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Preface

These are the lecture notes of an introductory course on algebraic topology which I taught at

the University of Potsdam during the summer term 2022. The aim was to introduce the basic

tools from homotopy and homology theory. Choices concerning the material had to be made.

Since time was too short for a reasonable discussion of cohomology theory after homology

had been treated, I decided to skip cohomology altogether and instead included more material

from homotopy theory than is often done. In particular, there is a detailed discussion of higher

homotopy groups and the long exact sequence for Serre fibrations.

The necessary prerequisites of the students were rather modest. The course contains a quick

introduction to set theoretic topology but a certain acquaintance with these concepts was certainly

helpful. Familiarity with basic algebraic notions like rings, modules, linear maps etc. was

assumed.

These notes are based on the lecture notes of a course I taught back in 2010. I am grateful to

Volker Branding who wrote a first draft of those lecture notes and created most of the figures

and to Ramona Ziese who improved those notes considerably. Moreover, I would like to thank

the participants of the 2022 course, especially for the valuable feedback that they provided.

Potsdam, August 2022

Christian Bär
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1. Set Theoretic Topology

1.1. Typical problems in topology

Topology is rough geometry. For example, a sphere is topologically the same as a cube, even

though the sphere is smooth and curved while the cube is piecewise flat and has corners. In

more precise mathematical terms this means that they are homeomorphic. On the other hand,

the sphere is different from a torus even topologically.

≈

0

Figure 1. (Non-) homeomorphic spaces

Here are four versions of a typical question that one asks in mathematics. Fix integers 1 ≤ = < <.

1.) Does there exist a linear isomorphism i : R< → R= ?

No, since linear algebra tells us that isomorphic vector spaces have the same dimension.

2.) Does there exist a diffeomorphism i : R< → R= ?

No, otherwise the differential 3i(0) : R< → R= would be a linear isomorphism.

3.) Does there exist a homeomorphism i : R< → R= ?

We cannot answer that question yet, but we will develop the necessary tools to find the answer.

4.) Does there exist a bĳective map i : R< → R= ?

Yes. We will now explicitly construct an example for such a map in the case = = 1 and < = 2.

Example 1.1. Since the exponential function maps R bĳectively onto R+ = (0,∞) it suffices to

construct a bĳective map i : R+ → R+ × R+.
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1. Set Theoretic Topology

Given G > 0 write G as infinite decimal fraction.

G = . . . 030201, 111213 . . .

Here 0 9 ∈ {0, 1, . . . , 9} and almost all 0 9 are equal to 0. The 1 9 are blocks of the form 0 . . . 02 9
with 2 9 ∈ {1, . . . , 9}. This representation of G is unique. Now define i(G) = (i1(G), i2(G))
where

i1(G) = . . . 050301, 111315 . . . i2(G) = . . . 060402, 121416 . . .

One easily checks that i maps R+ bĳectively onto R+ × R+.
Let us evaluate the construction for an example. Let G = 1987, 30500735 . . .. Then we can read

off the 0 9 and the 1 9 as

01 = 7, 02 = 8, 03 = 9, 04 = 1, 0 9 = 0 for 9 ≥ 5

11 = 3, 12 = 05, 13 = 007, 14 = 3, 15 = 5, . . .

Hence i1(G) = 97, 30075 . . . and i2(G) = 18, 053 . . .

Remark 1.2. In the continuous world counter-intuitive things can happen which are not possible

in the differentiable world. For example, there exist continuous maps

i : [0, 1] → [0, 1] × [0, 1]

which are surjective. Such a map is called a plane-filling curve.

Example 1.3. The first example goes back to Peano [6]. The following example was shortly

after given by Hilbert [3] and is known as the Hilbert curve. It is defined by

i(G) := lim
=→∞

i= (G)

where the i= are defined recursively as indicated in the pictures:

i1 i2 i3

i4 i5 i6

Figure 2. Hilbert’s curve1

1Based on an illustration by Zbigniew Fiedorowicz, see

https://commons.wikimedia.org/wiki/File:Hilbert_curve.png
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1.1. Typical problems in topology

Remark 1.4. This cannot happen for smooth curves due to a Theorem by Sard which states that

for smooth i : [0, 1] → R2 the image i([0, 1]) ⊂ R2 is a zero set.

Many typical problems in topology are of the following form:

1.) Given two spaces, are they homeomorphic? To show that they are, construct a homeo-

morphism. To show that they are not, find topological invariants, which are different for given

spaces.

2.) Classify all spaces in a certain class up to homeomorphisms.

3.) Fixed point theorems.

Example 1.5 (Classification theorem for surfaces). The classification theorem for surfaces

states that each orientable compact connected surface is homeomorphic to exactly one in the

following infinite list:

(2 (sphere), genus 0

)2 (torus), genus 1

�2 (Pretzel surface), genus 2

�3 (true pretzel), genus 3

b

b

b

Figure 3. Surface classification2

The genus is the number of “holes” in the surface. We will give a more precise definition later. So

the classification theorem says that to each 6 ∈ N0 there exists an orientable compact connected

surface �6 with genus 6 and each orientable compact connected surface is homeomorphic to

exactly one �6.

2Images from https://pixabay.com
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1. Set Theoretic Topology

Example 1.6 (Brouwer fixed point theorem). Any continuous map 5 : �= → �= with

�= = {G ∈ R= | ‖G‖ ≤ 1} has a fixed point, i.e., there exists an G ∈ �= such that

5 (G) = G.

We give a proof for = = 1. Consider the continuous function 6 : [−1, 1] → R defined by

6(G) := 5 (G) − G. Now | 5 | ≤ 1 implies

6(−1) ≥ −1 − (−1) = 0, 6(1) ≤ 1 − 1 = 0.

By the intermediate value theorem we can find an Gwith 6(G) = 0 which is equivalent to 5 (G) = G.

1.2. Some basic definitions

First of all let us recall the following

Definition 1.7. A subset * ⊂ R= is called open

iff

∀G ∈ * ∃A > 0 : �(G, A) ⊂ *

where �(G, A) = {H ∈ R= | 3 (G, H) = ‖G − H‖ < A}. b G
A

Figure 4. Open subset

The set of open subsets of R= is called the standard topology of R=. We write

TR= := {* ⊂ R= open} ⊂ P(R=).

One easily checks

Proposition 1.8. TR= has the following properties:

(i) ∅,R= ∈ TR=;

(ii) * 9 ∈ TR= , 9 ∈ � ⇒
⋃
9∈� * 9 ∈ TR=;

(iii) *1, *2 ∈ TR= ⇒ *1 ∩*2 ∈ TR= .

The importance of the concept of open subsets comes from the fact that one can characterize

continuous maps entirely in terms of open subsets. Namely, a map 5 : R= → R< is continuous

6



1.2. Some basic definitions

iff for each * ∈ TR< the preimage 5 −1(*) is open, 5 −1(*) ∈ TR= . This motivates taking open

subsets axiomatically as the starting point in topology.

Definition 1.9. A topological space is a pair (-,T-) with T- ⊂ P(-) such that

(i) ∅, - ∈ T-;

(ii) * 9 ∈ T-, 9 ∈ � ⇒
⋃
9∈� * 9 ∈ T-;

(iii) *1, *2 ∈ T- ⇒ *1 ∩*2 ∈ T-.

Definition 1.10. Let (-,T-) be a topological space. Elements of T- are called open subsets

of - . Subsets of the form - \* with* ∈ T- are called closed.

Examples 1.11. 1.) - arbitrary set, T- = P(-) (discrete topology). All subsets of - are open

and they are also all closed.

2.) - arbitrary set, T- = {∅, -} (coarse topology). Only - and ∅ are open subsets of - . They

are also the only closed subsets.

3.) Let (-,T-) be a topological space, let . ⊂ - be an arbitrary subset. The induced topology

or subspace topology of . is defined by T. := {* ∩ . | * ∈ T-}.

4.) Let (-, 3) be a metric space. Then we can imitate the construction of the standard topology

on R= and define the induced metric as the set of all * ⊂ - such that for each G ∈ * there exists

an A > 0 so that �(G, A) ⊂ *. Here �(G, A) = {H ∈ - | 3 (G, H) < A} is the metric ball of radius A

centered at G.

Remark 1.12. Let two metrics 31 and 32 be given on a set - . If 31 and 32 are equivalent, i.e.,

∃� ≥ 0 with

�−132 (G, H) ≤ 31 (G, H) ≤ �32(G, H) ∀G, H ∈ -,

then 31 and 32 induce the same topology.

