ∈ 2N0}
= {−1, 1}
∼= Z2.

Example 2.2.8. Let n = 2. Then SO(2) ∼= U(1) ∼= S1 ⊂ C and we have:

Spin(2) = {(cos θ1e1+sin θ1e2)·. . .·(cos θme1+sin θme2)
∣∣ θj ∈ R, j = 1, . . . ,m, m ∈ 2N0}.
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Now we compute:

(cos θe1 + sin θe2)(cosϕe1 + sinϕe2)

= − cos θ cosϕ− sin θ sinϕ+ (cos θ sinϕ− sin θ cosϕ)e1 · e2
= −

(
cos (θ − ϕ) + sin (θ − ϕ)e1 · e2

)

and

(cos(α) + sin(α)e1 · e2) · (cos(β) + sin(β)e1 · e2)
= cos(α) cos(β)− sin(α) sin(β) + (cos(α) sin(β) + sin(α) cos(β))e1 · e2
= cos(α+ β) + sin(α+ β)e1 · e2.

We thus obtain:

Spin(2) =
{
(−1)

m
2
(
cos (θ1 − θ2) + sin (θ1 − θ2)e1 · e2

)
· . . .

·
(
cos (θm−1 − θm) + sin (θm−1 − θm)e1 · e2

) ∣∣ θj ∈ R,m ∈ 2N0

}

=
{
(−1)

m
2
(
cos (θ1 − θ2 + θ3 − θ4 + . . .+ θm−1 − θm)

+ sin (θ1 − θ2 + θ3 − θ4 + . . .+ θm−1 − θm)e1 · e2
) ∣∣ θj ∈ R,m ∈ 2N0

}

=
{
±(cosα+ sinαe1 · e2)

∣∣ α ∈ R
}

=
{
cosα+ sinαe1 · e2

∣∣ α ∈ R
}

∼= U(1)
∼= SO(2).

We compute the group homomorphism ̺ : Spin(2) → SO(2): For j = 1, 2, we have:

̺(cosα+ sinαe1 · e2)(ej)
= (cosα+ sinαe1 · e2) · ej · (cosα+ sinαe1 · e2)−1

= (cosα+ sinαe1 · e2) · ej · (cos (−α) + sin (−α) e1 · e2)
= cos2 α ej − cosα sinα ej · e1 · e2 + cosα sinα e1 · e2 · ej − sin2 αe1 · e2 · ej · e1 · e2

=
(
cos2 α− sin2 α

)
ej +

{
2 cosα sinα e2 j = 1,

−2 cosα sinα e1 j = 2

= cos (2α) ej +

{
sin (2α) e2 j = 1,

− sin (2α) e1 j = 2
.

Thus,

̺(cosα+ sinα e1 · e2) =
(
cos 2α − sin 2α
sin 2α cos 2α

)
.

In summary, we have the commutative diagram:

Spin(2)

̺

��

∼= // U(1)

z 7→z2

��
SO(2) ∼=

// U(1)
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Remark 2.2.9. Recall from Remark 2.1.15 that there is a canonical isomorphism of
vector spaces Φ: Λ•

R
n ∼= Cln. We equip the Clifford algebra Cln with the unique scalar

product such that Φ is an isometry. If v1, . . . , vn is any orthonormal basis of Rn, then
the elements vi1 · . . . · vik , 1 ≤ i1 < . . . < ik ≤ n, 0 ≤ k ≤ n, form an orthonormal basis
of Cln with respect to this scalar product. Moreover, for any unit vector v ∈ Sn−1 the
map µv: Cln → Cln, X 7→ X · v is an isometry. In order to see this extend v to an
orthonormal basis of Rn and use that the map µv acts by permuting the corresponding
basis vectors of Cln.

Proposition 2.2.10. For any n ∈ N, the sequence

1 → Z2 → Spin(n)
̺→ SO(n) → 1

is exact.

Proof. a) The map ̺ : Spin(n) → SO(n) is surjective:

By a classical result of Elie Cartan, every A ∈ O(n) is the composition of at most n
hyperplane reflections. Thus, any given A ∈ SO(n) is the product of an even number
of hyperplane reflections. Let the i-th hyperplane be the orthogonal complement
to vi ∈ Sn−1. Then we have v1 · . . . · v2k ∈ Spin(n) and ̺(v1 · . . . · v2k) = A.

b) It remains to show that ker(̺) = Z2 = {1,−1}:
Writing −1 = e1 · e1 ∈ Spin(n) and applying ̺, we obtain:

̺(−1)(x) = (−1) · x · (−1)−1 = x.

Thus, {1,−1} ⊂ ker(̺).

Conversely, let a ∈ ker(̺). Then for all x ∈ R
n, we have:

x = ̺(a)(x) = a · x · a−1.

Equivalently, we have x · a = a · x for all x ∈ R
n and in particular, x · a = a · x for

all x ∈ Cln. Hence, a is contained in the center Z(Cln) of Cln. Moreover, we have
a ∈ Spin(n) ⊂ Cl0n. Now for any n ∈ N0 we have

Z(Cln) ∩ Cl0n = R · 1, (exercise !),

hence a = α 1 for some α ∈ R. Since a ∈ Spin(n), we can write a = v1 · . . . · vm for
some vj ∈ Sn−1 and m ∈ 2N0. We denote by | · | the norm induced by the scalar
product on Cln constructed in Remark 2.2.9. Using that Clifford multiplication by
vm is an isometry we get:

|α| = |v1 · . . . · vm−1 · vm| = |v1 · . . . · vm−1|.
Now we proceed inductively and obtain |α| = |v1| = 1. Hence, α = ±1 and thus
a ∈ {1,−1}. Therefore, ker(̺) ⊂ {1,−1}.
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Remark 2.2.11.
Let Cl×n :=

{
x ∈ Cln

∣∣ ∃y ∈ Cln s.t. x · y = 1
}
be the group of invertible elements in the

Clifford algebra Cln. Then we have:

i) The map

Cln × Cln → Cln

(a, b) 7→ a · b

is a bilinear map on a finite-dimensional R-vector space, hence it is smooth.

ii) The map

Cl×n → Cl×n
a 7→ a−1

is also smooth.

Thus Cl×n is a Lie group.

Remark 2.2.12. Part a) of the proof of Proposition 2.2.10 shows that every element
a ∈ Spin(n) is of the form

a = ± v1 · . . . · vm with m = 2k ≤ n, vj ∈ Sn−1.

We may drop the minus sign by replacing v1 by −v1 if necessary, to obtain

a = v1 · . . . · vm with m = 2k ≤ n.

By multiplying with 1 = e1 · (−e1), we can increase the number of factors by 2. Thus,
we can assume w.l.o.g. that

a = v1 · . . . · vm with m = 2k =

{
n n even

n+ 1 n odd
.

Hence, we have a surjective continuous map

m times︷ ︸︸ ︷
Sn−1 × . . .× Sn−1 → Spin(n)

(v1, . . . , vm) 7→ v1 · . . . · vm .

It follows that Spin(n) is compact. In particular, Spin(n) ⊂ Cl×n is a closed subgroup.
Thus, Spin(n) is a Lie group and the homomorphism

̺ : Spin(n) → SO(n)

is a 2-fold covering.
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Proposition 2.2.13. The Spin group Spin(n) is connected, if n ≥ 2 and simply-
connected, if n ≥ 3.

Proof. Assume n ≥ 2.

a) From the exact sequence in Proposition 2.2.10 we get the long exact homotopy se-
quence (base point = 1):

→ π1(Z2)︸ ︷︷ ︸
={1}

→ π1(Spin(n)) → π1(SO(n)) → π0(Z2)︸ ︷︷ ︸
=Z2

→ π0(Spin(n)) → π0(SO(n))︸ ︷︷ ︸
={1}

.

Claim: The map π0(Z2)
ψ→ π0(Spin(n)) is trivial, that is, the image of ψ is {1}.

In fact, 1 and −1 can be connected by a continuous path in Spin(n): Since n ≥ 2, we
have at least two orthonormal vectors e1, e2 ∈ Sn−1 and we can define the smooth
curve c : R → Spin(n),

t 7→ (cos(t) e1 + sin(t) e2) · e1,
satisfying c(0) = −1 and c(π) = 1.

b) By exactness at π0(Spin(n)) and the claim, the map

π0(Spin(n)) → π0(SO(n)) = {1}

is injective. Hence, π0(Spin(n)) = {1}, that is, Spin(n) is connected.

c) We have π1(SO(n)) = Z2 for n ≥ 3. Namely, the long exact homotopy sequence
for the fiber bundle SO(n) → SO(n + 1) → Sn for n ≥ 3 yields isomorphisms

π1(SO(n))
∼=−→ π1(SO(n+ 1)). The long exact homotopy sequence of the fiber bundle

Z2 → S3 → RP 3 yields the isomorphism π1(RP
3)

∼=−→ π0(Z2) = Z2. Finally, we have
the identification RP 3 ∼= SO(3) as follows: We identify RP 3 with the quotient of
the upper hemisphere S3

+ obtained by identifying antipodal points on the equator.
Now, S3

+ is homeomorphic to a closed unit ball B̄3(0) ⊂ R
3 and thus RP 3 is home-

omorphic to B̄3(0) with antipodal boundary points identified. The map sending the
equivalence class of a point x ∈ B̄3(0) \ {0} to the rotation with axis x and angle
‖x‖π is then a homeomorphism.

d) Now assume that n ≥ 3. By exactness at π0(Z2) and the claim in a), the map
π1(SO(n)) → π0(Z2) is surjective. Exactness at π1(SO(n)), together with the fact
that π1(SO(n)) = Z2 for n ≥ 3 implies that the map π1(Spin(n)) → π1(SO(n))
is trivial. By exactness at π1(Spin(n)), the map π1(Spin(n)) → π1(SO(n)) is also
injective. Hence π1(Spin(n)) = {1}, that is, Spin(n) is simply-connected.
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The Lie algebra of SO(n) is given by

so(n) =
{
A ∈ Mat(n× n;R) |A⊤ = −A

}

and dimSO(n) = dim so(n) = 1
2n(n− 1).

For the Lie algebra of the Spin group, we have dim spin(n) = dimSpin(n) = dimSO(n) =
1
2n(n− 1). We want to identify the Lie algebra spin(n) of Spin(n) as a vector subspace
of Cln:

For i 6= j consider the smooth curve c : R → Spin(n), defined by

t 7→
(
cos (t) ei + sin (t) ej

)
· (−ei).

Then c(0) = ei · (−ei) = 1 and ċ(0) = ej · (−ei) = ei · ej . We thus have
ei · ej ∈ T1Spin(n) ∼= spin(n) for all i 6= j.
The products {ei · ej}, 1 ≤ i < j ≤ n are linearly independent and there are 1

2n(n − 1)
of them. Since dim(spin(n)) = 1

2n(n−1), we conclude that {ei·ej}i<j is a basis of spin(n).

We compute the Lie algebra homomorphism ̺∗ : spin(n) → so(n):

̺∗(ei · ej)(ek) =
d

dt

∣∣∣
t=0

̺
(
(cos(t) ei + sin(t) ej) · (−ei)

)
(ek)

=
d

dt

∣∣∣
t=0

(
(cos(t) ei + sin(t) ej) · (−ei) · ek · ei · (− cos(t) ei − sin(t) ej)

)

=
d

dt

∣∣∣
t=0

(
cos2(t) ei · ei · ek · ei · ei + cos(t) sin(t) ei · ei · ek · ei · ej
+sin(t) cos(t) ej · ei · ek · ei · ei + sin2(t) ej · ei · ek · ei · ej

)

= ei · ei · ek · ei · ej + ej · ei · ek · ei · ei
= −ek · ei · ej − ej · ei · ek.

=





0 for k /∈ {i, j}
2ej for k = i

−2ei for k = j.

We thus have for i < j

̺∗(ei · ej) =




...
...

. . . . . . −2 . . .
...

...
. . . 2 . . . . . . . . .

...
...



.



2.3. Spinors 83

2.3. Spinors

Definition 2.3.1. A representation of a group G on a vector space V is a group
homomorphism λ : G→ GL(V ).
A representation λ : G → GL(V ) on a Euclidean or Hermitian vector space (V, β) is
called orthogonal or unitary, if λ(G) ⊂ O(V, β) or λ(G) ⊂ U(V, β), respectively.

We will only consider real or complex finite-dimensional representations, i.e., represen-
tations, where V is a K-vector space, K = R or C, and dimK V <∞.

Example 2.3.2. Let G be any group.

a) The trivial representation is the trivial group homomorphism:

λ : G → GL(V )

g 7→ idV .

b) Let λ : G→ GL(V ) be a representation. The dual representation λ∗ is defined by:

λ∗ : G → GL(V ∗)

g 7→ λ
(
g−1
)∗
.

c) Let λ : G → GL(V ) be a representation. There is an induced representation Λkλ
of G on ΛkV , defined by:

Λkλ : G → GL
(
ΛkV

)

g 7→
(
Λkλ

)
(g),

where (
Λkλ

)
(g)(v1 ∧ . . . ∧ vk) := λ(g)v1 ∧ . . . ∧ λ(g)vk.

The representation Λkλ is called the kth exterior power of the representation λ.

d) Let λ1 : G → GL(V1) and λ2 : G → GL(V2) be representations of G on V1 and V2,
respectively. There is an induced representation of G on V1 ⊕ V2, defined by:

λ1 ⊕ λ2 : G → GL (V1 ⊕ V2)

g 7→ (λ1 ⊕ λ2) (g),

where
(λ1 ⊕ λ2) (g)(v1 ⊕ v2) := λ1(g)v1 ⊕ λ2(g)v2.

The representation λ1⊕λ2 is called the direct sum of the representations λ1 and λ2.
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e) Let λ1 : G → GL(V1) and λ2 : G → GL(V2) be representations of G on V1 and V2,
respectively. There is an induced representation of G on V1 ⊗ V2, defined by:

λ1 ⊗ λ2 : G → GL (V1 ⊗ V2)

g 7→ (λ1 ⊗ λ2) (g),

where
(λ1 ⊗ λ2) (g)(v1 ⊗ v2) := λ1(g)v1 ⊗ λ2(g)v2.

The representation λ1 ⊗ λ2 is called the tensor product of the representations λ1
and λ2.

Example 2.3.3. Let G = SO(n).

a) We have the standard representation

λst : O(n) →֒ GL(n,R) = GL(Rn).

b) Then

Λnλst : O(n) → GL
(
ΛnRn

)
= GL(1) = R \ {0},

g 7→
(
Λnλst

)
(g),

is given by (
Λnλst

)
(g) = det g = ±1.

If we restrict Λnλst to SO(n) then Λnλst : SO(n) → GL(ΛnRn) is given by g 7→ 1,
i.e., Λnλst : SO(n) → GL(ΛnRn) is the trivial representation.

Remark 2.3.4. Given a representation λ′ : SO(n) → GL(V ) then

λ := λ′ ◦ ̺ : Spin(n) → GL(V )

yields a representation of Spin(n) on V . Here, ̺ : Spin(n) → SO(n) denotes the Lie
group homomorphism defined by equation (2.3).

One may wonder whether every representation λ of Spin(n) on V is of the form λ = λ′◦̺,
where λ′ is a representation of SO(n) on V .
Now, if λ = λ′ ◦ ̺ : Spin(n) → GL(V ), we have:

λ(−1) = λ′(̺(−1)) = λ′(1) = idV .

Hence a representation λ : Spin(n) → GL(V ) that is induced by a representation of
SO(n) on V necessarily satisfies λ(−1) = idV .



2.3. Spinors 85

Consider the representation

λ : Spin(n) → GL(Cln)

a 7→ λ(a),

given by the multiplication in Cln, i.e., for any a ∈ Spin(n) and x ∈ Cln, we have

λ(a)(x) := a · x.

Then we compute

λ(−1)(x) = −1 · x = −x,

i.e., λ(−1) = − idCln . Thus, this representation cannot be induced by a representation
of SO(n) on Cln.

Remark 2.3.5. If λ : Spin(n) → GL(V ) is a representation of Spin(n) on V such that
λ(−1) = idV then ker(̺) = {−1, 1} ⊂ ker(λ).

Since ̺ is surjective, there is a map λ′ : SO(n) → GL(V )
such that the alongside diagram commutes.

Spin(n)

λ

%%❑
❑❑

❑❑
❑❑

❑❑

̺

��

GL(V )

SO(n)

λ′

99sssssssss

The even dimensional case

In the following, let n = 2m. Let Cln be the Clifford algebra of Rn with the standard
Euclidean scalar product and let Cln := Cln⊗RC be its complexification. Let e1, . . . , e2m
be the standard basis of Rn. For j = 1, . . . ,m define

zj :=
1

2
(e2j−1 − i e2j) ∈ Cln, z̄j :=

1

2
(e2j−1 + i e2j) ∈ Cln.

Then products of the form

zj1 · . . . · zjk · z̄i1 · . . . · z̄il , k, l = 0, . . . ,m

1 ≤ j1 < . . . < jk ≤ m, 1 ≤ i1 < . . . < il ≤ m,

form a vector space basis of Cln. Put

z(j1, . . . , jk) := zj1 · . . . · zjk · z̄1 · . . . · z̄m.

Then

Σn := span{z(j1, . . . , jk) | k = 0, . . . ,m, 1 ≤ j1 < . . . < jk ≤ m} ⊆ Cln
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is a complex vector subspace of Cln of dimension 2m. We call Σn the spinor space in
dimension n. Elements of Σn are called spinors.

For later purposes we want to compute e2l · z(j1, . . . , jk) and e2l−1 · z(j1, . . . , jk). We
have to distinguish two cases: e2l and e2l−1 can be contained in zj1 · . . . · zjk or not.

1) Let e2l and e2l−1 not be contained in zj1 · . . . · zjk .

e2l · z(j1, . . . , jk) = e2l · zj1 · . . . · zjk · z̄1 · . . . · z̄m
= (−1)k+(l−1)zj1 · . . . · zjk · z̄1 · . . . · z̄l−1 · e2l · z̄l · z̄l+1 · . . . · · · z̄m.

Because of

e2l · z̄l =
1

2
e2l · (e2l−1 + ie2l)

=
1

2
(e2l · e2l−1 − i)

=
1

2
(−e2l−1 · e2l + ie2l−1 · e2l−1)

= i e2l−1 ·
1

2
(e2l−1 + ie2l)

= i e2l−1 · z̄l,

it follows that

e2l · z(j1, . . . , jk) = (−1)k+l−1 i zj1 · . . . · zjk · z̄1 · . . . · z̄l−1 · e2l−1 · z̄l · z̄l+1 · . . . · z̄m
= (−1)k+l−1 i (−1)k+l−1 e2l−1 · zj1 · . . . · zjk · z̄1 · . . . · z̄m
= i e2l−1 · z(j1, . . . , jk). (2.4)

Let ν such that jν < l < jν+1. Then we have:

e2l · z(j1, . . . , jk) =
1

2
e2l · z(j1, . . . , jk) +

1

2
e2l · z(j1, . . . , jk)

(2.4)
=

1

2
e2l · z(j1, . . . , jk) +

i

2
e2l−1 · z(j1, . . . , jk)

= i
1

2
(e2l−1 − ie2l)

︸ ︷︷ ︸
= zl

·z(j1, . . . , jk)

= i (−1)ν z(j1, . . . , jν , l, jν+1, . . . , jk). (2.5)

Moreover, it follows from equations (2.4) and (2.5) that

e2l−1 · z(j1, . . . , jk)
(2.4)
= −i e2l · z(j1, . . . , jk)

(2.5)
= (−1)ν z(j1, . . . , jν , l, jν+1, . . . , jk). (2.6)
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2) Now let e2l and e2l−1 be contained in zj1 · . . . · zjk .
Multiplying equation (2.5) with e2l we obtain:

e2l · z(j1, . . . , jν , l, jν+1, . . . , jk) = (−1)ν i z(j1, . . . , jν , jν+1, . . . , jk) (2.7)

Multiplying equation (2.6) with e2l−1 we obtain:

e2l−1 · z(j1, . . . , jν , l, jν+1, . . . , jk) = (−1)ν+1 z(j1, . . . , jν , jν+1, . . . , jk). (2.8)

Hence the spinor space Σn ⊂ Cln is invariant under Clifford multiplication by vectors
in R

n. Since the Clifford algebra Cln is generated by R
n, the same holds for Clifford

multiplication by elements of Cln, thus Σn ⊂ Cln is a left ideal. In particular, Σn is
invariant under multiplication by elements of Spin(n).
We define:

Σ+
n := span{z(j1, . . . , jk) | k = 0, . . . ,m even}

Σ−
n := span{z(j1, . . . , jk) | k = 0, . . . ,m odd}.

The spinor space Σn has the decomposition Σn = Σ+
n ⊕ Σ−

n . Elements in Σ±
n are called

spinors of positive and negative chirality respectively.
The equations (2.5)–(2.8) show that the Clifford multiplication by elements of Rn satis-
fies:

R
n · Σ+

n ⊂ Σ−
n , R

n · Σ−
n ⊂ Σ+

n .

However, Clifford multiplication by elements of Cl0n satisfies:

Cl0n · Σ+
n ⊂ Σ+

n , Cl0n · Σ−
n ⊂ Σ−

n .

Thus, the restriction to Spin(n) ⊂ Cl0n ⊂ Cl0n yields representations of Spin(n) on Σ+
n

and Σ−
n and thus on Σn.

Definition 2.3.6. The representation σn : Spin(n) → GL(Σn) is called the spinor
representation.
The representations σ±n : Spin(n) → GL(Σ±

n ) are called the positive and negative
spinor representation, respectively.

Remark 2.3.7. The element

ω := e1 · . . . · en ∈ Cln ⊂ Cln

is called the volume element. The equations (2.5)–(2.8) show that

e2l−1·e2l·z(j1, . . . , jk) =
{
−i z(j1, . . . , jk) if e2l, e2l−1 are not contained in zj1 · . . . · zjk
i z(j1, . . . , jk) if e2l, e2l−1 are contained in zj1 · . . . · zjk .
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Thus we get
ω · z(j1, . . . , jk) = (−1)m−k im z(j1, . . . , jk)

and therefore
im ω · z(j1, . . . , jk) = (−1)k z(j1, . . . , jk).

It follows that
Σ±
n = {z ∈ Σn | imω · z = ±z}. (2.9)

Example 2.3.8. Let n = 2, i.e., m = 1. Then we have:

Σ+
2 = C · z() and Σ−

2 = C · z(1).

By the equations (2.6) and (2.8), we have

e1 · z( ) = z(1)

e1 · z(1) = −z( ),

}
thus e1 acts on Σ2

∼= C
2 as

(
0 −1
1 0

)
.

By the equations (2.5) and (2.7), we have

e2 · z( ) = iz(1)

e2 · z(1) = iz( ),

}
thus e2 acts on Σ2

∼= C
2 as

(
0 i
i 0

)
.

Furthermore, from Example 2.2.8, we have the isomorphism

Spin(2) → U(1) ,

cosψ + sinψ e1 · e2 7→ cosψ + i sinψ = eiψ .

The element cosψ + sinψ e1 · e2 ∈ Spin(2) acts on Σ2 as

cosψ

(
1 0
0 1

)
+ sinψ

(
0 −1
1 0

)(
0 i
i 0

)

=

(
cosψ 0
0 cosψ

)
+ sinψ

(
−i 0
0 i

)

=

(
cosψ − i sinψ 0

0 cosψ + i sinψ

)

=

(
e−iψ 0
0 eiψ

)
.

Thus, the action of the Spin group Spin(2) on Σ−
2 is given by the standard representation

of U(1) on C whereas the action of Spin(2) on Σ+
2 is given by the dual of the standard

representation of U(1) on C. In particular, the action of Spin(2) on Σ+
2 ⊗ Σ−

2 is the
trivial representation.
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We equip the spinor space Σn with the Hermitian scalar product 〈·, ·〉, for which the
vectors z(j1, . . . , jk), k = 0, . . . ,m, form an orthonormal basis. Then the decomposition
Σn = Σ+

n ⊕ Σ−
n is orthogonal. By our convention 〈·, ·〉 is complex linear in the first

argument and complex antilinear in the second argument.

Lemma 2.3.9. Let n = 2m be even. Then the Clifford multiplication of spinors by
vectors is skew-symmetric, i.e., for any X ∈ R

n and any φ,ψ ∈ Σn, we have:

〈X · φ,ψ〉 = −〈φ,X · ψ〉 . (2.10)

Proof. It suffices to prove this for any basis vector X = ej in R
n and any two basis

elements φ = z(j1, . . . , jk), ψ = z(i1, . . . , il) in Σn. For X = e2l and φ = z(j1, . . . , jk)
with l = jν+1, the scalar products are non-zero only if ψ = z(j1, . . . , jν , l̂, jν+2, . . . , jk).
If ψ is any other basis vector of Σn then both sides in (2.10) vanish.
We then have:

〈X · φ,ψ〉 =
〈
e2l · z(j1, . . . , jν , l, jν+2, . . . , jk), z(j1, . . . , jν , l̂, jν+2, . . . , jk)

〉

(2.7)
=

〈
(−1)ν i z(j1, . . . , jν , jν+2, . . . , jk), z(j1, . . . , jν , jν+2, . . . , jk)

〉

= (−1)ν i

and

〈φ,X · ψ〉 =
〈
z(j1, . . . , jν , l, jν+2, . . . , jk), e2l · z(j1, . . . , jν , l̂, jν+2, . . . , jk)

〉

(2.5)
=
〈
z(j1, . . . , jν , l, jν+2, . . . , jk), (−1)ν i z(j1, . . . , jν , l, jν+2, . . . , jk)

〉

= (−1)ν+1 i.

Thus, we have
〈X · φ,ψ〉 = −〈φ,X · ψ〉.

The computations for the remaining basis vectors X ∈ R
n and φ ∈ Σn are entirely

analogous.

Remark 2.3.10. For any unit vector X ∈ Sn−1 ⊂ R
n and any two spinors φ,ψ ∈ Σn

we have:

〈X · φ,X · ψ〉 = −〈X ·X · φ,ψ〉 = −〈−|X|2φ,ψ〉 = 〈φ,ψ〉 .

Hence the Clifford multiplication by unit vectors X ∈ Sn−1 is an isometry on the spinor
space. The action of Spin(n) on Σn is thus a unitary representation.
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Proposition 2.3.11. Let n = 2m be even. Then the map

Φ : Cln → End(Σn), Φ(X)(z) := X · z

is an isomorphism of complex algebras.

Proof. Obviously Φ is a homomorphism of complex algebras. We prove that Φ is sur-
jective. Note first that for all ℓ ∈ {1, . . . ,m} we have

zℓ · z̄ℓ + z̄ℓ · zℓ = −1 (2.11)

z̄ℓ · z̄ℓ = 0 (2.12)

zℓ · zℓ = 0. (2.13)

Let i, ℓ ∈ {1, . . . ,m} and let z(j1, . . . , jk) ∈ Σn.
a) Assume ℓ ∈ {j1, . . . , jk}. From the equations (2.11) and (2.12) we get

Φ(z̄ℓ)(z(j1, . . . , jk)) = z̄ℓ · zj1 · . . . · zℓ · . . . · zjk · z̄1 · . . . · z̄ℓ · . . . · z̄m
= ±z̄ℓ · zℓ · z̄ℓ · zj1 · . . . · ẑℓ · . . . · zjk · z̄1 · . . . · ̂̄zℓ · . . . · z̄m
= ±(−1− zℓ · z̄ℓ) · z̄ℓ · zj1 · . . . · ẑℓ · . . . · zjk · z̄1 · . . . · ̂̄zℓ · . . . · z̄m
= ±z̄ℓ · zj1 · . . . · ẑℓ · . . . · zjk · z̄1 · . . . · ̂̄zℓ · . . . · z̄m + 0

= ±z(j1, . . . , ℓ̂, . . . , jk),

where the signs ± may change in every line.
b) Assume ℓ /∈ {j1, . . . , jk}. Then by the equation (2.12) we get

Φ(z̄ℓ)(z(j1, . . . , jk)) = z̄ℓ · zj1 · . . . · zjk · z̄1 · . . . · z̄ℓ · . . . · z̄m
= ±z̄ℓ · z̄ℓ · zj1 · . . . · zjk · z̄1 · . . . · ̂̄zℓ · . . . · z̄m
= 0.

c) Assume i ∈ {j1, . . . , jk}. By the equation (2.13) we get

Φ(zi)(z(j1, . . . , jk)) = zi · zj1 · . . . · zi · . . . · zjk · z̄1 · . . . · z̄m
= ±zi · zi · zj1 · . . . · ẑi · . . . · zjk · z̄1 · . . . · z̄m
= 0.

d) If i /∈ {j1, . . . , jk} then we get

Φ(zi)(z(j1, . . . , jk)) = zi · zj1 · . . . · zjk · z̄1 · . . . · z̄m = ±z(j1, . . . , i, . . . , jk).

For any multi-index I = {i1, . . . , is} we write

zI := zi1 · . . . · zis , z̄I := z̄i1 · . . . · z̄is , z(I) := z(i1, . . . , is)
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and we denote by Ic the complementary multi-index of I. Let now I and K be multi-
indices. The calculations in a) - d) show that for all multi-indices J we have

z1 · . . . · zm · z(J) =
{
0 if J 6= ∅
±z1 · . . . · zm if J = ∅

and thus

z1 · . . . · zm · z̄I · z(J) =
{
0 if J 6= I

±z1 · . . . · zm if J = I

and therefore

z̄Kc · z1 · . . . · zm · z̄I · z(J) =
{
0 if J 6= I

±z(K) if J = I.

Thus every endomorphism of Σn can be obtained by composing endomorphisms of the
form Φ(z̄Kc · z1 · . . . · zm · z̄I). This shows that Φ is surjective. Since Cln and End(Σn)
have the same dimension we conclude that Φ is an isomorphism.

The odd dimensional case

In the following, let n = 2m−1. To construct the spinor space Σn, we make the following
observation:

Lemma 2.3.12. Let n ∈ N. The linear map j : Rn → Cl0n+1,

X 7→ j(X) := X · en+1,

induces an algebra isomorphism Cln → Cl0n+1.

Remark 2.3.13. Lemma 2.3.12 also holds for Cln instead of Cln.

Proof. We see immediately that the map j satisfies

j(X)2 = X · en+1 ·X · en+1 = −X ·X · en+1 · en+1 = −|X|2.

Thus, the universal property for Cln yields an algebra ho-
momorphism α : Cln → Cl0n+1 such that the alongside
diagram commutes.

Cln

α

��

R
n

ı
;;✇✇✇✇✇✇✇✇

j ""❊
❊❊

❊❊
❊❊

❊

Cl0n+1
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We first show that α is surjective. The elements

ei1 · . . . · ei2k , 1 ≤ i1 < . . . < i2k ≤ n+ 1

form a vector space basis of Cl0n+1.

a) First we assume that i2k ≤ n. Then we have ei1 · . . . · ei2k ∈ Cln and

α(ei1 · ei2 · . . . · ei2k−1
· ei2k) = α(ei1) · α(ei2) · . . . · α(ei2k−1

) · α(ei2k )
= j(ei1) · j(ei2) · . . . · j(ei2k−1

) · j(ei2k )
= ei1 · en+1 · ei2 · en+1︸ ︷︷ ︸

=ei1 ·ei2

· . . . · ei2k−1
· en+1 · ei2k · en+1︸ ︷︷ ︸
=ei2k−1

·ei2k
= ei1 · . . . · ei2k (2.14)

b) Now we assume that i2k = n+ 1. Then we have ei1 · . . . · ei2k−1
∈ Cln and

α(ei1 · . . . · ei2k−1
) = α(ei1) · . . . · α(ei2k−1

)

= j(ei1) · . . . · j(ei2k−1
)

= (ei1 · en+1 · . . . · ei2k−2
· en+1) · ei2k−1

· en+1

(2.14)
= (ei1 · . . . · ei2k−2

) · ei2k−1
· en+1

= ei1 · . . . · ei2k−1
· en+1

= ei1 · . . . · ei2k .

Thus, the map α is surjective.

Since dimCl0n+1 =
2n+1

2 = 2n = dimCln, the map α is an isomorphism.

For n odd we define the spinor space Σn by:

Σn := Σ+
n+1.

In particular, we have dimΣn = 2⌊
n
2
⌋ for both even and odd n. The Clifford algebra Cln

acts on the spinor space Σn via the map α: For X ∈ Cln and φ ∈ Σn put

X • φ := α(X) · φ ∈ Σ+
n+1 = Σn.

The restriction of this action to Spin(n) ⊂ Cln ⊂ Cln defines the spinor representa-
tion σn : Spin(n) → GL(Σn) in odd dimensions.

Lemma 2.3.14. Let n be odd. Then the Clifford multiplication of spinors by vectors
is skew-symmetric, i.e., for any vector X ∈ R

n and any two spinors φ,ψ ∈ Σn, we
have:

〈X • φ,ψ〉 = −〈φ,X • ψ〉 . (2.15)
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Proof. We compute:

〈X • φ,ψ〉 = 〈α(X) · φ,ψ〉
= 〈X · en+1 · φ,ψ〉
(2.10)
= −〈en+1 · φ,X · ψ〉

(2.10)
= −〈φ,X · en+1 · ψ〉

= −〈φ, α(X) · ψ〉
= −〈φ,X • ψ〉.

Remark 2.3.15. As in Remark 2.3.10 one concludes that in odd dimensions Clifford
multiplication by unit vectors is an isometry and thus the spinor representation is unitary.

Example 2.3.16. Let n = 1. Then we have

Σ1 = Σ+
2 = C · z() ∼= C

and
e1 • z( ) = e1 · e2 · z( ) = e1 · i z(1) = −i z( ).

Example 2.3.17. Let n = 3. Then we have

Σ3 = Σ+
4 = C · z( )⊕ C · z(1, 2) ∼= C

2.

By the equations (2.5) and (2.6), we have

e1 • z( ) = e1 · e4 · z( )
(2.5)
= e1 · i z(2)

(2.6)
= i z(1, 2)

and e1 • z(1, 2) = e1 • (−i)e1 • z( ) = i z( ) .

From this (and similar computations for e2, e3), we thus have:

e1 acts on Σ3
∼= C

2 as

(
0 i
i 0

)

e2 acts on Σ3
∼= C

2 as

(
0 1
−1 0

)

e3 acts on Σ3
∼= C

2 as

(
−i 0
0 i

)

2.4. Spin Structures

Let M be an n-dimensional oriented Riemannian manifold. For x ∈M put

P SO
x (M) :=

{
h : Rn → TxM |h orientation preserving isometry

}
.
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Each element h ∈ P SO
x (M) induces an oriented orthonormal basis h(e1), . . . , h(en) of

TxM . Conversely, for any oriented orthonormal basis b1, . . . , bn of TxM , there is a
unique h ∈ P SO

x (M) such that b1 = h(e1), . . . , bn = h(en).
The special orthogonal group SO(n) acts on P SO

x (M) from the right:

P SO
x (M)× SO(n) → P SO

x (M)

(h,A) 7→ h ◦ A.
This action is simply transitive, i.e., for any two elements h1, h2 ∈ P SO

x (M), there is a
unique A ∈ SO(n) such that h2 = h1 ◦A (namely, A = h−1

1 ◦ h2).
Thus, for a fixed h0 ∈ P SO

x (M), the map

SO(n) → P SO
x (M)

A 7→ h0 ◦ A
is bijective.

Now put

P SO(M) :=
⊔

x∈M
P SO
x (M).

Let π : P SO(M) → M be such that π−1(x) = P SO
x (M), thus π(h) = x, where

h : Rn → TxM . There is a canonical smooth structure on P SO(M) such that the pro-
jection map π : P SO(M) → M and the group action P SO(M) × SO(n) → P SO(M)
are smooth maps. In other words: (P SO(M), π,M ; SO(n)) is an SO(n)-principal bundle
over M .

Definition 2.4.1. Let M be an n-dimensional oriented Riemannian manifold. The
SO(n)-principal bundle P SO(M) is called the (oriented orthonormal) frame bun-
dle of M .

Using a representation λ : SO(n) → GL(V ), we can construct a vector bundle by glueing
the vector space V onto the fibers of the frame bundle:

Definition 2.4.2. Let λ : SO(n) → GL(V ) be a representation of SO(n) on aK-vector
space V , where K = R or C. The associated vector bundle to P SO(M) is defined
as:

P SO(M)×λ V := P SO(M)× V/∼ .

Here, the equivalence relation ∼ is defined as:

(h1, v1) ∼ (h2, v2) :⇐⇒ ∃A ∈ SO(n) : h2 = h1 ◦ A and v2 = λ
(
A−1

)
v1.

We denote the equivalence class of (h, v) in P SO(M)×λ V by Jh, vK.
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The induced projection π̃ : P SO(M)×λ V →M , given as

π̃
(
Jh, vK

)
:= π(h) ,

is well-defined: If (h̄, v̄) ∼ (h, v), that is, h̄ = h◦A and v̄ = λ(A−1)v for some A ∈ SO(n)
then we have:

π̃(Jh̄, v̄K) = π̃
(q
h ◦ A,λ

(
A−1

)
v
y)

= π(h ◦ A) = π(h).

The vector space structure on the fibers of P SO(M)×λ V is defined by:

α · Jh, v1K+ β · Jh, v2K := Jh, α v1 + β v2K,

where Jh, v1K, Jh, v2K ∈ π̃−1(x) and α, β ∈ K. This operation is well-defined:

α ·
q
h ◦ A,λ

(
A−1

)
v1
y
+ β ·

q
h ◦ A,λ

(
A−1

)
v2
y

=
q
h ◦A,λ

(
A−1

)
v1 + β λ

(
A−1

)
v2
y

=
q
h ◦A,λ

(
A−1

)
(α v1 + β v2)

y

=
q
h, α v1 + β v2

y

= α · Jh, v1K+ β · Jh, v2K.

For the standard representation λ : SO(n) →֒ GL(n,R), the map

P SO(M)×λ R
n ∼=→ TM

Jh, vK 7→ h(v)

is an isomorphism of vector bundles.

