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1. Differential operators on manifolds

1.1. Differential operators

We start by looking at linear differential operators on manifolds. Later we will specialize
to Laplace and Dirac-type operators.

Let M be an n-dimensional differentiable manifold and
let m: E — M be a vector bundle. Recall that a section S 1S
of Fis a map s: M — E such that m o s =1idy,. /\/

We define

C*°(M, E) := {smooth sections of E}. T

Definition 1.1.1. Let F and F' be K-vector bundles over M, where K =R or C.

A differential operator of order (at most) k is a linear mapping
P:C®(M,E) — C*®(M, F) such that for any local coordinate system z',...,z" on
U C M and any local trivializations E|y —= U x K? and F|y = U x K there exist
smooth maps A% : U — Mat(q x p,K) such that

N olely
Py = |z|<:kA (x)ao‘lxl ...0%ngn

for all v € C*°(M, E). Here a = (a1,...,a,) € Nj and |a| = a1 + ...+ ap.

Notation 1.1.2. We define

T (E,F) :={P:C®(M,E) — C>®(M,F)| P differential operator of order < k}.

The vector spaces 7, (E, F) form a filtration,

D Gy (BE,F) D T (B, F)D--- > Zyg(E, F) = C*(M,Hom(E, F)).
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Example 1.1.3. Let M be a Riemannian manifold, let £ = M x R be the trivial real
line bundle and F' = T'M be the tangent bundle of M. The gradient is a differential
operator of order 1 from F to F, grad € @%(M x R,TM). In local coordinates, we
have:

y ov 0
gradv =3 g"(z) 75—

Comparing the coefficients in this formula with the coefficients A% in Definition 1.1.1,
we find:

A(OV“’LN’O) = (glia ce 7gnl) ’ A(O---70) - (07 e 70)T'

Example 1.1.4. Let M be a Riemannian manifold, let £ = T'M be the tangent bundle
of M and let F' = M xR be the trivial real line bundle. The divergence is a differential
operator of order 1 from F to F, div € @%(TM,M x R). In local coordinates, we

_ i 0 .
have for Y =3, y' 575

y' .
div(Y) = [“)uyvi + Zfﬁjy].
i ij

The coefficients are

.

PRI

,...,0), A<0---70>:<Zr§1,...,2r§n).

Here I’fj denote the Christoffel symbols of the Riemannian metric with respect to the

coordinates z',...,z".

Example 1.1.5. Let M be a Riemannian manifold and consider £ = A™T*M and
F = Am“T*M . The exterior derivative d is a differential operator of order 1 from
Eto F,de T (A"T*M,A™ ' T*M).

Example 1.1.6. Let E be an arbitrary vector bundle over M with connection V and
let ' =T*M ® E. Then V is a differential operator of first order from E to F'.

Example 1.1.7. Consider M = C and the trivial complex line bundle £ = F':= M xC.

Then
0 1<8 .0

H=— = £+13_y>’ where z = x + 1y,

0z 2

is a differential operator of order 1 from E to F'.

Remark 1.1.8. Let E,F,G — M be vector bundles over a smooth manifold M. If
Pe D (E,F)and Q € Zj7(F,G) then Qo P € Ty, (E,G).
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Example 1.1.9. Let M be a Riemannian manifold and consider £ = G = M x R and
F = TM. Then A = —div ograd € @%(E, G), where A denotes the Laplace-
Beltrami operator.

For a given differential operator P € @% (E, F) and a covector £ € T M we construct
a linear mapping oy (P, ) : E, — F, as follows: We choose a smooth function f : M — R
such that f(z) =0 and df (z) = {. We then set for e € E,:

op(P,§) - e:= %P(f’“é)\x, (1.1)

where € € C*(M, E) is any extension of e, i.e. é(x) = e. As we shall see, this definition
is independent of the choice of € and f. In local coordinates and local trivializations, we
compute:

lel (kg
or(P,§) e = x Z A%(x) o (/%) ()

80’11-1 . o 8anxn

la| ( £k
D P A M

| ‘ k 80’11-1 8anxn
al=

— Z A%(g) - €01 g0 e, (1.2)

|al=k

The second equality holds because by assumption f(x) = 0, so that all terms vanish
in which f* is differentiated less than %k times. The last equality holds by a similar
argument: If one of the factors in f* is differentiated more than once, there is another
factor which remains without differentiation and hence vanishes at x.

Since the right hand side of (1.2) is independent of the choice of é and f, so is the left
hand side. This shows that oy (P, §) is well defined by (1.1).

For any £ € TM, we have constructed a homomorphism ox(P,§) : E, — F,. Thus
we have o (P,-) € Hom(7n*E,7*F), where m : T*M — M is the projection to the foot
point.

Definition 1.1.10. Let E, F' — M be vector bundles over a smooth manifold M and
let P € 27, (E,F). Then oy(P,-) € Hom(r*E, *F) is called the principal symbol
of the operator P.

Remark 1.1.11. The principal symbol o (P, -) contains the coefficients of the highest
order derivatives of P € &7, (E, F). In particular, we have

op(P,{)=0forallé e T"M <« A*=0forallla|=k <« Pe 2 [(EF).
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In other words: The sequence

(P7')

0~ Gy (B, F) — D (B, F) == Hom (" E, =" F)

is exact.
Warning. In the literature, the definition of oy (P,¢) often contains another factor i¥.
Convention. If k is clear from the context, we will write o(P,§) instead of o (P, §).

Example 1.1.13. We compute the principal symbol of the gradient, see Example 1.1.3.
We fix a covector € € T M. Since E, = R, we have to apply o(grad, ) to a real number,
say 42. A convenient extension of 42 to a smooth section of E is the constant function
T 42.

Let f : M — R be a smooth function such that f(z) = 0 and df(z) = £ By the
definition of o(grad, £), we have!

o(grad,€) - 42 = grad (f - 42)(x)
=42 - grad f(x)
=42 - df (z)*
=42. gﬁ_

In short: o(grad,&) = &8 Here § : T*M — TM denotes the “musical isomorphism”
induced by the Riemannian metric.

Example 1.1.14. We compute the principal symbol of the divergence. Here E, = T, M,
so we have to apply o(div, &) to a tangent vector Y € T, M. Let Y be a smooth vector
field such that Y (z) = Y. Again let f : M — R be a smooth function such that f(z) = 0
and df (z) = £. Then we have

o(div, &)Y = div (f - V)(x)
= (@) div (V) (2) + {arad f(2), Y (@)
=0
= (1Y)
=£(Y).

Thus o(div,§) = &.

Here £* is the vector in T, M dual to & € T M with respect to the Riemannian metric, i.e., for any
Y € T. M we have (¢!, Y) = £(Y).
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Example 1.1.15. We compute the principal symbol of the exterior derivative d. Let
w € A*T¥M and extend w to a smooth k-form @ € QF(M) such that &(x) = w. Then
we have

o(d,§)w = d(f - @)(z)
— (df A+ [ - d))|,
=df(z) ANw + f(x)-do|
7

x
=N w.

Hence o(d,§) = &N

Example 1.1.16. We compute the principal symbol of a connection V on a vector
bundle E. Let e € E, and extend e to a smooth section é € C*°(M, F) such that
é(z) = e. Then we have

o(V,9e=V(fe)],
2= (df ®e+ f-Ve)|,
=df(z)®@e+ f(z) -(Vé)!x
>

={®e.

Thus 0(V,§) =€ ®

Example 1.1.17. We compute the principal symbol of P = 9. Let z € C and extend z
to a section zZ € C*°(M, E) such that Z(x) = z. Then we have

0(9,€)2z=9(f-2)
(59 +igr9),
35w z+z—§<>z>
=%<<> (3))
=£(0

In the next to last equality, we used ¢ (a%) =df |, (a%) = %(m). Thus (9, ¢) = £(9).

Remark 1.1.18. Let E, F,G be vector bundles over a smooth manifold M, let P €
T (E,F) and Q € Z7/(F,G). Then we have

or11(Q o P,§) = 01(Q, &) o o (P, §).
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Example 1.1.19. We compute the principal symbol of the Laplace-Beltrami operator
A from the principal symbols of div and grad:

02(A, €) = oa(—div o grad ,§) = —o1(div) - oy (grad ) = —£(&F) = —|€F)> = —|¢%.

In the following let M be a Riemannian manifold and E,F — M be Riemannian or
Hermitian vector bundles.

Lemma 1.1.20. For any P € Z7,(E,F) there is a unique P* € 27, (F,E) such
that

/(Pu,v)F dvol = /<u,P*v>E dvol (1.3)
M M
holds for all u € C*°(M,E), v e C>®(M, F) with compact supports.

Definition 1.1.21. The operator P* € @%(F, E) satisfying (1.3) is called the op-
erator formally adjoint to P.

Proof of Lemma 1.1.20. Uniqueness:

Let u € C*°(M, E) and v € C*°(M, F) be sections with supports in a coordinate neigh-
borhood U C M. Using local trivializations of E and F' over U by orthonormal frames
we compute:

/(Pu,v)deol:/< Z A olaly, ,v>@d:ﬂ

aalxl N aanxn

v U lel<k
— olely .
B o%k!<aa1$1'--6anxn’m(f4 ) U> dx
intzgis 8‘04
by part |Z<k(—1)a|/<% 9oy - 9%, (\/M(AQ)TU) >dm
= U

ol (Vdetg(A*)Tv) 1
E —1)l
<u, (—1) Doy - Do, \/m> dvol.

S—

Thus
1 al olel (/det g(A%) Tv)

—1)! 1.4
/detg alz<k;( ) 80{11-1 [N aanxn ( )

Py =

Now let v € C*°(M, F') be an arbitrary section with compact support. We choose an
open covering of M with local trivializations and a partition of unity subordinated to
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it. Then v is a finite sum of sections of the form considered above. Since P* is required
to be linear, it is uniquely determined by the local formula (1.4).

Ezistence: Let v € C°°(M, F') be a smooth section with compact support. We now use
formula (1.4) to define P*v if v has support in U. For general v we use a partition of
unity to write it as a sum of sections with supports contained in coordinate patches. It
is tedious but straightforward to check that this definition is independent of the choice
of coordinates, trivializations, and partition of unity. O

Remark 1.1.22. For any P € Z7/(E,F) we have (P*)* = P. This is obvious from
equation (1.3) and the uniqueness of the formal adjoint.

Example 1.1.23. The gradient is a first order operator grad : C*°(M) — C*°(M,TM),
so grad * maps vector fields to functions. By definition, for any function u € C*°(M)
and any vector field Y € C°°(M,TM), both with compact support, we have

/u(x) (grad*Y)(z) dvol(z) = /(grad u(z),Y (z)) dvol(x)

M M
= / (div (uY) — udivY’) dvol(z)
M
= —/udidevol(w).
M
In the last step we used the Gaufl divergence theorem. Thus grad* = —div. By

Remark 1.1.22 we then also have div* = —grad.

Remark 1.1.24. For differential operators P € 27, (E,F) and Q € Z7(F,G) we
have

(QoP)" =P oQ".

Definition 1.1.25. Let M be a Riemannian manifold and let £ be a Riemannian or

Hermitian vector bundle over M.
Then P € @% (E, E) is called formally self-adjoint iff P = P*.

Example 1.1.26. We consider the bundle £ = M x R and P = A. We then have
P* = —(div ograd )* = —grad * o div* = —div o grad = P.

Thus the Laplace-Beltrami operator is formally self-adjoint.
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Lemma 1.1.27. Let M be a Riemannian manifold. Let E and F be Riemannian or
Hermatian vector bundles over M, and let P € @%(E,F) Then for any & € T*M
we have

o (P*,€) = (1) or(P,€)*. (1.5)

Proof. Since only the terms of order k contribute to the principal symbol oy (P,-), we
write
olel
Pu = Z A%(x) u+ lo.t.

aalxl e aanl‘n
la|=k

where “l.o.t.” stands for “lower order terms”. By (1.4) the adjoint of P is given by

® 1 k 6|a‘ N -
Pro= vdet g Z (=1) dn, <\/MA () v) +l.o.t.

80’1.%'1 e
la|=k

1

la
NGB Z (=1)*\/det g A%(z)" o + lo.t.
ctyg

80411-1 e 8anxn
la|=k

= Z (—D)F A% ()" ol +lo.t.

8041x1 e aanxn
|a|=k

Thus, by the local formula (1.2) for the principal symbol, we have
or(P,€) = (~1)F D & a%(@) " = (~DFor(P6)". =

la|=k

1.2. Sobolev spaces

Next we introduce Sobolev spaces which are important function spaces for the analysis
of the kind of differential operators which we will be considering later.

Definition 1.2.1. Let M be a Riemannian manifold, let £ — M be a Riemannian
or Hermitian vector bundle. For

u,v € CP(M,E) := {w e C®*(M,E) | supp(w) € M}

we define the L2-scalar product by

(u,v)2 = /<u(:v),v(3:)> dvol(z).
M
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Here (-,-) denotes the Euclidean or Hermitian scalar product in E,. The L?-norm is

then given by
1/2
Jullzs = VTwwlza = ( [ futa)P dvol() .
M

Remark 1.2.2. The formally adjoint operator P* of P is therefore characterized by the

property

(Pu,v)r2 = (u, P*v) Vu e CX(M,E),v e CF(M,F).

L2

Definition 1.2.3. We define L?(M, E) as the completion of C°(M, E) with respect
to the L2-norm: "
L*(M, E) := Cg(M, B) "+,

i.e. elements of L?(M, E) are equivalence classes of Cauchy sequences in the vector
space (CZ°(M, E), | - [|z2)-

Remark 1.2.4. L?(M, E) is a Hilbert space with scalar product (-,-) 2.

Let M = T" = R"/2xZ"™ be the n-dimensional torus. Let £ = M x C be the trivial
complex line bundle. Sections in E are complex functions on the torus. We may also
consider them as 2wZ™-periodic functions on R™. For any k € Z™ put

up(z) == (2m) 2P

Then ug : R” — C is smooth and ug(x + 27p) = ug(x) for any p € Z". Hence uy
descends to a (smooth) function ug : 7" — C on the torus.

Fact. The family (uy)rezn is an orthonormal Hilbert space basis of L2(T™,T™ x C). In
particular, any v € L2(T", T" x C) can be uniquely written as

v = Z (k) - ug,
kezZ™ -

where

o(k) = (v, ug)p2 = / v(x)ug(z) do = (2m) "2 / v(@)e= i) dy

T n
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is the k-th Fourier coefficient of v. Moreover,

k
= 0(k)o (D) (we, )
k,l =0
_ Z@(k)@(k:)
k

=" o). (1.6)
k

The equation (1.6) is known as Parseval’s theorem.

For any v € C1(T™) we find, using integration by parts:
N v ou . . S
8—%(@ = <8—x]’uk> ., = — <v, %];)LQ = — (v,ikjug) 2 = 1 kj(v,ug) 2 = i k; (k).

Hence the Fourier transform turns derivatives into multiplications by polynomials.

Example 1.2.6. For v € C?(T™) we have:

Koth) =~ 20 S ik a(k) = SR (k) = k2o(k).
J J

2
; Bwj

Definition 1.2.7. Let s € R, and let v,w € C*°(T"). We set

(v, w)s =Y (k) - w(k) - (1+[k[*)".

kezm

The norm induced by (v, w)gs is given by

lolls = v/, 0)m = (3

kezm™

1/2

o(k)[* - (1+ k%))

Furthermore we define the Sobolev space

H(T™) := Oy e,

The Hilbert space (H*(T"), (+,-)ms) is called the Sobolev space of degree s.
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Remark 1.2.8. For s = 0 we have || - |[go = || - ||z by Parseval’s theorem, and hence
HO(T™) = L2(T™).

Remark 1.2.9. If s; < s then (1 + [k[?)™ < (14 |k[?)™, hence [[v|lgs: < [[v] s
for all v € C°°(T™). Thus the identity on C*°(T™) extends uniquely to a continuous
embedding H*2(T™) — H*(T™).
Example 1.2.10. Let v € C*°(T"). We compute:
|2
ollFn =D [ok)]" (1 + [k[?)
k
k

1.2.6 TS
=7 JollFe + Y Av(k)o(k)
k

o(B)*+ > [k[Po(k)o(k)
k

= |lvl72 + (Av,v) 2
= |[vllz2 + llgrad v]|7.. (L.7)

In the last equation, we used div* = —grad. Hence the Sobolev norm || - |71 controls
the derivatives up to first order in the square mean.

More generally, the Sobolev norm || - ||gs controls the derivatives up to order s in the
square mean. To have pointwise control on the derivatives, we need another norm:

Definition 1.2.11. For s € Ny and v € C*%(T™) put

dlaly

8a1$1 6oo aanxn

[vlls == max max

(x)"

By definition, the C*-norm || - ||¢s controls the first s derivatives pointwise.

Remark 1.2.12. The C*-norm || - [|¢s turns the space C*(T") of s-times continuously
differentiable functions on T™ into a Banach space.

Let us look again at Example 1.2.10. Here we have:
[o(@)* < [[vl|ga,

jarado()? = 3 |2 )
J

=1

2
< ollg
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We thus have

1.7
||'U||%{1 (L7) / (|v(a:)|2 + |gradv(m)|2) dx
Tn
<+ 1) ol [ do

Tn
= (2m)" (n+1) - Jv]| 2

and hence
Il < @m)ZVn+1- |- [|cr
Similarly, for s € N we find constants C(n, s) such that
|- Mlms < Clnys) -] - [l
These estimates yield continuous embeddings of the C®*-spaces into Sobolev spaces,
C*(T™) — H*(T").

The following theorem yields embeddings of Sobolev spaces into C*-spaces:

Theorem 1.2.13 (Sobolev embedding theorem). Letl € N and s > [+7%5. Then
for each w € H*(T™) the Fourier series

> k) - up

kezm

converges absolutely in the C'-norm and therefore defines a function u € CH(T™).
Moreover, there is a constant C = C(n,l,s) > 0 such that

lullce < C-lullgs,  Vue H*(T").
Hence the above Fourier expansion defines a continuous embedding

HS(T™) < CYT™).
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Proof. A direct computation gives

lulle = | S atk) |
k

2
< <Z ja (k)| - ||uchCl>
k

SR (14 rk\2)5> S )

k

For s —1 > %, we have % (1+ ]k\Q)lfs < ¢(n) Jgn (1 + |K|?)~D dk < oo, hence there
exists a constant C'(n,l,s) such that

lulln < C(n,ls) - ullFs. O

Theorem 1.2.14 (Rellich embedding theorem). Let s; < sy3. Then the embed-
ding

H*2(T™) — H**(T")
is a compact operator, i.e., every bounded sequence in H®2(T™) has a convergent sub-
sequence in H(T™).

Proof. Let (unm)men be a bounded sequence in H*2(T"). Then we have for all m € N:

lumlFrss = D (L4 1K) fam (B < Y0 (14 1K) Jam(B)* = [lumlFs < C.
kezZn kezZmn

In particular, for all kK € Z™ and all m € N
(1+ [[*)™ Jam(K)* < C
and thus for all £ € Z™ and all m € N

(LK) 7 i ()] < V.
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51
Hence there exists a subsequence (um, )m, such that the sequence ((1 + [k[?) 2 -ty (k));
of complex numbers converges for a fixed £ € Z". Since Z™ is countable we can succes-
sively take such a subsequence for any k € Z". After taklng a diagonal subsequence,

again denoted by (u,), we get that the sequence ((1 + |k|? ) - U (k))m converges as
m — oo for every k € Z".

We show that (u,)nm is a Cauchy sequence in H*'(T™): Let ¢ > 0. Choose R > 0
sufficiently large such that
1+ R <« —
(1+R) =
Choose N € N sufficiently large such that for all m,l > N we have

. . €
D (LK) [ () — (k)] < 5 (18)
kezn
k<R
This is possible because the (finitely many) summands come from the Cauchy sequences
of complex numbers constructed above. We decompose ||uy, — ul||qu1 into

lm = wlfper = D (L4 kP Jam(k) = a(R)* + D (14 k2)™ [@m(k) — (k)]

kezm™ kezm™

[k|[<R [k|>R
According to (1.8), for m,l > N, the first sum can be estimated by 5. In the second
sum we have |k| > R. Using s1 < s2, we get for the summands of the second sum:

(L+ k)™ = (L4 K" (L4 K) < (L4 B2 (14 k)™ < o= (1 + k)™
Thus, for m,l > N, we have:

e = w7 < 5 =+ (1 + K1) [ (k) — @ (k)

86’

kezmn

|k|>R
3
<t+ 8ouum ullhe
< 2t (s +unllis)
= U s u s
=5 8(? m || HS2 LI| H*2

<VC

<€+ 4C
-+ —=4C =«¢.
- 8C

Thus (u,)m is a Cauchy sequence in the Banach space H*!(T™) and hence converges.[]

Definition 1.2.15. A sequence (u,)men in a Hilbert space H converges weakly to
u € H iff
(Um,v) = (u,v) asm —oo VYoveH.

One then writes wu,, — u.
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Lemma 1.2.16. a) Weak limits are unique.
b) If uy — u then u,, — u, i.e., convergence implies weak convergence.
¢) If dim(H) = oo then weak convergence does not imply convergence.

d) If A: Hy — Hs is a bounded linear operator and wu,, — u then Au,, — Au.

e) In a Hilbert space each bounded sequence has a weakly convergent subsequence.

Proof. a) Suppose u,,—u and u,,—u'. Now for every v € H we have

/ _ . B . _
(u—u',v) = W}gnoo(um,v) W}gnoo(um,v) =0,

hence u — v’ = 0.

b) Suppose u,, — w in H. For any v € H, the Cauchy-Schwarz inequality yields
(U v) = (u,0)| = |(um — u, 0)| < [Jtm, = ul| - [Jo]] — 0.

c) Let H be infinite dimensional and let (e,,)men be an orthonormal basis of H. For
any v € H, we have > |(em,v)|? < |v|?> < oco. Thus (ey,v) — 0 for all v € H and
m

hence e,, — 0. But since |ey| = 1, we have ||e,,|| — 1 so that e, - 0 in H. If
(em)m converged in H then, by a) and b), the limit would have to be 0. Thus (e, )m
does not converge at all in H.

d) We have (A, v)g, = (Um, A*0) gy, — (u, A*0) 4, = (Au,v)n, for all v € Ha.

e) For a proof of this part see e.g. Section 14 in [6]. O

Corollary 1.2.17. Let s < s3. For each bounded sequence in H*2(T™) there exist a
subsequence (Um)men and an element v € H*2(T™) such that
U —u in H2(T"),

U — w in HH(TT).

Proof. We use Lemma 1.2.16. Let (uy,)m, be a bounded sequence in H*2(T™). Then,
by e), after passing to a subsequence, u,, — w in H**(T™) for some v € H%(T").
Passing again to a subsequence, Rellich’s theorem 1.2.14 yields wu,, — v in H**(T") for
some v € H*1(T"). By b), uy, — v in H¥1(T"). By d) we also have u,, — uw in H*(T").
Since by a) weak limits are unique, it follows that v = v. In particular, v € H**(T")
and u,, — win H*(T"). O
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Remark 1.2.18. For vector-valued functions v = (uy,...,u;) € C>(T", C!) we put
l
laliFrs == D sl
j=1

Then for the corresponding Sobolev space H*(T",C!) the embedding theorems of
Sobolev 1.2.13 and Rellich 1.2.14 still hold.

Obviously, C=(T",R!) ¢ C°(T™,C!). Since H*(T™,R") c H*(T™,C') is a closed (real)
subspace, the theorems of Sobolev and Rellich also hold for H*(T™, R!).

In the following, let M be a compact manifold and £ — M be_a K-vector bundle, where
K=RorC. Let z : M DU — U’ C R" be a chart such that U’ C (0,27) x -+ x (0, 27).
Then 7 : R® — T" = R" /9,7 maps U’ diffeomorphically onto some U” C T™.

By restricting U if necessary, we can assume that E|y is trivial, i.e., there exists a
diffeomorphism ¢ : E|y — U x K! such that

e U x K!

A

commutes and ¢ is a linear map in each fiber.
Put & := 7 oz. For v € C®(M, E) with supp(v) C U define vy, € C®(T",K') by

Ely

prQO(povoifl on U",
Vg =
o 0 onT" —U".

Since M is compact, we can cover M by finitely many open sets U; such that for each
U;j we have a chart z(;) and a local trivialization ¢(;y : El|y, — Uj; x K! as above.
Choose a partition of unity x; € C°°(M,R) subordinate to the covering (U;), i.e.,

0<x; <1, supp(x;) CUj; > xj=1.
J

For u € C*(M, E) put

luall 7 = Z 1(x; W ) Hfr{s(Tn)’ (1.9)
J

H*(M,E) = C=(0, B) ™. (1.10)

The definition of ||ul|%. depends on the choice of the Uj, T(j), ¢¢) and x;. But one
can check (not difficult but technical) that different choices of these lead to equivalent
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H?-norms. Thus the Sobolev space H*(M, E) does not depend upon the various choices
in its construction.

Similarly, one can define C'-norms || - |1 on C*°(M, E) and put
CYM, E) := Co(M, E) | let (1.11)

Then we get continuous embeddings C!(M, E) < H'(M, E) and the theorems of Sobolev
1.2.13 and Rellich 1.2.14 still hold for H*(M, E) and C'(M, E), i.e.,

H**(M,FE) — H*(M, E) is compact, if 51 < s9,
H*(M,E) — C'(M,E) is continuous, it s>1+ g

Remark 1.2.19. The embedding
H(M, E) < C{(M, E), (s >1+7%)

is compact.

Proof. Choose s" with s > s' > [+ %. Then we have the embedding

HY (ML E) 1.2.14 B (M. E) 1.2.13 (M. ).

The first embedding is compact by Theorem 1.2.14 whereas the second is continuous by
Theorem 1.2.13. Since both embeddings are extensions of the identity, the composition
coincides with the embedding H*(M, E) — C!'(M, E) in Theorem 1.2.13. Obviously,
the composition of a compact map with a continuous map is again compact. ]

Let M be a compact Riemannian manifold, let £ — M be a Riemannian or Hermitian
vector bundle with connection V : C*°(M, E) — C*°(M,T*M ® E). The connection V
and the Levi-Civita connection on T*M induce a connection

V:C®(M,T"M ®E) - C® (M, T"M T*M ® E)

onT*M ® E.
We define
V2:=VoV:0®M,E)— C®(M,T*"M*?*®E) .

Tterating this construction, we obtain differential operators V* of order k:
vk O®(M,E) — O (M, T M®* g E) .
The C'-norm defined above is equivalent to the norm

= \VA ‘
1wl (e mas u(z)
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on C*®(M, E). With this new definition of C!-norms we obtain the same spaces C'(M, E)
as defined in (1.11). Similarly, we can define the H*-norms for nonnegative integers s by

ullds = Zs: Hvku‘ ; = Zs: /‘Vku(ulc)‘2 dvol(x) (1.12)
k=0 k=0 iy

and we obtain the same spaces H*(M, E) as defined in (1.10)

Lemma 1.2.20. Let M be a compact manifold, let E, F — M be K-vector bundles,
where K = R or C. Then every P € @%(E, F) extends uniquely to bounded linear

maps

C™R(M,E) — CY(M,F), 1€ Ny,
and

H***(M,E) — H*(M,F), s€R.

Proof. 1) Choose a Riemannian metric on M and connections V on E and F'. For each
P € T, (E,F) there exist Aj € C*°(M,Hom(T*M®’ @ E, F)) such that

k
P=>) AjoVi.
=0
Then we have

k k
1Pullo = || > 450 9| , <37 [[450 Pull
j=0 §=0

Now we estimate ||4; o ijHCz by ||u||gs+i. For v € {0,...,l} and any j € {0,...,k},
we have:
V7 (A VIu)| < CL Y [VHAVY#
n=0
< Cs Z {VV_’H—ju{
pn=0

174
<03 |lullgr-uts
©n=0

< C4HuHCk+l.
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Thus ||Pul|ct < C||lu||cr+:. Hence P extends to a bounded linear map
P:C*YM,E) = CY (M, F).

The extension is unique because C*°(M, E) is dense in C*¥*!(M, E).

2) The proof that P extends uniquely to a bounded linear map
P:H*"*(M,E) - H*(M, F)

is similar. O

1.3. Laplace-type and Dirac-type operators

Let M be a Riemannian manifold and let £ — M be a Riemannian or Hermitian vector
bundle.

Definition 1.3.1. A differential operator P € @%(E , E) is called to be of Laplace-
type iff
09(P,€) = —|¢]* -idg,  forallz € M and &€ € T) M.

Example 1.3.2. By Example 1.1.19, the Laplace-Beltrami operator A is a Laplace-type
operator, acting function, i.e., on sections of the trivial line bundle £ = M x R.

Example 1.3.3. Let E be any Riemannian or Hermitian vector bundle and let V be
a connection on E. We put P := V* o V. Then by Remark 1.1.18, Lemma 1.1.27 and
Example 1.1.16, for any covector £ € TXM and any e, ¢’ € E, we have:

(02(P,€)e,e) = (o1(V*, &) 001 (V,E)e )
= —(01(V,8) 0 a1(V,&)e,¢') .
= —(01(V,8)e,01(V. )€ ) 1 pro s,
= —((®e @) MaE,
=&, - (e, €)p,
= —[¢]*- (e, ),

Since this holds for all e,e’ € E,, we conclude that oo(P,¢) = —|€]? - idg. Thus the
operator P is of Laplace-type. It is called the connection Laplacian.

Remark 1.3.4. Forany D € @%(E, E) the operator P := V*V+D is also of Laplace-
type. This is obvious, since the first order operator D does not contribute to the principal
symbol oy (P, ).
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Lemma 1.3.5. For every formally self-adjoint Laplace-type operator P € @%(E, E)
there exists a unique metric connection V on E such that

P=V'V+K,

where K € C*°(M,symEnd(E)).

Proof. Let V be any metric connection on F. Then D := P—V*V is formally self-adjoint
and we have:

02(D,€) = 02(P,€) — 02 (V*9,€) = —[¢* + [¢2 = 0.
Therefore D is actually a first order operator. Thus we can decompose P as
P=V*V+D, (1.13)
where V*V is of second order and D is a first order operator.
Any other metric connection V on F is of the form
V=V+B8,
where B € C°(M,T*M ® asymEnd(FE)). Inserting this into (1.13) gives

P=(V-B)V-B)+D=V'V-V'B-B*V+B'B+D
=K

We want to choose B in such a way that K is of order zero. Since B*B is of order zero
we have:

K isof order 0 <= D — V*B — B*V is of order 0
<01 (D-V*B-B*V,{)=0 forall{eT"M. (1.14)

We compute

(01 (V*B+B*V,&) e €)= ((01(V*,§) o B+ B*001(V,&))e,e)
= - <B€,O‘1(V,£)€/> + <O'1(V,£)€,B€,>
= —<Be,£®e'> + <£®6,Be'>.

Here, we used 01(V* 0 B,§) = 01(V*,§) 0 0¢(B,§) = 01(V*,€) o B and Lemma 1.1.27.
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Now let by,...,by, be an orthonormal basis of T, M and let b7,...,b} be the dual basis
of TXM. We write Be = > b} ® By, e and thus obtain:
7

(01 (V' B+ BV, e.e) = (D bi@Bye.cac )+ (e, b @ Bye')
== (1,€) (Bue,e') + > (0,€) (e Bye')
— Zg(bi) (Bye,e') + Z &(b;) {e, By,€’)

= _<BZ£(bi)b¢e7 €/> + <€, BZﬁ(bi)bie/>
= —(Bge.€') + (e, Bue')

= <(Bgﬁ — Bgu)e,e'>
= -2 <B5ue, e’> .

Hence o1 (V*B + B*V,§) = —2B;. Thus by (1.14), we have:

K is of order 0 <= 01 (D,§) = 01(V*B + B*V,¢)
= —2 B for all £ € T*M.

Therefore there is only one possible choice for B € C*°(M,T* M @ asymEnd(FE)), namely
1
Bx = -5 o1 (D, X% forall X € TM.

This show uniqueness. As to existence, we observe that this choice of B is possible, since
by the following remark, the principal symbol o1(D, &) is antisymmetric. U

Remark 1.3.6. If D is a formally self-adjoint operator of order k then we have:

ou(D,€) = op(D*,€) =) (“1)F o(D, £)*

Hence the principal symbol of D is antisymmetric if the order k is odd.

Definition 1.3.7. Let M be a Riemannian manifold, and let E, I’ — M be Rieman-
nian or Hermitian vector bundles. An operator D € @W//{ (E, F) is of Dirac-type iff

D*D € Z(E,E) and DD* € Tz (F,F)
are of Laplace-type.

Remark 1.3.8. Let E = F and D = D*. Then D is of Dirac-type if and only if D? is
of Laplace-type.
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Example 1.3.9. We consider the bundles £ = M x R and F = T'M and the operator
D = grad € @%(E, F). By Example 1.1.23, we have D* = grad* = —div. Hence
D*D = —divgrad € @%(M x R, M x R) is the Laplace-Beltrami operator which is of
Laplace-type by Example 1.3.2.

We check whether DD* = —graddiv € @//Q (TM,TM) is also an operator of Laplace-

type: For M = R” with the Euclidean metric we write a tangent vector v = v7 % eTM

as v = (v!,...,v"). Then we have:

) T
—grad div (v) = —grad ; 307
T
0?v7 " 9%
(e JplOxi’ T L~ Qxn DI
7j=1 7j=1
For the principal symbol of —grad div, we thus find:
n n T
o9(—graddiv,&)v = — Z&@W, e ,Z{ngjvj
j=1 j=1
G& .o &\ o
Enél -0 &nén) V"
Thus,
&1 o &in €]? 0
oo(—graddiv,§) = — : : + —
gngl s gngn 0 |£|2

for general £ € T*M. Hence DD* is not of Laplace-type and thus D not of Dirac-type.
For a general Riemannian manifold M we have by Examples 1.1.13 and 1.1.14:
o1(grad, &) = €* and o (div, €) = € and thus for all v € TM and all £ € T*M

o2(DD*,&)v = —oy(grad , €) o oy (div, &)v = —E(v)EF £ — ¢

if v is not a multiple of &%

Example 1.3.10. We translate the previous example to differential forms and consider
the exterior differential d on E = A°T*M with values in F' = A'T*M. As we have seen,
d is not of Dirac-type.

Now we enlarge the bundles to

E = AV"T*M = AOT*M @ A>°T*M & A*'T*M & .. ., and
F=AYT*M=A'"T*MaNT*MdN°T*Mo....
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On these bundles we consider the Euler operator
D=d+d: COO(M,E) — COO(M,F).

We want to show that D is of Dirac-type. We prove that D*D is of Laplace-type. For
each ¢ € T M and each w € A*T* M we have:

o9 (D*D,§)w = o9 (d*d + dd*, &) w
= (o1 (d*,€) 0 01(d, &) + 01(d, &) 0 01 (d*, ) Jw. (1.15)

We have computed earlier in Example 1.1.15 that o1(d,§) = £ A (-). We also know from
(1.5) that o1(d*,§) = —o1(d, €)*. Tt remains to compute o1(d, §)*.

For £ € TfM and w € AFT M we define £sw € A¥~1TF M by

Eaw = w({ﬁ,...).

Claim: - is the adjoint of £ A (+).
Let £ € TyM, £ #0. Let b] =&, b5, ...,b) be an orthogonal basis of T M. Then we can
write each w € AT M as

w= > wrbi A AD, I=(1<ii<...<ip<n),
[1|=k
= ) wan SN AL A Y wrbl A A,
|J|=k—1 1=k
i1>1
::5/\w§+wé.

Thus there is an orthogonal decomposition A*T¥M = & A A1 ({l) ® AF ({l) where &+
denotes the orthogonal complement of £ in Ty M. Now, on the one hand, we have:

(W, (EA)T) = (EAw,T) = (ENWE EATE) = (€, E)(we s 7e)-
On the other hand, we have:

<UJ,£_| 7—> = <w’ |£|2 : T§> = <w§l’ |£|27—§>'

Comparing these two equations yields

EAC)"=¢€10)

which proves the claim.
For the principal symbol of the codifferential we thus obtain:

o1(d", &) = —01(d,§)" = —(§ A ()" = =€)
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Therefore, by (1.15), we have:

o2 (D*D,§)w = —(E1(EAw) +EN (Euw))
= —(E2(E N wg) +EA (2w))
= —(I€PPwg + €1 A we)
= —lePw.
Hence D*D = d*d + dd* =: A4 is of Laplace-type. The operator DD* is also given by

DD* = d*d + dd* and the above calculation shows that also DD* is of Laplace-type.
Thus the Euler operator D = d + d* is of Dirac-type.

Definition 1.3.11. Let k € {0,...,n}. The operator
Ag=D*D =dd" +d*d: C®(M,A*T*M) — C=(M,A\*T*M) (1.16)

is called the Hodge Laplacian in degree k.

For k = 0, the Hodge Laplacian Ay coincides with the Laplace-Beltrami operator A.

Proposition 1.3.12. Let M be a Riemannian manifold. The Hodge Laplacian Ay in
degree 1 satisfies the Bochner formula

Ag = V*V + Ric. (1.17)

Here V denotes the Levi-Civita connection of the Riemannian metric and Ric its Ricci-
curvature, considered as an endomorphism field of T*M.

Proof. Exercise. O

Remark 1.3.13. If we put E = F = A*T*M = A°T*M & A'T*M & A>°T*M & . .. then
D = d+ d* is a formally self-adjoint Dirac-type operator on E.

Remark 1.3.14. Let D be a formally self-adjoint Dirac-type operator on a vector bun-
dle E. Then we have:

o1(D,€)* = 03 (D?,§) = 02 (D*D, &) = —[¢|* - id.
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By polarization we obtain:
— (I + 2(&,m) + |n?) idp
= —[¢+ - idg
= 01(D, € +n)°
= (01(D,€) + o1 (D, n))”
= 01(D,€)* + 01(D, €)1 (D, n) + o1(D,n)o1(D, &) + o1(D,n)*
= —[¢1*-idp + 01(D, §)o1 (D, ) + o1(D, o1 (D, €) — [nf? - idp.

This yields the Clifford relations
Ul(D7 g)al(D7 77) + Ul(D7 77)01(D7 5) = _2<§7 77> ' ldE (118)

Since these relations impose strong restrictions on the bundle F, it is much more difficult
to construct Dirac-type operators than Laplace-type operators.

Let V be an n-dimensional oriented Euclidean vector space (later we will choose V' =
TxM) and let eq,...,e, be a positively oriented orthonormal basis of V. Then

wi=elN...Ne, € A"V

is called the volume element and does not depend on the particular choice of orthonor-
mal basis.

Lemma 1.3.15. Let (V,(-,)) be an n-dimensional oriented Euclidean vector space.
For each k € {0,...,n} there is a unique isomorphism * : ARV — A" FV such that

o Axp = (p, ) - w, for all o1 € AFV. (1.19)

The isomorphism * is called the Hodge star operator.

Proof.
Uniqueness:
Let e1,..., e, be a positively oriented orthonormal basis of V. Then the family

{er=ey A A €iy, }I:(1§i1<...<ik§n)

is an orthonormal basis of A*V. Let e; = ei; N\ ... Ne;, be a basis element. Writing *e;y
in the corresponding basis of A" ¥V, we have:

key = Z ag-ey. (1.20)

|J|=n—k
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Now for any ordered multi-index K with |I| = |K| = k, we have:

e N\ xey = Z aj-ex Nejy = age e Aege =sign (K, K) age - w.
|J|=n—k

Here K¢ denotes the multi-index complementary to K and sign(K, K¢) is defined by the
equation ex A ege = sign(K, K¢) - w. By equation (1.19), we have:

ex Nxer = (eg,er) -w =0k - w.

Thus age = dxrsign(K, K¢) and equivalently, oy = 0 ey sign(J€¢, J). Inserting this into
(1.20), we obtain:

xey = sign(I, I°) - eye. (1.21)

Ezistence:

We define the Hodge star operator * by formula (1.21) on the basis {e7}; and extend by
linearity to A*V. Then equation (1.19) holds for basis vectors and hence, by linearity,
for all p,1) € AFV. O

Lemma 1.3.16. Let V be an n-dimensional oriented Fuclidean vector space. Then
the following holds:

a) x1 =w and *w = 1.
b) (xp, %) = (@) for all p,3p € AV,
¢) On AV we have: ¥2 = (=1)F(=F) .id 4y .

d) (o, %) = (=1)FO=F) (xo p)  for all p € ARV, ¢ € APFV.

Proof.

a) This is clear from the formula (1.21) for the Hodge star operator in terms of an
orthonormal basis of V.

b) We write p = > @rerand ¢ = > ¢je;y. Then (p,¢) = > @rir. Applying the
\I|=k | T[=k I|=k
operator * we have:

*p = Z prsign(I,I°) - ere and
=

*) = Z Wysign(J, J) - ege.

|J|=k
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Now we compute:

(rp,#0) = Y ordrsign(1, 19 = > orir = (p,).

|1|=k |I|=k

c) Let |[I| = k. Then by (1.21) we have:

x2er = x (sign(I, I¢) - ere)

= sign(I, I€) - sign(I, 1) - er
= (—1)*Psign(1,1°)? - ¢;
— (_1)k(n—k) “eg.

d) For any ¢ € A*V, ¢ € A" *V, we have:

(0,0 2 (x50 2 ((— 1R sap) = (= 1)) (0, aa). 0

Let M be an oriented Riemannian manifold. Then we may apply the construction of
the Hodge star operator to the Euclidean vector spaces (1M, -,-),), where x € M
and (-,-), denotes the scalar product on 7 M induced by the Riemannian metric. The
resulting isomorphisms * : A¥(T*M) — A" *(T;M) depend smoothly on the point z.
Thus we have the Hodge star operator *: QF(M) — Q" %(M) on differential forms.
Note that the operator * depends on the Riemannian metric.

Combining the Hodge star operator with the exterior derivative we obtain:

Lemma 1.3.17. Let M be an oriented n-dimensional Riemannian manifold. Then
the formal adjoint of d: QF~1(M) — QF(M) is given by

d = (=1)MFDH e QF(M) — QFY(M). (1.22)

The operator d* is called the codifferential.

Proof. Exercise. O

Corollary 1.3.18. For n even we have: d* = — x dx.

Example 1.3.19. Let M be an n-dimensional oriented Riemannian manifold and let
n = 2m be even. For any k € {0,...,n} and any z € M we define

7y = P DAmy AkT;M ®r C — An_kTm*M ®r C
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and we obtain 7, : A*TXM ®@r C — A'T*M ®r C as an operator on forms of arbitrary
degree. By Lemma 1.3.16, we have 72 = idpes megpc. Thus, the only eigenvalues of 7,
are 1 and —1. We put

ET = |_| ker (7 — idas: MegC)
zeM

E™ = |_| ker (Tg; + idA-T;M@)RC)
zeM

Thus ET denotes the bundle of +1-eigenvectors of 7. Then we have the decomposition
ANT*MerC=EtaE".
A simple computation yields (d + d*) 7 = —7 (d 4+ d*). Thus, we have:
d+d :C®(M,ET) - C>®(M,E™).

As for the Euler operator above, one can show that d + d* € @%(E*‘,E‘) is a
Dirac-type operator. It is called the signature operator.

Example 1.3.20. Let M be a complex manifold of complex dimension m with a Hermi-
tian metric on the tangent bundle (considered as a complex vector bundle), i.e., M is a
Hermitian manifold. The complexified cotangent bundle A'T*M ®g C has the following
decomposition:

T*M @r C =AY T*M @ A T*M
= {C-linear forms on T M} @ {C-anti-linear forms on 7'M }.

Given local coordinates z1,.... 2™ zL ... z™ we can write any complex-valued 1-form w
) 7 ) 7 ) M

as
m m
w=>Y o;jdd +> pjdzl € AT M &AM T M.

Now for any f € C*°(M,C), the differential df € A'T*M ®g C splits as

df = Z dﬂ+z - dz) = 0f +0f. (1.23)

/

EAlvOT*M eAO,l T* M
From complex analysis we have:

0f =0 <= f is holomorphic.
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Similarly, any complex-valued k-form w can be decomposed as

w= Z ZwUdzil/\.../\dzip/\déjl/\.../\dzjq.

p+q=k |l=p —-dz! —.dzJ
[J]=q

This defines the decomposition

AFT* M @5 C = EB APAT* D

Now if w is a (p, ¢)-form on M,

w = Z wrydzt Adz7,
[T|=p

[J1=q

its exterior derivative splits as

dw =" dwry Adz' AdZ’
[I|=p
[J]=q
(1.23) > dwrg Nz AdzT + > dwrg Ad2' A dE
|I|=p [I|=p

[J1=q [J1=q

/

=: QweAPTL.aT* M =: QwEAP-a+1T* \f
We have split d into d = d + 0 where

9 :C°(M, APIT* M) — C™(M, APTHIT* M),
9 :C®(M,APAT* M) — C°(M, APT1T*M).