Remark 1.13. Openness is a relative concept. If . ⊂ - be an arbitrary subset of a topological

space - , then . is in general not an open subset of - but it is always open as a subset of itself

(w.r.t. the induced topology). The same remark applies to closed subsets.

It is now clear how to define continuous maps between topological spaces.

7



1. Set Theoretic Topology

Definition 1.14. Let (-,T-) and (.,T. ) be topological spaces. Then a map 5 : - → . is

called continuous iff ∀* ∈ T. : 5 −1(*) ∈ T-.

Example 1.15. If - carries the discrete topology then every map 5 : - → . is continuous.

Example 1.16. If . carries the coarse topology then every map 5 : - → . is continuous.

Remark 1.17. In general, a continuous bĳective map need not have a continuous inverse. For

example, let #- > 1 and consider 5 = id- : (-,Tdiscrete) → (-,Tcoarse).

Remark 1.18. 5 : - → . is continuous iff 5 −1(�) ⊂ - is closed for all closed subsets � ⊂ . .

Definition 1.19. Let - and. be topological spaces. A bĳective continuous map 5 : - → . is

called a homeomorphism iff 5 −1 : . → - is again continuous. If there exists a homeomorphism

5 : - → . then - and . are called homeomorphic. We then write - ≈ . .

Remark 1.20. If 5 : - → . and 6 : . → / are continuous then the composition 6 ◦ 5 : - → /

is also continuous.

1.3. Compactness

Definition 1.21. Let - be a topological space. A subset . ⊂ - is called compact iff for

any collection {*8}8∈� , *8 ⊂ - open, with . ⊂ ∪8∈�*8 there exist 81, . . . , 8= ∈ � such that

. ⊂ *81 ∪ · · · ∪*8= .

Examples 1.22. 1.) Finite sets are always compact. Namely, et. = {H1, . . . , H=} and let {*8}8∈�
be an open cover of . . Then choose 8 9 such that H8 ∈ *8 9 . Then {*81 , . . . , *8=} still covers . .

2.) If - carries the discrete topology then a subset . ⊂ - is compact if and only if it is finite.

We have already seen that finite sets are always compact. Conversely, let . be a compact subset

of - . We cover . by {{H} | H ∈ . }. These one-point sets are open because - carries the discrete

topology. Since . is compact this cover must be finite and therefore #. < ∞.

3.) If - carries the coarse topology then every . ⊂ - is compact

4.) A subset . ⊂ R= is compact iff . is closed and bounded (Heine-Borel theorem).

8



1.4. Hausdorff spaces

Example 1.23. In particular, R is not compact. We can see this directly by looking at the open

cover {(G − 1, G + 1) |G ∈ R} of R. Since all intervals in this cover have length 2, any finite

subcover can cover only a bounded subset of R.

Proposition 1.24. Let - be a compact topological space. Let. ⊂ - be a closed subset. Then

. is compact.

Proof. Let {*8}8∈� be an open cover of . . Put * := - \ . ∈ T-. Then {*,*8}8∈� is an open

cover of - . Since - is compact, there exist 81, . . . , 8= such that - ⊂ * ∪*81 ∪ · · · ∪*8= and we

conclude that . ⊂ *81 ∪ · · · ∪*8= . �

Proposition 1.25. Let 5 : - → . be continuous. Let  ⊂ - be compact. Then 5 ( ) ⊂ . is

compact.

Proof. Let {*8}8∈� be an open cover of 5 ( ), i.e. 5 ( ) ⊂ ∪8∈�*8. Then we have

 ⊂ 5 −1 ( 5 ( )) ⊂ 5 −1 (∪8∈�*8) = ∪8∈� 5 −1(*8)︸   ︷︷   ︸
open

.

Since  is compact there exist 81, . . . , 8= such that for

 ⊂ 5 −1(*81) ∪ · · · ∪ 5 −1(*8=) = 5 −1(*81 ∪ · · · ∪*8=)

and we conclude that

5 ( ) ⊂ 5 ( 5 −1(*81 ∪ · · · ∪*8=)) ⊂ *81 ∪ · · · ∪*8= . �

1.4. Hausdorff spaces

Definition 1.26. A topological space - is called Hausdorff iff ∀G1, G2 ∈ - with G1 ≠ G2

∃*8 ⊂ - open with G8 ∈ *8, such that *1 ∩*2 = ∅.

9



1. Set Theoretic Topology

The Hausdorff property says that any two distinct points

can be separated by disjoint open neighborhoods.

b b

G1 G2

*1 *2

Figure 5. Hausdorff property

Examples 1.27. 1.) Spaces with discrete topology are Hausdorff spaces, simply put *8 = {G8}.

2.) Let #- ≥ 2. Then - with the coarse topology is not a Hausdorff space.

3.) If the topology of - is induced by a metric 3, then - is Hausdorff. Namely, for G1 ≠ G2 put

A := 3 (G1, G2) > 0. Then the open balls *8 = �(G8, A/2) separate G1 and G2.

4.) Let - be Hausdorff and let . ⊂ - any subset. Then . with its induced topology is again

Hausdorff.

Proposition 1.28. Let - be a Hausdorff space. Let . ⊂ - be a compact subset. Then . is a

closed subset.

Proof. Let ? ∈ - \. . Then for every H ∈ . the Hausdorff property tells us that there exist open

subsets *H,?, +H,? ⊂ - such that H ∈ *H,?, ? ∈ +H,? and *H,? ∩ +H,? = ∅. Since . is compact

there exist H1, . . . , H= ∈ . such that . ⊂ *H1, ? ∪ · · · ∪*H=, ? . Now put +? := ∩=
9=1
+H 9 , ? . Since

+? is a finite intersection of open subsets it is open itself. Moreover, ? ∈ +?. Now

. ∩+? ⊂ (*H1, ? ∪ · · · ∪*H=, ?) ∩+? ⊂ (*H1, ? ∩+H1, ?) ∪ · · · ∪ (*H=, ? ∩+H=, ?) = ∅,

hence +? ⊂ - \ . . Therefore

- \ . = ∪?∈-\.+? ⊂ - is open.

Thus . ⊂ - is closed. �

Corollary 1.29. Let - be compact, . Hausdorff. If 5 : - → . is continuous and bĳective,

then 5 is a homeomorphism.

Proof. We have to show that ∀� ⊂ - closed 5 (�) ⊂ . is closed. Now let � ⊂ - be closed.

Since - is compact, � is compact and also the image 5 (�) is compact. Since . is a Hausdorff

space we conclude that 5 (�) ⊂ . is closed. �

10



1.5. Quotient spaces

1.5. Quotient spaces

Let - be a topological space. Let ∼ be an equivalence relation on - . For any G ∈ - let [G] be

the equivalence class of G. Denote the set of equivalence classes by

-/∼:=
{
[G] | G ∈ -

}
Let c : - → -/∼, G ↦→ [G]. Define * ⊂ -/∼ to be open iff c−1(*) ⊂ - is open. One can

easily check that this defines a topology on -/∼. Observe that c : - → -/∼ is continuous by

definition.

We now state the universal property of the quotient topology: For any topological space . and

for any maps 5 : - → . and 5̄ : -/∼→ . such that the diagram

-

c
��

5 // .

-/∼
5̄

==⑤⑤⑤⑤⑤⑤⑤⑤

commutes, 5 is continuous iff 5̄ is continuous.

Example 1.30

Let - = [0, 1] and let the equivalence relation be given by G ∼ G ∀G ∈ - and 0 ∼ 1.

This equivalence relation identifies the end points of the

interval. We expect to obtain a topological space homeo-

morphic to the circle.

10

Figure 6. Interval with end-

points identified

Indeed, we can construct such a homeomorphism. Consider 5 : - → (1 given by

5 (G) = (cos(2cG), sin(2cG)). Since 5 (0) = 5 (1) there exists a unique 5̄ : -/∼→ (1 such

that the diagram

[0, 1]
c

��

5 // (1

[0, 1]/∼
5̄

;;①①①①①①①①①

commutes. From the universal property we know that 5̄ is continuous because 5 is continuous.

Moreover, 5̄ : -/∼→ (1 is bĳective. Since - is compact (Heine Borel) c(-) = -/∼ is

compact as well. Since R2 is Hausdorff, (1 is also Hausdorff. Hence Corollary 1.29 applies and

5̄ : -/∼→ (1 is a homeomorphism.