Similarly, we have the following canonical isomorphisms of vector bundles, associated to
representations of SO(n):

vector space V representation λ of SO(n) on V P SO(M)×λ V

R idV M × R

R
n standard representation TM(

R
n
)∗

dual of standard representation T ∗M
Λk
(
R
n
)∗

Λk(dual of standard representation) ΛkT ∗M
(⊗k

R
n)⊗ (⊗l(Rn)∗) (⊗k(std rep.))⊗ (⊗l(dual of std rep.)) (⊗kTM)⊗ (⊗lT ∗M)

Now we want to construct a Spin(n)-principal bundle P Spin(M) such that for any repre-
sentation λ : Spin(n) → GL(V ) of the form λ = λ′ ◦ ̺, with λ′ : SO(n) → GL(V ), the
associated vector bundles P Spin(M)×λ V and P SO(M)×λ′ V coincide.
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Definition 2.4.3. Let M be an oriented Riemannian manifold. A spin structure
on M is a pair (P Spin(M), ¯̺), consisting of

a) a Spin(n)-principal bundle P Spin(M) over M and

b) a twofold covering ¯̺ : P Spin(M) → P SO(M) such that the diagram

P Spin(M)× Spin(n) //

¯̺×̺

��

P Spin(M)

$$■
■■

■■
■■

■■
■

¯̺

��

M

P SO(M)× SO(n) // P SO(M)

::✉✉✉✉✉✉✉✉✉

commutes. Here ̺ : Spin(n) → SO(n) is the twofold covering of SO(n) defined
in equation (2.3). The horizontal maps are the group operations on the principal
bundles.

If λ = λ′ ◦ ̺ : Spin(n) → GL(V ) is a representation induced by λ′ : SO(n) → GL(V )
then

P Spin(M)×λ V
≃−→ P SO(M)×λ′ V

JH, vK 7−→ J ¯̺(H), vK

is well-defined: For any a ∈ Spin(n), we have:

q
H · a, λ

(
a−1
)
v
y
7−→

q
¯̺(Ha), λ

(
a−1
)
v
y
=
q
¯̺(H)̺(a), λ′

(
̺(a)−1

)
v
y
= J ¯̺(H), vK .

Obviously, this map is an isomorphism of vector bundles.

Definition 2.4.4. An oriented Riemannian manifold equipped with a spin structure
is called a Riemannian spin manifold.
An oriented Riemannian manifold is called spinnable if it admits a spin structure.

A detailed discussion of existence and uniqueness of spin structures on oriented Rieman-
nian manifolds can be found in Chapter II of the book [7] by Lawson and Michelsohn.

Definition 2.4.5. Two spin structures P Spin
1 (M) and P Spin

2 (M) are called equiva-
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lent, if there exists a diffeomorphism

φ : P Spin
1 (M) −→ P Spin

2 (M),

such that the diagram

P Spin
1 (M)× Spin(n)

φ×Id
//

��

P Spin
2 (M)× Spin(n)

��

P Spin
1 (M)

φ
//

¯̺1

##●
●●

●●
●●

●●
●●

●●
●●

●●
●●

P Spin
2 (M)

¯̺2

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

P SO(M)

commutes.

Example 2.4.6. For M = S1, we have SO(1) = {1}, thus Spin(1) = Z2 and
P SO(S1) = S1. A spin structure on S1 is thus a two-fold covering of S1. There are
two possibilites:

1) The trivial spin structure on S1 is the trivial covering

P Spin
triv (S1) = S1 ⊔ S1 = S1 × Z2.

Let ¯̺ : P Spin(S1) = S1 × Z2 → P SO(S1) = S1 be the projection on the first factor.

To see that this defines a spin structure on S1, we need to check that the diagram

S1 × Z2 × Z2
id×µ

//

pr1×̺

��

S1 × Z2

pr1

##❍
❍❍

❍❍
❍❍

❍❍

pr1

��

S1

S1 × {1} pr1 // S1

id

;;✇✇✇✇✇✇✇✇✇✇

as in Definition 2.4.3 commutes. But this is obvious.

2) The non-trivial spin structure on S1 is the non-trivial covering P Spin
non−triv(S

1) = S1

with ¯̺ : S1 → S1, z 7→ z2. The action of Spin(1) = Z2 on P Spin
non−triv(S

1) is given by
z 7→ −z.
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This defines a spin structure on S1, since the diagram

S1 × Z2
(z,ε)7→εz

//

(z,ε)7→(z2,1)

��

S1

z 7→z2

  ❆
❆❆

❆❆
❆❆

❆

z 7→z2

��

S1

S1 × {1} pr1 // S1

id

>>⑦⑦⑦⑦⑦⑦⑦⑦

commutes.

Obviously, the spin structures P Spin
triv (S1) and P Spin

non−triv(S
1) are not equivalent, since the

total spaces are not even diffeomorphic: P Spin
non−triv(S

1) is connected whereas P Spin
triv (S1) is

not.

Definition 2.4.7. Let σn : Spin(n) → GL(Σn) be the spinor representation. Let M
be a Riemannian spin manifold of dimension n with a spin structure P Spin(M). The
spinor bundle of M for the spin structure P Spin(M) is the associated vector bundle

ΣM := P Spin(M)×σn Σn.

Sections of ΣM are called spinor fields on M .
If n is even and σ±n : Spin(n) → GL(Σ±

n ) are the positive and negative spinor repre-
sentation respectively, then the vector bundles

Σ±M := P Spin(M)×σ±n
Σ±
n

are called the positive and the negative spinor bundle of M for the spin structure
P Spin(M) respectively.

If n is even we have the decomposition ΣM = Σ+M ⊕ Σ−M .

Example 2.4.8
1) For the trivial spin structure P Spin

triv (S1) of S1 we get

ΣtrivS
1 = P Spin

triv

(
S1
)
×σ1 Σ1 =

(
S1 ⊔ S1

)
× Σ1/∼ ∼= S1 × Σ1.

The action of Spin(1) = Z2 identifies the two copies of S1×Σ1. Thus the identification
of
(
S1⊔S1

)
×Σ1/∼ ∼= S1×Σ1 is by projection onto the first factor, or by the embedding

S1 × Σ1 →֒
(
S1 ×Σ1

)
⊔
(
S1 ×Σ1

)
=
(
S1 × Z2

)
×Σ1,

into the first factor, respectively.
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Since the spinor bundle is trivial, spinor fields correspond to Σ1 = C-valued functions
on S1 or periodic C-valued functions on R. As a convention, we choose the period 1,
i.e. , we use exp : R → S1, exp (t) = e2πi t for the identification.

2) For the non-trivial spin structure P Spin
non−triv(S

1) of S1 we have the diagram

R× Σ1

pr

��

EXP // P Spin
non−triv(S

1)×σ1 Σ1

[z,v] 7→z2

��
R

exp
// S1

where exp (t) = e2πi t and EXP(t, ϕ) = Jeπi t, ϕK.
Spinor fields correspond to functions f : R → C = Σ1, satisfying

f(t+ k) = (−1)kf(t), for all t ∈ R, k ∈ Z. (2.16)

Functions satisfying (2.16) will be called Z-anti-periodic.

The spinor field corresponding to the function f is defined as

t 7→ EXP
(
t, f(t)

)
= Jeπi t, f(t)K.

The periodicity condition (2.16) guarantees that this mapping descends to S1: for
any eπi k ∈ Spin(1), we have

q
eπi (t+k), f(t+ k)

y
=
q
eπi t · eπi k, (−1)kf(t)

y

=
q
eπi t · eπi k, σ1(e−πi k)f(t)

y

=
q
eπi t, f(t)

y
.

Now let M be a Riemannian spin manifold with spin structure P Spin(M). The spinor
bundle ΣM carries a canonical Hermitian bundle metric defined as

〈
JH,ϕK, JH,ψK

〉
:= 〈ϕ,ψ〉, for H ∈ P Spin(M), ϕ, ψ ∈ Σn.

This assignment is well-defined, since for any a ∈ Spin(n), we have:

〈q
H · a, σn(a−1)ϕ

y
,
q
H · a, σn(a−1)ψ

y〉
=
〈
σn(a

−1)ϕ, σn(a
−1)ψ

〉
= 〈ϕ,ψ〉.

Clifford multiplication

In the following definition of the Clifford multiplication, we use the fact that for an ori-
ented Riemannian manifold, the tangent bundle TM is isomorphic to the vector bundle
associated to P SO(M) via the standard representation λst of SO(n) on R

n.
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Definition 2.4.9. Let M be a Riemannian spin manifold with spinor bundle ΣM ,
and let x ∈M . The map

· : TxM × ΣxM −→ ΣxM

(J ¯̺(H),XK, JH,ϕK) 7−→ JH,X · ϕK, (2.17)

is called Clifford multiplication.

Remark 2.4.10. (i) The Clifford multiplication is well defined: for any a ∈ Spin(n),
we have by equation (2.3):

J ¯̺(H · a), λst(̺(a−1))XK · JH · a, σn(a−1)ϕK = JH · a, λst(̺(a−1))X · σn(a−1)ϕK
= JH · a, a−1 ·X · a · a−1 · ϕK
= JH · a, σn(a−1)(X · ϕ)K
= JH,X · ϕK.

(ii) The Clifford multiplication satisfies the Clifford relation:

J ¯̺(H),XK ·
(q

¯̺(H), Y
y
· JH,ϕK

)
+ J ¯̺(H), Y K ·

(
J ¯̺(H),XK · JH,ϕK

)

= JH,X · Y · ϕ+ Y ·X · ϕK
= JH,−2〈X,Y 〉ϕK
= −2 〈X,Y 〉JH,ϕK
= −2

〈
J ¯̺(H),XK, J ¯̺(H), Y K

〉
JH,ϕK

Upon writing X ′ := J ¯̺(H),XK, Y ′ := J ¯̺(H), Y K and φ := JH,ϕK, the Clifford
relation reads

X ′ · Y ′ · φ+ Y ′ ·X ′ · φ = −2
〈
X ′, Y ′〉φ.

(iii) The Clifford multiplication is bilinear.

(iv) The Clifford multiplication is skew-symmetric: for any tangent vectors X ′ ∈ TxM
and spinors φ,ψ ∈ ΣxM , we have

〈
X ′ · φ,ψ

〉
= −

〈
φ,X ′ · ψ

〉
.

The spinor connection

As above, let M be a Riemannian spin manifold. The Levi-Civita connection ∇ on
TM induces a connection 1-form ωLC ∈ Ω1(P SO(M), so(n)). By pull-back with ¯̺, we
obtain an so(n)-valued 1-form ¯̺∗ωLC ∈ Ω1(P Spin(M), so(n)). Applying the isomorphism
̺−1
∗ : so(n) → spin(n) yields the connection 1-form

ω̃LC := ̺−1
∗ ¯̺∗ωLC ∈ Ω1(P Spin(M), spin(n))
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and a corresponding spinor connection ∇Σ on ΣM . The covariant derivative with
respect to ∇Σ of a local section JH,ϕK ∈ C∞(U,ΣM) is given by:

∇Σ
XJH,ϕK = JH, ∂Xϕ+ (σn)∗(ω̃LC(dH(X))) · ϕK. (2.18)

Here U ⊂ M is an open subset, x ∈ U , X ∈ TxM , and H : U → P Spin(M) is a local
smooth section, and ϕ : U → Σn a smooth function.
In order to write the spinor connection in terms of Christoffel symbols, we fix a local
smooth section H : U → P Spin(M). Then h := ¯̺ ◦H : U → P SO(M) is a smooth local
oriented orthonormal tangent frame and the vector fields

b1 := h(e1), . . . , bn := h(en)

form an oriented orthonormal basis of TxM at each x ∈ U , where e1, . . . , en is the
standard basis of Rn. The Christoffel symbols Γkij : U → R of this orthonormal frame
are defined by the equation

∇LC
bi bj =

n∑

k=1

Γkij bk for all i, j ∈ {1, . . . , n}.

Note that unlike the Christoffel symbols of a local coordinate system the Γkij are in

general not symmetric in i, j. Instead we have Γkij = −Γjik for all i, j, k. We compute the

covariant derivative of bj = Jh, ejK in terms of the connection 1-form ωLC:

r
h,

n∑

k=1

Γkij ek

z
= ∇LC

bi bj

= ∇LC
bi Jh, ejK

=
q
h, ∂biej︸ ︷︷ ︸

=0

+λ∗
(
ωLC(dh(bi))

)
ej
y

=
r
h,

n∑

k=1

ωLC
kj (dh(bi))ek

z
.

Hence

Γkij = ωLC
kj (dh(bi)). (2.19)

For the local section H : U → P Spin(M) with ¯̺◦H = h, we then have:

¯̺∗ωLC
(
dH(bi)

)
= ωLC

(
d ¯̺◦ dH(bi)

)
= ωLC

(
d(¯̺ ◦H)(bi)

)
= ωLC

(
dh(bi)

)
.

Upon writing

̺−1
∗
(
¯̺∗ωLC(dH(bi))

)
=
∑

µ<ν

γµνi eµ · eν ∈ spin(n), (2.20)
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we obtain

ωLC
(
dh(bi)

)
= ¯̺∗ωLC

(
dH(bi)

)
=
∑

µ<ν

γµνi ̺∗(eµ · eν).

We apply this to ej ∈ R
n and obtain

ωLC
(
dh(bi)

)
(ej) =

∑

µ<ν

γµνi ̺∗(eµ · eν)(ej)

=
∑

µ<ν

γµνi





2 eν , j = µ

−2 eµ, j = ν

0 otherwise

= 2
∑

ν>j

γjνi eν − 2
∑

µ<j

γµji eµ.

Comparing the coefficients with equation (2.19) yields

Γkij =





2 γjki k > j

−2 γkji k < j

0 k = j

.

Thus, we can replace the coefficients in (2.20) by Christoffel symbols and obtain:

ω̃LC
(
dH(bi)

)
=
∑

µ<ν

γµνi eµ · eν =
1

2

∑

µ<ν

Γνiµ eµ · eν =
1

4

n∑

µ,ν=1

Γνiµ eµ · eν

The covariant derivative of a local section JH,ϕK ∈ C∞(U,ΣM) can be written in terms
of Christoffel symbols:

∇Σ
biJH,ϕK =

q
H, ∂biϕ+ (σn)∗

(
ω̃LC(dH(bi))

)
· ϕ
y

=
r
H, ∂biϕ+

1

4

n∑

j,k=1

Γkij ej · ek · ϕ
z
. (2.21)

Remark 2.4.11
a) The spinor connection ∇Σ is a metric connection on the spinor bundle ΣM . Hence

for all smooth spinor fields φ,ψ and every tangent vector X, we have

∂X〈φ,ψ〉 =
〈
∇Σ
Xφ,ψ

〉
+
〈
φ,∇Σ

Xψ
〉
. (2.22)

This is a general fact: for a G-principal bundle P →M with connection 1-form ω̃ and
a unitary representation λ : G→ U(V ), the induced connection on P ×λ V preserves
the induced metric: the covariant derivative of a local section JH,φK reads

∇XJH,φK =
q
H, ∂Xφ+ λ∗

(
ω̃(dH(X))

)
︸ ︷︷ ︸

∈u(V )

·φ
y
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and thus

〈
∇XJH,φK, JH,ψK

〉
+
〈
JH,φK,∇XJH,ψK

〉

=
〈
∂Xφ+ λ∗

(
ω̃(dH(X))

)
· φ,ψ

〉
+
〈
φ, ∂Xψ + λ∗

(
ω̃(dH(X))

)
· ψ
〉

= 〈∂Xφ,ψ〉 + 〈φ, ∂Xψ〉
= ∂X〈φ,ψ〉
= ∂X

〈
JH,φK, JH,ψK

〉
.

b) On an even dimensional Riemannian spin manifold M , the spinor connection ∇Σ

preserves the chirality: for every vector field X ∈ C∞(M,TM) and every spinor field
φ ∈ C∞(M,Σ±M), we have ∇Σ

Xφ ∈ C∞(M,Σ±M). This follows immediately from
equation (2.21).

Now we prove a Leibniz rule for the Clifford multiplication:

Lemma 2.4.12. Let M be a Riemannian spin manifold with spinor bundle ΣM and
spinor connection ∇Σ. Then for all vector fields X,Y ∈ C∞(M,TM) and all spinor
fields φ ∈ C∞(M,ΣM), we have

∇Σ
X(Y · φ) = (∇LC

X Y ) · φ+ Y · ∇Σ
Xφ. (2.23)

Proof. Fix x ∈M and let U be a neighborhood of x. Let H : U → P Spin(M) be a local
section and h = ¯̺ ◦ H : U → P SO(M) be the corresponding local section of P SO(M).
Then the vector fields b1 := h(e1), . . . , bn := h(en) form an oriented orthonormal local
frame of TM .
Since the spinor connection is tensorial in the vector fields, it suffices to prove (2.23)
for X = bi. We thus write Y = Jh, Y ′K and φ = JH,ϕK on U , where Y ′ : U → R

n and
ϕ : U → Σn. Now we compute:

∇Σ
bi(Y · φ) = ∇Σ

biJH,Y
′ · ϕK

(2.21)
=

r
H, ∂bi(Y

′ · ϕ) + 1

4

n∑

j,k=1

Γkij ej · ek · Y ′ · ϕ
z

=
r
H, (∂biY

′) · ϕ+ Y ′ · ∂biϕ− 1

4

n∑

j,k=1

Γkij ej · Y ′ · ek · ϕ− 1

2

n∑

j,k=1

Γkij ej〈ek, Y ′〉 · ϕ
z

=
r
H, (∂biY

′) · ϕ+ Y ′ · ∂biϕ+
1

4

n∑

j,k=1

Γkij Y
′ · ej · ek · ϕ+

1

2

n∑

j,k=1

Γkij〈ej , Y ′〉ek · ϕ

− 1

2

n∑

j,k=1

Γkij ej〈ek, Y ′〉 · ϕ
z



104 2. Spinors and the classical Dirac operator

=
r
H,Y ′ ·

(
∂biϕ+

1

4

n∑

j,k=1

Γkij ej · ek · ϕ
)z

+
r
H,
(
∂biY

′ +
n∑

j,k=1

〈Y ′, ej〉Γkij ek
)
· ϕ
z

= Y · ∇Σ
biφ+∇LC

bi Y · φ.

In (2.21) we gave an expression of the spinor connection ∇Σ in terms of the Christoffel
symbols of the Levi-Civita connection ∇LC. Now we want to do the same for the
corresponding curvatures.

Let RΣ be the curvature for ∇Σ, i.e. the endomorphism field on ΣM , defined by

RΣ(X,Y )φ := ∇Σ
X∇Σ

Y φ−∇Σ
Y∇Σ

Xφ−∇Σ
[X,Y ]φ.

Lemma 2.4.13. Let M be a Riemannian spin manifold with spinor bundle ΣM , and
let ∇LC and ∇Σ be the Levi-Civita connection and the corresponding spinor connection,
respectively. Then the curvatures RΣ of ∇Σ and R of ∇LC are related by

RΣ(X,Y )φ = −1

4

n∑

i=1

(
R(X,Y )bi

)
· bi · φ . (2.24)

Here b1, . . . , bn denotes an orthonormal basis of TxM .

Proof. Fix x ∈M and let U be a neighborhood of x. Let H : U → P Spin(M) be a local
section and h = ¯̺ ◦ H : U → P SO(M) be the corresponding local section of P SO(M).
The vector fields b1 := h(e1), . . . , bn := h(en) form an oriented orthonormal local frame
of TM , which we assume to be synchronous in x, i.e. (∇LC

bi
bj)(x) = 0 for i, j = 1, . . . , n.

In particular, Γkij(x) = 0 and [bi, bj ](x) = 0 for i, j, k = 1, . . . , n.
For a local section JH,ϕK ∈ C∞(U,ΣM), we compute:

(
∇Σ
bi
∇Σ
bj
JH,ϕK

)
(x)

=
(
∇Σ
bi

r
H, ∂bjϕ+

1

4

∑

α,β

Γβjα eα · eβ · ϕ
z)

(x)

=
r
H, ∂bi

(
∂bjϕ+

1

4

∑

α,β

Γβjα eα · eβ · ϕ
)z

(x)

=
r
H, ∂bi∂bjϕ+

1

4

∑

α,β

(
∂biΓ

β
jα

)
eα · eβ · ϕ

z
(x)
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This yields for the curvature at x:

(
RΣ(bi, bj)φ

)
(x)

=
r
H, ∂bi∂bjϕ+

1

4

∑

α,β

(
∂biΓ

β
jα

)
eα · eβ · ϕ

z
(x)

−
r
H, ∂bj∂biϕ+

1

4

∑

α,β

(
∂bjΓ

β
iα

)
eα · eβ · ϕ

z
(x)

=
r
H,
(
∂bi∂bj − ∂bj∂bi

)
ϕ

︸ ︷︷ ︸
= ∂[bi,bj ](x)ϕ=0

+
1

4

∑

α,β

(
∂biΓ

β
jα − ∂bjΓ

β
iα

)
eα · eβ · ϕ

z
(x)

= −1

4

r
H,
∑

α,β

(
∂biΓ

β
jα − ∂bjΓ

β
iα

)
eβ · eα · ϕ

z
(x)
.

On the other hand we have ∇LC
bj
bα =

∑
β Γ

β
jαbβ and thus at x:

R(bi, bj)bα =
∑

β

(
∂biΓ

β
jα − ∂bjΓ

β
iα

)
bβ .

We conclude that (RΣ(bi, bj)φ)(x) = −1
4

∑
α(R(bi, bj)bα) · bα · φ(x).

2.5. The classical Dirac operator on spinors

Let M be an n-dimensional Riemannian spin manifold. Clifford multiplication in the
spinor bundle ΣM defines a smooth section A ∈ C∞(M,Hom(T ∗M ⊗ ΣM,ΣM)) by
A(ξ ⊗ φ) = ξ♯ · φ.

Definition 2.5.1. Let M be a Riemannian spin manifold with spinor bundle ΣM .
The classical Dirac operator is the first order operator

D := DA,∇Σ ∈Diff 1(ΣM,ΣM)

as defined in (1.28) for E = F = ΣM and A given by Clifford multiplication.

Recall from equation (1.28) that for a local orthonormal frame b1, . . . , bn ∈ TxM , the
operator DA,∇Σ is defined as

DA,∇Σ =
∑

i

A
(
b∗i ⊗∇Σ

biφ
)
.

Thus, for the classical Dirac operator, we have:

D = DA,∇Σ =
∑

i

(
b∗i
)♯ · ∇Σ

biφ =
∑

i

bi · ∇Σ
biφ. (2.25)
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Remark 2.5.2. The classical Dirac operator is an operator of Dirac-type, as defined in
Definition 1.3.7. Its principal symbol is given by

σ(D, ξ)φ = σ(DA,∇Σ , ξ)φ
(1.31)
= A(ξ ⊗ φ) = ξ♯ · φ.

By Lemmas 2.3.9 and 2.3.14, Clifford multiplication by tangent vectors is a skew-
symmetric endomorphism of ΣM . Together with the Clifford relation (2.1), we conclude
that D satisfies Definition 1.3.7.

Remark 2.5.3. On an even dimensional Riemannian spin manifold, the classical Dirac
operator D interchanges chirality. With respect to the splitting ΣM = Σ+M ⊕ Σ−M ,
the operator takes the form

D =

(
0 D−

D+ 0

)
,

where D+ ∈Diff 1(Σ
+M,Σ−M) and D− ∈Diff 1(Σ

−M,Σ+M).

Definition 2.5.4. LetM be a Riemannian spin manifold, let D be the classical Dirac
operator, and let C be a vector bundle on M with connection ∇C . The operator

D∇C ∈Diff 1(ΣM ⊗ C,ΣM ⊗ C). (2.26)

as in Definition 1.3.21 is called twisted Dirac operator.

Lemma 2.5.5. The classical Dirac operator is formally self-adjoint.

Proof. Let φ,ψ ∈ C∞
c (M,ΣM) be compactly supported spinor fields. Define X ∈

C∞
c (M,TM ⊗ C) by

〈X,Y 〉 = 〈Y · φ,ψ〉 for all Y ∈ TM.

Let b1, . . . , bn be a local orthonormal frame. Then we have:

divX =
n∑

i=1

〈∇biX, bi〉

=
n∑

i=1

∂bi〈X, bi〉 −
∑

i

〈X,∇bibi〉

=

n∑

i=1

∂bi〈bi · φ,ψ〉 − 〈∇bibi · φ,ψ〉

(2.22)
=

n∑

i=1

〈∇Σ
bi(bi · φ), ψ〉 + 〈bi · φ,∇Σ

biψ〉 − 〈∇bibi · φ,ψ〉
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(2.23)
=

n∑

i=1

〈∇bibi · φ+ bi · ∇Σ
biφ,ψ〉 − 〈φ, bi · ∇Σ

biψ〉 − 〈∇bibi · φ,ψ〉

(2.25)
= 〈Dφ,ψ〉 − 〈φ,Dψ〉.

Integration over M yields

(Dφ,ψ)L2 − (φ,Dψ)L2 =

∫

M

div (X) dvol = 0.

Corollary 2.5.6. Let D∇C
be a twisted Dirac operator. If ∇C is a metric connection

for a Hermitian metric on the vector bundle C then D∇C
is formally self-adjoint with

respect to the induced metric on ΣM ⊗C.

Proof. This follows from Lemma 2.5.5 together with Corollary 1.3.25.

Remark 2.5.7. The proof of the Lemma 2.5.5 shows more than the formal self-
adjointness of D: if M is a Riemannian spin manifold with boundary then for all com-
pactly supported φ,ψ ∈ C∞

c (M,ΣM) we have

(Dφ,ψ)L2 − (φ,Dψ)L2 =

∫

∂M

〈X, ν〉 dA. (2.27)

Here ν denotes the exterior unit normal vector field on ∂M .

Example 2.5.8
(i) Consider M = S1 with the trivial spin structure. Let b1 =

∂
∂t . Then we have

∇Σ
b1JH,ϕK =

q
H,

dϕ

dt

y

and

DJH,ϕK = b1 · ∇Σ
b1JH,ϕK =

r
H,−i dϕ

dt

z
.

By Example 2.4.8, spinor fields JH,ϕK correspond to Z-periodic complex valued
functions on R. Under this identification, the Dirac operator D corresponds to the
operator −i ddt . Using the Fourier expansion

ϕ(t) =
∞∑

k=−∞
αk · e2πi kt.
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of Z-periodic complex functions, we find −i ddte2πi kt = 2π k e2πi kt.

Hence the spectrum of the Dirac operator D on S1 for the trivial spin structure is
2π Z, and all eigenvalues of D have the multiplicity 1.

(ii) Consider M = S1 with the non-trivial spin structure. As above, the Dirac opera-
tor D corresponds to the operator −i ddt , acting on Z-anti-periodic complex func-
tions this time, see Example 2.4.8. Since a function ϕ : R → C is Z-anti-periodic if
and only if eiπt ϕ(t) is Z-periodic, we have the Fourier expansion

eiπt ϕ(t) =

∞∑

k=−∞
αk e

i 2π kt ,

which yields

ϕ(t) =

∞∑

k=−∞
αk e

2πi(k− 1
2
)t.

We thus find −i ddt e2π i(k−
1
2
)t = 2π

(
k − 1

2

)
e2π i(k−

1
2
)t. Hence the spectrum of the

Dirac operator D on S1 for the non-trivial spin structure is 2π(Z − 1
2), and all

multiplicities are 1.
In particular, 0 is an eigenvalue for the trivial spin structure on S1, but not for the
non-trivial spin structure.

By Remark 2.5.2, the classical Dirac operator D is of Dirac-type, and by Lemma 2.5.5
it is formally self-adjoint. By Lemma 1.3.5, we have

D2 = ∇̃∗∇̃+B,

for a connection ∇̃ on ΣM and an endomorphism field B ∈ C∞(M,End(ΣM)). We now
want to determine ∇̃ and B.

Lemma 2.5.9. LetM be a n-dimensional Riemannian spin manifold with spinor bun-
dle ΣM . For any orthonormal basis b1, . . . , bn of TpM and any X ∈ TpM , we have

n∑

j=1

bj · RΣ(bj ,X)φ =
1

2
Ric(X) · φ. (2.28)
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Proof. a) By the first Bianchi identity, we have

TBC :=

n∑

j=1

bj · RΣ(bj,X)φ
(2.24)
= −1

4

∑

i,j

bj · R(bj,X)bi · bi · φ (2.29)

=
1

4

∑

i,j

bj ·
(
R(bi, bj)X +R(X, bi)bj

)
· bi · φ. (2.30)

Now we compute the two contributing terms separately:

b) For the first term on the right hand side of (2.30), we obtain

n∑

i,j=1

bj ·R(bi, bj)X · bi · φ

=

n∑

i,j,k=1

bj · 〈R(bi, bj)X, bk〉 bk · bi · φ

=

n∑

i,j,k=1

bj · 〈R(X, bk)bi, bj〉 bk · bi · φ

=

n∑

i,k=1

R(X, bk)bi · bk · bi · φ

= −
n∑

i,k=1

R(bk,X)bi · bk · bi · φ

(2.1)
=

n∑

i,k=1

bk · R(bk,X)bi · bi · φ+ 2
n∑

i,k=1

〈R(bk,X)bi, bk〉 bi · φ

(2.29)
= −4TBC + 2Ric(X) · φ. (2.31)

c) For the second term on the right hand side of (2.30), we obtain

n∑

i,j=1

bj ·R(X, bi)bj · bi · φ

(2.1)
= −

n∑

i,j=1

R(X, bi)bj · bj · bi · φ− 2
n∑

i,j=1

〈bj , R(X, bi)bj〉︸ ︷︷ ︸
=0

bi · φ

=
n∑

i,j=1

R(X, bi)bj · bi · bj · φ+ 2
n∑

i=1

R(X, bi)bi

︸ ︷︷ ︸
=Ric(X)

·φ

= −
n∑

i,j=1

bi · R(X, bi)bj · bj · φ+ 2
n∑

i,j=1

〈R(bi,X)bj , bi〉 bj
︸ ︷︷ ︸

=Ric(X)

·φ+ 2Ric(X) · φ
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(2.29)
= −4TBC + 4Ric(X) · φ. (2.32)

d) Inserting (2.31) and (2.32) into (2.30) yields

TBC = −TBC+
1

2
Ric(X) · φ−TBC+ Ric(X) · φ,

and hence

TBC =
1

2
Ric(X) · φ.

Lemma 2.5.10. Let E be a Riemannian or Hermitian vector bundle over a Rieman-
nian manifold M , and let ∇ be a metric connection on E.
Then for any local orthonormal tangent frame b1, . . . , bn we have

∇∗∇ = −
n∑

i=1

(
∇bi∇bi −∇∇LC

bi
bi

)
. (2.33)

Proof. Let φ,ψ ∈ C∞
c (M,E) be sections in E with support in the domain of definition

of b1, . . . , bn. Let X ∈ C∞
c (M,TM ⊗ C) be the vector field defined by

〈X,Y 〉 = 〈φ,∇Y ψ〉, for all Y ∈ TM.

Since the Levi-Civita connection ∇LC and the connection ∇ on E are metric, we get

divX =
∑

i

〈∇LC
bi X, bi〉

=
∑

i

(
∂bi〈X, bi〉 − 〈X,∇LC

bi bi〉
)

=
∑

i

(
∂bi
〈
φ,∇biψ

〉
−
〈
φ,∇∇LC

bi
bi
ψ
〉)

=
∑

i

(〈
∇biφ,∇biψ

〉
+
〈
φ,∇bi∇biψ

〉
−
〈
φ,∇∇LC

bi
bi
ψ
〉)

= 〈∇φ,∇ψ〉 +
〈
φ,
∑

i

(
∇bi∇bi −∇∇LC

bi
bi

)
ψ
〉

By Gauß’ divergence theorem, we obtain

0 =

∫

M

div (X) dvol

= (∇φ,∇ψ)L2 +
(
φ,
∑

i

(
∇bi∇bi −∇∇LC

bi
bi

)
ψ
)
L2
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and thus
(φ,∇∗∇ψ)L2 = −

(
φ,
∑

i

(
∇bi∇bi −∇∇LC

bi
bi

)
ψ
)
L2

for any φ,ψ ∈ C∞
c (M,E) as above and hence (2.33) holds at any point p ∈M .

Theorem 2.5.11 (Lichnerowicz (1963)). Let M be a Riemannian spin manifold,
and let D be the classical Dirac operator. Then we have

D2 =
(
∇Σ
)∗ ∇Σ +

scal

4
· idΣM . (2.34)

Proof. Let x ∈ M , and b1, . . . , bn be a local orthonormal tangent frame, defined in a
neighborhood of x such that ∇LC

bi
bj(x) = 0 and Ric(bi)(x) = λi bi(x) for all i, j.

Now for any spinor field φ ∈ C∞(M,Σ), we have:

(D2φ)(x)
(2.25)
=

( n∑

i,j=1

bj · ∇Σ
bj

(
bi · ∇Σ

biφ
) )

(x)

(2.23)
=

( n∑

i,j=1

bj ·
(
∇LC
bj bi︸ ︷︷ ︸
=0

·∇Σ
biφ+ bi · ∇Σ

bj∇Σ
biφ
))

(x)

(2.1)
= −

( n∑

i=1

∇Σ
bi
∇Σ
bi
φ+

∑

i<j

bj · bi ·
(
∇Σ
bj
∇Σ
bi
−∇Σ

bi
∇Σ
bj

)
φ
)
(x)

(2.33)
=

((
∇Σ
)∗ ∇Σφ+

∑

i<j

bj · bi ·RΣ(bj , bi)φ
)
(x)
.

By Lemma 2.5.9, we have:

∑

i<j

bj · bi · RΣ(bj , bi)φ
(2.1)
=

1

2

n∑

i,j=1

bj · bi ·RΣ(bj , bi)φ
(2.28)
= −1

4

n∑

j=1

bj · Ric(bj) · φ

= −1

4

n∑

j=1

bj · λjbj · φ =
1

4

n∑

j=1

λj · φ

=
1

4
tr(Ric) · φ =

1

4
scal · φ.

Corollary 2.5.12. Let M be an n-dimensional connected compact Riemannian spin
manifold with scal ≥ 0. Then the multiplicity of 0 in spec(D) is bounded by

mult(0) ≤ dimΣn = 2[
n
2
].
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Moreover, any harmonic spinor field (i.e. eigenspinor of D for the eigenvalue 0) is
∇Σ-parallel.

Proof. Let φ ∈ ker(D). Then we have:

0 = (D2φ, φ)L2

(2.34)
=

((
∇Σ
)∗∇Σφ, φ

)
L2

+
(scal

4
· φ, φ

)
L2

=
∥∥∇Σφ

∥∥2
L2 +

∫

M

scal

4︸︷︷︸
≥ 0

|φ|2 dvol

︸ ︷︷ ︸
≥ 0

(2.35)

≥
∥∥∇Σφ

∥∥2
L2 ≥ 0

Thus, ‖∇Σφ‖L2 = 0 and hence ∇Σφ = 0.

Let x0 ∈ M . Since M is connected and ∇Σφ = 0, the value of φ at any point x ∈ M is
determined by φ(x0). As in the proof of the Bochner Theorem 1.5.16 we conclude

dimker(D) ≤ dimΣx0M = dimΣn.

Corollary 2.5.13. Let M be a connected compact Riemannian spin manifold with
scal ≥ 0 and scal > 0 somewhere.
Then there are no non-trivial harmonic spinor fields, i.e., 0 /∈ spec(D).

Proof. Let φ ∈ ker(D). By Corollary 2.5.12 we have ∇Σφ = 0, which yields

∂X |φ|2 = 〈∇Σ
Xφ, φ〉 + 〈φ,∇Σ

Xφ〉 = 0.

Since M is connected, we conclude that |φ| is constant. Inserting back into equa-
tion (2.35), we obtain

∫

M

scal

4
· |φ|2 dvol = |φ| ·

∫

M

scal

4
dvol = 0.

Now let x be a point with scal(x) > 0. By continuity, this also holds in a neighborhood
of x. We thus have

∫
M

scal
4 dvol > 0, hence |φ| = 0.
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Remark 2.5.14. Let M be a compact Riemannian spin manifold with scal ≥ s0 > 0.
Let λ ∈ spec(D) and let φ be an eigenspinor. Then we have:

λ2‖φ‖2L2 = (D2φ, φ)L2 ≥
∥∥∇Σφ

∥∥2
L2 +

s0
4
‖φ‖2L2 ≥ s0

4
‖φ‖2L2

Hence

|λ| ≥
√
s0
4
. (2.36)

That is, there is a spectral gap around 0.

But this estimate is not sharp. More precisely, equality can never be achieved in (2.36),
as we will see in the following:

Theorem 2.5.15 (Friedrich’s inequality, 1980). Let M be a compact n-
dimensional Riemannian spin manifold with scal ≥ s0 > 0. Then for any
λ ∈ spec(D), we have

|λ| ≥
√

n

n− 1

s0
4
. (2.37)

Proof. By Lemmas 2.3.9 and 2.3.14, Clifford multiplication is skew-symmetric. Thus for
any X ∈ TxM and any φ ∈ ΣxM , we have

|X · φ|2 = 〈X · φ,X · φ〉 = −〈φ,X ·X · φ〉 (2.1)
= −〈φ,−|X|2φ〉 = |X|2|φ|2

Hence
|X · φ| = |X| · |φ|. (2.38)

Now let φ ∈ C∞(M,ΣM). Fix x ∈M and let b1, . . . , bn be an orthonormal tangent frame
in a neighborhood of x. Using equation (2.38) and the Cauchy-Schwarz inequality, we
find:

(
|Dφ|2

)
(x)

=
∣∣∣
∑

i

bi · ∇Σ
biφ
∣∣∣
2

(x)
≤
(

n∑

i=1

∣∣bi · ∇Σ
biφ
∣∣
)2

(x)

=

(
n∑

i=1

|bi| ·
∣∣∇Σ

biφ
∣∣
)2

(x)

≤
n∑

i=1

|bi|2(x)︸ ︷︷ ︸
=1

·
n∑

i=1

∣∣∇Σ
bi
φ
∣∣2
(x)

= n ·
∣∣∇Σφ

∣∣2
(x)
.

Thus for any x ∈M , we have the estimate:

∣∣∇Σφ
∣∣2
(x)

≥ 1

n
|Dφ|2(x). (2.39)
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By Lichnerowicz’ Theorem 2.5.11 and equation (2.39), we find:

‖Dφ‖2L2 = (D2φ, φ)L2

=
((

∇Σ
)∗∇Σφ, φ

)
L2

+
(scal

4
· φ, φ

)
L2

≥ ‖∇Σφ‖2L2 +
s0
4
‖φ2‖L2

(2.39)

≥ 1

n
‖Dφ‖2L2 +

s0
4
‖φ2‖L2 .