The operator O is called the Dolbeault operator. Using this decomposition, we have
for any w € APIT*M:

0=d’w=(0+0)(0+0)w= Quw +90w+00u+ Pw .

c Ap+2.q9 € Ap+1.a+1 c Ap;a+2
We thus have:
*=0 (1.24)
00 + 00 = 0 (1.25)
9> =0. (1.26)

Hence the operators 0 and O define complexes. The ¢-th cohomology of the complex
(QP*.0) is called the Dolbeault cohomology of M in the bidegree (p,q).
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For the Hodge-Laplacian Ay on QP2(M), we obtain:

Ag = (d+d")? = dd* + d*d
=(0+09) (0" +0")+ (0" +0") (0+9)
00" + 00 + 00" + 00+ 00" + 00+ 00" +0%0

=48y values in values in =05
values in @p.a(m)  optha—lr)  op—Latl(M)  values in QP-4 (M)

Thus the principal symbol of Ay splits into
—1€]? - idaparenr = 02(Ag, €)
=09 (Ay,&) + 02 (85* + 5*8) + o9 (58* + 8*5) +o02(A5,8). (1.27)

Since the left hand side is an endomorphism of APYT*M | the two middle terms of the
right hand side necessarily vanish. Hence the operators 00* + 0*0 and 00* 4+ 0*0 are
actually of first order, i.e.,

90" +0%0 € Ty (NPIT*M APV T* M) and
90" + 00 € Ty (APAT* M, AP~1H9HIT* M)
For j =1,...m we write 2/ = 27 + 4y’ and we decompose £ € T*M as
m ' ' 1 m ' o
§=) (&da? +&,dy") = 5y (&1 + €z
j=1 j=1

where §;,,&y; € R and §; = &, —i§,;. We then compute for w € APIT*M:
1 & : - SRR
01(0,6)w = 5 ngjdzf Aw, 01(0,€w = 5 ngjdzﬂ Aw,
Jj= Jj=

« 1. . - 1 Py
01(0%, 8w = —§;§jdzhw, 01(0%, §w = —§;§jdzhw.

It follows that .
UQ(Aaaf) = 02(A57§) = —5 ’5\2 “idaparear -

Thus, 2A5 and 2A 5 are Laplace-type operators.

Now we look for a first order operator whose square is 2A5: Fix p € {0,...,m} and
define
E = AP T M, F = APOYNT* )L

In analogy to the Euler operator, we put

Dy :=v2(0+0%) : C>°(M,E) — C®(M,F).
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Then we get
D;Dg =2(90 + 09" + 8"+ 0*9")
=2 (00" 4 0*0)
=2A;

and similarly DgD(’% = 2A5. Hence Dj is a Dirac-type operator.

The operator
Ay : C° (M,APIT*M) — C°° (M, APIT* M)

is called the Dolbeault Laplacian. The Dirac-type operator Dy is called the Dol-
beault Dirac operator.
Twisting of first order operators with coefficient bundles

Let E and F be Riemannian or Hermitian vector bundles over a manifold M and let
D e @/7{ (E, F). Then for each € M the principal symbol yields a bilinear map

T:M x E, — F,, (§¢e)— o1(D,¢)e.
This corresponds uniquely to a linear map
T"M®E, - F,, ({®ew— o1(D,¢)e.

Hence the principal symbol o(D,:) of D can be considered as an element of
C*(M,Hom(T*M ® E, F)).

Conversely, given a section A € C*°(M,Hom(T*M ® E,F)) and a connection V on F,
we define Dav € Z7(E, F) by

Dave:=Y» A(b;®Vye), (1.28)
j=1
where by,...,b, is a local frame of T'M and b7,...,b;, is the dual frame.

This definition is independent of the choice of the basis by, ..., by:
Let bl, .. b be another local frame of TM. We express b; and b by b1,...,b, and

bl, ... bn, respectively:

n n
bj =Y b, and bi=> B;b.
i=1 k=1
Then we have:

5 - bl Z Bri bk ( Z Qjj > Z Bri QGj bk z Z Bil Q. (1.29)

k,i=1
Oks
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We may write this in matrix form as 1 = 87 - a, or equivalently, 1 = - 8. Thus
equation (1.29) is equivalent to

5ki = Z ozkj 51] (130)
7j=1

Now we compute:

ZA(E;@W»,;J_ ZA(Zﬁk]bk®Viahb’e>
=1 =1 =

=1

3

= Z Brj iy A (b, @ Vy,e)

Hence the definition of D4 v is independent of the choice of the basis by,. .., b,.

We compute the principal symbol of D4 v:
Let £ € T)M and e € E,. Choose a function f € C*°(M) such that f(z) = 0 and
df () = £. Choose a section € € C*°(M, E) with e(x) = e. Then we have:

oc(Dav,§)e=Dav(fe)(x)

_ iA(bj ® Vi, (f- ’5))(96)

j=1

_ZA<b;® fe+f- Vbe))( ).
Using b;(f)(z) = df|.(b;) = £(b;), and the properties e(z) = e and f(x) = 0, we get:

o(Dav,e=>_ A(b;@E(b))e)

j=1
- A(Zg(bj)b; ® e)
= A€®e). (1.31)

Thus, for a fixed connection V and any operator D € @//{(E, F), the operator

n
DO’(D7'),V =5 U(D, b;)vbj has the same principal symbol as D. Hence it differs from
j=1
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D by a zero-order operator B € C*°(M,Hom(E, F)), i.e
n
D =D,ppyv+B=>Y o(D,b;)Vy, +B.
j=1
Note that the operator B depends on the choice of the connection V.

Now let M be a manifold, let E, F,C — M be K-vector bundles over M, and let V¢ be
a connection on C. For D € @% (E, F), choose a connection V¥ on E and write D as

D= Z (D, b))V + B, (1.32)

where the homomorphism field B € C*°(M,Hom(E, F)) depends on the choice of V.
Now define DV’ € Z47(E ® C,F ® C) by

ve ._ * : E®C :
DV = Z <J(D,bj) ®1dc)vbj +B@ido. (1.33)
J
Here VF®C is the tensor product connection on E ® C, defined by
vEeC e ) = VEe®c+e® Ve

We check that the definition of DV does not depend on the choice of the connection
VE: For any e ® ¢ € C°(M, E ® C), we compute:

DV (e®c) = Z (a(D,b}f) ®id0>vfj®0(e ®c)+ (B®ide)(e®c)
j
:Z(J(D,b;)®idc><ije®c+e®Vgc> + (Be)®c

:Z (D, b*)Vbe®c+Z Db*e®V ¢+ (Be)®c
j

—De®c+z D, b* e®VbC;c.

In the last equality we used equation (1.32). We have obtained an expression for DV°
that is independent of the connection V¥ and B.

Definition 1.3.21. Let M be a differentiable manifold, let £, F,C — M be K-vector
bundles over M and let V€ be a connection on C.
For a first order operator D € @% (E, F) we say that the operator

DY € Gy (E®C,F&C)
defined by (1.33) is obtained from D by twisting with (C, V©).
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We compute the principal symbol of the twisted operator DV,
For ¢ € T M choose a function f € C*°(M) with f(x) = 0 and df(z) =¢&. For e € E,
and ¢ € C, choose sections € € C*(M,E) and ¢ € C*°(M,C) with e(x) = e and

¢(z) = c¢. Then we have:

o(DV ¢)(e®c) =DV (f - (E®7))(x)

3

= (p(s ®c+ZJDb* 7) @ VEE) (@)
=(D(f-e))(z)®c+ ZO‘ (D,b3) (f -€)(x) ®(V,(;;E) (x)
=0
(D,fe®c
Hence
o(DV,€6) = o(D,€) ®ide . (1.34)

Corollary 1.3.22. Let (M, g) be a Riemannian manifold, let E, F,C — M be Rie-
mannian or Hermitian vector bundles over M, and let VC be a connection on C.
If D € @%(E, F) is of Dirac-type then DV is also of Dirac-type.

Proof. For any £ € T*M, we have:

o2 (DY) 0 DV &) "2 —6) (DY €) 0.0y (D €)

U2Y _(01(D,&) @ide) o (01(D,€) @ ide)
— —01(D,£)*01(D, &) @ ide

) 5 (D%, €)o1(D,€) ®ide

= 03(D*D,€) ®idc
= (- ¢ idp) ®ide
—1€* - idgge -

Similarly, we find o2(DV" o (DV)*, &) = —|¢[2 - idpgc.

Lemma 1.3.23. Let (M, g) be a Riemannian manifold, let E, F,C — M be Rieman-
nian or Hermitian vector bundles over M, and let V€ be a metric connection on C.
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Let D € Zj7(E,F). Then
()Y = (%)

Proof. Exercise. O

Remark 1.3.24. If the connection V¢ in Lemma 1.3.23 is not metric then we have:
c *
()Y = (DVY)" + B®ido

for some B € C*°(M,Hom(F, E)).

Corollary 1.3.25. Let (M,g) be a Riemannian manifold, let E,F,C — M be Rie-
mannian or Hermitian vector bundles over M, and let VC be a metric connection

on C. Let D € T (E,F).
If D is formally self-adjoint then so is DVe.

1.4. The analysis of Dirac-type operators

Throughout this section let M be a compact Riemannian manifold. Let FE, F — M be
Riemannian or Hermitian vector bundles over M and let D € Z#/(E,F). For any
s € R the differential operator D extends uniquely to a bounded linear map

D:H*"Y(M,E) — H*(M, F),

i.e., for every u € H*t1 (M, E) we have ||Dul|gs < C|lu| gs+: with C independent of w.
If D is of Dirac-type, we will get a kind of inverse to this inequality.

Proposition 1.4.1 (Garding inequality). Let M be a compact Riemannian man-
ifold and let E,F — M be Riemannian or Hermitian vector bundles over M. Let
D e @W//{(E,F) be a Dirac-type operator. Then there exists a constant C > 0 such
that for all w € H'(M, E), we have:

[ull g < C([[Dullgo + [lull o) - (1.35)

Proof. Since D is of Dirac-type, the formally self-adjoint operator D*D is of Laplace-
type. Thus, by Lemma 1.3.5, we may write

D'D=V'V+K (1.36)
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for some metric connection V on E and some K € C*°(M,symEnd(F)). Now for any
smooth section u € C*°(M, E) we have:
lull = Il Fro + 1Vl 7o
= (Vu, Vu) 2 + [[ulf3o
= (V*'Vu,u) 2 + [[ullfo
Inserting (1.36) yields

lull? = (D*D — K)u,u) 2 + |[ull7o

=an@o—/kKuuxuu»dw+um@o
M

Since M is compact, there exists a constant C; such that |K|g, g, < C; uniformly in .
This yields
lullf < 1DulFo + (1 + Co)llullFo
< |1DullFro +2v/1+ CulIDullgo - Jullgo + (1 + C1)llullFpo

2
= (IDullo + VI+Cr fJulo )
2
< [+ C)(IDullgo + l[ullmo)”
Thus we have for any smooth section u € C°°(M, E) the inequality
lullzn < V14 Cr(lDullgo + [lull o).

Since C*®°(M, E) is dense in H'(M, E) and the Sobolev norms || - |[zo and || - ||z are
continuous on H!(M, E), this estimate holds for all u € H'(M, E). O

Proposition 1.4.2 (Elliptic estimates). Let M be a compact Riemannian mani-
fold and let E,F — M be Riemannian or Hermitian vector bundles over M. Let
D € @//”1 (E,F) be a Dirac-type operator.

Then for every k € Ny there exists a constant C > 0 such that the inequality

[ull grer < C (|1 Dull g + llull ) (1.37)

holds for all w € H*1(M, F).

Proof. We will prove the estimates by induction on k:
For k = 0, the elliptic estimate (1.37) is the Garding inequality (1.35).

Let 9 € @%(E ®RT*M,F @ T*M) be the operator obtained from D by twisting with
the Levi-Civita connection on T*M. We choose connections V¥ and V¥ on E and F,
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respectively. Now we consider the operator
P:=20VP-V'oDe Tz (EFoTM).

For any & € T* M, we have:

(1.34)

= (12,90 01(V7.) = 1(VF. ) 01 (D, &) )
' (01(D,€) ®idrer) (e ® &) — 01(D, e @ €
0.

Thus P is actually a first-order operator.

Now fix £ € N and assume that the elliptic estimate (1.37) holds for £k — 1. For any
u € H**Y(M, E) we have:

lullZpes = IV ullFro + [1VFullFo + -+ [lulfpo

= V¥l B0 + [lull e, (1.38)
and moreover

IVFu)20 = IVEVUl30 < IVl 3.

We now apply the induction hypothesis for the operator ¥ € @//{(E QT*M,FRT*M)
and the section VPu € C*°(M,E ® T*M) and obtain:

2
IVEull3e < Cr (129 ull s + V0l i1
= C1 (I[Pu+ V7 Dull s + V0l s )
2
<™y (HPuHkal + HVFDUHHICA + HVEuHkal) .

Since P is a first order operator there is a constant Cy such that ||Pul||gr-1 < Co||ul| .
Moreover, ||V Du||gr-1 < ||Dul| . Hence

2
IVPull 3 < Cs (| Dull g + [lul| gre)
and thus

2
IV *  ulf0 < Cs (| Dl e + llull g#)*

Together with (1.38) we obtain the assertion. O
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Lemma 1.4.3. Let M be a compact manifold, and let D € @%(E,F) be a Dirac-
type operator. Let B
D:HYM,E) — L*(M,F)

be the unique bounded extension of D. Then the graph of D,
I'p:={(z,Dz) |z € H(M,E)} C L*(M,E) ® L*(M, F)

is a closed subspace. In other words: D is a closed operator.

Proof. Let (zj)jen be a sequence in H'(M,E) such that (zj,Dz;) — (z,y) in
L*(M,E) ® L*(M, F). We need to check that (x,y) € I'p. Since the sequences (z;);jen
and (DCU] )jeN converge in L? they are also bounded in L?,

ij‘HLQ S Cl and HD.%']‘HLQ S CQ

for constants Cp, Cy, independent of j. From the Garding inequality (1.35) for the
Dirac-type operator D we obtain:

@]z < Cs (| Dyl 2 + @] p2) < Ca.

By Lemma 1.2.16, we may pass to a weakly convergent subsequence z; — z € HY(M,E).
In particular, we have z; — z in L?(M, E). On the other hand, we also have z; — = €
L?*(M, E). Since by Lemma 1.2.16 weak limits are unique, we find z = 2 € H'(M, E).

Since D is bounded and z; — x, we also have Dx; — Dz in L?(M, F). One the other
hand, we also have Dz; — y. Therefore y = Dz. We conclude (z,y) = (z,Dz) € I'5.0

Let M be a compact Riemannian manifold, and let E, ' — M be Riemannian or Her-
mitian K-vector bundles over M. Let D € Z7(E, F).
Let us assume that u € HY(M, E) and Du = f € L*(M, F). Choose a sequence (u;);en

1
of smooth sections in E such that u; &, 4. Then for all ¢ € C%®°(M, F) we have:?

:( ( H'-lim u]) gp)LQ

j—00
= (LQ— lim (Duy), <p> L
= lim (Duj, @) 2
j—00

= lim (u]a D*SD)L2

]—)

?Here and in the following H'— lim and L?— lim denote the limits in H'(M, E) and L*(M, E),

i— 00 i— 00
respectively.
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— (L2 1im u;, D)
(1 fim s 07%) .
= (u,D*go)LQ.
We have shown: If Du = f with u € H'(M, E) and f € L?(M, F) then
(u, D*ap)L2 =(f,¢)r2, for all ¢ € C°(M, F).

The last equation also makes sense for u € L?(M, F). This motivates the following:

Definition 1.4.4. Let M be a compact Riemannian manifold, and let E, FF — M
be Riemannian or Hermitian K-vector bundles over M. Let D & @7//71 (E,F). Let
u € L*(M,E) and f € L?(M, F).

We say that the equation Du = f holds in the weak sense if for all p € C*°(M, F)
we have:

(U, D*(p)LQ = (f7 (p)LQ'

Proposition 1.4.5. Let M be a compact Riemannian manifold, and let E, F' — M be
Riemannian or Hermitian vector bundles over M. Let D € @%(E, F) be a Dirac-
type operator, and let D : HY(M,E) — L*(M,F) be the unique bounded extension
of D.

If for uw € L>(M,E) and f € L?>(M, F) the equation Du = f holds in the weak sense
then actually uw € H* (M, E) and Du = f holds in the usual sense.

Remark 1.4.6. Let f € L?(M, F). By Proposition 1.4.5, we have that for any Dirac-
type operator D € @%(E, F), the equation

Du=f, holds with u € H(M, E),

if and only if the equation Du = f holds in the weak sense.

In order to prove Proposition 1.4.5, we first introduce smoothing kernels and Friedrichs
mollifiers.

Definition 1.4.7. Let V,W — M be K-vector bundles. Let pr;,pry : M x M — M
be the projections on the first or second factor, respectively. We define the exterior
tensor product VX W by

VR W :=pr]V ®prsW — M x M.
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For (x,y) € M x M the fiber of V R W over (z,y) is given by®

(VR W)z = 0r1V) (@) @ Pr5W)(zy) = Ve @ Wy,

Let M be a Riemannian manifold, and let E, FF — M be Riemannian or Hermitian
vector bundles over M. Then the vector bundle F' X E* — M x M has the fibers

(FRE") () = Fy ® Ef = Hom(E,, F,).

(y,x

Definition 1.4.8. An operator A : C*°(M,E) — C*°(M, F) of the form

(Au)(y) = / K(y, 3) - u() dvol(z) (1.39)
M

with
KeC®Mx M,FRE")

is called a smoothing operator. The section K is called the smoothing kernel
of A.

Remark 1.4.9
i) A smoothing operator operator A extends uniquely to a bounded operator
L?*(M,E) — L*(M, F). In fact, for any u € C*°(M, E), we have:

Aul = [ Auty)? duol(y)
M
:/‘/K(y,:v)u(:v) dvol(:v)rdvol(y)
M M

< / [/|K(y,:v)|2dvol(:r3)-/|u(:6)|2dv0l(ac)} dvol(y)
M M

M

_ / / K (y, )2 dvol(z) dvol(y) - / ()2 dvol ()
M

M M
= K72 - llullZz

Thus [|A] 12 12 < [|K]z2.

ii) A smoothing operator A maps L?-sections to smooth sections, hence the name. In
fact, Au as defined in (1.39) is smooth in y, since K is smooth.

SLet f : X — Y and let E be a vector bundle over Y. Let # € X. Then the fiber (f*E), of the
pull-back bundle f*E is given by (f*E)z = Ey(s).
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iii) For a smoothing operator A, the induced operator A : L?(M,E) — H*(M,F) is
bounded for any k € N:

For any P € 27, (F,G) the composition Po A : L*(M, E) — C*(M,G) is again
a smoothing operator: Since M is compact and K (y,x)u(x) is smooth in y, the
differentiations in y commute with integration in x, and we obtain:

(PAu)(y) = /PyK(y,x) u(zx) dvol(x),
M

where P,K € C*(M x M,G X E*). In particular, for P = V* we have:
(5o AYul 1 < el
Hence A : L?(M, E) — H*(M, F) is bounded because we have

JAul g < € (|7 Au]| o + .. + [ Aulz2) < Clullze.
Next we want to approximate any section u € L?(M, E) by smooth sections which are

obtained from u by the application of a particular kind of smoothing operators. For this
purpose, we introduce the notion of a Friedrichs mollifier.

Definition 1.4.10. A family of operators J. : L>(M,E) — L?>(M,E), 0 < ¢ < «q,
go > 0, is called a Friedrichs mollifier if the following properties hold:

i) Each J is a self-adjoint smoothing operator.
ii) There exists a constant C' > 0 such that ||J.||12 ;2 < C holds for all € € (0, &o].

iii) For any k € N and any P € 27/ (E, E) the commutators [P, J.] extend to
bounded operators H*~1(M, E) — L?(M, E) and there exists a constant C' > 0
such that

[P, ]| <C for all € € (0, 0]

Hk_l,L2

iv) For every u € L?(M, E) we have J.u — u in L?(M, E) as € — 0.

Example 1.4.11. Choose a smooth function j : R”™ — R such that supp(j) C Bi(0),
J >0, j(—x) = j(z) for all x and [3, j(z)dx = 1. For € > 0 put

je@) =5 (2).

3

Then supp(j:) C B:(0), je > 0, je(—z) = je(z) for all  and

/je(ﬁﬂ)dac: i(%) j—f:/j(y)dyzl'

R™ R7 R™
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Now put

(ea)(w)i= [ el =) uty) dy
Rn
Smooth functions on the n-torus 7" = R™ /27 Z™ are in 1 — 1 correspondence to periodic
smooth functions on R”, i.e., to smooth functions u : R™ — R satisfying

u(x + k) = u(x), for all x € R", k € 2nZ".

Clearly, the operators J. preserve periodicity: If u is periodic then we have

(Jow)(z + k) = /ja<x k= y)uly) do = /ja@c — & ult + k) d

R™ R
_ / Je(x — & ul8) d& = (Jou)(x).
£

The family of operators J, : C®°(T") — C*°(T™") is a Friedrichs mollifier on 7™. A proof
of this fact can be found in Appendix A.

Remark 1.4.12. Using the example above, one can construct Friedrichs mollifiers on
arbitrary compact manifolds and vector bundles with the help of a partition of unity
and local trivializations of the bundle.

Proof of Prop. 1.4.5. Let v € L?>(M,E) and f € L?(M,F) be such that the equation
Du = f holds in the weak sense. Let (J:)o<e<s, be a Friedrichs mollifier on E. Put

U,D*JESD)LQ + (ua [JsaD*] QD)LQ
= (f, JESD)LQ + (ua [Jsa D*] QD)L2

By properties ii) and iii) of Definition 1.4.10 we have:

|(Due, @) 12| < [(f, Jep) 2] + ‘(% [JaaD*}(P)p‘
<N Fllzz - ez + llullpz - ||[Je, Dl ;o
< Cr- | fllzz - llellze + C2 - lullrz - [loll 2
= C3(f,u) - [l z2-
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Setting ¢ = Du, we obtain:
[Duellz2 < Cs(f, u).
Moreover, by property ii) of Definition 1.4.10, we have:
Juellr2 = |Jeullr2 < Cy [lull2.
Thus, by the Garding inequality (1.35)

[uellpr < Ca (| Duel| > + [Jucl £2)
< Cy(Cs(f,u) + C [lull 2)
< C5(f7 ’LL)
Thus ||u| 1 is bounded uniformly in e for € € (0,0]. By Lemma 1.2.16, we may

choose a sequence ¢; \, 0 and v € H'(M, E) such that u., — v in H'(M, E) and
thus also in L*(M, E).

On the other hand, by property iv) of Definition 1.4.10, we also have u., — u in
L?(M, E). Again by Lemma 1.2.16, weak limits are unique, hence v = v € H'(M, E).

We check that the equation Du = f holds in the usual sense: So let ¢ € C(M, F).
Since D : HY(M, E) — L*(M, E) is continuous, by Lemma 1.2.16, we have:*

(Du, <p)L2 = (D(w—Hl—'lim ugi),go)

2
1—00 L

— (w—L*~lim (Duy,), )

2
71— 00 L

= leifgo (Du&‘ia SO)L2'

Since u,, is smooth, Du., = Du,, and thus

(Du, gp) 2= Zlggo (Dugi, go) 12
= lim (ue,, D*¢)

1—>00 L2
= (’LL, D*QO) L2
- (f7 (:O)L2 :
Since this is valid for all ¢ € C°°(M, F) we conclude that Du = f. O

“Here and in the following w— H' — lim and w—L?— lim denote the weak limits in H'(M, E) and

1— 00 i— 00

L?*(M, E), respectively.
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Reminder. Let 7 be a Hilbert space. An unbounded operator A in 7 is a linear
map

A :dom(A) — 2,

where dom(A) C  is a dense linear subspace, called the domain of A. An operator A
with dom(A) C 7 dense is also called densely defined.

Let . be a Hilbert space and let A : dom(A) C # — S be an unbounded operator.
The adjoint operator A* of A is the operator such that the relation

(A*u, v) = (u, Av)

holds for all u € dom(A*) and all v € dom(A). The domain of the adjoint operator is
by definition the largest possible:

Definition 1.4.14. Let . be a Hilbert space and let A : # O dom(A) — S be an
unbounded operator. We set

dom(A*) :={u € |3 f € A with (f,v) = (u, Av) for all v € dom(4)}.

On this domain, define A* : 7 D dom(A*) — S by A*u := f.

Remark 1.4.15. The adjoint operator is well defined: For a given u € dom(A*), the
vector f € A satisfying (f,v) = (u, Av) for all v € dom(A) is uniquely determined by u,
since A is densely defined.

A densely defined operator A is called symmetric iff

(Au,v) = (u, Av) for all u,v € dom(A).

In this case, dom(A) C dom(A*) and A*|qom(a) = 4, i.e., A* is an extension of A. We
also write A C A*.
If A is symmetric and dom(A) = dom(A*) then A is called self-adjoint.

Proposition 1.4.16. Let M be a compact Riemannian manifold, let E — M be a
Riemannian or Hermitian vector bundle over M, and let D € @%(E, E) be a for-
mally self-adjoint Dirac-type operator.

Then the operator D : H'(M; E) — L?(M, E) is self-adjoint.

Proof. The fact that D is formally self-adjoint implies that D is symmetric. It remains to
show that dom(D*) C dom(D) = H'(M, E). Now for any u € dom(D*), by definition,
there is an element f € L?(M, E) such that

(u, Dv)p2 = (f,v) 2 Vo e H' (M, E).
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In particular, we have:
(u, Dv) 2 = (f,v)p2 Yve C*(M,E).

Hence the equation D*u = f holds in the weak sense. Proposition 1.4.5 implies u €
H'(M, E) = dom(D). O

Reminder. Let A : dom(A) C J — # be an unbounded operator on a Hilbert
space .. The resolvent set res(A) of A is defined as:

res(A) := {A € C| (A — \) : dom(A) — J# is bijective and (A — X\)~! is bounded} .

(1.40)
Here A — X is a short-hand notation for A — A -id .
The spectrum spec(A) of A is defined as the complement of the resolvent set:
spec(A) := C\res(A) (1.41)

For a self-adjoint operator A we have spec(4) C R and spec(A42?) C [0,00). A proof of
this fact can be found in books on functional analysis, e.g.in [6], Satz 30.5.

Now let D € @//1 (E,E) be a formally self-adjoint Dirac-type operator. Then the
operator D : H'(M; E) — L*(M, E) is self-adjoint. Since —1 ¢ spec(D?), the operator

D? +1:dom(D?) — L*(M; E)
has an inverse
(D* +1)"': L*(M, E) — dom(D* + 1) ¢ L*(M, E),

bounded in L?. Let Cy be an L2 L2-bound for (D? + 1)~!. Then we also find an
L2-H'-bound:

@7,
R e (G
< 0 { (DZ (D2 +1) "u, (D* + 1)_1u>L2 +Co- HUH%Q}
< a {(@+) @) w0+ ) (0?1 1) )+ ol )
< {0l oot}
< G- {lull-||(D*+ 1) u| , +2C0- ullz- |

IA
S
=
S
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Hence (D? + 1)_1 factors through H'(M,E). Thus K := (D? + 1)_1 : L2(M,E) —
L?*(M, E) is compact by the Rellich embedding theorem, see Remark 1.2.18 and Theo-
rem 1.2.14.

From the spectral theorem for compact self-adjoint operators we know that the Hilbert
space ¢ = L?(M, E) has an orthogonal decomposition

L2(M, B) = @D E(pn. K)
neN

into eigenspaces E(pin, K) = {v € L>(M, E) | Kv = p,v} of K. Moreover, all eigenspaces
are finite dimensional and the eigenvalues i, are real and j,, \, 0. Since K = (D? +1)~!
is injective, we have u, # 0 for all n and thus:

u € E(pn, K) < (D2+1)71u:‘unu

= (D +1)u="tu

n

_ 1
— D%y = <——1>-u.
Hn

Moreover, the eigenspaces E(u,,, K) are D-invariant, since for u € E(ju,, K), we have:

D?(Du):D(D2u):D<i_1>.u: <L_1>.Du.

Hn Hn

Therefore, D| E(un,K) 18 an endomorphism of E(ju,, K) and self-adjoint with respect to
(-,-) 2. Hence the K-eigenspaces E(j,, K) split L?-orthogonally into eigenspaces for D:

E(pin, K) = E(Ay, D) @ E (=, D),
where A\, == /— — 1.

Summarizing the above discussion we obtain:

Theorem 1.4.18. Let M be a compact Riemannian manifold, let E — M be a Rie-
mannian or Hermitian vector bundle over M, and let D € @%(E, E) be a formally
self-adjoint Dirac-type operator.

Then the spectrum of D : H' (M, E) — L?*(M, E) consists of eigenvalues only. Its
etgenvalues \,, n € 7Z, form a discrete subset of R and satisfy A\, 27 %o and
An N0 0. The ergenspaces E()\n,l_)) are all finite dimensional, and we have
the L?-orthogonal decomposition:

L*(M,E) = E(\, D). (1.42)
neEL
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Example 1.4.19. Let M = S' = R/27Z, and let E — M be the trivial complex line
bundle. Let D = i% and denote by u,(z) := e~ n € Z the usual orthonormal basis
of # = L*(S'). Then we have Du,, = i-(—in)-e~" = n - u,. Hence spec(D) = Z and
all eigenvalues have multiplicity 1. The orthogonal decomposition in (1.42) of a function
in L?(S') is nothing but the Fourier decomposition of the corresponding 2m-periodic
function on R.

Functional calculus

Let M be a compact Riemannian manifold, let £ — M be Riemannian or Hermitian
vector bundle over M, and let D € @% (E,E) be a formally self-adjoint Dirac-type
operator. Let f :spec(D) — R be a function on the spectrum of D.

We define an operator f(D) : dom(f(D)) C L?(M,E) — L*(M, E) as follows: By (1.42)
we may decompose any u € L?(M, E) into u =Y, ., u, with u, € E()\,, D). We then
put

F(D)u:="" f(Aa)tn- (1.43)

The largest possible domain of f(D) is the set of those u for which the right hand side
of (1.43) converges in L?(M, E). We thus set:

dom (f (D)) = {u = Zun ‘ Zf()\n) uy, converges in L?(M, E)}

ne’l nez
= {u= Y | X1 OE -l < e} (1.4
ne” nez

The equality holds, since the eigenvectors w,, n € Z, are mutually perpendicular and

hence || Y,z fOn)un 72 = Snez [F ) Pl 122

Examples 1.4.20
1) For f =1, we have f(D) = id 2. ).
2) Let f(A) = axA* + ... + a1\ + ao be a polynomial. Then

f (D) = aka + ...+ alD +ag - idLQ(M,E) .
Here (Dk) :=Do...oD.
-

k times

Proposition 1.4.21. Let M be a compact Riemannian manifold, and let E — M be
a Riemannian or Hermitian vector bundle over M. Let D & @%(E, E) be a formally
self-adjoint Dirac-type operator, and let f be a bounded function on spec(D).

Then we have:

D 272 — A - 1.45
£ (D)l . Aeiﬁe&m'“ ) (1.45)
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In particular, dom (f(D)) = L*(M,E).

Proof. Let u= Y u, € L*(M, E). We compute:

nez
17 (D)ullfe =3 1FOWI - unllz:
nez
< su 2 U
N AEspeI():(D ‘ 1%” nHL2
= sup  [FO)P - flulz.
A € spec(D)
This shows Hf( )HL2 2 S sup |f(A)| and dom (f([))) — [2(M, E). Now assume
A Espec(D)
Hf HL2 2 S sup |f(A)| — e for some € > 0. Choose \,, € spec(D) such that

A €spec(D)

[f(An)l > sup  [f(A)] e
A € spec(D)

Then for u, € E(\,, D)\{0} we find:

1 (D)un| 22 = I1f (An) - unll2:
— [F O - a2

>( sup [FN)] =) lunllZe
Aespec(D)

>||f( )||L2L2 ||UnHL2,

a contradiction. Hence ||f(D)|j22 = sup |f())]. O
7 Aespec(D)

Remark 1.4.22
For any two functions f1, fo on spec(D), the operators f1(D) and fo(D) commute. This
follows directly from the definition.

Example 1.4.23. For a fixed ¢t > 0, put f(\) := e, Then we have
L=sup|[f(A)]> sup [f(N)].
AER A € spec(D)

Hence the operator norm of exp(—tD?) : L?(M, E) — L?*(M, E) is bounded by 1.
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Proposition 1.4.24. Let M be a compact Riemannian manifold, and let E — M be
a Riemannian or Hermitian vector bundle over M. Let D & @%(E, E) be a formally
self-adjoint Dirac-type operator.
For any v € L?>(M, E), we have:

exp(—tDQ)uL—QML as t \, 0.

Proof. For any € > 0, there exists an N € N such that 3, - v |unl|2s < e. We compute:

lexp( — #D?)u —u

= 3 Jexp(—tA2) =17 flunlZa + > [exp(—tA2) = 1| [fu 2
In|<N [n|>N

<1

<e

2
< Y Jexp(—tA2) = 1|7 Jlunll72 + &
|n|<N

Since the first term is a finite sum, we obtain limsup,_,, H exp(—tD?)u — uHiQ <0+e.
By taking € \, 0, we end up with:

exp( — tDz)u L—2> U as t \, 0. U

Now for any u =Y, u, € L*(M, E), we have

_ _ 2
HDk exp (— tDQ)uHL2 = Z A2k exp (- 20\3‘),' l[un]%e
nez o

<C(t,k)

<C(tk) - llunllis
nez

= C(t.k) - ]2 (1.46)

Remark 1.4.25. a) We have for all k£ € Ny:
H*(M,E) = dom(D") = {u => up € L*(M,E) ( > A funllf2 < oo} .

nez neL

b) For every t > 0 the operator exp(—tD?) is a smoothing operator:

exp (—tD?) : L*(M, E) — C™(M, E).
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Proof. a) The second equation and the inclusion “C” in the first equation are obvious.
We prove the inclusion “D” in the first equation, i.e., we show by induction on k: if
u € L?(M, E) is such that D¥u € L?(M, E), then u € H*(M, E).
For k = 1 this follows from Proposition 1.4.5. Therefore let £ > 2 and assume that
the assertion holds for k¥ — 1. We have D*u = f € H¥(M,E) c H*'(M, E), thus
by the induction hypothesis we may assume that v € H*~'(M, E). Let (J.): be a
Friedrichs mollifier on M. We put u. := Jou € C*°(M, E). Then we have

DFu. = J.D*u + [Dk, Je|u,
and since D*u = f and by properties ii) and iii) of a Friedrichs mollifier we get
[1D*uc |2 < | JD ullz2 + [I[D*, JJull2 < Cr ([ fllL2 + Co [lull o,

where C1,C2 > 0 are independent of €. Moreover by property ii) of a Friedrichs
mollifier we have
[uell L2 < Cullull 2.

By applying the elliptic estimates (1.37) iteratively it follows that
uellzze < Ca(ll D ucll 2 + lluellz2) < Calllfllze + llull ga-),

where C3,Cy > 0 are independent of € as ¢ — 0. Therefore, the sequence (u.). is
bounded in H¥(M, E) as ¢ — 0. Hence there exists a weakly convergent subsequence

k 2
U, Twe HF(M, E). On the other hand, we have Ue; 2w by property iv) of a
Friedrichs mollifier. Since weak limits are unique, we conclude that w = u, and in
particular that u € H*(M, E).

b) The equation (1.46) now shows that for every u € L2(M,_E) we have exp(—tD?)u €
dom(D*) = H¥(M,E) for all k € N and thus exp(—tD?)u € C®(M,E) by the
Sobolev embedding theorem. O

Theorem 1.4.26 (Elliptic regularity). Let M be a compact Riemannian manifold,
and let E,F — M be Riemannian or Hermitian vector bundles over M. Let D &
@%(E, F) be a Dirac-type operator. Let u € L>(M,E) and f € L?>(M, F) be sections
such that the equation Du = f holds in the weak sense.

If f € H*(M, F) then u € H*1(M, E).

Proof. a) Let us first assume that £ = F and D is formally self-adjoint. Put
J. := exp(—eD?). By equation (1.45), we have |J.|[z2 2 < 1, since the function
A = exp(—eA?) is bounded by 1. Further, [J., D] = 0 by Remark 1.4.22. For any

2
v € L>(M, E), we have J.v T by Proposition 1.4.24. Finally, by Remark 1.4.25,
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we have J.v € C%®°(M, E) for any v € L?>(M, E). Hence the family J. is a Friedrichs
mollifier.

We show by induction on k € Ny that the maps J. : H*(M,E) — H*(M, E) are
bounded, uniformly in e. We have just seen that ||.Jc||2 2 < 1.

Assume that || J.[|gx gr < Cp for some constant Cp independent of . For any
v € H*1(M, E), we have by Proposition 1.4.2:

| Jcv|| a1 < C - (HDJEUHHk + || Jev]| v )
< C1 - (|[J-Do| e + Collv]| )
< Cy - (||Dv|| o + vl )

< Calol grsr

where Cj3 is independent of €.

Now let u € L?(M, E) be a weak solution of Du = f with f € H*(M, E), where we
still assume D to be formally self-adjoint. We prove by induction on k& € Ny that
f € H*(M, E) implies u € H*1(M, E).

For k& = 0, the implication coincides with Proposition 1.4.5. So let k¥ > 1 and let
f € H*(M,E). We have f € H*"'(M, E) and thus by the induction hypothesis we
have u € H*(M, E). Then we have by Proposition 1.4.2
[Jeull grer < Ca - ([[IDTewll g + || Jeullr)
= Cy - (|J=Dul| i + | Jeu grx)

a) _
< Cs - (IDull e + llull )

= Cs (If e + Il x)
< 06(u’ f) .

Thus the family J.u is bounded in H*+1, uniformly in e. Hence there exists a weakly

k+1
convergent subsequence J;;u B0 w e Hk“(M, E). On the other hand, we have

2
Jeju L%, w. Since weak limits are unique, we conclude that w = wu, and in particular
that u € H*1(M, E).

Now we drop the assumption that £ = F and D be formally self-adjoint. Instead,
we consider the operator

_ (0 D* .
D._<D 0>6J7///;(E@F,E@F),

which is obviously formally self-adjoint. We check that D is of Dirac-type:

e (0 D*\ (0 D*\ (DD 0\ .
DD_(D 0>'<D o>_<o DD*>_DD'
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Hence we have for the principal symbol:

02(DD*,€) = 02(D*D, €) = (JQ(D;D’@ UQ(D%*,§)>
_ (1P -ide 0
- ( 0 —l¢l*- idF>

= —[¢* - idper -

For the sections () € L*(M,E & F) and (S]c) € HX(M,E@ F)

oY) _ 0 D*\ (u)_(0Y)_ (0

o) \p o) \o)  \bpu) " \y
holds in the weak sense. We conclude from part b) that () € H**'(M, E @ F) and
hence u € H*1(M, E). O

Corollary 1.4.27. Let M be a compact Riemannian manifold, and let E — M be a
Riemannian or Hermitian vector bundle over M. Let D & @%(E,E) be a formally
self-adjoint Dirac-type operator.

Then all eigensections of D are smooth.

Proof. If Du = Au holds in the weak sense with u € L?(M, E) then Theorem 1.4.26

implies u € HY(M, E). Similarly, if Du = Au with v € H¥(M, E), then Theorem 1.4.26

implies u € H*'(M, E).

Hence u € (| HF(M,E) c C®(M, E) by the Sobolev embedding theorem. O
keNg

Corollary 1.4.28 (Fredholm alternative). Let M be a compact Riemannian man-
ifold, let E — M be a Riemannian or Hermitian vector bundle and let D €
@%(E, E) be a formally self-adjoint Dirac-type operator. Then we have

C>(M, E) = ker(D) & D(C®(M, E))

and the sum is orthogonal with respect to (-,-)pz.

Proof. One checks that D(C*®(M,FE)) = {u € C®(M,E)|(u,v)2 = 0forallv €
ker(D)}. The details are left as an exercise. O
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1.5. Hodge theory

Definition 1.5.1. Let M be a smooth manifold, and let £; — M, 7 =0,...,N +1,
be vector bundles over M. Let d; € @%(Ej,Ej+1), j =0,...,N, be first order
operators satisfying d;1 od; =0 for j =0,..., N — 1. Then the sequence

C®(M, Ep) 2 co(M, Ey) s ... B2 0(M, Ey) & 0°(M, En11)  (147)
is called a complex of differential operators and is denoted by (Fs,,ds).
The vector space

kerdj 2 COO(M, Ej) — COO(M, Ej+1)

j =
H(E,,d,) : imd;_; : C*°(M, Ej_1) = C>°(M, E;)

(1.48)

is called the j-th cohomology of the complex (F,,d,).
A complex (F,,d,) is called a Dirac complex, iff the manifold M and the bundles
E; - M, j=0,...,N + 1, carry metrics such that the operator

N N
D:=d+d" :=Pd;o@d; : C°(M,E®... ®En1) - C°(M,Eg®...®Eny1)
j=0 j=0

is of Dirac-type.

Remark 1.5.2. The condition d;4q o d; = 0 is equivalent to im(d;) C ker(dj41); thus
the definition of cohomology makes sense.

Example 1.5.3. The de Rham complex consists of the bundles £ := ANT*M with
the exterior derivative d; : C*°(M,NT*M) — C°(M,A7'T*M) on j-forms as j-th
differential operator. For any Riemannian metric on M and the induced metrics on the
bundles A7T*M, the de Rham complex is a Dirac complex, since the Euler operator
D = d + d* is of Dirac-type by Example 1.3.10.

Obviously, the j-th cohomology of the de Rham complex is nothing but the j-th de
Rham cohomology of M.

Example 1.5.4. Let M be a complex manifold of complex dimension m. For a fixed
p € {0,....,m} set E; := APJT*M and d; := V2 - 0. This defines the Dolbeault
complex of M. By Example 1.3.20, for any Hermitian metric on M and the induced
metrics on the bundles APJT*M, the Dolbeault complex is a Dirac complex, since the
Dolbeault operator D = v/2 - (9 + 0*) is a Dirac-type operator.

In the following, let M be a compact manifold, and let (F,,ds) be a Dirac complex
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on M. The aim of Hodge theory is to find particularly nice representatives of the
cohomology classes of (Fe,ds). The idea is to do this by minimizing the L2-norm: For
any cohomology class w € H’(E,,d,), we look for o € C*°(M, E;) that minimizes || - || .2
on w C C®(M, Ej). Thus for any n € C*(M, E;_1), we set

2
L2

o—i‘ H Y td; (
_dttzoa =11

d
- %‘t—o/<a+tdj—1 n,a+tdjq 77> dvol

M

- / [{a, dj—1m) + {dj_1n, )] dvol
M

= 2Re/(a,dj177> dvol
M

= 2Re/(djloc,n> dvol.
M

Thus,

/(d;loz,m dvol =0 for all n € C°(M, E;_1),
M

hence dj_;o = 0. By assumption, a represents a cohomology class w € HI(E,,d,),
hence d;o = 0. We thus conclude
Da = 0.

Definition 1.5.5. Let (E,,ds) be a Dirac complex on M. The operator

A, := D*D = D?

is called the Hodge Laplacian of the Dirac complex.

For the de Rham complex, we had already defined the Hodge Laplacians Ay in degree k
in (1.16).

Remark 1.5.6. Let M be a compact manifold, and let D be a self-adjoint Dirac-type
operator, acting on sections of a vector bundle E over M. Then we have Da = 0 <—

D?a = 0:
For, if D?a = 0, we have

0= (DZO%OC)M = (Da, Da) 2 = HDO‘H%%

and thus, Da = 0. The reverse implication is obvious.
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We have seen above that a dj-closed section v € C°°(M, E;) that minimizes the L?-
norm in its cohomology class necessarily satisfies Agja = 0. In the case of the de Rham
complex, this means that « is a harmonic form. For the general case we define:

Definition 1.5.7. Let D be a formally self-adjoint Dirac-type operator, acting on
sections of a vector bundle F over M.
A section o € C*°(M, E) is called harmonic iff Da = 0.

Remark 1.5.8. Let D be a self-adjoint Dirac-type operator, acting on sections of a
vector bundle F over a compact manifold M. By Remark 1.5.6, a section o € C*°(M, E)
is harmonic iff Agza = 0.

Theorem 1.5.9 (Hodge). Let M be a compact Riemannian manifold, and let
(Ee,ds) be a Dirac complex on M. Then any cohomology class in H*(Es,ds) has
a unique harmonic representative.

More precisely, the map

HI(E,,d.)
[o]

ker (Aq: C®(M, E;) — C*(M, E;)) —
o

is a vector space isomorphism.

Remark 1.5.10. Let o € C*(M, E;). By Remark 1.5.6, the condition Aga = 0 is
equivalent to « being harmonic, i.e. to

0=Da= dja +d;_jo .
~ =
€Ejr1  €Ej_q

Thus Aga = 0 yields dja = 0 and d;fla = 0. In particular, a represents a cohomology
class.