11



1. Set Theoretic Topology

If - is a topological space and . ⊂ - a subset then -/. := -/∼ where

G1 ∼ G2 ⇔ G1 = G2 or G1, G2 ∈ . .

This equivalence relation identifies all points in . to one point and performs no further identifi-

cations. Example 1.30 is of this form.

Example 1.31. R/[0,1] is homeomorphic to R.

Example 1.32. R/(0,∞) is not a Hausdorff space because the points [0] and [1] cannot be

separated.

1.6. Product spaces

Let -1, . . . , -= be topological spaces. We set

- := -1 × · · · × -=

Definition 1.33. A subset * ⊂ - is called open (for the product topology) iff for all

? = (?1, . . . , ?=) ∈ * there exist open subsets *8 ⊂ -8 with ?8 ∈ *8 and *1 × · · · ×*= ⊂ *.

It is easy to check that this defines a topology on - .

Examples 1.34. 1.) If all -8 carry the discrete topology then - carries the discrete topology.

Namely, the sets {(?1, . . . , ?=)} are open, hence all subsets of the product space are open.

2.) If all -8 carry the coarse topology then - carries the coarse topology.

3.) R=×R< ≈ R=+<. To see this it is convenient to use the maximum metric onR= to characterize

the standard topology.

Now we list some important properties of the product topology:

1.) The projection maps c8 : - → -8, c8 (G) = G8 , are continuous because for any open subset

*8 ⊂ -8
c−1
8 (*8) = -1 × · · · × -8−1 ×*8 × -8+1 × · · · × -=

is open in - .

2.) Fix G8 ∈ -8 where 8 ∈ {1, . . . , 80 − 1, 80 + 1, . . . , =}. Then the map ] : -80 → - is continuous

where ](b) = (G1, . . . , G80−1, b, G80+1, . . . , G=).

12



1.7. Exercises

3.) Universal property: for all topological spaces . and for all maps

5 = ( 51, . . . , 5=) : . → - = -1 × · · · × -=

the map 5 is continuous if and only if all 58 : . → -8 are continuous.

4.) If all -8 are compact then - is also compact.

5.) If all -8 are Hausdorff then - is also Hausdorff.

1.7. Exercises

1.1. Determine all topologies on the set {1, 2, 3} and investigate which ones are homeomorphic.

1.2. Let ,= = [−1, 1] × · · · × [−1, 1] ⊂ R= and �= = {G ∈ R= | ‖G‖ ≤ 1}. Show that �= and

,= are homeomorphic.

1.3. Let T be a topology on R which contains all half-open intervals (G, H] and [G, H), G < H.

Show that T is the discrete topology.

1.4. Show that (0, 1) and [0, 1]

a) are not homeomorphic when equipped with the standard topologies induced by R;

b) are homeomorphic when equipped with the discrete topology.

1.5. Let�= be as in Exercise 1.2. Let G, H ∈ �̊=, i.e., ‖G‖, ‖H‖ < 1. Construct a homeomorphism

i : �= → �= with i(G) = H and i(I) = I for all I ∈ m�=, i.e., ‖I‖ = 1.

1.6. Let - be a topological space, let “∼” be an equivalence relation on - . On page 11 we

defined that * ⊂ -/∼ is called open if and only if c−1(*) ⊂ - is open where c : - → -/∼ is

the standard projection.

a) Show that -/∼ equipped with this system of open sets is a topological space.

b) Show that the universal property on page 11 determines the topology on -/∼ uniquely, i.e.,

if T is a topology on -/∼ such that c : (-,T-) → (-/∼,T) is continuous and if the universal

property holds for (-/∼,T) then T is the topology defined above.

1.7. Let �= and ,= be as in Exercise 1.2. Show:

a) �=/m�= ≈ (=;

b) ,=/m,= ≈ (=.

13



1. Set Theoretic Topology

1.8. Let - = R/Q, i.e., the quotient space ofR under the equivalence relation G ∼ H iff G−H ∈ Q.

Show that - has uncountably many elements but carries the coarse topology.

1.9. Let - = R2/Z2, i.e., the quotient space of R2 under the equivalence relation G ∼ H iff

G − H ∈ Z2. Let . = (1 × (1 with the product topology. Show that - and . are homeomorphic.

1.10. Let - be a topological space. One obtains the cone�- over - by considering the cylinder

- × [0, 1] and then passing to the quotient �- = (- × [0, 1])/∼ where the equivalence relation

∼ is given by (G, C) ∼ (G′, C′) if and only if (G, C) = (G′, C′) or C = C′ = 1. Show:

a) �(= ≈ �=+1.

b) If - is compact so is �- .

c) If - is Hausdorff so is �- .

1.11. Let - be a topological space. One obtains the suspension Σ- of - as the quotient

Σ- = (- × [0, 1])/∼ where the equivalence relation ∼ is given by (G, C) ∼ (G′, C′) if and only if

(G, C) = (G′, C′) or C = C′ = 1 or C = C′ = 0.

If furthermore 5 : - → . is a map then 5 × id : - × [0, 1] → . × [0, 1] induces a map

Σ 5 : Σ- → Σ. . Show:

a) If 5 is continuous so is Σ 5 .

b) Σ�= ≈ �=+1.

c) Σ(= ≈ (=+1.
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2. Homotopy Theory

2.1. Homotopic maps

Definition 2.1. Let - and . be topological spaces. Let � ⊂ - be a subset. Two continuous

maps 50, 51 : - → . are called homotopic relative to � iff there exists a continuous map

� : - × [0, 1] → . such that

(i) � (G, 0) = 50 (G) ∀G ∈ -;

(ii) � (G, 1) = 51 (G) ∀G ∈ -;

(iii) � (0, C) = 50 (0) ∀0 ∈ �,∀C ∈ [0, 1].

In symbols, 50 ≃� 51. The map � is then called a homotopy relative to �.

Remark 2.2. If 50 ≃� 51 then 50
��
�
= 51

��
�
.

Remark 2.3. If � = ∅, then we say “ 50 and 51 are homotopic” instead of “ 50 and 51 are homotopic

relative to ∅”. Similarly, we write “ 50 ≃ 51” instead of “ 50 ≃∅ 51”.

Examples 2.4. 1.) Let 50, 51 : - → R= be continuous with 50
��
�

= 51
��
�
. Put

� : - × [0, 1] → R= with � (G, C) := C 51(G) + (1 − C) 50 (G). Then � is a homotopy from 50
to 51 relative to �, hence 50 ≃� 51.

2.) Let 50 : R= → . be continuous. Put � (G, C) := 50((1 − C)G), then 50 ≃ const map.

3.) Lef 5 = Exp : R → (1 ∈ C, Exp(G) = 42c8G . From the previous example we know

5 ≃ const map, but we will shortly see that 5 ;Z const map.

Given two topological spaces -,. we set

� (-,. ) := { 5 : - → . | 5 is continuous}.

Lemma 2.5. Let -,. be topological spaces, let � ⊂ - and let i ∈ � (�,. ). Then “≃�” is

an equivalence relation on { 5 ∈ � (-,. ) | 5 |� = i}.

15



2. Homotopy Theory

Proof. a) “≃�” is reflexive:

5 ≃� 5 , because we can put � (G, C) := 5 (G).

b) “≃�” is symmetric:

Let 5 ≃� 6. We have to show 6 ≃� 5 . Let � : - × [0, 1] → - be a homotopy relative to �

from 5 to 6. Put � (G, C) := � (G, 1 − C). This is a homotopy relative to � from 6 to 5 , therefore

6 ≃� 5 .

c) “≃�” is transitive:

Let 5 ≃� 6 and 6 ≃� ℎ. We have to show 5 ≃� ℎ. Let � : - × [0, 1] → . be homotopy relative

to � from 5 to 6 and let � : . × [0, 1] → - be homotopy relative to � from 6 to ℎ. Then put

� : - × [0, 1] → . ,

� (G, C) :=

{
� (G, 2C), 0 ≤ C ≤ 1/2
� (G, 2C − 1), 1/2 ≤ C ≤ 1

This is a homotopy relative to � from 5 to ℎ, thus 5 ≃� ℎ. �

Lemma 2.6. Let -,. , / be topological spaces. Let � ⊂ -, � ⊂ . be subsets. Let 50, 51 ∈
� (-,. ) be such that 50 ≃� 51, 58 (�) ⊂ � and let 60, 61 ∈ � (., /) be such that 60 ≃� 61.