Thus

‖Dφ‖2L2 ≥ n

n− 1

s0
4

· ‖φ‖2L2 .

Now if Dφ = λφ then we obtain

λ2 · ‖φ‖2L2 ≥ n

n− 1

s0
4

· ‖φ‖2L2 .

Thus any eigenvalue λ of the classical Dirac operator D satisfies

λ2 ≥ n

n− 1

s0
4
.

Remark 2.5.16. Friedrich’s estimate (2.37) is sharp: equality is achieved e.g. for Sn

with metrics of constant curvature.

Theorem 2.5.17 (Bär, 1991). Let M = S2 with any Riemannian metric. Then all
eigenvalues of the classical Dirac operator D satisfy

λ2 ≥ 4π

area(M)
. (2.40)

In particular, by the estimate (2.40), 0 can not be an eigenvalue of D for any metric
on S2.

Remark 2.5.18
1) Equality in (2.40) (for the eigenvalue with the smallest absolute value) is achieved iff

the curvature of M is constant.

2) Lott (1986) proved with different methods the estimate:

∃C > 0 : λ2 ≥ C

area(M)
. (2.41)
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Lott already conjectured that C = 4π was the optimal constant.

3) Hersch (1970) has proved that for the first positive eigenvalue λ1(∆) of the Laplace-
Beltrami operator on a manifoldM diffeomorphic to S2, the following estimate holds:

λ1(∆) ≤ 8π

area(M)
.

4) Every compact orientable surface of genus ≥ 1 admits a spin structure and a Rie-
mannian metric such that 0 ∈ spec(D). Also, on S3 there are Riemannian metrics
with harmonic spinors, i.e. with 0 ∈ spec(D). Thus, for these manifolds, there are no
estimates like (2.40).

5) It is conjectured that every compact spin manifold of dimension n ≥ 3 admits a
Riemannian metric with harmonic spinor, i.e. with 0 ∈ spec(D). If the conjecture
holds then there are no estimates like (2.40) for n ≥ 3. The conjecture has been
proved for the cases n = 0, 1, 7mod 8 by Hitchin (1974) and for the cases n = 3mod 4
by Bär (1996).

6) Up to today, Theorem 2.5.17 is the only estimate for Dirac eigenvalues not involving
any curvature assumptions.
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Proof. [of Theorem 2.5.17]

a) Let M be an arbitrary 2-dimensional Riemannian manifold. Let λ ∈ R and
f ∈ C∞(M). Define a new connection ∇̃ on ΣM by

∇̃Xφ := ∇Σ
Xφ+

λ

2
X · φ+X · grad f · φ.

Claim:

∇̃∗(e−2f ∇̃φ
)
= e−2f

{
D2 − λD − 2 grad f ·D − 2

[
∇Σ

grad f +
(
∇Σ

grad f

)∗]

− scal

4
+
λ2

2
+∆f + λ · grad f ·

}
φ. (2.42)

The proof of the claim is an elementary but tedious computation. Notice that (2.42)
is only valid for 2-dimensional manifolds.

b) We compute:
∫

M

e−2f
〈[

∇Σ
grad f +

(
∇Σ

grad f

)∗]
φ, φ

〉
dA

=
(
∇Σ

grad fφ, e
−2fφ

)
L2

+
(
φ,∇Σ

grad f

(
e−2fφ

))
L2

=

∫

M

∂grad f
〈
φ, e−2fφ

〉
dA

=

∫

M

〈
grad f, grad

〈
φ, e−2fφ

〉〉
dA

=

∫

M

∆f ·
〈
φ, e−2fφ

〉
dA

=

∫

M

e−2f ∆f |φ|2 dA.

c) Now let φ ∈ C∞(M,ΣM) be an eigenspinor for the eigenvalue λ. Using a) and b),
we find:

0 ≤
∫

M

e−2f
∣∣∇̃φ

∣∣2dA

=
(
∇̃∗(e−2f ∇̃φ

)
, φ
)

≤
∫

M

e−2f
〈{
λ2 − λ2 − 2λ grad f − 2∆f − scal

4
+
λ2

2
+ ∆f + λ grad f

}
· φ, φ

〉
dA

=

∫

M

e−2f
〈{λ2

2
− scal

4
−∆f

}
φ, φ

〉
dA−

∫

M

e−2fλ〈grad f · φ, φ〉 dA. (2.43)



2.5. The classical Dirac operator on spinors 117

By Lemmas 2.3.9 and 2.3.14, Clifford multiplication is skew symmetric, i.e.

〈grad f · φ, φ〉 = −〈φ, grad f · φ〉 = −〈grad f · φ, φ〉,
and hence 〈grad f ·φ, φ〉 ∈ iR. Since all the other terms in (2.43) are real, we conclude

∫

M

e−2fλ〈grad f · φ, φ〉 dA = 0.

This yields the estimate

0 ≤
∫

M

e−2f
(λ2
2

− scal

4
−∆f

)
· |φ|2 dA. (2.44)

d) Since the Laplace-Beltrami operator is self-adjoint, any h ∈ C∞(M) perpendicular
to ker∆ is of the form h = ∆f for some f ∈ C∞(M).

Choose −h := scal
4 − 1

4 area(M)

∫
M

scal(y) dA(y) ∈ C∞. Then we have

0 =

∫

M

h(y) dA(y) = (h, 1)L2 ,

and thus h ⊥ ker(∆). So let f ∈ C∞(M) with ∆f = h. Inserting this particular
choice of f into (2.44) yields:

0 ≤
∫

M

e−2f
(λ2
2

− scal

4
− h
)
· |φ|2 dA

≤
∫

M

e−2f
(λ2
2

− 1

4 area(M)

∫

M

scal(y) dA(y)
)
· |φ|2 dA

=
(λ2
2

− 1

4 area(M)

∫

M

scal(y) dA(y)
)
·
∫

M

e−2f |φ|2 dA

︸ ︷︷ ︸
≥ 0

.

We thus have the estimate

λ2

2
≥ 1

4 area(M)

∫

M

scal(y)︸ ︷︷ ︸
=2K

dA(y),

where K denotes the Gauß curvature. By the Gauß -Bonnet Theorem, we end up
with

λ2

2
≥ 1

4 area(M)
· 4π · χ(M) =

2π

area(M)
.

Observe that only in this last step, we used the fact that M = S2.



118 2. Spinors and the classical Dirac operator

2.6. Hypersurfaces

Let M be an (n + 1)-dimensional Riemannian spin manifold, and let N ⊂ M be an
oriented hypersurface. We want to construct a spin structure on N and relate the
spinor bundles ΣM and ΣN and the Dirac operators DM and DN .

Let ν be the unit normal vector field alongN such that (b1, . . . , bn) is a positively oriented
basis of TxN if and only if (b1, . . . , bn, ν(x)) is a positively oriented basis of TxM . Using
the canonical embedding

SO(n) →֒ SO(n+ 1)

A 7→
(
A 0
0 1

)
,

the action of SO(n) on (b1, . . . , bn, ν(x)) preserves the normal ν(x).

Consider the map Cl0n ⊂ Cln
∼=−→ Cl0n+1, induced by R

n ∋ X 7→ X · en+1. Since
Spin(n) ⊂ Cl0n and Spin(n+ 1) ⊂ Cl0n+1, we obtain a map

Spin(n) →֒ Spin(n+ 1)

a = v1 · v2 · . . . · v2m 7→ v1 · en+1 · . . . · v2m · en+1 = v1 · . . . · v2m.

With this embedding we have the following commutative diagram:

Spin(n) �
�

//

̺

��

Spin(n+ 1)

̺

��
SO(n) �

�
// SO(n+ 1)

.

Moreover, we have a canonical embedding of frame bundles

P SO(N) →֒ P SO(M),
(
h : Rn → TpN

)
7→
(
h′ : Rn+1 → TpM

)
,

where h′(x1, . . . , xn, 0) = h(x1, . . . , xn) and h′(0, . . . , 0, 1) := ν(p). This embedding is
compatible with the embedding SO(n) →֒ SO(n+ 1) defined above. Thus, the diagram

P SO(N)× SO(n) //
� _

��

P SO(N)
� _

��

P SO(M)× SO(n + 1) // P SO(M)

.

commutes.

Now let ¯̺: P Spin(M) → P SO(M) be a spin structure on M . We set

P Spin(N) := ¯̺−1
(
P SO(N)

)
(2.45)

This defines a spin structure on N :
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• The action of Spin(n+1) on P Spin(M) restricts to an action of Spin(n) on P Spin(N):

For H ∈ P Spin(N) and a ∈ Spin(n) we have H · a ∈ P Spin(M) and

¯̺(H · a) = ¯̺(H)︸ ︷︷ ︸
∈P SO(N)

· ̺(a)︸︷︷︸
∈ SO(n)

∈ P SO(N).

Thus H · a ∈ P Spin(N).

• Obviously, the action of Spin(n) on P Spin(N) is compatible with the action of SO(n)
on P SO(N), hence ¯̺ : P Spin(N) → P SO(N) is a spin structure on N .

In particular, orientable hypersurfaces of spinnable manifolds are again spinnable.

Spinor bundles

We study how the spinor bundles of N and M are related to one another.

Case 1: n+ 1 is even

In this case, Σn = Σ+
n+1. For any x ∈ N , we have1

ΣxN = P Spin
x (N)×σn Σn = P Spin

x (N)×
σ+n+1

∣∣
Spin(n)

Σ+
n+1

∼= P Spin
x (M)×σ+n+1

Σ+
n+1

Thus, ΣN = Σ+M |N .
The Clifford multiplication of Rn on Σn = Σ+

n+1 is given by

X · ϕ = X · en+1 · ϕ,

where the · on the left hand side is the Clifford multiplication in Cln, while the · on the
right hand side is the Clifford multiplication in Cln+1. Thus, the Clifford multiplication
in ΣN is given by

X · ϕ = X · ν · ϕ,

where X ∈ TxN and ϕ ∈ ΣxN .

Case 2: n+ 1 is odd

The inclusion of Clifford algebras

Cln
∼=−→ Cl0n+1 →֒ Cln+1

∼=−→ Cl0n+2 →֒ Cln+2

1Let X ⊂ Y be sets and H ⊂ G be groups. Let G act simply transitively from the right on Y such that
the action restricts to a simply transitive right action of H on X. Then for any representation of G
on Σ the inclusions induce a bijection X ×H Σ ∼= Y ×G Σ.
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together with the inclusions Σn ⊂ Cln and Σn+1
∼= Σ+

n+2 ⊂ Cln+2 induces an isomor-
phism Ξn : Σn → Σn+1 such that the diagram

Σn
Ξn //

X·()
��

Σn+1 = Σ+
n+2

X·en+1·()=X·en+2·en+1·en+2·()
��

Σn
Ξn // Σn+1 = Σ+

n+2

of Clifford multiplications with X ∈ R
n commutes.

As in case 1 we obtain the canonical isomorphism ΣN ∼= ΣM |N such that again

X · ϕ = X · ν · ϕ.

for X ∈ TxN , ϕ ∈ ΣxN .
In the following we treat both cases simultaneously using the notation

Σ(+)M :=

{
Σ+M if n+ 1 is even,

ΣM if n+ 1 is odd.

Spinor connections

The Levi-Civita connections on TM and TN are related by the Gauß equation

∇M
X Y︸ ︷︷ ︸

∈TxM

= ∇N
XY︸ ︷︷ ︸

∈TxN

+II(X,Y )︸ ︷︷ ︸
∈ (TxN)⊥

, (2.46)

where X ∈ TxN and Y ∈ C∞(N,TN). The second fundamental form is a symmet-
ric bilinear map II : TxN × TxN → (TxN)⊥, given by the orthogonal projection of
∇M
X Y to (TxN)⊥. The Weingarten map is the corresponding symmetric endomorphism

B : TxN → TxN such that for all X,Y ∈ TxN

II(X,Y ) = g(B(X), Y ) ν =:
〈
B(X), Y

〉
ν .

The mean curvature field H ∈ C∞(N,TN⊥) is defined by

H =
1

n

n∑

i=1

〈
B(bi), bi

〉
ν =

1

n
tr(B) ν = H ν,

where b1, . . . , bn is a local orthonormal tangent frame for N and H : N → R is the mean
curvature of the hypersurface N ⊂M .

The spinor connections of M and N are related by the Weingarten map. Let (b1, . . . , bn)
be a local oriented orthonormal tangent frame for N . Then (b1, . . . , bn, bn+1 = ν) is
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a local orthonormal tangent frame for M along N . The Christoffel symbols for the
Levi-Civita connections ∇M and ∇N are defined by

∇M
bi
bj =

n+1∑

k=1

MΓkij bk and ∇N
bi
bj =

n∑

k=1

NΓkij bk.

By the Gauß equation (2.46), we have for i, j ∈ {1, . . . , n}:

∇M
bi bj = ∇N

bi bj +
〈
B(bi), bj

〉
ν =

n∑

k=1

NΓkij bk +
〈
B(bi), bj

〉
bn+1.

Comparing coefficients yields

MΓkij =NΓkij ∀ i, j, k = {1, . . . , n},
MΓn+1

ij =− MΓji,n+1 =
〈
B(bi), bj

〉
∀ i, j = {1, . . . , n}.

For the covariant derivative a section of Σ(+)M , we compute for i ∈ {1, . . . , n}:

M∇Σ
biJH,ϕK

(2.21)
=

r
H, ∂biϕ+

1

4

n+1∑

j,k=1

MΓkij ej · ek · ϕ
z

=
r
H, ∂biϕ+

1

4

n∑

j,k=1

NΓkij ej · ek · ϕ+
1

4

n∑

j=1

〈
B(bi), bj

〉
ej · en+1 · ϕ

− 1

4

n∑

k=1

〈
B(bi), bk

〉
en+1 · ek · ϕ

z

= N∇Σ
biJH,ϕK+

1

2

n∑

j=1

〈
B(bi), bj

〉
bj · bn+1 · JH,ϕK

= N∇Σ
biJH,ϕK+

1

2
B(bi) · ν · JH,ϕK.

Hence for all φ ∈ C∞(M,Σ(+)M) and for all X ∈ TN , we have along N :

M∇Σ
Xφ = N∇Σ

Xφ+
1

2
B(X) · ν · φ.

Dirac operators

For a spinor field φ ∈ C∞(M,Σ(+)M) we have along the hypersurface N :

DMφ =

n∑

j=1

bj ·M∇Σ
bjφ+ ν · M∇Σ

ν φ

(2.1)
=

n∑

j=1

ν · bj · ν ·
(
N∇Σ

bjφ+
1

2
B(bj) · ν · φ

)
+ ν ·M∇Σ

ν φ
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= ν ·
(
DNφ+

1

2

n∑

j=1

bj · ν · B(bj) · ν · φ
)
+ ν · M∇Σ

ν φ

= ν ·DNφ+
1

2
ν ·

n∑

j=1

bj ·B(bj) · φ+ ν ·M∇Σ
ν φ.

Since B is a symmetric endomorphism, we may choose b1, . . . , bn as an eigenbasis at
x ∈M , thus B(bj) = κj · bj for j = 1, . . . , n. Then we have

DMφ = ν ·DNφ− 1

2
ν · tr(B)φ+ ν · M∇Σ

ν φ

= ν ·DNφ− n

2
ν ·H φ+ ν · M∇Σ

ν φ.

Hence

−ν ·DMφ = DNφ− n

2
Hφ+ M∇Σ

ν φ. (2.47)

Theorem 2.6.1 (Bär, 1998). Let N ⊂ R
n+1 be an oriented compact hypersurface

with induced spin structure.
Then there are at least 2[

n
2
] eigenvalues λ of DN (counted with multiplicity) satisfying

λ2 ≤ n2

4

1

vol(N)

∫

N

H2 dvol.

Here H : N → R is the mean curvature of N ⊂ R
n+1.

For the proof of this theorem we need the following variational characterization of eigen-
values:

Lemma 2.6.2 (minimax principle). Let H be a Hilbert space, let A be a self-
adjoint operator on H . Assume that H has an orthonormal basis consisting of eigen-
vectors of A and let µ1 ≤ µ2 ≤ µ3 ≤ . . . be the eigenvalues, each one repeated according
to its multiplicity. Then the eigenvalues are characterized as:

µk = min
V ⊂dom(A)
dimV =k

max
f∈V \{0}

(Af, f)

‖f‖2 .

Proof. Let V ⊂ dom(A) be a vector subspace of dimension k. Let f1, f2, . . . be an
orthonormal basis of H with Afj = µj fj. Let lj : V → C be the linear functional
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defined by
lj(f) = (f, fj).

Since dimV = k, there is an f ∈ V \ {0} such that l1(f) = . . . = lk−1(f) = 0 and hence

f =
∞∑
j=k

αj fj. This yields the estimate

(Af, f) =




∞∑

j=k

αj µj fj,
∞∑

i=k

αi fi


 =

∞∑

j=k

µj |αj |2 ≥ µk

∞∑

j=k

|αj |2 = µk ‖f‖2,

that is, (Af,f)
‖f‖2 ≥ µk and in particular, max

f∈V \{0}
(Af,f)
‖f‖2 ≥ µk. Hence

inf
V ⊂dom(A)
dimV =k

max
f∈V \{0}

(Af, f)

‖f‖2 ≥ µk.

Equality is attained for V = C f1 ⊕ . . .⊕ C fk and f = fk.

Proof. [of Theorem 2.6.1] The spinor bundle of the hypersurface ΣN = Σ(+)
R
n+1|N has

rank 2[
n
2
]. The spinor bundle Σ(+)

R
n+1 of Rn+1 can be trivialized by parallel sections

ψ1, . . . , ψ2[
n
2 ] . In particular, ψ1, . . . , ψ2[

n
2 ] are linearly independent at each point. Thus

ψ1|N , . . . , ψ2[
n
2 ]|N are still linearly independent. We define

V := C · ψ1|N ⊕ . . .⊕ C · ψ
2[

n
2 ] |N ⊂ C∞(N,ΣN) ⊂ dom

(
(DN )2

)
.

Since any ψ ∈ V is parallel with respect to the connection Rn+1∇Σ, we have:
(
(DN )2ψ,ψ

)
L2(N)

= ‖DN ψ‖2L2(N)

(2.47)
=

∥∥∥− ν ·DRn+1
ψ︸ ︷︷ ︸

=0

+
n

2
Hψ − Rn+1∇Σ

ν ψ︸ ︷︷ ︸
=0

∥∥∥
2

L2(N)

=
∥∥∥n
2
Hψ

∥∥∥
2

L2(N)

=
n2

4

∫

N

H2 · |ψ|2 dvol.

Since ∇Σ is metric, ∇Σ-parallel sections have constant length. Thus, |ψ(x)| = |ψ(x0)|
for an arbitrary x0 ∈ N and we obtain

(
(DN )2ψ,ψ

)
L2(N)

=
n2

4
|ψ(x0)|2

∫

N

H2 dvol

=
n2

4

‖ψ‖2L2(N)

vol(N)

∫

N

H2 dvol.
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Hence

(
(DN )2ψ,ψ

)
L2(N)

‖ψ‖2
L2(N)

=
n2

4

1

vol(N)

∫

N

H2 dvol.

The statement now follows from Lemma 2.6.2.

Example 2.6.3. We consider the n-sphere Sn ⊂ R
n+1 of radius 1. Then H2 ≡ 1 and

by Theorem 2.6.1, the first 2[
n
2
] Dirac eigenvalues of Sn satisfy λ2 ≤ n2

4 .
The scalar curvature of Sn is n(n− 1). Thus, by Friedrich’s inequality (2.37), we have

λ2 ≥ n

n− 1

n(n− 1)

4
=
n2

4
.

Hence, for the sphere Sn, the first 2[
n
2
] Dirac eigenvalues of Sn satisfy λ2 = n2

4 . In
particular, Friedrich’s inequality cannot be improved in general.

Remark 2.6.4. For n = 2, the integral
∫
N

H2 dvol is called Willmore energy.

• If N ∼= S2, Theorem 2.5.17 and 2.6.1 yield

4π

area(N)
≤ λ2 ≤ 1

area(N)

∫

N

H2 dA.

Hence, the Willmore energy is bounded from below by 4π. Equality is attained if and
only if the curvature of N is constant.

• For a torus N ∼= T 2, the Willmore conjecture states that the Willmore energy is
bounded from below by 2π2. This famous conjecture was open for a long time and
finally proved by Marques and Neves in 2014, see [8].



3. The heat equation and index theory

3.1. The heat kernel

Throughout this chapter, let ∆ be a formally self-adjoint Laplace-type operator, acting
on sections of a Euclidean or Hermitian vector bundle E over a compact Riemannian
manifold M . Similarly as in Theorem 1.4.18 one can show that the eigenspaces of ∆ are
finite-dimensional and that there exists an orthonormal basis of L2(M,E) consisting of
eigensections of ∆. One can also show that an analogue of the elliptic estimates from
Proposition 1.4.2 holds. For later purposes we need a lower estimate for the growth of
the eigenvalues of ∆.

Proposition 3.1.1. Let ∆ be a self-adjoint Laplace-type operator on a compact Rie-
mannian manifold M . Let λ1 ≤ λ2 ≤ λ3 ≤ . . . ր +∞ be the eigenvalues of ∆, where
each eigenvalue is repeated according to multiplicity. Then there exists a positive con-
stant c = c(M,∆) such that for all k ∈ N, the following estimate holds:

λk ≥ c · k
4

n(n+6) + λ1 − 1. (3.1)

Proof. a) Replacing ∆ by ∆ − λ1 · id shifts the spectrum of ∆ by λ1. Hence we can
assume w.l.o.g. that λ1 = 0. Moreover, it suffices to prove the estimate for sufficiently
large k. Then there are only finitely many values of λk left, for which the estimate
(3.1) may not hold. This can be corrected by making the constant c smaller. In the
limit c → 0, the right hand side of (3.1) tends to −1, but λk ≥ 0 for any k. Hence
the right hand side can be made sufficiently small such that the estimate holds for
all k ∈ N.

Now let ε > 0. Choose a maximal ε2 -net in M , i.e., a set of points {p1, . . . , pN} ⊂M ,
such that

B
(
pi,

ε

2

)
∩B

(
pj,

ε

2

)
= ∅, ∀ i 6= j,

and the number N of points satisfying this property is maximal. Then we have:

N⋃

i=1

B(pi, ε) =M.

In fact, for any x ∈ M , there is an i ∈ {1, . . . , N} such that B(x, ε2) ∩ B(pi,
ε
2) 6= ∅.

Otherwise, the set {p1, . . . , pN , x} would be another ε
2 -net, in contradiction to the
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maximality of {p1, . . . , pN}. Now let y ∈ B(x, ε2 )∩B(pi,
ε
2). By the triangle inequality,

we have
dist(pi, x) ≤ dist(pi, y) + dist(y, x) <

ε

2
+
ε

2
= ε,

hence x ∈ B(pi, ε).

For small radii, the Riemannian volume of balls inM can be estimated against the vol-
ume of the Euclidean balls: There is a constant c0 > 0 such that volB(p, r) ≥ c0 · rn
holds for any point p ∈M and any radius r > 0 sufficiently small. We thus obtain a
lower bound for the volume of M im terms of the maximal ε2 -net:

vol(M) ≥
N∑

i=1

vol
(
B
(
pi,

ε

2

))
≥

N∑

i=1

c0 ·
(ε
2

)n
= N · c0 ·

(ε
2

)n
.

Hence, there is a constant c1 = c1(M) such that for all ε > 0, we have:

N = N(ε) ≤ c1 · ε−n.

b) Let V ⊂ L2(M,E) be the subspace spanned by the first k eigensections ϕ1, . . . , ϕk of
∆. Let ϕ =

∑k
i=1 αi ϕi ∈ V with ϕ(pi) = 0 for all i = 1, . . . , N . We want to estimate

several norms of ϕ:

Given x ∈ M choose pi such that x ∈ B(pi, ε). Differentiation along a shortest
geodesic from pi to x yields

|ϕ(x)| = |ϕ(x)| − |ϕ(pi)|

=

1∫

0

d

dt

∣∣ϕ(γ(t))
∣∣ dt

=

1∫

0

d

dt

√〈
ϕ(γ(t)), ϕ(γ(t))

〉
dt

=

1∫

0

〈
∇γ̇ϕ,ϕ(γ(t))

〉
+
〈
ϕ(γ(t)),∇γ̇ϕ

〉

2
∣∣ϕ(γ(t))

∣∣ dt

≤
1∫

0

|∇γ̇ϕ| · |ϕ(γ(t))|
|ϕ(γ(t))| dt

≤
1∫

0

|γ̇| · |∇ϕ| dt

≤ ε · ‖∇ϕ‖C0 .
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In the last equality, we used the fact that
∫ 1
0 |γ̇| dt = L[γ] < ε. Integration over M

yields

‖ϕ‖2L2 =

∫

M

|ϕ(x)|2 dvol ≤ ε2 · ‖∇ϕ‖2C0 · vol(M)

and thus

‖ϕ‖L2 ≤ ε
√

vol(M) · ‖∇ϕ‖C0 ≤ ε
√

vol(M) · ‖ϕ‖C1 .

Let ℓ :=
[
n
2

]
+ 2. By the Sobolev embedding theorem 1.2.13 there exists a constant

c2 > 0 such that

‖ϕ‖C1 ≤ c2 · ‖ϕ‖Hℓ .

By the elliptic estimates (1.37), we have:

‖ϕ‖Hℓ ≤ c3 ·
(
‖ϕ‖L2 +

∥∥∆
[
ℓ+1
2

]
ϕ
∥∥
L2

)

≤ c3 ·
(
1 + λ

[ ℓ+1
2 ]

k

)
· ‖ϕ‖L2

≤ c3 · (1 + λk)
[ ℓ+1

2 ] · ‖ϕ‖L2

≤ c3 · (1 + λk)
n+6
4 · ‖ϕ‖L2 .

In the last inequality, we used the estimate
[
ℓ+1
2

]
=
[
1
2

[
n
2

]
+ 1 + 1

2

]
≤ n

4 + 3
2 .

Combining the above estimates we obtain

‖ϕ‖L2 ≤ ε ·
√

vol(M) · c2 · c3 · (1 + λk)
n+6
4 · ‖ϕ‖L2

= ε · c4 · (1 + λk)
n+6
4 · ‖ϕ‖L2 .

For ε = 1
2c4

· (1 + λk)
−n+6

4 we conclude ‖ϕ‖L2 ≤ 1
2‖ϕ‖L2 , hence ϕ ≡ 0. Thus for such

an ε the only section ϕ ∈ V satisfying ϕ(pi) = 0 is the section ϕ ≡ 0. Hence the
linear mapping

V → Ep1 ⊕ · · · ⊕ EpN

ϕ 7→
(
ϕ(p1), . . . , ϕ(pN )

)

is injective. We thus obtain the estimate

k = dimV ≤ dim(Ep1 ⊕ . . . ⊕ EpN ) = N · rkE
≤ c1 · ε−n · rkE ≤ c5 · (1 + λk)

n(n+6)
4 .

Hence, for the eigenvalues, we obtain the lower bound:

1 + λk ≥
(
k

c5

) 4
n(n+6)

= c6 · k
4

n(n+6) .
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In the following, we study the heat equation
(
∂

∂t
+∆

)
ϕt = 0,

where ϕt is a smooth section in E for each t ≥ 0 and ϕt depends smoothly on t.

Remark 3.1.2.
Let ∆ be a self-adjoint operator of Laplace-type. By Lemma 1.3.5 we may write
∆ = (∇E)∗∇E +K, where ∇E is a metric connection and K is a symmetric endomor-
phism field.
The connection ∇E on E induces a connection ∇E∗

on the dual bundle E∗ via the
requirement that the Leibniz rule

∂X
(
l(ϕ)

)
=
(
∇E∗

X l
)
(ϕ) + l

(
∇E
Xϕ
)

(3.2)

holds for any section l ∈ C∞(M,E∗) and any section ϕ ∈ C∞(M,E). The endomorphism
field K of E yields an endomorphism field K∗ of E∗. Hence we obtain a Laplace-type
operator

∆E∗
:=
(
∇E∗)∗ ∇E∗

+K∗

on E∗.
Let g denote the Riemannian metric on M and equip M ×M with the product metric
g ⊕ g. It follows that the operator

∆̃ := ∆⊗ idE∗ + idE ⊗∆E∗

is a formally self-adjoint Laplace-type operator on the Riemannian manifold M ×M .

For a smooth section ϕ ∈ C∞(M,E) we define the section ϕ∗ ∈ C∞(M,E∗) by the
requirement

ϕ∗(ψ) := 〈ψ,ϕ〉 ∀ψ ∈ E.

Now, if ϕ ∈ C∞(M,E) satisfies ∆ϕ = λϕ then the section ϕ∗ satisfies ∆E∗
ϕ∗ = λϕ∗.

Hence any orthonormal basis of L2(M,E) consisting of eigensections of ∆ yields an
orthonormal eigenbasis of L2(M,E∗) of eigensections of ∆E∗

with the same eigenvalues.
If ϕ ∈ C∞(M,E) satisfies ∆ϕ = λϕ and ψ ∈ C∞(M,E∗) satisfies ∆E∗

ψ = µψ then we
have:

∆̃(ϕ⊗ ψ) = ∆ϕ⊗ ψ + ϕ⊗∆E∗
ψ = (λ+ µ)ϕ⊗ ψ.

Thus, an orthonormal basis {ϕk | k ∈ N} of L2(M,E) consisting of eigensections of ∆
yields an orthonormal basis of L2(M ×M,E ⊠ E∗), consisting of the eigensections

(x, y) 7→
(
ϕk(x)⊗ ϕ∗

l (y)
)
, (k, l) ∈ N× N ,

of ∆̃.
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Definition 3.1.3. Let M be a compact Riemannian manifold, let E → M be a Rie-
mannian or Hermitian vector bundle, and let ∆ be a self-adjoint Laplace-type operator
on E. Let {ϕj | j ∈ N} be an orthonormal basis of L2(M,E) consisting of eigensections
of ∆. The series

kt(x, y) :=

∞∑

j=1

e−tλjϕj(x)⊗ ϕ∗
j (y), (3.3)

where x, y ∈M , t > 0, is called the (true) heat kernel of ∆ on M .

Proposition 3.1.4. Let t0 > 0. Then the heat kernel and all its t-derivatives converge
uniformly in t ≥ t0 in all Hk-norms and all Ck-norms. In particular, kt(x, y) is smooth
in t, x, and y, and we can differentiate the series termwise.

Proof.
a) In view of the Sobolev embedding theorem 1.2.13 it is sufficient to prove the propo-
sition for the Hk-norms. All but finitely many λj satisfy λj ≥ 1. Thus by splitting a
finite part from the series if necessary, we may assume that λj ≥ 1.

By the elliptic estimates (1.37) for ∆̃, we then have:

∥∥∥e−tλjϕj ⊗ ϕ∗
j

∥∥∥
H2k

≤ c1 · e−tλj ·
(∥∥ϕj ⊗ ϕ∗

j

∥∥
L2 +

∥∥∆̃k(ϕj ⊗ ϕ∗
j )
∥∥
L2

)

= c1 · e−tλj ·
(
1 + (2λj)

k
)

≤ c2 · e−tλj · λkj (since λj ≥ 1)

≤ c2 · e−t0λj · λkj .

For λ sufficiently large, we have e−t0
λ
2 · λk ≤ 1. Thus for j ≫ 0, we obtain:

∥∥∥e−tλjϕj ⊗ ϕ∗
j

∥∥∥
H2k

≤ c2 · e−t0
λj
2 .

b) By Proposition 3.1.1 we have λj ≥ c3 · jα + c4, where α = 4
n(n+6) , and therefore

∥∥∥e−tλjϕj ⊗ ϕ∗
j

∥∥∥
H2k

≤ c2 · e−
t0 c3·j

α

2
− t0 c4

2 ≤ c5 · e−c6·j
α
.

The series
∞∑
j=1

e−c6·j
α
converges, since we have:

∞∑

j=1

e−c6·j
α ≤

∞∫

0

e−c6·t
α
dt = c7 ·

∞∫

0

e−s · s 1−α
α ds = c7 · Γ

(
1

α

)
<∞.



130 3. The heat equation and index theory

Thus, we have shown that the series

∞∑

j=1

e−tλjϕj ⊗ ϕ∗
j

converges in each Hk-norm, uniformly in t ≥ t0.

c) The same argument applies to the t-derivatives

(
d

dt

)m (
e−tλjϕj ⊗ ϕ∗

j

)
= (−λj)me−tλjϕj ⊗ ϕ∗

j .

Hence the series (3.3), together with all its t-dervivatives, converges in any Hk-norm
and consequently in any Ck-norm. The series thus defines a family of smooth sections
kt ∈ C∞(M ×M,E ⊠ E∗). The family is also smooth in t, and all derivatives can be
computed termwise.

Since the heat kernel can be differentiated termwise, we compute for a fixed y ∈M :

∂

∂t
kt(x, y) =

∂

∂t

∞∑

j=1

e−tλj ϕj(x)⊗ ϕ∗
j (y)

=
∞∑

j=1

∂

∂t
e−tλj ϕj(x)⊗ ϕ∗

j (y)

=

∞∑

j=1

(−λj) e−tλj ϕj(x)⊗ ϕ∗
j (y)

= −
∞∑

j=1

e−tλj (∆ϕj) (x)⊗ ϕ∗
j (y)

= −(∆xkt)(x, y).

Thus the heat kernel satisfies the heat equation
(
∂
∂t +∆x

)
kt(x, y) = 0.

For any ϕ ∈ L2(M,E), we have:

( ∂
∂t

+∆x

)∫

M

kt(x, y)ϕ(y) dvol(y) =

∫

M

( ∂
∂t

+∆x

)
kt(x, y)ϕ(y) dvol(y) = 0.

Thus the section

x 7→
∫

M

kt(x, y)ϕ(y) dvol(y)
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solves the heat equation. Moreover, the map

ϕ 7→
∫

M

kt(·, y)ϕ(y) dvol(y)

is a bounded operator on L2(M,E). Applying this operator to an eigensection ϕk from
the orthonormal basis, we obtain:

∫

M

kt(x, y)ϕk(y) dvol(y) =

∫

M

∞∑

j=1

e−tλj
(
ϕj(x)⊗ ϕ∗

j (y)
)
· ϕk(y) dvol(y)

=
∞∑

j=1

e−tλj ϕj(x) ·
(
ϕj , ϕk

)
L2

= e−tλk ϕk(x).

Thus, the operator ϕ 7→
∫
M

kt(·, y)ϕ(y) dvol(y) coincides with the operator e−t∆, defined

by the functional calculus. In other words, the heat kernel kt(x, y) is the integral kernel
of the operator e−t∆.
As t ց 0 the heat kernel becomes singular. Indeed, since e−0·∆ = id, we expect the
heat kernel to concentrate along the diagonal {(y, y) ∈M ×M | y ∈M}.

Next we want to examine the asymptotic behavior of kt(x, y) for tց 0.

3.2. The formal heat kernel

Definition 3.2.1. We define

M ⊲⊳ M := {(x, y) ∈M ×M | y is not a cut point of x}.

Remark 3.2.2. M ⊲⊳ M is an open dense subset of M ×M , containing the diagonal
{(x, x) ∈M ×M |x ∈M}.

Definition 3.2.3. Let M be a connected Riemannian manifold of dimension n. The
Euclidean heat kernel of M is the function qt :M ×M → R, defined by

qt(x, y) := (4πt)−
n
2 exp

(
−dist(x, y)2

4t

)
.
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Remark 3.2.4. The map

M ×M × (0,∞) → R

(x, y, t) 7→ qt(x, y)

is continuous but it is smooth only on M ⊲⊳ M × (0,∞).

Lemma 3.2.5. Let M be a connected Riemannian manifold, and let ∆0 be the
Laplace-Beltrami operator on functions. Then the Euclidean heat kernel satisfies

(
∂

∂t
+∆0,x

)
qt(x, y) =

a(x, y)

t
· qt(x, y),

where a is smooth on (M ⊲⊳ M) and it vanishes along the diagonal, i.e., a(x, x) = 0
for all x ∈M .
Moreover, in geodesic polar coordinates around y we have

a(x, y) =
r

2

d

dr

(
ln det

(
d expy(rX)

))
,

where expy : TyM →M denotes the Riemannian exponential map, x = expy(rX) and
X ∈ TyM with ‖X‖ = 1.

Thus the function a in the Lemma is essentially given by the radial logarithmic derivative
of the volume distortion of the exponential map.

Proof. Fix a point y ∈ M . We express the operator ∆0 in geodesic polar coordinates
about y:

∆0 = ∆Sr − ∂2

∂r2
+ (n− 1) ·H · ∂

∂r
.

Here Sr := {x ∈ M | dist(x, y) = r} denotes the distance sphere of radius r, and H
denotes its mean curvature with respect to the unit normal ∂

∂r .
A direct calculation yields

(
∂

∂t
+∆0,x

)
qt =

(
∂

∂t
+∆Sr − ∂2

∂r2
− n− 1

r
· ∂
∂r

)
qt

︸ ︷︷ ︸
=0

+(n− 1)

(
1

r
+H

)
∂qt
∂r

= (n− 1)

(
1

r
+H

)
∂

∂r

(
(4πt)−

n
2 exp

(
−r

2

4t

))

= (n− 1)

(
1

r
+H

)(
− r

2t

)
qt

= −(n− 1)
1 +Hr

2t
· qt.
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Hence a(x, y) = −n−1
2 (1 +Hr).

In order to compute this term we fix X ∈ TyM with ‖ X ‖= 1, and consider the unit
speed geodesic c(r) = expy(rX) emanating from y in direction X. Let e1 = X, e2, . . . , en
be an orthonormal basis of TyM . Let Vi be the Jacobi field along c determined by the
initial conditions Vi(0) = 0 and ∇

drVi(0) = ei for i = 1, . . . , n. It is well-known that the
differential of the exponential map at the point rX is given by

d expy(rX)(ei) =
1

r
Vi(r).

(see e. g. Proposition 3.4.13 in [1]). It follows that

(∇
dr
d expy(rX)

)
(ei) = − 1

r2
Vi(r) +

1

r

∇
dr
Vi(r).