Proof of Theorem 1.5.9.

a) By definition, D = d+d* : C®°(M; E) — C*(M, E) is a formally self-adjoint Dirac-

N+1
type operator, where £ := @ FEj.
7=0
Let f be the function
) = sz, HA#O,
0 if A=0.
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Then flspec(p) is bounded. Thus G := f(D) : L*(M,E) — L*(M, E) is a bounded
operator. It is called the Green operator for D?, i.e., G is an inverse to D? on the
complement of its kernel.

Note that d and d* commute with D? = Ay = dd* + d*d. Thus the eigenspaces
E(D?,)\?) are invariant under d and d*, and hence d and d* both commute with G.
Now define for j =0,...,N + 1:
HI = ker (Aq: C*°(M, E;) — C™(M, Ej))
and let
7: L2 (M,E) - H°® ... HN T = H = ker(D)

be the orthogonal projection.

Then we have D?G = id —, since G is the Green operator for D?. We now put
H :=d*G. This yields

id —m = D*G = (dd* + d*d)G = dH + Had. (1.49)
We show that the map H/ — H7(E,,d,), a + [a], is injective:
For o € HJ with [a] = 0, there exists a section 3 € C*®(M, E;_1) satisfying o = dp3.
We then have

o =dp =d(id ) "2 d((dH + Hd + 7)) = dHdj = dHa = dd* Ga, = 0.
=0

We show that the map H/ — H7(E,,d,), a + [a], is surjective:
Let w € H/(E,,d,). Choosing any representative v € w and putting o := 7(7) € H/,

we obtain:

7 —a=(id-m)(y) = (dH + Hd)(y) = dH~.
Thus, a = v — dH~ and hence [o] = [7] = w. O

Corollary 1.5.11. The cohomologies H’(E,,ds) of a Dirac-complex over a compact
manifold are finite-dimensional.

Proof. By Theorem 1.4.18, the eigenspace H = ker(4A,) is finite dimensional. By the
Hodge Theorem 1.5.9, it is isomorphic to the direct sum of the cohomologies. ]
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Definition 1.5.12. Let M be a compact Riemannian manifold, and let (E,,ds) be
a Dirac complex on M. Let Ay be the Hodge Laplacian of the complex. The set of
harmonic sections in degree j is denoted as

HI(Eo,ds) = ker (Ag: C®°(M, E;) = C®(M, Ej)) (1.50)

Corollary 1.5.13 (Hodge decomposition). Let M be a compact Riemannian
manifold and let (Fe,ds) be a Dirac complex on M. Then for all j we have

C*(M, E;) = H)(E,,dy) ® dj—1(C™°(M, E;_1)) & dj(C™(M, Ej11))

and the sum is orthogonal with respect to (-,-)rz.

Proof. Put F := @;.V: J[)lEj. Then the Dirac-type operator D € Z7(E, E) is formally
self-adjoint. By the Fredholm alternative Corollary 1.4.28 we have

(M, E) = ker(D) ® D(C®(M, E)) = ker(Ag) ® D(C®(M, E))

and the sum is orthogonal with respect to (+,-)r2. The corollary now follows easily by
considering the degree j. O

Example 1.5.14. The dimension dimg HéR(M) =: b;j(M) of the j-th cohomomology
of the de Rham complex is called the j-th Betti number of M. The Betti numbers are
topological invariants of the manifold M.

Example 1.5.15. Let M be a compact complex manifold of complex dimension m. For
a fixed p € {0,...,m}, the dimension dim HP9(M) =: h?9(M) of the ¢g-th cohomology
of the Dolbeault complex (as defined in Example 1.5.4) is called the (p,q)-th Hodge
number of M.

Let M be a compact connected 2-dimensional Riemannian manifold, and let K be the
Gauf3 curvature of M. Then by the Gauf-Bonnet Theorem we have

/KdA =2m x(M) =4n (1 — g(M)), (1.51)
M

where y(M) is the Euler characteristic and g(M) = $b1(M) is the genus of M. Both

X(M) and g(M) are topological invariants of the manifold M, i.e. they only depend on
the homotopy type of M. A proof of these statements is postponed to Section 3.4.
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As a consequence of the GauB-Bonnet theorem, we observe that if g(M) > 2 then M
does not admit a metric of nonnegative Gaul curvature K > 0. If g(M) > 1 then M
does not admit a metric of positive Gaufl curvature K > 0.

The following theorem may be regarded as a generalization of this observation:

Theorem 1.5.16 (Bochner). Let M be a compact connected n-dimensional Rieman-
nian manifold. Then the following holds:

a) If Ric > 0 then by (M) = 0.
b) If Ric > 0 then by (M) < n.

Proof. Let Ay be the Hodge Laplacian, restricted to C*° (M,AlT*M). By the Hodge
Theorem 1.5.9, we have by (M) = dimker(Ag).

a) Assume that Ric > 0, and let a be a harmonic 1-form. By the compactness of M,
there is a k£ > 0 such that Ric > k. Using the Bochner formula (1.17) and integration
by parts, we conclude:

0= (Aga, )2
= (V*Va +Ric(a),a),,
(Va,Va) 2 + (Ric(a), a) .,

Val7z + sllall7,

Thus, |||z = 0 and hence o = 0.

b) Now assume Ric > 0, and let aq,...,ap4+1 be harmonic 1-forms. We show that they
are linearly dependent. From the estimate in a), we conclude

0= (Agey, )2 > [|Voyll7..

Hence Va; = 0.

Now fix 29 € M and consider ai(xo),...,any1(w0) € Ty M. Since dim(T; M) = n,

+1
j=1
Since M is connected, for any x € M, we find a smooth curve ~ : [0,1] — M such
that 7(0) = zg and (1) = . We then have

there exist ¢i,...,¢p+1 € R which are not all equal to 0 such that > 7" ¢; o; = 0.

n+1 n+1
\Y%

7 2 G a((t) =

J=1

¢j Vi, = 0.
! =0

<.
Il
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n+1

Since Y ¢;j a;(v(0)) =0, it follows that
j=1
n+1
cjaj(y(t)) =0, foralltel0,1].
j=1
n+1
In particular, ) ¢; a;(z) = 0 holds for any « € M. Thus, the 1-forms a1, ..., a1
j=1
are linearly dependent. O

Remark 1.5.17. The inequality in b) is sharp: The n-torus M = T™ carries a flat
metric, in particular Ric = 0, and it has b1 (T™) = n. Moreover, by a small modification
of the proof of Theorem 1.5.16 one can show a stronger statement: If Ric > 0 on M and
Ric > 0 somewhere on M, then by (M) = 0.

Intersection form and signature

Definition 1.5.18. Let M be a compact oriented manifold of dimension n and let
k €{0,...,n}. The intersection pairing is the bilinear form

B:Hyo(M) x HiZ"(M) — R
(0)18) ~ [ans

M

Remark 1.5.19. The intersection pairing is well-defined, since for closed forms o €
QF(M) and 8 € Q"#(M), the integral [,, @ A3 only depends on the de Rham cohomol-
ogy classes of a and 3: Replacing « in the first entry by a + dvy, where v € Q¥=1(M),

we find
Ja+anns— [ans= [ans= [auns+ [1n a8 -0
M M M

M M =0
————
=0 by Stokes

and similarly for the second entry.

Theorem 1.5.20 (Poincaré duality). For a compact oriented manifold M of di-
mension n, the intersection pairing

B: Hfp(M) x HIZ*(M) —» R
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1s non-degenerate. In particular,

be(M) = b (M) (1.52)

Proof. Let [a] € HEL(M) be a class such that for all [3] € Hg}gk(M), we have

B([al,[8]) =0.

We show that [a] = 0.

Choose a Riemannian metric on M. By the Hodge Theorem 1.5.9 we choose a har-
monic representative « of the class [a]. Put 8 := *a € Q" "%(M). Then § is a harmonic
representative” of the cohomology class 3] € H}jy F(M). We thus have

0= B([a],[8]) = /a/\ﬁ = /a/\ ko = /(a,a) dvol = ||a)3.
M M M
Hence o = 0 and thus the map H%,(M) — (Hggk(M))*, [a] — B(la],-) is injective.
It follows that by(M) < b,_r(M). Analogously one shows that the map Hglgk(M) —
(HE(M))*, [B) = B(-,[8]) is injective and that b, (M) < by(M). O

Corollary 1.5.21. For a compact oriented manifold M of odd dimension n the Euler
characteristic

(M) == 3 (~1)F by (M)

k=0

n

vanishes.

Proof. Since n is odd, we have that k is odd iff n — k is even. By Poincaré duality, we
have b (M) = b,_ (M), thus the k-th summand cancels with the (n — k)-th summand

fork::O,...,"T_l. O

In the following let M be a compact oriented manifold of dimension dim M = n = 4k.
Then § = 2k is even, so that the intersection pairing

B:Hgh(M) x HiE(M) — R,
(la).18]) /aAﬁ,

M

®The Hodge star operator * maps harmonic forms to harmonic forms: If o is harmonic then we have
d(xa) =+ % *xdx a=+*d"a=0 and d"(xa)=2x*d *(* o) =+ % da =0.
~ ~ NG -~

=&d” =0 =+id =0
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is symmetric. The corresponding quadratic form on HC%E(M ) is called the intersection
form.

Choose a Riemannian metric on M and consider the Hodge star operator
w0 HF(M) — H*F(M)

on the space H2*(M) of harmonic 2k-forms on M.

By Lemma 1.3.16 c¢), we have that +> = 1 on the space of 2k-forms of a 4k-dimensional
manifold.

Thus we may put

HT := +1-eigenspace for *,
‘H™ := —1-eigenspace for .
Now for @ € H*, we have

B(lal, [a]) = /a/\a _ i/a/\*a — +a|

M M

For « € H' and 8 € H~, we have

B([a],[ﬂ]):/a/\ﬁ:/*a/\B:/ﬁ/\*a:/(ﬁ,a>dvol:/a/\*ﬁ
M M

M M M

:_/aAa:—B([aHm)

M

and thus, B([a], [3]) = 0. Hence in the splitting H35(M) = H* & H~, the intersection
form B is positive definite on H ™, negative definite on H ™, and the two subspaces are
perpendicular with respect to B.

Definition 1.5.22. Let M be a compact oriented Riemannian 4k-dimensional man-
ifold. The harmonic 2k-forms in H* are called self-dual, those in H~ are called
anti-self-dual. We set

b (M) := dimH T,
b~ (M) :=dim#H .

The signature of M is defined as

sign(M) :=bT (M) — b~ (M).
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In the following let M be a compact complex manifold of complex dimension m and
consider the map
B: HPY M) x H™Pm (M) — C
(ls) = [ans
M

As for the intersection pairing in de Rham cohomology, the map B is well-defined:
Replacing « in the first entry by a + 0y, with v € QP9=1(M), we find

[@+onns—[ans=[@)rs=[@nns- [@nns

M M M
:/d('y/\ﬁ)i/’y/\dﬂzi/’y/\ 0B + /’y/\(?ﬁ
~—
M M M =0 M
=0 =0 since

,‘/Aa/gegmﬁ»l,mfl

and similarly for the second entry. We have used that Oy A 3,y A 9B € QmFim=1 = fo},
For any Hermitian metric on M, the Hodge star operator induces a map

* ¢ Ap7QT*M - Am—p,m—qT*M.
For if a« € AP9T*M and B € AR T M, with (k,1) # (m — p,m — q), we have
(xa, B)vol = B A a € AFPIFITI N = {0},

since vol € AFP4HT* M implies k 4+ p+ g+ 1 = 2m and thus k +p > m or ¢ +1 > m.
Now let a € QP9(M). Then we have

GQP*LQ(M) er,qfl(M)

On the other hand, we also have

da=—xdx*a«
=— x90xa — #0xq«
—— ~——

eQpr—La(M) eQra—1(M)

Thus
O = —x0x% and 0F = — %0 *.

Now the same argument as in the proof of the Poincaré duality Theroem 1.5.20 yields
the following:
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Theorem 1.5.23 (Kodaira-Serre duality). Let M be a compact complex manifold
of complex dimension m. Then the bilinear form

B: HPY(M) x H™" PMm (M) — C
1s non-degenerate. In particular,

WPA(M) = hm=Pm=1(]f),







2. Spinors and the classical Dirac operator

2.1. Clifford algebras

Definition 2.1.1. Let K =R or C and let V' be a finite-dimensional K-vector space
equipped with a symmetric bilinear form (.

A Clifford algebra for (V, ) is a unital K-algebra A together with a linear map
1: V. — A such that the following properties hold:

i) 1(v)? = —B(v,v) -1, forallveV,

ii) (A,2) is universal with respect to i), i.e.:

Whenever A’ is a unital K-algebra with a linear map +' : V' — A’ satisfying i) then
there exists a unique algebra homomorphism ¢ : A — A’ such that the diagram

A

v

v )

RN

A/

commutes. In other words: A is the smallest algebra that satisfies property 1).

Remark 2.1.2. By a polarization argument, one immediately sees that property i)
above is equivalent to the Clifford relation

i') 1(v) - (w) +21(w) - 1(v) = =2 B(v,w) - 1, for all v,w e V. (2.1)

Remark 2.1.3. Let (M,g) be a Riemannian manifold and let D € 2,7 (E,E) be
a formally self-adjoint Dirac-type operator. By equation (1.18), property i) holds for
(V,B) = (TiM,gl|,), A = End(E,), and + = o1(D,-). However, ii), does not hold in
general.

Example 2.1.4. Let 8 = 0. The Clifford relation (2.1) yields ¢(v) - 2(w) = —(w) - o(v)
for all v,w € V. Let n = dim(V) and let A := A*V = @} _, A¥V be the exterior algebra
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of V. Themap1:V SNV ATV =4 obviously satisfies property 1i).
Now let +/ : V. — A’ be any map from V to a K-algebra A’ satisfying property i). A
morphism ¢ : A = A¥V — A’ as in property ii) necessarily satisfies

d(vr Ao Avg) = d(u(vr) Ao Aa(vg))
= ¢(u(v1)) - ... - o(e(vr))

=7 (v) ... 7/ (vg).

Hence ¢ is uniquely determined. Clearly, ¢ : AV — A’ defined by this formula yields a
homomorphism with ¢ o1 =1/

Proposition 2.1.5. Let V be a finite-dimensional K-vector space and let B8 be a sym-
metric bilinear form on V.

Then there exists a Clifford algebra (A,1) for (V, (). The pair (A,2) is unique up to
isomorphism.

Proof.
Uniqueness: Let (A,1) and (A’,7") be two Clifford algebras for (V, §).
By the universal property for A, there exists A
an algebra homomorphism /
Diag. 1

¢ A A 1% 6 B

such that diagram 1 commutes. ,\\\
A/
Similarly, by the universal property for A’, Al
there exists an algebra homomorphism /
Diag. 2
i A A, v e

such that diagram 2 commutes. \
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A
We now combine both diagrams to the alongside commu- ) ¢
tative diagram. The uniqueness in the universal property
of (A,1) yields V— Al
pog=idy.
A P
A
AI
Analogously, we combine the first two diagrams to the o "
alongside commutative diagram. Then the uniqueness in
the universal property of (A’,7') yields v 2 A
potp=ida .
, ¢
(2
A/

Thus ¢ is an isomorphism with inverse .

o0
Ezistence: We consider the tensor algebra 7(V) := @ ®*V and define the inclusion
k=0

0wV SeW o T(V). Let I C T(V) be the two-sided ideal generated by all elements
of the form
vRW+wRv+26(v,w) -1, v,w e V.

V—25T(V)

Put A := T(V)/I and denote by 7 : T(V) — A
the quotient homomorphism. Then define ¢ by the -
alongside commutative diagram, i.e., 1 = 7 0 1.
A
We check that the Clifford relation 2.1 (property i’) in Definition 2.1.1) holds:

uv) - o(w) +o(w) - 1(v) = 7(20(v)) - w(20(w)) + 7 (20 (w)) - 7(20(v))
(10(v) @ 19(w) + 20(w) @ 120(v))
—26(v,w) - 1.

We check that property ii) of Definition 2.1.1 holds: Let A’ be any unital K-algebra,
together with a linear map ¢’ : V' — A’ satisfying property i) of Definition 2.1.1.



68 2. Spinors and the classical Dirac operator

a) Uniqueness of ¢p: Let ¢ : A=T(V)/I — A’ be a homomorphism satisfying ¢por =4/
Then we have:

¢(ﬂ(@1 R...xQ Uk)) = ¢(W(10(U1))) o ¢(W(10(Uk)))

Thus ¢ is uniquely determined.

b) Erzistence of ¢:  Consider the unique homomorphism V' 20 T(V)
Y :T(V)— A’ such that the following diagram commutes.
Then we have: / »

Yo ®...@vp) =7 (v1) ... (vg). Al
We need to check that the diagram factorizes through A, i.e., 1 vanishes on the ideal
I and hence descends to the quotient A = T (V')/I. For v,w € V, we compute:

Y @w+we v+ 26(v,w)l)
= (w0 (v) ®w(w) +10(w) @ 10(v) + 28(v, w)1)
= P(10(v)) - Y0 (w)) + P10 (w)) - P(r0(v) + 28(v, w)1
=7 (v) - (w) + 7/ (w) -/ (v) + 28(v,w) - 1
=0.

In the last equality we have used property i) from Definition 2.1.1 for ¢/ : V. — A'.

Thus ¢ : T(V) — A’ descends to a homomorphism

T(V)—= A
¢p:A=TV)/I— A,
» ¢
such that the alongside diagram commutes. Clearly, the homo- M

morphism ¢ is uniquely determined by the homomorphism .

Moreover, the alongside diagram commutes. v /—\

We have thus constructed a homomorphism
¢ A — A satisfying por=1.
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Definition 2.1.6. Let V' be a finite-dimensional K-vector space, equipped with a
symmetric bilinear form 5. We denote the Clifford algebra for (V, 8) by CL(V, 3).

Remark 2.1.7. Let V be a finite-dimensional K-vector space, and let 8 be a symmetric
bilinear form on V. For any Clifford algebra (A,:) the map 2 : V — A is injective:

If the symmetric form f is definite then this is clear from i) of

(2
Definition 2.1.1: 4 4
(0] = ~B(v,v) 1. \ .
11 -
In the general case, we have the alongside commutative dia-
gram. Since 11(v) = v ¢ I, the map 17 is injective. Hence so TV)/1

is .
Remark 2.1.8. Let V be a K-vector space, and let b1,...,b, € V be a basis of V. Then

{bil ®R...Q blk} keNg

1<iy,eoyip <n

is a basis of the vector space T (V). Thus the elements
{biy - .. by} ke
1<

<igyenip<n
generate the Clifford algebra 7(V)/I as a vector space. We use the Clifford relations
b -bj = —bj - by —23(b;,b;) - 1 to express all elements of 7(V')/I as linear combinations
of
{bi, - ... by} keng

1<41 <ip<...<ip<n

Moreover, we use the relation b; - b; = —/5(b;, b;) - 1 to express all elements of 7(V)/I as
linear combinations of

{bil et b,‘k }k:O,l,mn

1<ig <ig<...<ip<n '
In particular, dim A < 2" < co. We will see later that dim A = 2", hence this generating
system is a basis of the Clifford algebra CI(V, j3).

Example 2.1.9. Consider V = R with the symmetric bilinear form f(z,y) := x - y.
Let e; be the standard basis of R.

e The elements 1 and e; generate CI(R, 3) as a vector space. If 1,e; € CI(R, 3) were
linearly dependent, i.e., e; = « - 1 for some « € R then it would follow

o 1=et=—Per,e1) - 1=—-1. 4
e The vector space isomorphism ¢ : CI(R, 8) — C, defined by
gb(al_i—ﬁel) :al_{_/ﬁly

is also an algebra homomorphism. Hence, CI(R, 5) = C.
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Example 2.1.10. Consider V = R with the symmetric bilinear form ~(z,y) := —z - y.
Let e; be the standard basis of R. Then e? = —y(ep,e1)1 = 1.

e Again, 1 and e; generate CI(R,~) as a vector space. If 1,e; € CI(R,~) were linearly
dependent, i.e., e = - 1 for some « € R then it would follow that

e1 —a -1 as an element of 7(R) was contained in I,
in other words,

ep—a-l=z®(e1®e; — 1)y, for some z,y € T(R).
We write
T = Tmax + Llower and Y = Ymax + Ylower

where Tpax 7 0 and ymax 7 0 are homogeneous of maximal degree. Then

e1—a-1= Tmax @ €1 ® €1 ® Ymax + lo.t.

degree <1 degree = deg(zmax)+2+deg(ymax) > 2 lower degree

Thus,
Tmax ® €1 ¥ e & Ymax = 0 é t0 Tmax 7é O, Ymax 7é 0.

Hence, 1, e; form a vector space basis of CI(R,). Thus, 1(1+e1), 3(1 —¢1) is also a
vector space basis. Moreover, we have:

1 1 1
gEe) s(lxe)= (1ieliel+e§):§(1iel)

I N N

%(14—61)-%(1—61): (1—61+€1—€%) =0. (2.2)

e Consider the vector space isomorphism ¢ : CI(R,v) - R@ R,
(I+e)+8-

- (1 —e1) — (o, B).

N |

1
2
We check that ¢ is also an algebra homomorphism, where the multiplication in R @ R
is defined componentwise:

(b((a . %(1 +e)+ 0 %(1 - 61)) . (o/ . %(1 +e1)+ 4 - %(1 — el)>)

@ ( v+ La-a)

= (ad,55")
= (a.0)-(o.5)

= oo gUrensagi-ea)) oo G 5 g0 -e).
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The tensor algebra T (V) is Z-graded, i.e., it admits a decomposition
TV) =T V),
1€EZL
such that the multiplication of the homogeneous components corresponds to the addition
of the degrees:
T(V)- T/ (V) C TH(V),

where

W, i>0

ﬁ”q:{o i <0.

This Z-grading does not descend to a Z-grading of Cl(V, (), unless 8 = 0, because
the ideal I is not generated by homogeneous elements. In the generating elements
Vw4 w v+ 26(v,w)l of the ideal I, the part v ® w + w ® v has degree 2, whereas
B(v,w) - 1 has degree 0.

Instead of the Z-grading of the tensor algebra, consider the Zo-grading

T(V) — Teven(v) @ TOdd(V),
where

TV) = P T(V), THV)=PTV).

i even i odd

This grading descends to the Clifford algebra CI(V, ), since the ideal I is generated by
elements in the even part.

A more intrinsic definition of the Zg-grading is given as follows: Let 2 : V' — CI(V, ) be
the standard embedding. Consider ¢’ : V' — CI(V, 8), defined by

/' (v) = —1(v), VoeV.

Then ¢ satisfies

CI(V; 5)
Thus, there exists an algebra homomorphism )
¢ : Cl(V,B) — CI(V,B), such that the alongside dia- /
gram comiutes. Vv &
Upon identification of «(V) C Cl(V, ) with V' we have \
(;5|V = —id. J
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This yields a decomposition
CIV, B) = CI°(V, ) @ CIY(V., B),
where

C1°(V, 8) = +1 — eigenspace of ¢
C1Y(V, ) = —1 — eigenspace of ¢.

Definition 2.1.11. Let A = A° @ A! and B = B° @ B! be Zy-graded K-algebras,
where K =R, C, i.e.

APA" 4 ATAY c A APA + ATAY c AL
Then the Za-graded tensor product A @ B of Zs-graded algebras is given by

A®B = A® B as a vector space,
where

(A%B)°=A°® B¢ A' ® B!
(A9B)' =A@ B'@ Al @ B
with the multiplication

(a®@b)(d @) =(-1)"ad @bV, ac Ad €A bec BV cB.

Let (V;,0;) , i = 1,2, be finite dimensional K-vector spaces, equipped with symmetric
bilinear forms. By B @ 2, we denote the uniquely determined symmetric bilinear form
on Vi @ Vo which restricts to 5; on V; and for which the subspaces V; C Vi @ Vs, i =1, 2,
are mutually orthogonal.

Proposition 2.1.12. LetV;, 1 = 1,2, be finite-dimensional K-vector spaces, and let 3;
be symmetric bilinear forms on V;. Then we have:

CL(V1 @ Va, B1 @ Ba) = CI(V1, B1) & CL(Vz, Ba2).

Proof.
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a) Consider the linear map

jivieVe — CUVi,B1) @ Cl(Va, Ba)
V1 +v2 — 21(2}1)@)1—}—1@22(’02).

By Definition 2.1.11, we have:

jr+v2)? = (uv)®1+1® zz(vz))2
= (11 (v1) ®1) (11 (v1) ® 1) + (11 (v1) @ 1) (1 ® 22(v2))
+ (1 ®12(v2)) (11 (v1) @ 1) + (1 B 22(v2)) (1 @ 22(v2))

= Z1(711)2 ®1411(v1) ®12(v2) —211(v1) @22(v2) +1® 12(?}2)2

= —p1(v1,v1)1 @1+ 1® (= Ba(v2,v2)1

= —(B1(v1,v1) + B2(v2,v2)) 1 ® 1

=—(01 @ Ba)(v1 +v2,v1 +v2)1 ® 1.
In the last step we used the fact that the mixed terms in 51 @ Ba(v1 + ve,v1 + v2)
cancel, since V1, Vo C Vi @ V4 are mutually perpendicular with respect to 81 & Bs.
Thus, by the universal property for Cl(V; @ Va, 31 @ f2) there exists an algebra

homomorphism

¢ : CUVL @ Vo, B1 @ Ba) — CL(V1, B1) @ CL(Vy, ),
such that the diagram

CI(V1 & Va, B1 @ f2)
V1 ©® V2 ¢
T
C1(V4, B1) @ Cl(Va, B2)

commutes.

b) To show that ¢ is an isomorphism, we construct its inverse:

By the universal property for CI(V;, 3;), i = 1,2, there exist unique algebra homo-
morphisms v; such that the diagrams

Vi »i

\Vi\

Cl(Vi ® Va, B1 @ f2)
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commute for i =1, 2.

We define the map v : C1(V4, 31) ® Cl(Va, B2) — Cl(V1 @ Va, B1 @ 2) by

Y(a®0b) = P1(a) - Y2(b), for all a € CI(V4, B1),b € Cl(V2, B2).

The map @ is linear and also multiplicative: By Definition 2.1.11, we have for all
a € Cl(V4, £1), a € Cl(Vl,ﬁl) be Cl(‘é,ﬁg) b e Cl(Va, B2):

Y((a®b)(d @b)) =9 ((—1)7ad @ bb)
= (=1)Y4p1(ad’) - P2 (D)
= (=171 (a) - 1 (a’) - 2 (b) - o (V)
= 1(a) - (D) - P1(a’) - o (V)
=YP(a®b)-Y(d V).

Hence, ¥ : C1(V1, B1) ® C1(Va, B2) — Cl(V1 @ Vs, B1®32) is an algebra homomorphism.

c) We check that 1) is the inverse to ¢. We have the following commutative diagram:

Cl(V1 @ Va, B1 @ B2)

Vi @ Vo —2= CI(Vi, 1) & Cl(Va, )

|

Cl(V1 @ Va, 81 @ B2)

The uniqueness in the universal property for C1(Vy @ V3) yields ¢ o ¢ =
To show that ¢ o ¢ = id, we compute:

o (¢ (01 (v1) ®12(v2)))

(41 (Z 1)) - 2 (12(v2)))

(2lv4 (v1) - 2z (v2))

(u( vl) é(1(v2))

(v1 ) ( 2)

1 (v1) ®1) (1 ®12(v2))

1(v )®12(1)2). O

¢
¢
¢

J
(u

Corollary 2.1.13. Let (V,3) be a finite dimensional K-vector space, equipped with a
symmetric bilinear form . Then we have dimg C1(V, 8) = 2dim=V’
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Proof. a) If (V;,0;), i = 1,2, are K-vector spaces with symmetric bilinear forms g;

and if f: Vi3 — V5 is a K-linear isomorphism such that for all v,w € V; we have
Ba(f(v), f(w)) = Pi(v,w), then the Clifford algebras Cl(Vi, 1) and Cl(Va, f2) are
isomorphic. The proof of this statement is an exercise.

We prove the statement of the corollary by induction on n := dimg V.

Let n = 1. By part a) we may assume that V = K and that there exists a € K such
that for all v,w € K we have f(v,w) =a-v - w.

For K = R and a # 0 the map f: R — R, f(z) := \/m - x is an isomorphism
such that B(v,w) = £f(v) - f(w) for all v,w € V. By part a) it is thus sufficient
to consider B(z,y) = +z -y and § = 0. We have already computed these Clifford
algebras Cl(V, 3) in Examples 2.1.4, 2.1.9 and 2.1.10. In either case, we obtained
dimg CI(V, 3) = 2 = 2%

For K = C it is by part a) sufficient to consider f(x,y) = —z -y and 8 = 0. For
B(z,y) = —x -y an argument as in Example 2.1.10 shows that C1(C, ) 2 C® C, for
B = 0 we have the result from Example 2.1.4. Again, we have dimc C1(V, 8) = 21

Now let n € N be arbitrary. Assume that dimg CI(W, ') = 2"~ for any (W, ')
with dimg W =n — 1. Let b1,...,b, € V be a basis such that the b; are mutually
perpendicular with respect to 8. Consider the splitting

V=K-0d(K-bo®...0K-b,).
S—~— ~- 4
=V =:Vh

By Proposition 2.1.12, we have:

CI(V, 5) = Cl(vl?ﬁh/l ><V1) ® 01(1/2,5|V2><V2)'

In particular, we have:

dim C(V, B) = dim (CL(V1, Blvi xvy ) © CL(Va, Blvax1z))
= dim CI(V1, Blv; xv, ) - dim CL(Va, Blvyx1s)
—92.9n"1
= " |

Example 2.1.14. Let Bquc denote the standard Euclidean scalar product on R™ for any
n € N. Consider CI(R?, Beuel). By Proposition 2.1.12, we have:

CI(RQ, 5eucl) = CI(R, 6eucl) ® CI(R, 5eucl) =C®C.

Let e1,es be the standard othonormal basis of R2. Then a vector space basis of
CI(R2, Beyal) is given by 1,e1,es,e1 - €. We then have the following identities for the
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basis elements:

N

61:—1

2

62:—1

2 2 2
(e1-€2)" =e€1-€9-€1-e9=—e7-€5=—1

Hence there is an algebra isomorphism CI(R?, Beua) — H, given by

1—1
e1+—1
e J
61-62#—)](5.

Here H denotes the quaternions. Hence CI(R?, Beya) = H.

Remark 2.1.15. Let V be a K-vector space with a symmetric bilinear form g and let
AV = EBZ:OAI“V be the exterior algebra of V. If vy,...,v, is a basis of V then the
vectors

vy Ao A, € AV -y € CI(V, B),

1<ip <...<ip<n,0<k<n, form a basis of A*V and CI(V, 3) respectively. One
shows easily by induction on n = dim V' that there exists a S-orthogonal basis vy, ..., v,
of V', ie., B(v;,v;) = 0 for i # j. For such a basis vy, ..., v, of V the map

®: AV = CHV,B) given by v, A...Avj = v ..Uy,

and linear extension is independent of the choice of S-orthogonal basis. ® is an isomor-
phism of vector spaces but not an isomorphism of algebras.

2.2. The Spin Group

Notation 2.2.1. In the following, we denote the Clifford algebra of R™ with the
standard Euclidean scalar product by Cl,, := CI(R", Beyel)-

Remark 2.2.2. Upon identifying R™ with ¢(R") C Cl,, for every v € R™\ {0}, we have

v? = —|v|?- 1 and thus
v v
—_ .y = - _— —
[o]? [o]?

Thus, R™ \ {0} is contained in the subgroup of (multiplicatively) invertible elements
of Cl,,.
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Definition 2.2.3. We define the Pin group Pin(n) by

Pin(n) := {vl-...-vaCln|vj€S"_1CR",m€N0}.

Remark 2.2.4. The subset Pin(n) C Cl, is a group with respect to the multiplication
in Cl,,. The inverse element to vy - ... - vy, is given by

(V1 V) = (=vm) - ... - (—v1) € Pin(n).

Definition 2.2.5. We define the Spin group Spin(n) by

Spin(n) := Pin(n) N C12
= {vl-...-vaCln|vj e S" 1 m e 2N, }

Remark 2.2.6. By the argument from Remark 2.2.4, Spin(n) is a subgroup of Pin(n).

For a fixed v € S"~! € R™ and any 2 € R", we have:
vorvl=—vrv=—(—2-v-2(z,0)1) v =—(v - 2(z,v)v).

The map = — (x — 2(x,v) v) is the reflection about the hyperplane v perpendicular
to v. In particular, (z + v -z -v~!) € O(n). For any a := vy ... vy, € Spin(n), the map

:Ur—>a-ac-a_1:vl-...-vm-x-vgl-...-vfl

consists of an even number of hyperplane reflections and is thus contained in SO(n). We
have thus defined a group homomorphism p : Spin(n) — SO(n) by

ola)z:=a-z-a b (2.3)

Example 2.2.7. Let n = 1. Then we have SO(1) = {1} and

Spin(1) = {vi ... vy |v; € S%m € 2Ny}
= {c1e1- ... emem |g; = £1,m € 2Ny}
= {_171}
= 7.

Example 2.2.8. Let n = 2. Then SO(2) = U(1) = S! C C and we have:

Spin(2) = {(cos #1e1+sinbrez)-. . .-(cos O, eq1+sin O,,e2) { 0;eR,j=1,...,m, me 2Ny}
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Now we compute:
(cos feq + sin fes)(cos peq + sin peg)
= —cosfcosp —sinfsinp + (cosfsinp — sinf cos p)ey - o
= —(cos (0 — ) +sin(0 — e - €2)
and
(cos(a) + sin(a)eq - e3) - (cos(B) + sin(f)ey - e2)
= cos(a) cos(3) — sin(a) sin(B) + (cos(a) sin(B) + sin(a) cos())ey - €2
= cos(a + ) + sin(a + B)e; - ea.
We thus obtain:
Spin(2) = {(—1)% (cos (61 — 02) +sin (01 — Ba)er - ea) - ...

-(Cos (O—1 — Op) +sin (0—1 — O )eq - 62) ‘ 0; e R,m e QNO}
= {1
—|—sin(6?1 —0y4+03—04+...+0,_1 —Hm)61 -62) | 6]‘ eER,m e QNQ}

= {i(cosa + sinaeg - eg) ‘ = R}

3

(COS(al—92—|—93—94—|—...+9m,1—Hm)

= {cosa + sin ey - es ‘ a € R}
=~ U(1)
=~ S0O(2).
We compute the group homomorphism p : Spin(2) — SO(2): For j = 1,2, we have:

o(cosa +sinae; - e2)(e;)
= (cosa +sinae -e) -e; - (cosa+sinae; -ez) !
= (cosav+sinacey - ez) - € - (cos (—a) +sin (—a) eg - e2)
= COSQer —cosasinae; - ey ey +cosasinae; -eg - ej — sin2ael “eg-€j-el e

2cos asina ey 7 =1,

= ((3082 o — sin? a) ej + . ]
—2cosasinae; j=2

sin(2a)es  j=1,

= cos (2a) ej + {

Thus,

—sin(2a)e; j=2

cos2a —sin 2«
sin2a  cos2a )

o(cosa+sinae; -e3) = <
In summary, we have the commutative diagram:

Spin(2) — U(1)

Ql lH

SO(2) — u(1)
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Remark 2.2.9. Recall from Remark 2.1.15 that there is a canonical isomorphism of
vector spaces ®: A°R™ = Cl,,. We equip the Clifford algebra Cl,, with the unique scalar
product such that ® is an isometry. If vq,...,v, is any orthonormal basis of R™, then
the elements v, -...-v;, 1 <i; < ... <i; <n, 0 <k <n, form an orthonormal basis
of Cl,, with respect to this scalar product. Moreover, for any unit vector v € S®~! the
map p,: Cl, — Cl,, X — X - v is an isometry. In order to see this extend v to an
orthonormal basis of R™ and use that the map pu, acts by permuting the corresponding
basis vectors of Cl,,.

Proposition 2.2.10. For any n € N, the sequence
1 — Zo — Spin(n) 2 SO(n) — 1

1S exact.

Proof. a) The map g : Spin(n) — SO(n) is surjective:
By a classical result of Elie Cartan, every A € O(n) is the composition of at most n
hyperplane reflections. Thus, any given A € SO(n) is the product of an even number
of hyperplane reflections. Let the i-th hyperplane be the orthogonal complement
to v; € S~ Then we have v; - ... vo € Spin(n) and o(vy - ... - va) = A.

b) It remains to show that ker(p) = Zo = {1,—1}:
Writing —1 = e - e; € Spin(n) and applying o, we obtain:

o(-1)(z) = (-1) -z (1) =
Thus, {1, -1} C ker(p).
Conversely, let a € ker(p). Then for all z € R™, we have:

z=oa)(z)=a-z-a L.
Equivalently, we have x - a = a - z for all x € R™ and in particular, x - a = a - x for
all z € Cl,. Hence, a is contained in the center Z(Cl,) of Cl,. Moreover, we have
a € Spin(n) C C1Y. Now for any n € Ny we have

Z(Cl,)NCY =R -1, (exercise !),

hence a = a1 for some « € R. Since a € Spin(n), we can write a = vy - ... - v, for
some v; € S""! and m € 2Ny. We denote by | - | the norm induced by the scalar
product on Cl,, constructed in Remark 2.2.9. Using that Clifford multiplication by
vy 1S an isometry we get:

la| = v oo Vet - O = |01 U]

Now we proceed inductively and obtain |a] = |v1| = 1. Hence, a = +1 and thus
a € {1,—1}. Therefore, ker(p) C {1, —1}. O
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Remark 2.2.11.
Let CI)f := {x e Cl, | JyeCl,st. z-y=1 } be the group of invertible elements in the
Clifford algebra Cl,,. Then we have:

i) The map

ClL, xCl, — Cl,
(a,b) — a-b

is a bilinear map on a finite-dimensional R-vector space, hence it is smooth.
ii) The map

Cly — CLf

a — a !

is also smooth.

Thus C1 is a Lie group.

Remark 2.2.12. Part a) of the proof of Proposition 2.2.10 shows that every element
a € Spin(n) is of the form

a==xvi-... vy Withm:2k§n,vj65"71.
We may drop the minus sign by replacing v; by —v; if necessary, to obtain
a=v1-... Uy, withm=2k<n.

By multiplying with 1 = e; - (—ej), we can increase the number of factors by 2. Thus,
we can assume w.l.o.g. that

n n even

a=v] ... 0 with m =2k =
! " {n—i—l n odd

Hence, we have a surjective continuous map

m times
Sl x ... x 8"t —  Spin(n)
(V1,3 Um) = V1o Upy.

It follows that Spin(n) is compact. In particular, Spin(n) C CL¥ is a closed subgroup.
Thus, Spin(n) is a Lie group and the homomorphism

o0 : Spin(n) — SO(n)

is a 2-fold covering.
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Proposition 2.2.13. The Spin group Spin(n) is connected, if n > 2 and simply-
connected, if n > 3.

Proof. Assume n > 2.

a)

From the exact sequence in Proposition 2.2.10 we get the long exact homotopy se-
quence (base point = 1):

— 7T1(Z2) — ﬂl(Spin(n)) — 7T1(SO(7”L)) — WQ(ZQ) — ﬂo(Spin(n)) — ﬂo(SO(n)) .
={1} =17 ={1}

Claim: The map m(Zs) Y mo(Spin(n)) is trivial, that is, the image of v is {1}.

In fact, 1 and —1 can be connected by a continuous path in Spin(n): Since n > 2, we
have at least two orthonormal vectors ej,es € S™ ! and we can define the smooth
curve ¢ : R — Spin(n),

t +— (cos(t) e +sin(t) e2) - €1,

satisfying ¢(0) = —1 and ¢(7) = 1.
By exactness at mo(Spin(n)) and the claim, the map
7o(Spin(n)) = m(SO(n)) = {1}
is injective. Hence, mo(Spin(n)) = {1}, that is, Spin(n) is connected.

We have 71(SO(n)) = Zy for n > 3. Namely, the long exact homotopy sequence
for the fiber bundle SO(n) — SO(n 4+ 1) — S™ for n > 3 yields isomorphisms
m1(SO(n)) = 7m1(SO(n +1)). The long exact homotopy sequence of the fiber bundle
Zy — S3 — RP3 yields the isomorphism 71 (RP3) = m0(Za) = Zs. Finally, we have
the identification RP? = SO(3) as follows: We identify RP? with the quotient of
the upper hemisphere Sf_ obtained by identifying antipodal points on the equator.
Now, Si is homeomorphic to a closed unit ball B3(0) C R? and thus RP? is home-
omorphic to B3(0) with antipodal boundary points identified. The map sending the
equivalence class of a point € B3(0) \ {0} to the rotation with axis z and angle
||z||7 is then a homeomorphism.

Now assume that n > 3. By exactness at my(Z2) and the claim in a), the map
m1(SO(n)) — mo(Z2) is surjective. Exactness at m1(SO(n)), together with the fact
that m1(SO(n)) = Zg for n > 3 implies that the map 7 (Spin(n)) — m1(SO(n))
is trivial. By exactness at m(Spin(n)), the map m;(Spin(n)) — m1(SO(n)) is also
injective. Hence m1(Spin(n)) = {1}, that is, Spin(n) is simply-connected. O
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The Lie algebra of SO(n) is given by
_ . T _
so(n) = {A € Mat(n x n;R) | A" = —A}

and dim SO(n) = dimso(n) = n(n — 1).

For the Lie algebra of the Spin group, we have dim spin(n) = dim Spin(n) = dim SO(n) =
In(n —1). We want to identify the Lie algebra spin(n) of Spin(n) as a vector subspace
of Cl,,:

For i # j consider the smooth curve ¢ : R — Spin(n), defined by
t > (cos (t)e; +sin (t) ej) - (—e;).

Then ¢(0) = € - (—e;)) = 1 and ¢(0) = e; - (—e;)) = e - ej.  We thus have
e; - e; € T1Spin(n) = spin(n) for all ¢ # j.

The products {e; - €;}, 1 <4 < j < n are linearly independent and there are $n(n — 1)
of them. Since dim(spin(n)) = 2n(n—1), we conclude that {e;-e;};; is a basis of spin(n).

We compute the Lie algebra homomorphism g, : spin(n) — so(n):

oufes-es)ex) = | _ o{leos(t) e +sinie) ) - (e o)
— % o ((Cos(t) e; +sin(t) e;) - (—e;) - ek - €; - (—cos(t) e; — sin(t) ej))
= % —o (6052(75) e €e;-e-€ e +cos(t)sin(t)e;-e;-ex-e;-ej

+ sin(t) cos(t) ej-ei-ek-ei-ei—i-sinz(t) ej-ei-ek-ei-ej)
=€ € €L € "€+ € € €€ e
= —€L €€ —€j € e
0 for k ¢ {i,7}
= q 2¢; for k=1
—2e; for k = j.

We thus have for 7 < j

o«(ei - ej) =
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2.3. Spinors

Definition 2.3.1. A representation of a group G on a vector space V is a group
homomorphism A : G — GL(V).

A representation A : G — GL(V') on a Euclidean or Hermitian vector space (V, ) is
called orthogonal or unitary, if A\(G) C O(V, 3) or A(G) C U(V, ), respectively.

We will only consider real or complex finite-dimensional representations, i.e., represen-
tations, where V' is a K-vector space, K =R or C, and dimg V < oo.

Example 2.3.2. Let G be any group.
a) The trivial representation is the trivial group homomorphism:

A:G — GL(V)
g — idy .

b) Let A : G — GL(V) be a representation. The dual representation \* is defined by:
G — GL(VY)
g — A (gil)* .

c¢) Let A : G — GL(V) be a representation. There is an induced representation A\
of G on A*V, defined by:

AX:G = GL(AMY)
g = (A"N)(g),

where

(Ak)\) (@)1 Ao Avg) == Ag)vr A ..o AXg)vg.

The representation A*) is called the k'™ exterior power of the representation \.

d) Let A\; : G — GL(V4) and Ay : G — GL(V2) be representations of G on V; and V3,
respectively. There is an induced representation of G on Vi @ V5, defined by:

MDD G — GL(‘/&@VQ)
g = (M @A) (9)
where
(A1 D A2) (9)(v1 @ v2) = A1(g)v1 © A2(g)ve.

The representation A @ Ag is called the direct sum of the representations A\; and As.
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e) Let A1 : G — GL(V4) and Ay : G — GL(V2) be representations of G on V; and V3,
respectively. There is an induced representation of G on Vi ® V4, defined by:

MR G — GL(V1®V2)
g = (M ®@X)(9),

where

(A1 ® A2) (9)(v1 @ v2) == A1(g)v1 ® A2(g)va.

The representation A\ ® \g is called the tensor product of the representations Ay
and As.

Example 2.3.3. Let G = SO(n).

a) We have the standard representation

Ast : O(n) = GL(n,R) = GL(R").

b) Then

A" A : O(n) — GL(A"R") = GL(1) =R\ {0},
g = (An)‘st)(g)a

is given by
(A™Ag)(g) = det g = +1.