Then 60 ◦ 50 ≃� 61 ◦ 51.

Proof. Let � : - × [0, 1] → . be homotopy relative to � from 50 to 51 and � : . × [0, 1] → /

be homotopy relative to � from 60 to 61 Then � : - × [0, 1] → / is a homotopy relative to �

from 60 ◦ 50 to 61 ◦ 51 where � (G, C) = � (� (G, C), C). �

Definition 2.7. A map 5 ∈ � (-,. ) is called a homotopy equivalence iff there exists a 6 ∈
� (., -) such that 6◦ 5 ≃ id- and 5 ◦6 ≃ id. If there exists a homotopy equivalence 5 : - → .

then - and . are homotopy equivalent. In symbols, - ≃ . .

Remark 2.8. This defines an equivalence relation on the class of topological spaces.

Remark 2.9. Obviously, homeomorphic implies homotopy equivalent, in short,

- ≈ . ⇒ - ≃ . .

Example 2.10. Euclidean space is homotopy equivalent to a point, R= ≃ {0}. Namely, put

5 : {0} → R=, 5 (0) = 0, and 6 : R= → {0}, 6(G) = 0. Then 6 ◦ 5 = id{0} and 5 ◦ 6 ≃ idR= by

Example 2.4.1. Remark 2.8 implies R= ≃ R< for all =, < ∈ N.
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2.1. Homotopic maps

Definition 2.11. A topological space is called contractible iff it is homotopy equivalent to

{point}.

Definition 2.12. Let � ⊂ - and let ] : �→ - be the inclusion map. Then � is called

1.) a retract of - iff there exists A ∈ � (-, �) such that A
��
�
= id�, i.e. A ◦ ] = id�. Then A is

called a retraction from - to �.

2.) a deformation retract of - iff there exists a retraction A : - → � such that ] ◦ A ≃ id-.

3.) a strong deformation retract of - iff there exists a retraction A : - → � such that

] ◦ A ≃� id-.

Examples 2.13. 1.) Let - any topological space, let � = {G0} ⊂ - consist of just one point.

Then A : - → �, A (G) = G0, is a retraction, hence � is a retract of - . The one-pointed set � is a

deformation retract of - iff - is contractible.

2.) Let - = R=+1 \ {0} and � = (=. Consider the map A : - → � with A (G) = G
‖G ‖ .

The composition ] ◦ A : R=+1 \ {0} → R=+1 \ {0} then satisfies ] ◦ A = G
‖G ‖ . The map � ∈

� (R=+1 \ {0} × [0, 1],R=+1 \ {0}) given by

� (G, C) = CG + (1 − C) G‖G‖

is continuous and satisfies

� (G, 0) = (] ◦ A) (G), � (G, 1) = id(G)

for all G ∈ R=+1 \ {0} and

� (0, C) = 0, 0 ∈ (=

We thus conclude that ]◦ A ≃(= idR=+1\{0} , hence (= is a strong deformation retract of R=+1 \ {0}.

The difference between a deformation retract and a strong deformation retract is rather subtle.

17



2. Homotopy Theory

Example 2.14

We consider the comb space given by

- =

{
(G, H) ∈ R2 | 0 ≤ H ≤ 1 and (G = 0 or G = 1

= for some = ∈ N)
}

∪
{
(G, H) ∈ R2 | H = 0 and 0 ≤ G ≤ 1

}
The space - is a bounded and closed subset of R2, hence compact. Let

the set � be given by � = {(0, 1)}.

1

0 1
1
2

1
3

1
4

/

�

. . . . . .

Figure 7. Comb space

First we show that � is a deformation retract of - . The map � : - × [0, 1] → - given by

� (G, H, C) := (G, (1 − C)H) is continuous and satisfies

� (G, H, 0) = (G, H), � (G, H, 1) = (G, 0) .

Therefore id- ≃ Inclusion/→- ◦ c where c : - → [0, 1] × {0} =: / is the projection c(G, H) =
(G, 0). Moreover, we have c ◦ Inclusion/→- = id/ . This shows that c is a homotopy equivalence

between - and / . Hence - ≃ / ≈ [0, 1] ≃ {pt}, which means that - is contractible. Therefore

� is a deformation retract of - .

Now we show that � is not a strong deformation retract of - . Suppose it were, then there would

exist a continuous map � : - × [0, 1] → - , such that for all C ∈ [0, 1] and all (G, H) ∈ -

� (G, H, 0) = (G, H), � (0, 1, C) = (0, 1).

Since - × [0, 1] is compact the map � would be uniformly continuous. Therefore for Y = 1/2
we can find X > 0 such that

‖� (G, H, C) − � (G′, H′, C′)‖ < 1
2

whenever |G − G′ | < X, |H − H′ | < X and |C − C′ | < X.

18



2.1. Homotopic maps

Now choose = so large that 1
= < X and consider

(G, H) =
(

1
= , 1

)
, (G′, H′) = (0, 1), C = C′.

Then� (
1
= , 1, C

)
− � (0, 1, C)

 < 1
2
, ∀C ∈ [0, 1] .

Hence � ( 1= , 1, C) ∈ �((0, 1),
1
2
) for all C ∈ [0, 1].

1

0 1
1
=

/

�

Figure 8. � is not a strong

deformation retract

of -

On the other hand the mapping C ↦→ � ( 1= , 1, C) is a continuous path in - from ( 1= , 1) to (0, 1) and

must take values in / for some C.

Remark 2.15. We have the following scheme of implications:

� is a strong deformation retract of -

� is a deformation retract of -

� is a retract of - � ≃ -
:

;

⇐

⇐ ⇐

That both possible implications in the bottom row do not hold in general can be seen by

counterexamples. Let � = {G0} be a point in - and let - be not contractible. Then � is a retract

of - but � and - are not homotopically equivalent. This is a counterexample for the implication

“⇒ ”.

A counterexample for the other direction “ ⇐ ” is given by - = [0, 1] × [0, 1] ⊂ R2 and

� = comb space. Then - and � are contractible, hence - ≃ �, but one can show that there is

no retraction - → �.
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2. Homotopy Theory

2.2. The fundamental group

Definition 2.16. Let - be a topological space and let G0, G1, G2 ∈ - . Put

Ω (-; G0, G1) := {l ∈ � ([0, 1], -) |l(0) = G0, l(1) = G1} and

Ω (-; G0) := Ω (-; G0, G0) .

Elements of Ω(-; G0, G1) are called paths and elements of Ω(-; G0) loops.

For l ∈ Ω(-; G0, G1) and [ ∈ Ω(-; G1, G2) define l★ [ ∈ Ω(-; G0, G2) by

(l★ [) (C) =
{
l(2C), 0 ≤ C ≤ 1/2,
[(2C − 1), 1/2 ≤ C ≤ 1.

Moreover, we consider l−1 ∈ Ω(-; G1, G0) with l−1(C) = l(1 − C) and YG0
∈ Ω(-; G0) where

YG0
(C) = G0.

b

0 1

0 10 1

C → 2C − 1C → 2C

l[

-

G0 G2

G1

Figure 9. Concatenation of paths
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2.2. The fundamental group

Definition 2.17. For l ∈ Ω(-; G0) denote by [l] the homotopy class of l relative to {0, 1}.
Then

c1(-; G0) := {[l] | l ∈ Ω(-; G0)}

is called the fundamental group of (-, G0).

Lemma 2.18. For l, l′, [, [′, Z ∈ Ω(-, G0) we have

(i) If l ≃{0,1} l′ and [ ≃{0,1} [′, then l★ [ ≃{0,1} l′ ★ [′;

(ii) YG0
★l ≃{0,1} l ≃{0,1} l★ YG0

;

(iii) l★l−1 ≃{0,1} YG0
≃{0,1} l−1 ★l;

(iv) (l★ [) ★ Z ≃{0,1} l★ ([ ★ Z).

Proof. The proof will be given graphically. In the following diagrams we draw the domain of

the required homotopies. The horizontal axis denotes the loop parameter whereas the vertical

axis represents the deformation parameter. The interpolations are piecewise linear. The red area

gets mapped to G0.

(i) We run the loop parameter with twice the speed.

l [

l′ [′

Figure 10. Concatenations of homotopic paths are homotopic.