Since V1(r) = rc′(r), we have

(∇
dr
d expy(rX)

)
(e1) = 0.

For i = 2, . . . , n, we have ∇
drVi(r) = −B(Vi(r)), where B denotes the Weingarten map of

Sr. We thus obtain

(∇
dr
d expy(rX)

)
(ei) =

(
− 1

r2
id−1

r
B

)
Vi(r)

=

(
−1

r
id−B

)
d expy(rX)(ei), i = 2, . . . , n.

Thus,

d

dr
det
(
d expy(rX)

)
= det

(
d expy(rX)

)
tr

((∇
dr
d expy(rX)

)
·
(
d expy(rX)

)−1
)

= det
(
d expy(rX)

)
tr

(
−1

r
idX⊥ −B

)

= det
(
d expy(rX)

)(
−n− 1

r
− (n− 1)H

)

=
2

r
· det

(
d expy(rX)

)
· a.

Hence

a(r) =
r

2
det
(
d expy(rX)

)−1
· d
dr

det
(
d expy(rX)

)

=
r

2

d

dr
ln det

(
d expy(rX)

)
. (3.4)
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Definition 3.2.6. Let M be a Riemannian manifold with Euclidean heat kernel qt.
Let ∆ be a formally self-adjoint Laplace-type operator, acting on sections of a vector
bundle E over M . A formal series of the form

k̃t(x, y) = qt(x, y) ·
∞∑

j=0

tj · Φj(x, y)

with Φj ∈ C∞(M ⊲⊳ M,E ⊠ E∗) is called a formal heat kernel for ∆ if for each
N ∈ N there exists an m0 such that for all m ≥ m0 we have as tց 0:

(
∂

∂t
+∆x

)
qt(x, y) ·

m∑

j=0

tj · Φj(x, y)



 = qt(x, y) · O

(
tN
)
.

Proposition 3.2.7. Let M be a connected Riemannian manifold, and let ∆ be a
formally self-adjoint Laplace-type operator, acting on sections of a vector bundle E
over M . Then there exists a unique formal heat kernel k̃t for ∆, satisfying

Φ0(x, x) = idEx, ∀x ∈M.

Proof. a) We first show uniqueness of the Φj. To do this we differentiate the formal
series k̃t(x, y) term by term, order the result by powers of t and equate the resulting
coefficients to zero. We use the Leibniz rule for the Laplacian

∆(f · ϕ) = (∆0f) · ϕ− 2∇gradfϕ+ f∆ϕ (3.5)

where f is a function, ϕ a section in E and ∆ = ∇∗∇ +K for some endomorphism
field K. Now we fix y ∈M and set r(x) := dist(x, y), as before. We compute:

(
∂

∂t
+∆x

)
k̃t

=

[(
∂

∂t
+∆0,x

)
qt

]
·

∞∑

j=0

tjΦj − 2

∞∑

j=0

tj∇gradxqtΦj + qt

∞∑

j=0

(
∂

∂t
+∆x

)
tjΦj

=
a

t
qt ·

∞∑

j=0

tjΦj +
r

t
· qt

∞∑

j=0

tj
(
∇ ∂

∂r
Φj
)
+ qt ·

∞∑

j=0

j tj−1Φj + qt ·
∞∑

j=0

tj(∆xΦj)

= qt ·
∞∑

j=−1

tj ·
{
a · Φj+1 + (j + 1)Φj+1 + r∇ ∂

∂r
Φj+1 +∆xΦj

}

The last equation holds with the convention that Φ−1 := 0.
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Hence, k̃t is a formal heat kernel, if and only if

a · Φj+1 + (j + 1)Φj+1 + r∇ ∂
∂r

Φj+1 +∆xΦj = 0.

Thus, along any unit speed geodesic c(r) = expy(rX) emanating from y we obtain
the following singular ordinary differential equations

(
Φj(r) := Φj(expy(rX), y)

)
:

r
∇
dr

Φj+1(r) +
(
a(r) + j + 1

)
Φj+1(r) = − (∆xΦj) (r). (3.6)

This equation is called a transport equation. To solve it we introduce the inte-
grating factor

Rj(r) := rj+1 · exp




r∫

0

a(ρ)

ρ
dρ


 .

We rewrite (3.6) as

− (∆xΦj) (r) =
r

Rj(r)
·
{
Rj(r)

∇
dr

Φj+1(r) +Rj(r) ·
a(r)

r
· Φj+1(r)

+
j + 1

r
Rj(r)Φj+1(r)

}

=
r

Rj(r)
· ∇
dr

(
Rj(r)Φj+1(r)

)

We denote the parallel translation along c from c(r) to c(0) = y by πr. Then we
obtain the ordinary differential equation:

d

dr

(
Rj · πr ◦ Φj+1

)
= −Rj

r
· πr ◦∆xΦj

This equation can integrated to obtain

Rj(r) · πr ◦ Φj+1(r)−Rj(0)Φj+1(0) = −
r∫

0

Rj(ρ)

ρ
· πρ (∆xΦj) (ρ) dρ. (3.7)

Evaluating this equation for j = −1 yields R−1(r) · πr ◦ Φ0(r)−Φ0(0) = 0, i.e.

Φ0(r) = exp


−

r∫

0

a(ρ)

ρ
dρ


π−1

r ◦ idEy

i.e.

Φ0(x, y) = exp


−

r∫

0

a(ρ)

ρ
dρ


πy,x , r = d(x, y), (3.8)
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where πy,x denotes parallel translation from y to x (along the unique shortest geodesic
connecting y and x).

For j ≥ 0, equation (3.7) yields:

Rj(r) · πr ◦ Φj+1(r) = −
r∫

0

Rj(ρ)

ρ
· πρ ◦ (∆xΦj) (ρ) dρ.

Hence,

Φj+1(r) = − 1

Rj(r)
· π−1

r ◦
r∫

0

Rj(ρ)

ρ
· πρ ◦ (∆xΦj) (ρ) dρ.

This way we can recursively determine the Φj and uniqueness is proven.

b) For the existence part simply use the above equations to define the Φj recursively.

Now we compute the coefficient Φ1(x, x) by use of the transport equation (3.6). For
j = 0 and x = y, we obtain

(
a(x, x)︸ ︷︷ ︸

=0

+1
)
Φ1(x, x) = − (∆xΦ0) (x, x).

By assumption we have Φ0(x, x) = idEx . Using equations (3.8) and (3.4), we find:

Φ0(x, y)
(3.8)
= exp


−

r∫

0

a(ρ)

ρ
dρ


πy,x , where r = d(x, y).

(3.4)
= det

(
d(exp−1

y )(x)
) 1

2 · πy,x

=
(
det g

(y)
ij (x)

)− 1
4
πy,x

=: µy(x)πy,x,

where g
(y)
ij denotes the coefficients of the metric g, expressed in Riemannian normal

coordinates around the point y.
Thus,

Φ1(x, x) = − (∆xΦ0) (x, x)

= −∆x

(
µy(x)πy,x

)∣∣
y=x

.

We use the Leibniz rule (3.5) for ∆ = ∇∗∇+K to obtain

Φ1(x, x) = −
(
∆0,x

(
µy(x)

)
πy,x + µy(x)︸ ︷︷ ︸

=1
for y=x

·K ◦ πy,x
)∣∣∣
y=x

= −∆0,x

(
µy(x)

)
· idEx −K(x)
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In Riemannian normal coordinates around y = 0, the Riemannian metric has the Taylor
expansion

gij(x) = δij +
1

3

n∑

k,l=1

Rikjl(0)x
kxl +O

(
‖x‖3

)
.

This yields

det
(
gij(x)

)− 1
4 =


1 + tr


1
3

n∑

k,l=1

Rikjl(0)x
kxl +O

(
‖x‖3

)

+O

(
‖x‖4

)



− 1
4

=


1 +

1

3

n∑

j,k,l=1

Rjkjl(0)x
kxl +O

(
‖x‖3

)



− 1
4

=


1− 1

3

n∑

k,l=1

rickl(0)x
kxl +O

(
‖x‖3

)



− 1
4

= 1 +
1

12

n∑

k,l=1

rickl(0)x
kxl +O

(
‖x‖3

)

and therefore

−∆0,x(µy)|x=y =
1

6

∑

k

rickk(0) =
1

6
scal(0).

Thus,

Φ1(x, x) =
1

6
scal(x) · idEx −K(x). (3.9)

Examples 3.2.8
1) Let E be the trivial real line bundle and consider ∆ = ∆0,x. Then K = 0 and

Φ1(x, x) =
1

6
scal(x).

2) Consider E = T ∗M and the Hodge-Laplacian ∆ = ∆1. By the Bochner formula
(1.17), we have K = Ric and thus

Φ1(x, x) =
1

6
scal(x) · idT ∗

xM −Ricx.

Moreover, we have

trΦ1(x, x) =
n

6
scal(x)− scal(x) =

n− 6

6
scal(x).
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3) Let M be an n-dimensional oriented Riemannian manifold. Let ∆ = ∆n be the
Laplacian on n-forms and denote by ∗ the Hodge operator. Then we have

∆n = dd∗ + d∗d = d(− ∗ d ∗) = − ∗2 (d ∗ d ∗) = ∗(− ∗ d ∗︸ ︷︷ ︸
= d∗

d ∗) = ∗ (d∗d) ∗

= ∗∆0 ∗ = ∗∆0 ∗−1,

the Laplacians ∆n and ∆0 are conjugate operators. Thus,

k̃∆n
t = ∗ ◦ k̃∆0

t ◦ ∗−1

and for Φ1 of ∆n, we have:

Φ1(x, x) =
1

6
scal(x) · idΛnT ∗

xM .

4) In a similar way, one can show that ∆n−k and ∆k are conjugate operators, hence

Φ
∆n−k

j (x, y) = ∗ ◦ Φ∆k
j ◦ ∗−1

and thus

tr
(
Φ
∆n−k

j (x, x)
)
= tr

(
Φ∆k
j (x, x)

)
.

5) Let ∆ = D2 =
(
∇Σ
)∗∇Σ + scal

4 · idΣM be the square of the classical Dirac operator.
Then we have

Φ1(x, x) =
1

6
scal(x) · idΣxM −1

4
scal(x) · idΣxM

= − 1

12
scal(x) · idΣxM .

Now we discuss the relation of the formal heat kernel k̃t to the true heat kernel kt:
Let M be a compact Riemannian manifold. There exists ε0 > 0 such that

{(x, y) ∈M ×M |dist(x, y) ≤ ε0} ⊂M ⊲⊳ M,

for example we can take ε0 to be the injectivity radius of M . Pick a smooth cut-off
function χ : R → R such that

χ(t) =

{
1 for t ≤ ε0

3 ,

0 for t > 2ε0
3 ,

and 0 ≤ χ ≤ 1 everywhere. We define

k̂t(x, y) := χ
(
dist(x, y)

)
· k̃t(x, y) = χ

(
dist(x, y)

)
· qt(x, y) ·

∞∑

j=0

tj Φj(x, y).
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Hence k̂t coincides with the formal heat kernel k̃t on a neighborhood of the diagonal.
Moreover, the finite partial sums

k̂
(m)
t (x, y) := χ(dist(x, y)) · qt(x, y) ·

m∑

j=0

tj Φj(x, y)

are defined and smooth on all of M ×M .
We show that k̂t is asymptotic to the true heat kernel kt as tց 0:

Proposition 3.2.9. For every N ∈ N and every t0 > 0 there exist an m0 ∈ N and a
constant C = C(N,m0) > 0, such that for all m ≥ m0, we have:

∣∣∣kt(x, y)− k̂
(m)
t (x, y)

∣∣∣ ≤ C · tN , ∀ t ∈ (0, t0),∀x, y ∈M.

Proof. a) Denote by ε0 the injectivity radius of M . Let ϕ ∈ C0(M,E) supported in a
ball of radius 2ε0

3 around x ∈M , so that we can use Riemannian normal coordinates
around x. Let χ : R → R be defined as above. The Euclidean heat kernel qt on
Euclidean R

n satisfies for all f ∈ C0(Rn × R
n) and all x ∈ R

n:

∫

Rn

qt(x, y)f(x, y) dy = f(x, x).

It follows that

lim
tց0

∫

M

qt(x, y)Φ0(x, y)χ
(
dist(x, y)

)
ϕ(y) dvol(y)

= lim
tց0

∫

B
(
0,

2ε0
3

)
(4πt)−

n
2 e−

r2

4t (det g
(y)
ij (x))−

1
4 ·
(
πy,xϕ(y)

)
· (det g(x)ij (y))

1
2χ
(
dist(x, y)

)
dy1 . . . dyn

= lim
tց0

∫

Rn

(4πt)−
n
2 e−

r2

4t ·
(
πy,xϕ(y)

)
· (det g(y)ij (x))−

1
4 (det g

(x)
ij (y))

1
2χ
(
dist(x, y)

)
dy1 . . . dyn

= πx,x ϕ(x)

= ϕ(x),

where r(y) = dist(x, y). For arbitrary ϕ ∈ C0(M,E) write

ϕ(y) = χ
(
dist(x, y)

)
· ϕ(y) +

(
1− χ

(
dist(x, y)

))
· ϕ(y).
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Since 1− χ(dist(x, y)) = 0 on B(x, ε03 ) we have

lim
tց0

∫

M

qt(x, y)Φ0(x, y)χ
(
dist(x, y)

)
ϕ(y) dvol(y)

= lim
tց0

∫

M

qt(x, y)Φ0(x, y)χ
(
dist(x, y)

)2
ϕ(y) dvol(y)

+ lim
tց0

∫

M\B
(
x,

ε0
3

)
qt(x, y)Φ0(x, y)χ

(
dist(x, y)

)(
1− χ

(
dist(x, y)

))
ϕ(y) dvol(y)

= ϕ(x)

since as t ց 0 we have qt(x, y) → 0 on M \B(x, ε03 ) uniformly in y. Thus we get for
all m ∈ N and ϕ ∈ C0(M,E)

lim
tց0

∫

M

k̂
(m)
t (x, y)ϕ(y) dvol(y) = ϕ(x).

On the other hand, since e−t∆ϕ→ ϕ in L2(M,E) as t ց 0, we also have

lim
tց0

∫

M

kt(x, y)ϕ(y) dvol(y) = ϕ(x).

Hence, for all ϕ ∈ C0(M,E) and for all m ∈ N

lim
tց0

∫

M

(
kt − k̂

(m)
t

)
(x, y)ϕ(y) dvol(y) = 0.

b) Define δ
(m)
t := kt − k̂

(m)
t . Then we have

η
(m)
t :=

(
∂

∂t
+∆x

)
δ
(m)
t

= −
(
∂

∂t
+∆x

)
k̂
(m)
t

= −χ ·
(
∂

∂t
+∆x

)
k̃
(m)
t + 2∇gradxχk̃

(m)
t − (∆0,xχ) · k̃(m)

t︸ ︷︷ ︸
=:R

(m)
t

.

By Definition 3.2.6 of the formal heat kernel, we have:

(
∂

∂t
+∆x

)
k̃
(m)
t = qt ·O

(
tN
)
.
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The term R
(m)
t is of the form qt times a smooth section vanishing for r < ε0

3 . For
r ≥ ε0

3 we have

qt(x, y)

q2t(x, y)
=

(4π t)−
n
2 exp

(
− r2

4t

)

(8π t)−
n
2 exp

(
− r2

8t

) = C · exp
(
−r

2

8t

)
≤ C · exp

(
−C

′

t

)
.

This yields the estimate

qt(x, y) ≤ C · exp
(
−C

′

t

)
· q2t(x, y) (for r ≥ ε0

3 )

for suitable constants C,C ′ > 0. For the remainder terms we thus find

R
(m)
t = q2t · O

(
tN
)
.

Hence we get

η
(m)
t = qt ·O

(
tN
)
+ q2t · O

(
tN
)
. (3.10)

c) Now define δ̃
(m)
t :=

t∫
0

e−(t−τ)∆x η
(m)
τ dτ . Then we have:

∂

∂t
δ̃
(m)
t = e−(t−t)∆x η

(m)
t +

t∫

0

−∆xe
−(t−τ)∆x η(m)

τ dτ = η
(m)
t −∆xδ̃

(m)
t .

Therefore
(
∂

∂t
+∆x

)
δ̃
(m)
t = η

(m)
t and

(
∂

∂t
+∆x

)(
δ̃
(m)
t − δ

(m)
t

)
= 0.

Since δ̃
(m)
t − δ

(m)
t

tց0−→ 0, the Duhamel principle implies:

δ
(m)
t = δ̃

(m)
t =

t∫

0

e−(t−τ)∆x η(m)
τ dτ.
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Hence

∥∥δ(m)
t

∥∥
H2k =

∥∥∥
t∫

0

e−(t−τ)∆x η(m)
τ dτ

∥∥∥
H2k

≤ t · sup
τ∈[0,t]

∥∥e−(t−τ)∆x η(m)
τ

∥∥
H2k

(1.38)

≤ t · sup
τ∈[0,t]

{
c
(∥∥e−(t−τ)∆x η(m)

τ

∥∥
L2 +

∥∥∆k e−(t−τ)∆x η(m)
τ

∥∥
L2

)}

(1.45)

≤ t · c · sup
τ∈[0,t]

{∥∥η(m)
τ

∥∥
L2 +

∥∥∆kη(m)
τ

∥∥
L2

}

≤ t · c · sup
τ∈[0,t]

∥∥η(m)
τ

∥∥
H2k

(3.10)
= O

(
tN+1

)
.

Now applying the Sobolev embedding theorem 1.2.13, we find:

∥∥δ(m)
t

∥∥
C0 ≤ O

(
tN+1

)
.

Corollary 3.2.10. Let ∆ be a self-adjoint Laplace-type operator acting on sections of
a Riemannian or Hermitian vector bundle E over a compact Riemannian manifold M .
Then we have the following short time asymptotics of the heat kernel:

kt(x, x)
tց0∼ (4π t)−

n
2

∞∑

j=0

tj Φj(x, x)

uniformly in x ∈M .

Integrating over M , we obtain:

Corollary 3.2.11. Let ∆ be a self-adjoint Laplace-type operator acting on sections of
a Riemannian or Hermitian vector bundle E over a compact Riemannian manifold M .
Then we have the following short time asymptotics of the heat trace:

tr
(
e−t∆

)
=

∞∑

j=1

e−t λj

tց0∼ (4π t)−
n
2

∞∑

j=0

tj
∫

M

tr Φj(x, x) dvol(x)
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= (4π t)−
n
2


rk(E) vol(M) + t


rk(E)

6

∫

M

scal(x) dx−
∫

M

trKx dx


+O(t2)


 .

(3.11)

Proof. By Corollary 3.2.10, we have

tr
(
kt(x, x)

)
∼ (4π t)−

n
2

∞∑

j=0

tj tr Φj(x, x)

and thus

tr
(
e−t∆

)
=

∞∑

j=1

e−t λj

=

∫

M

tr kt(x, x) dvol(x)

tց0∼ (4π t)−
n
2

∞∑

j=0

tj
∫

M

tr Φj(x, x) dvol(x)

= (4π t)−
n
2


rk(E) vol(M) + t


rk(E)

6

∫

M

scal(x) dx−
∫

M

trKx dx


+O(t2)




where we have used the equations (3.8) and (3.9).

The short time asymptotics of the heat trace implies that the dimension n = dim(M)
and the coefficients of powers of t on the right hand side of (3.11) are determined by the
spectrum of the operator ∆: In particular,

∫

M

tr Φ0(x, x)︸ ︷︷ ︸
=id |Ex

dvol(x) = rk(E) · vol(M)

and

∫

M

tr Φ1(x, x) dvol(x)
(3.9)
=

∫

M

tr

(
1

6
scal(x) idEx −Kx

)
dvol(x)

=
1

6
rk(E)

∫

M

scal(x) dvol(x) −
∫

M

tr(Kx) dvol(x).

are determined by the spectrum of ∆.
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Example 3.2.12. Consider ∆ = ∆0 over a compact surface M . Then we have

trΦ1(x, x)
(3.9)
=

1

6
scal(x) =

1

3
K(x).

Hence the Euler characteristic χ(M) = 1
2π

∫
M K(x) dvol(x) is a spectral invariant of the

Laplacian, i.e. it is determined by the spectrum of ∆.

3.3. Growth of eigenvalues

In Proposition 3.1.1, we derived an estimate for the k-th eigenvalue of a self-adjoint
Laplace-type operator on a Riemannian manifold in terms of its first eigenvalue. Now
we show the following improvement of this estimate, which goes under the name Weyl
asymptotics.

Theorem 3.3.1 (Weyl). Let ∆ be a self-adjoint Laplace-type operator, acting on
sections of a Riemannian or Hermitian vector bundle E over a compact Riemannian
manifold M . For any λ ∈ R let N(λ) be the total number (counted with multiplicities)
of eigenvalues of ∆ that are less than or equal to λ. Then we have:

lim
λ→∞

N(λ)

λ
n
2

=
rk(E) · vol(M)

(4π)
n
2 · Γ

(
n
2 + 1

) . (3.12)

For λ = λk, we have N(λ) = k and the Weyl asymptotics (3.12) implies:

k

λ
n
2

k→∞−−−→ rk(E) · vol(M)

(4π)
n
2 · Γ

(
n
2 + 1

) =: C,

i.e., k ∼ C · λ
n
2
k .

For the proof of Theorem 3.3.1 we need the following tool:

Lemma 3.3.2 (Karamata). Let µ be a Borel measure on (0,∞), satisfying

∞∫

0

e−t λ dµ(λ) <∞

for all t > 0. Let α > 0 and C > 0 be positive constants such that

lim
tց0

tα
∞∫

0

e−t λ dµ(λ) = C.
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Then for all f ∈ C0([0, 1],R) we have

lim
tց0

tα
∞∫

0

f
(
e−t λ

)
e−t λ dµ(λ) =

C

Γ(α)

∞∫

0

f
(
e−t
)
tα−1e−t dt. (3.13)

Proof. By the Weierstrass’ approximation theorem, polynomials are dense in
C0 ([0, 1],R) with respect to the C0-norm. Hence it suffices to prove Lemma 3.3.2 for
polynomials f instead of arbitrary continuous functions. Assume f(x) = xk. For the
left hand side of (3.13) we get:

lim
tց0

tα
∞∫

0

f
(
e−t λ

)
e−t λ dµ(λ) = lim

tց0
tα

∞∫

0

e−(k+1) t λ dµ(λ)

= lim
sց0

(
s

k + 1

)α ∞∫

0

e−s λ dµ(λ)

=
C

(k + 1)α
.

For the right hand side of (3.13) we get:

C

Γ(α)

∞∫

0

f
(
e−t
)
tα−1e−t dt =

C

Γ(α)

∞∫

0

tα−1e−(k+1) t dt

=
C

Γ(α)

∞∫

0

(
s

k + 1

)α−1

· e−s · ds

k + 1

=
C

Γ(α)
· Γ(α)

(k + 1)α
.

Proof. [of Theorem 3.3.1]

a) Replacing ∆ by ∆ + c · id if necessary, we may assume all eigenvalues λi of ∆ to
be positive. Such a shift of course does not affect the claimed asymptotics. We
apply the Karamata Lemma 3.3.2 with α = n

2 , with C = (4π)−
n
2 rk(E) · vol(M) and

dµ =
∞∑
j=0

δλj .

By Corollary 3.2.11, we have

∞∫

0

e−t λ dµ(λ) =
∞∑

j=0

e−t λj = tr
(
e−t∆

)
<∞
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and

lim
tց0

tα ·
∞∫

0

e−t λ dµ(λ) = lim
tց0

t
n
2 · tr

(
e−t∆

)
= C.

Thus the assumptions in Lemma 3.3.2 are satisfied.

b) Let ε > 0 and pick a continuous function f : [0, 1] → R such that f(x) = 0 for
x ≤ e−(1+ε) and f(x) = x−1 for x ≥ e−1 and 0 ≤ f(x) ≤ x−1 everywhere. For the
left hand side of (3.13) we get

lim
tց0

tα
∞∫

0

f
(
e−t λ

)
e−tλ dµ(λ) = lim

tց0
tα

1+ε
t∫

0

f
(
e−tλ

)
e−tλ dµ(λ)

≥ lim sup
tց0

tα

1
t∫

0

dµ(λ)

= lim sup
tց0

tα ·N
(
1

t

)

= lim sup
λ→∞

N(λ)

λ
n
2

.

c) For the right hand side of (3.13) we obtain

C

Γ(α)

∞∫

0

f
(
e−t
)
tα−1 e−t dt =

C

Γ(α)

1+ε∫

0

f
(
e−t
)
tα−1 e−t dt

≤ C

Γ(α)

1+ε∫

0

tα−1dt

=
C · (1 + ε)α

Γ(α) · α =
C · (1 + ε)α

Γ(α+ 1)
.

Thus

lim sup
λ→∞

N(λ)

λ
n
2

≤ C · (1 + ε)
n
2

Γ
(
n
2 + 1

)

and εց 0 yields

lim sup
λ→∞

N(λ)

λ
n
2

≤ C

Γ
(
n
2 + 1

) =
rk(E) · vol(M)

(4π)
n
2 Γ
(
n
2 + 1

) .

d) Using in b) and c) a continuous functions f : [0, 1] → R satisfying f(x) = 0 for
x ≤ e−1 and f(x) = x−1 for x ≥ e−1+ε and 0 ≤ f(x) ≤ x−1 everywhere yields

lim inf
λ→∞

N(λ)

λ
n
2

≥ C
Γ(n

2
+1)

.
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3.4. The index of Dirac-type operators

Throughout this section, let E,F be Riemannian or Hermitian vector bundles over a
compact Riemannian manifold M , and let D ∈ Diff 1(E,F ) be a Dirac-type operator.
Thus

∆+ := D∗D ∈Diff 2(E,E) and

∆− := DD∗ ∈Diff 2(F,F )

are formally self-adjoint Laplace-type operators.

If ϕ ∈ ker(D) then ϕ ∈ ker(∆+). Conversely, if ϕ ∈ ker(∆+) then we have

0 = (∆+ϕ,ϕ)L2 = (D∗Dϕ,ϕ)L2 = (Dϕ,Dϕ)L2 = ‖Dϕ‖2L2 .

Hence Dϕ = 0 that is, ϕ ∈ ker(D). We thus conclude that ker(D) = ker(∆+).

Similarly, we may conclude ker(D∗) = ker(∆−). In particular, by the Hodge Theo-
rem 1.5.9 both ker(D) and ker(D∗) are finite dimensional.

Definition 3.4.1. Let D ∈ Diff 1(E,F ) be a Dirac-type operator, where E,F are
Riemannian or Hermitian vector bundles over a compact Riemannian manifold M .
Then

ind(D) := dimker(D)− dimker(D∗)

is called the index of D.

Remark 3.4.2. If D ∈Diff 1(E,E) is a formally self-adjoint Dirac-type operator then
ind(D) = 0, since D = D∗.

Example 3.4.3
1) For E = ΛevenT ∗M and F = ΛoddT ∗M , the Euler operator

D = d+ d∗ ∈Diff 1(E,F ).

is of Dirac-type (see Example 1.3.10). We have

∆+ = D∗D =
⊕

k even

∆k and ∆− = DD∗ =
⊕

k odd

∆k

where ∆k denotes the Hodge-Laplacian on k-forms. By the Hodge Theorem 1.5.9,
we have:

ker(∆+) =
⊕

k even

ker(∆k) ∼=
⊕

k even

Hk
dR(M)
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hence

dimker(∆+) =
∑

k even

dimHk
dR(M) =

∑

k even

bk(M).

Similarly,

dimker(∆−) =
∑

k odd

bk(M).

Thus, the index of the Euler operator is the Euler characteristic of M (hence the
name of the operator).

ind(D) =

n∑

k=0

(−1)k bk(M) = χ(M). (3.14)

2) Let M be a compact oriented Riemannian manifold of even dimension n = 2m, and
for k ∈ {0, . . . , n} let

τ = ik(k−1)+m∗ : ΛkT ∗M ⊗R C → Λn−kT ∗M ⊗R C.

Consider the signature operator D = d+ d∗ ∈ Diff 1(E
+, E−), introduced in Exam-

ple 1.3.19.

For k ∈ {0, . . . ,m− 1}, we define

E±
k := E± ∩ (ΛkT ∗M ⊗R C ⊕ Λn−kT ∗M ⊗R C).

We have

τ(ω ⊕ η) = ±ω ⊕ η ⇔ τω = ±η and τη = ±ω
⇔ τω = ±η.

Thus
E±
k =

{
(ω,±τω) |ω ∈ ΛkT ∗M ⊗C

}
.

Since τ maps harmonic forms to harmonic forms, we have

ker(∆±) ∩ C∞(M,E±
k ) = {(ω,±τω) |ω ∈ ker(∆k)},

hence we get for all k ∈ {0, . . . ,m− 1}

dimker(∆±|C∞(M,E±
k )) = bk(M).

For the index of the signature operator, we thus obtain:

ind(D) = dimker(∆+)− dimker(∆−) = dimker
(
∆n

2
|E+

)
− dimker

(
∆n

2
|E−

)
.
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Assume now that dimM = 4k. On Λ2kT ∗M⊗RC we have τ = ∗ and thus ker(∆2k|E±)
coincides with the space H± of (anti-)self-dual 2k-forms. The index of the signature
operator is then equal to the signature of M :

ind(D) = b+(M)− b−(M) = sign(M). (3.15)

3) LetM be a compact complex Hermitian manifold of complex dimension m. Consider
the Dolbeault operator D∂̄ =

√
2(∂+ ∂̄) ∈Diff 1(Λ

p,evenT ∗M,Λp,oddT ∗M) for a fixed
p ∈ {0, . . . ,m}. The same reasoning as for the Euler operator yields the index of the
Dolbeault operator:

ind(D∂̄) =

m∑

q=0

(−1)q hp,q(M). (3.16)

Here hp,q(M) denote the Hodge numbers of M .

Now we come back to the general situation of a Dirac-type operator D ∈Diff 1(E,F ) on
a compact Riemannian manifold M , with the associated Laplace-type operators ∆+ =
D∗D and ∆− = DD∗. Let λ 6= 0 be an eigenvalue of ∆+, and let ϕ be a corresponding
eigensection. Then we have:

∆−Dϕ = DD∗Dϕ = D∆+ϕ = λDϕ.

Hence D maps the eigenspace E(λ,∆+) to E(λ,∆−). Similarly, D∗ maps E(λ,∆−) to
E(λ,∆+). Since we have

D∗D|E(λ,∆+) = ∆+|E(λ,∆+) = λ · idE(λ,∆+)

we see that D induces an isomorphism E(λ,∆+) → E(λ,∆−) with inverse 1
λ D

∗. Hence
except possibly for λ = 0, the operators ∆+ and ∆− have equal spectra. In particular,
we have:

tr
(
e−t∆

+
)
− tr

(
e−t∆

−
)
=

∞∑

j=1

e−t λj(∆
+) −

∞∑

j=1

e−t λj(∆
−)

= dimker(∆+)− dimker(∆−)

= ind(D). (3.17)

Applying the short time asymptotics (3.11) for the heat trace, we thus obtain:

ind(D)
tց0∼ (4π t)−

n
2

∞∑

j=0

tj
∫

M

[
tr Φ∆+

j (x, x)− tr Φ∆−

j (x, x)
]

︸ ︷︷ ︸
=: aj(x)

dvol(x) (3.18)
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and

(4π t)
n
2 · ind(D)

tց0∼
∞∑

j=0

tj
∫

M

aj(x) dvol(x).

Evaluating at t = 0 yields

0 =

∫

M

a0(x) dvol(x) .

Inserting back into (3.18) yields

ind(D)
tց0∼ (4π t)−

n
2

∞∑

j=1

tj
∫

M

aj(x) dvol(x)

and

t
n
2
−1ind(D)

tց0∼ (4π)−
n
2

∞∑

j=1

tj−1

∫

M

aj(x) dvol(x).

If n2 > 1, we may put t = 0 to obtain

0 = (4π)−
n
2

∫

M

a1(x) dvol(x) .

Repeating this argument yields

0 =

∫

M

aj(x) dvol(x) for all j <
n

2
.

Thus, we end up with:

ind(D)
tց0∼ (4π t)−

n
2

∞∑

j=[n+1
2

]

tj
∫

M

aj(x) dvol(x). (3.19)

Case 1: dim(M) odd
In this case, we have:

ind(D)
tց0∼ (4π)−

n
2

∞∑

j=n+1
2

tj−
n
2

∫

M

aj(x) dvol(x).
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Thus all terms in the short time asymptotics of the heat trace have order at least 1
2

in t. In the limit tց 0, we obtain ind(D) = 0.

Case 2: dim(M) even
In this case, we have:

ind(D)
tց0∼ (4π)−

n
2

∞∑

j=n
2

tj−
n
2

∫

M

aj(x) dvol(x).

In the limit t ց 0, we thus obtain:

ind(D) = (4π)−
n
2

∫

M

an
2
(x) dvol(x).

Summarizing the above discussion, we conclude:

Theorem 3.4.4 (Atiyah-Singer index theorem, preliminary version). Let
D ∈Diff 1(E,F ) be a Dirac-type operator, where E,F are Riemannian or Hermitian
vector bundles over an n-dimensional compact Riemannian manifold M . Then we
have:

• If n is odd then ind(D) = 0.

• If n is even then

ind(D) = (4π)−
n
2

∫

M

an
2
(x) dvol(x).

Remark 3.4.5. As explained in Section 3.2, the coefficients Φ∆±

j of the formal heat
kernel can be computed recursively by solving the transport equation (3.6).
In local coordinates, the coefficient Φ∆±

j (x, x) is some universal algebraic expression in
the coefficients (together with their derivatives) of the Riemannian metric and of the
operators ∆±.

Example 3.4.6. Let D be the Euler operator on an oriented Riemannian 2-dimensional
manifold. By Example 3.2.8 we have:

tr Φ∆0
1 (x, x) = trφ∆2

1 (x, x) =
1

6
scal(x)

and trΦ∆1
1 (x, x) =

2− 6

6
scal(x).
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Moreover, ∆+ = ∆0 +∆2 and ∆− = ∆1. We thus obtain

tr Φ∆+

1 (x, x) =
2

6
scal(x) and

trΦ∆−

1 (x, x) =
2− 6

6
scal(x).

Hence, a1(x) = scal(x) and

χ(M) = ind(D) = (4π)−1

∫

M

scal(x) dA(x) =
1

2π

∫

M

K(x) dA(x).

Thus we have proved the Gauß -Bonnet Theorem.
∫

M

K(x) dA(x) = 2π χ(M).

Corollary 3.4.7 (Homotopy invariance of the index). Let E,F be Riemannian
or Hermitian vector bundles over a compact manifold M . Let gt, t ∈ I ⊂ R be a
smooth family of Riemannian metrics on M , and let Dt be Dirac-type operators for gt,
varying smoothly with t ∈ I.
Then ind(Dt) is constant in t.

Proof. The functions aj(x, t), defined in equation (3.18) depend smoothly on t. This
follows from the fact that aj(x, t) are built from the coefficients Φj(x, t) of the formal
heat kernel, which are solutions of transport equations. The coefficients of the transport
equations depend smoothly on t, and so do their solutions.
Hence the integer valued function

ind(Dt) = (4π)−
n
2

∫

M

an
2
(x, t) dvolt(x)

depends smoothly on t and is thus constant in t.

Corollary 3.4.8 (Multiplicity of index for coverings). Let M̃
π−→ M be a Rie-

mannian covering of compact Riemannian manifolds of degree k. Let E and F be
Riemannian or Hermitian vector bundles over M , and let D ∈ Diff 1(E,F ) be a

Dirac-type operator. Let D̃ ∈Diff 1(π
∗E, π∗F ) be the Dirac-type operator obtained by

pull-back.
Then we have:

ind
(
D̃
)
= k · ind(D).
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Proof. A direct computation yields

ind(D̃) = (4π)−
n
2

∫

M̃

ãn
2
d̃vol(x) = (4π)−

n
2

∫

M̃

(an
2
◦ π)(x) d̃vol(x)

= k · (4π)−n
2

∫

M

an
2
(x) dvol = k · ind(D).





4. Characteristic Classes

4.1. Chern Classes

Let G be the Lie group G := GL(N,C) and g = Mat(N ×N,C) its Lie algebra.

Definition 4.1.1. A polynomial map P : g → C is called invariant, iff

P
(
T X T−1

)
= P (X). (4.1)

holds for all T ∈ G and all X ∈ g.

Example 4.1.2. It is well known from linear algebra that P = det and P = tr are
invariant polynomial maps.

Remark 4.1.3. The condition (4.1) is equivalent to the following:

P (X Y ) = P (Y X) for all X,Y ∈ g. (4.2)

If (4.2) holds then we have for all X ∈ g and for all T ∈ G:

P
(
(TX)T−1

) (4.2)
= P

(
T−1TX

)
= P (X).

Thus, we have (4.1).
Conversely, if (4.1) holds then we have for all X ∈ G and for all Y ∈ g:

P (X Y )
(4.1)
= P

(
X−1XY X

)
= P (Y X).

Since G ⊂ g is dense and P is continuous, this equation also holds for all X,Y ∈ g, thus
we have (4.2).

Remark 4.1.4. If P : g → C is a polynomial map and A is a commutative C-algebra
then P induces a map

Mat(N ×N,A) → A.

In the following, let E →M be a complex vector bundle of rank N with connection ∇.
The corresponding curvature tensor is defined by

R(X,Y )e = ∇X∇Y e−∇Y∇Xe−∇[X,Y ]e.
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Here X,Y ∈ TxM and e ∈ Ex.
Now let U ⊂ M be an open set with local sections s1, . . . , sN ∈ C∞(U,E|U ), linearly
independent at each point x ∈ U . Then the connection 1-form ω of ∇ is defined by

∇Xsi =

N∑

j=1

ωji (X)sj . (4.3)

Here ωji ∈ Ω1(U) are 1-forms on U , and ω = (ωji ) ∈ Mat(N ×N,Ω1(U)) is a matrix of
1-forms on U . The curvature 2-form Ω of ∇ is defined by

R(X,Y )si =
N∑

j=1

Ωji (X,Y )sj . (4.4)

Here Ω = (Ωji ) ∈ Mat(N×N,Ω2(U)) is a matrix of 2-forms on U . Now, A :=
⊕
k∈N

Ω2k(U)

is a commutative C-algebra and we consider Ω ∈ Mat(N ×N,A).