If we restrict A”Ag to SO(n) then A"\ : SO(n) — GL(A"R") is given by g — 1,
ie, A"Ag : SO(n) — GL(A™R") is the trivial representation.

Remark 2.3.4. Given a representation X' : SO(n) — GL(V') then
A= X op: Spin(n) = GL(V)

yields a representation of Spin(n) on V. Here, o : Spin(n) — SO(n) denotes the Lie
group homomorphism defined by equation (2.3).

One may wonder whether every representation A of Spin(n) on V' is of the form A = XN op,
where X' is a representation of SO(n) on V.
Now, if A =X o : Spin(n) — GL(V), we have:

A(—1) = X(o(~1)) = X(1) = idy .

Hence a representation A : Spin(n) — GL(V') that is induced by a representation of
SO(n) on V necessarily satisfies A(—1) = idy-.
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Consider the representation

A:Spin(n) — GL(Cl,)
a — Ma),

given by the multiplication in Cl,, i.e., for any a € Spin(n) and = € Cl,,, we have

Then we compute
AM=1)(z)=-1z=—x,

i.e., A(—1) = —id¢y,. Thus, this representation cannot be induced by a representation

of SO(n) on Cl,.

Remark 2.3.5. If A : Spin(n) — GL(V) is a representation of Spin(n) on V such that
A(—1) = idy then ker(p) = {—1,1} C ker()).

Spin(n)
\
Since g is surjective, there is a map A : SO(n) — GL(V) GL(V
such that the alongside diagram commutes. ¢ V)
/
SO(n)

The even dimensional case

In the following, let n = 2m. Let Cl,, be the Clifford algebra of R™ with the standard

Euclidean scalar product and let Cl,, := Cl,, g C be its complexification. Let eq, ..., en
be the standard basis of R™. For j =1,...,m define
1 ) _ 1 .
7=y (egj—1 —ieg;) € Cly, Zj:= 3 (€2j—1 +ieg;) € Cly,.

Then products of the form

Zjy et Ry By et Zigy k,l=0,...,m

1<ip<...<jpp<m, 1< <... <5y <m,
form a vector space basis of Cl,,. Put
Z(J1y s Jk) = ZGy e Ry B Zme
Then

Y i=span{z(j1,..., k) [k =0,...,m, 1 < j1 < ... <jr <m} CCl,
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is a complex vector subspace of Cl,, of dimension 2. We call 3,, the spinor space in

dimension n. Elements of 3, are called spinors.

For later purposes we want to compute eg; - 2(j1,...,jk) and eg—1 - 2(Jj1, .- -
have to distinguish two cases: ey and ey _; can be contained in zj, - ... - 2j,
1) Let ey and ey_; not be contained in z;, - ... - 2;,.
egl-Z(jl,...,jk) =€ Zjy e Zjy Rl Zm
_ k+(1—1 - - - =
= (—1)kH( )Zjl‘---‘zjk - RS- B IR CO I - N IR
Because of

_ 1 .
g 5 = 7 eg - (eg—1 +iey)

2
1 )
=5 (€91 - €91 — 1)
1 .
=5 (—egi—1 - eg +ieg_1 - €9—1)
) 1 )
=1€2]—1 " 5(62171 + Z€2l)
=ieg_1- 2,
it follows that
€o] * Z(jl, - 7]k) = (—1)k+lflizjl Tt Zgy Z1 ...t Z]—1"€91—-1" 2] 2|41
= (—1)k+l*1 ) (—1)k+l*1 €21 Zjy "o Zjp 2L Zm
=ideg_1-2(J1,- .-, Jk)-

Let v such that j, <1 < j,4+1. Then we have:

. . 1 . . 1 . .
e - 2(J1, -5 Jk) = Je 2(J1s -5 Jk) + Sl 2(J1y -5 Jk)

(24) 1 . . 1 . .

= e 2(J1y -5 Jk) + 5 C2l-1- 2(J1, -+ Jk)
1 . . )

=1i3 (ear—1 —iex) -z(j1, .- Jr)
——

=2z

) —1)V Z(jl, N ,jy,l;jlj+la s 7jk‘)

I
-~
—~

Moreover, it follows from equations (2.4) and (2.5) that

. Ly (24) . .
62171'2(317---7%) = —2621'2(317---7%)

2.5) v o ‘
(: (_1) z(jla"'7]V7lajl/+17---7]/6)'

,Jk). We

or not.

(2.4)

(2.6)
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2) Now let ey and e be contained in zj, - ... - zj,.

Multiplying equation (2.5) with ey we obtain:

€9 - Z(jla s ?jl/al7jl/+1,' .. ’.]k;) = (—1)Vi2(j1, s 7jl/aj1/+1,' .. ,]k‘) (27)

Multiplying equation (2.6) with eg;_1 we obtain:
€211 Z(j17 e 7jl/7lajl/+17 o 7]]6) = (_1)V+1 Z(j17 e 7jl/7jV+17 e 7]16) (28)

Hence the spinor space ¥,, C Cl,, is invariant under Clifford multiplication by vectors
in R™. Since the Clifford algebra Cl, is generated by R", the same holds for Clifford
multiplication by elements of Cl,,, thus X, C Cl, is a left ideal. In particular, 3, is
invariant under multiplication by elements of Spin(n).

We define:

Y= span{z(j1,...,j%) |k =0,...,m even}
Y, =span{z(j1,...,7k) |k =0,...,m odd}.
The spinor space ¥,, has the decomposition ¥, = ¥+ @ ¥~. Elements in ¥ are called
spinors of positive and negative chirality respectively.
The equations (2.5)—(2.8) show that the Clifford multiplication by elements of R™ satis-
fies:

R". P cx,, R".%,cCXf.

However, Clifford multiplication by elements of CI9 satisfies:
cl.xrcxt .-y cx.

Thus, the restriction to Spin(n) € CIY c CI9 yields representations of Spin(n) on X
and ¥ and thus on X,.

Definition 2.3.6. The representation o, : Spin(n) — GL(%,,) is called the spinor
representation.

The representations X : Spin(n) — GL(X;) are called the positive and negative
spinor representation, respectively.

Remark 2.3.7. The element
w:=e - ... e, €Cl, CcCl,
is called the volume element. The equations (2.5)—(2.8) show that

. ) —i2(j1,...,Jk) if ey, ey—1 are not contained in z;, - ... - z;
ear—1-€°2(J1,- - -5 Jk) =

i 2(J1y -5 Jk) if eg, eg—1 are contained in zj, - ... zj,.
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Thus we get
21, i) = (=D)™Fm 20y, k)
and therefore
w201, gk) = (=1)F 2(1s - - k)
It follows that
YE={ze%,|i™w z=*z}. (2.9)

Example 2.3.8. Let n =2, i.e., m = 1. Then we have:
Y5 =C-2() and Y, =C-2(1).
By the equations (2.6) and (2.8), we have
el } thus e; acts on X9 = C? as <O _1> .
e - 1 0
By the equations (2.5) and (2.7), we have

es - 2( z(1)

1 0

thus ey acts on Yo = C? as (0 Z) .
ez - 2( (),

Furthermore, from Example 2.2.8, we have the isomorphism
Spin(2) — U(1),
cosy +siner -ey —  cosy+isinyg = e

The element cos®) + sini e - e3 € Spin(2) acts on Xy as

cos Y <(1) (1)> + sin ¢ <(1) _01> <(2) é)
COos 0 . —i 0
:< 0 COS¢>+MH1’Z)<0 z>

_ (cosyp —isiny 0
- 0 cos ) +isin

e 0
“Lo )
Thus, the action of the Spin group Spin(2) on X5 is given by the standard representation
of U(1) on C whereas the action of Spin(2) on X3 is given by the dual of the standard

representation of U(1) on C. In particular, the action of Spin(2) on XF ® X5 is the
trivial representation.
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We equip the spinor space ¥,, with the Hermitian scalar product (-,-), for which the
vectors z(j1,...,Jk), k =0,...,m, form an orthonormal basis. Then the decomposition
¥, = ¥} @ X, is orthogonal. By our convention (-,-) is complex linear in the first
argument and complex antilinear in the second argument.

Lemma 2.3.9. Let n = 2m be even. Then the Clifford multiplication of spinors by
vectors is skew-symmetric, i.e., for any X € R™ and any ¢, € ¥, we have:

(X -¢,9) =—(8,X-9). (2.10)

Proof. 1t suffices to prove this for any basis vector X = e; in R" and any two basis
elements ¢ = z(j1,...,Jk), ¥ = 2(i1,...,4) in 3Xy,. For X = ey and ¢ = 2(j1,...,Jk)
with | = j,41, the scalar products are non-zero only if ¢ = z(ji, ... ,jy,lA,jVJrQ, ces JR)-
If 4 is any other basis vector of ¥,, then both sides in (2.10) vanish.

We then have:

<X¢7¢> - <e2l'z(jla"'7jV7l7jV+27"'7jk)7z(j17"'7j1/7l7ju+27---7jk)>

(2.7) . . . . . .. .
= <(_1)V2z(jla s Juy Ju42, - - 7]k)7z(jla s Juy Ju42, - - 7jk)>

(=173

and

<¢7X . ¢> - <Z(]17 7jV7l7jV+27"' 7jk)762l . Z(jla"'7jV7l7jl/+27"' 7]k)>
(2.5) . . . . . . . . .
= <z(jl7"'7]V7Z7JV+27"'7jk)7(_1)yzz(]17"'7jl/7lajl/+27"'7]k)>
= (—1)"T1i.

Thus, we have

The computations for the remaining basis vectors X € R” and ¢ € 3, are entirely
analogous. O

Remark 2.3.10. For any unit vector X € S"~! ¢ R™ and any two spinors ¢, ¢ € 3,
we have:

Hence the Clifford multiplication by unit vectors X € S”~! is an isometry on the spinor
space. The action of Spin(n) on ¥, is thus a unitary representation.
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Proposition 2.3.11. Let n = 2m be even. Then the map

®: Cl, - End(X,), ®X)(z)=X-z

18 an isomorphism of complex algebras.

Proof. Obviously ® is a homomorphism of complex algebras. We prove that & is sur-
jective. Note first that for all £ € {1,...,m} we have

20 Zp+Zpzp = —1 (2.11)
Zp-zg =10 (2.12)
zp 20 =10 (2.13)
Let 4,0 € {1,...,m} and let z(j1,...,Jk) € Xp.
a) Assume ¢ € {j1,...,Jx}. From the equations (2.11) and (2.12) we get
@(25)(2(]‘1,...,]‘;?)):Eg-zjl-...-zg-...-zjk-21-...-25-...-27”
:iég'Zg-fg'Zjl-...-é\g-...-zj‘k-51-...-,?@-...-2”1
:i(—l—Zg-Eg)-gg-Zjl-...-gg-...-zj‘k-gl-...-,?g-...-,?m
:iégzﬂz}zjkél,?gém—i—o

= iz(jla"'aga"'ajk%

where the signs + may change in every line.
b) Assume ¢ ¢ {j1,...,jk}. Then by the equation (2.12) we get

@(2@)(Z(j1,...,jk)):Eg-Zjl-...-ij-21-...-2@-...-2’7”
:iég'gg-zj‘l-...-ij-gl-...-,?g-...-gm
=0.

c) Assume i € {ji,...,jx}. By the equation (2.13) we get

@(z,)(z(jl,,]k)):z,zhzlzjkzlzm
= 0.

d) If i ¢ {j1,..., ik} then we get
@(z,)(z(jl,,]k)):z,zhz]kélém:iz(jl,,z,,]k)
For any multi-index I = {i1,...,is} we write

[ = Ziy et Zigy  ZL=Zig v eeet Zig,  2() = 2(i1, ... 0s)
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and we denote by I¢ the complementary multi-index of I. Let now I and K be multi-
indices. The calculations in a) - d) show that for all multi-indices J we have

0 if J
21t zm e 2(J) = 1 70
+21 2y fJT=0
and thus
0 if J#£1
21 e 2m 21 2(J) = 1 7
*z -2y S =1
and therefore
0 if J#£T
ZRe 21 oo 2m 21 2(J) =
rers m 21 #J) {iz(K) if J = 1.
Thus every endomorphism of ¥,, can be obtained by composing endomorphisms of the
form ®(Zge - 21 ... 2y - Zr). This shows that ® is surjective. Since Cl,, and End(X%,,)
have the same dimension we conclude that ® is an isomorphism. U

The odd dimensional case

In the following, let n = 2m —1. To construct the spinor space ¥,,, we make the following
observation:

Lemma 2.3.12. Let n € N. The linear map j : R™ — CISLH,
X = j(X) =X ent1,

induces an algebra isomorphism Cl, — C19 ;.

Remark 2.3.13. Lemma 2.3.12 also holds for Cl,, instead of Cl,,.

Proof. We see immediately that the map j satisfies

JXP =X -eni1- X -epy1=-X-X -epp1-eny1 = —| X[

7
Thus, the universal property for Cl,, yields an algebra ho- /
momorphism « : Cl, — CI% 11 such that the alongside R" @

diagram commutes. \
J

e,
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We first show that « is surjective. The elements
€ip "ot Cigps 1<y <... <19 <n+1

form a vector space basis of CIJ ;.

a) First we assume that ig;, < n. Then we have e;, - ... -¢e;,, € Cl, and
a(eil "Cip e Cigy g eiQk) = O‘(eh) : a(eiz) Tl O‘(ei%ﬂ) : O‘(ei%)
= j(ei) - jlei) .. '](ei%ﬂ) 'J(ei%)
= €i, * Cntl - Ciy Cnil .- Cig 1 Enil - Ciny * Cpil
TCiyCip “Cigg_1 Cigg
=€ " ... €y (214)
b) Now we assume that igr, = n + 1. Then we have e;, - ... -e;, , € Cl, and
a(eil Tt ei2k—1) - a(eil) et a(eiQk—l)
=j(ei) - '](ei%ﬂ)
=\€i; "Cn41 .- 62‘%72 . €n+1) . 62‘%71 *Ent1
(2.14)
= (62‘1 L—— €i2k72) . €i2k71 *Ent1
=€y - €y " CEn+l
=€ " .. Eigy-
Thus, the map « is surjective.
Since dim C1%, ; = 222 = 27 = dim Cl,, th is an i hi O
ince dim Cl;,; = =5~ = 2" = dim Cl,,, the map « is an isomorphism.

For n odd we define the spinor space X, by:
Sni=31 0.

In particular, we have dim ¥,, = 2Lz for both even and odd n. The Clifford algebra Cl,,
acts on the spinor space ¥, via the map a: For X € Cl,, and ¢ € X, put
Xep:=a(X)-¢ €5} =5,

The restriction of this action to Spin(n) C Cl, C Cl, defines the spinor representa-
tion o, : Spin(n) — GL(X,) in odd dimensions.

Lemma 2.3.14. Let n be odd. Then the Clifford multiplication of spinors by vectors
is skew-symmetric, i.e., for any vector X € R™ and any two spinors ¢, € ¥, we
have:

(X og, ) =—(d, X 01). (2.15)
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Proof. We compute:

(X 09, 9) = (a(X) - 6,¢)
= (X - ent1- ¢, 1)
(2.10)

= —<€n+1 : ¢7X : 1/}>

O (6, X - enyr - )
= —(p,a(X) - )
— (6, X 1)), 0

Remark 2.3.15. As in Remark 2.3.10 one concludes that in odd dimensions Clifford
multiplication by unit vectors is an isometry and thus the spinor representation is unitary.

Example 2.3.16. Let n = 1. Then we have
Y1 =X =C-z()=C
and
erez()=er-ex-2z()=e1-i2(1) =—iz().
Example 2.3.17. Let n = 3. Then we have
Y3=3=C-2()®C2(1,2) = C%
By the equations (2.5) and (2.6), we have

ecrez()=-e1-e4-2() @5 e1-12(2) (QiG)iz(l,Q)
and crez(1,2) =ej0(—i)e;oz()=1iz().

From this (and similar computations for ey, e3), we thus have:

0 4
a2
e1 acts on Y3 = C~ as (z 0>

0 1
~ 2
ey acts on Y3 = C* as <_1 0>

~ 2 -1 0
ez acts on X3 = C as(o z)

2.4. Spin Structures

Let M be an n-dimensional oriented Riemannian manifold. For x € M put

PSO(M) = {h:R"™ — T, M | h orientation preserving isometry}.
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Each element h € PS°(M) induces an oriented orthonormal basis h(ey),...,h(e,) of
T,M. Conversely, for any oriented orthonormal basis by,...,b, of T, M, there is a
unique h € P3O(M) such that by = h(e1), ..., b, = h(e,).
The special orthogonal group SO(n) acts on P59 (M) from the right:
PJO(M) xSO(n) — PIO(M)

(h,A) — hoA.
This action is simply transitive, i.e., for any two elements hi, ho € P3O (M), there is a
unique A € SO(n) such that hy = hy o A (namely, A = hy' o hy).
Thus, for a fixed hg € P39 (M), the map

SO(n) — Py°(M)
A — hgod

is bijective.

Now put
PSO(M) = | | PEO().
reM
Let 7 : P59(M) — M be such that 7='(z) = P°(M), thus n(h) = =z, where
h:R™ — T, M. There is a canonical smooth structure on PS®(M) such that the pro-
jection map 7 : PSO(M) — M and the group action P5C(M) x SO(n) — PSO(M)
are smooth maps. In other words: (P59 (M), 7, M;SO(n)) is an SO(n)-principal bundle
over M.

Definition 2.4.1. Let M be an n-dimensional oriented Riemannian manifold. The
SO(n)-principal bundle PSO (M) is called the (oriented orthonormal) frame bun-
dle of M.

Using a representation A : SO(n) — GL(V'), we can construct a vector bundle by glueing
the vector space V onto the fibers of the frame bundle:

Definition 2.4.2. Let A : SO(n) — GL(V) be a representation of SO(n) on a K-vector
space V, where K = R or C. The associated vector bundle to P5° (M) is defined

as:
PSO(M) x\V :=PO(M) x V/..

Here, the equivalence relation ~ is defined as:
(hl,vl) ~ (hg,vg) <~ JAc SO(n) : hg = hl o A and Vg = )\(A_l)vl.

We denote the equivalence class of (h,v) in PSO(M) x, V by [h,v].
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The induced projection 7 : PSO(M) x, V — M, given as

7([h,v]) := m(h),

is well-defined: If (h, o) ~ (h,v), that is, h = ho A and © = A\(A~!)v for some A € SO(n)
then we have:

7([h,0]) = 7([h o A, A(A™")v]) = 7(ho A) = 7(h).
The vector space structure on the fibers of PS5O (M) x, V is defined by:
a-[h,v] + B+ [h,vo] == [h,avi + Bua],
where [h,v1], [h,v2] € T (z) and «, B € K. This operation is well-defined:

a- [ho A XA o] + 8- [ho A, NA )]
= [[hoA,)\(Afl)vl —|—5)\(A71)1)2]]
= [ho A XA (av + Bvo)]
= [h, avi + B o]
=a- [h,vi] + B [h,va].

For the standard representation A : SO(n) < GL(n,R), the map

PSO(M) x, R"
[7, 0]

T e
M
<

h(v)
is an isomorphism of vector bundles.

Similarly, we have the following canonical isomorphisms of vector bundles, associated to
representations of SO(n):

vector space V/ representation A of SO(n) on V/ PSO(M) x, V
R idy M xR
R™ standard representation TM
(R" - dual of standard representation T*M
AF ]R")* AF(dual of standard representation) AFT*M
(@*R™) ® (@I (R™)*) | (®@*(std rep.))® (®!(dual of std rep.)) | (R}TM) @ (R'T*M)

Now we want to construct a Spin(n)-principal bundle PSP (M) such that for any repre-
sentation A : Spin(n) — GL(V) of the form A = X o g, with X' : SO(n) — GL(V), the
associated vector bundles PSP™(M) x, V and PSO(M) x V coincide.
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Definition 2.4.3. Let M be an oriented Riemannian manifold. A spin structure
on M is a pair (PSP"(M), g), consisting of

a) a Spin(n)-principal bundle PSP"(M) over M and

b) a twofold covering g : PSP(M) — PSO(M) such that the diagram

PSP x Spin(n) — PSPIN(M)

.

oxo 0 M

/

PSO(M)

PSO(M) x SO(n)

commutes. Here p : Spin(n) — SO(n) is the twofold covering of SO(n) defined
in equation (2.3). The horizontal maps are the group operations on the principal
bundles.

If A\ = XN op: Spin(n) = GL(V) is a representation induced by N : SO(n) — GL(V)
then

PPN V= PSO(M) xy V
[H.v] +— [o(H),7]

is well-defined: For any a € Spin(n), we have:

[[H-a,)\(a_l)v]] — [[@(Ha),)\(a_l)v]] = [[@(H)Q(a),)\'(g(a)_l)v]] = [o(H),v].

Obviously, this map is an isomorphism of vector bundles.

Definition 2.4.4. An oriented Riemannian manifold equipped with a spin structure
is called a Riemannian spin manifold.
An oriented Riemannian manifold is called spinnable if it admits a spin structure.

A detailed discussion of existence and uniqueness of spin structures on oriented Rieman-
nian manifolds can be found in Chapter II of the book [7] by Lawson and Michelsohn.

Definition 2.4.5. Two spin structures PlS PIATY and P2S P(M) are called equiva-
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lent, if there exists a diffeomorphism
(b PSpln( ) . PSpm(M),

such that the diagram

P3P™(M) x Spin(n) ox1d PSP (M) x Spin(n)
PEIn(01) : PSP ()
01 02
PSO (M)

commutes.

Example 2.4.6. For M = S, we have SO(1) = {1}, thus Spin(l) = Zy and
PSO(S1) = 8. A spin structure on S' is thus a two-fold covering of S'. There are
two possibilites:

1) The trivial spin structure on S! is the trivial covering
PP (SY) = ST St = S X Z,.
Let g: PPi(S1) = St x Zy — PSO(S') = S! be the projection on the first factor.

To see that this defines a spin structure on S', we need to check that the diagram

id xp

Sl X 7o X Zg —— St x Zy
pry
pry Xe 251 Sl
T
St x {1} - 1

as in Definition 2.4.3 commutes. But this is obvious.

2) The non-trivial spin structure on S! is the non-trivial covering Psgﬁn i (SH) = St

with g : S — S, 2+ 22. The action of Spin(1) = Z3 on Priiin iy (SY) is given by
zZ v —2.
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This defines a spin structure on S', since the diagram

Sl « T (z,6)—ez Sl
\Tzz
(Z7€)'_>(Z271) Zr—>Z2 Sl
S
St x {1} - S!

commutes.

Obviously, the spin structures P22 (S1) and PP (S1) are not equivalent, since the

total spaces are not even diffeomorphic: Pr?frilrltriv(s 1) is connected whereas Pg’fiin(S 1) is

not.

Definition 2.4.7. Let oy, : Spin(n) — GL(X,,) be the spinor representation. Let M
be a Riemannian spin manifold of dimension n with a spin structure PSP"(M). The
spinor bundle of M for the spin structure PSP™(M) is the associated vector bundle

M = PSPR(M) x,, B,

Sections of XM are called spinor fields on M.
If n is even and oF : Spin(n) — GL(X;) are the positive and negative spinor repre-
sentation respectively, then the vector bundles

SEM = PP (M) x = TF

are called the positive and the negative spinor bundle of M for the spin structure
PSP (M) respectively.

If n is even we have the decomposition XM = XTM & X~ M.

Example 2.4.8 .
1) For the trivial spin structure PoP™(S1) of S we get

triv
SuivS' = PG s, 8y = (S1USY) x B /0 = 8 x5,

triv

The action of Spin(1) = Zs identifies the two copies of S* x¥;. Thus the identification
of (Sll_lSl) xX1/~ =2 S'x ¥ is by projection onto the first factor, or by the embedding

St X 21— (Sl le)U(Sl le) = (Sl XZQ) X 21,

into the first factor, respectively.
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Since the spinor bundle is trivial, spinor fields correspond to 3; = C-valued functions
on S! or periodic C-valued functions on R. As a convention, we choose the period 1,
i.e., we use exp : R — S, exp () = €®™* for the identification.

2) For the non-trivial spin structure popin (S1) of S we have the diagram

non—triv
EXP Spin 1
R >3y Pnonftriv(s ) Xo1 3
pr [2,0]22
exp
R St

where exp (t) = €>™t and EXP(t, p) = [e™*, o].
Spinor fields correspond to functions f : R — C = ¥y, satisfying

fit+k)=(=Dkf@t), forallteRkeZ. (2.16)
Functions satisfying (2.16) will be called Z-anti-periodic.
The spinor field corresponding to the function f is defined as
t— EXP(t, f(t)) = [e™", f(1)].

The periodicity condition (2.16) guarantees that this mapping descends to S': for
any e™F € Spin(1), we have

[[em(Hk),f(t + k)]] _ [[em‘t . em‘k’ (—1)kf(t)]]
— [[em't . em’k’al(e—m'k)f(t)]]
— [[em't’f(t)]].

Now let M be a Riemannian spin manifold with spin structure PSP"(Af). The spinor
bundle XM carries a canonical Hermitian bundle metric defined as

([H,¢], [H,4]) = (p,9),  for H € PP"(M), ¢, € Ty

This assignment is well-defined, since for any a € Spin(n), we have:
<[[H " a, Un(a_l)@]] ) [[H @, O-n(a_l)w]] > = <Jn(a_1)g0, Un(a_l)w> = <Q0a ¢>

Clifford multiplication

In the following definition of the Clifford multiplication, we use the fact that for an ori-
ented Riemannian manifold, the tangent bundle T'M is isomorphic to the vector bundle
associated to PSC(M) via the standard representation \g; of SO(n) on R™.
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Definition 2.4.9. Let M be a Riemannian spin manifold with spinor bundle XM,
and let x € M. The map

([o(H), X1, [H,¢l) — [H X ¢], (2.17)

is called Clifford multiplication.

Remark 2.4.10. (i) The Clifford multiplication is well defined: for any a € Spin(n),
we have by equation (2.3):

[o(H - a), Ast(e(a™ )X - [H - a,0n(a” )] = [H - a, At (e(a™)X - on(a)g]
= [[H-a,ail-X-a-afl-go]]
= [H-a,0n(a”")(X - 9)]

(ii) The Clifford multiplication satisfies the Clifford relation:

lo(), X1 - ([o(), Y] - [H. 1) + [o(), Y] - (Le(H), X] - [H, ¢])
—[HX Y -p+Y-X-¢]
= [H,—2(X,Y)¢]
= —2(X,Y)[H,¢]
= —2([e(H), X], [e(H), YT)[H, ]
Upon writing X' := [o(H),X], Y’ := [o(H),Y] and ¢ := [H,¢], the Clifford

relation reads

XY g4V X = —2X V).
(iii) The Clifford multiplication is bilinear.

(iv) The Clifford multiplication is skew-symmetric: for any tangent vectors X’ € T, M
and spinors ¢,y € ¥, M, we have

(X', 0) = —(6, X" - 0).

The spinor connection

As above, let M be a Riemannian spin manifold. The Levi-Civita connection V on
TM induces a connection 1-form w"® € QY(PSC(M),s0(n)). By pull-back with g, we
obtain an so(n)-valued 1-form g*w™® € Q! (PSP"(M), s0(n)). Applying the isomorphism
0; ! i s0(n) — spin(n) yields the connection 1-form

GO = g7 15w C € Q1 (PSP (M), spin(n))
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and a corresponding spinor connection V> on ¥M. The covariant derivative with
respect to V= of a local section [H,¢] € C*°(U,XM) is given by:

VXIH, ¢] = [H,0x¢ + (00)(@"(dH (X)) - ¢]. (2.18)

Here U C M is an open subset, z € U, X € T,M, and H : U — PSP"(M) is a local
smooth section, and ¢ : U — X,, a smooth function.

In order to write the spinor connection in terms of Christoffel symbols, we fix a local
smooth section H : U — PSP (M). Then h := go H : U — PSO(M) is a smooth local
oriented orthonormal tangent frame and the vector fields

bl = h(el), e ,bn = h(en)

form an oriented orthonormal basis of T,,M at each = € U, where eq,...,e, is the
standard basis of R™. The Christoffel symbols I’fj : U — R of this orthonormal frame
are defined by the equation

Vb, —Zr b foralli,je{l,...,n}

Note that unlike the Christoffel symbols of a local coordinate system the Ffj are in

general not symmetric in ¢, j. Instead we have I’fj = —I’gk for all ¢, 5, k. We compute the

covariant derivative of b; = [h, ¢;] in terms of the connection 1-form w™“:

H ZF” ek]] = bj

- v%ic[[hv ej]]
= [h, O e; + A (W (dR(D;))) ]

=0
- [[h, 3 wke (dh(bi))ekﬂ.

k=1

Hence
T} = wiy (dh(b;)). (2.19)
For the local section H : U — PSP"(M) with go H = h, we then have:
0w (dH (b)) = w'C(dp o dH(b;)) = w"C(d(g 0 H)(b:)) = w"(dh(b;)).

Upon writing

Os ( 0" LC(dH( Zr}/,ul/z €u - Cv Gﬁpln( ) (220)
pu<v
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we obtain

Le (dh(bz)) = Q*WLC H(bl)) = Z’Yﬂui Q*(eu : eu)-

p<v

We apply this to e; € R" and obtain

O (dh(bi)) (e5) = Z Vi 0 (€ - € ) ()

u<v
2ey, J=p
:Z'Y;wi —2ey, j=v
p<v 0 otherwise
= 22’7]'1/2‘ €y — 227#]'@' €u-
v>j u<j

Comparing the coefficients with equation (2.19) yields

279k k>
Ffj: —2’)/ij' k<jg.
0 k=7

Thus, we can replace the coefficients in (2.20) by Christoffel symbols and obtain:

~ 1<
otC dH Z'Yuweu e, = — Zréfueu-eyzz Z F;-’Heu-ey

u<v pu<v w,r=1

The covariant derivative of a local section [H, ¢] € C°(U, X M) can be written in terms
of Christoffel symbols:

VbEZ [[H’ 90]] = [[H’ 8171'%0 + (Un)* (&LC(dH(bl))) : QD]]

1 n
= [[H,abigo—l—z Z Ffjej-ek-go}]. (2.21)
jh=1

Remark 2.4.11
a) The spinor connection V* is a metric connection on the spinor bundle ¥M. Hence
for all smooth spinor fields ¢, and every tangent vector X, we have

Ox(b,0) = (VX o, 9) + (¢, VX1). (2.22)

This is a general fact: for a G-principal bundle P — M with connection 1-form w and
a unitary representation A : G — U(V'), the induced connection on P X, V preserves
the induced metric: the covariant derivative of a local section [H, ¢] reads

Vx[H, ¢] = [H,dx¢ + \(&(dH(X))) -]
%/—/

cu(V)
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and thus

(Vx[H, ¢, [H,9]) + ([H, 6], Vx[H,])

= (Ox ¢+ M(B(AH(X))) - ¢, %) + (¢, 0x ¥ + N\ (B(dH(X))) - ¥)
= (0x¢,¥) + ($, Ox )

= Ox (¢, )

= Ox([H, o], [H,]).

b) On an even dimensional Riemannian spin manifold M, the spinor connection V*
preserves the chirality: for every vector field X € C*°(M,T M) and every spinor field
¢ € C®°(M,Y*M), we have Vi ¢ € C(M,%*M). This follows immediately from
equation (2.21).

Now we prove a Leibniz rule for the Clifford multiplication:

Lemma 2.4.12. Let M be a Riemannian spin manifold with spinor bundle XM and
spinor connection V*>. Then for all vector fields X,Y € C°(M,TM) and all spinor
fields ¢ € C°(M,XM), we have

VY -¢) = (VEY) ¢+ Y - Vio. (2.23)

Proof. Fix € M and let U be a neighborhood of x. Let H : U — PSP"(M) be a local
section and h = go H : U — PSO(M) be the corresponding local section of PSO(M).
Then the vector fields by := h(e1),...,b, := h(e,) form an oriented orthonormal local
frame of T'M.

Since the spinor connection is tensorial in the vector fields, it suffices to prove (2.23)
for X = b;. We thus write Y = [h,Y'] and ¢ = [H, ] on U, where Y’ : U — R" and
p: U — X,. Now we compute:

Vi (Y-¢) =V [HY ¢

(2.21) 1 &
= [[H,abi(y/-go)—kz Z F%ej-ek-y/-go}]
J,k=1
1 < 1 <
= [[H,(@biY/)-go—{—Y/-@bigo— 1 Z F%ej-Y'-ek-gp— 3 Z F%ej(ek,Y/>-gp]]
J,k=1 J,k=1
1 « R
k k
= [[H, ((%ZY’) 90+Y’8b1g0+ Z Aglrijyl ej ey -+ 5 Ag:ll‘ij(ej,Y@ek -
]7 = ]7 =

n
Ffj ejler,Y') - @]]
joh=1

N |
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1 n
= [[H,Y'- (81)1.90—%1 Z F%ej-ek-go)ﬂ

Jk=1
n
jk=1

=Y Vo + ViY - ¢, O

In (2.21) we gave an expression of the spinor connection V* in terms of the Christoffel
symbols of the Levi-Civita connection V*C. Now we want to do the same for the
corresponding curvatures.

Let R* be the curvature for V¥, i.e. the endomorphism field on XM, defined by

R*(X,Y)¢ := VY Vi — Vy V¢ — Viy y 0.

Lemma 2.4.13. Let M be a Riemannian spin manifold with spinor bundle XM, and
let VIC and V= be the Levi-Civita connection and the corresponding spinor connection,
respectively. Then the curvatures R® of V> and R of V*C are related by

n

1

2 _ N\
R*(X,Y)¢ =~ ; (R(X,Y)b;) - b; - ¢. (2.24)
Here by, ...,b, denotes an orthonormal basis of T, M.

Proof. Fix x € M and let U be a neighborhood of . Let H : U — PSP"(M) be a local
section and h = go H : U — PS9(M) be the corresponding local section of PS5O (M).
The vector fields by := h(ey),...,b, := h(ey,) form an oriented orthonormal local frame
of T M, which we assume to be synchronous in z, i.e. (VbLiij)(:U) =0fori,j=1,...,n.
In particular, Ffj(ac) =0 and [b;,b;](z) =0 for ¢,j,k =1,...,n.

For a local section [H, ¢] € C*°(U,XM), we compute:

(Vbzivsz[[}[, gp]])(x) = <Vbzi [[H, (9bj90+% ZBF?Q €a €5 " SD]D(:B)

1
= [{H,abi(abjg@—i- Z Zﬁrfaea -65 . (p)]]
Q,

1
= [{H, 8bi8bjgo + Z Zﬁ: (abil“fa) € €g - QD]]

(z)

()
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This yields for the curvature at x:

(Rz(bi’bjw) (z) B [{H’ O.00; 0 + % Z (abirfa> R SD}] (z)
a,B

- [[H7 Op,; Op;p + % Z (85,].1“?&) €a €3 " 90]] @)

CV’/B
1
= [{H, (85,105,]. - 3bjabi)t,0 +Z Z <8bi1“fa - Bbjl“fa> €a " €53 " Lpﬂ
v a8 @
=0pb;,b,1(2)P=0
1
| O N CE AT SeA TR iy
CV’/B

On the other hand we have VII;JCba = ZB I’fabg and thus at z:
R(bisbj)ba = > (5,15, = 0,15, ) b
B
We conclude that (R* (b, b;)¢)(z) = =13 (R(bi,bj)ba) - ba - (). O

2.5. The classical Dirac operator on spinors

Let M be an n-dimensional Riemannian spin manifold. Clifford multiplication in the
spinor bundle ¥ M defines a smooth section A € C*(M,Hom(T*M ® ¥M,¥M)) by

AE®e) =& ¢

Definition 2.5.1. Let M be a Riemannian spin manifold with spinor bundle X M.
The classical Dirac operator is the first order operator

D:= D ys € G, (EM, M)

as defined in (1.28) for £ = F = ¥ M and A given by Clifford multiplication.

Recall from equation (1.28) that for a local orthonormal frame bq,...,b, € T, M, the
operator D4 s is defined as

DA7V2 — ZA(b;k ® Va¢)

(2
Thus, for the classical Dirac operator, we have:

D=Dygs= (0} Vie=> b;-Vie. (2.25)

i
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Remark 2.5.2. The classical Dirac operator is an operator of Dirac-type, as defined in
Definition 1.3.7. Its principal symbol is given by

o(D,€)p = (D yvs, )¢ 2 A @ ¢) =€ - 6.

By Lemmas 2.3.9 and 2.3.14, Clifford multiplication by tangent vectors is a skew-
symmetric endomorphism of ¥ M. Together with the Clifford relation (2.1), we conclude
that D satisfies Definition 1.3.7.

Remark 2.5.3. On an even dimensional Riemannian spin manifold, the classical Dirac

operator D interchanges chirality. With respect to the splitting XM = ™M @& XM,
the operator takes the form
0 D
D= <D+ 0 > ’

where DV € Z7/(SYM,S"M) and D~ € Z7(S~ M, ST M).

Definition 2.5.4. Let M be a Riemannian spin manifold, let D be the classical Dirac
operator, and let C' be a vector bundle on M with connection V¢. The operator

DY € G(SM ® C,%M © C). (2.26)

as in Definition 1.3.21 is called twisted Dirac operator.

Lemma 2.5.5. The classical Dirac operator is formally self-adjoint.

Proof. Let ¢, € C*(M,XM) be compactly supported spinor fields. Define X €
C*® (M, TM @ C) by

(X,)Y)=(Y - ¢,0) forall Y € TM.
Let by, ...,b, be a local orthonormal frame. Then we have:
divX = Z(Vb,.X, bi)

i=1

= Zabl <)(7 bz> - Z<X7 vb1b2>
i=1 (

i=1

C2D SR b 0),0) + (b 6. V5 ) — (Vibi- 6,9)

i=1
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C2) ST (Vybi - 6+ bi - Vb, ) — (60 - VEE) — (Vi - 6,0)
=1
(2.25)

Integration over M yields

(D, )12 — (¢, D)2 = / div (X) dvol = 0. -

M

Corollary 2.5.6. Let DV be a twisted Dirac opemtor.cff VC is a metric connection
for a Hermitian metric on the vector bundle C then DV is formally self-adjoint with
respect to the induced metric on XM ® C.

Proof. This follows from Lemma 2.5.5 together with Corollary 1.3.25. O

Remark 2.5.7. The proof of the Lemma 2.5.5 shows more than the formal self-
adjointness of D: if M is a Riemannian spin manifold with boundary then for all com-
pactly supported ¢, € C°(M, X M) we have

(D6, )12 — (6, DY) 12 = / (X, v) dA. (2.27)

oM

Here v denotes the exterior unit normal vector field on OM.

Example 2.5.8

(i) Consider M = S! with the trivial spin structure. Let by = %. Then we have
de
and
.d

By Example 2.4.8, spinor fields [H, ¢] correspond to Z-periodic complex valued
functions on R. Under this identification, the Dirac operator D corresponds to the
operator —i %. Using the Fourier expansion

oo

k=—o00
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of Z-periodic complex functions, we find —i%e%i kt — o | e2miht,

Hence the spectrum of the Dirac operator D on S! for the trivial spin structure is
2m Z, and all eigenvalues of D have the multiplicity 1.

(ii) Consider M = S! with the non-trivial spin structure. As above, the Dirac opera-
tor D corresponds to the operator —i %, acting on Z-anti-periodic complex func-
tions this time, see Example 2.4.8. Since a function ¢ : R — C is Z-anti-periodic if
and only if '™ () is Z-periodic, we have the Fourier expansion

oo
eiﬂ't (,O(t) _ Z ay, ei27rkt’

k=—o00

which yields

QD(t) _ Z ay 627ri(k7%)t‘

k=—o0

We thus find —i % e2mik=3)t = o (k: — %) e2mi(k=3)t  Hence the spectrum of the
Dirac operator D on S! for the non-trivial spin structure is 27 (Z — %), and all
multiplicities are 1.

In particular, 0 is an eigenvalue for the trivial spin structure on S!, but not for the

non-trivial spin structure.

By Remark 2.5.2, the classical Dirac operator D is of Dirac-type, and by Lemma 2.5.5
it is formally self-adjoint. By Lemma 1.3.5, we have

D? =V'V + B,

for a connection V on XM and an endomorphism field B € C*°(M, End(XM)). We now
want to determine V and B.

Lemma 2.5.9. Let M be a n-dimensional Riemannian spin manifold with spinor bumn-
dle XM . For any orthonormal basis by, ...,b, of T,M and any X € T,M, we have

> by R (b, X) = %Ric(X) - p. (2.28)

=1
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Proof. a) By the first Bianchi identity, we have

= . 1
TBC = b R (b, X)¢ 2" — 3 by Rl X)bi i+ (2.29)
Jj=1 2%

:—Zb R(bi,b;)X + R(X,b;)b;) - b; - 6. (2.30)

Now we compute the two contributlng terms separately:

b) For the first term on the right hand side of (2.30), we obtain

> by R(bi,b)X - bi - ¢

i,j=1

= Z b; - (R(bs,b;) X, bg) by, - b; - &
,]k 1

= Zb R(X, by, )bi, bj) by - by - ¢
i,5,k=1

= R(X,bg)b; - by - b; - ¢

i,k=1
== > R(bk, X)b; - bg - by - ¢
i,k=1
2.1)
=" > by R(by, X)bi - by - ¢+2Z (bg, X)bi, bie) bi - ¢
ik=1 ik=1
G2 _4TBC 1 2Rie(X) - 6. (2.31)

c) For the second term on the right hand side of (2.30), we obtain

D by R(X,bi)bj - b; - ¢
i,j=1

2.1) -
EL > R(X,bi)bj by bi-¢p—2 > (b, R(X,b;)bj) b - ¢
N———

ij=1 ij=1 =5

—Z R(X,b;)b; - b; - b ¢+QZRXb)b¢

7_] 1 i=1

= Ric(X)

:—Zb - R(X,b;)b; - bj ¢+22 (bi, X)bj, b;) bj ¢ + 2Ric(X) - ¢

3,j=1 3,j=1

=Ric(X)
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C2) _4TBC 1 4Rie(X) - 6. (2.32)

d) Inserting (2.31) and (2.32) into (2.30) yields
1
TBC = —TBC + 5 Ric(X) - ¢ — TBC + Ric(X) - ¢,
and hence

TBC = %Ric(X) ¢, O

Lemma 2.5.10. Let E be a Riemannian or Hermitian vector bundle over a Rieman-
nian manifold M, and let V be a metric connection on E.

Then for any local orthonormal tangent frame by, ..., b, we have
V'V = - Z (Vbivbi = VV,I;_Cbi) . (2.33)
i=1 ‘

Proof. Let ¢,¢ € C°(M, E) be sections in E with support in the domain of definition
of by,...,by. Let X € C°(M,TM ® C) be the vector field defined by

(X,)Y) = (¢, Vye), forallY e TM.
Since the Levi-Civita connection V*C and the connection V on E are metric, we get

divX =Y (VECX, by)
_ Z (6@ (X, b)) — (X, v;%»)
- Z (abi@, Vi, ) — (&, Vv{;fbi@)
= 3 (V6. Va) + (6, V0,90) — (9, Vier, )

= <V(b, V¢> + <¢= Z (vbivbi - vaicbi)@

(2

By Gauf}’ divergence theorem, we obtain

0= /div (X) dvol
M

= (V. V)2 + (6, (V. Vi = Vigrep,)¥) 2

)
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and thus
(6. V"V 12 = =(6, > (Vi Vi, = Vigpep ) ) 12

for any ¢, ¢ € C°(M, E) as above and hence (2.33) holds at any point p € M. O

Theorem 2.5.11 (Lichnerowicz (1963)). Let M be a Riemannian spin manifold,
and let D be the classical Dirac operator. Then we have

x 1.
D? = (VE) V2 + = - idsu (2.34)
Proof. Let © € M, and by,...,b, be a local orthonormal tangent frame, defined in a

neighborhood of x such that V};icbj(x) = 0 and Ric(b;)(z) = X\ bi(z) for all 4, 5.
Now for any spinor field ¢ € C*°(M, ), we have:

(D?¢) () a2 ( R Vi, (bi - Vi 8) >(x)

ij=1
(2.23) ( Z bj - (VbL].Cbz‘ Vi +bi ijViqﬁ))(x)
ij—1 —

=0

i<j @)

(2:33) ((Vz)* v + Z b; - bi - R*(bj, bi)¢>( )

i<j
By Lemma 2.5.9, we have:
21) 1 « 228) 1« .
> by bi- RE(bj,bi)g = 5 > by bi- R¥(by,bi)g = —Zij-Rlc(bj)-gb
i<j i,j=1 Jj=1
1 & 1 &
:—Zij-Ajbj b6=72 %9
7j=1 7=1
1

Corollary 2.5.12. Let M be an n-dimensional connected compact Riemannian spin
manifold with scal > 0. Then the multiplicity of 0 in spec(D) is bounded by

mult(0) < dim %,, = 2[2],
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Moreover, any harmonic spinor field (i.e. eigenspinor of D for the eigenvalue 0) is
V> -parallel.