In formulas, if we denote the homotopy between l and l′ by � and the one between [ and [′ by

�, then the homotopy � : [0, 1] × [0, 1] → - between l★ [ and l′ ★ [′ is given by

� (C, B) =
{
� (2C, B), 0 ≤ C ≤ 1

2
,

� (2C − 1, B), 1
2
≤ C ≤ 1.

(ii) The first diagram in Figure ?? shows YG0
★l ≃{0,1} l, the second proves thatl ≃{0,1} l★YG0

.
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2. Homotopy Theory

YG0 l

l

l YG0

l

Figure 11. Concatenation with constant path is homotopic to original path

In formulas, the homotopy � : [0, 1] × [0, 1] → - between YG0
★l and l is given by

� (C, B) =
{
G0, 0 ≤ C ≤ 1−B

2
,

l( 2C
1+B −

1−B
1+B ),

1−B
2
≤ C ≤ 1,

and similarly for l★ YG0
.

(iii) The statement l★l−1 ≃{0,1} YG0
is proven by the following diagram

l l−1

YG0

B
l(1 − B)

Figure 12. Inverse modulo homotopy

For any B ∈ [0, 1] the corresponding ”blue“ line segment gets mapped to l(1 − B). In formulas,

the homotopy � : [0, 1] × [0, 1] → - between l★l−1 and YG0
is given by

� (C, B) =


l(2C), 0 ≤ C ≤ 1−B

2
,

l(1 − B), 1−B
2
≤ C ≤ 1+B

2
,

l(2 − 2C), 1+B
2
≤ C ≤ 1.

To prove the statement YG0
≃{0,1} l−1 ★l interchange the roles of l and l−1.

(iv) The last assertion follows from the homotopy indicated in Figure 13.

�
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2.2. The fundamental group

l

l

[

[

Z

Z

Figure 13. Associativity

Lemma 2.18 has the following implications:

(i) ⇒ [l] · [[] := [l★ [] is well defined;

(ii) ⇒ [YG0
] · [l] = [l] = [l] · [YG0

];

(iii) ⇒ [l] · [l−1] = [YG0
] = [l−1] · [l];

(iv) ⇒ ([l] · [[]) · [Z] = [l] · ([[] · [Z]).

Hence c1(-; G0) together with “ ·” is a group with neutral element 1 := [YG0
] and inverse element

[l]−1 = [l−1].
To any topological space with a preferred point we have associated a group, the fundamental group

of the space with that point. Now we consider continuous maps. Let 5 ∈ � (-,. ) and G0 ∈ - .

We put 5 (G0) =: H0 ∈ . . If l ≃{0,1} l′ and � is a homotopy between them relative to {0, 1}
then 5 ◦� is a homotopy between 5 ◦l and 5 ◦l′ relative to {0, 1}. Hence 5 ◦l ≃{0,1} 5 ◦l′.
Therefore we have a well-defined map 5# : c1(-; G0) → c1(. ; H0), 5#([l]) = [ 5 ◦ l].

Lemma 2.19. (i) The map 5# : c1(-; G0) → c1(. ; H0) is a group homomorphism.

(ii) It has the functorial properties

a) ( 5 ◦ 6)# = 5# ◦ 6#;

b) (id-)# = idc1 (-;G0 ) .

(iii) If 5 ≃{G0} 5
′ then 5# = 5 ′

#
.

Proof. (i) From the definitions we have 5 ◦ (l★ [) = ( 5 ◦ l) ★ ( 5 ◦ [) and hence

5#([l] · [[]) = 5# ([l★ []) = [ 5 ◦ (l★ [)] = [( 5 ◦ l) ★ ( 5 ◦ [)] = 5#([l]) · 5# ([[]).
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2. Homotopy Theory

(ii) Assertion b) being obvious we compute a):

( 5 ◦ 6)#([l]) = [( 5 ◦ 6) ◦ l] = [ 5 ◦ (6 ◦ l)] = 5# ([6 ◦ l]) = 5# (6#([l])) = ( 5# ◦ 6#) ([l]) .

(iii) By Lemma 2.6, 5 ≃{0,1} 5 ′ implies 5 ◦ l ≃{0,1} 5 ′ ◦ l. We conclude

5# ([l]) = [ 5 ◦ l] = [ 5 ′ ◦ l] = 5 ′# ([l])

which proves the statement. �

Corollary 2.20. If 5 : - → . is a homeomorphism with 5 (G0) = H0 then

5# : c1(-, G0) → c1(., H0)

is a group isomorphism.

Proof. We only use the functorial properties:

( 5 −1)# ◦ ( 5#) = ( 5 −1 ◦ 5 )# = (id-)# = idc1 (-;G0 )

and similarly one sees that ( 5#) ◦ ( 5 −1)# = idc1 (. ;H0 ) . Thus 5♯ is an isomorphism with ( 5#)−1 =

( 5 −1)#. �

Now we want to deal with the question to what extent c1(-; G0) depends on the choice of G0.

To study this question let G0, G1 ∈ - and assume

there exists a path W ∈ Ω(-; G0, G1). If such a

path does not exist c1(-; G0) and c1(-; G1) are not

related.

G0

G1

W

l

-

Figure 14. Dependence on base point

Look at the map ΦW : Ω(-; G1) → Ω(-; G0) where l ↦→ (W ★ l) ★ W−1. Applying

Lemma 2.18 twice we know that if l ≃{0,1} l′ then W ★ l ≃{0,1} W ★ l′ and hence

(W ★l) ★ W−1 ≃{0,1} (W ★ l′) ★ W−1. Thus the map

Φ̂W : c1(-; G1) → c1(-; G0),
[l] ↦→ [ΦW (l)] = [(W ★l) ★ W−1],

is well defined.
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2.2. The fundamental group

Proposition 2.21. Let - be a topological space, assume G0, G1 ∈ - and W, W′ ∈ Ω(-; G0, G1).
Then

1.) The map Φ̂W : c1(-; G1) → c1(-; G0) is a group isomorphism.

2.) If W ≃{0,1} W′ then Φ̂W = Φ̂W′ .

3.) For V ∈ Ω(-; G1, G2) we have Φ̂W★V = Φ̂W ◦ Φ̂V.

4.) For the constant path we have Φ̂YG0
= idc1 (-;G0 ) .

5.) For any [l] ∈ c1(-; G1) we have Φ̂W′ ([l]) = ^ · Φ̂W ([l]) · ^−1 where ^ = [W′ ★ W−1] ∈
c1(-; G0).

Proof. a) Assertions 2., 3., and 4. follow directly from Lemma 2.18 and the definitions.

b) The map Φ̂W is a group homomorphism because

Φ̂W
(
[l] · [[]

)
= Φ̂W ([l★ [])
=

[
(W ★ (l★ [)) ★ W−1

]
=

[ (
W ★ ((l★ (W−1 ★ W)) ★ [) ★ W−1

) ]
=

[ (
(W ★l) ★ W−1

)
★

(
(W ★ [) ★ W−1

) ]
= Φ̂W ([l]) · Φ̂W ([[]).

The map Φ̂W is bĳective, because

Φ̂W ◦ Φ̂W−1
3.
= Φ̂W★W−1

2.
= Φ̂YG0

4.
= idc1 (-;G0 ) .

and similarly Φ̂W−1 ◦ Φ̂W = idc1 (-;G1 ) . This proves 1.

c) We compute

^ · Φ̂W ([l]) · ^−1
=

[
W′ ★ W−1

]
·
[
W ★l ★ W−1

]
·
[
W ★ (W′)−1

]
=

[
W′ ★ W−1 ★ W ★l★ W−1 ★ W ★ (W′)−1

]
=

[
W′ ★l★ (W′)−1

]
= Φ̂W′ ([l]). �

Proposition 2.22. Let -,. be topological spaces and G0 ∈ - . Let 5 , 6 ∈ � (-,. ) and let

� : - × [0, 1] → . be a homotopy from 5 to 6. Define [ ∈ Ω(. ; 5 (G0), 6(G0)) by

[(B) := � (G0, B).
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2. Homotopy Theory

B

C

�
[

5 ◦ l

6 ◦ l.

Figure 15. Auxiliary homotopy

Then the following diagram commutes:

c1(-; G0)
6#

��

5#

((PP
PP

PP
PP

PP
PP

c1(. ; 6(G0))
Φ̂[

// c1(. ; 5 (G0))

Proof. Let [l] ∈ c1(-; G0) and define � : [0, 1] × [0, 1] → . by � (C, B) := � (l(C), B).