Lemma 4.1.5. Let E → M be a complex vector bundle with connection ∇. Let
s1, . . . , sN and s̃1, . . . , s̃N be two local frames on U ⊂M . Let Ω, Ω̃ be the corresponding
curvature 2-forms. Then for any invariant polynomial map P : g → C, we have:

P (Ω) = P
(
Ω̃
)
.

Proof. Let T : U → G be the linear transformation that maps the frame s1, . . . , sN to
the frame s̃1, . . . , s̃N . From equation (4.4), we obtain Ω̃(X,Y ) = T · Ω(X,Y ) · T−1. By
invariance of P , this yields P

(
Ω̃
)
= P

(
T ΩT−1

)
= P (Ω).

Corollary 4.1.6. Let E → M be a complex vector bundle with connection ∇, and
let P : g → C be an invariant polynomial. Then P (Ω) is defined globally on M , i.e.,
P (Ω) ∈ ⊕

k∈N

Ω2k(M).

The connection 1-form and the curvature 2-form are related as follows:

Lemma 4.1.7. Let E → M be a complex vector bundle with connection ∇. Let
s1, . . . , sN : U → E be a local frame and let ω ∈ Mat(N × N,Ω1(U)) and Ω ∈
Mat(N × N,Ω2(U)) be the corresponding connection and curvature forms. Then we
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have:

Ω = dω + ω ∧ ω (4.5)

dΩ = Ω ∧ ω − ω ∧ Ω (4.6)

Proof. Let X|p and Y |p be tangent vectors at the point p ∈M and extend them to vector
fields X and Y which are synchronous at p, i.e.∇X|p = ∇Y |p = 0 and thus [X,Y ]|p = 0.
Then, at p we have:
∑

j

Ωji (X,Y )sj = R(X,Y )si

= ∇X∇Y si −∇Y∇Xsi

= ∇X

(∑

k

ωki (Y )sk

)
−∇Y

(∑

k

ωki (X)sk

)

=
∑

k,l

(
ωki (Y )ωlk(X)sl − ωki (X)ωlk(Y )sl

)

+
∑

k

(
∂Xω

k
i (Y )sk − ∂Y ω

k
i (X)sk

)

=
∑

j

(
∂Xω

j
i (Y )− ∂Y ω

j
i (X) +

∑

k

(ωki (Y )ωjk(X) − ωki (X)ωjk(Y ))
)
sj

=
∑

j

(
dωji (X,Y ) +

∑

k

(ωjk ∧ ωki )(X,Y )
)
sj.

Thus, we have

Ωji = dωji +
∑

k

ωjk ∧ ωki .

For (4.6), we compute, using (4.5):

dΩ = d2ω + dω ∧ ω − ω ∧ dω
= 0 + (Ω− ω ∧ ω) ∧ ω − ω ∧ (Ω− ω ∧ ω)
= Ω ∧ ω − ω ∧ Ω.

Lemma 4.1.8. Let P (Ω) be as in Corollary 4.1.6. Then P (Ω) is closed, i.e. we
have dP (Ω) = 0.

Proof.
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a) We denote by Aij the entry in the i-th row and the j-th column of the matrix A ∈ g.

For P : g → C, we set P ′(A)ji :=
∂P
∂Ai

j
(A) and we define P ′(A) := (P ′(A)ji ) ∈ g.

We first show that P ′(A) commutes with A, i.e. [P ′(A), A] = 0:

Let Eji ∈ g be the matrix with all entries equal to zero except the entry in the j-th
row and i-th column which is equal to 1. By the invariance of P , we have for all i, j
and all t ∈ R

P
(
(1N + t Eji )A

)
= P

(
A(1N + t Eji )

)
.

We differentiate both sides of this equation with respect to t. For the left hand side
we get

d

dt
P
(
(1N + tEji )A

)
|t=0 =

∑

k,l

∂P

∂Alk
(A) · (Eji · A)lk =

∑

k

∂P

∂Ajk
(A) ·Aik

=
∑

k

Aik · P ′(A)kj =
(
A · P ′(A)

)i
j

and similarly we get for the right hand side

d

dt
P
(
A(1N + t Eji )

)
|t=0 =

(
P ′(A) ·A

)i
j
.

We conclude that P ′(A) ·A = A · P ′(A).

b) By Lemma 4.1.7 and part a), we have:

dP (Ω) =

N∑

i,j=1

∂P

∂Aij
(Ω) ∧ (dΩ)ij

= tr
(
P ′(Ω) ∧ dΩ

)

= tr
(
P ′(Ω) ∧ Ω ∧ ω − P ′(Ω) ∧ ω ∧Ω

)

= tr
(
Ω ∧ P ′(Ω) ∧ ω − P ′(Ω) ∧ ω ∧Ω

)
.

We put X := P ′(Ω) ∧ ω = (Xi
j)i,j . Since Ωji is a 2-form we have Ωji ∧Xi

j = Xi
j ∧ Ωji

and thus

dP (Ω) = tr(Ω ∧X −X ∧ Ω)

=
∑

i,j

(Ωij ∧Xj
i −Xi

j ∧ Ωji )

=
∑

i,j

(Ωij ∧Xj
i − Ωji ∧Xi

j)

= 0.
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Since dP (Ω) = 0, the differential form P (Ω) ∈ ⊕k Ω
2k(M ;C) represents a de Rham

cohomology class

[P (Ω)] ∈
⊕

k≥0

H2k
dR(M ;C).

The construction of the closed form P (Ω) and the de Rham cohomology class [P (Ω)] is
called the Chern-Weil construction. In the case of homogeneous polynomial maps,
we set:

Definition 4.1.9. Let E → M be a complex vector bundle of rank N with connec-
tion ∇, and let P : g → C be an invariant polynomial map, homogeneous of degree k.
The differential form P (Ω) ∈ Ω2k(M ;C) is called the Chern-Weil form associated
with P . The de Rham cohomology class [P (Ω)] ∈ H2k

dR(M ;C) is called the Chern-
Weil class associated with P .

Remark 4.1.10
For a complex vector bundle E → M and a smooth map f : N → M , we have the
pull-back bundle f∗E and the commutative diagram

f∗E F //

��

E

��
N

f
//M

For a connection ∇ on E, we have the pull-back connection f∗∇ on f∗E, characterized
by the following property: Let s1, . . . , sN be a local frame of E over U ⊂ M and let
f∗s1, . . . , f∗sN be the pull-back frame of f∗E over f−1(U) ⊂ N , defined by

f∗sj(x) := F−1
(
sj(f(x))

)
.

For the connection 1-forms we have ωf
∗∇ = f∗(ω∇). Thus, we compute for the curvature

2-forms:

Ωf
∗∇ = d(f∗ω)− f∗ω ∧ f∗ω = f∗(dω − ω ∧ ω) = f∗Ω∇.

Thus
P
(
Ωf

∗∇) = P
(
f∗Ω∇) = f∗P (Ω∇) (4.7)

and hence [
P
(
Ωf

∗∇)] = f∗
[
P (Ω∇)

]
. (4.8)

Lemma 4.1.11. Let E → M be a complex vector bundle, and let P : g → C be an
invariant polynomial map. Then the de Rham cohomology class

[P (Ω)] ∈ Heven
dR (M ;C)
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does not depend on the choice of connection on E.

Proof. Let ∇0 and ∇1 be two connections on E. Put X := M × R, and let π : X →M
be the projection on the first factor. On the pull-back bundle Ẽ := π∗E → X we have
the pull-back connections ∇̃0 := π∗∇0 and ∇̃1 := π∗∇1. We define a connection ∇̃ on Ẽ
by putting for v ∈ T(m,λ)X:

∇̃vs := (1− λ) ∇̃0
vs+ λ ∇̃1

vs.

For λ ∈ R let iλ :M → X, m 7→ (m,λ) be the inclusion. Then we have

i∗λ∇̃ = (1− λ)∇0 + λ∇1.

From equation (4.7), we obtain P (Ω∇0
) = i∗0P (Ω̃) and P (Ω∇1

) = i∗1P (Ω̃). Since the
inclusions i0 and i1 are homotopic they induce the same map on cohomology: i∗0 = i∗1.
Thus we get [

P
(
Ω∇1)]

= i∗1
[
P
(
Ω̃
)]

= i∗0
[
P
(
Ω̃
)]

=
[
P
(
Ω∇0)]

.

As a consequence, for any complex vector bundle E →M and any invariant polynomial
map P : g → C we obtain a de Rham cohomology class

P (E) :=
[
P (Ω)

]
∈ Heven

dR (M ;C).

Moreover, the Chern-Weil construction is natural with respect to pull-back diagrams:
for any complex vector bundle E →M and any smooth map f : N →M , we have

P (f∗E) = f∗P (E). (4.9)

Definition 4.1.12. Let E →M be a complex vector bundle of rank N . Set

P (A) := det

(
1N +

1

2πi
A

)
.

Then
c(E) := P (E) ∈ Heven

dR (M ;C)

is called the (total) Chern class of E.



4.1. Chern Classes 161

If A =

(
λ1

. . .
λN

)
∈ g is a diagonal matrix then we have

P (A) = det



1 + λ1

2πi
. . .

1 + λN
2πi




=

N∏

j=1

(
1 +

λj
2πi

)

=

N∑

k=0

σk

(
λ1
2πi

, . . . ,
λN
2πi

)
, (4.10)

where σk is the k-th elementary-symmetric function. In particular, we have

σ1

(
λ1
2πi

, . . . ,
λN
2πi

)
=

N∑

j=1

λj
2πi

=
1

2πi
· tr(A)

σN

(
λ1
2πi

, . . . ,
λN
2πi

)
=

N∏

j=1

λj
2πi

=
( 1

2πi

)N
· det(A).

By the invariance of P , the formula (4.10) also holds for all diagonalizable matrices A.
Since these are dense1 in g and P is continuous, (4.10) holds for all A ∈ g.

For k ∈ {0, . . . , N} we put

Pk(A) := σk

(
λ1
2πi

, . . . ,
λN
2πi

)
=
( 1

2πi

)k
σk(λ1, . . . , λN ).

Definition 4.1.13. Let E →M be a complex vector bundle of rank N with curvature
2-form Ω. Then

ck(E) := [Pk(Ω)] ∈ H2k
dR(M ;C)

is called the k-th Chern class of E.

We have c(E) = c0(E) + . . .+ cN (E).

1In fact, the matrices with pairwise distinct eigenvalues are dense, and they are diagonalizable by the
theorem on the Jordan normal form.
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Proposition 4.1.14. Let E,E1, E2 →M be complex vector bundles, and let E∗ →M
be the dual bundle of E. Then we have:

c(E1 ⊕ E2) = c(E1) · c(E2) (4.11)

ck(E
∗) = (−1)k ck(E) (4.12)

If E1
∼= E2 then we have

c(E1) = c(E2). (4.13)

Proof. 1) Let ∇i be a connection on Ei and let ∇ := ∇1 ⊕∇2, i.e. for sections si of Ei
we define

∇X(s1 ⊕ s2) := (∇1
Xs1)⊕ (∇2

Xs2).

Then, the curvature form of E1 ⊕ E2 with the connection ∇ is given by:

Ω∇ =

(
Ω∇1

0

0 Ω∇2

)

A direct computation yields:

det
(
1N1+N2 +

1

2πi
Ω∇
)
= det

(
1N1 +

1
2πi Ω

∇1
0

0 1N2 +
1
2πi Ω

∇2
.

)

= det
(
1N1 +

1

2πi
Ω∇1

)
· det

(
1N2 +

1

2πi
Ω∇2

)
.

2) Let ∇ be a connection on E and let ∇̃ be the dual connection on E∗ induced by
∇, characterized by the condition (3.2). Let s1, . . . , sN be a local frame for E and

s∗1, . . . , s
∗
N the dual frame for E∗. Then we have Ω∇̃ = −(Ω∇)⊤ and thus

ck(E
∗) = [Pk(Ω

∇̃)] = [Pk(−Ω∇)] = (−1)k [Pk(Ω
∇)] = (−1)k ck(E).

3) Let φ : E1 → E2 be a vector bundle isomorphism. Let ∇ be a connection on E2.
Then

∇̃X := φ−1 ◦ ∇X ◦ φ
defines a connection on E1. For any local frame s1, . . . , sN of E2, we define a local
frame s̃1, . . . , s̃N of E1 by s̃j := φ−1 ◦ sj. With respect to these local frames we get

Ω∇̃ = Ω∇. Hence c(E1) = c(E2).
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Lemma 4.1.15. Let E →M be a complex vector bundle. Then the total Chern class
c(E) is a class in the real de Rham cohomology:

c(E) ∈ Heven
dR (M) ⊂ Heven

dR (M ;C).

Proof. Choose a Hermitian metric and a metric connection ∇ on E. For a local or-
thonormal frame s1, . . . , sN we have

ω∇(X),Ω∇(X,Y ) ∈ u(N) = {A ∈ g |A∗ = −A}.
Hence

det

(
1 +

1

2πi
Ω∇
)

= det

(
1 +

1

2πi
Ω∇
)

= det

(
1− 1

2πi
Ω∇
)

= det

(
1− 1

2πi
Ω∇
)⊤

= det

(
1− 1

2πi
(Ω∇)∗

)
= det

(
1 +

1

2πi
Ω∇
)
.

Thus c(E) = det
(
1 + 1

2πi Ω
∇) is real.

Remark 4.1.16. The total Chern class c(E) of a complex vector bundle E →M is not
only a real cohomology class, it also has integral periods, i.e. for any smooth singular
cycle γ in M , we have ∫

γ

c(E) ∈ Z.

Thus c(E) lies in the image of Heven(M ;Z) in the de Rham cohomology under the change
of coefficients map H∗(M ;Z) → H∗(M ;R) composed with the de Rham isomorphism
H∗(M ;R) → H∗

dR(M).

Proposition 4.1.17. a) If E →M is trivial then c(E) = 1 ∈ H0
dR(M).

b) If E → M has rank N and admits global sections s1, . . . , sk ∈ C∞(M,E) linearly
independent at each point then cj(E) = 0 for all j > N − k.

Proof. a) If E → M is trivial then it has a flat connection ∇, i.e. Ω∇ = 0, and thus
det
(
1+ 1

2πi Ω
∇) = 1.

b) Let E1 ⊂ E be the sub-bundle spanned by s1, . . . , sk. Let E2 be a complementary
bundle, i.e. E = E1 ⊕ E2. Since E1 is trivial by construction, c(E1) = 1 and thus

c(E) = c(E1) · c(E2) = c(E2).

Hence cj(E) = cj(E2) = 0 for j > rk(E2) = N − k.
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Example 4.1.18. Consider the n-sphere M = Sn and its complexified tangent bundle
E := TSn ⊗ C. Let ν denote the normal bundle of Sn in R

n+1. Since the normal
field is globally defined on Sn ⊂ R

n+1, the normal bundle ν is trivial. We also have
TSn ⊕ ν = TRn+1|Sn , which is also trivial.
To compute the total Chern class of E, we denote by Ek be the trivial complex vector
bundle of rank k on Sn. Then we have ν ⊗ C = E1 and E ⊕ E1 = En+1. By the
multiplicativity (4.11) of the total Chern class, we obtain

c(E) · c(E1)︸ ︷︷ ︸
=1

= c(E ⊕ E1) = c(En+1) = 1.

Thus, c(E) = 1, although E = TSn ⊗C → Sn is not trivial.

Example 4.1.19. Consider the tautological line bundle γm → CPm on the complex
projective space, defined by

γm =
{
(ℓ, v) ∈ CPm × C

m+1 | v ∈ ℓ
}
.

Define a := c1(γm) 6= 0. Then we have

Hk
dR(CP

m) =

{
R · aj , for k = 2j, j = 0, . . . ,m

0 otherwise
.

The computation is spelled out e.g. in [2].

4.2. Additive and multiplicative classes

Let R = R0⊕R1⊕R2⊕ . . . be a commutative2 graded real algebra with unit 1 ∈ R0. The
term “graded“ means that the Rj are linear subspaces of R satisfying Rj · Rk ⊂ Rj+k.
In the application we have in mind, R will be the algebra of even de Rham cohomology,
i.e. Rj = H2j

dR(M).

Definition 4.2.1. Let R be a commutative graded real algebra. Let g(x) = g0 + g1 ·
x+ g2 · x2 + · · · ∈ RJxK be a formal power series. We define an associated vector space
endomorphism Λg : R→ R by

Λg|Rj = (−1)j+1 · j · gj idRj . (4.14)

Hence Λg preserves the grading.

2By commutative graded algebra we understand that it is a commutative algebra in the usual sense,
i.e. a · b = b · a holds for all a, b ∈ R. It does not mean that the algebra is graded commutative!
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Additive classes

For n ∈ N and c = 1+ c1+ c2+ · · · ∈ R = R0⊕R1⊕R2⊕ . . . we obtain another element
gc ∈ R by setting

gc := N · g0 · 1 + Λg(log c) ∈ R.

Here log(1+ t) = t− t2

2 + t3

3 ∓ . . . Notice that for fixed degree j only finitely many terms
occur in log c.
Now let Rj = H2j

dR(M) and c = c(E) be the total Chern class of a complex vector bundle
E →M of rank N .

Definition 4.2.2. Let c = c(E) be the total Chern class of a complex vector bundle
E over M of rank N . Let g(x) = g0 + g1 · x+ g2 · x2 + · · · ∈ RJxK be a formal power
series. Then

gc(E) := N · g0 · 1 + Λg
(
log c(E)

)
(4.15)

is called the additive characteristic class of E associated with the formal power
series g.

By equation (4.8), the Chern classes are natural with respect to pull-back diagrams.
Obviously, the same holds for any additive characteristic class gc: for any smooth map
f : N →M and any complex vector bundle E →M , we have

gc
(
f∗E

)
= f∗gc(E).

Moreover, additive classes are additive with respect to the direct sum of bundles:

gc(E1 ⊕ E2) = gc(E1) + gc(E2).

Hence the name ”additive class“.

Example 4.2.3. The additive class with respect to the exponential function g(x) = ex

is called Chern character of E. We write

gc(E) =: ch(E) ∈ Heven
dR (M).

By definition the component ch0(E) ∈ H0
dR(M) is the rank of E. We now compute

ch1(E) ∈ H2
dR(M) and ch2(E) ∈ H4

dR(M). For this purpose we compute

log c(E) = log
(
1 + c1(E) + c2(E) + . . .

)

=
(
c1(E) + c2(E) + . . .

)
− 1

2

(
c1(E) + c2(E) + . . .

)2
+ . . .

= c1(E) + c2(E)− 1

2
c1(E)2 + higher degree terms
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Thus

Λex
(
log c(E)

) (4.15)
= (−1)1+1 · c1(E) + (−1)2+1 · 2 · 1

2
·
(
c2(E)− 1

2
c1(E)2

)

+ higher degree terms.

and hence

ch0(E) = rk(E),

ch1(E) = c1(E),

ch2(E) =
1

2
c1(E)2 − c2(E).

Now for any additive character gc, we consider the special case where E = L1⊕ . . .⊕LN
is the direct sum of line bundles Lj , we have:

c(E)
(4.11)
= c(L1) · . . . · c(LN ) =

(
1 + c1(L1)

)
· . . . ·

(
1 + c1(LN )

)
.

Setting xj := c1(Lj), we obtain for any additive class:

gc(E) = N · g0 +Λg
(
log c(E)

)

= N · g0 +Λg

(
log (1 + x1) + . . . + log (1 + xN )

)

= N · g0 +Λg

(
x1 + . . . + xN − 1

2

(
x21 + . . .+ x2N

)
+

1

3

(
x31 + . . . + x3N

)
− . . .

)

= g(x1) + . . .+ g(xN ).

Multiplicative classes

Definition 4.2.4. Let f(x) ∈ RJxK be a formal power series of the form

f(x) = 1 + f1 · x+ f2 · x2 + . . . ∈ RJxK.

Then
Fc(E) := exp

(
Λlog f

(
log c(E)

))
∈ Heven

dR (M)

is called the multiplicative characteristic class of E associated with the formal
power series f .

As for the additive classes, it follows from the naturality (4.9) of the total Chern class
that any additive class Fc is natural with respect to pull-back diagrams: For any complex
vector bundle E →M and any smooth map f : N →M , we have

Fc
(
f∗E

)
= f∗Fc(E).
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Moreover, multiplicative classes are multiplicative with respect to the direct sum of
bundles:

Fc(E1 ⊕ E2) = Fc(E1) · Fc(E2).

Hence the name ”multiplicative class“.

Example 4.2.5. The multiplicative class associated with the formal power series

f(x) =
x

1− e−x
= 1 +

x

2
+
x2

12
+ . . .

is called Todd class. We write

Fc(E) =: Td(E) ∈ Heven
dR (M).

A direct computation (see [2]) yields

Td1(E) =
c1(E)

2

Td2(E) =
c2(E) + c1(E)2

12
.

Additive and multiplicative characteristic classes are important, since they show up in
index theorems. For example, the Atiyah-Singer index theorem applied to the Dolbeault
Dirac operator reads:

Theorem 4.2.6 (Riemann-Roch-Hirzebruch). Let E →M be a holomorphic vec-
tor bundle on a compact complex manifold. Then the index of the Dolbeault operator
is given by:

ind(∂̄)
(3.16)
=

∑

q

(−1)q h0,q(M) =

∫

M

Td(TM).

4.3. Pontryagin Classes

Let V → M be a real vector bundle and let E = V ⊗R C be its complexification. Since
V is a real bundle, we have V ∼= V ∗ and thus E ∼= E∗. Hence

ck(E) = ck(E
∗) = (−1)k ck(E)

and thus ck(E) = 0 for all odd k.
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Definition 4.3.1. Let V → M be a real vector bundle, and let E = V ⊗R C be its
complexification. The cohomology class

pk(V ) := (−1)k c2k(E) ∈ H4k
dR(M)

is called k-th Pontryagin class of V and

p(V ) = 1 +
∑

k

pk(V ) ∈ H4∗
dR(M)

is called total Pontryagin class of V .

Proposition 4.3.2. a) The Pontryagin classes are natural with respect to pull-back
diagrams, i.e. for any smooth map f : N →M , we have

p(f∗V ) = f∗p(V ). (4.16)

b) For direct sums, we have

p(V1 ⊕ V2) = p(V1) · p(V2). (4.17)

c) If V1 ∼= V2 then we have p(V1) = p(V2).

d) If V is trivial then we have p(V ) = 1 ∈ H0
dR(M).

Proof. The statements a), c) and d) follow from the corresponding statements for the
Chern classes (see Proposition 4.1.17 and equation (4.9)).
To prove b) we write E1 = V1 ⊗R C and E2 = V2 ⊗R C. Then we have

ck(E1 ⊕ E2) =
∑

i+j=k

ci(E1) · cj(E2),

and hence

pj(V1 ⊕ V2) = (−1)j c2j(E1 ⊕E2)

= (−1)j
∑

n+m=2j

cn(E1) · cm(E2)

= (−1)j
∑

µ+ν=j

c2µ(E1) · c2ν(E2)

= (−1)j
∑

µ+ν=j

(−1)µ pµ(V1) · (−1)ν pν(V2)
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=
∑

µ+ν=j

pµ(V1) · pν(V2).

Example 4.3.3. Since the total Pontryagin class is multiplicative and vanishes for triv-
ial bundles, we have p(TSn) = 1: Similar to Example 4.1.18, we denote by Vk the trivial
real bundle of rank k on Sn and by ν the normal bundle of Sn ⊂ R

n+1. Then we have
Vn+1 = TRn+1|Sn = TSn ⊕ ν = TSn ⊕ V1. Hence

1 = p
(
Vn+1

)
= p
(
TSn

)
· p
(
V1
)

︸ ︷︷ ︸
=1

= p
(
TSn

)
.

Example 4.3.4. We compute the total Pontryagin class of the complex-projective space
p(TCPm) ∈ H4∗(C;R). As in Example 4.1.19, we use the fact that the cohomology ring
of CPm is generated by c1(γm), where

γm =
{
(ℓ, v) ∈ CPm × C

m+1 | v ∈ ℓ
}
→ CPm

is the tautological line bundle.
We now consider the vector bundle E → CPm with total space

E =
{
(ℓ, v) ∈ CPm × C

m+1 | v ⊥ ℓ
}
.

Here ⊥ denotes orthogonality with respect to the usual Hermitian scalar product on
C
m+1. Then we have γm ⊕ E = Em+1. Hence

1 = c
(
Em+1

)
= c(γm) · c(E) = (1 + a) · c(E)

and thus

c(E) =
1

1 + a
= 1− a+ a2 − a3 ± . . .+ (−1)m am.

Claim: TCPm ∼= Hom(γm, E) as complex vector bundles.

The Hopf fibration is a submersion π : S2m+1 ⊂ C
m+1 → CPm. Denote by

V = ker dπ ⊂ TS2m+1 the vertical vector bundle. Then we obtain an isomorphism

TS2m+1 = V ⊕ π∗E ⊂ S2m+1 × C
m+1.

Let p ∈ CPm und x ∈ π−1(p) ⊂ S2m+1. Then

dxπ
∣∣
Ep

: (π∗E)x = Ep → TpCP
m

is a complex vector space isomorphism. Hence, the map

Hom(γm, E) → TCPm,

λ 7→ dxπ(λ(x)) for some x ∈ π−1(p)

is an isomorphism of complex vector bundles. The linearity of λ and the invariance
of π under the action of U(1) on S2m+1 yield the well-definedness of this map. X
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We thus obtain

TCPm ⊕ E1 ∼= Hom(γm, E)⊕Hom(γm, γm)
∼= Hom(γm, E ⊕ γm)

= Hom
(
γm, Em+1

)

∼= Hom
(
γm, E1

)
⊕ . . .⊕Hom

(
γm, E1

)

∼= γ∗m ⊕ . . .⊕ γ∗m

and

c
(
TCPm

)
= c
(
TCPm ⊕ E1

)
= c
(
γ∗m
)
. . . c

(
γ∗m
)

= (1− a)m+1.

This implies

c
(
TCPm ⊗R C

)
= c
(
TCPm ⊕ TCPm

)

= (1− a)m+1(1 + a)m+1

=
(
1− a2

)m+1
.

Hence we obtain for the Pontryagin class of CPm:

p
(
TCPm

)
=
(
1 + a2

)m+1
.

Thus,
m = 1 : p(TCP 1) = (1 + a2)2 = 1

m = 2 : p(TCP 2) = (1 + a2)3 = 1 + 3 a2

m = 3 : p(TCP 3) = (1 + a2)4 = 1 + 4 a2

...

Now we are building multiplicative classes from Pontryagin classes. Here Rj = H4j
dR(M).

Definition 4.3.5. For a given formal power series

f(x) = 1 + f1 · x+ f2 · x2 + · · · ∈ RJxK,

the endomorphism
Λlog f : H4∗

dR(M) → H4∗
dR(M).

is defined by equation (4.14). The cohomology class

Fp(V ) := exp
(
Λlog f

[
log
(
p(V )

)])
∈ H4∗

dR(M)

is called the multiplicative characteristic class of the real vector bundle V associ-
ated with the formal power series f .
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Example 4.3.6. The multiplicative class for the formal power series

â(x) =

√
x
2

sinh
(√

x
2

) = 1− x

24
+

7x2

5760
+ . . .

is called Â-class. We obtain

log (â(x)) = − x

24
+

x2

2880
+ . . .

and thus

Λlog(â(x)) =




0
− 1

24
− 1

1440
. . .


 .

It follows that

Â(V ) = exp
(
Λlog(â(x))

[
log
(
p(V )

)])

= exp

(
Λlog(â(x))

[
p1(V ) + p2(V )− p1(V )2

2
+ · · ·

])

= exp

(
−p1(V )

24
+
p1(V )2 − 2p2(V )

2880
+ . . .

)

= 1− p1(V )

24
+
p1(V )2 − 2p2(V )

2880
+
p1(V )2

1152
+ · · ·

= 1− p1(V )

24
+

7p1(V )2 − 4p2(V )

5760
+ · · · .

Hence Â1(V ) = −p1(V )
24 and Â2(V ) = 7p1(V )2−4p2(V )

5760 .

The Â-class occurs in the index theorem for the classical Dirac operator:

Theorem 4.3.7 (Atiyah-Singer index theorem). Let E → M be a Hermitian
vector bundle over a compact Riemannian spin manifold of even dimension. Let DE be
the classical Dirac operator twisted with E and let D+ ∈Diff 1(Σ

+M⊗CE,Σ
−M⊗CE)

be its positive part. Then we have:

ind(D+) =

∫

M

Â(TM) · ch(E).
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Example 4.3.8. The multiplicative class of a real vector bundle associated with the
formal power series

ℓ(x) =

√
x

tanh
√
x

is called Hirzebruch L-class.

The Hirzebruch L-class shows up in another index theorem, namely the one for the
signature operator D = d+ d∗ as defined in Example 1.3.19:

Theorem 4.3.9 (Hirzebruch signature theorem). Let M be a compact oriented
4k-dimensional manifold. Then the index of the signature operator is given by:

ind(d+ d∗)
(3.15)
= b+(M)− b−(M) =

∫

M

L(TM).



5. Index theorems for Dirac-type operators

5.1. Proof of the Atiyah-Singer index theorem

In this section we prove the Atiyah-Singer index theorem 4.3.7 for twisted Dirac opera-
tors. We follow the proof given in Chapter 11 of the first edition of Roe’s book [10].
Let E be a Hermitian vector bundle with a metric connection ∇E over a compact Rie-
mannian spin manifold M of dimension n and let

DE ∈Diff 1(ΣM ⊗C E,ΣM ⊗C E)

be the classical Dirac operator twisted with (E,∇E). Let RE be the cuvature of the

connection ∇E on E. We define the endomorphism field R
E ∈ C∞(M,End(ΣM ⊗E))

by

R
E
(φ⊗ f) :=

1

2

n∑

i,j=1

bi · bj · φ⊗RE(bi, bj)f

where b1, . . . bn is a local orthonormal tangent frame. Then the following generalization
of Lichnerowicz’ Theorem 2.5.11 holds.

Theorem 5.1.1. Let E → M be a Hermitian vector bundle with a metric connec-
tion ∇E over a (not necessarily compact) Riemannian spin manifold M . Then the
twisted Dirac operator DE satisfies

(DE)2 = (∇ΣM⊗E)∗∇ΣM⊗E +
scal

4
+R

E

Proof. Exercise.

We abbreviate S := ΣM ⊗C E. If n is even then with respect to the splitting

S = (Σ+M ⊗C E)⊕ (Σ−M ⊗C E) =: S+ ⊕ S−

the twisted Dirac operator takes the form

DE =

(
0 D−

D+ 0

)
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whereD+ ∈Diff 1(S
+, S−) andD− = (D+)∗ ∈Diff 1(S

−, S+) are Dirac-type operators.
As in Section 3.4 we define

∆+ := D−D+ and ∆− := D+D−

and we denote by Φ∆±

j ∈ C∞(M ⊲⊳ M,S±⊠ (S±)∗), j ≥ 0, the coefficients of the formal
heat kernel of ∆+ and ∆− respectively. Then by Theorem 3.4.4 the index of D+ is given
by

ind(D+) = (4π)−
n
2

∫

M
an

2
(x) dvol(x) (5.1)

where an
2
∈ C∞(M) is given by

an
2
(x) := tr

(
Φ∆+

n
2

(x, x)
)
− tr

(
Φ∆−

n
2

(x, x)
)
.

Definition 5.1.2. Let V be a finite dimensional real or complex vector space with a
decomposition V = V + ⊕ V −. We define ε ∈ End(V ) by

ε :=

(
1 0
0 −1

)
: V + ⊕ V − → V + ⊕ V −.

For any endomorphism ϕ ∈ End(V ) the number Str(ϕ) := tr(εϕ) is called the super-
trace of ϕ with respect to the decomposition V = V + ⊕ V −.

Remark 5.1.3. Since DE is formally self-adjoint we have

(DE)∗DE = (DE)2 =

(
0 D−

D+ 0

)(
0 D−

D+ 0

)
=

(
∆+ 0
0 ∆−

)
.

Therefore, if we denote by Φj ∈ C∞(M ⊲⊳ M,S ⊠ S∗), j ≥ 0, the coefficients of the
formal heat kernel of (DE)∗DE we get for all x ∈M

an
2
(x) = Str(Φn

2
(x, x))

with respect to the decomposition Sx = S+
x ⊕ S−

x and thus by (5.1):

ind(D+) = (4π)−
n
2

∫

M
Str(Φn

2
(x, x)) dvol(x). (5.2)

We fix p ∈ M . In the following let x: U → V be a Riemannian normal coordinate
system of M centered at p ∈ U ⊂ M mapping p to 0 ∈ V ⊂ R

n. At the point p ∈ U we
define bi|p := ∂

∂xi
|p, i = 1, . . . , n. Let (bi)

n
i=1 be the local orthonormal frame of TM |U

obtained by parallel transport of the vectors bi|p along the radial geodesics emanating
from p. Then we have ∇bLCi |p = 0 for all i, i.e., the bi are synchronous at p. The local
orthonormal frame h := (bi)

n
i=1 defines a local section of the frame bundle P SO(M). We
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can lift h to a local section H of the Spin(n)-principal bundle P Spin(M). Let v1, . . . , v2n/2

be a basis of Σn. We obtain a local trivialization of the spinor bundle ΣM over U by
defining the local sections [H, vi], i = 1, . . . , 2n/2. Together with a local frame of E we
obtain a local trivialization of S.

Remark 5.1.4. With this local trivialization of S over U we get an isomorphism Sx ∼=
Σn⊗CEp for every x ∈ U and thus for all j we can identify Φj(x, p) ∈ Hom(Sp, Sx) with
an endomorphism of Σn ⊗C Ep. Since n is even we have an isomorphism of complex
algebras Cln ∼= End(Σn) by Proposition 2.3.11. Therefore x 7→ Φj(x, p), x ∈ U , can be
considered as a function on V with values in Cln ⊗C End(Ep). We abbreviate

Sn := Σn ⊗C Ep = (Σ+
n ⊗C Ep)⊕ (Σ−

n ⊗C Ep) =: S+
n ⊕ S−

n

Wn := End(Sn) ∼= Cln ⊗C End(Ep).

We want to apply the twisted Dirac operator DE ⊗ idS∗
p
to the section

U ∋ x 7→ Φj(x, p) ∈ Hom(Sp, Sx) ∼= Sx ⊗ S∗
p .

To simplify the notation we writeDE instead ofDE⊗idS∗
p
. With the above identifications

we can consider DE over U as

DE : C∞(V,Wn) → C∞(V,Wn).

The Riemannian normal coordinate system maps geodesics in U of length r starting at p
to straight line segments in V of length r starting at 0. Thus if we identify x ∈ U with
its coordinate image in V then the Euclidean heat kernel of U at p is given by

qt(·, p) ∈ C∞(V,Wn), qt(x, p) = (4πt)−
n
2 exp

(
− |x|2

4t

)

where | · | denotes the Euclidean distance in R
n.

Definition 5.1.5. Let ∆: C∞(V,Wn) → C∞(V,Wn) be a formally self-adjoint
Laplace-type operator. A formal power series

σ(x, t) := (4πt)−n/2 exp
(
− |x|2

4t

) ∞∑

j=0

tjuj(x)

with uj ∈ C∞(V,Wn) for all j is called an asymptotic solution to the heat equation
∂u
∂t + ∆u = 0 at the point p if for all N ∈ N there exists m0 ∈ N such that for all
m ≥ m0 we have as t→ 0

( ∂
∂t

+∆
){

(4πt)−n/2 exp
(
− |x|2

4t

) m∑

j=0

tjuj(x)
}
= (4πt)−n/2 exp

(
− |x|2

4t

)
·O(tN ).
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Remark 5.1.6. There is a unique asymptotic solution to the heat equation ∂u
∂t +∆u =

0 at p such that u0(0) = idSn . This can be shown by determining the functions uj
recursively as in the proof of Proposition 3.2.7. If Φj denote the coefficients of the
formal heat kernel of ∆ then we have uj(x) = Φj(x, p) for all j ∈ N0 and all x ∈ V .

Let e1, . . . , en be the standard basis of Rn. Then the elements eI := ei1 · . . . · eik , with
multi-indices I = (1 ≤ i1 < . . . < ik ≤ n), k ≥ 0, form a complex basis of Cln.

Lemma 5.1.7. Let n be even, α ∈ End(Ep) and let c =
∑

I cIeI ⊗ α ∈ End(Sn) with
cI ∈ C, where the sum is taken over all multi-indices I. Then with respect to the
splitting Sn = S+

n ⊕ S−
n we have

Str(c) = (−2i)n/2tr(α)c12...n.

Proof. Let ω := e1 · . . . · en ∈ Cln be the volume element. By the equation (2.9) we have

Σ±
n = {z ∈ Σn | in/2ω · z = ±z}.

Thus with
ε := in/2ω · ⊗ idEp ∈ End(Sn)

we have Str(c) = tr(εc) for all c ∈ End(Sn). Let eI := ei1 · . . . · eik ∈ Cln ∼= End(Σn).
We have tr(eI ⊗ α) = tr(eI)tr(α).
Case 1: k is odd: Let v ∈ Σ+

n . We have ω · eij = (−1)n−1eij · ω for all j. We get

in/2ω · ei1 · . . . · eik · v = (−1)k(n−1)

︸ ︷︷ ︸
=−1

ei1 · . . . · eik · in/2ω · v = −ei1 · . . . · eik · v

and thus eI · v ∈ Σ−
n . We have shown that eI(Σ

+
n ) ⊂ Σ−

n and similarly one shows that
eI(Σ

−
n ) ⊂ Σ+

n . It follows that tr(eI) = 0.
Case 2: k is even and k 6= 0: We have

ei1 · . . . · eik = (−1)k−1ei2 · . . . · eik · ei1 = −ei2 · . . . · eik · ei1 .