Proof. Let ¢ € ker(D). Then we have:
0= (D%, )1
: * scal
2 (@ 50s), 4 (S0,

= V263, + [ 5 1o duo (2.35)
M

v<
=}
A%

|
59

> [|V¥6][. > 0
Thus, |[V¥®| 2 = 0 and hence V¥¢ = 0.

Let 29 € M. Since M is connected and V>¢ = 0, the value of ¢ at any point x € M is
determined by ¢(xg). As in the proof of the Bochner Theorem 1.5.16 we conclude

dimker(D) < dim ¥,, M = dim 3,,. O

Corollary 2.5.13. Let M be a connected compact Riemannian spin manifold with
scal > 0 and scal > 0 somewhere.
Then there are no non-trivial harmonic spinor fields, i.e., 0 ¢ spec(D).

Proof. Let ¢ € ker(D). By Corollary 2.5.12 we have V¥¢ = 0, which yields

Ox|¢* = (V3¢,8) + (¢, Vi) = 0.

Since M is connected, we conclude that |¢| is constant. Inserting back into equa-

tion (2.35), we obtain
scal 9 scal
— - |¢|* dvol = |¢| - | —— dvol = 0.
4 4
M

M

Now let = be a point with scal(z) > 0. By continuity, this also holds in a neighborhood
of z. We thus have [, scal dyol > 0, hence |¢| = 0. O
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Remark 2.5.14. Let M be a compact Riemannian spin manifold with scal > s > 0.
Let X\ € spec(D) and let ¢ be an eigenspinor. Then we have:

2 S S
N6l = (D, 6)i2 = [V76l[72 + T 16172 = T 16l

A > \/543. (2.36)

That is, there is a spectral gap around 0.

Hence

But this estimate is not sharp. More precisely, equality can never be achieved in (2.36),
as we will see in the following:

Theorem 2.5.15 (Friedrich’s inequality, 1980). Let M be a compact mn-
dimensional Riemannian spin manifold with scal > sy > 0. Then for any
A € spec(D), we have

n S0

—. 2.
n—1 4 ( 37)

Al =

Proof. By Lemmas 2.3.9 and 2.3.14, Clifford multiplication is skew-symmetric. Thus for
any X € T, M and any ¢ € ¥, M, we have

X g2 = (X6, X ) = —(6, X - X - ) B (6, —|X20) = | X|o)?

Hence
X - o] = |X]-|9]. (2.38)

Now let ¢ € C°(M,XM). Fix x € M and let by, ..., by, be an orthonormal tangent frame
in a neighborhood of z. Using equation (2.38) and the Cauchy-Schwarz inequality, we

find:
(Z\b ww)g :(im- )

(z) =1 (z)

< Z!b\ Z V36l =n- V79[,
R/-/

(1Dgf?)

Thus for any = € M, we have the estimate:

2 1
V26l ) > — (Dol (2.39)
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By Lichnerowicz’ Theorem 2.5.11 and equation (2.39), we find:
IDSI[72 = (D*¢, 6)2
_ PR
= ((7v%.6) , + (
s
> V2072 + M6 2

(2.39) 1 S
> —Dél7s + 1672

scal

4 '¢’¢>

L2

Thus
1Dg]32 > ——= 2 - ||¢l1 .
Now if D¢ = A¢ then we obtain
X gle = —==22 - 18l

Thus any eigenvalue A of the classical Dirac operator D satisfies

Remark 2.5.16. Friedrich’s estimate (2.37) is sharp: equality is achieved e.g. for S™
with metrics of constant curvature.

Theorem 2.5.17 (Bér, 1991). Let M = S? with any Riemannian metric. Then all
eigenvalues of the classical Dirac operator D satisfy
9 4

A2 > ol (2.40)

In particular, by the estimate (2.40), 0 can not be an eigenvalue of D for any metric
on S2.

Remark 2.5.18
1) Equality in (2.40) (for the eigenvalue with the smallest absolute value) is achieved iff
the curvature of M is constant.

2) Lott (1986) proved with different methods the estimate:

3C>0: N> ¢

> (2.41)
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Lott already conjectured that C' = 47 was the optimal constant.

Hersch (1970) has proved that for the first positive eigenvalue A;(A) of the Laplace-
Beltrami operator on a manifold M diffeomorphic to S?, the following estimate holds:

M(A) < %

Every compact orientable surface of genus > 1 admits a spin structure and a Rie-
mannian metric such that 0 € spec(D). Also, on S® there are Riemannian metrics
with harmonic spinors, i.e. with 0 € spec(D). Thus, for these manifolds, there are no
estimates like (2.40).

It is conjectured that every compact spin manifold of dimension n > 3 admits a
Riemannian metric with harmonic spinor, i.e. with 0 € spec(D). If the conjecture
holds then there are no estimates like (2.40) for n > 3. The conjecture has been
proved for the cases n = 0, 1, 7mod 8 by Hitchin (1974) and for the cases n = 3mod 4
by Bér (1996).

Up to today, Theorem 2.5.17 is the only estimate for Dirac eigenvalues not involving
any curvature assumptions.
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Proof. [of Theorem 2.5.17]

a) Let M be an arbitrary 2-dimensional Riemannian manifold. Let A € R and
f € C*>°(M). Define a new connection V on XM by

~ A
VX¢::V§¢+§X-¢+X-gradf-¢.

Claim:

V(e Vo) = e {D? = AD ~2grad - D =2 Vi s + (Viaays)'|

1A
—%—i—;—i—Af—i—)\-gradf-}(ﬁ. (2.42)

The proof of the claim is an elementary but tedious computation. Notice that (2.42)
is only valid for 2-dimensional manifolds.

b) We compute:

[ ([ Vhas + (Vaa )] 0.0) aa

M
= (VEasoe0) |+ (6, Vias(e9))

:/agradf<¢a 672f¢> dA
M

:/<gradf, grad <¢, e_2f¢>> dA
M

:/Af-<¢,e2f¢>dA
M

= /e_2f Af |62 dA.

M

c) Now let ¢ € C°(M,XM) be an eigenspinor for the eigenvalue A. Using a) and b),
we find:
0< /le V|?dA
M
= (V" (eV9).0)

1\
e_2f<{)\2—)\2—2)\gradf—2Af— %+7+Af+Agradf}-¢,¢>dA

M
_ /e2f<{A_2 _ scal Af}qﬁ, ¢> dA — /le)\(grad £ 6,0)dA. (2.43)
M

M
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By Lemmas 2.3.9 and 2.3.14, Clifford multiplication is skew symmetric, i.e.

(grad f-¢,¢) = —(¢,grad f-¢) = —(grad f- ¢, 9),
and hence (grad f-¢,¢) € iR. Since all the other terms in (2.43) are real, we conclude

/ e 2 Ngrad f- ¢, ¢)dA = 0.

M
This yields the estimate
A 1
0< /e—2f<7 - % - Af) 6|2 dA. (2.44)
M

d) Since the Laplace-Beltrami operator is self-adjoint, any h € C°°(M) perpendicular
to ker A is of the form h = Af for some f € C*°(M).

Choose —h = 5 — W;(M) [ scal(y) dA(y) € C*°. Then we have
M

0= / W(y) dA@y) = (h,1) 2,

M

and thus h L ker(A). So let f € C°(M) with Af = h. Inserting this particular
choice of f into (2.44) yields:

2
0§/62f<)‘__&al_h>.|¢|2d14

2 4
M
A2 1
—2f (A )2
< [ (7 - Tammiy | <0240 107 04
M M
s 1 ] —2f) 412
= (5 = Tavaagary | S0 44)) - [ e .
. - >0

We thus have the estimate

A2 1

2 s - g

2 ~ 4area(M) /ﬁl’(gld/l(y),
M =2K

where K denotes the Gaufl curvature. By the Gaufi-Bonnet Theorem, we end up
with

A2 1 27
2> L gm(M) = —T
2 ~ 4area(M) ™ x(M) area(M)

Observe that only in this last step, we used the fact that M = S2. O
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2.6. Hypersurfaces

Let M be an (n + 1)-dimensional Riemannian spin manifold, and let N C M be an
oriented hypersurface. We want to construct a spin structure on N and relate the
spinor bundles ¥M and £N and the Dirac operators D™ and D.

Let v be the unit normal vector field along N such that (b, ..., b,) is a positively oriented
basis of T, N if and only if (by,...,b,,v(x)) is a positively oriented basis of T,, M. Using
the canonical embedding

SO(n) <= SO(n+1)
A — (13 ?),

the action of SO(n) on (by,...,by,,v(x)) preserves the normal v(z).

Consider the map CI% c Cl, = ClgH_l, induced by R" 5 X — X - e,41. Since
Spin(n) C CIY and Spin(n + 1) € C1%_,, we obtain a map

Spin(n) < Spin(n +1)

G=U1 V2 ... Vo > Ul Cpil ... Vun Cppl =V * ... V.
With this embedding we have the following commutative diagram:
Spin(n)~—— Spin(n + 1) .
| |
SO(n)——=SO0(n +1)
Moreover, we have a canonical embedding of frame bundles

PSO(N) < P50 (M),
(h:R" = T,N) — (B : R"™ — T, M),

where h'(z1,...,2,,0) = h(x1,...,2,) and A'(0,...,0,1) := v(p). This embedding is
compatible with the embedding SO(n) < SO(n + 1) defined above. Thus, the diagram

PSO(N) x SO(n) PSO(N) .

| |

PSO(M) x SO(n + 1) —= PSO(M)

commutes.

Now let g: PSP"(M) — PSO(M) be a spin structure on M. We set
PPN = g (PSO(N)) (2.45)

This defines a spin structure on IV:
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e The action of Spin(n + 1) on PSPI®(M) restricts to an action of Spin(n) on PSPI(N):
For H € PSP"(N) and a € Spin(n) we have H - a € P5P"(M) and

o(H-a)= o(H) - o(a) € P5O(N).
—_ =~
€ PSO(N) €S0(n)

Thus H - a € PSP(N).

e Obviously, the action of Spin(n) on PSP(N) is compatible with the action of SO(n)
on PSO(N), hence g : P5P(N) — PSO(N) is a spin structure on N.

In particular, orientable hypersurfaces of spinnable manifolds are again spinnable.

Spinor bundles

We study how the spinor bundles of N and M are related to one another.
Case 1: n+1 is even

In this case, ¥, = %"

¥.1. For any z € N, we have!

EJr

SN = PP (N) Xg, 5y = PP (N) x n+1

Tn+1 ‘Spin(n)

= PIPR(M) X+ BF

11 n+1

Thus, XN = XM |y.
The Clifford multiplication of R™ on ¥, = E;t 41 1s given by

X -p=X" ent1 9,

where the - on the left hand side is the Clifford multiplication in Cl,,, while the - on the
right hand side is the Clifford multiplication in Cl,,4.1. Thus, the Clifford multiplication
in XN is given by

X-p=Xv-p
where X € T, N and ¢ € ¥, N.
Case 2: n+1 is odd

The inclusion of Clifford algebras

Cl, S C1%, < Clyyy = Cl,y < Clyyy

'Let X C Y besets and H C G be groups. Let G act simply transitively from the right on Y such that
the action restricts to a simply transitive right action of H on X. Then for any representation of G
on ¥ the inclusions induce a bijection X xg X 2Y xg 2.
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together with the inclusions ¥, C Cl, and ¥, = E: 49 C Cly42 induces an isomor-
phism =, : ¥, — ¥, 41 such that the diagram

Sp—— =S =,
X'()l lX-enH-()X-€n+2'6n+1'6n+2-()

Zn o +
N Snt1 =S,

of Clifford multiplications with X € R"™ commutes.
As in case 1 we obtain the canonical isomorphism XN = ¥ M|y such that again

X-p=X v
for X €e T,N, p € ¥,N.

In the following we treat both cases simultaneously using the notation

M =

Y+tM if n+1 is even,
XM ifn+1is odd.
Spinor connections
The Levi-Civita connections on T'M and T'N are related by the Gaufl equation
VY = VY +11(X,Y), (2.46)
o N N——
eT,M €Ty N E(TxN)J‘

where X € TN and Y € C*°(N,TN). The second fundamental form is a symmet-
ric bilinear map II : T,N x T,N — (T,N)*, given by the orthogonal projection of
Vﬁ\? Y to (T, N)*. The Weingarten map is the corresponding symmetric endomorphism
B:T,N — T,N such that for all X,Y € T, N

I(X,Y) =g(B(X),Y)v=:(B(X),Y)v.

The mean curvature field # € C®(N,TN*) is defined by

n

1 1
H = - ; (B(b;),bi)v = Etr(B)V = Huv,
where by, ..., b, is a local orthonormal tangent frame for N and H : N — R is the mean

curvature of the hypersurface N C M.

The spinor connections of M and N are related by the Weingarten map. Let (by,...,by)
be a local oriented orthonormal tangent frame for N. Then (b1,...,by, b1 = V) is
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a local orthonormal tangent frame for M along N. The Christoffel symbols for the
Levi-Civita connections VM and V¥ are defined by

n+1 n
Vilv; = Z MPEb,  and Vb= Z NTE by,
k=1 k=1

By the GauB} equation (2.46), we have for i,j € {1,...,n}:
Vilb; = Vi'b; + (B( I/—ZNF by + (B(b;),b;) byt

Comparing coefficients yields

MI‘% :NI"?. Vi, g k={1,...,n},
Mpatl = _Mpl = (B(b;),b;) Vi, j={1,...,n}.
For the covariant derivative a section of ¥(*) M, we compute for i € {1,...,n}:
n+1
va [H, ]] [[H O, p + — Z MI‘” ej - ex gp]]
jk 1
[{H Op, 0 + — Z Fljej ep o+ Z e] €nil - P
Jk 1 =1
1 n
1 (B(b;),bi) €nt1 - €p - 80]]
k=1
1 n

j 1

Hence for all ¢ € C*°(M, EH)M) and for all X € TN, we have along N:

ML o = Vieé + = B(X) - .

Dirac operators

For a spinor field ¢ € C*°(M, E(+)M) we have along the hypersurface NV:
DMo = "b;- "Wy o+v- Mo
jfl

DSy by (WE o+ L Blby)v-6) + v MV

7j=1
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:1/-(DN¢+%ij-V-B(bj)-V-¢>+V-MV§¢

J=1

1 n
:y-DN¢+§u-ij-B(bj)-¢+u.Mv§¢.

J=1

Since B is a symmetric endomorphism, we may choose by,

..., b, as an eigenbasis at
x € M, thus B(bj) = k; - bj for j =1,...,n. Then we have

DM¢:V-DN¢—%y-tr(B)qﬁ—i—u-MVEqﬁ
:y-DN¢—gu-H¢+u-Mv§¢.

Hence

—v-DMg—DNg — g Ho + Mg, (2.47)

Theorem 2.6.1 (Béir, 1998). Let N C R""! be an oriented compact hypersurface
with induced spin structure.

Then there are at least 22 eigenvalues A of DN (counted with multiplicity) satisfying

2 1
< H? dvol.
=4 Vol(N) / ve
N

Here H : N — R is the mean curvature of N C R*H1,

For the proof of this theorem we need the following variational characterization of eigen-
values:

Lemma 2.6.2 (minimax principle). Let J be a Hilbert space, let A be a self-
adjoint operator on €. Assume that 7€ has an orthonormal basis consisting of eigen-

vectors of A and let 1 < ps < ug < ... be the eigenvalues, each one repeated according
to its multiplicity. Then the eigenvalues are characterized as:

(Af, f)

Wr = min max .
vedom(a) fev\{o} || f|?

Proof. Let V' C dom(A) be a vector subspace of dimension k. Let fi, f2,... be an
orthonormal basis of 5 with A f; = p; fj. Let l; : V' — C be the linear functional
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defined by
() = (f: fi)-
Since dim V' = k, there is an f € V'\ {0} such that [;(f) = ... = l;_1(f) = 0 and hence
f= io: a; f;. This yields the estimate
j=k

o o
(Af, f) = Za] Mg f]azaz fi] = Z,uj |aj|2 > [ Z |aj|2 = Uk ||f||2a
j=k j=k

ALS) <

o (AL
that is, 12 > pg and in particular, fen?/%){(o} Tz 2 > . Hence
A
, iln L, max ( f,f) > .
d?t;o\;n:(k) feV\{O} HfH
Equality is attained for V.=C fi; & ... ®C f; and f = f%. O

Proof. [of Theorem 2.6.1] The spinor bundle of the hypersurface *N = S(HR?*1| v has
rank 202]. The spinor bundle S(HR" ! of R can be trivialized by parallel sections
¥1,...,¥,3). In particular, ¢1,...,1,3) are linearly independent at each point. Thus
i|n, - INEY |n are still linearly independent. We define

Vi=C-{1[n@...®C -1,y |n C C®(N,EN) C dom((DV)?).

Since any @ € V is parallel with respect to the connection RHIVZ, we have:

((DN)2¢5 ¢)L2(N) = HDN ¢||%2(N)

v J+2 Y- ¢ L2(N)
=0 —0

n

|2 H ‘
H 2 v L2(N)

2

= % /H2 |2 dvol.
N
Since V* is metric, V=-parallel sections have constant length. Thus, [¢(z)| = |1(z0)]

for an arbitrary xg € N and we obtain

2
((DN)2¢5¢)L2(N) — n_ |7,Z) 370 |2 /H2 dvol

= n’ HwHLQ(N /H2dvol
- Vol
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Hence
((DN)21/}’1/})L2(N) n? 1 )
e ~ ey J
L2(N) N
The statement now follows from Lemma 2.6.2. Ol

Example 2.6.3. We consider the n-sphere S® C R™! of radius 1. Then H? = 1 and
n 2

by Theorem 2.6.1, the first 2(2) Dirac eigenvalues of S™ satisfy A2 < o

The scalar curvature of S™ is n(n — 1). Thus, by Friedrich’s inequality (2.37), we have

N2 n(n —1) _ n_2
“n-—1 4 4
Hence, for the sphere S™, the first 2[5] Dirac eigenvalues of S" satisfy A2 = "72. In

particular, Friedrich’s inequality cannot be improved in general.
Remark 2.6.4. For n = 2, the integral [ H? dvol is called Willmore energy.
N

o If N =2 §2, Theorem 2.5.17 and 2.6.1 yield

47 9 1 9

— < < — .

area(N) — ATs area(N) /H a4
N

Hence, the Willmore energy is bounded from below by 47. Equality is attained if and
only if the curvature of NV is constant.

e For a torus N = T2, the Willmore conjecture states that the Willmore energy is
bounded from below by 272. This famous conjecture was open for a long time and
finally proved by Marques and Neves in 2014, see [8].



3. The heat equation and index theory

3.1. The heat kernel

Throughout this chapter, let A be a formally self-adjoint Laplace-type operator, acting
on sections of a Euclidean or Hermitian vector bundle E over a compact Riemannian
manifold M. Similarly as in Theorem 1.4.18 one can show that the eigenspaces of A are
finite-dimensional and that there exists an orthonormal basis of L?(M, E) consisting of
eigensections of A. One can also show that an analogue of the elliptic estimates from
Proposition 1.4.2 holds. For later purposes we need a lower estimate for the growth of
the eigenvalues of A.

Proposition 3.1.1. Let A be a self-adjoint Laplace-type operator on a compact Rie-
mannian manifold M. Let Ay < Ay < A3 < ... " 400 be the eigenvalues of A, where
each eigenvalue is repeated according to multiplicity. Then there exists a positive con-
stant ¢ = ¢(M,A) such that for all k € N, the following estimate holds:

Ao > ¢ k0o A — 1, (3.1)

Proof. a) Replacing A by A — A; -id shifts the spectrum of A by A;. Hence we can
assume w.l.o.g. that \; = 0. Moreover, it suffices to prove the estimate for sufficiently
large k. Then there are only finitely many values of A left, for which the estimate
(3.1) may not hold. This can be corrected by making the constant ¢ smaller. In the
limit ¢ — 0, the right hand side of (3.1) tends to —1, but Ay > 0 for any k. Hence
the right hand side can be made sufficiently small such that the estimate holds for
all ke N.

Now let € > 0. Choose a maximal §-net in M, i.e., a set of points {p1,...,pn} C M,

such that
€

€ .,
B(pi5) B (p5) =0, ¥i#j
and the number N of points satisfying this property is maximal. Then we have:
N
U B(pl’ 6) =M.
i=1

In fact, for any « € M, there is an ¢ € {1,..., N} such that B(z,5) N B(p;, 5) # 0.
Otherwise, the set {p1,...,pn, 2} would be another $-net, in contradiction to the
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maximality of {p1,...,pn}. Nowlet y € B(z, 5)NB(p;, 5). By the triangle inequality,

we have .

dist(p;, z) < dist(p;,y) + dist(y, z) < 3 + % =¢,
hence x € B(p;,¢).

For small radii, the Riemannian volume of balls in M can be estimated against the vol-
ume of the Euclidean balls: There is a constant ¢y > 0 such that volB(p,r) > ¢ - r"
holds for any point p € M and any radius r > 0 sufficiently small. We thus obtain a

lower bound for the volume of M im terms of the maximal %—net:

w0 > Y (85 5)) > Yo (5) = e (5)"

Hence, there is a constant ¢; = ¢;(M) such that for all € > 0, we have:

N=N(E)<c-e"

b) Let V C L?(M, E) be the subspace spanned by the first & eigensections @1, ..., @ of
A. Let p = 2?21 a;p; € V with p(p;)) =0foralli=1,...,N. We want to estimate
several norms of ¢:

Given x € M choose p; such that z € B(p;,e). Differentiation along a shortest
geodesic from p; to x yields

[p(@)] = lp(2)] = lo(p:)]

= [ 1ot a
0
_ / SV eG0), er(2)) de

/(W P00 >+<s0 ):V49) o
2l \
/|w| WO
t))]
< / - Vel
0

< - [[Vgllco.
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In the last equality, we used the fact that fol |¥| dt = L[] < e. Integration over M
yields

lole = [ e@)P ool < [Vl vol(ar)
M

and thus

lellz < ev/vol(M) - [[Vellco < ey/vol(M) - [¢llca-

Let £ := [%] + 2. By the Sobolev embedding theorem 1.2.13 there exists a constant
co > 0 such that

leller < ea-llollpe-

By the elliptic estimates (1.37), we have:

Il < cs - (HsoHLz ; HAW@HLQ

2+1
<es- (142070 - el
el BT P

n+6

<ecz-(1+ Ag)
<cg (LX) © - lellre.

In the last inequality, we used the estimate [HTI] = [% [%] + 1+ %} <7+ %

Combining the above estimates we obtain

n+6
lpllr2 <e-V/vol(M) - ca-cz- (14 )5 - [lol| 2
n+6

=c-a-(T+ M)+ - lollre.

__n+46

For e = 5= - (14 Xg)~ 4 we conclude ||¢||z2 < 3||¢||12, hence ¢ = 0. Thus for such

2¢cy
an € the only section ¢ € V satisfying ¢(p;) = 0 is the section ¢ = 0. Hence the

linear mapping

V. = E, & ®E,,
P = <(P(p1)7"' 7<P(pN)>
is injective. We thus obtain the estimate

k=dimV < dim(E,, ®...® E,,) =N -1k E

n(n+6)

<crre " rkE<es- (14 M) 3.

Hence, for the eigenvalues, we obtain the lower bound:

k n(++6) 4
14+ A > | — = cg - kn(®+0), O
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In the following, we study the heat equation

0
<a+A>SOt—O,

where ; is a smooth section in E for each t > 0 and ¢; depends smoothly on ¢.

Remark 3.1.2.

Let A be a self-adjoint operator of Laplace-type. By Lemma 1.3.5 we may write
A = (VE)*VE + K| where V¥ is a metric connection and K is a symmetric endomor-
phism field.

The connection V¥ on E induces a connection VF" on the dual bundle E* via the
requirement that the Leibniz rule

ox (1) = (VF1) (9) +1(T5) (3.2)

holds for any section [ € C*°(M, E*) and any section ¢ € C*°(M, E). The endomorphism
field K of F yields an endomorphism field K* of E*. Hence we obtain a Laplace-type
operator

AP = (VE) VT 4 K
on E*.
Let g denote the Riemannian metric on M and equip M x M with the product metric
g @ g. It follows that the operator

A= A®idg: +idg @AE”

is a formally self-adjoint Laplace-type operator on the Riemannian manifold M x M.

For a smooth section ¢ € C*(M, E) we define the section ¢* € C*(M,E*) by the
requirement

©*(Y) == (Y,p) VY EE.

Now, if ¢ € C®(M, E) satisfies Ap = \p then the section ¢* satisfies AP p* = \p*.
Hence any orthonormal basis of L?(M, E) consisting of eigensections of A yields an
orthonormal eigenbasis of L?(M, E*) of eigensections of A" with the same eigenvalues.
If ¢ € O®°(M, E) satisfies Ap = Ap and ¢ € C%°(M, E*) satisfies AP ) = ) then we
have:

Alp®@¢) = Ap @9+ 0@ AP Y = (A + p)p © .

Thus, an orthonormal basis {¢, |k € N} of L?2(M, E) consisting of eigensections of A
yields an orthonormal basis of L?(M x M, E X E*), consisting of the eigensections

(z,y) = (er(z) ® @i (y)), (k1) eNxN,

of A.
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Definition 3.1.3. Let M be a compact Riemannian manifold, let £ — M be a Rie-
mannian or Hermitian vector bundle, and let A be a self-adjoint Laplace-type operator
on E. Let {¢;|j € N} be an orthonormal basis of L?(M, E) consisting of eigensections
of A. The series

ki(m,y) = ) e No;(z) @ 9i(y), (3.3)
j=1

where z,y € M, t > 0, is called the (true) heat kernel of A on M.

Proposition 3.1.4. Letty > 0. Then the heat kernel and all its t-derivatives converge
uniformly int > tq in all H*-norms and all C*-norms. In particular, ki(z,y) is smooth
int, x, and y, and we can differentiate the series termuwise.

Proof.

a) In view of the Sobolev embedding theorem 1.2.13 it is sufficient to prove the propo-
sition for the H*-norms. All but finitely many Aj satisfy A\; > 1. Thus by splitting a
finite part from the series if necessary, we may assume that \; > 1.

By the elliptic estimates (1.37) for A, we then have:

<er- e (s @l + 134 s @ )
=cC1- eiw\j . <1 + (2)\])k)
<epoe .)\;“‘ (since A\j > 1)

<cy- e toAs . )\?.

For A sufficiently large, we have e~tos .\ < 1. Thus for j7 > 0, we obtain:

A
N wot| <o e
He P ®¢; o <cp-e .
e ) v . 4
b) By Proposition 3.1.1 we have A\; > c3 - j* + ¢4, where o = 2 F6) and therefore
i . @ o < _M_to% < —c6
€0 D@ || SC2E <cs-e .
o0 o
The series Y, e~ %7 converges, since we have:
Jj=1
o o

s 1- 1

Ze*‘:‘”a < /ecﬁ'tadt =c7- /es s ads=cy-T <—> < 00.
o

Jj=1

0 0
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Thus, we have shown that the series

o0
Y g ©¢)
j=1

converges in each H*-norm, uniformly in ¢ > ;.

¢) The same argument applies to the t-derivatives
d\"™ A A
<£> (e—t j@j ® <,O;> — (_)\j)me—t j(Pj R 4,0;-

Hence the series (3.3), together with all its t-dervivatives, converges in any H"*-norm
and consequently in any C*-norm. The series thus defines a family of smooth sections
ki € C*(M x M,E X E*). The family is also smooth in ¢, and all derivatives can be
computed termwise. O

Since the heat kernel can be differentiated termwise, we compute for a fixed y € M:

(e o]

0 S e gi(a) @ ()
=1

a kt(CU,y) =

SRS

Il
| I

e pj(z) ® ¢5(y)

<
Il
—

tnqg

(=) e ™ pj(x) @ i(y)
1

=Y ™ (Ay)) (2) ® ¥} (1)
j=1
—(Agke)(z,y).

Thus the heat kernel satisfies the heat equation (% + Ag) ki(z,y) = 0.

<.
Il

For any ¢ € L*(M, E), we have:

<(§t +A )/kt(x,y) ) dvol(y / kt(x y) o(y) dvol(y) =

M M

Thus the section

T / ki(z,y) (y) dvol(y)

M
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solves the heat equation. Moreover, the map

o /kt(-,y)w(y) dvol(y)
M

is a bounded operator on L?(M, E). Applying this operator to an eigensection ¢y, from
the orthonormal basis, we obtain:

[ ey dvols) = [ 37 (03(0) © 65(0) - euly) dooly)
M

M j=1

M

eil»\j Pj (I’) : (@]7 Spk)LQ
1
—tA\g

I
o .

or(T).
Thus, the operator ¢ — [ ki(-,y) p(y) dvol(y) coincides with the operator e A defined
M

by the functional calculus. In other words, the heat kernel k;(z,y) is the integral kernel
of the operator e 2.
As t N\ 0 the heat kernel becomes singular. Indeed, since e~ = id, we expect the

heat kernel to concentrate along the diagonal {(y,y) € M x M |y € M}.

0-A

Next we want to examine the asymptotic behavior of k¢ (z,y) for ¢ N\, 0.

3.2. The formal heat kernel

Definition 3.2.1. We define

M M :={(z,y) € M x M |y is not a cut point of z}.

Remark 3.2.2. M x M is an open dense subset of M x M, containing the diagonal
{(x,2) e M x M |z € M}.

Definition 3.2.3. Let M be a connected Riemannian manifold of dimension n. The
Euclidean heat kernel of M is the function ¢; : M x M — R, defined by

dist(x,y)Q) '

@(x,y) = (47t) 72 exp <— i
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Remark 3.2.4. The map

M x M x (0,00) — R
(x’y,t) = Qt(ﬂ?,y)

is continuous but it is smooth only on M >1 M x (0, 00).

Lemma 3.2.5. Let M be a connected Riemannian manifold, and let Ay be the
Laplace-Beltrami operator on functions. Then the Euclidean heat kernel satisfies

<§t + on> qt(z,y) = a(l;’ ) qe(z,y),

where a is smooth on (M 1 M) and it vanishes along the diagonal, i.e., a(x,z) =0

for allx € M.
Moreover, in geodesic polar coordinates around y we have

a(z,y) = > j <lndet (dexpy(rX))>

where exp,, : TyM — M denotes the Riemannian exponential map, T = expy(rX ) and
X € TyM with || X|| =1.

Thus the function a in the Lemma is essentially given by the radial logarithmic derivative
of the volume distortion of the exponential map.

Proof. Fix a point y € M. We express the operator Ag in geodesic polar coordinates

about y:
0? 0
ANg=A"———+(n-1)-H —.
0 or? ( ) or
Here S, := {x € M | dist(z,y) = r} denotes the distance sphere of radius r, and H
denotes its mean curvature with respect to the unit normal %.

A direct calculation yields

0 B 0 s, 0% n-1 0 1 0qt
(aﬁAOw) = (81& A _W_T'§>Qt+(”_l)<¥+}[>§

SICHE: (o)
e (ten) (4

1+ Hr
= — —1 N .
(n ) o qt

<
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Hence a(z,y) = —2%51(1 + Hr).

In order to compute this term we fix X € T, M with || X |[|= 1, and consider the unit
speed geodesic ¢(r) = exp,, (rX) emanating from y in direction X. Let e; = X, ea,...,¢€n
be an orthonormal basis of T, M. Let V; be the Jacobi field along ¢ determined by the

initial conditions V;(0) = 0 and YV;(0) = e; for i = 1,...,n. It is well-known that the
differential of the exponential map at the point rX is given by

dexp,(rX)(e;) = %VZ(T)

(see e. g. Proposition 3.4.13 in [1]). It follows that

(d—vr deXpy(TX)> (ei) = —T—12V@-(r) + %%Vi(r).

Since V4 (r) = rd/(r), we have
\Y
<% dexpy(rX)> (e1) =0.

For i =2,...,n, we have X-Vi(r) = —B(V;(r)), where B denotes the Weingarten map of
Sy. We thus obtain

(d—vr dexpy(rX)> () = <_Ti2 a2 B> v

1
= <——id—B> dexp,(rX)(ei), i=2,...,n.
r

Thus,
dii det (dexpy(rX)> = det (dexpy (rX) )u( — dexp, rX)) : (dexpy(rX))1>
= det (dexp,(rX)) tx (-— idys — )
= det (dexp,(rX)) (—"— n—1)H>
= . det <dexpy(7°X))
Hence
alr) = gdet (dexpy(rX)>7 -%det <dexpy(rX))
- gdiilndet (dexp, (rX)). (3.4)
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Definition 3.2.6. Let M be a Riemannian manifold with Euclidean heat kernel g;.
Let A be a formally self-adjoint Laplace-type operator, acting on sections of a vector
bundle F over M. A formal series of the form

Et(may) = Qt(xvy) : th ’ (Dj(xvy)
=0

with ®; € C°(M a M, E X E*) is called a formal heat kernel for A if for each
N € N there exists an mg such that for all m > mg we have as ¢t \ 0:

<% < A;p) qt(z,y) - Ztﬁ @z, y) ¢ = qi(x,y) - O(tN).

=0

Proposition 3.2.7. Let M be a connected Riemannian manifold, and let A be a
formally self-adjoint Laplace-type operator, acting on sections of a vector bundle E
over M. Then there exists a unique formal heat kernel k; for A, satisfying

Oy (z,x) =idg,, Ve e M.

Proof. a) We first show uniqueness of the ®;. To do this we differentiate the formal
series k¢(x,y) term by term, order the result by powers of ¢t and equate the resulting
coefficients to zero. We use the Leibniz rule for the Laplacian

A(f : 90) = (AOf) 2 2vgradf80 + fASO (35)

where f is a function, ¢ a section in F and A = V*V + K for some endomorphism
field K. Now we fix y € M and set r(z) := dist(x,y), as before. We compute:

o ~
Z 1A
<8t + w) e

o < > X /9 .
= |:<a + AO,m) qt:| . ZtJ‘I)j — QZtJ vgradwqtq)j + q¢ Z <a + A:v) t]‘l)j
=0

j=0 j=0
a oo ) r oo ) o0 ) o0 '
= > D+ . Gyt (Va®) +a Y jt 05+ ) t(A®;)
J=0 J=0 Jj=0 Jj=0
o0 .
=qt- Z t - {a : (I)j—f—l + (] + 1)‘I)j+1 —i—?”Vag (I)j-i-l + AJC(I)]‘}
j=—1

The last equation holds with the convention that ®_; := 0.



3.2. The formal heat kernel 135

Hence, Ky is a formal heat kernel, if and only if
a- Qi+ (J+1)P +7“Va@ i1+ AP =0.

Thus, along any unit speed geodesic c(r) = exp,(rX) emanating from y we obtain
the following singular ordinary differential equations (®;(r) := ®; (exp,, (rX), y)):
\Y

r— i1 (r) + (a(r) + 5+ 1)@jp1(r) = — (Az®5) (r). (3.6)

This equation is called a transport equation. To solve it we introduce the inte-

grating factor
T

Rj(r) == ritl - exp /_a(pp) dp
0
We rewrite (3.6) as

— (8a®)) (1) = 7 {Rj(r) AR Pj1(r) + Ry(r) - @ - ®j11(r)

Rj(r) dr
+ 22 Ry %m}
= e (B 210()

We denote the parallel translation along ¢ from ¢(r) to ¢(0) = y by m,.. Then we
obtain the ordinary differential equation:

d R;
o (Rj - mro®jp) = ——% - m 0 Ay Dy

This equation can integrated to obtain

T

Rj(r) 70 @512 (r) — Ry (0)85:0(0) = - [
0

Evaluating this equation for j = —1 yields R_1(r) - m. o ®@¢(r) — ®¢(0) =0, i.e.

T

Dy(r) =exp | — / @ dp | ! oidp,
0

i.e.
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where 7, , denotes parallel translation from y to x (along the unique shortest geodesic
connecting y and ).

For j > 0, equation (3.7) yields:

Rj(r) - mr 0 ®ji1(r) = _/ Riel - 0 (A ;) (p) dp.
0

p
Hence,
1 - R;(p)
J+1(T) R](’I") T © 0/ 0 Tp © ( ]) (p) P

This way we can recursively determine the ®; and uniqueness is proven.

b) For the existence part simply use the above equations to define the ®; recursively. [

Now we compute the coefficient ®;(z,x) by use of the transport equation (3.6). For
7 =0 and x = y, we obtain

(a(z,2) +1)®1(z, z) = — (A Do) (z, z).
——
=0
By assumption we have ®y(z,x) = idg,. Using equations (3.8) and (3.4), we find:

Do (z,y) (28) exp [ — / %f) dp | my.z, where r = d(z,y).

= <det g%’) (w)) Ty.a
= ,Uy(x) Ty,

where gg) denotes the coefficients of the metric g, expressed in Riemannian normal

coordinates around the point y.
Thus,

O (x,x) = — (A Do) (z,x)
= — Ay (py () Ty 0) ‘y:x.
We use the Leibniz rule (3.5) for A = V*V + K to obtain

Oy (x,2) = — (AOJ (,uy(x))wy,x + &@K o 7Ty7a;)

=1
for y==z

o (i) - 5, ~K(a)

y=z
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In Riemannian normal coordinates around y = 0, the Riemannian metric has the Taylor
expansion

1 n
gij(x) = 6;5 + 3 Z Ri11(0) oFat + O(Hx”3)

k=1
This yields
_1
1 1 n *
det (gig(2)) = 1415 |5 D7 Rua@) el +O(lalP) | +O(lle])
k=1
_1
1 & !
=1+ g Z Rjkjl(o) .%'k.%'l + O(HmH3)
j7k7l:1
_1
1 !
. k1l 3
=11- gkglrlckl(O)x x —i—O(HxH )

n

1 .
=1+ > ricg(0)2F2! + O(||2|?)

=1
and therefore . )
—Bo.a(py)la=y = 6 ;Fickk(O) =5 scal(0).
Thus,
®(a,1) = g scal(w) - id, —K (). (3.9)

Examples 3.2.8
1) Let E be the trivial real line bundle and consider A = A ;. Then K = 0 and

1
Oy (z,z) = 8 scal(x).

2) Consider E = T*M and the Hodge-Laplacian A = A;. By the Bochner formula
(1.17), we have K = Ric and thus

1
Oy (z,x) = 6 scal(z) - idrs s —Ricg.

Moreover, we have

tr &y (z,x) = %scal(:c) —scal(z) = o g g scal(z).
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3) Let M be an n-dimensional oriented Riemannian manifold. Let A = A, be the
Laplacian on n-forms and denote by * the Hodge operator. Then we have

A, =dd* +d*d=d(—xdx) = —+* (d* dx) = *(— x dxd*) = * (d*d
:*AO*:*AO*_l,
the Laplacians A,, and Ag are conjugate operators. Thus,

ktA" = *oktAO ox 1

and for ®; of A,,, we have:

1
Oy (z,x) = G scal(z) - idanTyas -

4) In a similar way, one can show that A,,_; and Ay are conjugate operators, hence

An—k
®;

(x,y) =x*o0 <I>jA’“ ox !

and thus
tr <<I>].A"*k (z, x)) = tr <<I>].A’C (z, x)) .

5) Let A = D? = (VZ)*VZ + %al -idyps be the square of the classical Dirac operator.
Then we have

1 1
Oy (z,x) = G scal(z) - ids, m —2 scal(z) - ids,
1
=-173 scal(z) - ids, ar -
Now we discuss the relation of the formal heat kernel Et to the true heat kernel k;:
Let M be a compact Riemannian manifold. There exists g > 0 such that
{(z,y) € M x M |dist(z,y) <eo} C M <x M,

for example we can take €¢ to be the injectivity radius of M. Pick a smooth cut-off
function x : R — R such that

1 fort <20,
x(t) = o
0 fort> =4

and 0 < xy <1 everywhere. We define

Ee(a,y) = x(dist(z,y)) - k(2. y) = x(dist(z,y)) - a(z,y) - Yt 0(z,y).
=0
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Hence Et coincides with the formal heat kernel Et on a neighborhood of the diagonal.
Moreover, the finite partial sums

™ () = x(dist(z,9)) - (. y) - D ¥ (. y)
§=0

are defined and smooth on all of M x M.
We show that k; is asymptotic to the true heat kernel k; as t \0:

Proposition 3.2.9. For every N € N and every tg > 0 there exist an mg € N and a
constant C = C (N, mg) > 0, such that for all m > mg, we have:

kt(x,y)—%m)(x,y) <C-tV, vVt e (0,ty),Va,y € M.

Proof. a) Denote by ¢q the injectivity radius of M. Let ¢ € C°(M, E) supported in a

ball of radius 2%0 around x € M, so that we can use Riemannian normal coordinates

around x. Let xy : R — R be defined as above. The Euclidean heat kernel ¢; on
Euclidean R™ satisfies for all f € C°(R™ x R") and all z € R™

It follows that

lim / at(2,y) o(x,y) x(dist(z,y)) ¢ (y) dvol(y)
M

. _n _r? _1 z 1 .
= lim (4mt)"% e (det gt (1)1 - (my(y)) - (det g (y))2x (dist(x, y)) dys . .. dyn

5(0.22)

. o _r- —1 x 1 .
=lm [ (4rt) "% 7 - (myap(y)) - (det gi)) (1)) 7T (det o7 ()2 x(dist(z, ) dy - dyn
R”
:Wx,x@(x)

= p(x),

where r(y) = dist(z,y). For arbitrary ¢ € C°(M, E) write

o(y) = x(dist(z,y)) - w(y) + (1 — x(dist(z,))) - ©(y).
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Since 1 — x(dist(x,y)) = 0 on B(z, %) we have

K%[M%M®M%MXMM®wDﬂme@)
= %{(%1\[ gi(, ) Bo(x, y) x(dist(x, ) “o(y) dvol (y)

+ lim / qt(x, y) Po(z, y) x (dist(z,y)) (1 — x(dist(z, y)) ) (y) dvol(y)
M\B(2 )

= ()

since as t \, 0 we have ¢;(z,y) — 0 on M \ B(z, %) uniformly in y. Thus we get for
allm € Nand ¢ € C°(M, E)

lim B (2, ) p(y) dvol(y) = ¢().
M

On the other hand, since e **¢p — ¢ in L?(M, E) as t \, 0, we also have

limy ke(z,y)e(y) dvol(y) = ().
M

Hence, for all ¢ € C°(M, E) and for all m € N

liny / (ke — ™) (2,v) () dvol(y) = 0.
M

b) Define 5§m) =k — Egm) Then we have

m a m
7715 ):: <a—|—Ax>5§ )

_ (9 ~(m)
(248

5 - o o
= —X" <§ + Aaz) kt( ) + QVgradxth( ) - (A0,$X) ' kt( ),

= Rgm)

By Definition 3.2.6 of the formal heat kernel, we have:

8 T (m
(5 +Am> K™ =g, -0(tY).
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The term Rgm) is of the form ¢; times a smooth section vanishing for » < . For
r > % we have

(4mt) " Zexp (-2 2 /
aley) _ ) (-2) <o ().

q2¢(, y) (87t)™ 2 exp (—%) t

This yields the estimate

/

q(z,y) < C-exp <—7> “qot(,y) (for r > )
for suitable constants C,C’ > 0. For the remainder terms we thus find

R™ = g2 - O(tV).
Hence we get

" = 0 00) + - 01Y) 10

_ t
¢) Now define 6™ := [e=(t)As ™ dr. Then we have:
0

t
O 5 = ende ) / — A (A pm) e = ™ — A5
0
Therefore

9 ~(m) _(m) 9 Sm)  (m)\ _
<§+Ax>5t =™ and (A, (5™ = o™ =0,

Since ggm) — gm) w) 0, the Duhamel principle implies:

t
5 — §m) _ / e~ (=)0 () g
0
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Hence

t
H‘St(M)HH% = H /6_(t_T)Aac pm) dTH
0

H2k

<t sup He—(t—T)Ax 77$M)HH2’€

T€[0,t]
(1.38)

. —(t=7)Ag () k o= (t=T)Az p(m)
<7t s oo A8 )
(1.45)
< tee sup {0+ A% 0 )

r€[0,1]

<t-c- sup an— HH2k
T€[0,t]

(3.10) 0 (tN+1) ‘
Now applying the Sobolev embedding theorem 1.2.13, we find:

157 o < O(EYHY). O

Corollary 3.2.10. Let A be a self-adjoint Laplace-type operator acting on sections of
a Riemannian or Hermitian vector bundle E over a compact Riemannian manifold M.
Then we have the following short time asymptotics of the heat kernel:

k:t(x,x) = (4mt)™ Zt]q) x,T)

uniformly in x € M.