The deformation indicated in Figure 16 yields a homotopy re-

lative to {0, 1} from 5 ◦ l to [ ★ (6 ◦ l) ★ [−1. We conclude

that

5# [l] = [ 5 ◦ l] = [[ ★ (6 ◦ l) ★ [−1] = Φ̂[ (6#([l])) .

| |
1
3

2
3

Figure 16. The deformation
�

Now we can improve Corollary 2.20 and show that homotopy equivalent spaces have isomorphic

fundamental groups.

Theorem 2.23. Let 5 : - → . be a homotopy equivalence. Then

5# : c1(-; G0) → c1(. ; 5 (G0))

is an isomorphism for all G0 ∈ - .

26



2.3. The fundamental group of the circle

Proof. Let 6 : . → - be a homotopy inverse of 5 , i.e., 6 ◦ 5 ≃ id- and 5 ◦ 6 ≃ id. . We know

by Proposition 2.22 that for a suitable [ ∈ Ω(-; G0, 5 (6(G0)))

6# ◦ 5# = (6 ◦ 5 )# = Φ̂[ ◦ (id-)# = Φ̂[ ◦ idc1 (-;G0 ) = Φ̂[ .

Hence 6# ◦ 5# is an isomorphism. In particular, 5# is injective. Similarly, we can show that 5# ◦6#

is an isomorphism, hence 5# is surjective. Therefore 5# is an isomorphism. �

Corollary 2.24. If � ⊂ - is a deformation retract then the inclusion ] : � → - induces an

isomorphism ]# : c1(�, G0) → c1(-; G0) for any G0 ∈ �.

Proof. If � ⊂ - is a deformation retract then the map ] : � → - is a homotopy equivalence.

Theorem 2.23 yields the claim. �

Example 2.25. If - is contractible then the one-point set � = {G0} ⊂ - is a deformation retract.

Hence c1(-; G0) ≃ c1(�; G0) = {[YG0
]} = {1}. Thus contactible spaces have trivial fundamental

group.

2.3. The fundamental group of the circle

Recall the map Exp : R→ (1 ⊂ C where Exp(C) = 42c8C .

Lemma 2.26. Let C0 ∈ R and I0 = Exp(C0) ∈ (1. Then for all 5 ∈ � ((1, (1) with 5 (1) = I0
there exists a unique 5̂ ∈ � (R,R) with 5̂ (0) = C0 such that the following diagram commutes:

R

Exp
��

5̂ // R

Exp
��

(1

5
// (1

Proof. a) First we show uniqueness of the map 5̂ .

Assume that besides 5̂ there is a second map 5̃ ∈ � (R,R) with the same proper-

ties as 5̂ . The equality of Exp(G) = Exp(G′) is equivalent to G − G′ ∈ Z. Since

Exp( 5̂ (C)) = 5 (Exp(C)) = Exp( 5̃ (C)) we deduce that 5̂ (C) − 5̃ (C) ∈ Z for all C ∈ R. Since both

5̃ , 5̂ are continuous it follows that 5̂ − 5̃ is constant. Finally, we know that 5̂ (0) = C0 = 5̃ (0),
hence 5̃ = 5̂ .
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2. Homotopy Theory

b) Now we show existence of 5̂ .

Since (1 is compact, 5 is uniformly continuous. Since Exp is also uniformly continuous, the

composition 5 ◦ Exp : R → (1 is uniformly continuous. Hence there exists Y > 0 such that

5 (Exp(�)) ⊂ (1 is contained in a semi-circle for every interval � ⊂ R with length ≤ Y.

For any closed semi-circle � ⊂ (1 the pre-image Exp−1(�) ⊂ R is the disjoint union of compact

intervals of length 1
2
. More precisely,

Exp−1(�) =
⋃
:∈Z

[
C1 + :, C1 + : +

1

2

]
.

Moreover, the restriction of Exp to each of these intervals is a homeomorphism onto its image,

Exp
��
[C1+:,C1+:+ 1

2
] :

[
C1 + :, C1 + : +

1

2

]
≈−→ �.

Its inverse can written down explicitly in terms of logarithms but we will not need this.

Now we construct 5̂ step by step.

Since 5 (Exp([0, Y])) is contained in a closed semi-circle �0 we can define 5̂ on [0, Y] by

5̂ := (Exp |�0)−1 ◦ 5 ◦ Exp,

where �0 ⊂ R is the compact interval of length 1
2

with Exp(�0) = �0 and C0 ∈ �0. This insures

that

5̂ (0) = (Exp |�0)−1 ◦ 5 ◦ Exp(0) = (Exp |�0)−1 ◦ 5 (1) = (Exp |�0)−1(I0) = C0.

Put C1 := 5̂ (Y).
Next, 5 (Exp([Y, 2Y])) is contained in a closed semi-circle �1 and we define 5̂ on [Y, 2Y] by

5̂ := (Exp |�1)−1 ◦ 5 ◦ Exp

where �1 ⊂ R is the compact interval of length 1
2

with Exp(�1) = �1 and C1 ∈ �1. This insures

that the two definitions of 5̂ at Y agree so that we obtain a continuous function 5̂ : [0, 2Y] → R.

Repeating this procedure infinitely many times we can extend 5̂ continuously to [0,∞) → R.

The extension to the left is done similarly so that we obtain a continuous function 5̂ : R → R.

Commutativity of the diagram holds by construction. �

Definition 2.27. For a map 5 ∈ � ((1, (1) a map 5̂ ∈ � (R,R) for which the diagram in

Lemma 2.26 commutes is called a lift of 5 .
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2.3. The fundamental group of the circle

Example 2.28. Consider the map 5= : (1 → (1 with 5= = I
=, = ∈ Z. Then we have

5=
(
Exp(C)

)
= Exp(C)= = Exp(=C) .

Hence the map 5̂= given by 5̂= (C) = =C is a lift of 5=.

Definition 2.29. For 5 ∈ � ((1, (1) we call

deg( 5 ) := 5̂ (1) − 5̂ (0)

the degree of 5 , where 5̂ is a lift of the map 5 .

Remark 2.30

1.) We have seen that different lifts of 5 differ by an additive constant in Z. Hence the degree

deg( 5 ) is well defined, independently of the choice of lift 5̂ .

2.) The degree deg( 5 ) is an integer because

Exp
(
5̂ (1)

)
= 5

(
Exp(1)

)
= 5 (1) = 5

(
Exp(0)

)
= Exp

(
5̂ (0)

)

Hence we have deg( 5 ) = 5̂ (1) − 5̂ (0) ∈ Z.

3.) The map C ↦→ 5̂ (C + 1) − 5̂ (C) is continuous and takes values in Z, by the same argument as

above. We conclude that 5̂ (C + 1) − 5̂ (C) = deg( 5 ) for all C ∈ R.

4.) For : ∈ Z we compute

5̂ (C0 + :) − 5̂ (C0) = 5̂ (C0 + :) − 5̂ (C0 + (: − 1))
+ 5̂ (C0 + (: − 1)) − 5̂ (C0 + (: − 2))
+ · · · +
+ 5̂ (C0 + 1) − 5̂ (C0)

(3)
= : deg( 5 ) .

5.) For 5 , 6 ∈ � ((1, (1) and lifts 5̂ , 6̂ we compute

Exp
( (
5̂ + 6̂

)
(C)

)
= Exp

(
5̂ (C)

)
Exp (6̂(C)) = 5

(
Exp(C)

)
6
(
Exp(C)

)
.

Hence 5̂ + 6̂ is a lift of 5 6 and we get the following formula for the degree

deg( 5 6) = 5̂ (1) + 6̂(1) −
(
5̂ (0) + 6̂(0)

)
= deg( 5 ) + deg(6) .

6.) For 5 , 6 ∈ � ((1, (1) and lifts 5̂ , 6̂ we compute

Exp
(
5̂
(
6̂(C)

))
= 5

(
Exp

(
6̂(C)

))
= 5

(
6
(
Exp(C)

))
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and therefore 5̂ ◦ 6̂ is a lift of 5 ◦ 6. For the degree of 5 ◦ 6 this means

deg( 5 ◦ 6) = 5̂
(
6̂(1)

)
− 5̂

(
6̂(0)

)
= 5̂

(
6̂(0) + deg(6)

)
− 5̂

(
6̂(0)

) (4)
= deg(6) deg( 5 ) ,

hence deg( 5 ◦ 6) = deg(6) deg( 5 ).