Using this together with the fact that tr(AB) = tr(BA) for all A,B ∈ End(Σn) we get

tr(ei1 · . . . · eik) = −tr(ei2 · . . . · eik · ei1) = −tr(ei1 · . . . · eik)

and thus tr(ei1 · . . . · eik) = 0.
Case 3: I = ∅: Then eI = idΣn and thus tr(eI ⊗ α) = dim(Σn)tr(α) = 2n/2tr(α).
We have shown that for all c =

∑
I cIeI ⊗ α we have tr(c) = 2n/2tr(α)c∅. Therefore

Str(c) = tr(εc) = in/22n/2tr(α)(ωc)∅ = (2i)n/2tr(α)c12...n(ω
2)∅

= (−2i)n/2tr(α)c12...n.
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Definition 5.1.8. (i) An element c =
∑

I cIeI ∈ Cln or c =
∑

I cIeI⊗α ∈Wn with
cI ∈ C is called of degree k if cI = 0 for all multi-indices I whose cardinality is
not equal to k.

(ii) For λ > 0 we define the rescaling operator Rλ: C
∞(V,Wn) → C∞(λ−1V,Wn)

as follows: If ϕ ∈ C∞(V,Wn) is of degree k everywhere, then we define

(Rλϕ)(x) := λ−kϕ(λx), x ∈ λ−1V.

By Lemma 5.1.7 and the equation (5.2) we get a formula for ind(D+) if for every p ∈M
we can determine the n-degree part of the coefficient Φn

2
(p, p) considered as an element

of Wn. In order to achieve this we use a rescaling trick due to Ezra Getzler.
For λ ≥ 1 we define

Dλ :=
1

λ
R−1
λ ◦DE ◦Rλ : C∞(V,Wn) → C∞(V,Wn).

It is easy to see that D2
λ is a formally self-adjoint Laplace-type operator for every λ ≥ 1.

Getzler’s idea is to consider the asymptotic solution to the heat equation for D2
λ and

then consider the limit λ→ ∞.

Proposition 5.1.9. Let σ be the asymptotic solution to the heat equation for (DE)2

at p with u0(0) = idSn . For λ > 0 define

σλ(x, t) := λ−n(R−1
λ σ)

(
x,

t

λ2

)
.

Then σλ is the asymptotic solution to the heat equation for D2
λ at p with uλ0 (0) = idSn.

Proof. Denote the coefficients of σ by uj, j ≥ 0. Let N ∈ N and let m0 ∈ N such that
for all m ≥ m0 we have

( ∂
∂t

+(DE)2
){

(4πt)−n/2 exp
(
− |x|2

4t

) m∑

j=0

tjuj(x)
}

︸ ︷︷ ︸
=:σm(x,t)

= (4πt)−n/2 exp
(
− |x|2

4t

)
·SN (x, t)

where SN (x, t) = O(tN ) as t → 0. We compute

( ∂
∂t

+D2
λ

)
σλm(x, t) =

( ∂
∂t

+ λ−2R−1
λ (DE)2Rλ

)(
λ−nR−1

λ σm

)(
x,

t

λ2

)

= λ−nR−1
λ λ−2∂σm

∂t

(
x,

t

λ2

)
+ λ−2R−1

λ λ−n((DE)2σm)
(
x,

t

λ2

)
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= λ−n−2R−1
λ

(∂σm
∂t

+ (DE)2σm

)(
x,

t

λ2

)

= λ−n−2R−1
λ

(
(4πtλ−2)−n/2 exp

(
− |x|2λ2

4t

)
SN

)(
x,

t

λ2

)

= λ−2(4πt)−n/2 exp
(
− |x|2

4t

)
R−1
λ SN

(
x,

t

λ2

)
.

With S̃N (x, t) := R−1
λ SN (x,

t
λ2 ) we have S̃N (x, t) = O(tN ) as t → 0. Therefore σλ is an

asymptotic solution for D2
λ at p. Moreover we have

(4πt)−n/2 exp
(
− |x|2

4t

)
uλ0(x) = λ−nR−1

λ

(
(4πt)−n/2 exp

(
− |x|2

4t

)
u0

)(
x,

t

λ2

)

= λ−n(4πtλ−2)−n/2 exp
(
− |λ−1x|2

4tλ−2

)
R−1
λ u0(x)

= (4πt)−n/2 exp
(
− |x|2

4t

)
R−1
λ u0(x)

and since u0(0) = idSn has degree 0, we get R−1
λ u0(0) = idSn and thus uλ0(0) = idSn .

Remark 5.1.10. Recall that the map Φ: Λ•
R
n ⊗R C → Cln defined on standard basis

elements by
ei1 ∧ . . . ∧ eik 7→ ei1 · . . . · eik , 1 ≤ i1 < . . . < ik ≤ n

together with linear extension is an isomorphism of vector spaces. We define exterior
multiplication on Cln as follows: For v,w ∈ Cln:

v ∧ w := Φ(Φ−1(v) ∧ Φ−1(w))

where on the right hand side ∧ denotes exterior multiplication in Λ•
R
n⊗R C. In partic-

ular, if v ∈ Cln is of degree k and w ∈ Cln is of degree ℓ, then v ∧ w is of degree k + ℓ.
Note that 0 is of any degree.

Lemma 5.1.11. Let c ∈ C∞(V,Cln) be of degree k everywhere. For λ ≥ 1 we define

Mc,λ := λ−kR−1
λ ◦ c ◦Rλ : C∞(V,Wn) → C∞(V,Wn),

where the map c is given by Clifford multiplication with c. Then as λ→ ∞ we get for
all ϕ ∈ C∞(V,Wn) and all x ∈ V : (Mc,λϕ)(x) → c(0) ∧ ϕ(x).

Proof. Let ϕ be of degree ℓ everywhere. Then c(x) · ϕ(λx) = c(x) ∧ ϕ(λx) + y where
c(x)∧ϕ(λx) is of degree k+ ℓ and y is a sum of terms of degree less than k+ ℓ. It follows
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that

(Mc,λϕ)(x) = λ−k−ℓR−1
λ

(
c(.) · ϕ(λ.)

)
(x)

= λ−k−ℓ
(
λk+ℓc(λ−1x) ∧ ϕ(x) + O(λk+ℓ−1)

)

= c(λ−1x) ∧ ϕ(x) + O(λ−1)

→ c(0) ∧ ϕ(x)

as λ→ ∞.

We define Θjk, F ∈ Λeven
R
n ⊗ End(Ep) by

Θjk :=

n∑

α,β=1

Rjkαβ(0)eα ∧ eβ ⊗ idEp , 1 ≤ j, k ≤ n

F :=
1

2

n∑

i,j=1

ei ∧ ej ⊗REij(0)

where e1, . . . , en is the standard basis of Rn, Rjkαβ(0) ∈ R denote the components of the
Riemann curvature tensor of M at p and REij(0) ∈ End(Ep) denote the components of

the curvature of ∇E at p. Using Λeven
R
n ⊂ Cln we may also regard Θjk, F ∈Wn.

Proposition 5.1.12. As λ → ∞ the coefficients of D2
λ: C

∞(V,Wn) → C∞(V,Wn)
tend to the coefficients of the operator L: C∞(V,Wn) → C∞(V,Wn) given by

L := −
n∑

j=1

( ∂

∂xj
− 1

8

n∑

k=1

xkΘjk

)2
+ F.

Moreover, F commutes with every element Θjk in the algebra Wn.

Proof. We use the Christoffel symbols Γβjα: V → R with respect to the local orthonormal
frame (bi)

n
i=1 of TM |U defined by

∇LC
bj bα =

n∑

β=1

Γβjαbβ .

For all β, j, α we have Γβjα(0) = 0 and thus we have

Γβjα(x) =
n∑

k=1

Ajkαβx
k +O(|x|2)
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where Ajkαβ ∈ R are such that ∂biΓ
β
jα(0) = Ajiαβ. Since the bj are obtained by parallel

transport along radial geodesics we get

0 =

n∑

j=1

xj∇LC
bj bα =

n∑

j,β=1

xjΓβjα(x)bβ =

n∑

j,k,β=1

Ajkαβx
jxk +O(|x|3).

Thus for all k, j, α, β we have Ajkαβ = −Akjαβ i.e., ∂biΓ
β
jα(0) = −∂bjΓβiα(0). Now we

have

∇bi∇bjbα = (∂biΓ
β
jα)bβ +

n∑

γ=1

ΓβjαΓ
γ
iβbγ

and therefore

Rijαβ(0) = 〈∇bi∇bjbα −∇bj∇bibα, bβ〉(0) = ∂biΓ
β
jα(0)− ∂bjΓ

β
iα(0)

= −2∂bjΓ
β
iα(0) = −2Aijαβ .

It follows that

Γβjα(x) = −1

2

n∑

k=1

Rjkαβ(0)x
k +O(|x|2).

Moreover we can write every spinor field on U in the form ψ = [H,ϕ] with a local
section H of P Spin(M) and ϕ: V → Σn. For the spinor connection we have

∇Σ
bjψ =

[
H, ∂ejϕ+

1

4

n∑

α,β=1

Γβjαeα · eβ · ϕ
]

=
[
H, ∂ejϕ− 1

8

n∑

α,β,k=1

Rjkαβ(0)x
keα · eβ · ϕ+ |x|2v(x) · ϕ

]

where v is of degree 2. Let ϕ be of degree ℓ. Since eα∧eβ and v are of degree 2 it follows
from Lemma 5.1.11 that

1

λ
R−1
λ ∂jRλϕ(x) =

1

λ
R−1
λ ∂j(λ

−ℓϕ(λx))

= λ−ℓ−1R−1
λ λ∂jϕ(λx)

= ∂jϕ(x),

1

λ
R−1
λ xkeα · eβ ·Rλϕ(x) =

xk

λ2
R−1
λ eα · eβ ·Rλϕ(x)

=
xk

λ2
R−1
λ (eα ∧ eβ ∧Rλϕ(x) + lower degree)

= xkeα ∧ eβ ∧ ϕ(x) + O(λ−1),

1

λ
R−1
λ |x|2v(x) ·Rλϕ(x) =

1

λ

|x|2
λ2

R−1
λ v(x) · Rλϕ(x)

︸ ︷︷ ︸
→v(0)∧ϕ(0)

= O(λ−1)
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and thus

1

λ
R−1
λ ∇Σ

bjRλψ =
[
H, ∂ejϕ− 1

8

n∑

α,β,k=1

Rjkαβ(0)x
keα ∧ eβ ∧ ϕ+O(λ−1)

]
.

Let η1, . . . , ηs be a local frame of E and define ΓE,kji ∈ C∞(V ) by

∇E
bjηi =

s∑

i=1

ΓE,kji ηk.

We write a local section e of E as e =
∑s

i=1 fiηi with fi ∈ C∞(V ) and we get

1

λ
R−1
λ ∇E

bjRλe =
s∑

i=1

1

λ
(R−1

λ ∂bjRλfi)ηi +
1

λ

s∑

i,k=1

fiΓ
E,k
ji ηk =

s∑

i=1

(∂bjfi)ηi +O(λ−1).

Altogether we obtain

∇ΣM⊗E
bj

(ψ ⊗ e) = ∂bj (ψ ⊗ e)− 1

8

n∑

k=1

Θjkx
kψ ⊗ e+O(λ−1).

By Theorem 5.1.1 we have

(DE)2 = −
n∑

j=1

∇ΣM⊗E
bj

∇ΣM⊗E
bj

+

n∑

i,j=1

Γjii∇ΣM⊗E
bj

+
1

4
scal +R

E
.

Since scal is of degree 0 and R
E
is of degree 2 we get by Lemma 5.1.11

D2
λ = λ−2R−1

λ (DE)2Rλ

=
1

λ2
R−1
λ

(
−

n∑

j=1

∇ΣM⊗E
bj

∇ΣM⊗E
bj

+

n∑

i,j=1

Γjii∇ΣM⊗E
bj

)
Rλ

+
1

4λ2
R−1
λ scalRλ +

1

λ2
R−1
λ R

E
Rλ

= −
n∑

j=1

(
∂j −

n∑

k=1

Θjk

8
xk
)(
∂j −

n∑

ℓ=1

Θjℓ

8
xℓ
)

+

n∑

i,j=1

R−1
λ Γjii
λ2

(
∂j −

n∑

k=1

Θjk

8
xk
)
+O(λ−1) +

scal

4λ2
+

1

λ2
R−1
λ R

E
Rλ

→ −
n∑

j=1

(
∂j −

1

8

n∑

k=1

xkΘjk

)2
+ F

as λ → ∞. Obviously, F commutes with every element Θjk, since the algebra Λeven
R
n

is commutative and since idEp commutes with all elements REij(0).
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Lemma 5.1.13. For every p ∈M choose a local trivialization of S as above and let

σLp (x, t) = (4πt)−n/2 exp
(
− |x|2

4t

) ∞∑

j=0

tjuLp,j(x)

be the asymptotic solution to the heat equation for L at p with uLp,j ∈ C∞(V,Wn) for

all j and uLp,0(0) = idSn. Then for the smooth function g: M → R, g(p) := Str(uLp,n
2
(0))

we have

ind(D+) = (4π)−
n
2

∫

M
g(p) dvol(p).

Proof. By Remark 5.1.6 the asymptotic solution to the heat equation for (DE)2 at p
with u0(0) = idSn is given by

σ(x, t) = (4πt)−n/2 exp
(
− |x|2

4t

) ∞∑

j=0

tjΦj(x, p),

where Φj are the coefficients of the formal heat kernel for (DE)2. The above local
trivialization of S gives us an identification of Φj(x, p) ∈ Hom(Sp, Sx) with an element∑

I Φj,I(x)eI ⊗ αj(x) with Φj,I(x) ∈ C, αj(x) ∈ End(Ep) and the sum is taken over all
multi-indices I. Therefore we can write

σ(x, t) = (4πt)−n/2 exp
(
− |x|2

4t

) ∞∑

j=0

∑

I

tjΦj,I(x)eI ⊗ αj(x).

By Proposition 5.1.9 the asymptotic solution to the heat equation for D2
λ at p with

uλ0(0) = idSn is given by

σλ(x, t) = (4πt)−n/2 exp
(
− |x|2

4t

) ∞∑

j=0

∑

I

tjλ−2j+|I|Φj,I
(x
λ

)
eI ⊗ αj

(x
λ

)
,

where |I| is the cardinality of I. By Proposition 5.1.12 as λ→ ∞ the coefficients of the
asymptotic solution σλ tend to the coefficients uLp,j of the asymptotic solution σLp . For

j = n
2 we have λ−2j+|I| → 0 as λ→ ∞ for all I with |I| < n and thus

uLp,n
2
(0) = Φn

2
,12...n(0)e1 · . . . · en ⊗ αn

2
(0)

and together with Lemma 5.1.7 we get

Str(uLp,n
2
(0)) = (−2i)n/2tr(αn

2
(0))Φn

2
,12...n(0) = Str(Φn

2
(p, p)).

The assertion follows from equation (5.2).
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It remains to determine the coefficient uLp,n
2
(0). Now, the operator L defined above has

coefficients Θjk, F ∈ Λeven
R
n ⊗ End(Ep). In order to solve the heat equation for L we

first consider an operator with scalar coefficients instead.

Proposition 5.1.14 (Mehler’s formula). Let n be even, let A ∈ Mat(n × n;R) be
an antisymmetric matrix and let B ∈ R. Then the heat equation for the operator

H : C∞(V,C) → C∞(V,C), H := −
n∑

j=1

( ∂

∂xj
− 1

8

n∑

k=1

xkAjk

)2
+B

for t close to 0 has a solution

wHt (x) = (4πt)−
n
2 det

( tA/4

sinh(tA/4)

)1/2
exp

(
− 1

4t

〈tA
4

coth
( tA

4

)
x, x

〉)
exp(−tB)

where the matrices tA/4
sinh(tA/4) and tA

4 coth( tA4 ) are defined by converging power series.

Proof. Let S = (Sij)i,j ∈ O(n) be an orthogonal matrix and define the new coordinates
yi :=

∑n
j=1 Sjix

j, i = 1, . . . , n. A short calculation shows that

H = −
n∑

k=1

( ∂

∂yk
− 1

8

n∑

ℓ=1

yℓ(S⊤AS)kℓ
)2

+B.

Since the matrix A is antisymmetric, we can choose S in such a way that S⊤AS = D is
in block diagonal form with 2× 2 blocks

(
0 θk

−θk 0

)

on the diagonal. Writing x1, y1, . . . , xn/2, yn/2 for the new coordinates we get

H =

n/2∑

k=1

(
−
( ∂

∂xk
− 1

8
θkyk

)2
−
( ∂

∂yk
+

1

8
θkxk

)2)

︸ ︷︷ ︸
=:Hk

+B.

For every k let (xk, yk) 7→ wkt (xk, yk) be a solution to the heat equation ( ∂∂t+Hk)w
k
t = 0.

Then wt := w1
t · . . . · w

n/2
t is a solution to the heat equation ( ∂∂t +

∑
kHk)wt = 0.

Therefore it is sufficient to consider the 2-dimensional case Hk = Hk,0 +Hk,1 where

Hk,0 := −
( ∂2

∂x2k
+

∂2

∂y2k

)
− 1

64
θ2k(x

2
k + y2k)

Hk,1 :=
1

4
θk

(
yk

∂

∂xk
− xk

∂

∂yk

)
.
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One checks that

wkt (x, y) :=
iθk

16π sinh( itθk4 )
exp

(
− iθk(x

2
k + y2k) coth(

itθk
4 )

16

)

solves the heat equation ( ∂∂t +Hk)w
k
t = 0. Indeed we have

∂wkt
∂xk

(xk, yk) = −1

8
iθkxk coth

( itθk
4

)
wkt (xk, yk)

∂2wkt
∂x2k

(xk, yk) =
(
− 1

64
θ2kx

2
k coth

2
( itθk

4

)
− 1

8
iθk coth

( itθk
4

))
wkt (xk, yk)

Hk,0w
k
t (xk, yk) =

(1
4
iθk coth

( itθk
4

)
+

θ2k(x
2
k + y2k)

64 sinh2( itθk4 )

)
wkt (xk, yk) = −∂w

k
t

∂t
(xk, yk)

Hk,1w
k
t (xk, yk) = 0.

Since H =
∑

kHk + B it follows that the function wHt (x) := e−tBwt(x) solves the heat
equation ( ∂∂t +H)wHt = 0.

Proposition 5.1.15. Let σLp be the asymptotic solution to the heat equation for L
at p with up,0(0) = idSn . Then at x = 0 we have

σLp (0, t) = (4πt)−
n
2 det

( tΘ/4

sinh(tΘ/4)

)1/2
exp(−tF )

where Θ is the matrix with entries Θjk and where Θjk, F ∈Wn are defined as above.

Remark 5.1.16. The matrix ( tΘ/4
sinh(tΘ/4) )

1/2 is defined by the power series for the func-

tion f(x) = ( x
sinh(x))

1/2, i.e.,

( tΘ/4

sinh(tΘ/4)

)1/2
= 1− 1

48
t2Θ2 +

17

7680
t4Θ4 +O(t6Θ6)

and this series is a finite sum, since Θ has entries in ΛevenRn and is therefore nilpotent.
The determinant of this matrix is then a polynomial in the entries Θjk and thus an
element of Wn. For the same reason, exp(−tF ) is a polynomial in F and an element
of Wn.

Proof. The solution wHt to the heat equation for H from Proposition 5.1.14 satisfies

wHt (0) = (4πt)−
n
2 det

( tA/4

sinh(tA/4)

)1/2
exp(−tB).
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Moreover, the formula for wHt shows that as t→ 0 we have

wHt (x) = (4πt)−
n
2 exp

(
− |x|2

4t

)
(1 + O(t)).

We define wLt by wHt , where we replace the scalars Ajk and B by the elements Θjk and F
of Wn. Since F commutes with every element Θjk the map wLt solves the heat equation
for L. In particular, wLt is an asymptotic solution to the heat equation for L at p whose
coefficient of order 0 is equal to idSn . Since the asymptotic solution with this property
is unique we conclude that σLp (0, t) = wLt (0).

Lemma 5.1.17. Let M be a Riemannian manifold of even dimension. For a formal
power series

f(x) = 1 + f1 · x+ f2 · x2 + . . . ∈ RJxK
let Fp(TM) denote the multiplicative characteristic class of TM associated with f as
defined in Definition 4.3.5. Moreover, define the formal power series

f̃(x) :=
√
f(x2) ∈ RJxK.

If Ω is the matrix of curvature 2-forms of some connection on TM⊗RC, then we have
Fp(TM) = det(f̃( Ω

2πi )).

Proof. The matrix Ω is similar to a block diagonal matrix, and thus we may assume

Ω =




0 −θ1
θ1 0

. . .

0 −θm
θm 0




with θk ∈ Λ2
R
n for all k and dim(M) = 2m. It follows that

det
(
1n +

1

2πi
Ω
)
=

m∏

k=1

(
1 +

θ2k
(2πi)2

)
= 1 +

m∑

j=1

σj

( θ21
(2πi)2

, . . . ,
θ2m

(2πi)2

)
,

where σj denotes the j-th elementary-symmetric polynomial. Thus, for the Chern classes
of TM ⊗R C we get for 1 ≤ j ≤ m: c2j−1(TM ⊗R C) = 0 and

c2j(TM ⊗R C) = σj

( θ21
(2πi)2

, . . . ,
θ2m

(2πi)2

)
.

Thus, for the Pontryagin classes of TM we get for 1 ≤ j ≤ m:

pj(TM) = (−1)jc2j(TM ⊗R C) = σj

( (−θ21)
(2πi)2

, . . . ,
(−θ2m)
(2πi)2

)
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and thus the total Pontryagin class is equal to

p(TM) =

m∏

k=1

(
1 +

(−θ2k)
(2πi)2

)

For k = 1, . . . ,m we write xk :=
−θ2k
(2πi)2

and we get

log(p(TM)) =
m∑

k=1

log(1 + xk) =
m∑

k=1

∞∑

j=1

hjx
j
k with hj :=

(−1)j+1

j

Writing log f =
∑∞

j=1(log f)jx
j we get

Λlog f [log(p(TM))] =

m∑

k=1

∞∑

j=1

(−1)j+1j(log f)jhjx
j
k =

m∑

k=1

∞∑

j=1

(log f)jx
j
k

=

m∑

k=1

log f(xk) = log

m∏

k=1

f(xk)

and thus Fp(TM) =
∏m
k=1 f(xk). On the other hand we have

Ω2 =




−θ21
−θ21

. . .

−θ2m
−θ2m




and thus det f( Ω2

(2πi)2 ) =
∏m
k=1 f(xk)

2. The assertion follows.

Proof of the Atiyah-Singer index theorem 4.3.7. The matrix Ω of 2-forms given by the
Riemann curvature of M is defined by the equation

R(bα, bβ)bi =

n∑

j=1

Ωji (bα, bβ)bj

where b1, . . . , bn is a local orthonormal frame of TM . It follows that at the point p we
have Ωji (bα, bβ) = Rαβij(0) and thus

Ωji =
∑

1≤α<β≤n
Rαβij(0)eα ∧ eβ =

1

2
Θij .

By definition the Â-class of TM is the multiplicative class associated with

f(x) =

√
x/2

sinh(
√
x/2)

.
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By Lemma 5.1.17 we get

Â(TM) = det f̃
( Ω

2πi

)
= (2πi)−n/2 det

( Ω/2

sinh(Ω/2)

)1/2
.

By Proposition 5.1.15 we have for every p ∈M

uLp,n
2
(0) = coefficient of tn/2 in det

( tΘ/4

sinh(tΘ/4)

)1/2
exp(−tF )

= n-form part of det
( Θ/4

sinh(Θ/4)

)1/2
exp(−F )

= n-form part of det
( Ω/2

sinh(Ω/2)

)1/2
exp(−F )

= n-form part of (2πi)n/2Â(TM) · ch(E).

By Lemma 5.1.7 we get

Str(uLp,n
2
(0)) = n-form part of (4π)n/2Â(TM) · ch(E)

The assertion now follows from Lemma 5.1.13.

5.2. Proof of the Hirzebruch signature theorem

Let M be a compact manifold of even dimension n = 2m. For k ∈ {0, . . . , n} define

τ = ik(k−1)+m∗ : ΛkT ∗M ⊗R C → Λn−kT ∗M ⊗R C.

Consider the signature operator d+ d∗ ∈Diff 1(E
+, E−) introduced in Example 1.3.19,

where E± denote the bundles of eigenvectors of τ for the eigenvalues ±1.

Remark 5.2.1. Assume in addition that M is a spin manifold and denote by ΣM the
spinor bundle over M .

a) Using the isomorphisms Λ•T ∗M ∼= Cl(TM) and End(Σn) ∼= Cln we obtain an iso-
morphism of complex vector bundles

Φ : Λ•T ∗M ⊗R C ∼= Cl(TM)⊗R C ∼= End(ΣM) ∼= ΣM ⊗ ΣM∗.

For every x ∈M the map

T ∗
xM × Λ•T ∗

xM ⊗R C → Λ•T ∗
xM ⊗R C, (α,ϕ) 7→ α · ϕ := α ∧ ϕ− αyϕ

satisfies the Clifford relation, i.e., for all α, β ∈ T ∗
xM , ϕ ∈ Λ•T ∗

xM ⊗R C:

α · β · ϕ+ β · α · ϕ = −2〈α, β〉ϕ.
On Λ•T ∗M⊗RC we define a Clifford multiplication using this map and on ΣM⊗ΣM∗

we use the usual Clifford multiplication on the first factor. Then Φ is an isomorphism
of Clifford modules, i.e., for all x ∈M , α ∈ T ∗

xM , ϕ ∈ Λ•T ∗
xM ⊗R C we have

Φ(α · ϕ) = α♯ · Φ(ϕ).
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b) Claim: We have Φ(E±) = Σ±M ⊗ ΣM∗. In order to prove this claim we first fix
x ∈ M , let b1, . . . , bn be an orthonormal basis of TxM and let b∗1, . . . b

∗
n be the dual

basis. We then compute for all 1 ≤ j1 < . . . < jk ≤ n,

b∗jk · (b
∗
j1 ∧ . . . ∧ b∗jk) = 0− b∗jky (b

∗
j1 ∧ . . . ∧ b∗jk) = (−1)kb∗j1 ∧ . . . ∧ b∗jk−1

and we get inductively

b∗j1 · . . . · b∗jk · (b
∗
j1 ∧ . . . ∧ b∗jk) = (−1)k(k+1)/2.

Writing b∗J := b∗j1 ∧ . . .∧ b∗jk and denoting by Jc =: {r1 < . . . < rn−k} the multi-index
complementary to J we get

b∗1 · . . . · b∗n · b∗J = sign(Jc, J)b∗r1 · . . . · b∗rn−k
· b∗j1 · . . . b∗jk · e

∗
J

= (−1)k(n−k)sign(J, Jc)b∗r1 · . . . · b∗rn−k
· (−1)k(k+1)/2

= (−1)−k
2+k(k+1)/2sign(J, Jc)b∗r1 ∧ . . . ∧ b∗rn−k

= (−1)k(k−1)/2sign(J, Jc)b∗Jc

= i−n/2τ(b∗J)

and thus
Φ(τ(b∗J )) = in/2b1 · . . . · bn · Φ(b∗J).

The claim now follows, since by the equation (2.9) we have

Σ±M = {ϕ ∈ ΣM | in/2b1 · . . . · bn · ϕ = ±ϕ}.

c) We now write

S := ΣM ⊗ ΣM∗ = (Σ+M ⊗ ΣM∗)⊕ (Σ−M ⊗ ΣM∗) =: S+ ⊕ S−.

On ΣM∗ we choose the connection ∇ΣM∗
induced by the spinor connection. We

denote by DΣM∗ ∈ Diff 1(S, S) the operator obtained from the classical Dirac op-
erator on ΣM by twisting with ∇ΣM∗

. From the splitting S = S+ ⊕ S− we obtain
the Dirac-type operator D+ ∈ Diff 1(S

+, S−). We claim that the following diagram
commutes.

C∞(M,E+)
Φ //

d+d∗

��

C∞(M,S+)

D+

��
C∞(M,E−) Φ // C∞(M,S−)

Namely, for all ξ ∈ T ∗
xM , ϕ ∈ E+

x , ψ ∈ S+
x , x ∈M , we have

σ1(d+ d∗, ξ)ϕ = ξ ∧ ϕ− ξyϕ = ξ · ϕ,
σ1(D

+, ξ)ψ = ξ · ψ.
Therefore, D+◦Φ−Φ◦(d+d∗) is an operator of order 0. Now, the zero order terms of
both D+ and d+ d∗ at x ∈M are linear in the Christoffel symbols at x. By choosing
a local coordinate frame such that the Christoffel symbols at x vanish we see that
the two operators coincide.
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From the Atiyah-Singer index theorem with E = ΣM∗ we conclude that

ind(d+ d∗) = ind(DΣM∗
) =

∫

M
Â(TM) · ch(ΣM∗).

Before we can prove the Hirzebruch signature theorem we need the following explicit
formula.

Proposition 5.2.2. Let M be an even dimensional spin manifold. Then we have

ch(ΣM∗) = ch(ΣM) = Fp(TM) with f(z) := 2 cosh
(√z

2

)
.

Proof. Let (bi)
n
i=1 be a local orthonormal frame of TM on U ⊂M . This frame induces

a local section h of the orthonormal frame bundle P SO(M) on U which can be lifted to
a local section H of P Spin(M) on U . Let z(j1, . . . , jk), 1 ≤ j1 < . . . < jk ≤ m := n

2 ,
be the basis of Σn defined in Section 2.3. We abbreviate the basis vectors by vk, k =
1, . . . , 2n/2 =: N . Then ϕk := [H, vk], k = 1, . . . , N , is a local orthonormal frame of ΣM .
We denote by ϕ∗

k, k = 1, . . . , N , the induced orthonormal frame of ΣM∗. Moreover, we
denote by R, RΣ and R̃Σ the curvatures of the Levi-Civita connection on TM , of the
spinor connection on ΣM and of the induced connection on ΣM∗ respectively. Finally,
we denote by Ω, ΩΣ and Ω̃Σ the corresponding curvature 2-forms. By Lemma 2.4.13 we
have for k ∈ {1, . . . , N} and all X,Y ∈ TpM , p ∈ U :

N∑

j=1

(ΩΣ)jk(X,Y )ϕj = RΣ(X,Y )ϕk

= −1

4

n∑

ℓ=1

R(X,Y )bℓ · bℓ · ϕk = −1

4

n∑

ℓ,r=1

Ωrℓ(X,Y )br · bℓ · ϕk.

Taking the scalar product with ϕj yields for all X,Y

(ΩΣ)jk(X,Y ) = −1

4

n∑

ℓ,r=1

Ωrℓ(X,Y )〈br · bℓ · ϕk, ϕj〉.

We may assume that Ω is a block diagonal matrix with blocks
(
0 −θk
θk 0

)
, k = 1, . . . ,

n

2
=: m

on the diagonal. It follows that

(ΩΣ)jk =
1

2

m∑

ℓ=1

θℓ〈b2ℓ−1 · b2ℓ · ϕk, ϕj〉.
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For every basis vector z(J) := z(j1, . . . , jk) of Σn we write

MJ := {l ∈ {1, . . . ,m} | e2l, e2l−1 are not contained in zj1 · . . . · zjk}.

By the computation in Remark 2.3.7 it follows that ΩΣ is a diagonal matrix and that
the entry on the diagonal corresponding to z(J) is given by

(ΩΣ)JJ =
∑

ℓ/∈MJ

iθℓ
2

−
∑

ℓ∈MJ

iθℓ
2

=

m∑

ℓ=1

iθℓ
2

−
∑

ℓ∈MJ

iθℓ =: λJ

where J runs through all multi-indices (1 ≤ j1 < . . . < jk ≤ m). Writing xJ := λJ
2πi for

all J we get by equation (4.10) that c(ΣM) =
∏
J(1 + xJ). It follows that

log c(ΣM) =
∑

J

log(1 + xJ) =
∑

J

∞∑

k=1

(−1)k+1

k
xkJ

and thus for any formal power series g(x) =
∑∞

k=0 gkx
k:

Λg log c(ΣM) =
∑

J

∞∑

k=1

(−1)k+1kgk
(−1)k+1

k
xkJ =

∑

J

∞∑

k=1

gkx
k
J =

∑

J

(g(xJ )− g0)

and therefore gc(ΣM) =
∑

J g(xJ). With g(x) = ex we therefore get

gc(ΣM) =
∑

J

exp
( m∑

ℓ=1

θℓ
4π

−
∑

ℓ∈MJ

θℓ
2π

)

=
m∏

k=1

exp
( θk
4π

)∑

J

∏

ℓ∈MJ

exp
(
− θℓ

2π

)

=
m∏

k=1

exp
( θk
4π

) N∑

ℓ=0

σℓ

(
exp

(
− θ1

2π

)
, . . . , exp

(
− θm

2π

))

=
m∏

k=1

exp
( θk
4π

) m∏

a=1

(
1 + exp

(
− θa

2π

))

=

m∏

k=1

(
exp

( θk
4π

)
+ exp

(
− θk

4π

))

=

m∏

k=1

2 cosh
( θk
4π

)
.

For any complex number a ∈ C we have

cosh

(
0 −a
a 0

)
=

∞∑

k=0

1

(2k)!

(
0 −a
a 0

)2k

=

∞∑

k=0

1

(2k)!

(
(−a2)k

0 (−a2)k
)

=

(
cosh(ia) 0

0 cosh(ia)

)
.
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It follows that cosh( Ω
4πi ) is a block diagonal matrix with blocks

(
cosh( θk4π ) 0

0 cosh( θk4π )

)

on the diagonal. With f(x) = 2 cosh(
√
x
2 ) we get by Lemma 5.1.17:

Fp(TM) = det
(
2 cosh

( Ω

4πi

))1/2
=

m∏

k=1

2 cosh
( θk
4π

)
= gc(ΣM).

This shows the assertion for ΣM . From the definition of the induced connection on ΣM∗

one easily sees that
(R̃Σ(X,Y )ϕ∗

j )(ϕi) = −ϕ∗
j (R

Σ(X,Y )ϕi)

for all X,Y and all i, j. It follows that

(Ω̃Σ)kj (X,Y ) =
1

4

n∑

ℓ,r=1

Ωrℓ(X,Y )〈br · bℓ · ϕk, ϕj〉,

i.e., Ω̃Σ = −(ΩΣ)⊤ = −ΩΣ. Now, the set of all diagonal entries λJ of ΩΣ is symmetric
around 0. Thus the set of all xJ is symmetric around 0 and we get gc(ΣM) = gc(ΣM

∗).

Proof of the Hirzebruch signature theorem. First we assume that M is a spin manifold.
We must compute the n-form part of Â(TM) · ch(ΣM∗) = Fp(TM) where

f(x) =

√
x/2

sinh(
√
x/2)

· 2 cosh(√x/2) =
√
x

tanh(
√
x/2)

.

By Lemma 5.1.17 we have Fp(TM) = det f̃( Ω
2πi ) where f̃(x) = ( x

tanh(x/2))
1/2. Then with

ℓ(x) :=

√
x

tanh
√
x

and ℓ̃(x) :=
( x

tanh(x)

)1/2

we have f̃(x) =
√
2ℓ̃(x2 ). The multiplicative classes for f and ℓ do not coincide. However,

if we denote by (·)k the k-form part we get
(
det f̃

( Ω

2πi

))
k
= 2

n
2

(
det ℓ̃

(1
2
· Ω

2πi

))
k
= 2

n−k
2

(
det ℓ̃

( Ω

2πi

))
k
.

Therefore, from Lemma 5.1.17 we conclude that the n-form parts of Fp(TM) and L(TM)
and thus their integrals coincide if M is spinnable.
Assume now that M is not necessarily spinnable. Fix a point p ∈ M and choose an
open neighborhood U of p in M such that U is spinnable. We know from Equation (5.2)
that ind(d + d∗) = (4π)−

n
2

∫
M StrΦn/2(x, x) dx. The computation for the case of a spin

manifold shows that the integrand on U is pointwise given by the n-form part of L(TM).
But since Str(Φn/2) and the n-form part of L(TM) are local quantities, we conclude that
they coincide on all of M .





6. Semi-Riemannian Spin Geometry

6.1. The Spin Group

Let r, s ∈ N0, let n := r + s and let

ε1 = . . . = εr = −1, εr+1 = . . . = εn = 1.

Let Rn be equipped with the symmetric bilinear form 〈·, ·〉r,s defined by

〈x, y〉r,s :=
n∑

i=1

εixiyi.

The pair (r, s) is called the signature of the symmetric bilinear form 〈·, ·〉r,s.

Definition 6.1.1. We define the semi-orthogonal group O(r, s) by

O(r, s) := {A ∈ Mat(n× n,R) | 〈Ax,Ay〉r,s = 〈x, y〉r,s for all x, y ∈ R
n}.

Remark 6.1.2. We have A ∈ O(r, s) if and only if A⊤JA = J where

J =

(
−Ir 0
0 Is

)

and Ir, Is denote the identity matrices in dimension r and s respectively. In particular,
if A ∈ O(r, s) then we have det(A) ∈ {±1}. Thus O(r, s) is a subgroup of GL(n,R).

Definition 6.1.3. The subgroup

SO(r, s) := {A ∈ O(r, s) | det(A) = 1}

of O(r, s) is called the special semi-orthogonal group.

Remark 6.1.4. If r = 0 or s = 0 then SO(r, s) is connected. If r > 0 and s > 0 then
SO(r, s) has two connected components (see e. g. [9], Lemma 9.6).
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Notation 6.1.5. In the following, we denote the Clifford algebra of Rn with the inner
product 〈·, ·〉r,s by Clr,s := Cl(Rn, 〈·, ·〉r,s).

Remark 6.1.6. Upon identifying R
n with ı(Rn) ⊂ Clr,s, for every v ∈ R

n with
〈v, v〉r,s 6= 0 we have v2 = −〈v, v〉r,s · 1 and thus

− v

〈v, v〉r,s
· v = v ·

(
− v

〈v, v〉r,s

)
= 1.

Thus, {v ∈ R
n | 〈v, v〉r,s 6= 0} is contained in the subgroup of (multiplicatively) invertible

elements of Clr,s.

Definition 6.1.7. We define the Pin group Pin(r, s) by

Pin(r, s) :=
{
v1 · . . . · vm ∈ Clr,s

∣∣ vj ∈ R
n, 〈vj , vj〉r,s ∈ {±1}, m ∈ N0

}
.