Integrating over M, we obtain:

Corollary 3.2.11. Let A be a self-adjoint Laplace-type operator acting on sections of
a Riemannian or Hermitian vector bundle E over a compact Riemannian manifold M .
Then we have the following short time asymptotics of the heat trace:

—tA Z e—t>\
t\,O _% Zt]

tr @;(x, x) dvol(x)

\
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= (4rt)"2 [ tk(E) vol(M) +t rkéE) /scal(:n) dx—/ter dz| + O(t?)
M M

(3.11)

Proof. By Corollary 3.2.10, we have

tr(ki(z,2)) ~ (47 )2 th tr ®(z, z)
=0

and thus
tr(eftA) — Zeft)\j
j=1
= /tr kt(x, x) dvol(x)
M
I (4rt) "2 th /tr ®;(x,x) dvol(x)
Jj=0 M
n k(E
= (4nt)" 2 | rk(E)vol(M) +t # /Scal(x) dx — /ter dx| + O(t?)
M M
where we have used the equations (3.8) and (3.9). O

The short time asymptotics of the heat trace implies that the dimension n = dim(M)
and the coefficients of powers of ¢ on the right hand side of (3.11) are determined by the
spectrum of the operator A: In particular,

/tr Py(z, x) dvol(x) = rk(E) - vol(M)
——

M =id ‘Eac
and

(3.9)

/ 1 @y (2, 7) dvol(z) 2 / fr (%scal(x) idp, —Km> dvol(z)
M

M
= %rk(E)/scal(ac) dvol(zx) — /tr(Kx)dvol(x).
M M

are determined by the spectrum of A.
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Example 3.2.12. Consider A = Aq over a compact surface M. Then we have

3.9) 1 1
tr &1 (z, x) @8> scal(z) = = K(x).
6 3
Hence the Euler characteristic x(M) = 5= [, K(z) dvol(z) is a spectral invariant of the
Laplacian, i.e. it is determined by the spectrum of A.

3.3. Growth of eigenvalues

In Proposition 3.1.1, we derived an estimate for the k-th eigenvalue of a self-adjoint
Laplace-type operator on a Riemannian manifold in terms of its first eigenvalue. Now
we show the following improvement of this estimate, which goes under the name Weyl
asymptotics.

Theorem 3.3.1 (Weyl). Let A be a self-adjoint Laplace-type operator, acting on
sections of a Riemannian or Hermitian vector bundle EE over a compact Riemannian
manifold M. For any A € R let N(X) be the total number (counted with multiplicities)
of eigenvalues of A that are less than or equal to \. Then we have:

N()N) rk(E) - vol(M)

lim e — — . 3.12
Asee A3 (4m)3 T (2 +1) (3.12)

For A = A\, we have N(\) = k and the Weyl asymptotics (3.12) implies:

ﬁ k—oo  TK(E) - vol(M)
A2 (4m)z T (2 +1)

)

ie, k~C- )\E.
For the proof of Theorem 3.3.1 we need the following tool:

Lemma 3.3.2 (Karamata). Let  be a Borel measure on (0,00), satisfying

(e}

/e”‘d,u()\) < 0o
0
for allt > 0. Let « > 0 and C' > 0 be positive constants such that

o0

lim t* [ et du(\) = C.
Lo /e 1(A)
0
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Then for all f € C°([0,1],R) we have

[o.¢] C o
%i\I‘X(l) t / f(e_t)‘) e M du(\) = (@) / f(e™) t* et dt. (3.13)
0 0

Proof. By the Weierstrass’ approximation theorem, polynomials are dense in
C° ([0,1],R) with respect to the C%-norm. Hence it suffices to prove Lemma 3.3.2 for
polynomials f instead of arbitrary continuous functions. Assume f(z) = z*. For the
left hand side of (3.13) we get:

. a —tA\ _—tA\ . a —(k+1)t A
fim ¢ /f(e ) e () = lim ¢ /e DX dp(N)
0 0
. S o« —sA
~tiy () [y
0
. C
(k4 1)
For the right hand side of (3.13) we get:
C [ ityatty_ C 7’ L)t
— t dt = —— [ t* dt
ol ECRERE o
0 0
_C 7 s \*' ., ds
T ) \kr1 © Tkt
0
C I'(«)

T T(a) (k+ 1) s

Proof. [of Theorem 3.3.1]

a) Replacing A by A + ¢ - id if necessary, we may assume all eigenvalues \; of A to
be positive. Such a shift of course does not affect the claimed asymptotics. We
apply the Karamata Lemma 3.3.2 with a = 5, with C' = (47)~% rk(E) - vol(M) and

dp =3 dy;.
=0

By Corollary 3.2.11, we have

o0 00

/e“‘ du(\) = Z e N = tr (eitA) < 00

0 j=0
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and
o0
limt® - [ et du()) = lim t2 -tr (e t2) = C.
tim e [ du(h) =l o3 - (712)
0

Thus the assumptions in Lemma 3.3.2 are satisfied.

b) Let ¢ > 0 and pick a continuous function f : [0,1] — R such that f(z) = 0 for
x<e %) and f(z) =2 ' for z > e ! and 0 < f(z) < 27! everywhere. For the
left hand side of (3.13) we get

14¢
00 =
lim & —tA —t)\d - | ta/ —tA —t)\d
time [ (e M) =t e [ (e M duy)
0 0
1
t
> limsup to‘/d,u()\)
t\0
0
1
= limsup t* N<—>
N0 t
= limsup N(i\)
A—00 A2
c¢) For the right hand side of (3.13) we obtain
c oo o 1+e
—t\ qa—1 —t — —t\ qa—1 —t
—I‘(a)/f(e )t e tdt —P(a) f(e )t e "dt
0

IN

Thus .
lim sup (n) < C.(1+e):
xoeo AT T T(341)
and € N\, 0 yields
N(X) C rk(E) - vol(M)

I Y — B, |
St A T (241) @m)ir(n )

d) Using in b) and c¢) a continuous functions f : [0,1] — R satisfying f(z) = 0 for
r <eland f(x) = 27! for x > e 1% and 0 < f(x) < 27! everywhere yields

lim inf N(E)‘) >_<¢ O
A—oo A2 r(%2+1)
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3.4. The index of Dirac-type operators

Throughout this section, let F, F' be Riemannian or Hermitian vector bundles over a
compact Riemannian manifold M, and let D € @% (E, F) be a Dirac-type operator.
Thus

At :=D*D € Dz (E,E) and
A :=DD* € Tz (F,F)

are formally self-adjoint Laplace-type operators.

If ¢ € ker(D) then ¢ € ker(A™). Conversely, if ¢ € ker(A™) then we have
0= (A%p,0)12 = (D*Dip,p) 12 = (D, Dp) 12 = || Dep| 7.

Hence Dy = 0 that is, ¢ € ker(D). We thus conclude that ker(D) = ker(A™).

Similarly, we may conclude ker(D*) = ker(A~™). In particular, by the Hodge Theo-
rem 1.5.9 both ker(D) and ker(D*) are finite dimensional.

Definition 3.4.1. Let D € @%(E,F) be a Dirac-type operator, where E, F' are
Riemannian or Hermitian vector bundles over a compact Riemannian manifold M.
Then

ind(D) := dim ker(D) — dim ker(D™)

is called the index of D.

Remark 3.4.2. If D € @7//{ (E, E) is a formally self-adjoint Dirac-type operator then
ind(D) = 0, since D = D*.

Example 3.4.3
1) For E = A®*"T*M and F = A°4T*M, the Euler operator

D=d+d" € T(E,F).
is of Dirac-type (see Example 1.3.10). We have

At =D*D = @ A, and A" =DD*= @Ak
k even k odd

where Ay denotes the Hodge-Laplacian on k-forms. By the Hodge Theorem 1.5.9,
we have:

ker(AY) = €P ker(Ap) = €D Hip(M)

k even k even
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hence

dimker(A") = Y dim Hjp(M) = > bp(M).

k even k even

Similarly,

dimker(A™) = > be(M).
kodd

Thus, the index of the Euler operator is the Euler characteristic of M (hence the
name of the operator).

ind(D) =Y (=1)F b (M) = x(M). (3.14)

2) Let M be a compact oriented Riemannian manifold of even dimension n = 2m, and
for k € {0,...,n} let

7= kE=Dtmy AR N @p C — A" *T* M @5 C.

Consider the signature operator D = d + d* € @%(Eﬂ E7), introduced in Exam-
ple 1.3.19.

For k € {0,...,m — 1}, we define
Ef = B*n(A*"T"M g C © A""T*M @k C).
We have

Twdn) =twdneTw==4n and 7 =+tw
& Tw = EN.

Thus
Ef = {(w,£1w) |w € AFT*M @ C}.

Since 7 maps harmonic forms to harmonic forms, we have
ker(A%) N C®(M, Ef) = {(w, £7w) |w € ker(Ay)},
hence we get for all k € {0,...,m — 1}
. + B
dim ker(A \COO(M’E%)) = bi(M).
For the index of the signature operator, we thus obtain:

ind(D) = dimker(A™) — dimker(A™) = dim ker (A% |p+) — dimker (A% 5-).
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Assume now that dim M = 4k. On A?**T* M ®gC we have 7 = * and thus ker(Agy|p+)
coincides with the space H* of (anti-)self-dual 2k-forms. The index of the signature
operator is then equal to the signature of M:

ind(D) = b" (M) — b~ (M) = sign(M). (3.15)

3) Let M be a compact complex Hermitian manifold of complex dimension m. Consider
the Dolbeault operator Dg = v/2(9+0) € T, (AP T* M, APYT* M) for a fixed
p € {0,...,m}. The same reasoning as for the Euler operator yields the index of the

Dolbeault operator:
m

ind(Dj) = Y _(=1)? hP(M). (3.16)

q=0
Here h?9(M) denote the Hodge numbers of M.

Now we come back to the general situation of a Dirac-type operator D € @%(E ,F) on
a compact Riemannian manifold M, with the associated Laplace-type operators A™ =
D*D and A~ = DD*. Let X\ # 0 be an eigenvalue of AT, and let ¢ be a corresponding
eigensection. Then we have:

A" Dy =DD*Dp=DA%p=\Dg.

Hence D maps the eigenspace E(\, AT) to E(\,A™). Similarly, D* maps E(\,A7) to
E(X,A™). Since we have

D*D|pia+) = AT gpat) = A idppat

we see that D induces an isomorphism E(X, AT) — E(X, A7) with inverse ; D*. Hence
except possibly for A = 0, the operators A™ and A~ have equal spectra. In particular,

we have:
tr (e—tA+> —tr (e—tAf) _ Ze_t)\j(A+) . Ze_tAj(A—)
j=1 j=1
= dimker(A™") — dim ker(A™)
= ind(D). (3.17)

Applying the short time asymptotics (3.11) for the heat trace, we thus obtain:

ind(D) "X zm"ZtJ / [trq)A ) — trd> (2,2)| dvol(z)  (3.18)

=ia;(z)
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and

|3

(4mt)2 -ind(D t\‘o Z tI / x) dvol ().

Evaluating at t = 0 yields

0= / ao(z) dvol () .

M

Inserting back into (3.18) yields

d(D (4mt) 2 Zt]/ x) dvol(z)
and

371 ind(D) t\o (4m) 7722? 1/ x) dvol ().
M
If 5 > 1, we may put ¢t = 0 to obtain
0= (4m)"2 /al(az) dvol(z) .
M
Repeating this argument yields
.on
0= /aj(x) dvol(x) for all j < 5
M

Thus, we end up with:

N0

V3
(]2
~
.
S
<.
—~
~—
U
<
)
o~
—~
~—

ind(D) '~ (47 1)~ (3.19)

Case 1: dim(M) odd

In this case, we have:

ind(D) T2 i tj_%/ x) dvol(x).

1
:% M
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Thus all terms in the short time asymptotics of the heat trace have order at least %
in ¢. In the limit ¢ N\, 0, we obtain ind(D) = 0.

Case 2: dim(M) even
In this case, we have:

In the limit ¢ \, 0, we thus obtain:

ind(D) = (47)"2 /a (x) dvol(z).

M

|3

Summarizing the above discussion, we conclude:

Theorem 3.4.4 (Atiyah-Singer index theorem, preliminary version). Let

D e @%(E,F) be a Dirac-type operator, where E, F are Riemannian or Hermitian
vector bundles over an n-dimensional compact Riemannian manifold M. Then we
have:

o [fn is odd then ind(D) = 0.

e Ifn is even then
ind(D) = (4r)~% / as (z) dvol(z).
M

Remark 3.4.5. As explained in Section 3.2, the coefficients <I>J-Ai of the formal heat
kernel can be computed recursively by solving the transport equation (3.6).

In local coordinates, the coefficient <I>jAi (x,z) is some universal algebraic expression in
the coefficients (together with their derivatives) of the Riemannian metric and of the
operators A%,

Example 3.4.6. Let D be the Euler operator on an oriented Riemannian 2-dimensional
manifold. By Example 3.2.8 we have:

1
tr @f“(:ﬂ,:ﬂ) =tr 1A2 (x,z) = 6 scal(z)

and tr <1>1A1 (x,z) = scal(z).
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Moreover, At = Ag+ Ay and A~ = A;. We thus obtain

2
tr <I>1A+ (x,z) = 6 scal(z) and

2-6

tr &P (z, ) = scal(z).

Hence, a1 (z) = scal(x) and

x(M) = ind(D) = (4n) ! /scal(:v) dA(z) = % /K(m) dA(x).

M M

Thus we have proved the Gaufl-Bonnet Theorem.

/K(m) dA(x) =27 x(M).
M

Corollary 3.4.7 (Homotopy invariance of the index). Let E, F be Riemannian
or Hermitian vector bundles over a compact manifold M. Let g, t € I C R be a
smooth family of Riemannian metrics on M, and let D, be Dirac-type operators for gy,
varying smoothly with t € I.

Then ind(Dy) is constant in t.

Proof. The functions a;(z,t), defined in equation (3.18) depend smoothly on t. This
follows from the fact that a;j(x,t) are built from the coefficients ®;(x,t) of the formal
heat kernel, which are solutions of transport equations. The coefficients of the transport
equations depend smoothly on ¢, and so do their solutions.

Hence the integer valued function

ind(D;) = (47)" 2 /ag(m,t) dvoly(z)
M

depends smoothly on ¢ and is thus constant in ¢. U

Corollary 3.4.8 (Multiplicity of index for coverings). Let M =5 M be a Rie-
mannian covering of compact Riemannian manifolds of degree k. Let E and F be
Riemannian or Hermitian vector bundles over M, and let D & @%(E,F) be a
Dirac-type operator. Let De @%(W*E,W*F) be the Dirac-type operator obtained by
pull-back.

Then we have: _
ind (D) = k- ind(D).




Proof. A direct computation yields

ind(D) = (4r)~3 / Gy dvol(x) = (4m) % / (ay o 7)(z) dvol(x)

M M
=k-(4m)"2 /ag(m‘) dvol = k - ind(D). O






4. Characteristic Classes

4.1. Chern Classes

Let G be the Lie group G := GL(NV,C) and g = Mat(N x N, C) its Lie algebra.

Definition 4.1.1. A polynomial map P : g — C is called invariant, iff
P(TXT™ ') =PX). (4.1)

holds for all T' € G and all X € g.

Example 4.1.2. It is well known from linear algebra that P = det and P = tr are
invariant polynomial maps.

Remark 4.1.3. The condition (4.1) is equivalent to the following:
P(XY)=P(YX) forall X,Y cg. (4.2)
If (4.2) holds then we have for all X € g and for all T € G:

(4.2)

P((TX)T™) P(T7'TX) = P(X).

Thus, we have (4.1).
Conversely, if (4.1) holds then we have for all X € G and for all Y € g:

(4.1)

P(XY) = P(X'XYX)=PYX).

Since G C g is dense and P is continuous, this equation also holds for all X, Y € g, thus
we have (4.2).

Remark 4.1.4. If P: g — C is a polynomial map and A is a commutative C-algebra

then P induces a map
Mat(N x N, A) — A.

In the following, let £ — M be a complex vector bundle of rank N with connection V.
The corresponding curvature tensor is defined by

R(X,Y)e =VxVye—-VyVyxe— V[X,y]e.
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Here X, Y € T,M and e € E,.
Now let U C M be an open set with local sections s1,...,sy € C®(U, E|y), linearly
independent at each point x € U. Then the connection 1-form w of V is defined by

N
Vxsi= ng(X)sj . (4.3)
j=1

Here wzj € QY(U) are 1-forms on U, and w = (wi) € Mat(N x N,QY(U)) is a matrix of
1-forms on U. The curvature 2-form (2 of V is defined by

N
R(X,Y)s; = > Q(X,Y)s;. (4.4)
j=1

Here Q = (/) € Mat(N x N, Q2(U)) is a matrix of 2-forms on U. Now, A := @ Q2*(U)
keN
is a commutative C-algebra and we consider 2 € Mat(N x N, A).

Lemma 4.1.5. Let E — M be a complex vector bundle with connection V. Let
$1,...,8N and S1,...,5N be two local frames on U C M. Let 2, Q be the corresponding
curvature 2-forms. Then for any invariant polynomial map P : g — C, we have:

P(Q) = P(Q).
Proof. Let T : U — G be the linear transformation that maps the frame si,...,sy to
the frame 31,...,5y. From equation (4.4), we obtain Q(X,Y) =T-Q(X,Y)-T~!. By
invariance of P, this yields P(Q) = P(TQT 1) = P(Q). O

Corollary 4.1.6. Let E — M be a complex vector bundle with connection V, and
let P : g — C be an invariant polynomial. Then P(S2) is defined globally on M, i.e.,

P(Q) € @ Q*(M).
ke N

The connection 1-form and the curvature 2-form are related as follows:

Lemma 4.1.7. Let E — M be a complex vector bundle with connection V. Let
51,...,88 : U — E be a local frame and let w € Mat(N x N,QY(U)) and Q €
Mat(N x N,Q2(U)) be the corresponding connection and curvature forms. Then we
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have:

D=dw+wAw (4.5)
dA=QANw—wAQ (4.6)

Proof. Let X|, and Y|, be tangent vectors at the point p € M and extend them to vector
fields X and Y which are synchronous at p, i.e.VX|, = VY|, = 0 and thus [X,Y]|, = 0.
Then, at p we have:

D QX,Y)s; = R(X,Y)s;

= VvaSi — VyVXSi

:VX<wa( ) Y(ZWf(X)Sk>

_ <dw X¥)+ e nef ><X Y))s;

Thus, we have
Qf = dw] —|—Zwi/\wf.
k
For (4.6), we compute, using (4.5):
dQ = d*w + dw A w — w A dw
=0+ Q-wAWAw—wA(Q—wAw)
=QAw—wAQ. O

Lemma 4.1.8. Let P(Q2) be as in Corollary 4.1.6. Then P() is closed, i.e.we
have dP () = 0.

Proof.
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a) We denote by A§ the entry in the i-th row and the j-th column of the matrix A € g.

For P:g— C, we set P'(A)! := gg (A) and we define P'(A) := (P'(A)!) e g.

We first show that P’(A) commutes with A, i.e. [P'(A), A] = 0:

Let EZJ € g be the matrix with all entries equal to zero except the entry in the j-th
row and i-th column which is equal to 1. By the invariance of P, we have for all i, j
and all t € R ‘ ‘

P((Ly +tE)A) = P(A(Ly + t B])).
We differentiate both sides of this equation with respect to t. For the left hand side

we get

d ; oP ;
P (U +tE)A) o = Y (4) - (B - 4) = Y
k,l k k

oP

)4
k

=Y AP = (4-P(4)]
k

and similarly we get for the right hand side

%P(A(]IN +tE))li=o = (P'(A4) - A)".

We conclude that P'(A)- A= A- P'(A).
b) By Lemma 4.1.7 and part a), we have:
N

dP(Q) = > gj;’ (Q) A (dQ)}
J

ij=1
= tr(P'(Q) A d)
=tr(P(OAQAw—P(Q) AwAQ)
=tr(QAP(Q) Aw—P(Q) AwAQ).

We put X := P (Q) Aw = (X;:)i,j. Since Qg is a 2-form we have Qf A X]i» = XJ’: A Qf
and thus
dP(Q2) =tr(QANX — X A Q)
=> (A AX] - XInQ))
4,J
=) (S AX] - Q] AX])
4,J
= 0. O
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Since dP(2) = 0, the differential form P(Q) € @, Q?*(M;C) represents a de Rham
cohomology class
[P()] € €D HIR(M;C).
k>0
The construction of the closed form P(2) and the de Rham cohomology class [P(£2)] is
called the Chern-Weil construction. In the case of homogeneous polynomial maps,
we set:

Definition 4.1.9. Let £ — M be a complex vector bundle of rank N with connec-
tion V, and let P : g — C be an invariant polynomial map, homogeneous of degree k.
The differential form P(Q) € Q2¢(M;C) is called the Chern-Weil form associated
with P. The de Rham cohomology class [P(2)] € H3E(M;C) is called the Chern-
Welil class associated with P.

Remark 4.1.10
For a complex vector bundle £ — M and a smooth map f : N — M, we have the
pull-back bundle f*FE and the commutative diagram

rFE-Lop
N om

For a connection V on E, we have the pull-back connection f*V on f*FE, characterized
by the following property: Let s1,...,sy be a local frame of E over U C M and let
f*s1,..., f*sn be the pull-back frame of f*E over f~}(U) C N, defined by

[Tsj(x) = F! (s](f(x)))

For the connection 1-forms we have w/Y = f*(wV). Thus, we compute for the curvature
2-forms:

QFY = d(frw) = fruon ffu= ffdo—wAw) = QY.

Thus
PQIY) =P(fQY) = f*PQY) (4.7)

and hence

[P(QFV)] = f*[P(QY)]. (4.8)

Lemma 4.1.11. Let E — M be a complex vector bundle, and let P : g — C be an
wnvariant polynomial map. Then the de Rham cohomology class

[P(Q)] € Hig™ (M;C)
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does not depend on the choice of connection on E.

Proof. Let V? and V! be two connections on E. Put X := M x R, and let 7: X — M
be the projection on the first factor. On the pull-back bundle E:=7E— X we have
the pull-back connections V0 := 7*V0 and V! := 7*V!. We define a connection V on E
by putting for v € T(,, ) X:

Vos = (1=A) Vs +AVls.
For A e Rlet iy : M — X, m — (m,\) be the inclusion. Then we have
3V = (1 - AV + AV

From equation (4.7), we obtain P(QV") = i P(Q) and P(QV') = i1P(). Since the
inclusions ig and 4; are homotopic they induce the same map on cohomology: i = 7.
Thus we get

[P(27)] =i [P(®)] =i [P(Q)] = [P(@7)]. O

As a consequence, for any complex vector bundle £ — M and any invariant polynomial
map P : g — C we obtain a de Rham cohomology class

P(E):= [P(Q)] € HE™(M;C).

Moreover, the Chern-Weil construction is natural with respect to pull-back diagrams:
for any complex vector bundle £ — M and any smooth map f: N — M, we have

P(f'E) = f*P(E). (4.9)

Definition 4.1.12. Let £ — M be a complex vector bundle of rank N. Set
P(A) = det (1y + — A4
'_ NTomi )

Then
¢(E):=P(E) € HgZ"(M;C)

is called the (total) Chern class of E.
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A1
IfA= ( ) € g is a diagonal matrix then we have
AN

1+ 2L

21

P(A) = det

(1 )

=1

N
PRV
LAy 4.10
2o <2m ’2m'>’ (4.10)

k=0

<.

where oy, is the k-th elementary-symmetric function. In particular, we have

N
01<£... )‘_N>: ﬁ:i-tr(A)

2’ 2mi £~ 2 2mi
J=1
N
A1 AN )\j 1 \N
oN <2m" ’2m'> jl—[12m' <2m'> et(4)

By the invariance of P, the formula (4.10) also holds for all diagonalizable matrices A.
Since these are dense! in g and P is continuous, (4.10) holds for all A € g.

For k € {0,...,N} we put

Pu(A) = o (iA—N> _ (i)kak(Al,...,AN).

21 21

Definition 4.1.13. Let £ — M be a complex vector bundle of rank N with curvature
2-form 2. Then
c(E) := [Po()] € HiR(M;C)

is called the k-th Chern class of E.

We have ¢(E) = co(E) + ...+ cn(E).

In fact, the matrices with pairwise distinct eigenvalues are dense, and they are diagonalizable by the
theorem on the Jordan normal form.
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Proposition 4.1.14. Let E, Ey, Eo — M be complex vector bundles, and let E* — M
be the dual bundle of E. Then we have:

C(El D EQ) = C(El) . C(EQ) (4.11)
cr(E*) = (=1)* e (B) (4.12)

If B4 = Es then we have
c(E1) = c(E3). (4.13)

Proof. 1) Let V? be a connection on E; and let V := V! @ V2, i.e. for sections s; of F;
we define

Vx(s1 @ s2) = (V&Sl) SP) (V%{SQ).

Then, the curvature form of Fy & Fy with the connection V is given by:

Qv o0
v _

A direct computation yields:

1 1y + LoV 0
dt(]l —,QV>:dt 1 2
et {Initne + 5 e 0 In, +2+ri9v2-
1 1
= det (]IN1 +— Qvl) - det <]1N2 +— Qv2>.
271 271

2) Let V be a connection on E and let V be the dual connection on E* induced by
V, characterized by the condition (3.2). Let sq,. ..,8N be a local frame for E and

s},...,8% the dual frame for E*. Then we have QV = —(QV)T and thus
cr(E") = [P(QV)] = [F(=Q7)] = (=D)* [Pe(27)] = (=1)* ex(B).

3) Let ¢ : By — E3 be a vector bundle isomorphism. Let V be a connection on Es.
Then

Vx=¢ 'oVxog
defines a connection on F4. For any local frame sq,...,sy of Esy, we define a local
frame 31,...,5n of Fy by 3; := ¢! os;. With respect to these local frames we get
QV = QV. Hence c¢(E,) = c¢(E»). O
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Lemma 4.1.15. Let E — M be a complex vector bundle. Then the total Chern class
¢(E) is a class in the real de Rham cohomology:

«(E) € Hig"(M) C Hgg™" (M;C).

Proof. Choose a Hermitian metric and a metric connection V on E. For a local or-
thonormal frame sq,...,sy we have

w¥(X),QV(X,Y) € u(N) = {A € g|A* = —A}.

1 1 1 — 1 —=\"
211 211 211 21

1 1
=det(1——(QV)) =det [1+-—0QV).
e( o ¢ )> e<+2m' >

Thus ¢(E) = det (1 + 51 QV) is real. O

Remark 4.1.16. The total Chern class ¢(FE) of a complex vector bundle £ — M is not
only a real cohomology class, it also has integral periods, i.e. for any smooth singular

cycle v in M, we have
/c(E) €Z.

gl
Thus c¢(E) lies in the image of H*V*"(M;Z) in the de Rham cohomology under the change
of coefficients map H*(M;Z) — H*(M;R) composed with the de Rham isomorphism
H*(M;R) — Hip (M),

Proposition 4.1.17. a) If E — M s trivial then ¢(E) =1 € HJz(M).

b) If E — M has rank N and admits global sections si,...,s € C°(M,E) linearly
independent at each point then cj(E) =0 for all j > N — k.

Proof. a) If E — M is trivial then it has a flat connection V, i.e. QY = 0, and thus
det (]1 + ﬁ QV) =1.
b) Let Ey C E be the sub-bundle spanned by s1,...,s;. Let Es be a complementary
bundle, i.e. E = Ey @ Es. Since Fj is trivial by construction, ¢(E;) = 1 and thus
C(E) = C(El) . C(EQ) = C(EQ).

Hence ¢;(E) = ¢j(E3) =0 for j > rk(Ey) = N — k. O
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Example 4.1.18. Consider the n-sphere M = S™ and its complexified tangent bundle
E := TS" ® C. Let v denote the normal bundle of S™ in R"*!. Since the normal
field is globally defined on S™ C R™!, the normal bundle v is trivial. We also have
TS" ® v = TR" ! gn, which is also trivial.

To compute the total Chern class of E, we denote by £F be the trivial complex vector
bundle of rank k& on S”. Then we have v ® C = &' and E @ &' = £"*1. By the
multiplicativity (4.11) of the total Chern class, we obtain

c(B) -c(EN=c(E®E) =) =1.
=1
Thus, ¢(F) = 1, although £ =T5" @ C — S™ is not trivial.

Example 4.1.19. Consider the tautological line bundle ~,, — CP"™ on the complex
projective space, defined by

Ym = {(¢,v) € CP™ x C™*!|v € ¢}.
Define a := ¢1(7¥m) # 0. Then we have

R-af, fork=2j,5=0,...,m

0 otherwise

Hin(CP™) = {
The computation is spelled out e.g. in [2].

4.2. Additive and multiplicative classes

Let R = RO R'®R%®. .. be a commutative’ graded real algebra with unit 1 € R?. The
term “graded“ means that the R’ are linear subspaces of R satisfying R’ - RF ¢ RItF,
In the application we have in mind, R will be the algebra of even de Rham cohomology,
ie. R = HaL(M).

Definition 4.2.1. Let R be a commutative graded real algebra. Let g(z) = go + 91 -
T+ g2-2%+--- € R[z] be a formal power series. We define an associated vector space
endomorphism A, : R — R by

Aglpi = (=17 - j - gj idps . (4.14)

Hence A4 preserves the grading.

2By commutative graded algebra we understand that it is a commutative algebra in the usual sense,
i.e. a-b=">b-a holds for all a,b € R. It does not mean that the algebra is graded commutative!
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Additive classes

ForneNandc=14ci4+c+--- € R=R'®&R' @ R>® ... we obtain another element
ge € R by setting
ge:=N-go-14+Ay4(logc) € R.

Here log(1+t) =t — % + % F ... Notice that for fixed degree j only finitely many terms
occur in loge.

Now let R/ = Hg%{(M ) and ¢ = ¢(E) be the total Chern class of a complex vector bundle
E — M of rank N.

Definition 4.2.2. Let ¢ = ¢(E) be the total Chern class of a complex vector bundle
E over M of rank N. Let g(x) = go + g1 - + g2 - 2> + - - - € R[z] be a formal power

series. Then
9e(E) =N -go-1+4 Ag(logc(E)) (4.15)

is called the additive characteristic class of F associated with the formal power
series g.

By equation (4.8), the Chern classes are natural with respect to pull-back diagrams.
Obviously, the same holds for any additive characteristic class g.: for any smooth map
f: N — M and any complex vector bundle £ — M, we have

gc(f*E) = f*gc(E)-
Moreover, additive classes are additive with respect to the direct sum of bundles:

9e(Er @ E3) = go(E1) + ge(Eo).
Hence the name ”additive class“.

T

Example 4.2.3. The additive class with respect to the exponential function g(z) = e
is called Chern character of E. We write

9e(E) =: ch(E) € Hig™ (M).

By definition the component cho(E) € HJy (M) is the rank of E. We now compute
chi(E) € H3z (M) and chy(E) € Hjz(M). For this purpose we compute

logc(E)zlog(1+cl(E)+c2(E)+...)
= (c1(E) +c2(BE)+...) — (Cl(E)+CQ(E)+,__)2+___

N |

1
=c1(E) + 2(F) — 3 c1(F)? + higher degree terms



166 4. Characteristic Classes

Aer (loge(B)) 2 (—1))1 - ey (B) + (1) -2

N | —
/N
Q
N
—
5
|

+ higher degree terms.

and hence

cho(E) = rk(E),
Chl(E) = Cl(E),

chy(E) % c1(E)? = eo(E).

Now for any additive character g., we consider the special case where E = L1 ®...® Ly
is the direct sum of line bundles L;, we have:

o(B) L) e(Ly) . eLn) = (14 er(L)) - .- (1+ ea(Ln)).

Setting x; := ¢1(L;), we obtain for any additive class:
9e(E) =N -go+ Ag(log c(E))
:N'go—i-Ag(log(l—i-xl) —i—...—i—log(l—i—mN))

:N.90+Ag(x1+...+xN—%(x%+...+x§v)+%(m§+...+x§v)—...)

=g(@1)+ ... +g(@n)

Multiplicative classes

Definition 4.2.4. Let f(z) € R[z] be a formal power series of the form
f@)=1+fi-z+ fo-a®+... € R[a].

Then
Fo(E) = exp (Auog s (log c(E))) e HS (M)

is called the multiplicative characteristic class of £ associated with the formal
power series f.

As for the additive classes, it follows from the naturality (4.9) of the total Chern class
that any additive class F, is natural with respect to pull-back diagrams: For any complex
vector bundle £ — M and any smooth map f: N — M, we have

Fo(f*E) = f*Fu(E).
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Moreover, multiplicative classes are multiplicative with respect to the direct sum of
bundles:

Fc(El D EQ) = FC(El) . FC(E2)

Hence the name ”"multiplicative class“.

Example 4.2.5. The multiplicative class associated with the formal power series

2
X x X
= =14+t
f@) == =1+5+5+

is called Todd class. We write
F.(E)=:Td(E) € Hg"(M).

A direct computation (see [2]) yields

Td,(E) = & (2E )
Tdy(E) = M

12

Additive and multiplicative characteristic classes are important, since they show up in

index theorems. For example, the Atiyah-Singer index theorem applied to the Dolbeault
Dirac operator reads:

Theorem 4.2.6 (Riemann-Roch-Hirzebruch). Let E — M be a holomorphic vec-

tor bundle on a compact complex manifold. Then the index of the Dolbeault operator
is given by:
(3.16)

ind(9) =" (~1)7h%(M) = / Td(TM).

q M

4.3. Pontryagin Classes

Let V' — M be a real vector bundle and let £ =V ®g C be its complexification. Since
V is a real bundle, we have V = V* and thus F = E*. Hence

ck(E) = cp(E*) = (=1)" cx(E)

and thus ¢ (E) = 0 for all odd k.
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Definition 4.3.1. Let V — M be a real vector bundle, and let £ = V ®gr C be its
complexification. The cohomology class

pr(V) = (1) cor(E) € Hip(M)
is called k-th Pontryagin class of V' and

p(V) =1+ pe(V) € Hgi(M)
k

is called total Pontryagin class of V.

Proposition 4.3.2. a) The Pontryagin classes are natural with respect to pull-back
diagrams, i.e. for any smooth map f: N — M, we have

p(f*V) = fp(V). (4.16)
b) For direct sums, we have
p(V1®V2) = p(V1) - p(V2). (4.17)

¢) If Vi 2 V; then we have p(Vy) = p(Va).

d) If V is trivial then we have p(V) =1 € HIx(M).

Proof. The statements a), ¢) and d) follow from the corresponding statements for the
Chern classes (see Proposition 4.1.17 and equation (4.9)).
To prove b) we write F1 = V; ®g C and Ey = Vo ®g C. Then we have

ch(Br® Ep) = ) ci(Er) - ¢j(Ba),
i+j=k

and hence

pi(Vi @ Vo) = (=1) ¢y, (Er & Ey)
(=17 > calBL) - em(E)

n+m=2j

= (1Y " cou(Er) - can(E)

ptv=j

= (=1 > (—DFpu(V) - (1) pu(V2)

ptv=j
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Example 4.3.3. Since the total Pontryagin class is multiplicative and vanishes for triv-
ial bundles, we have p(T'S™) = 1: Similar to Example 4.1.18, we denote by V¥ the trivial
real bundle of rank k£ on S™ and by v the normal bundle of S® C R"*!. Then we have
Vil = TR g = TS" @ v =TS™ @ V. Hence
1= p(V"+1) =p(TS™) -p(Vl) =p(TS"™).
——

=1

Example 4.3.4. We compute the total Pontryagin class of the complex-projective space
p(TCP™) € H*(C;R). As in Example 4.1.19, we use the fact that the cohomology ring
of CP™ is generated by ¢1 (7, ), where

Ym = {(t,v) € CP™ x C"™"!|v € l} — CP™

is the tautological line bundle.
We now consider the vector bundle £ — CP™ with total space

E={(tv) e CP" xC"!|v L},

Here 1 denotes orthogonality with respect to the usual Hermitian scalar product on
C™*+1. Then we have 7, ® E = £™*1. Hence

1=c(E™) = c(y) - e(E) = (1 +a) - o(B)

and thus

1
14a
Claim: TCP™ = Hom (v, F) as complex vector bundles.

The Hopf fibration is a submersion = : §?m*1 c C™*! — CP™. Denote by

V = kerdr C T'S?™*! the vertical vector bundle. Then we obtain an isomorphism

TSQerl Vo o E c SQerl % (Cerl.

c(E) =l-a4a®>—a*%...+(-1)™a™.

Let p€ CP™ und z € 7~ 1(p) C S?™*L. Then
do7|,, ¢ (7*E)y = E, — T,CP™
P
is a complex vector space isomorphism. Hence, the map

Hom(vy,, E) — TCP™,
A = dyw(\z)) for some z € 7 1(p)

is an isomorphism of complex vector bundles. The linearity of A and the invariance
of 7 under the action of U(1) on S?"*! yield the well-definedness of this map. v’
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We thus obtain
TCP™ & &' =~ Hom

=~ Hom

Ym, E) & Hom (Y, Yim)
Yms B & ym)

= Hom (7, 5m+1)

=~ Hom (v, ) @ ... & Hom (Y, E')
D D,

(
(

and
¢(TCP™) = c(TCP™ ® EY) =c(vy,) ---c()
=(1-am*
This implies
¢(TCP™ @r C) = c<T<CP’” ® W)
=(1-a)™(1+a)™H
= (1-a®)""
Hence we obtain for the Pontryagin class of CP™:
p(TCP™) = (1 + a®)™*.
Thus,

: p(TCPY) =(1+a?)?=1
. p(TCP?) = (1+a?)3=1+3a?
: p(TCP3) =(1+a®)*=1+4a?

Il
oaw»—l

m
m
m

Now we are building multiplicative classes from Pontryagin classes. Here R’

"
= dea(M)-

Definition 4.3.5. For a given formal power series
f@)=14fi-a+ fo-2°+-- € Rz,

the endomorphism
Atog = Hii (M) — Hi (M).

is defined by equation (4.14). The cohomology class
Ey(V) = exp (Aiog ¢[log (p(V))]) € Hif (M)

ated with the formal power series f.

is called the multiplicative characteristic class of the real vector bundle V' associ-
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Example 4.3.6. The multiplicative class for the formal power series

vz 2
= T Tx
a(x):#:1——+—+...
sinh () 24 " 5760
is called A-class. We obtain
log (3(z)) = & + 5 4
& YR B
and thus
0
_ 1
24
Arog @) = S

It follows that

A(V) = exp (iog(ato [1og (0(V))])
= exp (Alog(ﬁi(m)) [pl(V) +p2(V) — I%V)Q +e D
~ exp <_p12(l/) N pl(V)2’28—8§m(V) L >
i p12(l/) N pl(V)ZS—éggpz(V) N pigj L
L p12(l/) N 7p1(V)527g04p2(V) L

Hence Ay (V) = —p—lér) and Ay (V) = —7p1(V);7g61p2(V).

The A-class occurs in the index theorem for the classical Dirac operator:

Theorem 4.3.7 (Atiyah-Singer index theorem). Let E — M be a Hermitian
vector bundle over a compact Riemannian spin manifold of even dimension. Let D be
the classical Dirac operator twisted with E and let DY € (ST M@cE, X~ M®cE)
be its positive part. Then we have:

ind(D%) = / A(TM) - ch(E).
M
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Example 4.3.8. The multiplicative class of a real vector bundle associated with the
formal power series
Vv

Ha) = tanh \/z

is called Hirzebruch L-class.

The Hirzebruch L-class shows up in another index theorem, namely the one for the
signature operator D = d + d* as defined in Example 1.3.19:

Theorem 4.3.9 (Hirzebruch signature theorem). Let M be a compact oriented
4k-dimensional manifold. Then the index of the signature operator is given by:

ind(d + a*) “2Y o+ (M) — b~ (M) = / L(TM).
M




5. Index theorems for Dirac-type operators

5.1. Proof of the Atiyah-Singer index theorem

In this section we prove the Atiyah-Singer index theorem 4.3.7 for twisted Dirac opera-
tors. We follow the proof given in Chapter 11 of the first edition of Roe’s book [10].
Let E be a Hermitian vector bundle with a metric connection V¥ over a compact Rie-
mannian spin manifold M of dimension n and let

D¥ € Zy(SM @c E,XM ®¢ E)

be the classical Dirac operator twisted with (E,V¥). Let R¥ be the cuvature of the
connection V¥ on E. We define the endomorphism field A e C*(M,End(XM ® E))
by
_ 1 &
6@ f) =53 bi-bj-d® R (bi,b))f
ij=1

where b1, ...0b, is a local orthonormal tangent frame. Then the following generalization
of Lichnerowicz’ Theorem 2.5.11 holds.

Theorem 5.1.1. Let E — M be a Hermitian vector bundle with a metric connec-
tion VE over a (not necessarily compact) Riemannian spin manifold M. Then the
twisted Dirac operator D¥ satisfies

(DF)? = (VEM®E)xyEM@E | %al + G

Proof. Exercise. O

We abbreviate S := XM ®c¢ E. If n is even then with respect to the splitting
S=C"MecE)® (X M®cE)=STaS5"

the twisted Dirac operator takes the form

g (0 D-
D_<D+ 0



174 5. Index theorems for Dirac-type operators

where Dt € Z57/(ST,S7) and D~ = (D*)* € Z}#/(5~, ST) are Dirac-type operators.
As in Section 3.4 we define

At =D DT and A :=DVtD~™

and we denote by <I>J-Ai € O%°(M > M, ST K (ST)*), j > 0, the coefficients of the formal
heat kernel of A* and A~ respectively. Then by Theorem 3.4.4 the index of DT is given
by
ind(D") = (47)" 2 / az(x) dvol(x) (5.1)
M
where az € C*°(M) is given by

Definition 5.1.2. Let V be a finite dimensional real or complex vector space with a
decomposition V = VT @ V~. We define ¢ € End(V) by

€= <(1) _01>: ViteVv s Vvtev-.

For any endomorphism ¢ € End(V') the number Str(p) := tr(ep) is called the super-
trace of ¢ with respect to the decomposition V =V* @ V.

Remark 5.1.3. Since D¥ is formally self-adjoint we have

ExsnE _ BN [ 0 D7 0 D7\ _ [AT 0
(D)D_(D)_<DJr 0 Dt 0 ) 0 A )
Therefore, if we denote by ®; € C®(M a1 M,S X S*), j > 0, the coeflicients of the

formal heat kernel of (D¥)*D¥ we get for all z € M

an(z) = Str(®z (z,2))

with respect to the decomposition S, = S}t & S and thus by (5.1):

ind(DF) = (47)"2 /M Str(®x (z, z)) dvol(z). (5.2)

We fix p € M. In the following let z: U — V be a Riemannian normal coordinate
system of M centered at p € U C M mapping p to 0 € V C R™. At the point p € U we
define b;|, = %|p, i=1,...,n. Let (b;)"_; be the local orthonormal frame of TM |y
obtained by parallel transport of the vectors b;|, along the radial geodesics emanating
from p. Then we have Vb{fc|p = 0 for all ¢, i.e., the b; are synchronous at p. The local
orthonormal frame h := (b;)™_; defines a local section of the frame bundle P5°(M). We
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can lift & to a local section H of the Spin(n)-principal bundle PSP (M). Let vy, . . ., vyn/2
be a basis of ¥,,. We obtain a local trivialization of the spinor bundle XM over U by
defining the local sections [H,v;], i = 1,... ,2"/2 Together with a local frame of E we
obtain a local trivialization of S.

Remark 5.1.4. With this local trivialization of S over U we get an isomorphism S, =2
Y, ®c E, for every x € U and thus for all j we can identify ®;(x,p) € Hom(S,, S;) with
an endomorphism of Y, ®c F,. Since n is even we have an isomorphism of complex
algebras Cl,, = End(X,,) by Proposition 2.3.11. Therefore z — ®;(z,p), z € U, can be
considered as a function on V' with values in Cl,, ®c End(E,). We abbreviate

Sn = %0 @c Bp = (5} ©c Bp) & (S, ®c Bp) =: S © 5,
W, := End(S,) = Cl,, ®c End(E,).
We want to apply the twisted Dirac operator D¥ ® id sz to the section
U3z ®j(r,p) € Hom(Sy, S;) =S, ® S,,.

To simplify the notation we write D instead of D¥ ®@idg;. With the above identifications

we can consider D¥ over U as
DE . C®WV,W,) = C®(V,W,).

The Riemannian normal coordinate system maps geodesics in U of length r starting at p
to straight line segments in V' of length r starting at 0. Thus if we identify z € U with
its coordinate image in V then the Euclidean heat kernel of U at p is given by

. © - —3 _@
q(-,p) € C(V,W,), qi(z,p) = (4nt) Qexp< 4t>

where | - | denotes the Euclidean distance in R™.

Definition 5.1.5. Let A: C>®(V,W,) — C*>(V,W,) be a formally self-adjoint
Laplace-type operator. A formal power series

— ()" exp [ — 1) S~ g
o(x,t) ;= (4rt) exp ( yr: ) Zt uj(x)
j=0

with u; € C°(V,W),,) for all j is called an asymptotic solution to the heat equation
% + Au = 0 at the point p if for all N € N there exists mg € N such that for all
m > mgy we have as t — 0

N 2]

(% +A){4mt) ™ exp %) > thu(@) } = (4mt) ™2 exp ((— Z—:) LO(N).
=0
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Remark 5.1.6. There is a unique asymptotic solution to the heat equation % + Au =
0 at p such that ug(0) = idg,. This can be shown by determining the functions wu;
recursively as in the proof of Proposition 3.2.7. If ®; denote the coefficients of the
formal heat kernel of A then we have u;(z) = ®;(z,p) for all j € Ng and all z € V.