7.) Let 5 ∈ � ((1, (1) with deg( 5 ) ≠ 0. We show that 5 must then be surjective.

Namely, let 5̂ be a lift of 5 . Then deg( 5 ) = 5̂ (1) − 5̂ (0) is an integer, not equal to 0. Then, if

5̂ (1) > 5̂ (0), the whole interval � := [ 5̂ (0), 5̂ (1)] must be contained in the image of 5̂ by the

intermediate value theorem. If 5̂ (1) < 5̂ (0) this holds for � := [ 5̂ (1), 5̂ (0)]. In either case � is

an interval of length at least 1, hence Exp(�) = (1. We conclude

(1
= Exp(�) ⊂ Exp(im( 5̂ )) = im( 5 ).

Thus 5 is onto.

Example 2.31. For the map 5= : (1 → (1 with 5= (I) = I= a lift is given by 5̂ (C) = =C so that its

degree is deg( 5=) = 5̂= (1) − 5̂= (0) = =.

Lemma 2.32. Let 5 , 6 ∈ � ((1, (1). If 5 ≃ 6, then we have deg( 5 ) = deg(6).

Proof. Let � : (1 × [0, 1] → (1 be a homotopy from 5 to 6. Since (1 × [0, 1] is compact the

map � is uniformly continuous. Hence, there exists a X > 0 such that

|� (I, B) − � (I, B′) | < 1

whenever I ∈ (1 and B, B′ ∈ [0, 1] with |B − B′ | < X. For such B, B′ the map

I ↦→ � (I, B)
� (I, B′) : (1 → (1

is continuous and not surjective because−1 is not contained in the image. Hence, by Remark 2.30,

deg
(
� ( ·,B)
� ( ·,B′ )

)
= 0. We now compute using 2.30.5.):

deg(� (·, B)) = deg

(
� (·, B)
� (·, B′) · � (·, B

′)
)
= deg

(
� (·, B)
� (·, B′)

)
+ deg � (·, B′) = deg � (·, B′) .

We see inductively that

deg( 5 ) = deg � (·, 0) = deg � (·, B1) = · · · = deg � (·, 1) = deg(6)

where 0 = B0 < B1 < · · · < BA = 1 is a partition of the unit interval [0, 1] satisfying

|B8+1 − B8 | < X. �

30



2.3. The fundamental group of the circle

Corollary 2.33. Let 5 ∈ � ((1, (1) be such that 5 = 6
��
(1 where 6 ∈ � (�2, (1) then

deg( 5 ) = 0.

Proof. The map � ∈ � ((1 × [0, 1], (1), � (I, B) := 6(BI), defines a homotopy from a constant

map to 5 . By Lemma 2.32 we conclude that deg( 5 ) = deg(const) = 0. �

Let us give several applications of the concept of the degree.

Theorem 2.34 (Fundamental theorem of algebra). Every non-constant complex polyno-

mial has a root.

Proof. Suppose we are given a non-constant polynomial

?(I) = 0=I= + 0=−1I
=−1 + · · · + 01I + 00, 0 9 ∈ C, 0= ≠ 0, = ≥ 1.

Since dividing by 0= does not change the roots, we assume without loss of generality that 0= = 1.

Now assume that ? has no roots. Then the map 5 : C→ (1 with 5 (I) = ? (I)
| ? (I) | is a well-defined

continuous map. To compute deg( 5
��
(1) consider

� (I, B) :=
B=?(I/B)
|B=?(I/B) | =

I= + B0=−1I
=−1 + · · · + B=00

|I= + B0=−1I=−1 + · · · + B=00 |
.

The map � ∈ � ((1 × [0, 1], (1) is a homotopy from 5= (I) = I= to 5
��
(1 . Computing its degree

we find deg( 5
��
(1) = deg( 5=) = = ≥ 1.

On the other hand, 5 is a continuous map defined on all of C, hence Corollary 2.33 implies

deg( 5
��
(1) = 0. This is a contradiction, thus ? must have a root. �

Lemma 2.35. Suppose the map 5 ∈ � ((1, (1) satisfies 5 (−I) = − 5 (I) for all I ∈ (1. Then

the degree deg( 5 ) is odd.

Proof. Lef 5̂ be a lift of the map 5 . We compute

5
(
− Exp(C)

)
= 5

(
Exp

(
1
2

)
Exp(C)

)
= 5

(
Exp

(
C + 1

2

))
= Exp

(
5̂
(
C + 1

2

))
.

Moreover,

− 5
(
Exp(C)

)
= −Exp

(
5̂ (C)

)
= Exp

(
1
2

)
Exp

(
5̂ (C)

)
= Exp

(
5̂ (C) + 1

2

)
.
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2. Homotopy Theory

From 5 (−Exp(C)) = − 5 (Exp(C)) we conclude Exp
(
5̂
(
C + 1

2

))
= Exp

(
5̂ (C) + 1

2

)
and hence

5̂
(
C + 1

2

)
−

(
5̂ (C) + 1

2

)
=: : (C)

is an integer for every C. Due to the continuity of the map, : (C) it is constant, : (C) = :. Hence

5̂ (C + 1
2
) − 5̂ (C) = : + 1

2
for all C ∈ R. Now we can compute

deg( 5 ) = 5̂ (1) − 5̂ (0) =
(
5̂ (1) − 5̂

(
1
2

))
+

(
5̂
(

1
2

)
− 5̂ (0)

)
= (: + 1

2
) + (: + 1

2
) = 2: + 1

which proves the assertion. �

Theorem 2.36 (Borsuk-Ulam). Let 5 ∈ � ((2,R2) satisfy 5 (−G) = − 5 (G) for all G ∈ (2.

Then 5 has a zero.

Proof. Assume that the map 5 has no zero. Then the map 6 : (2 → (1 with 6(G) :=
5 (G)
‖ 5 (G) ‖

is defined and continuous. Moreover, 6 satisfies 6(−G) = −6(G) for all G ∈ (2. Now define a

map � : �2 → (1 by � (H) = 6(H,
√

1 − ‖H‖2). The map � ∈ � (�2, (1) has the property that

�
��
(1 = 6 |(1 . By Corollary 2.33 we know that deg(6

��
(1) = 0. On the other hand we know by

Lemma 2.35 that deg(6
��
(1) is odd, which gives a contradiction. �

Corollary 2.37. Let 5 ∈ � ((2,R2). Then there exists a point G0 ∈ (2 with 5 (−G0) = 5 (G0).

Proof. Put 6(G) := 5 (G) − 5 (−G). Then the map 6 ∈ � ((2,R2) satisfies 6(−G) = −6(G)
for all G ∈ (2. Hence by the Borsuk-Ulam Theorem 2.36 there exists an G0 ∈ (2 with

0 = 6(G0) = 5 (G0) − 5 (−G0), which proves the theorem. �

Remark 2.38. In particular, the map 5 ∈ � ((2,R2) cannot be injective. Thus the sphere (2

cannot be homeomorphic to a subset of R2. This also shows that R3 cannot be homeomorphic to

R2.
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2.3. The fundamental group of the circle

Now suppose you have a sandwich consisting of bread,

ham, and cheese. You want to share it evenly with your

friend. Can you cut the sandwich into two pieces such

that each piece contains the same amount of bread, the

same amount of ham and the same amount of cheese?

The following theorem tells us that it is possible.

Figure 17. Cutting a sandwich1

Theorem 2.39 (Ham-Sandwich-Theorem). Let �, �, � ⊂ R3 be open and bounded. Then

there exists an affine hyperplane � ⊂ R3 such that each of the sets is divided into pieces of

equal volume.

Proof. The proof consists of four steps.

a) For each G ∈ (2 and C ∈ R we define the

affine hyperplane

�G,C := {H ∈ R3 | 〈H, G〉 = C} .

It is clear that �−G,−C = �G,C . We define the

half space �+G,C by

�+G,C := {H ∈ R3 | 〈H, G〉 ≥ C}.

•0

(2

G•

•CG

�G,C

�+G,C

Figure 18. The hyperplane function

b) Now fix G ∈ (2. Look at the func-

tion 0G : R→ R defined by

0G (C) := vol(� ∩ �+G,C ).

It satisfies 0−G (C) + 0G (−C) = vol(�)
and is monotonically decreasing.

Since � is bounded there exists

'� > 0 such that � ⊂ �(0, '�).