Remark 6.1.8. The subset Pin(r, s) ⊂ Clr,s is a group with respect to the multiplica-
tion in Clr,s. The inverse element to v1 · . . . · vm is given by

(v1 · . . . · vm)−1 =

(
− vm
〈vm, vm〉r,s

)
· . . . ·

(
− v1
〈v1, v1〉r,s

)
∈ Pin(r, s).

Definition 6.1.9. We define the Spin group Spin(r, s) by

Spin(r, s) := Pin(r, s) ∩ Cl0r,s

=
{
v1 · . . . · vm ∈ Clr,s

∣∣ vj ∈ R
n, 〈vj , vj〉r,s ∈ {±1}, m ∈ 2N0

}
.

Remark 6.1.10. By the argument from Remark 6.1.8, Spin(r, s) is a subgroup of
Pin(r, s).

For a fixed v ∈ R
n with 〈v, v〉r,s ∈ {±1} and any x ∈ R

n, we have:

v · x · v−1 = − 1

〈v, v〉r,s
v · x · v

= − 1

〈v, v〉r,s
(−x · v − 2〈x, v〉r,s 1) · v

= − 1

〈v, v〉r,s
(−x · v · v − 2〈x, v〉r,sv)
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= −
(
x− 2

〈x, v〉r,s
〈v, v〉r,s

v
)

The map x 7→
(
x − 2

〈x,v〉r,s
〈v,v〉r,s v

)
is the reflection about the hyperplane v⊥ perpendicular

to v. In particular, (x 7→ v · x · v−1) ∈ O(r, s). For any a := v1 · . . . · vm ∈ Spin(r, s), the
map

x 7→ a · x · a−1 = v1 · . . . · vm · x · v−1
m · . . . · v−1

1

consists of an even number of hyperplane reflections and is thus contained in SO(r, s).
We have thus defined a group homomorphism ̺ : Spin(r, s) → SO(r, s) by

̺(a)x := a · x · a−1. (6.1)

Example 6.1.11. Let n = 2 and r = s = 1. We have

SO(1, 1) =
{(cosh(t) sinh(t)

sinh(t) cosh(t)

) ∣∣∣ t ∈ R

}
∪
{(− cosh(t) − sinh(t)

− sinh(t) − cosh(t)

) ∣∣∣ t ∈ R

}

∼= R× Z2

and 〈e1, e1〉r,s = −1, 〈e2, e2〉r,s = 1. Every element a ∈ Spin(1, 1) can be written as
a = v1 · . . . · vm where m ∈ 2N0 and there exist t1, . . . , tm ∈ R such that for all j

vj = cosh(tj)e1 + sinh(tj)e2, or vj = sinh(tj)e1 + cosh(tj)e2.

We compute

(cosh(ϑ)e1 + sinh(ϑ)e2) · (cosh(ϕ)e1 + sinh(ϕ)e2) = cosh(ϕ− ϑ) + sinh(ϕ− ϑ)e1 · e2,
(sinh(ϑ)e1 + cosh(ϑ)e2) · (sinh(ϕ)e1 + cosh(ϕ)e2) = − cosh(ϕ− ϑ)− sinh(ϕ − ϑ)e1 · e2,
(cosh(ϑ)e1 + sinh(ϑ)e2) · (sinh(ϕ)e1 + cosh(ϕ)e2) = sinh(ϕ− ϑ) + cosh(ϕ− ϑ)e1 · e2,
(sinh(ϑ)e1 + cosh(ϑ)e2) · (cosh(ϕ)e1 + sinh(ϕ)e2) = − sinh(ϕ− ϑ)− cosh(ϕ − ϑ)e1 · e2.

and

(cosh(α) + sinh(α)e1 · e2) · (cosh(β) + sinh(β)e1 · e2) = cosh(α+ β) + sinh(α+ β)e1 · e2,
(cosh(α) + sinh(α)e1 · e2) · (sinh(β) + cosh(β)e1 · e2) = sinh(α+ β) + cosh(α+ β)e1 · e2,
(sinh(α) + cosh(α)e1 · e2) · (sinh(β) + cosh(β)e1 · e2) = cosh(α+ β) + sinh(α+ β)e1 · e2.

We conclude that

Spin(1, 1) = {±(cosh(t) + sinh(t)e1 · e2) | t ∈ R} ∪ {±(sinh(t) + cosh(t)e1 · e2) | t ∈ R}
∼= R× Z2 × Z2.
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For the group homomorphism ̺: Spin(1, 1) → SO(1, 1) we get for j = 1, 2:

̺(cosh(t) + sinh(t)e1 · e2)(ej)
= (cosh(t) + sinh(t)e1 · e2) · ej · (cosh(t)− sinh(t)e1 · e2)
= cosh2(t)ej − sinh2(t)e1 · e2 · ej · e1 · e2 + sinh(t) cosh(t)(e1 · e2 · ej − ej · e1 · e2)
= (cosh2(t) + sinh2(t))ej + 2 sinh(t) cosh(t)e1 · e2 · ej

=

{
cosh(2t)e1 − sinh(2t)e2 if j = 1,

cosh(2t)e2 − sinh(2t)e1 if j = 2.

Thus we have

̺(±(cosh(t) + sinh(t)e1 · e2)) =
(
cosh(−2t) sinh(−2t)
sinh(−2t) cosh(−2t)

)
.

Similarly, one computes

̺(±(sinh(t) + cosh(t)e1 · e2)) = −
(
cosh(−2t) sinh(−2t)
sinh(−2t) cosh(−2t)

)
.

Proposition 6.1.12. For any r, s ∈ N0, the sequence

1 → Z2 → Spin(r, s)
̺→ SO(r, s) → 1

is exact.

Proof. For r = 0 the assertion follows from Proposition 2.2.10. Thus assume r ≥ 1.

a) The map ̺ : Spin(r, s) → SO(r, s) is surjective:

We prove by induction on n that every element of O(r, s) is a composition of reflections
at hyperplanes v⊥ where v ∈ R

n and 〈v, v〉r,s ∈ {±1}. Obviously, the claim is true
for n = 1. Now, let A ∈ O(r, s) with n = r + s ≥ 2 and assume that the claim holds
for n− 1. We write x := Ae1. Then we have 〈x, x〉r,s = 〈e1, e1〉r,s = −1 and thus

〈x− e1, x− e1〉r,s = −2− 2〈x, e1〉r,s, 〈x+ e1, x+ e1〉r,s = −2 + 2〈x, e1〉r,s
and therefore not both of these numbers are zero. Denote the hyperplane reflection
at v⊥ by R(v) and define

A1 :=




R( x−e1

|〈x−e1,x−e1〉r,s|1/2 ) if 〈x− e1, x− e1〉r,s 6= 0

R(e1) ◦R( x+e1
|〈x+e1,x+e1〉r,s|1/2 ) otherwise.

Then A1 is a composition of hyperplane reflections and A1x = e1. Thus we get

A1 ◦ A =

(
1 0
0 B

)
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with B ∈ O(r− 1, s). By the induction hypothesis B is a composition of hyperplane
reflections and therefore A is as well.

Thus, any given A ∈ SO(r, s) is the product of an even number of hyperplane re-
flections. Let the i-th hyperplane be the orthogonal complement to vi ∈ R

n with
〈vi, vi〉r,s ∈ {±1}. Then we have v1 · . . . · v2k ∈ Spin(r, s) and ̺(v1 · . . . · v2k) = A.

b) It remains to show that ker(̺) = Z2 = {1,−1}. Obviously, we have {1,−1} ⊂ ker(̺).

Conversely, let a ∈ ker(̺). Then for all x ∈ R
n, we have:

x = ̺(a)(x) = a · x · a−1.

Equivalently, we have x · a = a · x for all x ∈ R
n and in particular, x · a = a · x for

all x ∈ Clr,s. Hence, a is contained in the center Z(Clr,s) of Clr,s. Moreover, we have
a ∈ Spin(r, s) ⊂ Cl0r,s. Now for any r, s ∈ N0 we have

Z(Clr,s) ∩ Cl0r,s = R · 1, (exercise !),

hence a = α 1 for some α ∈ R. We finish the proof using the following lemma.

Lemma 6.1.13. We have Spin(r, s) ∩ R · 1 = {−1, 1}.

Proof. Let Cloppr,s be the additive group Clr,s equipped with the opposite multiplication
a⋆b := b ·a. Then Cloppr,s is a unital algebra. The map j: Rn → Cloppr,s defined by j(v) := v
satisfies the Clifford relation and thus by the universal property of Clr,s there is a unique
algebra homomorphism T : Clr,s → Cloppr,s such that T ◦ ı = j.
Let a = α · 1 ∈ Spin(r, s). Then we can write a = v1 · . . . · v2k with vj ∈ R

n, 〈vj , vj〉r,s ∈
{±1} and k ∈ N0. We get T (a) = α · 1 and T (v1 · . . . · v2k) = v2k · . . . · v1, since T is an
algebra homomorphism. It follows that

α2 · 1 = T (a) ⋆ a = a · v2k · . . . · v1 = v1 · . . . · v2k · v2k︸ ︷︷ ︸
=±1

· . . . · v1 = ±1

and thus α ∈ {−1, 1}.

Remark 6.1.14. We have seen that every v ∈ R
n with 〈v, v〉r,s 6= 0 is a multiplicatively

invertible element in Clr,s. Let Γr,s ⊂ Clr,s be the group generated by all such elements v
with multiplication given by Clifford multiplication. It is easy to see that multiplication
and inversion are smooth maps and thus Γr,s is a Lie group. Moreover, the map

N : Γr,s ∩ Cl0r,s → R, v1 · . . . · v2k 7→ 〈v1, v1〉r,s . . . 〈v2k, v2k〉r,s
is smooth and we have Spin(r, s) = N−1({−1, 1}). In particular, Spin(r, s) is a closed
subgroup of Γr,s and thus a Lie group. By Proposition 6.1.12 the map ̺: Spin(r, s) →
SO(r, s) is a 2-fold covering.
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Proposition 6.1.15. Let r > 0 and s > 0 and let r ≥ 2 or s ≥ 2. Then the Spin
group Spin(r, s) has two connected components.

Proof. a) From the exact sequence in Proposition 6.1.12 we get the long exact homotopy
sequence (base point = 1):

→ π1(Z2)︸ ︷︷ ︸
={1}

→ π1(Spin(r, s)) → π1(SO(r, s)) → π0(Z2)︸ ︷︷ ︸
=Z2

→ π0(Spin(r, s)) → π0(SO(r, s))︸ ︷︷ ︸
={−1,1}

.

Claim: The map π0(Z2)
ψ→ π0(Spin(r, s)) is trivial, that is, the image of ψ is {1}.

In fact, 1 and −1 can be connected by a continuous path in Spin(r, s): Since r ≥ 2
or s ≥ 2, we have two orthonormal vectors ei, ej ∈ R

n with 〈ei, ei〉r,s = 〈ej , ej〉r,s =:
εi ∈ {±1} and we can define the smooth curve c : R → Spin(r, s),

t 7→ εi (cos(t) ei + sin(t) ej) · ei,

satisfying c(0) = −1 and c(π) = 1.

b) By exactness at π0(Spin(r, s)) and the claim, the map

π0(Spin(r, s)) → π0(SO(r, s)) = {−1, 1}

is injective. On the other hand, Spin(r, s) has at least two connected components,
since ̺: Spin(r, s) → SO(r, s) is continuous and surjective and since SO(r, s) has two
connected components. Hence, π0(Spin(r, s)) = {−1, 1}.

Definition 6.1.16. We denote by Spin0(r, s) ⊂ Spin(r, s) the connected component
of the neutral element in Spin(r, s).

Proposition 6.1.17. 1. Let r > 0 and s > 0 and let r ≥ 2 or s ≥ 2. Then the
sequence

1 → Z2 → Spin0(r, s)
̺0→ SO0(r, s) → 1

is exact, where ̺0 = ̺|Spin0(r,s).

2. For r = 1 we have π1(Spin0(1, 2)) = Z and π1(Spin0(1, s)) = {0} if s ≥ 3.

Proof. a) The proof of Proposition 6.1.15 shows that −1 ∈ Spin0(r, s). Thus we have
ker(̺0) = {−1, 1}. Let A ∈ SO0(r, s). Then there is a continuous path c: [0, 1] →
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SO0(r, s) such that c(0) = A and c(1) = 1. Let a ∈ Spin(r, s) such that ̺(a) = A.
From the lifting property of covering spaces it follows that there is a continuous path
in Spin(r, s) from a to 1 or −1. Thus we have a ∈ Spin0(r, s) and ̺0 is surjective.

b) Assume now that r = 1. The group SO0(1, s) acts transitively on the hyperbolic
space

Hs = {x ∈ R
s+1 | 〈x, x〉1,s = −1, x1 > 0}

and the isotropy group of the point (1, 0, . . . , 0) ∈ Hs is given by

{(1 0
0 B

) ∣∣∣B ∈ SO(s)
}
∼= SO(s).

Since all homotopy groups of Hs are trivial, the long exact homotopy sequence for
the fiber bundle SO(s) → SO0(1, s) → Hs then yields isomorphisms π1(SO0(1, s)) ∼=
π1(SO(s)) for all s ≥ 1. We have computed the groups π1(SO(s)) in the proof of
Proposition 2.2.13.

c) Consider the long exact homotopy sequence in part a) of the proof of Proposition
6.1.15. By exactness at π0(Z2) and the claim in part a) of this proof, the map χ:
π1(SO(r, s)) → π0(Z2) is surjective.
Let s = 2. We have π1(SO0(1, 2)) ∼= π1(SO(2)) ∼= Z and thus χ is the projection
Z → Z2. Since π1(Spin(1, 2)) → π1(SO(1, 2)) is injective we have π1(Spin0(1, 2))

∼= Z.
Let s ≥ 3. We have π1(SO0(1, s)) ∼= π1(SO(s)) ∼= Z2. It follows that χ is also injective.
Therefore the image of the map π1(Spin(1, s)) → π1(SO(1, s)) is equal to {1}. By
exactness of the sequence at π1(Spin(1, s)) this map is injective. Altogether we get
that π1(Spin0(1, s)) = {1}.

Remark 6.1.18. Several authors define the Spin group for the signature (r, s) as the
group which we denote by Spin0(r, s).

The Lie algebra of SO(r, s) is given by

so(r, s) =
{
A ∈ Mat(n× n;R) |A⊤J + JA = 0

}

and dimSO(r, s) = dim so(r, s) = 1
2n(n− 1).

For the Lie algebra of the Spin group, we have dim spin(r, s) = dimSpin(r, s) =
dimSO(r, s) = 1

2n(n− 1). We want to identify the Lie algebra spin(r, s) of Spin(r, s) as
a vector subspace of Clr,s:

For i 6= j consider the smooth curve c : R → Spin(r, s), defined by

t 7→
{
(εi cos(t)ei + sin(t)ej) · (−ei) if εi = εj,

(εi cosh(t)ei + sinh(t)ej) · (−ei) if εi = −εj.
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Then c(0) = εiei · (−ei) = 1 and ċ(0) = ej · (−ei) = ei · ej . We thus have
ei · ej ∈ T1Spin(r, s) ∼= spin(r, s) for all i 6= j.
The products {ei · ej}, 1 ≤ i < j ≤ n are linearly independent and there are 1

2n(n − 1)
of them. Since dim(spin(r, s)) = 1

2n(n − 1), we conclude that {ei · ej}i<j is a basis of
spin(r, s).

We compute the Lie algebra homomorphism ̺∗ : spin(r, s) → so(r, s): Using the curve c
defined above we get

̺∗(ei · ej)(ek) =
d

dt

∣∣
t=0

̺(c(t))(ek) =
d

dt

∣∣
t=0

c(t) · ek · c(t)−1

= ċ(0) · ek − ek · ċ(0)
= ei · ej · ek − ek · ei · ej

=





0 for k /∈ {i, j}
2εiej for k = i

−2εjei for k = j.

We thus have for i < j

̺∗(ei · ej) =




...
...

. . . . . . −2εj . . .
...

...
. . . 2εi . . . . . . . . .

...
...



.

6.2. Spinors

Let Clr,s be the Clifford algebra of (Rn, 〈·, ·〉r,s) and let Clr,s := Clr,s ⊗R C be its com-
plexification.

The even dimensional case

In the following, let n = 2m. Let e1, . . . , e2m be the standard basis of Rn. For j =
1, . . . ,m define zj , z̄j ∈ Clr,s by

zj :=

{
1
2 (e2j−1 − i e2j) if ε2j−1 = ε2j
1
2 (e2j−1 − e2j) if ε2j−1 = −ε2j

z̄j :=

{
1
2 (e2j−1 + i e2j) if ε2j−1 = ε2j
1
2 (e2j−1 + e2j) if ε2j−1 = −ε2j

Then products of the form

zj1 · . . . · zjk · z̄i1 · . . . · z̄il , k, l = 0, . . . ,m

1 ≤ j1 < . . . < jk ≤ m, 1 ≤ i1 < . . . < il ≤ m,
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form a vector space basis of Clr,s. Put

z(j1, . . . , jk) := zj1 · . . . · zjk · z̄1 · . . . · z̄m.
Then

Σr,s := span{z(j1, . . . , jk) | k = 0, . . . ,m, 1 ≤ j1 < . . . < jk ≤ m} ⊆ Clr,s

is a complex vector subspace of Clr,s of dimension 2m. We call Σr,s the spinor space
in signature (r, s). Elements of Σr,s are called spinors.

For later purposes we want to compute e2l · z(j1, . . . , jk) and e2l−1 · z(j1, . . . , jk). We
have to distinguish two cases: e2l and e2l−1 can be contained in zj1 · . . . · zjk or not.

1) Let e2l and e2l−1 not be contained in zj1 · . . . · zjk .
e2l · z(j1, . . . , jk) = e2l · zj1 · . . . · zjk · z̄1 · . . . · z̄m

= (−1)k+(l−1)zj1 · . . . · zjk · z̄1 · . . . · z̄l−1 · e2l · z̄l · z̄l+1 · . . . · · · z̄m.
(6.2)

Case 1a) Assume that ε2l = ε2l−1. Then we have

e2l · z̄l =
1

2
e2l · (e2l−1 + i e2l)

=
1

2
(e2l · e2l−1 − iε2l)

=
1

2
(−e2l−1 · e2l + i e2l−1 · e2l−1)

= i e2l−1 ·
1

2
(e2l−1 + i e2l)

= i e2l−1 · z̄l,

and inserting this into equation (6.2) we get

e2l · z(j1, . . . , jk) = (−1)k+l−1 i zj1 · . . . · zjk · z̄1 · . . . · z̄l−1 · e2l−1 · z̄l · z̄l+1 · . . . · z̄m
= (−1)k+l−1 i (−1)k+l−1 e2l−1 · zj1 · . . . · zjk · z̄1 · . . . · z̄m
= i e2l−1 · z(j1, . . . , jk). (6.3)

Let ν such that jν < l < jν+1. Then we have:

e2l · z(j1, . . . , jk) =
1

2
e2l · z(j1, . . . , jk) +

1

2
e2l · z(j1, . . . , jk)

(6.3)
=

1

2
e2l · z(j1, . . . , jk) +

i

2
e2l−1 · z(j1, . . . , jk)

= i
1

2
(e2l−1 − i e2l)

︸ ︷︷ ︸
= zl

·z(j1, . . . , jk)

= i (−1)ν z(j1, . . . , jν , l, jν+1, . . . , jk). (6.4)
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Moreover, it follows from equations (6.3) and (6.4) that

e2l−1 · z(j1, . . . , jk)
(6.3)
= −i e2l · z(j1, . . . , jk)

(6.4)
= (−1)ν z(j1, . . . , jν , l, jν+1, . . . , jk). (6.5)

Case 1b) Assume that ε2l = −ε2l−1. Then we have

e2l · z̄l =
1

2
e2l · (e2l−1 + e2l)

=
1

2
(e2l · e2l−1 − ε2l)

=
1

2
(−e2l−1 · e2l − e2l−1 · e2l−1)

= −e2l−1 ·
1

2
(e2l + e2l−1)

= −e2l−1 · z̄l,

and inserting this into equation (6.2) we get

e2l · z(j1, . . . , jk) = (−1)k+l−1 (−1) zj1 · . . . · zjk · z̄1 · . . . · z̄l−1 · e2l−1 · z̄l · z̄l+1 · . . . · z̄m
= (−1)k+l−1 (−1) (−1)k+l−1 e2l−1 · zj1 · . . . · zjk · z̄1 · . . . · z̄m
= −e2l−1 · z(j1, . . . , jk). (6.6)

Let ν such that jν < l < jν+1. Then we have:

e2l · z(j1, . . . , jk) =
1

2
e2l · z(j1, . . . , jk) +

1

2
e2l · z(j1, . . . , jk)

(6.6)
= −1

2
e2l−1 · z(j1, . . . , jk) +

1

2
e2l · z(j1, . . . , jk)

= − 1

2
(e2l−1 − e2l)

︸ ︷︷ ︸
= zl

·z(j1, . . . , jk)

= (−1)ν+1 z(j1, . . . , jν , l, jν+1, . . . , jk). (6.7)

Moreover, it follows from equations (6.6) and (6.7) that

e2l−1 · z(j1, . . . , jk)
(6.6)
= −e2l · z(j1, . . . , jk)

(6.7)
= (−1)ν z(j1, . . . , jν , l, jν+1, . . . , jk). (6.8)

2) Now let e2l and e2l−1 be contained in zj1 · . . . · zjk .
Case 2a) Assume that ε2l = ε2l−1. Multiplying equation (6.4) with e2l, we obtain:

e2l · z(j1, . . . , jν , l, jν+1, . . . , jk) = i (−1)ν ε2l z(j1, . . . , jν , jν+1, . . . , jk). (6.9)
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Multiplying equation (6.5) with e2l−1 we obtain:

e2l−1 · z(j1, . . . , jν , l, jν+1, . . . , jk) = (−1)ν+1 ε2l z(j1, . . . , jν , jν+1, . . . , jk). (6.10)

Case 2b) Assume that ε2l = −ε2l−1. Multiplying equation (6.7) with e2l, we obtain:

e2l · z(j1, . . . , jν , l, jν+1, . . . , jk) = (−1)ν ε2l z(j1, . . . , jν , jν+1, . . . , jk). (6.11)

Multiplying equation (6.8) with e2l−1 we obtain:

e2l−1 · z(j1, . . . , jν , l, jν+1, . . . , jk) = (−1)ν ε2l z(j1, . . . , jν , jν+1, . . . , jk). (6.12)

Hence the spinor space Σr,s ⊂ Clr,s is invariant under Clifford multiplication by
vectors in R

n. Since the Clifford algebra Clr,s is generated by R
n, the same holds for

Clifford multiplication by elements of Clr,s, thus Σr,s ⊂ Clr,s is a left ideal. In particular,
Σr,s is invariant under multiplication by elements of Spin(r, s).
We define:

Σ+
r,s := span{z(j1, . . . , jk) | k = 0, . . . ,m even}

Σ−
r,s := span{z(j1, . . . , jk) | k = 0, . . . ,m odd}.

The spinor space Σr,s has the decomposition Σr,s = Σ+
r,s ⊕ Σ−

r,s. Elements in Σ±
r,s are

called spinors of positive and negative chirality respectively.
The equations (6.4), (6.5) and (6.7)–(6.12) show that the Clifford multiplication by
elements of Rn satisfies:

R
n · Σ+

r,s ⊂ Σ−
r,s, R

n · Σ−
r,s ⊂ Σ+

r,s.

However, Clifford multiplication by elements of Cl0r,s satisfies:

Cl0r,s · Σ+
r,s ⊂ Σ+

r,s, Cl0r,s · Σ−
r,s ⊂ Σ−

r,s.

Thus, the restriction to Spin(r, s) ⊂ Cl0r,s ⊂ Cl0r,s yields representations of Spin(r, s) on
Σ+
r,s and Σ−

r,s and thus on Σr,s.

Definition 6.2.1. The representation σr,s : Spin(r, s) → GL(Σr,s) is called the spinor
representation.
The representations σ±r,s : Spin(r, s) → GL(Σ±

r,s) are called the positive and negative
spinor representation, respectively.

Remark 6.2.2. The element

ω := e1 · . . . · en ∈ Clr,s ⊂ Clr,s



204 6. Semi-Riemannian Spin Geometry

is called the volume element. The equations (6.4), (6.5) and (6.7)–(6.12) show that
for ε2l = ε2l−1 we have

e2l−1·e2l·z(j1, . . . , jk) =
{
−i ε2l z(j1, . . . , jk) if e2l, e2l−1 are not contained in zj1 · . . . · zjk
i ε2l z(j1, . . . , jk) if e2l, e2l−1 are contained in zj1 · . . . · zjk

and for ε2l = −ε2l−1 we have

e2l−1·e2l·z(j1, . . . , jk) =
{
−ε2l z(j1, . . . , jk) if e2l, e2l−1 are not contained in zj1 · . . . · zjk
ε2l z(j1, . . . , jk) if e2l, e2l−1 are contained in zj1 · . . . · zjk .

Let r = 2a be even. Then we have ε2l = ε2l−1 for all l and thus

ω · z(j1, . . . , jk) = (−i)m−kik ε2ε4 . . . ε2m︸ ︷︷ ︸
=(−1)a

z(j1, . . . , jk) = (−1)m−k+a im z(j1, . . . , jk)

and therefore

im+rω · z(j1, . . . , jk) = im(−1)aω · z(j1, . . . , jk) = (−1)k z(j1, . . . , jk).

Let r = 2a− 1 be odd. If e2a, e2a−1 are not contained in zj1 · . . . · zjk then we have

ω · z(j1, . . . , jk) = (−i)m−k−1(−1)ik ε2ε4 . . . ε2m︸ ︷︷ ︸
=(−1)a−1

z(j1, . . . , jk)

= (−1)m−k+a−1 im−1z(j1, . . . , jk)

If e2a, e2a−1 are contained in zj1 · . . . · zjk then we have

ω · z(j1, . . . , jk) = (−i)m−kik−1 ε2ε4 . . . ε2m︸ ︷︷ ︸
=(−1)a−1

z(j1, . . . , jk)

= (−1)m−k+a−1im−1z(j1, . . . , jk).

Thus for r = 2a− 1 we get

im+rω · z(j1, . . . , jk) = i2m+r−1(−1)m−k+a−1z(j1, . . . , jk)

= (−1)kz(j1, . . . , jk).

Therefore, for all r we have

Σ±
r,s = {z ∈ Σr,s | im+rω · z = ±z}.

Example 6.2.3. Let r = s = 1, i.e., n = 2, m = 1. Then we have:

Σ+
1,1 = C · z() and Σ−

1,1 = C · z(1).

By the equations (6.8) and (6.12), we have

e1 · z( ) = z(1)

e1 · z(1) = z( ),

}
thus e1 acts on Σ1,1

∼= C
2 as

(
0 1
1 0

)
.
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By the equations (6.7) and (6.11), we have

e2 · z( ) = −z(1)
e2 · z(1) = z( ),

}
thus e2 acts on Σ1,1

∼= C
2 as

(
0 1
−1 0

)
.

Furthermore, from Example 6.1.11 we know that

Spin(1, 1) = {±(cosh(t) + sinh(t)e1 · e2) | t ∈ R} ∪ {±(sinh(t) + cosh(t)e1 · e2) | t ∈ R}.

The element e1 · e2 acts on Σ1,1
∼= C

2 as

(
0 1
1 0

)(
0 1
−1 0

)
=

(
−1 0
0 1

)

Therefore, the elements ±(cosh(t) + sinh(t)e1 · e2) and ±(sinh(t) + cosh(t)e1 · e2) act as

±
(
e−t 0
0 et

)
and ±

(
−e−t 0
0 et

)

respectively.

We equip Σr,s with the Hermitian scalar product 〈·, ·〉 for which the vectors z(j1, . . . , jk)
form an orthonormal basis of Σr,s. By our convention 〈·, ·〉 is complex linear in the first
argument and complex antilinear in the second argument. Moreover, Σr,s = Σ+

r,s ⊕ Σ−
r,s

is an orthogonal decomposition.

Lemma 6.2.4. Let n = r+ s be even. Then we have for any vector X ∈ R
n and any

spinors ϕ,ψ ∈ Σr,s:
〈X · ϕ,ψ〉 = −〈ϕ,R(X) · ψ〉,

where R: R
n → R

n, R(
∑n

j=1 xjej) =
∑n

j=1 εjxjej is a reflection.

Proof. It is sufficient to prove the statement for X = ej , ϕ = z(j1, . . . , jk), ψ =
z(i1, . . . , il).
We only consider the case ej = e2l and ϕ = z(j1, . . . , jν , l, jν+2, . . . , jk). The remaining
cases are treated analogously. By Equations (6.9), (6.11) we get

e2l · ϕ =

{
i(−1)νε2l z(j1, . . . , jν , jν+2, . . . , jk) if ε2l = ε2l−1

(−1)νε2l z(j1, . . . , jν , jν+2, . . . , jk) if ε2l = −ε2l−1

and thus

〈e2l · ϕ,ψ〉 =





i (−1)νε2l if ψ = z(j1, . . . , jν , jν+2, . . . , jk) and ε2l = ε2l−1

(−1)νε2l if ψ = z(j1, . . . , jν , jν+2, . . . , jk) and ε2l = −ε2l−1

0 otherwise
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If ψ = z(j1, . . . , jν , jν+2, . . . , jk) then by Equations (6.4), (6.7) we get

e2l · ψ =

{
i (−1)ν z(j1, . . . , jν , l, jν+2, . . . , jk) = i (−1)ν ϕ if ε2l = ε2l−1

(−1)ν+1 z(j1, . . . , jν , l, jν+2, . . . , jk) = (−1)ν+1 ϕ if ε2l = −ε2l−1

and thus

〈ϕ, e2l · ψ〉 =
{
i(−1)ν+1 = −ε2l〈e2l · ϕ,ψ〉 if ε2l = ε2l−1

(−1)ν+1 = −ε2l〈e2l · ϕ,ψ〉 if ε2l = −ε2l−1.

If ψ 6= z(j1, . . . , jν , jν+2, . . . , jk) then 〈e2l · ϕ,ψ〉 = 0 = −ε2l〈ϕ, e2l · ψ〉.

Remark 6.2.5. If X ∈ span{e1, . . . , er} then R(X) = −X. In this case we get for any
two spinors ϕ,ψ ∈ Σr,s:

〈X · ϕ,ψ〉 = 〈ϕ,X · ψ〉,
i.e., Clifford multiplication by X is symmetric. If in addition 〈X,X〉r,s = −1, we have

〈X · ϕ,X · ψ〉 = 〈ϕ,X ·X · ψ〉 = −〈X,X〉r,s〈ϕ,ψ〉 = 〈ϕ,ψ〉,

i.e., Clifford multiplication by X is an isometry.
If X ∈ span{er+1, . . . , en} then R(X) = X. In this case we get for any two spinors
ϕ,ψ ∈ Σr,s:

〈X · ϕ,ψ〉 = −〈ϕ,X · ψ〉
i.e., Clifford multiplication by X is skew-symmetric. If in addition 〈X,X〉r,s = 1, we
have

〈X · ϕ,X · ψ〉 = −〈ϕ,X ·X · ψ〉 = 〈X,X〉r,s〈ϕ,ψ〉 = 〈ϕ,ψ〉,
i.e., Clifford multiplication by X is an isometry.
However, if r > 0 and s > 0 then for X ∈ R

n with 〈X,X〉r,s ∈ {±1}, Clifford mul-
tiplication by X is in general neither symmetric nor skew-symmetric nor an isometry
for 〈·, ·〉. As an example one might take X = 1√

3
(e1 + 2e2) where 〈e1, e1〉r,s = −1 and

〈e2, e2〉r,s = 1. In particular, if r > 0 and s > 0 the spinor representation is not a unitary
representation for 〈·, ·〉.

Proposition 6.2.6. Let n = r + s = 2m be even. Then the map

Φ : Clr,s → End(Σr,s), Φ(X)(z) := X · z

is an isomorphism of complex algebras.
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Proof. Obviously Φ is a homomorphism of complex algebras. We prove that Φ is sur-
jective. Note first that for all ℓ ∈ {1, . . . ,m} we have

zℓ · z̄ℓ + z̄ℓ · zℓ = −ε2ℓ−1 (6.13)

z̄ℓ · z̄ℓ = 0 (6.14)

zℓ · zℓ = 0. (6.15)

Let i, ℓ ∈ {1, . . . ,m} and let z(j1, . . . , jk) ∈ Σr,s.
a) Assume ℓ ∈ {j1, . . . , jk}. From the equations (6.13) and (6.14) we get

Φ(z̄ℓ)(z(j1, . . . , jk)) = z̄ℓ · zj1 · . . . · zℓ · . . . · zjk · z̄1 · . . . · z̄ℓ · . . . · z̄m
= ±z̄ℓ · zℓ · z̄ℓ · zj1 · . . . · ẑℓ · . . . · zjk · z̄1 · . . . · ̂̄zℓ · . . . · z̄m
= ±(−ε2l−1 − zℓ · z̄ℓ) · z̄ℓ · zj1 · . . . · ẑℓ · . . . · zjk · z̄1 · . . . · ̂̄zℓ · . . . · z̄m
= ±z̄ℓ · zj1 · . . . · ẑℓ · . . . · zjk · z̄1 · . . . · ̂̄zℓ · . . . · z̄m + 0

= ±z(j1, . . . , ℓ̂, . . . , jk),

where the signs ± may change in every line.
b) Assume ℓ /∈ {j1, . . . , jk}. Then by the equation (6.14) we get

Φ(z̄ℓ)(z(j1, . . . , jk)) = z̄ℓ · zj1 · . . . · zjk · z̄1 · . . . · z̄ℓ · . . . · z̄m
= ±z̄ℓ · z̄ℓ · zj1 · . . . · zjk · z̄1 · . . . · ̂̄zℓ · . . . · z̄m
= 0.

c) Assume i ∈ {j1, . . . , jk}. By the equation (6.15) we get

Φ(zi)(z(j1, . . . , jk)) = zi · zj1 · . . . · zi · . . . · zjk · z̄1 · . . . · z̄m
= ±zi · zi · zj1 · . . . · ẑi · . . . · zjk · z̄1 · . . . · z̄m
= 0.

d) If i /∈ {j1, . . . , jk} then we get

Φ(zi)(z(j1, . . . , jk)) = zi · zj1 · . . . · zjk · z̄1 · . . . · z̄m = ±z(j1, . . . , i, . . . , jk).

For any multi-index I = {i1, . . . , is} we write

zI := zi1 · . . . · zis , z̄I := z̄i1 · . . . · z̄is , z(I) := z(i1, . . . , is)

and we denote by Ic the complementary multi-index of I. Let now I and K be multi-
indices. The calculations in a) - d) show that for all multi-indices J we have

z1 · . . . · zm · z(J) =
{
0 if J 6= ∅
±z1 · . . . · zm if J = ∅

and thus

z1 · . . . · zm · z̄I · z(J) =
{
0 if J 6= I

±z1 · . . . · zm if J = I
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and therefore

z̄Kc · z1 · . . . · zm · z̄I · z(J) =
{
0 if J 6= I

±z(K) if J = I

Thus every endomorphism of Σr,s can be obtained by composing endomorphisms of the
form Φ(z̄Kc · z1 · . . . · zm · z̄I). This shows that Φ is surjective. Since Clr,s and End(Σr,s)
have the same dimension we conclude that Φ is an isomorphism.

The odd dimensional case

In the following, let n = 2m − 1. To construct the spinor space Σr,s, we make the
following observation:

Lemma 6.2.7. Let n = r + s ∈ N. The linear map j : Rn → Cl0r,s+1,

X 7→ j(X) := X · en+1,

induces an algebra isomorphism Clr,s → Cl0r,s+1.

Remark 6.2.8. Lemma 6.2.7 also holds for Clr,s instead of Clr,s.

Proof. The proof is analogous to the proof of Lemma 2.3.12.

For n = r + s odd we define the spinor space Σr,s by:

Σr,s := Σ+
r,s+1.

In particular, we have dimΣr,s = 2⌊
n
2
⌋ for both even and odd n. The Clifford algebra Clr,s

acts on the spinor space Σr,s via the map α: For X ∈ Clr,s and φ ∈ Σr,s put

X • φ := α(X) · φ ∈ Σ+
r,s+1 = Σr,s.

The restriction of this action to Spin(r, s) ⊂ Clr,s ⊂ Clr,s defines the spinor repre-
sentation σr,s : Spin(r, s) → GL(Σr,s) in odd dimensions. We define a Hermitian
scalar product 〈·, ·〉 on Σr,s by restricting the Hermitian scalar product of Σr,s+1 to
Σr,s = Σ+

r,s+1.

Lemma 6.2.9. Let n = r + s be odd. Then we have for any vector X ∈ R
n and any

spinors ϕ,ψ ∈ Σr,s:
〈X • ϕ,ψ〉 = −〈ϕ,R(X) • ψ〉,

where R: R
n → R

n, R(
∑n

j=1 xjej) =
∑n

j=1 εjxjej is a reflection.
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Proof. We compute using Lemma 6.2.4:

〈X • ϕ,ψ〉 = 〈α(X) · ϕ,ψ〉
= 〈X · en+1 · ϕ,ψ〉
= −〈en+1 · ϕ,R(X) · ψ〉
= 〈ϕ, en+1 ·R(X) · ψ〉
= −〈ϕ,R(X) · en+1 · ψ〉
= −〈ϕ,α(R(X)) · ψ〉
= −〈ϕ,R(X) • ψ〉.

Remark 6.2.10. As in Remark 6.2.5 one sees that if r > 0 and s > 0 the spinor
representation in odd dimensions is not a unitary representation for 〈·, ·〉.

From now let n = 2m or n = 2m−1 be even or odd. We denote the Clifford multiplication
in both cases by ·. Assume that r > 0 and s > 0. Our aim is to define an inner product
on Σr,s for which the restriction of the spinor representation to Spin0(r, s) is unitary.
We proceed as in Chapter 1.5 of the book [3] by Helga Baum. We define β ∈ Clr,s by

β :=

{
e1 · . . . · er if r ≡ 0, 1 mod 4

ie1 · . . . · er if r ≡ 2, 3 mod 4.

Lemma 6.2.11. We have:

1. β · β = 1.