Let eq,...,e, be the standard basis of R”. Then the elements e; :=¢;, - ... - ¢;,, with
multi-indices I = (1 <143 < ... < i <n), k>0, form a complex basis of Cl,,.

Lemma 5.1.7. Let n be even, a € End(E,) and let ¢ =), crer ® a € End(S,,) with
c; € C, where the sum is taken over all multi-indices I. Then with respect to the
splitting S, = S;F © S;, we have

Str(c) = (—2i)™?tr(a)cia..p.

Proof. Let w:=e;-...-e, € Cl, be the volume element. By the equation (2.9) we have
YE—{zen, i w2 =2}

Thus with
£:=i"2w. ®idg, € End(S,)

we have Str(c) = tr(ec) for all ¢ € End(S,). Let ef :=¢;, -... ¢, € Cl, = End(%,).
We have tr(e;y ® a) = tr(es)tr(a).
Case 1: k is odd: Let v € 5}, We have w - ¢;; = (—1)"Le;; - w for all j. We get

-n/2

i -n/2

o= (=)D e i

—_—
=—1

W= € ... € W-UV=—€ ... € -V

k k

and thus ey -v € .. We have shown that e;(X;}) C X, and similarly one shows that
er(3,) C IF. Tt follows that tr(er) = 0.
Case 2: k is even and k # 0: We have

el-l L P (—1)k_1€i2 elk -62‘1 = —€i2 elk -el-l.
Using this together with the fact that tr(AB) = tr(BA) for all A, B € End(X%,) we get
tr(e;, - ... €)= —tr(es, - ... €5 - €)= —tr(e; -... ¢€;,)

and thus tr(e;, -...-€;,) =0.
Case 3: I = (: Then e = idy, and thus tr(e; ® a) = dim(3, )tr(a) = 2"/%tr(a).
We have shown that for all ¢ = 3", cre; ® o we have tr(c) = 2*/2tr(a)cy. Therefore
Str(c) = tr(ec) = 22" ?tr(a)(we)y = (20)"tr(a)cra..n(W?)g
= (—Qi)"/ztr(a)clgmn. O
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Definition 5.1.8. (i) Anelement ¢ =) ;cre;f € Clyorc= ), cre;®a € W, with
cr € C is called of degree k if ¢; = 0 for all multi-indices I whose cardinality is
not equal to k.

(ii) For A > 0 we define the rescaling operator Ry: C®(V,W,,) — C®(\"1V,W,,)
as follows: If ¢ € C*°(V,W,,) is of degree k everywhere, then we define

(Rro)(z) := A"Fp(\z), ze AV

By Lemma 5.1.7 and the equation (5.2) we get a formula for ind(D™) if for every p € M
we can determine the n-degree part of the coefficient <I>% (p,p) considered as an element
of W,,. In order to achieve this we use a rescaling trick due to Ezra Getzler.

For A > 1 we define

1
Dy = XRgl oDFoRy: C®(V,W,) = C®(V,W,).
It is easy to see that Di is a formally self-adjoint Laplace-type operator for every A > 1.

Getzler’s idea is to consider the asymptotic solution to the heat equation for DE\ and
then consider the limit A — oo.

Proposition 5.1.9. Let o be the asymptotic solution to the heat equation for (D¥)?
at p with up(0) = idg,. For X\ > 0 define

o (z,t) = ARy o) (w, %)

Then o is the asymptotic solution to the heat equation for Dg\ at p with u())‘(O) =idg, .

Proof. Denote the coefficients of o by u;, j > 0. Let N € N and let mg € N such that
for all m > mg we have
S |z ?

(- 07) 2o (L) S ) = oy s (~ L) st

=iom(z,t)

where Sy (z,t) = O(t") as t — 0. We compute
(% + D§>ajn(m,t) = (% + )\’QRA_l(DE)zRA) ()\’”R;\lam) (x %)

- )\"R;u?ag—:b <x %) +ATIRIIATY(DE)20,) (CU %)
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oo,

e (2 ) (v )

g (e (< B 5 o )

32 ar e (— D) R (0,25,

With Sy(z,t) := R ' Sn(z, +z) we have Sy(z,t) = O(tN) as t — 0. Therefore o> is an
asymptotic solution for Di at p. Moreover we have

(4mt)™™/% exp < — %)ué‘(:ﬂ) = )\_"R)Tl <(47Tt)_"/2 exp < — %)uo) (x, %)

—-n —2\—n/2 - -1
= A" (AmtAa"H) exp(— TS )R)\ up(x)
2
= (4mt) ™% exp < - x—)R)Tluo(x)

and since ug(0) = idg, has degree 0, we get R; 'uo(0) = idg, and thus u}(0) = idg,. O

Remark 5.1.10. Recall that the map ®: A*R"” Qg C — Cl,, defined on standard basis
elements by
A AY i PR TP 1<y <...<u:. <n

together with linear extension is an isomorphism of vector spaces. We define exterior
multiplication on Cl,, as follows: For v,w € Cl,:

vAw:= (@ () A S (w))

where on the right hand side A denotes exterior multiplication in A*R” ®g C. In partic-
ular, if v € Cl, is of degree k and w € Cl,, is of degree ¢, then v A w is of degree k + £.
Note that 0 is of any degree.

Lemma 5.1.11. Let c € C*(V,Cl,,) be of degree k everywhere. For A > 1 we define
M.y =X RlocoRy: C®(V,W,) = C®(V,W,),

where the map c is given by Clifford multiplication with c. Then as A\ — oo we get for
all p € C®(V,Wy,) and all z € V: (M xp)(z) — c(0) A p(z).

Proof. Let ¢ be of degree ¢ everywhere. Then c(x) - p(Az) = c¢(x) A p(Ax) + y where
c(x) Np(Ax) is of degree k+ £ and y is a sum of terms of degree less than k+¢. It follows
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that
(Meap) (@) = X F R (e() - (M) (2)
= AR (AT ) A p(a) + ONFTELY)
=c(A\tz) A p(z) + O(ATY)
— ¢(0) A p(z)
as A — 00. O

We define O, F' € A°*"R" @ End(E,) by

n
Oj == Z Rjkaﬁ(o)ea Neg® idEp, 1<j5,k<n
a,pf=1
n

1

F = 3 Z el-/\ej®R£(0)
ij=1

where ey, ..., ey is the standard basis of R", Rj103(0) € R denote the components of the

Riemann curvature tensor of M at p and Rg (0) € End(E,) denote the components of

the curvature of V¥ at p. Using A®V*"R" C Cl,, we may also regard Ok, I € W,,.

Proposition 5.1.12. As A — oo the coefficients of D3: C(V,W,) — C(V,W,,)
tend to the coefficients of the operator L: C°(V,W,) — C>(V,W,,) given by

n

~ 0 1 2
L::-Z(@—gkzlxk@jk) +F

Moreover, F' commutes with every element © ;i in the algebra Wi,.

Proof. We use the Christoffel symbols I’f o. V — R with respect to the local orthonormal
frame (b;)!"_; of T M|y defined by

n
LC
Vi bo =Y T4 bs.
B=1
: B _
For all 3, j, & we have Fja(O) = 0 and thus we have

I7.(@) =" Ajragz® + O(|z[?)
k=1
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where Ajr.3 € R are such that 8biffa(0) = Ajiap. Since the b; are obtained by parallel
transport along radial geodesics we get

n n n
0=> 2V = > 2T, (2)bg = > Ajrapz’z" +O(z[*).

Thus for all k,j,a,8 we have Ajrag = —Apjag i-e., 8biffa(0) = —abjrfa(o). Now we
have

y=1

and therefore

Rijaﬁ(o) = <vbivbj ba — Vbj vbiba? bﬁ>(0) = abirfa(o) - 8bjri6a(0)
= —20, T? (0) = —2A4j0p-

e’

It follows that .
1
Fja(2) = =5 > Rikap(0)2" + O(laf?).
k=1
Moreover we can write every spinor field on U in the form ¢ = [H, ] with a local
section H of PSP"(M) and ¢: V — ,,. For the spinor connection we have

1 n
Vszw: [H,@ejgo—i—z Z Ffaea-eg-cp]
a,B=1

1 n
= [H, De;p — 3 Z Rikap(0)zeq - e5 - ¢ + |z|2v(z) -
a767k:1

where v is of degree 2. Let ¢ be of degree £. Since e, Aeg and v are of degree 2 it follows
from Lemma 5.1.11 that

1 1
Ry 1OiRap(x) = XRxlaj(/\ “o(Ar))

A

= AR (M)
= ajgp(x)’

Lotk _ A

XR)‘ zeq - eg - Ryp(x) = FR)‘ eq - €5 Ryp(x)

k

= %R;l(ea N eg A Ryp(x) + lower degree)
= zFeq Neg Ap(x) + ONTY),

1R—1 2 R _ 1 |x|2R—1 R -0 )\71

PN |z["v(x) - Rap(z) = NV v(z) - Rap(z) = O(A7)
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and thus
1. 1 <« _
SRV R = [H 00— 2 Y Riras(0)zhea Aeg Ao+ O 1)].
a,B,k=1

Let 71,...,7ns be a local frame of F and define F]EZk € C*(V) by

Vi = Zfﬂ -
We write a local section e of E as e =7 | fin; with f; € C®(V) and we get
1, Bk, - -
TR Vi Rae = Z (By 0, B fi)mi + 5 Z FT5 0 =" (0, fi)m + O(AY).
i=1 i,k=1 =1
Altogether we obtain

ViMeE W @e) = o, (b @e) - % Y oty @e+ O

By Theorem 5.1.1 we have
(DF)? = ZVW@’EVW@’E + Z vy MeP 4 iseal + A
Jj=1 i,7=1
Since scal is of degree 0 and G is of degree 2 we get by Lemma 5.1.11
D} = ARN(D E)QR

_ %RAA( Z VEM@)EVEM@E I Z Fg VZM@)E) R,
J=1 ty=1

+ T;Rglscalm + %R;l "R,
S (- E %0 - %)

n 1 n
+ 3 RAF @ —Z%x’f)jtoul)jﬁial )\QRAlg?ERA

1,7=1 k=1
n 1 n 9
— —Z (3] — gzxk@]k) + F
j=1 k=1

as A — 0o0. Obviously, F' commutes with every element ©j, since the algebra A®V"R"
is commutative and since idg, commutes with all elements Rg (0). O
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Lemma 5.1.13. For every p € M choose a local trivialization of S as above and let

_ 21\ S~
Jlf(x,t) = (4t) % exp ( - ?) t]uﬁj(m)
5=0

be the asymptotic solution to the heat equation for L at p with ulﬁj e C>®(V,W,) for

all j and ulfo(O) =idg,. Then for the smooth function g: M — R, g(p) := Str(uﬁﬂ(O))
] D)

we have

n

ind(D") = (47)3 /Mg<p> duol(p).

Proof. By Remark 5.1.6 the asymptotic solution to the heat equation for (DE )2 at p
with up(0) = idg, is given by

o(z,t) = (4rt) ™2 exp ( - |—t> Ztﬂq) (z,p),

where ®; are the coefficients of the formal heat kernel for (D¥)2. The above local
trivialization of S gives us an identification of ®;(x,p) € Hom(S, S;) with an element
Yo Pir(x)er ® a(x) with @;7(x) € C, aj(x) € End(E,) and the sum is taken over all
multi-indices I. Therefore we can write

o(z,t) = (4mt) ™2 exp < m ) ZZt“I)J 1(x)er ® aj(z).

j=0 1T

By Proposition 5.1.9 the asymptotic solution to the heat equation for Df\ at p with
ud(0) = idg, is given by

ak(x,t) = (47rt)_"/2 exp ( |z|? > Zzt])\ 2”‘”(1) ()\>€I ® %(f\)

=0 1

where |I| is the cardinality of I. By Proposition 5 1.12 as A — oo the coeflicients of the
asymptotic solution o* tend to the coefficients up j of the asymptotic solution O’L For
j =% we have A2+l — 0 as X — oo for all I with |I| < n and thus

uﬁ (0) = @z 12 n(0)er ... en ® az(0)

V3

and together with Lemma 5.1.7 we get
Str(uy 2 (0) = (=2)"?tr(as (0))@ 1 15, (0) = Str(® 2 (p,p)).

The assertion follows from equation (5.2). O
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It remains to determine the coefficient u}f »(0). Now, the operator L defined above has
72

coefficients O, ' € A**"R" @ End(E,). In order to solve the heat equation for L we
first consider an operator with scalar coefficients instead.

Proposition 5.1.14 (Mehler’s formula). Let n be even, let A € Mat(n x n;R) be
an antisymmetric matriz and let B € R. Then the heat equation for the operator

n

H: C®(V,C)»C=(V,C), H=-3Y (% _ %Zx’mﬂ)z +B
=1 k=1

for t close to O has a solution

wi (z) = (47t) 2 det (%)1/2 exp ( - %<% coth (%)m,m>> exp(—tB)

where the matrices % and % coth(%) are defined by converging power series.

Proof. Let S = (S;j)i,; € O(n) be an orthogonal matrix and define the new coordinates
Yl = Z?Zl Sjixj, 1=1,...,n. A short calculation shows that

Since the matrix A is antisymmetric, we can choose S in such a way that STAS = D is
in block diagonal form with 2 x 2 blocks

0 6
—0r 0

on the diagonal. Writing x1,y1, ..., %y 2, Yn/2 for the new coordinates we get
n/2
0 1 2 0 1 2
=32 (- o) (5 + o)) .
; 9up 8 kYk Dun + 3 Tk +
::Hk

For every k let (zx,yx) — wf (2, yx) be a solution to the heat equation (% + Hp)wf = 0.

Then wy == wy} - . .. -wtn/Q is a solution to the heat equation (% + > Hy)w = 0.

Therefore it is sufficient to consider the 2-dimensional case Hj, = Hy o + Hj 1 where

_<ax2 - ay,‘g) ~ Gafk(mk k)
10 0

Hiy = 200 (e — 2.
i = 30 (g — 7k, )

Hg :=

)
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One checks that

wf(z,y) =

i ( O (2}, + yi) Coth(%))
ity P T
167 sinh (=3%) 16

solves the heat equation (% + Hp)wF = 0. Indeed we have

wk 1 it0

a—ﬁ(xhyk) = —gzﬁxk coth (%)wf(xlmyk)

92wk 1 it0y 1. ity

—ax; (ggk,yk) = ( — aazx% coth? (T) - glek coth <T>>wf($kayk)

k
1. itop\ | Or(2R + up) Qwg

o = (o (1) + Bt =

k,Owt (xlmyk) 426k cot 4 + 6481nh2(%) Wy (xkayk) at (xkayk)

Hy ywi (g, yg) = 0.

Since H = 3", Hy, + B it follows that the function w/ (z) := e~"Bw,(x) solves the heat
equation (% + H)ywf = 0. O

Proposition 5.1.15. Let JI’;“ be the asymptotic solution to the heat equation for L
at p with u,0(0) =idg,. Then at x = 0 we have

ol(0,t) = (4mt)"2 det( t6/4 )>1/2exp(—tF)

sinh(t©/4

where © is the matriz with entries ©j;, and where ©, F' € W, are defined as above.

Remark 5.1.16. The matrix (%)1/ 2 is defined by the power series for the func-

tion f(z) = (Sinﬁ(x))l/Q, ie.,

_— =1—- —=t"0“"+ —t"0" 4+ 0(t°6
<sinh(t@/4)) 48 T 7680 +0( )

and this series is a finite sum, since © has entries in A®"*"R™ and is therefore nilpotent.

The determinant of this matrix is then a polynomial in the entries ©;; and thus an

element of W,. For the same reason, exp(—tF') is a polynomial in F' and an element

of W,.
Proof. The solution w{! to the heat equation for H from Proposition 5.1.14 satisfies

wi (0) = (47t) ™2 det < tA/4 ))1/2 exp(—tB).

sinh(tA/4
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Moreover, the formula for w/’ shows that as t — 0 we have

2
wl (z) = (47t) "2 exp ( - %)(1 + O(1)).

We define w} by w{?, where we replace the scalars A, and B by the elements ©;;, and F

of W,,. Since F' commutes with every element ©j;, the map wf solves the heat equation

for L. In particular, w} is an asymptotic solution to the heat equation for L at p whose

coefficient of order 0 is equal to idg, . Since the asymptotic solution with this property

is unique we conclude that o(0,%) = wf(0). O

Lemma 5.1.17. Let M be a Riemannian manifold of even dimension. For a formal
power series
fx)=1+fi-z+ fr-2°+... e R[z]

let F,(T'M) denote the multiplicative characteristic class of TM associated with f as
defined in Definition 4.3.5. Moreover, define the formal power series

f(2) == V@) € R[a].

If ¥ 1s the matriz of curvature 2-forms of some connection on TM @g C, then we have
Fp(TM) = det(f(5))-

271

Proof. The matrix €2 is similar to a block diagonal matrix, and thus we may assume

0 —6;
6 0

with 65, € A’R" for all k and dim(M) = 2m. It follows that
1 i 02 = 6? 62
det (1, + -—Q) = 1 o) =1 (g o
¢ ( o ) kHl< * (2m‘)2> +]Zlgﬂ((2m‘)2’ ’(2m‘)2>’

where o; denotes the j-th elementary-symmetric polynomial. Thus, for the Chern classes
of TM ®r C we get for 1 < j <m: ¢9;1(TM ®r C) =0 and

6? 62, )
)2 (2mi)2

Thus, for the Pontryagin classes of TM we get for 1 < j < m:

CQj(TM QR (C) = O’j((2

pj(TM) = (=1)c2;(TM @z C) = Jj(((zweil); T E2779:)12)>
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and thus the total Pontryagin class is equal to

2
For k =1,...,m we write x; := ﬁ and we get

log(p Zlog 1+xg) = Zth{c with hj =

1j5= 1 k=1j=1
= log f(xx) = log [ | f(zx)
k=1 k=1

and thus F,(TM) =[]~ f(zr). On the other hand we have
_9%
—6?
0 =
—9?

and thus det f((Zm)Q) [T7, f(zx)?. The assertion follows. O

Proof of the Atiyah-Singer index theorem 4.3.7. The matrix Q of 2-forms given by the
Riemann curvature of M is defined by the equation

R(ba,bg)bi = > O (ba, bs)b;
j=1

where b1,...,b, is a local orthonormal frame of T'M. It follows that at the point p we
have Q7 (by, bg) = Rapi;(0) and thus

i 1
Qg = E Raﬁij(o)ea Neg = §@U
1<a<f<n

By definition the A-class of TM is the multiplicative class associated with

V)2

1@ = v
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By Lemma 5.1.17 we get

A(TM) = det f(QQ) — (2m) 2 det (%)W.

T

By Proposition 5.1.15 we have for every p € M

t0/4 1/2
uﬁ,%(o) = coefficient of t/? in det ( / )> exp(—tF)

sinh(t©/4

©/4 \1/2
sinh(@/4)) exp(=F)

Q/2 1/2
sinh(Q/2)> exp(=F)

= n-form part of (21i)"/>A(TM) - ch(E).

= n-form part of det (

= n-form part of det (

By Lemma 5.1.7 we get
Str(uﬁ,% (0)) = n-form part of (47)"2A(TM) - ch(E)

The assertion now follows from Lemma 5.1.13. O

5.2. Proof of the Hirzebruch signature theorem

Let M be a compact manifold of even dimension n = 2m. For k € {0,...,n} define
7= F kDI ART* M @p € — A"TFT*M @R C.

Consider the signature operator d + d* € @%(Eﬂ E7) introduced in Example 1.3.19,
where E* denote the bundles of eigenvectors of 7 for the eigenvalues +1.

Remark 5.2.1. Assume in addition that M is a spin manifold and denote by XM the
spinor bundle over M.

a) Using the isomorphisms A*T*M = CI(T'M) and End(%,) = Cl,, we obtain an iso-
morphism of complex vector bundles

O: A'T"MrC=CHTM)@r C=ZEnd(XM)=XM @ XM".
For every x € M the map
TM x ATy MrC— AT, MerC, (,p)—a-p:=aAp—asp
satisfies the Clifford relation, i.e., for all o, 5 € TxM, ¢ € A*T; M ®p C:
a-B-p+pf-a-p=-2aB)p.

On A*T*M ®grC we define a Clifford multiplication using this map and on XM X M*
we use the usual Clifford multiplication on the first factor. Then ® is an isomorphism
of Clifford modules, i.e., for all x € M, a € T; M, ¢ € A*T; M ®g C we have

O(or- @) = af - D(p).
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b) Claim: We have ®(E*) = ¥*M @ XM*. In order to prove this claim we first fix
x € M, let by,...,b, be an orthonormal basis of T, M and let b7,...b; be the dual
basis. We then compute for all 1 < j; < ... < jp < n,

b (U5 AL ALE) =0 —b5 (b5 AL ALE) = (=10 AL A

Jk—1
and we get iI]ductively
* * k(k+1)/2
bjl-...-bjk-(b;l/\.../\b;k)——(—l)( )/.

Writing b% := b}, A...Ab} and denoting by J¢ =: {r; <... <r,_x} the multi-index
complementary to J we get

bT b bJ_51gn(JC,J) b*ikbjlb;kej}
( 1)k(n k) SlgH(J Jc)b* e b:n—k . (_1)k(k+1)/2
—(~1)" k2 4k( (k1) 2g5m (J, B [ Y
= (1) 2sign (], J)b

= i1 (b))
and thus
B(r(b%)) = i"by - ... by - D(bY).
The claim now follows, since by the equation (2.9) we have

SEM = {o € SM|i"?by ... b, - @ = o}

c) We now write

S=YMXM* =EX"TMXM)e (X MeYXM*)=Ste s .
On XM* we choose the connection VM induced by the spinor connection. We
denote by DM ¢ @7//{ (S,S) the operator obtained from the classical Dirac op-
erator on XM by twisting with V™", From the splitting S = St @ S~ we obtain
the Dirac-type operator Dt € @% (S*,S57). We claim that the following diagram
commutes.

C>® (M, Et) =25 (M, ST)

d+d* l lD+

C®(M,E~) =2+ (M, S7)
Namely, for all £ € TiM, ¢ € Ef, ¢ € S, x € M, we have

oi(d+d" ) =ENp—Eap=¢- o,
a1(DF, &) =€ 9.
Therefore, Dt o® —®o(d+d*) is an operator of order 0. Now, the zero order terms of
both DT and d+d* at x € M are linear in the Christoffel symbols at z. By choosing
a local coordinate frame such that the Christoffel symbols at x vanish we see that
the two operators coincide.
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From the Atiyah-Singer index theorem with F = XM™ we conclude that

ind(d + d*) = ind(D>M") = / A(TM) - ch(SM*).
M
Before we can prove the Hirzebruch signature theorem we need the following explicit
formula.

Proposition 5.2.2. Let M be an even dimensional spin manifold. Then we have

ch(SM*) = ch(SM) = E,(TM)  with f(2) := 2cosh (%)

Proof. Let (b;)I"4 be a local orthonormal frame of TM on U C M. This frame induces
a local section h of the orthonormal frame bundle PSO(M) on U which can be lifted to
a local section H of PSP™(M) on U. Let z(j1,...,jk), 1 < j1 < ... < jx <m:= %,
be the basis of ¥, defined in Section 2.3. We abbreviate the basis vectors by vg, k =
1,...,2%2 = N. Then ¢, := [H,v], k =1,..., N, is a local orthonormal frame of XM
We denote by ¢j, k =1,..., N, the induced orthonormal frame of XM*. Moreover, we
denote by R, R* and R* the curvatures of the Levi-Civita connection on TM, of the
spinor connection on XM and of the induced connection on X M* respectively. Finally,
we denote by ©, O and QF the corresponding curvature 2-forms. By Lemma 2.4.13 we
have for k € {1,...,N} and all X,Y € T,M, pe U:

N

Z(Qz)i‘(Xv Y)‘:Oj = RE(Xv Y)ex
j=1

1 I
:—Z;R(X,Y)bg-bgwpk:—ZZZ_IQZ(X,Y)bT-bgwpk.

Taking the scalar product with ¢; yields for all X,Y

) 1 & .
(Qz)i(ny) =1 E QX Y)(br - by - o, 05)-
lr=1

We may assume that 2 is a block diagonal matrix with blocks

0 —Gk . ’I’L_'
<9k 0>, k:—l,...,2—.m

on the diagonal. It follows that

) 1
()] = 3 294@24_1 “bor - @k, 05).
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For every basis vector z(J) := z(ji1,...,ji) of ¥,, we write
Mjy:={le{l,...,m}|ey, ey_1 are not contained in zj, -...- 2z, }.

By the computation in Remark 2.3.7 it follows that Q* is a diagonal matrix and that
the entry on the diagonal corresponding to z(J) is given by

(Qz)jz Z 294 Z 294 Zzﬂg Z 263:
L¢My leMy leMy

where J runs through all multi-indices (1 < j; < ... < jx < m). Writing z; := % for
all J we get by equation (4.10) that ¢(XM) =[],;(1 +x). It follows that

log ¢(XM) Zlog 1+zy) ZZ

J k=1

k+1

and thus for any formal power series g(z) = > 72 grx":

_1)k+1 i
Agloge(SM) =) Z 1) gy, %x? =D > gl =) (9(xs) — %)

J k=1 J k=1 J

and therefore g.(XM) =) ; g(xy). With g(z) = €* we therefore get

k=1 /=0
m 9 m
k a
- Lo () T 100 (- 2)
Hexp 47 H< +exp 2
k=1 a=1

For any complex number a € C we have
00 2k 00
0 —a\ 1 (0 —a\" _ 1 [(—a®)F
cosh <a 0 ) _;;) (2k)! <a 0 ) =2 (2k)! ( 0 (—a?)*

(0 ot
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It follows that cosh(%m.) is a block diagonal matrix with blocks

cosh(i—fr) 0
0 cosh(i—fr)

on the diagonal. With f(z) = 2cosh(4) we get by Lemma 5.1.17:

Fy(TM) = det (2 cosh ( )) ﬁ 2 cosh ( ) = g.(SM).

This shows the assertion for X M. From the definition of the induced connection on XM *
one easily sees that

(R¥(X,Y)@)) (i) = —¢} (RZ(X,Y) i)
for all X,Y and all 4, j. It follows that

(Q5MX,Y) Z (X, Y )by - by - o1y 05),
Zr 1
e, OF = —(2%)T = —Q. Now, the set of all diagonal entries A\; of Q% is symmetric

around 0. Thus the set of all z; is symmetric around 0 and we get g.(XM) = g.(XM*).0]

Proof of the Hirzebruch signature theorem. First we assume that M is a spin manifold.
We must compute the n-form part of A(TM) - ch(X¥M*) = F,(T'M) where

V)2 JE
sinh(y/z/2) tanh(y/x/2)"
By Lemma 5.1.17 we have F,(T'M) = det f(%) where f(z) = (m)lﬂ. Then with

Yz T 1/2
fa) = tanh \/x and (=) = <tanh( ))

we have f(z) = \/ig(%) The multiplicative classes for f and ¢ do not coincide. However,
if we denote by (-)x the k-form part we get

(a0 (), =2 (085 50)) =27 (),

Therefore, from Lemma 5.1.17 we conclude that the n-form parts of F,(T'M) and L(T'M)
and thus their integrals coincide if M is spinnable.

Assume now that M is not necessarily spinnable. Fix a point p € M and choose an
open neighborhood U of p in M such that U is spinnable. We know from Equation (5.2)
that ind(d + d*) = (4m)~ fM Str®,, /5(x, z) dz. The computation for the case of a spin
manifold shows that the integrand on U is pointwise given by the n-form part of L(TM).
But since Str(®,,/2) and the n-form part of L(T'M) are local quantities, we conclude that
they coincide on all of M. O

fx) = 2cosh(V/z/2) =







6. Semi-Riemannian Spin Geometry

6.1. The Spin Group
Let 7,5 € Ng, let n:=r + s and let
g1l=...=¢& =—1, &y =...=¢,=1

Let R™ be equipped with the symmetric bilinear form (-, ), s defined by

n
<5Ua y>r,s = Z EiT3Yi-
=1

The pair (r,s) is called the signature of the symmetric bilinear form (-, -), .

Definition 6.1.1. We define the semi-orthogonal group O(r, s) by

O(r, s) := {A € Mat(n x n,R) | (Az, Ay)r s = (x,y)rs for all z,y € R"}.

Remark 6.1.2. We have A € O(r, s) if and only if ATJA = J where

(-1, O
7= ( 0 IS>
and I, I, denote the identity matrices in dimension r and s respectively. In particular,
if A € O(r,s) then we have det(A) € {£1}. Thus O(r, s) is a subgroup of GL(n,R).

Definition 6.1.3. The subgroup
SO(r,s) :={A € O(r,s) | det(A) =1}

of O(r, s) is called the special semi-orthogonal group.

Remark 6.1.4. If r = 0 or s = 0 then SO(r, s) is connected. If r > 0 and s > 0 then
SO(r, s) has two connected components (see e. g. [9], Lemma 9.6).
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Notation 6.1.5. In the following, we denote the Clifford algebra of R™ with the inner
product (-,-)rs by Clp s := CI(R", (-, )r.s)-

Remark 6.1.6. Upon identifying R™ with (R") C Cl, g, for every v € R" with
(v,0)r.5 # 0 we have v2 = —(v,v), 5 - 1 and thus

_@’Zﬁ.uzu-<—ﬁ> =1.

Thus, {v € R" | (v,v), s # 0} is contained in the subgroup of (multiplicatively) invertible
elements of Cl, .

Definition 6.1.7. We define the Pin group Pin(r, s) by

Pin(r,s) := {vl @ 0o = B, € Cll ‘ vj € R", (vj,v5)rs € {£1}, m € Ny }

Remark 6.1.8. The subset Pin(r,s) C Cl, 5 is a group with respect to the multiplica-
tion in Cl, ;. The inverse element to vy - ... - vy, is given by

(01 o)L = (_ﬁ) (_ﬁ) € Pin(r, s).

Definition 6.1.9. We define the Spin group Spin(r, s) by

Spin(r, s) := Pin(r,s) N Cl,q’s
= {vl @ oo = B, € Cll | v; € R", (vj,v5)rs € {£1}, m € 2Ny }

Remark 6.1.10. By the argument from Remark 6.1.8, Spin(r,s) is a subgroup of
Pin(r, s).

For a fixed v € R" with (v,v), s € {1} and any € R", we have:
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= - (ac - QL’ Ulrs v)

<U7 U>r,s

The map =z — (ac - 2% v) is the reflection about the hyperplane v perpendicular
to v. In particular, (z + v-2-v~1) € O(r,s). For any a := vy - ... - v, € Spin(r, s), the
map
-1 _ -1 -1
T Q-G =Vl ... Up T Uy ... U

consists of an even number of hyperplane reflections and is thus contained in SO(r, s).
We have thus defined a group homomorphism g : Spin(r, s) — SO(r, s) by

o)z :=a-x-a ' (6.1)

Example 6.1.11. Let n =2 and r = s = 1. We have

sou.) = { (Gonty) o) [rer}u{ (Tomty )| <=}

=R x ZQ
and (e1,e1),s = —1, (€2,€2)rs = 1. Every element a € Spin(1,1) can be written as
a=1uv1"... Uy, where m € 2Ny and there exist t1,...,t,, € R such that for all j

vj = cosh(t;)er +sinh(tj)es, or wv; =sinh(¢j)e; + cosh(t;)es.

We compute

(cosh(¥)e1 + sinh(¥)es) - (cosh(p)er + sinh(p)es) = cosh(p — ) + sinh(p — ¥)e; - e,
(sinh(®¥)ey 4 cosh(¥)es) - (sinh(p)e; + cosh(p)es) = — cosh(p — ) — sinh(p — Ve - e,
(cosh(¥)e1 + sinh(¥)es) - (sinh(p)e; + cosh(p)es) = sinh(p — ) + cosh(p — ¥)eq - e,
(sinh(®¥)e; 4 cosh(¥)es) - (cosh(p)e; + sinh(p)es) = —sinh(p — ) — cosh(p — V¥)ey - es.

(cosh(a) + sinh(a)ey - e) - (cosh(B) + sinh(S)ey - e2) = cosh(a + B) + sinh(a + S)ey - ea,
(cosh(a) + sinh(a)ey - eg) - (sinh(B) + cosh(f)ey - e2) = sinh(a + ) + cosh(a + S)ey - e,
(sinh(a) + cosh(a)ey - e9) - (sinh(B) + cosh(B)ey - e3) = cosh(a + B) + sinh(a + S)ey - es.

We conclude that

Spin(1,1) = {£(cosh(t) + sinh(t)e; - e2) |t € R} U {£(sinh(¢) 4 cosh(t)e; - e2) |t € R}
~2Rx Z2 X Z2.
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For the group homomorphism g: Spin(1,1) — SO(1,1) we get for j = 1, 2:
o(cosh(t) + sinh(t)e; - e2)(e;)
= (cosh(t) 4 sinh(t)es - e2) - €; - (cosh(t) — sinh(t)e; - e2)
= cosh?(t)e; — sinh?(t)ey - eg - € - €1 - ez + sinh(t) cosh(t)(e; - €2 - ej — e - €1 - €3)
= (cosh?(t) + sinh?(t))e; + 2sinh(t) cosh(t)e; - ez - €;
cosh(2t)e; — sinh(2t)ey if j =1,
{cosh(?t) ep —sinh(2t)e; if j = 2.

Thus we have

o o) st ) = (20 SR,

Similarly, one computes

oC(sinh(t) + eosht)er - e2) = = (oo o) " 5))-

Proposition 6.1.12. For any r,s € Ny, the sequence
1 — Zy — Spin(r,s) 2 SO(r,s) — 1

1S exact.

Proof. For r = 0 the assertion follows from Proposition 2.2.10. Thus assume r > 1.
a) The map p : Spin(r, s) — SO(r, s) is surjective:

We prove by induction on n that every element of O(r, s) is a composition of reflections
at hyperplanes v where v € R" and (v,v), s € {#1}. Obviously, the claim is true
for n = 1. Now, let A € O(r,s) with n = r 4+ s > 2 and assume that the claim holds
for n — 1. We write = := Ae;. Then we have (z,x), s = (e1,e1),s = —1 and thus

<$ —€1,T — 61>r,s =—-2- 2<$, 61>r,3a <£C +e1,x + 61>r,s =-2+ 2<$, 61>r,s

and therefore not both of these numbers are zero. Denote the hyperplane reflection

at v+ by R(v) and define

A R(|(x—e1,i:2)m\l/2) if (x—el,x—e1)rs #0
1= ’ )
R(ey) o R( I(x+el,§12>r,s\l/2) otherwise.

Then A; is a composition of hyperplane reflections and Ajx = e;. Thus we get

10
A10A2<0 B>
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with B € O(r — 1, s). By the induction hypothesis B is a composition of hyperplane
reflections and therefore A is as well.

Thus, any given A € SO(r, s) is the product of an even number of hyperplane re-
flections. Let the i-th hyperplane be the orthogonal complement to v; € R™ with
(vi, vi)r,s € {£1}. Then we have vy - ... - vo, € Spin(r,s) and p(v; - ... vy) = A.

b) It remains to show that ker(o) = Zy = {1, —1}. Obviously, we have {1, -1} C ker(p).

Conversely, let a € ker(p). Then for all x € R", we have:

z=opla)(z)=a z-a "t

Equivalently, we have x - a = a - z for all x € R™ and in particular, x - a = a - x for
all x € Cl, 5. Hence, a is contained in the center Z(Cl, ) of Cl, . Moreover, we have
a € Spin(r,s) C Clg’s. Now for any r, s € Ny we have

Z(Cl5) N Clgs =R-1, (exercise !),

hence a = a1 for some o« € R. We finish the proof using the following lemma. O

Lemma 6.1.13. We have Spin(r,s) "R -1 = {-1,1}.

Proof. Let CIEP be the additive group Cl, s equipped with the opposite multiplication
axb:=b-a. Then CIEP is a unital algebra. The map j: R" — CIPEP defined by j(v) := v
satisfies the Clifford relation and thus by the universal property of Cl, s there is a unique
algebra homomorphism T Cl, s — CIPEP such that T o2 = j.

Let a = «- 1 € Spin(r, s). Then we can write a = vy - ... - vy with v; € R™, (vj,vj)rs €
{£1} and k € Ng. We get T'(a) = -1 and T'(vy - ... vo) = Vo -+ ... vy, since T is an
algebra homomorphism. It follows that
042-1:T(a)*a:a-v%-...-v1 =V]... Ugp - Ugk-... v = £l
——
=1
and thus o € {—1,1}. O

Remark 6.1.14. We have seen that every v € R" with (v, v), s # 0 is a multiplicatively
invertible element in Cl, ;. Let I', s C Cl, s be the group generated by all such elements v
with multiplication given by Clifford multiplication. It is easy to see that multiplication
and inversion are smooth maps and thus I', ; is a Lie group. Moreover, the map

N : Pr,smCIE,s —)R, V1" ... Uk > <1)171)1>r78...<U2k,1)2k>r78

is smooth and we have Spin(r,s) = N~!({—1,1}). In particular, Spin(r, s) is a closed
subgroup of I'; s and thus a Lie group. By Proposition 6.1.12 the map o: Spin(r,s) —
SO(r, s) is a 2-fold covering.
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Proposition 6.1.15. Let r > 0 and s > 0 and let r > 2 or s > 2. Then the Spin
group Spin(r, s) has two connected components.

Proof. a) From the exact sequence in Proposition 6.1.12 we get the long exact homotopy
sequence (base point = 1):
— m1(Za) — m(Spin(r, s)) — 71 (SO(r, s)) — mo(Z2) — mo(Spin(r, s)) — mo(SO(r, s)) .
N—— N—— N———
={1} =172 ={-1,1}
Claim: The map m(Zs) Y mo(Spin(r, s)) is trivial, that is, the image of ¢ is {1}.

In fact, 1 and —1 can be connected by a continuous path in Spin(r,s): Since r > 2
or s > 2, we have two orthonormal vectors e;,e; € R™ with (e;, e;)rs = (€j,€j)r,s =:
g; € {1} and we can define the smooth curve ¢ : R — Spin(r, s),

t — & (cos(t) e; +sin(t) e;) - e,
satisfying ¢(0) = —1 and ¢(7) = 1.
b) By exactness at mo(Spin(r, s)) and the claim, the map
mo(Spin(r, s)) — mo(SO(r,s)) = {—1,1}

is injective. On the other hand, Spin(r, s) has at least two connected components,
since ¢: Spin(r,s) — SO(r, s) is continuous and surjective and since SO(r, s) has two
connected components. Hence, mo(Spin(r, s)) = {—1,1}. O

Definition 6.1.16. We denote by Sping (7, s) C Spin(r, s) the connected component
of the neutral element in Spin(r, s).

Proposition 6.1.17. 1. Letr > 0 and s > 0 and letr > 2 or s > 2. Then the

sequence
1 — Zy — Spingy(r, s) B SO(r,s) — 1

is exact, where oy = g!spino(r,s)-

2. For r =1 we have 71 (Sping(1,2)) = Z and 71 (Spiny(1,s)) = {0} if s > 3.

Proof. a) The proof of Proposition 6.1.15 shows that —1 € Sping(r, s). Thus we have
ker(gp) = {—1,1}. Let A € SOq(r,s). Then there is a continuous path c: [0,1] —
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SOy(r, s) such that ¢(0) = A and ¢(1) = 1. Let a € Spin(r, s) such that g(a) = A.
From the lifting property of covering spaces it follows that there is a continuous path
in Spin(r, s) from a to 1 or —1. Thus we have a € Sping(r, s) and gg is surjective.

b) Assume now that » = 1. The group SOg(1,s) acts transitively on the hyperbolic
space
H® ={z e R°" [(2,2)1 4 = —1, 21 > 0}

and the isotropy group of the point (1,0,...,0) € H?® is given by

{ <(1) g) | Be8O0(s)} =S0(s).

Since all homotopy groups of H?® are trivial, the long exact homotopy sequence for
the fiber bundle SO(s) — SO¢(1,s) — H? then yields isomorphisms 71 (SOq(1, s)) =
m1(SO(s)) for all s > 1. We have computed the groups m1(SO(s)) in the proof of
Proposition 2.2.13.

c¢) Consider the long exact homotopy sequence in part a) of the proof of Proposition
6.1.15. By exactness at mp(Zz) and the claim in part a) of this proof, the map x:
m1(SO(r, s)) — mo(Zz) is surjective.
Let s = 2. We have m1(SOq(1,2)) = m1(SO(2)) = Z and thus y is the projection
Z — Zs. Since m1(Spin(1,2)) — m1(SO(1,2)) is injective we have 1 (Sping(1,2)) = Z.
Let s > 3. We have 71(SOg(1, s)) = m1(SO(s)) = Zg. It follows that x is also injective.
Therefore the image of the map 7;(Spin(1,s)) — m1(SO(1,s)) is equal to {1}. By
exactness of the sequence at 71(Spin(1,s)) this map is injective. Altogether we get
that 71 (Sping(1,s)) = {1}. O

Remark 6.1.18. Several authors define the Spin group for the signature (r,s) as the
group which we denote by Spiny(r, s).
The Lie algebra of SO(r, s) is given by

so(r,s) = {A e Mat(n x m;R) | AT J + JA = o}

and dim SO(r, s) = dimso(r,s) = in(n — 1).

For the Lie algebra of the Spin group, we have dimspin(r,s) = dimSpin(r,s) =
dim SO(r, s) = $n(n — 1). We want to identify the Lie algebra spin(r, s) of Spin(r, s) as
a vector subspace of Cl, :

For ¢ # j consider the smooth curve ¢ : R — Spin(r, s), defined by

PN (el- cos(t)el- + Sin(t)ej) . (—el-) if ;, = €5,
(eicosh(t)e; + sinh(t)e;) - (—e;) if g5 = —¢;.
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Then c¢(0) = eie; - (—e;)) = 1 and ¢(0) = e - (—e;)) = e - e;.  We thus have
e; - e; € T1Spin(r, s) = spin(r, s) for all i # j.

The products {e; - €;}, 1 <4 < j < n are linearly independent and there are $n(n — 1)
of them. Since dim(spin(r,s)) = $n(n — 1), we conclude that {e; - ¢;};<; is a basis of
spin(r, s).

We compute the Lie algebra homomorphism g, : spin(r, s) — so(r, s): Using the curve ¢
defined above we get

0u(ei - €)(er) = o] _yolelt)(ex) = 2, _oelt) i (1)

:c'(O)-ek—ek-c'(O)
:ei-ej-ek—ek-ei-ej

0 for k ¢ {i,7}
=1 2gi¢; for k =1

—2¢5e; for k= j.

We thus have for ¢ < j

—28]‘

o«(ei - €j) :
25@'

6.2. Spinors

Let Cl, s be the Clifford algebra of (R™, (-, ), ) and let Cl, s := Cl, s ®r C be its com-
plexification.

The even dimensional case

In the following, let n = 2m. Let eq,..., e, be the standard basis of R". For j =
1,...,m define z;, z; € Cl, s by

1 ; ; — 1 ) Foo:) i = e
Lo Jalei—idey) ifeya=ey o Jgleajmitiey) ifeyn=ey
J 7)1 if _ J )1 if _

5 (62]'71 - 62]') I €951 = —&25 5 (€2j71 + 62]') I €251 = —&25

Then products of the form

S Ziy et Zig, k,1=0,...,m

1<pn<...<jr<m, 1<y <. <y <m,

Zjl'---'zj
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form a vector space basis of Cl, ;. Put
Z(Jlse s Jh) = 2jy e 2y Bl B
Then
Yrs i =span{z(ji,...,Jk) [k =0,....,m, 1 <j; <...<jr <m} CCl,

is a complex vector subspace of Cl, s of dimension 2™. We call 3, s the spinor space
in signature (r,s). Elements of 3, s are called spinors.