2. For all ϕ,ψ ∈ Σr,s we have 〈β · ϕ,ψ〉 = 〈ϕ, β · ψ〉.

Proof. 1. We compute

e1 · . . . · er · e1 · . . . · er = (−1)
r(r−1)

2 e21 · . . . · e2r

= (−1)
r(r−1)

2 =

{
1 r ≡ 0, 1 mod 4

−1 r ≡ 2, 3 mod 4

The assertion follows from the definition of β.

2. We have εj = −1 for j = 1, . . . , r and thus by Lemmas 6.2.4, 6.2.9:

〈e1 · . . . · er · ϕ,ψ〉 = 〈ϕ, er · . . . · e1 · ψ〉 = (−1)
r(r−1)

2 〈ϕ, e1 · . . . · er · ψ〉.
For r ≡ 0, 1 mod 4 the assertion follows immediately, for r ≡ 2, 3 mod 4 we use
that multiplication by i is skew-symmetric.
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Definition 6.2.12. Let r > 0 and s > 0. For ϕ,ψ ∈ Σr,s we define

(ϕ,ψ) := 〈β · ϕ,ψ〉.

We call (·, ·) the indefinite inner product on Σr,s.

Lemma 6.2.13. Let n = 2m or n = 2m − 1 and let r > 0 and s > 0. The following
holds:

1. (·, ·) is a non-degenerate sesquilinear form on Σr,s of signature (2⌊
n
2
⌋−1, 2⌊

n
2
⌋−1).

2. For all X ∈ R
n and all ϕ,ψ ∈ Σr,s we have (X · ϕ,ψ) = (−1)r−1(ϕ,X · ψ).

3. For all a ∈ Spin0(r, s) and all ϕ,ψ ∈ Σr,s we have (a · ϕ, a · ψ) = (ϕ,ψ).

4. For n = 2m and r = 1 the spaces Σ±
1,2m−1 are isotropic with respect to (·, ·).

Proof. 1. By Lemma 6.2.11 we have for all ϕ,ψ ∈ Σr,s:

(ϕ,ψ) = 〈β · ϕ,ψ〉 = 〈ϕ, β · ψ〉 = 〈β · ψ,ϕ〉 = (ψ,ϕ)

and thus (·, ·) is sesquilinear.
By Lemma 6.2.11 we have β · β = 1 and thus Σr,s = E(β, 1) ⊕ E(β,−1) where
E(β,±1) denote the eigenspaces of β for the eigenvalues ±1.
If r is even then we have β · e1 = −e1 · β and thus e1· is an isomorphism
E(β, 1) → E(β,−1). If r is odd then we have β · er+1 = −er+1 · β and thus
er+1· is an isomorphism E(β, 1) → E(β,−1). In both cases we get dimE(β, 1) =
dimE(β,−1) = 2⌊

n
2
⌋−1.

2. Let X ∈ R
n, X = X1 + X2 where X1 ∈ span{e1, . . . , er} and X2 ∈

span{er+1, . . . , en}. Using the Lemmas 6.2.4 and 6.2.9 we get for all ϕ,ψ ∈ Σr,s:

(X · ϕ,ψ) = 〈β ·X · ϕ,ψ〉
= 〈β ·X1 · ϕ,ψ〉 + 〈β ·X2 · ϕ,ψ〉
= (−1)r−1〈X1 · β · ϕ,ψ〉 + (−1)r〈X2 · β · ϕ,ψ〉
= (−1)r−1〈β · ϕ,X1 · ψ〉+ (−1)r−1〈β · ϕ,X2 · ψ〉
= (−1)r−1(ϕ,X · ψ).

3. Let ϕ,ψ ∈ Σr,s. For x ∈ R
n, 〈x, x〉r,s = ±1, we get by part 2

(x · ϕ, x · ψ) = (−1)r−1(ϕ, x · x · ψ) = (−1)r〈x, x〉r,s(ϕ,ψ).
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and thus for a = x1 · . . . · x2k ∈ Spin(r, s), xj ∈ R
n, 〈xj , xj〉r,s = ±1, j = 1, . . . , 2k,

we get:
(a · ϕ, a · ψ) = 〈x1, x1〉r,s . . . 〈x2k, x2k〉r,s(ϕ,ψ) = ±(ϕ,ψ).

This equation holds for all a ∈ Spin(r, s). Now fix a ∈ Spin0(r, s). Then there is a
continuous path c: [0, 1] → Spin0(r, s) with c(0) = 1 and c(1) = a. The function

t 7→ (c(t) · ϕ, c(t) · ψ) = ±(ϕ,ψ)

is continuous and thus constant. In particular (a · ϕ, a · ψ) = (ϕ,ψ).

4. For ϕ ∈ Σ±
1,2m−1 we have im+1ω · ϕ = ±ϕ and thus by 2. with r = 1:

(ϕ,ϕ) = (im+1ω · ϕ, im+1ω · ϕ) = (e1 · . . . · en · ϕ, e1 · . . . · en · ϕ)
= (ϕ, en · . . . · e1 · e1 · . . . · en︸ ︷︷ ︸

=(−1)n−1=−1

·ϕ) = −(ϕ,ϕ).

Remark 6.2.14. Let r > 0 and s > 0. Then the indefinite inner product (·, ·) on Σr,s
has the best invariance property in the following sense (see [3], p. 69):

1. There is no inner product on Σr,s which is invariant under Spin(r, s).

2. There is no positive definite inner product on Σr,s which is invariant under
Spin0(r, s).

Proof. 1. Assume that (·, ·) is such an inner product. Let c: (−ε, ε) → Spin(r, s) be
a smooth curve with c(0) = 1 and ċ(0) = ei · ej where εi = −εj . Then for all t and
all ϕ,ψ ∈ Σr,s we have by assumption (c(t) · ϕ, c(t) · ψ) = (ϕ,ψ) and thus

0 =
d

dt

∣∣
t=0

(c(t) · ϕ, c(t) · ψ) = (ei · ej · ϕ,ψ) + (ϕ, ei · ej · ψ). (6.16)

Let ϕ,ψ ∈ Σr,s with (ϕ,ψ) 6= 0. Since ei · ej ∈ Spin(r, s) we get by the assumption
and by equation (6.16)

(ϕ,ψ) = (ei · ej · ϕ, ei · ej · ψ) = −(ϕ, ei · ej · ei · ej · ψ) = εiεj(ϕ,ψ) = −(ϕ,ψ)

which is a contradiction.

2. Assume that (·, ·) is such an inner product. Choose i, j with εi = −εj . Then we
have for all ϕ ∈ Σr,s by equation (6.16)

0 ≤ (ei · ej · ϕ, ei · ej · ϕ) = −(ϕ, ei · ej · ei · ej · ϕ) = εiεj(ϕ,ϕ) = −(ϕ,ϕ)

which is a contradiction.
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6.3. Spin structures

Let M be an oriented semi-Riemannian manifold of signature (r, s) and of dimension
n = r + s. For x ∈M put

P SO
x (M) :=

{
h : (Rn, 〈·, ·〉r,s) → TxM |h orientation preserving isometry

}
.

Each element h ∈ P SO
x (M) induces an oriented semi-orthonormal basis h(e1), . . . , h(en)

of TxM . Conversely, for any oriented semi-orthonormal basis b1, . . . , bn of TxM , there is
a unique h ∈ P SO

x (M) such that b1 = h(e1), . . . , bn = h(en). The space

P SO(M) :=
⊔

x∈M
P SO
x (M)

is a SO(r, s)-principal bundle over M and is called the oriented semi-orthonormal frame
bundle of M .
A spin structure on M is a Spin(r, s)-principal bundle over M with properties analo-
gous to Definition 2.4.3. An oriented semi-Riemannian manifold M is called spinnable
if there exists a spin structure on M . A semi-Riemannian spin manifold is an
oriented spinnable semi-Riemannian manifold with a fixed spin structure. A detailed
discussion of existence and uniqueness of spin structures on oriented semi-Riemannian
manifolds can be found in Chapter 2 of the book [3] by Helga Baum.

Definition 6.3.1. Let r > 0 and s > 0 and let

σ0r,s := σr,s|Spin0(r,s)
: Spin0(r, s) → GL(Σr,s)

be the restriction of the spinor representation to Spin0(r, s) ⊂ Spin(r, s). Let M
be a semi-Riemannian spin manifold of dimension n and signature (r, s) with a spin
structure P Spin(M). The spinor bundle of M for the spin structure P Spin(M) is the
associated vector bundle

ΣM := P Spin(M)×σ0r,s
Σr,s.

Sections of ΣM are called spinor fields onM . If r+s is even and σ0,±r,s := σ±r,s|Spin0(r,s)

then the vector bundles

Σ±M := P Spin(M)×
σ0,±r,s

Σ±
r,s

are called the positive and the negative spinor bundle of M respectively.

The spinor bundle ΣM carries a sesquilinear indefinite bundle metric (·, ·) of signature
(2⌊

n
2
⌋−1, 2⌊

n
2
⌋−1) defined by

(JH,ϕK, JH,ψK) := (ϕ,ψ), for H ∈ P Spin(M), ϕ, ψ ∈ Σr,s.
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This assignment is well-defined, since for any a ∈ Spin0(r, s) we have by Lemma 6.2.13

(JH · a, σ0r,s(a−1)ϕK, JH · a, σ0r,s(a−1)ψK) = (σ0r,s(a
−1)ϕ, σ0r,s(a

−1)ψ) = (ϕ,ψ).

We define Clifford multiplication on ΣM as in equation (2.17). By Lemma 6.2.13 we
have for all X ∈ TpM and for all ϕ,ψ ∈ ΣpM , p ∈M

(X · ϕ,ψ) = (−1)r−1(ϕ,X · ψ). (6.17)

The spinor connection

The Levi-Civita connection ∇ on TM induces a connection 1-form ωLC ∈
Ω1(P SO(M), so(r, s)). By pull-back with ¯̺, we obtain an so(r, s)-valued 1-form ¯̺∗ωLC ∈
Ω1(P Spin(M), so(r, s)). Applying the isomorphism ̺−1

∗ : so(r, s) → spin(r, s) yields the
connection 1-form

ω̃LC := ̺−1
∗ ¯̺∗ωLC ∈ Ω1(P Spin(M), spin(r, s))

and a corresponding spinor connection ∇Σ on ΣM . The covariant derivative with
respect to ∇Σ of a local section JH,ϕK ∈ C∞(U,ΣM) is given by:

∇Σ
XJH,ϕK = JH, ∂Xϕ+ (σ0r,s)∗(ω̃

LC(dH(X))) · ϕK. (6.18)

Here U ⊂ M is an open subset, x ∈ U , X ∈ TxM , and H : U → P Spin(M) is a local
smooth section, and ϕ : U → Σr,s a smooth function.
In order to write the spinor connection in terms of Christoffel symbols, we fix a local
smooth section H : U → P Spin(M). Then h := ¯̺ ◦H : U → P SO(M) is a smooth local
oriented semi-orthonormal tangent frame and the vector fields

b1 := h(e1), . . . , bn := h(en)

form an oriented semi-orthonormal basis of TxM at each x ∈ U , where e1, . . . , en is the
standard basis of Rn. The Christoffel symbols Γkij : U → R of this orthonormal frame
are defined by the equation

∇LC
bi bj =

n∑

k=1

Γkij bk for all i, j ∈ {1, . . . , n}.

Note that unlike the Christoffel symbols of a local coordinate system the Γkij are in

general not symmetric in i, j. Instead we have Γkij = −Γjik for all i, j, k. We compute the

covariant derivative of bj = Jh, ejK in terms of the connection 1-form ωLC:

r
h,

n∑

k=1

Γkij ek

z
= ∇LC

bi bj

= ∇LC
bi Jh, ejK

=
q
h, ∂biej︸ ︷︷ ︸

=0

+λ∗
(
ωLC(dh(bi))

)
ej
y

=
r
h,

n∑

k=1

ωLC
kj (dh(bi))ek

z
.
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Hence

Γkij = ωLC
kj (dh(bi)). (6.19)

For the local section H : U → P Spin(M) with ¯̺◦H = h, we then have:

¯̺∗ωLC
(
dH(bi)

)
= ωLC

(
d ¯̺◦ dH(bi)

)
= ωLC

(
d(¯̺ ◦H)(bi)

)
= ωLC

(
dh(bi)

)
.

Upon writing

̺−1
∗
(
¯̺∗ωLC(dH(bi))

)
=
∑

µ<ν

γµνi eµ · eν ∈ spin(r, s), (6.20)

we obtain

ωLC
(
dh(bi)

)
= ¯̺∗ωLC

(
dH(bi)

)
=
∑

µ<ν

γµνi ̺∗(eµ · eν).

We apply this to ej ∈ R
n and obtain

ωLC
(
dh(bi)

)
(ej) =

∑

µ<ν

γµνi ̺∗(eµ · eν)(ej)

=
∑

µ<ν

γµνi





2 εµ eν , j = µ

−2 εν eµ, j = ν

0 otherwise

= 2
∑

ν>j

γjνi εj eν − 2
∑

µ<j

γµji εj eµ.

Comparing the coefficients with equation (6.19) yields

Γkij =





2 εj γjki k > j

−2 εj γkji k < j

0 k = j

.

Thus, we can replace the coefficients in (6.20) by Christoffel symbols and obtain:

ω̃LC
(
dH(bi)

)
=
∑

µ<ν

γµνi eµ · eν =
1

2

∑

µ<ν

εµΓ
ν
iµ eµ · eν

Thus, the covariant derivative of a local section JH,ϕK ∈ C∞(U,ΣM) can be written in
terms of Christoffel symbols:

∇Σ
biJH,ϕK =

q
H, ∂biϕ+ (σ0r,s)∗

(
ω̃LC(dH(bi))

)
· ϕ
y

=
r
H, ∂biϕ+

1

2

n∑

j,k=1
j<k

εj Γ
k
ij ej · ek · ϕ

z
. (6.21)

and the spinor connection ∇Σ on ΣM as in equation (6.18).
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Remark 6.3.2. 1. The spinor connection is a metric connection on ΣM with respect
to the indefinite bundle metric (·, ·). This follows from the general principle ex-
plained in Remark 2.4.11 using that σ0r,s is a unitary representation of Spin0(r, s)
by Lemma 6.2.13.

2. On an even dimensional semi-Riemannian spin manifold M the spinor connection
preserves chirality: for every vector field X on M and every spinor field φ ∈
C∞(M,Σ±M) we have ∇Σ

Xφ ∈ C∞(M,Σ±M). This follows immediately from
equation (6.21).

Now we prove a Leibniz rule for the Clifford multiplication:

Lemma 6.3.3. Let M be a semi-Riemannian spin manifold with spinor bundle ΣM
and spinor connection ∇Σ. Then for all vector fields X,Y ∈ C∞(M,TM) and all
spinor fields φ ∈ C∞(M,ΣM) we have

∇Σ
X(Y · φ) = (∇LC

X Y ) · φ+ Y · ∇Σ
Xφ. (6.22)

Proof. Fix x ∈M and let U be a neighborhood of x. Let H : U → P Spin(M) be a local
section and h = ¯̺ ◦ H : U → P SO(M) be the corresponding local section of P SO(M).
Then the vector fields b1 := h(e1), . . . , bn := h(en) form an oriented semi-orthonormal
local frame of TM .
Since the spinor connection is tensorial in the vector fields, it suffices to prove the
assertion forX = bi. We thus write Y = Jh, Y ′K and φ = JH,ϕK on U , where Y ′ : U → R

n

and ϕ : U → Σr,s. Now we compute:

∇Σ
bi(Y · φ) = ∇Σ

biJH,Y
′ · ϕK

(6.21)
=

r
H, ∂bi(Y

′ · ϕ) + 1

2

n∑

j,k=1
j<k

εjΓ
k
ij ej · ek · Y ′ · ϕ

z

=
r
H, (∂biY

′) · ϕ+ Y ′ · ∂biϕ− 1

2

n∑

j,k=1
j<k

εjΓ
k
ij ej · Y ′ · ek · ϕ

−
n∑

j,k=1
j<k

εjΓ
k
ij ej〈ek, Y ′〉 · ϕ

z

=
r
H, (∂biY

′) · ϕ+ Y ′ · ∂biϕ+
1

2

n∑

j,k=1
j<k

εjΓ
k
ij Y

′ · ej · ek · ϕ
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+

n∑

j,k=1
j<k

εjΓ
k
ij〈ej , Y ′〉ek · ϕ−

n∑

j,k=1
j<k

εjΓ
k
ij ej〈ek, Y ′〉 · ϕ

z

=
r
H,Y ′ ·

(
∂biϕ+

1

2

n∑

j,k=1
j<k

εjΓ
k
ij ej · ek · ϕ

)z

+
r
H,
(
∂biY

′ +
n∑

j,k=1

〈Y ′, ej〉εjΓkij ek
)
· ϕ
z

= Y · ∇Σ
biφ+∇LC

bi Y · φ.

6.4. The classical Dirac operator on spinors

Let M be an n-dimensional semi-Riemannian spin manifold. We have the spinor con-
nection

∇Σ : C∞(M,ΣM) → C∞(M,T ∗M ⊗ ΣM), ψ 7→
n∑

i=1

v∗i ⊗∇Σ
viψ,

where v1, . . . , vn is a local frame of TM and v∗1 , . . . , v
∗
n is the dual frame, i.e., v∗i are local

sections of T ∗M such that v∗i (vj) = δij for all i, j. We define

c : C∞(M,T ∗M ⊗ ΣM) → C∞(M,ΣM), α⊗ ψ 7→ α# · ψ,
where α# ∈ C∞(M,TM) is given by α(X) = g(α#,X) for all X ∈ C∞(M,TM) and g
is the semi-Riemannian metric on TM .

Definition 6.4.1. The Dirac operator is defined as the composition D := c ◦ ∇Σ.

Remark 6.4.2. Let b1, . . . , bn be a local g-semi-orthonormal frame of TM , i.e.,
g(bi, bj) = εiδij for all i, j with εi ∈ {±1}. Then we have b∗i = εig(bi, ·) and thus
(b∗i )

# = εibi. Thus we have for all ϕ ∈ C∞(M,ΣM):

Dϕ =

n∑

i=1

εibi · ∇Σ
biϕ.

Remark 6.4.3. If dimM = n is even then with respect to the splitting ΣM = Σ+M ⊕
Σ−M the Dirac operator takes the form

D =

(
0 D−

D+ 0

)
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where D+ ∈Diff 1(Σ
+M,Σ−M) and D− ∈Diff 1(Σ

−M,Σ+M). The Dirac operator D
interchanges chirality, since Clifford multiplication by bi does.

Proposition 6.4.4. Assume r > 0 and s > 0. Then for all spinor fields ϕ,ψ ∈
C∞(M,ΣM) with compact support we have

∫

M
(Dϕ,ψ) dvolg = (−1)r

∫

M
(ϕ,Dψ) dvolg ,

where (·, ·) denotes the indefinite inner product on ΣM .

Proof. Let ϕ,ψ ∈ C∞(M,ΣM) and let X ∈ C∞(M,TM ⊗R C) be the unique complex
vector field such that

(Y · ϕ,ψ) = g(X,Y ) for all Y ∈ C∞(M,TM).

Let b1, . . . , bn be a local semi-orthonormal frame of TM . Using that ∇Σ is a metric
connection with respect to (·, ·) and using the equations (6.17) and (6.22) we get

div (X) =

n∑

i=1

εig(∇LC
bi X, bi) =

n∑

i=1

εi∂big(X, bi)−
n∑

i=1

εig(X,∇LC
bi bi)

=

n∑

i=1

εi∂bi(bi · ϕ,ψ)−
n∑

i=1

εi((∇LC
bi bi) · ϕ,ψ)

=
n∑

i=1

εi(∇Σ
bi(bi · ϕ), ψ) +

n∑

i=1

εi(bi · ϕ,∇Σ
biψ)−

n∑

i=1

εi((∇LC
bi bi) · ϕ,ψ)

=

n∑

i=1

εi((∇LC
bi bi) · ϕ+ bi · ∇Σ

biϕ,ψ)

+ (−1)r−1
n∑

i=1

εi(ϕ, bi · ∇Σ
biψ)−

n∑

i=1

εi((∇LC
bi bi) · ϕ,ψ)

= (Dϕ,ψ) + (−1)r−1(ϕ,Dψ).

We integrate over M , and by the divergence theorem we obtain
∫

M
(Dϕ,ψ) dvolg + (−1)r−1

∫

M
(ϕ,Dψ) dvolg =

∫

M
div (X) dvolg = 0.

6.5. Spacelike hypersurfaces of Lorentzian manifolds

Let R
n+1 be equipped with the inner product 〈·, ·〉1,n. Denote the standard basis of

R
n+1 by e0, . . . , en where 〈e0, e0〉1,n = −1 and 〈ei, ei〉1,n = 1 for 1 ≤ i ≤ n. It is easy to
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see that the complexified Clifford algebra Cln := Cln ⊗R C is isomorphic to the Clifford
algebra of (Cn, β) with the symmetric bilinear form β(x, y) =

∑n
j=1 xjyj on C

n. The
map

j : C
n → Cl01,n, j(X) := ie0 ·X

satisfies j(X) · j(X) = −β(X,X) for all X ∈ C
n and thus induces an algebra homomor-

phism J : Cln ∼= Cl01,n. It is easy to see that J is an isomorphism of algebras.

Since Spin(n) ⊂ Cln and Spin(1, n) ⊂ Cl01,n, we obtain a map

Spin(n) →֒ Spin(1, n)

a = v1 · v2 · . . . · v2m 7→ i e0 · v1 · . . . · i e0 · v2m = v1 · . . . · v2m.

With this embedding we have the following commutative diagram:

Spin(n) �
�

//

̺

��

Spin(1, n)

̺

��
SO(n) �

�
// SO(1, n)

.

Let M be a semi-Riemannian spin manifold of dimension n + 1 with a metric g of
signature (1, n), i.e., M is a Lorentzian spin manifold. Let N ⊂ M be an orientable
hypersurface such that the restriction of g to TN is a Riemannian metric on TN , i.e.,
N ⊂ M is a spacelike orientable hypersurface. We want to construct a spin structure
on N and relate the spinor bundles ΣM and ΣN and the Dirac operators DM and DN .

Let ν be a normal vector field along N such that g(ν, ν) = −1 on N and equip N with
the orientation such that a basis b1, . . . , bn of TxN is positively oriented if and only if
the basis ν, b1, . . . , bn of TxM is positively oriented. Using the canonical embedding

SO(n) →֒ SO(1, n)

A 7→
(
1 0
0 A

)
,

the action of SO(n) on (ν(x), b1, . . . , bn) preserves the normal ν(x).
Moreover, we have a canonical embedding of frame bundles

P SO(N) →֒ P SO(M),
(
h : Rn → TpN

)
7→
(
h′ : Rn+1 → TpM

)
,

where h′(0, x1, . . . , xn) = h(x1, . . . , xn) and h′(1, 0, . . . , 0) := ν(p). This embedding is
compatible with the embedding SO(n) →֒ SO(1, n) defined above. Thus, the diagram

P SO(N)× SO(n) //
� _

��

P SO(N)
� _

��
P SO(M)× SO(1, n) // P SO(M)

.
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commutes.

Now let ¯̺: P Spin(M) → P SO(M) be a spin structure on M . We set

P Spin(N) := ¯̺−1
(
P SO(N)

)

This defines a spin structure on N :

• The action of Spin(1, n) on P Spin(M) restricts to an action of Spin(n) on P Spin(N):

For H ∈ P Spin(N) and a ∈ Spin(n), we have H · a ∈ P Spin(M) and

¯̺(H · a) = ¯̺(H)︸ ︷︷ ︸
∈P SO(N)

· ̺(a)︸︷︷︸
∈ SO(n)

∈ P SO(N).

Thus H · a ∈ P Spin(N).

• Obviously, the action of Spin(n) on P Spin(N) is compatible with the action of SO(n)
on P SO(N), hence ¯̺ : P Spin(N) → P SO(N) is a spin structure on N .

In particular, orientable spacelike hypersurfaces of spinnable Lorentzian manifolds are
again spinnable.

Spinor bundles

We study how the spinor bundles of N and M are related to one another.

Case 1: n+ 1 is even

In this case, Σn = Σ+
1,n. For any x ∈ N , we have1

ΣxN = P Spin
x (N)×σn Σn = P Spin

x (N)×
σ0,+1,n

∣∣
Spin(n)

Σ+
1,n

∼= P Spin
x (M)×

σ0,+1,n
Σ+
1,n

Thus, ΣN = Σ+M |N .
The Clifford multiplication of Rn on Σn = Σ+

1,n is given by

X · ϕ = i e0 ·X · ϕ,

where the · on the left hand side is the Clifford multiplication in Cln, while the · on the
right hand side is the Clifford multiplication in Cl1,n. Thus, the Clifford multiplication
in ΣN is given by

X · ϕ = i ν ·X · ϕ,
1Let X ⊂ Y be sets and H ⊂ G be groups. Let G act simply transitively from the right on Y such that
the action restricts to a simply transitive right action of H on X. Then for any representation of G
on Σ, the inclusions induce a bijection X ×H Σ ∼= Y ×G Σ.
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where X ∈ TxN and ϕ ∈ ΣxN .

Case 2: n+ 1 is odd

The inclusion of Clifford algebras

Cln
∼=−→ Cl01,n →֒ Cl1,n

∼=−→ Cl01,n+1 →֒ Cl1,n+1

together with the inclusions Σn ⊂ Cln and Σ1,n
∼= Σ+

1,n+1 ⊂ Cl1,n+1 induces an isomor-
phism Ξn : Σn → Σ1,n such that the diagram

Σn
Ξn //

X·()
��

Σ1,n = Σ+
1,n+1

i e0·X·()=i e0·X·en+1·()
��

Σn
Ξn // Σ1,n = Σ+

1,n+1

of Clifford multiplications with X ∈ R
n commutes.

As in case 1 we obtain the canonical isomorphism ΣN ∼= ΣM |N such that again

X · ϕ = i ν ·X · ϕ.

for X ∈ TxN , ϕ ∈ ΣxN .
In the following we treat both cases simultaneously using the notation

Σ(+)M :=

{
Σ+M if n+ 1 is even,

ΣM if n+ 1 is odd.

Spinor connections

The Levi-Civita connections on TM and TN are related by the Gauß equation

∇M
X Y︸ ︷︷ ︸

∈TxM

= ∇N
XY︸ ︷︷ ︸

∈TxN

+II(X,Y )︸ ︷︷ ︸
∈ (TxN)⊥

, (6.23)

where X ∈ TxN and Y ∈ C∞(N,TN). The second fundamental form is a symmet-
ric bilinear map II : TxN × TxN → (TxN)⊥, given by the orthogonal projection of
∇M
X Y to (TxN)⊥. The Weingarten map is the corresponding symmetric endomorphism

B : TxN → TxN such that for all X,Y ∈ TxN

II(X,Y ) = g(B(X), Y ) ν =:
〈
B(X), Y

〉
ν .

The mean curvature field H ∈ C∞(N,TN⊥) is defined by

H =
1

n

n∑

i=1

〈
B(bi), bi

〉
ν =

1

n
tr(B) ν = H ν,
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where b1, . . . , bn is a local orthonormal tangent frame for N and H : N → R is the mean
curvature of the hypersurface N ⊂M .

The spinor connections of M and N are related by the Weingarten map. Let (b1, . . . , bn)
be a local oriented orthonormal tangent frame for N . Then (b0 = ν, b1, . . . , bn) is a local
orthonormal tangent frame for M along N . The Christoffel symbols for the Levi-Civita
connections ∇M and ∇N are defined by

∇M
bi bj =

n∑

k=0

MΓkij bk and ∇N
bi bj =

n∑

k=1

NΓkij bk.

By the Gauß equation (6.23), we have for i, j ∈ {1, . . . , n}:

∇M
bi bj = ∇N

bi bj +
〈
B(bi), bj

〉
ν =

n∑

k=1

NΓkij bk +
〈
B(bi), bj

〉
b0.

Comparing coefficients yields

MΓkij =NΓkij ∀ i, j, k = {1, . . . , n},
MΓ0

ij =− MΓji,0 =
〈
B(bi), bj

〉
∀ i, j = {1, . . . , n}.

For the covariant derivative of a section of Σ(+)M , we compute for i ∈ {1, . . . , n}:

M∇Σ
biJH,ϕK

(6.21)
=

r
H, ∂biϕ+

1

2

n∑

j,k=0
j<k

εj
MΓkij ej · ek · ϕ

z

=
r
H, ∂biϕ+

1

2

n∑

j,k=1
j<k

NΓkij ej · ek · ϕ+
1

2

n∑

k=1

〈
B(bi), bk

〉
e0 · ek · ϕ

z

= N∇Σ
biJH,ϕK+

1

2

n∑

j=1

〈
B(bi), bj

〉
b0 · bj · JH,ϕK

= N∇Σ
biJH,ϕK+

1

2
ν · B(bi) · JH,ϕK.

Hence for all φ ∈ C∞(M,Σ(+)M) and for all X ∈ TN , we have along N :

M∇Σ
Xφ = N∇Σ

Xφ+
1

2
ν · B(X) · φ.
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Dirac operators

For a spinor field φ ∈ C∞(M,Σ(+)M) we have along the hypersurface N :

DMφ = −ν ·M∇Σ
ν φ+

n∑

j=1

bj · M∇Σ
bjφ

= −ν ·M∇Σ
ν φ+

n∑

j=1

bj ·
(
N∇Σ

bjφ+
1

2
ν ·B(bj) · φ

)

= −ν ·M∇Σ
ν φ− iν ·

n∑

j=1

iν · bj · N∇Σ
bj
φ− 1

2

n∑

j=1

ν · bj ·B(bj) · φ

= −ν ·
(
M∇Σ

ν φ+ iDNφ+
1

2

n∑

j=1

bj ·B(bj) · φ
)
.

Since B is a symmetric endomorphism, we may choose b1, . . . , bn as an eigenbasis at
x ∈M , thus B(bj) = κj · bj for j = 1, . . . , n. Then we have

DMφ = −ν ·
(
M∇Σ

ν φ+ iDNφ− 1

2
tr(B)φ

)

= −ν ·
(
iDNφ− n

2
Hφ+ M∇Σ

ν φ
)

Hence

−ν ·DMφ = iDNφ− n

2
Hφ+ M∇Σ

ν φ.
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Lemma A.0.1. The family of operators Jε : C
∞(T n) → C∞(T n) defined in Example

1.4.11 is a Friedrichs mollifier on T n for the trivial line bundle E = T n × C.

Proof. For ε small enough the support of jε is contained in [−π, π]n and we extend jε
to a 2πZn-periodic smooth function R

n → R again denoted by jε. Then we have for all
u ∈ C∞(T n):

(Jεu)(x) =

∫

Tn

jε(x− y)u(y) dy =

∫

[0,2π]n
jε(x− y)u(y) dy.

We show that Jε satisfies the properties i)-iv) of Definition 1.4.10.

i) Jε is a smoothing operator, since jε is a smooth function. Obviously, Jε is self-
adjoint.

ii) Let u ∈ C∞(T n). The function

([0, 2π]n)3 → R, (x, y, z) 7→ jε(y − x)jε(y − z)|u(x)||u(z)|
is integrable and thus we may use Fubini’s theorem to get

‖Jεu‖2L2 =

∫

[0,2π]n

∫

[0,2π]n
jε(y − x)u(x) dx

∫

[0,2π]n
jε(y − z)u(z) dz dy

≤
∫

[0,2π]n

∫

[0,2π]n

∫

[0,2π]n
jε(y − x) jε(y − z) |u(x)| |u(z)|︸ ︷︷ ︸

≤ 1
2
(|u(x)|2+|u(z)|2)

dx dy dz

≤ 1

2

∫

[0,2π]n

∫

[0,2π]n
|u(x)|2jε(y − x)

∫

[0,2π]n
jε(y − z) dz

︸ ︷︷ ︸
=1

dx dy

+
1

2

∫

[0,2π]n

∫

[0,2π]n
|u(z)|2jε(y − z)

∫

[0,2π]n
jε(y − x) dx

︸ ︷︷ ︸
=1

dz dy

=

∫

[0,2π]n
|u(x)|2

∫

[0,2π]n
jε(y − x) dy

︸ ︷︷ ︸
=1

dx

= ‖u‖2L2 .
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Therefore we obtain a bounded linear extension Jε: L
2(M,E) → L2(M,E) and we

have ‖Jε‖L2,L2 ≤ 1 for all ε.

iii) Let k ∈ N and P ∈Diff k(E,E). We write

P =
∑

|α|≤k
Aα(x)∂

α

with smooth functions Aα ∈ C∞(T n) and multi-indices α ∈ N
n
0 and ∂α =

∂α1
y1 . . . ∂

αn
yn . Now, for α = 0 and for every u ∈ C∞(T n) we get using property ii)

of Jε

‖A0Jεu‖L2 ≤ sup
x∈Tn

|A0(x)|‖Jεu‖L2 ≤ C1 sup
x∈Tn

|A0(x)|‖u‖L2 ,

‖JεA0u‖L2 ≤ C1‖A0u‖L2 ≤ C1 sup
x∈Tn

|A0(x)|‖u‖L2

and thus
‖[A0, Jε]u‖L2 ≤ C2‖u‖L2 ≤ C2‖u‖Hk−1 ,

where C1, C2 > 0 are independent of ε. Thus it is sufficient to consider

P = Aα(x)∂
α

with a smooth function Aα ∈ C∞(T n) and a multi-index α ∈ N
n
0 with |α| ≥ 1 and

∂α = ∂α1
y1 . . . ∂

αn
yn . We choose i with αi ≥ 1 and we write

ᾱ := (α1, . . . , αi − 1, . . . , αn).

Then we have ∂α = ∂ᾱ∂yi . For all u ∈ C∞(T n) we get using integration by parts

PJεu(x) = Aα(x)

∫

Tn

(∂αx jε(x− y))u(y) dy

= Aα(x)(−1)|α|
∫

Tn

(∂αy jε(x− y))u(y) dy

= Aα(x)(−1)

∫

Tn

(∂yijε(x− y))(∂ᾱu)(y) dy

= Aα(x)ε
−n−1

∫

Tn

(∂yij)
(x− y

ε

)
(∂ᾱu)(y) dy

and

JεPu(x) =

∫

Tn

jε(x− y)Aα(y)(∂
αu)(y) dy

= −
∫

Tn

(∂yijε(x− y))Aα(y)(∂
ᾱu)(y) dy

−
∫

Tn

jε(x− y)(∂yiAα)(y)(∂
ᾱu)(y) dy

= ε−n−1

∫

Tn

(∂yij)
(x− y

ε

)
Aα(y)(∂

ᾱu)(y) dy

−
∫

Tn

jε(x− y)(∂yiAα)(y)(∂
ᾱu)(y) dy
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and thus

[P, Jε]u(x) =

∫

Tn

jε(x− y)(∂yiAα)(y)(∂
ᾱu)(y) dy

+ ε−n−1

∫

Tn

(∂yij)
(x− y

ε

)
(Aα(x)−Aα(y))(∂

ᾱu)(y) dy

= Jε((∂yiAα)(∂
ᾱu))(x)

+ ε−n−1

∫

Tn

(∂yij)
(x− y

ε

)
(Aα(x)−Aα(y))(∂

ᾱu)(y) dy

︸ ︷︷ ︸
=:(Mεu)(x)

By property ii) of Jε and using that |ᾱ| ≤ k − 1 we get

‖Jε((∂yiAα)(∂ᾱu))‖L2 ≤ C‖(∂yiAα)(∂ᾱu)‖L2

≤ C sup
x∈Tn

|∂yiAα(x)| ‖∂ᾱu‖L2

≤ C sup
x∈Tn

|∂yiAα(x)| ‖u‖Hk−1 .

We now estimate (Mεu)(x). First we note that there exists C1 > 0 such that
|∂yij| ≤ C1 on T n. Moreover, we have (∂yij)(

x−y
ε ) = 0 if |x − y| > ε. Since Aα is

smooth there exists C2 > 0 such that for all x, y ∈ T n we have

|Aα(x)−Aα(y)| ≤ C2|x− y|.

It follows that

|(Mεu)(x)| ≤ ε−n−1

∫

Bε(x)
C1 C2 |x− y| |∂ᾱu(y)| dy ≤ ε−nC1 C2

∫

Bε(x)
|(∂ᾱu)(y)| dy.

Let ζ > 0. Since ∂ᾱu is uniformly continuous we can choose ε so small that for all
x, y ∈ T n with |x− y| < ε we have |(∂ᾱu)(x)− (∂ᾱu)(y)| < ζ and thus |(∂ᾱu)(y)| ≤
|(∂ᾱu)(x)|+ ζ. Thus for all x ∈ T n we have

|(Mεu)(x)| ≤ ε−nC1 C2 vol(Bε(x))(|(∂ᾱu)(x)|+ ζ) ≤ C3(|(∂ᾱu)(x)| + ζ),

where C3 > 0 is independent of ε, since vol(Bε(x)) ≤ C ′εn for some C ′ > 0. It
follows that

|(Mεu)(x)|2 ≤ C2
3 (|(∂ᾱu)(x)|+ ζ)2 ≤ 2C2

3 (|(∂ᾱu)(x)|2 + ζ2)

and thus
‖Mεu‖2L2 ≤ 2C2

3 (‖∂ᾱu‖2L2 + ζ2vol(T n)).

Let ζ → 0 and obtain

‖Mεu‖2L2 ≤ 2C2
3‖∂ᾱu‖2L2 ≤ 2C2

3‖u‖2Hk−1 .
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iv) Let u ∈ C∞(T n). We prove that Jεu → u in C0(T n) as ε → 0. Let α > 0. Since
u is uniformly continuous we can choose ε > 0 such that for all x, y ∈ [0, 2π]n with
|x− y| < ε we have |u(x)−u(y)| < α. Using that

∫
[0,2π]n jε(x− y) dy = 1 we get for

all x ∈ [0, 2π]n

(Jεu)(x)−u(x) =
∫

[0,2π]n
jε(x−y) (u(y)−u(x)) dy =

∫

Bε(x)
jε(x−y) (u(y)−u(x)) dy

and thus for all x ∈ [0, 2π]n

|(Jεu)(x)− u(x)| ≤
∫

Bε(x)
jε(x− y) |u(y)− u(x)|︸ ︷︷ ︸

<α

dy < α

∫

Bε(x)
jε(x− y) dy = α.

It follows that Jεu→ u in C0(T n) and thus also in L2(T n).
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