For later purposes we want to compute eg; - 2(j1,...,jk) and eg—1 - 2(J1,...,Jk). We
have to distinguish two cases: ey and ey _; can be contained in zj;, - ... - zj or not.
1) Let ey and ey—1 not be contained in z;, - ... - zj,.
egl-z(jl,...,jk) =€9 " Zj; - %t ZL - Zm
k(-1 _ _ S _
=(-1) + )Zjl et Zj Bl Z—1€ B Byl me
(6.2)

Case la) Assume that €9; = €9;—1. Then we have

_ 1 .
ez =5 (ea—1 +ieg)

= — (eg - eg—1 — iey)

— N =

= —(—eg_1-eg +iegy_1-ey_1)
) 1 )
=ieg_1- 5(62171 +iey)

=ieg_1" 2,

\V)

and inserting this into equation (6.2) we get

egl-z(jl,...,jk) :(—1)k+lilizj‘l et Zg Rl e 21 €201 2241 - Zm
= (—1)k+l*1 ) (—1)k+l*1 €21 Zjy "o Zjp 2l Zm
=iey-1-2(j1,- -, Jk)- (6.3)

Let v such that j, <! < j,4+1. Then we have:

) . 1 . ) 1 ) .
621'Z(J1,---,Jk):5621'Z(Jl,---,Jk)+§€2l'Z(Jl,---,Jk)
6.3) 1 . . { . .
= 5621'2(]17---ajk)+§€2l—1'Z(Jla---7]k)
1 . . .
=i (€21 —ie) -2(J1,- - Jk)
—_—

=2z

:i(_l)yz(jh"'7jl/7lajl/+17"'7jk)' (64)
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Moreover, it follows from equations (6.3) and (6.4) that

. . (6.3) . . .
621—1'Z(.]1"",jk) = _ZBZI'Z(.]l""’jk)
(6.4) Lo o .
=" (=1" 201, dvs by Jut1, -+ Jk)- (6.5)
Case 1b) Assume that e9; = —e9;—1. Then we have

N 1
ea A =g e (egi—1 + €ear)

= —(eg - €91 — €97)

(—e—1 - ey —ey_1-€-1)
1
= —egy_1 - 5(621 +ey-1)

= —e9 1" 2,

NI RN

and inserting this into equation (6.2) we get

egl-z(jl,...,jk) = (—1)k+l_1(—1)2’j1 et Zg Rt Z1 €201 R B4l e Zmy
= (—1)k+l71 (—1) (—1)k+l71 €211 Zjy "o Zjp Bl Zm
= —ey—1 - 2(J1,-- - Jk)- (6.6)

Let v such that j, <1 < j,4+1. Then we have:

. . 1 . . 1 . .
ea - 2(J1s -5 Jk) = s e 2(Jis- -5 Jk) + s e 2(Js -5 k)

2 2

66) 1 ‘ _ 1 . ‘
= Tpfu-1- 2(J1s -5 Jr) + 5 2l 2(j1,- - Jk)

1 ) .
=-3 (e21-1 —ex) -2(J1, - Jk)

|

=2z

= (_1)V+1 Z(jl,"'ajl/,lajl/+la---ajk‘)- (67)

Moreover, it follows from equations (6.6) and (6.7) that

. . (6.6) . .
€211 - Z(jh---dk) = —eg- Z(]h---,jk)
(6.7) _ ‘ . 4
= (_1)Vz(jl7"'7]V7lajl/+17"'7]k)' (68)
2) Now let ey and eg_; be contained in zj, - ... - 2j,.

Case 2a) Assume that 9 = £9;_1. Multiplying equation (6.4) with ey, we obtain:

€9l * Z(jla o 7jl/7lajl/+17' .. 7]k) :Z(_l)y €21 Z(j17' .. 7jV7jl/+17' .. 7]k) (69)
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Multiplying equation (6.5) with eg;_1 we obtain:

€211 Z(jl, cee ’jl/7l’jl/+la s ,]k‘) = (_1)V+1 &91 Z(jl? cee ?jl/ajl/+1, o ,]k‘) (610)

Case 2b) Assume that e9) = —e9;_1. Multiplying equation (6.7) with ey, we obtain:

€9 - Z(jl, “e ,jy,l,jy_H, e 7]k) = (—1)V €91 Z(jl, “e ,jy,jy_H, “e ,jk) (611)

Multiplying equation (6.8) with ey we obtain:
€211 - Z(jl, o 7j1/7 l7jV+17 LRI 7]k) = (_1)V €921 Z(jla o 7jl/7j1/+17 ... 7jk) (612)

Hence the spinor space ¥, C Cl,, is invariant under Clifford multiplication by
vectors in R". Since the Clifford algebra Cl, s is generated by R", the same holds for
Clifford multiplication by elements of Cl, ,, thus X, ; C Cl, ; is a left ideal. In particular,
¥, s is invariant under multiplication by elements of Spin(r, s).

We define:

S =span{z(ji,...,jr) |k =0,...,m even}

¥, s =span{z(j1,...,jk) |k =0,...,m odd}.
The spinor space ¥, s has the decomposition X, s = E;fs &) E;S. Elements in Ef,fs are
called spinors of positive and negative chirality respectively.

The equations (6.4), (6.5) and (6.7)-(6.12) show that the Clifford multiplication by
elements of R" satisfies:

R*-SF CcZ, R*.%, cCcXf.

r,8)

However, Clifford multiplication by elements of (Clg,s satisfies:

CcY, St cef, CR, %, Cco,.

r,8)

Thus, the restriction to Spin(r,s) C Cl&s - ClQ,S yields representations of Spin(r, s) on
¥}, and X and thus on X, .

Definition 6.2.1. The representation o, s : Spin(r, s) — GL(X, ) is called the spinor
representation.

The representations 0,?:78 : Spin(r, s) — GL(E%S) are called the positive and negative
spinor representation, respectively.

Remark 6.2.2. The element

wi=er-...-e, €Cl s CCl
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is called the volume element. The equations (6.4), (6.5) and (6.7)—(6.12) show that
for e9; = £9;_1 we have

) . —iey 2(J1,---,Jk) if ey, ey_1 are not contained in z;, - ... - 2,
ear—1-€a2(J1, -5 Jk) = 3 . . . . .
1E9] Z(]l, ce ,jk) if €91, €911 are contained in Zjp et Zgy
and for g9 = —e9;_1 we have
) . —e912(J1,--.,Jk) if ey, ey—1 are not contained in z;, - ... z;,
ear—1-€2(J1s -+ -5 Jk) = . . . . .
e 2(J1y- -y Jk) if eg, eg—1 are contained in zj, - ... zj,.

Let r = 2a be even. Then we have e9; = e9;_1 for all [ and thus

W 2(f1, . gk) = ()™ FF egeq . eam 201y k) = (1) 2 (G, k)
=(-1)e

and therefore

w2, k) = (=1 % - 201, k) = (DR 21, - k).

Let r = 2a — 1 be odd. If ey, €241 are not contained in zj, - ... - z; then we have
W 2(ji, o dk) = ()TN =1)i" eaea . gom 201, - k)
=(-1)a~t
— (_1)mfk+a71 ’L'milz(jl, o a]k)
If €94, €24—1 are contained in zj, -...- z; then we have
W= 2(J1s o k) = (=)™ egea o 21, k)
—_——
=(-1)a~t
= (—1)m ke mel G ).

Thus for r = 2a — 1 we get
w2 (k) = PTG )
= (=D)*2(j1, .., jn)-
Therefore, for all r we have

27:!?3 = {Z € Er,s | iz = :|:Z}.

Example 6.2.3. Let r =s =1, i.e., n =2, m = 1. Then we have:
Efl =C-z() and ¥,=C- z(1).

By the equations (6.8) and (6.12), we have

e1-z()=2(1) " 0 1
e - 2(1) = 2(), thus e; acts on X1 = C” as 1ol
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By the equations (6.7) and (6.11), we have

&2 2() = —2(1)

0 1
thus ey acts on Yp 1 = C? as .
e2 - 2(1) = 2(), } ’ (—1 0)

Furthermore, from Example 6.1.11 we know that
Spin(1,1) = {&(cosh(t) + sinh(t)e; - e2) |t € R} U {£(sinh(¢) + cosh(t)e; - e2) |t € R}.
The element e; - e2 acts on g1 & C? as
(0 1><0 1>:<—1 0>
1 0/\-1 0 0 1

Therefore, the elements +(cosh(t) + sinh(¢)e; - e2) and £(sinh(¢) 4 cosh(t)e; - e2) act as
et 0 —e 0
+ ( 0 et> and =+ ( 0 et>

We equip 3, s with the Hermitian scalar product (-,-) for which the vectors z(j1, ..., j)
form an orthonormal basis of ¥, ;. By our convention (-,-) is complex linear in the first

respectively.

argument and complex antilinear in the second argument. Moreover, 3, ; = S & X
is an orthogonal decomposition.

Lemma 6.2.4. Let n =r + s be even. Then we have for any vector X € R™ and any
spinors o, P € Xy -

where R: R* — R", R(320_ xjej) = Y1 ejxje; is a reflection.

Proof. 1t is sufficient to prove the statement for X = e;, ¢ = 2(j1,...,jk), ¥ =
Z(il, oo ,il).

We only consider the case e; = ey and ¢ = 2(j1,...,Ju,l, jut2,-- -, jk). The remaining
cases are treated analogously. By Equations (6.9), (6.11) we get

ea1 _ i(_l)yeﬂ Z(jl""ajl/’jl/JrQ""aij) if €9 = €911
20 ¥ — . .. . .
(=1)eq 2(j1s s Jus Jvt2s - - Jk)  if eop = —€911

and thus

] (_1)V€2l if ,l/} = Z(jl, cee 7jV7jV+27 o 7]k) and €21 = €211
(ear - o, ) = § (—1)’ey  if Y =2(j1,- -, JusJvt2,-- -2 Jk) and €9y = —€91_1
0 otherwise
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If =21,y JusJut+2,---,Jx) then by Equations (6.4), (6.7) we get

esy ’l/J_ i(_l)yz(jla"',jl/al?jl/+2,"'ajk):i(_l)ysp if62l = €211
20" - . . . . .
(_1)V+1 Z(jl, o 7]V7Z7JV+27 ce. 7jk) = (_1)V+1 2 if €91 = —E&9]—1

and thus
(p,e9 - ) = i(—1)"T = —eq{ea - o ) if ey = €94
’ (_1)V+1 = _€2l<62l : ‘P=1/1> if €9] = —€9]_1-
If ¢ # Z(jh e Jus Ju42s - - 7]k) then <€2[ . ‘P71/1> —0= _€2l<907 eq - ¢> -

Remark 6.2.5. If X € span{ej,...,e,} then R(X) = —X. In this case we get for any
two spinors ¢, 9 € X,
(X -p,) = (p, X - 1),

i.e., Clifford multiplication by X is symmetric. If in addition (X, X), s = —1, we have

<X'90=X ¢> = <907X X1/1> = _<X7X>7",s<()07¢> = (%W,

i.e., Clifford multiplication by X is an isometry.
If X € span{e;41,...,e,} then R(X) = X. In this case we get for any two spinors
907¢ € Er,s:

<X Qpa¢> = _<SD’X ¢>

i.e., Clifford multiplication by X is skew-symmetric. If in addition (X, X),, = 1, we
have

<X : 90=X ¢> = _<(P7X - X 1/}> = <X7X>r,s<()07w> = <()07¢>7

i.e., Clifford multiplication by X is an isometry.

However, if > 0 and s > 0 then for X € R" with (X, X),, € {1}, Clifford mul-
tiplication by X is in general neither symmetric nor skew-symmetric nor an isometry
for (-,-). As an example one might take X = %(el + 2e3) where (e1,e1),s = —1 and
(e2,€2)rs = 1. In particular, if 7 > 0 and s > 0 the spinor representation is not a unitary
representation for (-, -).

Proposition 6.2.6. Let n =r + s = 2m be even. Then the map

®: Cls—End(%,;), ®X)(2)=X 2

is an isomorphism of complex algebras.
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Proof. Obviously ® is a homomorphism of complex algebras. We prove that ® is sur-
jective. Note first that for all £ € {1,...,m} we have

2020+ Zp-2g = —€9p—1 (6.13)
Zp-zg =10 (6.14)
zg -z = 0. (6.15)

Let i, € {1,...,m} and let z(j1,...,jk) € Eps.
a) Assume ¢ € {j1,...,Jx}. From the equations (6.13) and (6.14) we get

@(Eg)(z(jl,,jk)):égzhzgz]kélégém
Ziig-Zg-Eg-zjl-...-&-...-ij-21-...-,?@-...-2”1
Zi(—z’fgl,l—Zg-Eg)-ig-Zjl-...-é\g-...-zjk-51-...-,?@-...-57”
:iégzjlz}zjkél,?gém—i—o

= iz(jla"'aga"wjk%

where the signs + may change in every line.
b) Assume ¢ ¢ {j1,...,jk}. Then by the equation (6.14) we get

@(2@)(Z(j1,...,jk)):Eg-Zjl-...-ij-21-...-2@-...-57”
:iég'gg-zj'l-...-ij-gl-...-,?g-...-gm
=0.

c) Assume i € {j1,...,jx}. By the equation (6.15) we get

=0.

d) If i ¢ {j1,..., 7k} then we get

@(z,)(z(jl,,]k)):z,zhz]kélém:iz(jl,,z,,]k)
For any multi-index I = {iy,...,is} we write
IS Ziy et Zigy  ZL=Zig v eee Zigy  2() = 2(i1, ... 0s)

and we denote by I¢ the complementary multi-index of I. Let now I and K be multi-
indices. The calculations in a) - d) show that for all multi-indices J we have

) 0 if J#0
21 e 2m - 2(J) =
! t21- 2y, =0

and thus
0 if J#£T
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and therefore
0 if J#£IT

ch'Zl'---'Zm'ZI'Z(J):{iZ(K) iftJ=1

Thus every endomorphism of 3, ; can be obtained by composing endomorphisms of the
form ®(Zge - 21 - ... 2y - Zr). This shows that & is surjective. Since Cl, s and End(3, )
have the same dimension we conclude that ® is an isomorphism. U

The odd dimensional case

In the following, let n = 2m — 1. To construct the spinor space X, ,, we make the
following observation:

Lemma 6.2.7. Let n =r + s € N. The linear map j : R" — Clgsﬂ,

X o (X)) =X - ent1,

induces an algebra isomorphism Cl, ; — Clgsﬂ.

Remark 6.2.8. Lemma 6.2.7 also holds for Cl, ; instead of Cl, .

Proof. The proof is analogous to the proof of Lemma 2.3.12. U

For n = r + s odd we define the spinor space ¥, ¢ by:

—
Yo =X

In particular, we have dim X, = 212 for both even and odd n. The Clifford algebra Cl, s
acts on the spinor space ¥, ; via the map oz For X € Cl, 5 and ¢ € %, ; put

Xeg:=a(X) ¢ € z;H =%,

The restriction of this action to Spin(r,s) C Cl.s C Cl, s defines the spinor repre-
sentation o, : Spin(r,s) — GL(X, ;) in odd dimensions. =~ We define a Hermitian
scalar product (-,-) on X, by restricting the Hermitian scalar product of ¥, .11 to

_ y+
27’73 - Er,s—l—l'

Lemma 6.2.9. Let n =r + s be odd. Then we have for any vector X € R"™ and any
spinors o, P € Xy -
<X O Qpa¢> = _<907R(X) O Qz[)>a

where R: R™ — R", R(32T_ xjej) = Y1 ejaje; is a reflection.
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Proof. We compute using Lemma 6.2.4:
(X op )=

a(X) -, )
X eny1-0,0)
= —(ent1 - ¢, R(X) - ¢)
= (p,ent1 - R(X) - 9)
= —(p, R(X) - eny1 - )
= —(p, a(R(X)) - ¥)
(p, R(X) o 1)). [

o~ o~

Remark 6.2.10. As in Remark 6.2.5 one sees that if » > 0 and s > 0 the spinor
representation in odd dimensions is not a unitary representation for (-, ).

From now let n = 2m or n = 2m—1 be even or odd. We denote the Clifford multiplication
in both cases by -. Assume that » > 0 and s > 0. Our aim is to define an inner product
on Y, for which the restriction of the spinor representation to Sping(r,s) is unitary.
We proceed as in Chapter 1.5 of the book [3] by Helga Baum. We define g € Cl, s by

5= e ... e ifr=0,1mod4
" lier...-e, ifr=2,3mod 4.

Lemma 6.2.11. We have:
1. 3-6=1.
2. For all p,¢ € £, s we have (8- ,¥) = (p,B- ).

Proof. 1. We compute

r(r—1)
€1 ey ...rep=(=1)"2 2. .. .

r(r—1) 1 r=0,1mod4
= (—1) 2 =
-1 r=2,3mod4
The assertion follows from the definition of (.

2. We have ¢; = —1 for j = 1,...,r and thus by Lemmas 6.2.4, 6.2.9:

<61'---'er'90,7p>:<90’6T'---'61'71Z)>:(_1)T(T2_1)<90’61'---'67"7;[)>'

For » = 0,1 mod 4 the assertion follows immediately, for r = 2,3 mod 4 we use
that multiplication by i is skew-symmetric. U
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Definition 6.2.12. Let r > 0 and s > 0. For ¢, € X, ; we define

(Qpa’(b) = <ﬁ . 9071;[)>

We call (-,-) the indefinite inner product on %, ;.

Lemma 6.2.13. Let n =2m orn =2m — 1 and let r > 0 and s > 0. The following
holds:

1. (-,-) is a non-degenerate sesquilinear form on 3, s of signature (QL%J_l, QL%J_I).
2. For all X € R™ and all ,v € X, s we have (X - p,9) = (=1)""L(p, X - ).
3. For all a € Spiny(r, s) and all p,¢ € ¥, s we have (a - ¢,a-¢) = (¢, ).

4. For n =2m and r =1 the spaces Eme_l are isotropic with respect to (-,-).

Proof. 1. By Lemma 6.2.11 we have for all ¢, € 3, :

(0, 0) = (B-p,0) = (0, B-¢) =(B-v,0) = (¥,p)

and thus (-, -) is sesquilinear.

By Lemma 6.2.11 we have - = 1 and thus ¥, = E(5,1) @ E(8,—1) where
E(B,=£1) denote the eigenspaces of § for the eigenvalues +1.

If r is even then we have §-e; = —e; - 8 and thus e;- is an isomorphism
E(B,1) — E(B,—1). If r is odd then we have - e,+1 = —e,41 - f and thus
er4+1- is an isomorphism E(S,1) — E(f,—1). In both cases we get dim F(/3,1) =
dim E(8,—1) = 2Lz1-1,

2. Let X € R", X = X; + X, where X; € span{ej,...,e,} and X, €
span{e;41,...,e,}. Using the Lemmas 6.2.4 and 6.2.9 we get for all ¢, € 3, ;:

(X0, 0) = (8- X -0,9)
=(B-X1-9,0)+(B-X2-¢,9)
= (1) HX1- B 0) + (1) (X2 B0, 9)
= (1B, X1 Y) + (=1)"{B- o, Xo - )
= (1) e, X - ).

3. Let p,¢ € 3, 5. For z € R", (z,z), s = £1, we get by part 2

(@ g,z 9) = (=1 o,z 9) = (=1) (2, 2)rs(p. ).
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and thus for a = 21 - ... - x9, € Spin(r, s), x; € R", (xj,z;),s = 1, j=1,...,2k,
we get:
(@ @,a-) = (T1,T1)rs - - - (T2k: T2k)r,s (0, ¥) = £(p,9).

This equation holds for all @ € Spin(r, s). Now fix a € Spiny(r, s). Then there is a
continuous path ¢: [0,1] — Spiny(r, s) with ¢(0) =1 and ¢(1) = a. The function

e (et) -, e(t) - ) = £(p, )
is continuous and thus constant. In particular (a - p,a-¥) = (p, ).
4. For p € Efszl we have i" 1w - ¢ = +¢ and thus by 2. with r = 1
(0,0) = (™ w -, i w Q) =(e1-...-en-p €1 ... €n- Q)
=(p,en-...oe1 €1 ... epp)=—(p,0). O
=(-1)rt=-1

Remark 6.2.14. Let r > 0 and s > 0. Then the indefinite inner product (-,-) on X, g
has the best invariance property in the following sense (see [3], p.69):

1. There is no inner product on ¥, ¢ which is invariant under Spin(r, s).
2. There is no positive definite inner product on 3, which is invariant under

Sping(r, s).

Proof. 1. Assume that (-,-) is such an inner product. Let ¢: (—&,&) — Spin(r, s) be
a smooth curve with ¢(0) = 1 and ¢(0) = e; - e; where €; = —¢;. Then for all ¢ and
all p,1 € X, s we have by assumption (c(t) - ¢, c(t) - ¥) = (p,v) and thus

0= %‘tzo(c(t) cp,e(t) ) = (e ej - p, ) + (g, e €5 - ). (6.16)

Let ¢, € ¥, s with (¢,1) # 0. Since e; - e; € Spin(r, s) we get by the assumption
and by equation (6.16)

() = (ei-ej-p,ei-ej-) =—(p,e-ej-e-ej-V) =eigj(p, V) = —(p, 1)
which is a contradiction.

2. Assume that (-,-) is such an inner product. Choose i,j with ¢; = —¢;. Then we
have for all ¢ € 3, ¢ by equation (6.16)

0< (ei-€j-p,ei-ejp)=—(pei-e-e-ejp)=cigilp,p)=—(pp)

which is a contradiction. O
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6.3. Spin structures

Let M be an oriented semi-Riemannian manifold of signature (r,s) and of dimension
n=r+s. For x € M put

P3O(M) = {h: (R™ (-, ")rs) = T M | h orientation preserving isometry }.

Each element h € PSO(M) induces an oriented semi-orthonormal basis h(ey), ..., h(ey)
of T,,M. Conversely, for any oriented semi-orthonormal basis by, ..., b, of T, M, there is
a unique h € P3O (M) such that by = h(e1),...,b, = h(e,). The space

PSO(M) = | | PIO(M)
rzeM

is a SO(r, s)-principal bundle over M and is called the oriented semi-orthonormal frame
bundle of M.

A spin structure on M is a Spin(r, s)-principal bundle over M with properties analo-
gous to Definition 2.4.3. An oriented semi-Riemannian manifold M is called spinnable
if there exists a spin structure on M. A semi-Riemannian spin manifold is an
oriented spinnable semi-Riemannian manifold with a fixed spin structure. A detailed
discussion of existence and uniqueness of spin structures on oriented semi-Riemannian
manifolds can be found in Chapter 2 of the book [3] by Helga Baum.

Definition 6.3.1. Let » > 0 and s > 0 and let
Ug,s = UT’ﬁ‘SpinO(r,s) : SpinO(ra 3) — GL(ET’ﬁ)

be the restriction of the spinor representation to Sping(r,s) C Spin(r,s). Let M
be a semi-Riemannian spin manifold of dimension n and signature (r,s) with a spin
structure PSP (A1), The spinor bundle of M for the spin structure PSP (M) is the
associated vector bundle

SM = PP(M) x50 Sps.

Sections of X M are called spinor fields on M. If r+ s is even and a?;} = U;l’:s|spin0(r’ )
then the vector bundles

SEM := PSP (M) x o+ T

e 7,8

are called the positive and the negative spinor bundle of M respectively.

The spinor bundle XM carries a sesquilinear indefinite bundle metric (-,-) of signature

(2L2)=1 2l5]=1) defined by

(IH, @], [H,%]) := (¢,¢), for H € PP(M), o, € 5, .
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This assignment is well-defined, since for any a € Spiny(r, s) we have by Lemma 6.2.13

([[H 1 a, 0-7(’],3(0’71)90]]5 [[H - a, 079, ( )TIZ)]]) ( O, s(ail)sp’ Jg,s(ail)w) = (Qpa ¢)
We define Clifford multiplication on XM as in equation (2.17). By Lemma 6.2.13 we
have for all X € T, M and for all p,¢ € X,M,pec M

(X p9) = (1) p, X - 9). (6.17)

The spinor connection

The Levi-Civita connection V on TM induces a connection 1-form wC €
QL(PSO(M),s0(r,s)). By pull-back with g, we obtain an so(r, s)-valued 1-form g*w"C €
QL (PSP (M), 50(r,5)). Applying the isomorphism oy ! : so(r,s) — spin(r, s) yields the
connection 1-form .
G"C = o l* W € Ql(PSpm(M),spin(r, s))

and a corresponding spinor connection V> on ¥M. The covariant derivative with
respect to V= of a local section [H, @] € C*°(U,¥M) is given by:

VXIH, ¢ = [H,0xp + (07,) (@ (dH(X))) - ¢]. (6.18)

Here U C M is an open subset, z € U, X € T,M, and H : U — PSP"(M) is a local
smooth section, and ¢ : U — X, s a smooth function.

In order to write the spinor connection in terms of Christoffel symbols, we fix a local
smooth section H : U — PSP"(M). Then h := go H : U — P59(M) is a smooth local
oriented semi-orthonormal tangent frame and the vector fields

bl = h(el), cee ,bn = h(en)

form an oriented semi-orthonormal basis of T, M at each x € U, where ey, ..., e, is the
standard basis of R™. The Christoffel symbols I’fj : U — R of this orthonormal frame
are defined by the equation

n
ViCh; = Thby foralli,je{l,...,n}.
k=1

Note that unlike the Christoffel symbols of a local coordinate system the I’fj are in

general not symmetric in ¢, j. Instead we have I’fj = —ng for all 4, 7, k. We compute the

covariant derivative of b; = [h, e;] in terms of the connection 1-form Wt

[[h ZPU ek]] — VLCy,
= VII;,C [[ha ej]]
= [h, abiej +A (WO (dh(B:))) €]

:0

= [k ]
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Hence
I = wif (dh(b;)). (6.19)
For the local section H : U — PSP"(M) with go H = h, we then have:
0w (dH (b)) = w'C(dp o dH(b;)) = w"C(d(g 0 H)(b;)) = w"(dh(b;)).

Upon writing
0. (2" W C(dH (b:))) = ) Yuvien - € € spin(r,s), (6.20)

p<v

we obtain

FO(dn(b) = @*w O (dH (b)) = D Yuwi 04(eps - €0).

p<v

We apply this to e; € R" and obtain
w"C (dh(bi)) (ej) = Z Vuvi 0x(€p - €v)(€5)
p<v
2e ey, j=pu
- Zr}/ﬂyz —261/ 6“, ] =V

u<v 0 otherwise
=2 E ’yjyi&‘j ey—2 E 'Yujiffj eu.
v>j n<j

Comparing the coefficients with equation (6.19) yields

26]"}/]‘]“‘ k?>j
Ffj = —28]' Ykji k<j.
0 k=

Thus, we can replace the coefficients in (6.20) by Christoffel symbols and obtain:
~ 1
otC dH Z Vi €y = Z 6HF;-/“ ey ey
p<v p<v

Thus, the covariant derivative of a local section [H, ¢] € C*°(U,XM) can be written in
terms of Christoffel symbols:

VbEZ [[H’ 90]] = [[H’ abigp + (U(r),s)* (aLC(dH(bl))) ’ QD]]

1 n
= [{H,@bigo—i—g E qffjej-ek-gp]]. (6.21)
Jk=1
i<k

and the spinor connection V* on ¥M as in equation (6.18).
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Remark 6.3.2. 1. The spinor connection is a metric connection on XM with respect
to the indefinite bundle metric (-,-). This follows from the general principle ex-
plained in Remark 2.4.11 using that 097 s Is a unitary representation of Spiny(r, s)
by Lemma 6.2.13.

2. On an even dimensional semi-Riemannian spin manifold M the spinor connection
preserves chirality: for every vector field X on M and every spinor field ¢ €
C>®(M,%*M) we have V¢ € C®°(M,S*M). This follows immediately from
equation (6.21).

Now we prove a Leibniz rule for the Clifford multiplication:

Lemma 6.3.3. Let M be a semi-Riemannian spin manifold with spinor bundle XM
and spinor connection V. Then for all vector fields X,Y € C®(M,TM) and all
spinor fields ¢ € C°(M, X M) we have

VRY -¢) = (VYY) ¢+ Y - V3o (6.22)

Proof. Fix € M and let U be a neighborhood of x. Let H : U — PSP"(M) be a local
section and h = go H : U — PSO(M) be the corresponding local section of PSO(M).
Then the vector fields by := h(ey),...,b, := h(e,) form an oriented semi-orthonormal
local frame of T'M.

Since the spinor connection is tensorial in the vector fields, it suffices to prove the
assertion for X = b;. We thus write Y = [h,Y'] and ¢ = [H, p] on U, where Y’ : U — R"
and ¢ : U — X, ;. Now we compute:

Vi (Y -¢) =V [HY ]

(6.21) 1 &
= [[H,abi(Y’ : QD) + 5 Z €jrfj€j s ek - YI : gp]]
gy
1 n
- [[H=(3b¢Y')-<P+Y"3b¢‘P_ 5 D elie Y e
goTe
n
S ey ]
G k=1
j<k

1 n
= [[H,(@biY')-go+Y'-8bigo+§ g qI’ZY’-ej-ek-gp
Jk=1
<k
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n n
+ 3 el Ve o= 3 Theslen ) o]

J,k=1 Gk=1
Jj<k i<k
1 n
k
= [[H, Yy’ <ab¢‘10 + 5 Z ejl“l-j €j €L - gO)]]
J,k=1
<k
n
+ [[H, (BbiY’ + Z <Y,, €j>€jri-€j ek) : QO]]
jk=1
=Y Vi¢+ VY- ¢ O

6.4. The classical Dirac operator on spinors

Let M be an n-dimensional semi-Riemannian spin manifold. We have the spinor con-
nection

VEL O®(M,SM) = CX(M,T"M @ SM), ¢~ > vf @ Vi,
i=1

where vy, ..., v, is a local frame of TM and v7,...,v; is the dual frame, i.e., v} are local
sections of T*M such that v} (v;) = d;; for all 7, j. We define

c: C®(M,T*M @ SM) — C®°(M, M), a®— o 1,

where o € C®(M,TM) is given by a(X) = g(a®, X) for all X € C°(M,TM) and g
is the semi-Riemannian metric on T'M.

Definition 6.4.1. The Dirac operator is defined as the composition D := ¢ o V>.

Remark 6.4.2. Let by,...,b, be a local g-semi-orthonormal frame of TM, i.e.,
g(bi,bj) = €;6;; for all i,j with ¢; € {£1}. Then we have b} = &;9(b;, ) and thus
(b7)# = g;b;. Thus we have for all ¢ € C°(M,XM):

n
Dtp = Zf‘:ibi : Vgitp
=1

Remark 6.4.3. If dim M = n is even then with respect to the splitting XM = X TM &
>~ M the Dirac operator takes the form

0 D-
CY
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where DV € Z7/(SYM, S~ M) and D~ € Z7/(S~ M, YT M). The Dirac operator D
interchanges chirality, since Clifford multiplication by b; does.

Proposition 6.4.4. Assume r > 0 and s > 0. Then for all spinor fields ¢, €
C*®(M,XM) with compact support we have

/ (D, ) dvoly = (—1)7"/ (@, D) dvoly,
M M

where (-,-) denotes the indefinite inner product on X M.

Proof. Let ¢, € C*°(M,XM) and let X € C>°(M,TM ®g C) be the unique complex
vector field such that

(Y -p,0)=9g(X,Y) forallY € C°(M,TM).

Let by,...,b, be a local semi-orthonormal frame of TM. Using that V* is a metric
connection with respect to (-,-) and using the equations (6.17) and (6.22) we get

div (X 2519 Vb X, b;) ieiabig(X, bi) — ieig(X, V};icb

=1 =1

—Zeﬁb (bi - .0 Za((vacbi)-so,w)

=1
—Ze, Vi (b - ), +Z€Zb 0, Vi) — Zn:g, VECh:) - p,1)
=1 =1

= Zei((vll;icbi) “p+b;- Vzi@ﬂ/))

n

DY el bi - Vi) = > e(ViChi) - 0, 9)

i=1 =1
= (Dg,¥) + (=1)"" (¢, Dy).

We integrate over M, and by the divergence theorem we obtain

/ (D, 1) dvoly + (—1)"! / (¢, D) dvol, = / div (X) dvol, = 0. O
M M M

6.5. Spacelike hypersurfaces of Lorentzian manifolds

Let R"*! be equipped with the inner product (-, 1,n. Denote the standard basis of
R by eg, ..., e, where (eg,e0)1n = —1 and {(e;,€;)1, = 1 for 1 <i < n. It is easy to
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see that the complexified Clifford algebra Cl, := Cl,, ®g C is isomorphic to the Clifford
algebra of (C", 8) with the symmetric bilinear form g(z,y) = > 7, z;y; on C". The
map

jr C*=C,, j(X)=ie- X
satisfies j(X) - j(X) = —B(X, X) for all X € C" and thus induces an algebra homomor-
phism J: Cl, = (Cl?,n- It is easy to see that J is an isomorphism of algebras.

Since Spin(n) C Cl,, and Spin(1,n) C (Cl?’n, we obtain a map
Spin(n) < Spin(1,n)
A=V V3 ... V2%p F> 1€ -Vl ... 1€) Vop =VL ... VUn.

With this embedding we have the following commutative diagram:

Spin(n)~—— Spin(1,n) .

| |
SO(n)——S0O(1,n)
Let M be a semi-Riemannian spin manifold of dimension n + 1 with a metric g of
signature (1,n), i.e., M is a Lorentzian spin manifold. Let N C M be an orientable
hypersurface such that the restriction of g to TV is a Riemannian metric on T'N, i.e.,

N C M is a spacelike orientable hypersurface. We want to construct a spin structure
on N and relate the spinor bundles ¥M and £N and the Dirac operators D™ and DY .

Let v be a normal vector field along N such that g(v,v) = —1 on N and equip N with
the orientation such that a basis by,...,b, of T, N is positively oriented if and only if
the basis v, by, ..., b, of T, M is positively oriented. Using the canonical embedding

SO(n) < SO(1,n)

10
A — (O A> ,
the action of SO(n) on (v(z),b1,...,b,) preserves the normal v(z).
Moreover, we have a canonical embedding of frame bundles
PO(N) = P%°(M),

(h:R™ - T,N) s (B : R""" — T,,M),

where h/(0,21,...,2,) = h(x1,...,2,) and h'(1,0,...,0) := v(p). This embedding is
compatible with the embedding SO(n) < SO(1,n) defined above. Thus, the diagram

PSO(N) x SO(n) — PSO(N) .

| |

PSO(M) x SO(1,n) —= PSO(M)
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commutes.

Now let g: PSPI"(M) — PSO(M) be a spin structure on M. We set
PSpin(N) — @,1 (PSO(N))
This defines a spin structure on V:

e The action of Spin(1,n) on PSP(M) restricts to an action of Spin(n) on PSP(N):
For H € PSP"(N) and a € Spin(n), we have H -a € PSP (M) and

o(H-a)= g(H) - ola) €P(N).
——
€ PSO(N) €50(n)

Thus H - a € PSP(N).

e Obviously, the action of Spin(n) on PSP(N) is compatible with the action of SO(n)
on PSO(N), hence g : PSP(N) — PSO(N) is a spin structure on N.

In particular, orientable spacelike hypersurfaces of spinnable Lorentzian manifolds are
again spinnable.

Spinor bundles

We study how the spinor bundles of N and M are related to one another.
Case 1: n+1 is even
In this case, 3, = Ein. For any = € N, we have!

SpN = PSPU(N) %, S = BPU(N) x oy B, = PPNM) x 0 5

1,n
o b
L,n [ Spin(n)

Thus, XN = X M|y.
The Clifford multiplication of R™ on ¥, = an is given by

X"P:iQO'X'QOa
where the - on the left hand side is the Clifford multiplication in Cl,,, while the - on the
right hand side is the Clifford multiplication in Cl;,. Thus, the Clifford multiplication
in XN is given by

X-p=1iv-X -,

Let X C Y besets and H C G be groups. Let G act simply transitively from the right on Y such that
the action restricts to a simply transitive right action of H on X. Then for any representation of G
on ¥, the inclusions induce a bijection X xpg X =Y xg X.
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where X € T, N and ¢ € ¥, N.
Case 2: n+1 is odd
The inclusion of Clifford algebras
Cl, = C1Y,, < Cly, = C 4y < Cly gy

together with the inclusions 3, C Cl,, and ¥, = Efn 1 C Cly 41 induces an isomor-
phism Z,, : ¥,, — Y1, such that the diagram

y, ——n Yin = Efnﬂ
X-() lieo-X~()ieo-X~en+1-()
Y, = S = Efn+1

of Clifford multiplications with X € R™ commutes.
As in case 1 we obtain the canonical isomorphism XN = ¥ M|y such that again

X.-p=1iv-X-o.

for X €e T,N, p € ¥,N.
In the following we treat both cases simultaneously using the notation

s+ g - YTM if n+1is even,
XM  ifn+1is odd.

Spinor connections
The Levi-Civita connections on T'M and T'N are related by the Gaufl equation

vy = VY +11(X,Y), (6.23)
—— e N——

eTxM eTyN € (TyN)+

where X € T, N and Y € C*°(N,TN). The second fundamental form is a symmet-
ric bilinear map II : T,N x T,N — (T,N)*, given by the orthogonal projection of
Vﬁ\? Y to (T, N)*. The Weingarten map is the corresponding symmetric endomorphism
B:T,N — T,N such that for all X,Y € T, N

I(X,Y) = g(B(X),Y)v =: (B(X),Y)w.
The mean curvature field # € C*°(N,TN') is defined by

1 & 1
H= E;<B(bi)7bi>vz Etr(B)y:H%
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where by, ..., b, is a local orthonormal tangent frame for N and H : N — R is the mean
curvature of the hypersurface N C M.

The spinor connections of M and N are related by the Weingarten map. Let (by,...,by)
be a local oriented orthonormal tangent frame for N. Then (by = v, by, ..., b,) is a local
orthonormal tangent frame for M along N. The Christoffel symbols for the Levi-Civita
connections VM and VV are defined by

n n
Vil = Z MPE b, and Vb = Z N b
k=0 k=1
By the GauB} equation (6.23), we have for i,j € {1,...,n}:

Volb; = Vi b; + (B(bi), by v = > "TF by + (B(b;), by ) bo.
k=1

Comparing coefficients yields

Mrfj :Nrfj Vi k={1,...,n},
Mp) == Mp] = (B(b:),b;) Vi, j={l,...,n}.
For the covariant derivative of a section of X() M, we compute for i € {1,...,n}:

6.21 1 <

J,k=0
i<k
1 o 1
= [[H,abz@—F 5 Z Nl“fjej * €L QD—F §Z<B(bl),bk>60 * €L QDH
J,k=1 k=1
i<k

1 n
=" lH, o] + 5> (B(b:),b;) bo - b; - [H, ¢]
j=1
1
="l ¢] + 5 v B(bi) - [H, ]
Hence for all ¢ € C°(M, %) M) and for all X € TN, we have along N:

ML e = Mo + % v-B(X) - ¢.
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Dirac operators

For a spinor field ¢ € C*°(M, E(+)M) we have along the hypersurface N:

DM =—v-MV0p+ N b - Mo

j=1
——y-Mvzé—i—ibw<NVE¢+EV-B(b»)-q§>
- v — J b; 9 J
]:
Ry 1 ¢
:—IJ-MVEgb—w-Zw-bj-NVbEj¢—§Zy-bj-B(bj)-QS
j=1 j=1

= v (MTB6 DN 6+ 13 by Blby) o).
j=1

Since B is a symmetric endomorphism, we may choose by,...,b, as an eigenbasis at
x € M, thus B(bj) = k; - bj for j =1,...,n. Then we have

DMp— —u. (Mv§¢ +iDNg— %m«(Byp)
——v. <2‘DN¢ - g Ho+ Mv§¢>
Hence

—v-DMgp=iDNg - gH¢+Mv§¢.



A. Existence of Friedrichs mollifiers

Lemma A.0.1. The family of operators J. : C°(T™) — C*°(T™) defined in Example
1.4.11 is a Friedrichs mollifier on T™ for the trivial line bundle £ =T™ x C.

Proof. For e small enough the support of j. is contained in [—m, 7]" and we extend j.
to a 2nZ™-periodic smooth function R™ — R again denoted by j.. Then we have for all
u € C®(T"):

@ = [ vy = [ ey

We show that J. satisfies the properties i)-iv) of Definition 1.4.10.

i) J: is a smoothing operator, since j. is a smooth function. Obviously, J. is self-
adjoint.

ii) Let u € C°°(T™). The function
([0,27)")* = R, (2,9,2) = ey — 2)jey — 2)|u(z)[[u(2)|

is integrable and thus we may use Fubini’s theorem to get

| Jeul2 = / / )u(z) de / Jely — 2)u(z) dz dy
[0,27]™ J[0,27]" [0,27]™

< / / / Je(y—2)je(y—2)  |u(@)||u(z)] dzdydz
[0,27]" J[0,27]™ J[0,2m]™ —_————
<3 (Ju(@)2+]u(2)]?)

<5 [ o WP [ ity =)z dry
[0,27]™ J[O 27T]" [0,27]™

/

=1

/ / 2)%je(y )/ Je(y — x) dx dz dy
[0,27c]™ J]0,27]™ (0,27

= / \u(x)]Q/ Je(y — ) dy dx
[0,27]™ [0,27]™

=1

=1

= |lullZ>-



224
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Therefore we obtain a bounded linear extension J.: L2(M, E) — L*(M, E) and we
have || J:|[z2, 2 <1 for all €.

Let k€ Nand P ¢ @//k(E, E). We write
P=>" Ay(z)0"
lal<k

with smooth functions A, € C°°(T™) and multi-indices o € Nj and 0% =
Oyl ... 0y, Now, for @ = 0 and for every u € C*°(T™) we get using property ii)
of J.

[AoJeull L2 < sup [Ao(@)|[|Joul[r2 < C1 sup |Ao(z)|[|ul|rz,
zeT™ zeTn
[JeAoull Lz < Cil[Aouf 2 < C1 sup [ Ao (@)][|ull L2
zeT™
and thus
I[Ao, Jelul| 2 < Callullre < Coflull gr-1,
where C7,Cy > 0 are independent of . Thus it is sufficient to consider
P =A,(x)0"

with a smooth function A, € C*°(T") and a multi-index o € Nj with |a| > 1 and
0% = (9311 . (93:. We choose ¢ with a; > 1 and we write

a:=(ag,...,0—1,... ap).

Then we have 0% = 8%9,,. For all u € C°(T™) we get using integration by parts

Plou(z) = Aa(a) / (0% (x — ))uly) dy

n

= Ay (z)(=1)l! Tn(@;je@ —y))u(y) dy

= Aafa)(-1) | @uicle — 1)@ )0 dy
—A@e ™ [ @) (*E) @ ) dy

and

J.Pu(z) = / Jelr = y)Aa(y)(0%u)(y) dy
__ /T (Oyde(w = y)) Aa(y) (0" u)(y) dy
_ /T el = ) (0, Aa) (1) (07 u) (y) dy
—e [0, (T A @ dy

- / el = 1)@y, Aa) () (0% w) ) dy
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and thus
(P Juta) = [ el = )@, A0) )0 0) ) dy

—n—1 N(T Y . a,
+= [0,0)(FY) (ale) — Aa) @ ) dy
= Ja((ayiAa)(aau))(x)
e [ 0,0 () (Aale) - Aaly) @)y dy

=:(Meu)(x)

By property ii) of J. and using that |a| < k — 1 we get
17:((3y; Aa)(0%u))ll 2 < C(Dy, Aa)(0%u)]| 2
< C sup |9y, Ao (@)| [|0%u| L2
zeT™
< O sup [9y; Aa(@)| [|ul grs-1-
xzeT™
We now estimate (M.u)(x). First we note that there exists C; > 0 such that

10y,5] < C1 on T™. Moreover, we have (9,,7)(*z%) = 0 if |z — y| > €. Since A, is
smooth there exists Cs > 0 such that for all x y € T"™ we have

[Aa(z) — Aaly)] < Colz —yl.

It follows that

|(Meu)(z)] < g—n—l/

L, OOl =yl Pty dy <70 0y | 1@l
Be(x

B:(z)

Let ¢ > 0. Since 9%u is uniformly continuous we can choose ¢ so small that for all
z,y € T" with |z — y| < € we have |(0%)(x) — (0%u)(y)| < ¢ and thus |[(0%)(y)| <
|(0%u)(x)| + ¢. Thus for all x € T™ we have

|(Meu)(@)| < e7"Cy Ca vol(Be(2))(1(0%u) (#)] + ¢) < C5((0%u) (2)] + ¢),

where C3 > 0 is independent of ¢, since vol(B:(z)) < C’e™ for some C’ > 0. It
follows that

|(Mew)(2)[* < C3(|(0%u) ()] + )* < 2C3(1(0%u)(2)* + ¢?)

and thus )
[ Mcu||72 < 2C5(/|0%u)172 + ¢Pvol(T™)).

Let ¢ — 0 and obtain

[ Moul22 < 2C3(10%22 < 2C3|ul|3-1.
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iv) Let u € C%®°(T™). We prove that J.u — u in C°(T™) as ¢ — 0. Let a > 0. Since
u is uniformly continuous we can choose € > 0 such that for all x,y € [0, 27]™ with
|z —y| < e we have |u(z) —u(y)| < a. Using that f[072ﬂ]n Je(z —y)dy = 1 we get for
all z € [0,27]"

Je(z—y) (U(y)—U(x))dy=/ Je(z—y) (u(y) —u(x)) dy

B:(z)

(o)) - u(a) = [

[0,27]™
and thus for all x € [0, 27]™

Jela — y) Ju(y) — u(z)] dy < o / jelw — ) dy = o
S———— Be(x)

(o) —ula)| <

< (z)
<«

It follows that J.u — u in C°(T™) and thus also in L*(T™). O
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