�

�(0, '�)

|C − C′ |

�G,C
�G,C ′

Figure 19. The volume function

1Based on public domain images from http://www.sxc.hu
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2. Homotopy Theory

For C < C′ ∈ R we have

|0G (C′) − 0G (C) | = vol(� ∩ (�+G,C \ �+G,C ′ )) ≤ c'2
� · |C − C′ | .

Thus 0G is Lipschitz continuous.

Moreover, 0G (C) = vol(�) for C ≪ 0

and 0G (C) = 0 for C ≫ 0.

UG
vol(�)

C−G C+G

Figure 20. Monotonicity of the volume function

c) By continuity and monotonicity the pre-image of any value under UG is a closed interval. In

particular, 0−1
G (vol(�)/2) = [C−G , C+G].

Now put U(G) :=
C−G +C+G

2
. Hence �G,U(G) divides � into two pieces of equal volume. Moreover,

U(−G) = −U(G) for all G ∈ (2 and it is not hard to check that U is continuous. Similarly, define

the functions V for � and W for �.

d) Consider the map 5 ∈ � ((2,R2) with 5 (G) = (U(G) − V(G), U(G) − W(G)). We have

5 (−G) = (U(−G) − V(−G), U(−G) − W(−G))
= (−U(G) + V(G),−U(G) + W(G))
= − 5 (G).

Thus the Borsuk-Ulam Theorem 2.36 applies and there exists a point G0 ∈ (2 with

(0, 0) = 5 (G0) = (U(G0) − V(G0), U(G0) − W(G0)).

Hence U(G0) = V(G0) = W(G0). Thus the hyperplance �G0,U(G0 ) does the job. �

Remark 2.40. The ham-sandwich theorem is optimal in the sense that it fails for more than three

sets in R3.

Example 2.41. A ball �(G, A) ⊂ R3 with center G is cut into two halves of equal volume exactly

by those planes that contain G. If you choose four balls in R3 in such a way that their centers are

not contained in one plane, then no plane will cut them all into halves of equal volume.

In the following we want to use the concept of degree to determine c1((1; 1).
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2.3. The fundamental group of the circle

a) For l ∈ Ω((1; 1) and � = [0, 1] consider the

following diagram:
(1

5l

!!
�

l //

��

Expoo (1

�/m�
Exp

≈
aa❈❈❈❈❈❈❈❈ l

==④④④④④④④④

Here l and Exp are the continuous maps induced on the quotient space. They exist because

l(0) = l(1) and Exp(0) = Exp(1), compare Section 1.5. By Example 1.30 we know that

Exp : �/m� → (1 is a homeomorphism. Now put

5l := l ◦ (Exp)−1 ∈ �
(
(1, (1

)
and define deg(l) := deg( 5l). We have obtained a map

deg : Ω((1; 1) → Z.

b) Now suppose l ≃{0,1} l′. We choose a homotopy � : � × � → (1 from l to l′ relativ to

{0, 1}. Then the map � : (1 × � → (1 defined by � (I, B) := � ((Exp)−1(I), B) is a homotopy

from 5l to 5l′ , hence 5l ≃ 5l′ . Therefore

deg(l) = deg( 5l) = deg( 5l′) = deg(l′) .

Hence we get a well-defined map

deg : c1((1; 1) → Z where [l] ↦→ deg(l).

c) This map is surjective because for = ∈ Z we can consider the map l(C) = Exp(=C). The

commutative diagram

(1 I ↦→I== 5= (I) // (1

�

C ↦→Exp(C )

ff◆◆◆◆◆◆◆◆◆◆◆◆◆
C ↦→l (C )=Exp (=C )=Exp (C )=
OO

shows 5l (I) = I= = 5= (I) and we get deg(l) = deg( 5=) = =.

d) Now let l, l′ ∈ Ω((1; 1) and consider the map

5l★l′ (Exp(C)) = l★l′ (C)

=

{
l(2C), 0 ≤ C ≤ 1/2
l′(2C − 1), 1/2 ≤ C ≤ 1

=

{
5l (Exp(2C)), 0 ≤ C ≤ 1/2
5l′ (Exp(2C − 1)), 1/2 ≤ C ≤ 1
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Let 5̂l , 5̂l′ be lifts of 5l , 5l′ with 5̂l′ (0) = 5̂l (1). Then we have

5l★l′ (Exp(C)) =

{
Exp( 5̂l (2C)), 0 ≤ C ≤ 1/2
Exp( 5̂l′ (2C − 1)), 1/2 ≤ C ≤ 1

= Exp

( {
5̂l (2C), 0 ≤ C ≤ 1/2
5̂l′ (2C − 1), 1/2 ≤ C ≤ 1︸                               ︷︷                               ︸

=:6(C )

)

Note that the map 6(C) is continuous because of 5̂l′ (0) = 5̂l (1). Thus 6(C) is a lift of 5l★l′ .

Now we compute the degree of l★l′.

deg(l★l′) = 6(1) − 6(0)
= 5̂l′ (1) − 5̂l (0)
= 5̂l′ (1) − 5̂l′ (0) + 5̂l (1) − 5̂l (0)
= deg(l′) + deg(l)

Hence the map deg : c1((1; 1) → (Z,+) is a group homomorphism.

e) Finally we compute its kernel. Let l ∈ Ω((1; 1) with deg(l) = 0. Let 5̂l be the lift of 5l
with 5̂l (0) = 0. Since 0 = deg(l) = 5̂l (1) − 5̂l (0) we have 5̂l (1) = 5̂l (0) = 0. Next consider

the continuous map � : � × � → (1 with � (C, B) := Exp(B 5̂l (C)). It satisfies:

� (C, 0) = 1 = Y1(C) ,
� (C, 1) = 5l (Exp(C)) = l(C) ,
� (0, B) = Exp(B · 0) = 1 ,

� (1, B) = Exp(B · 5̂l (1)) = Exp(B 0) = 1 .

We conclude that l ≃{0,1} Y1, hence [l] = [Y1] = 1 ∈ c1((1; 1). Therefore the kernel is trivial

and the map deg : c1((1; 1) → Z is injective.

We summarize the discussion in the following

Theorem 2.42. The map deg : c1((1; 1) → Z is a group isomorphism.

Example 2.43. We already know that (1 is a strong deformation retract of C \ {0}. Hence the

inclusion ] : (1 → C \ {0} induces an isomorphism

]# : c1((1; 1) → c1(C \ {0}; 1)

and therefore c1(C \ {0}; 1) � Z.
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2.3. The fundamental group of the circle

Example 2.44

We show that (1 = m�2 is not a retract of �2. Suppose the

map A : �2 → (1 is a retraction and denote the inclusion by

] : (1 → �2.

(1 = m�2

�2

Figure 21. The disk and its

boundary

Then we would have A ◦ ] = id(1 , hence A# ◦ ]# = (A ◦ ])# = (id(1)# = idc1 ((1 ;1) . We then get a

contradiction because of the following diagram

Z � c1((1; 1) ]# //

id
c1 ((1;1)

::c1(�2; 1) � {1} A# // c1((1; 1) � Z

As a corollary we get a proof of Brouwer’s fixed point theorem in dimension two. See page 93

for the theorem in general dimensions.

Theorem 2.45 (Brouwer’s fixed point theorem in 2 dimensions). Let 5 : �2 → �2 be a

continuous map. Then 5 has a fixed point, i.e., there exists an G ∈ �2 such that 5 (G) = G.

Proof. Assume that 5 ∈ � (�2, �2) has no fixed point. Then 5 (G) ≠ G for all G ∈ �2 so that we

can consider the half line emanating from 5 (G) through G. We let A (G) be its intersection point

with m�2 = (1 as indicated in the picture.

A (G)•
5 (G)

G

Figure 22. Constructing a retraction

This yields a retraction A : �2 → (1 and we get a contradiction. �

Example 2.46. We show that the system of equations

1 + 1
2

sin(G)H − 2G = 0,

1
2

cos(G)H + G2

2
− 2H = 0, (2.1)
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has a solution. We rewrite this as a fixed point equation and apply the Brouwer fixed point

theorem. To do this we put

5 (G, H) :=

(
1

2
+ sin(G)H

4
,
cos(G)H

4
+ G

2

4

)

Fixed points of 5 (G, H) are then the same as solutions to the above system of equations (2.1). To

apply Brouwer’s fixed point theorem we have to show that 5 (�2) ⊂ �2. Let G, H ∈ �2. Then

‖ 5 (G, H)‖2 =

(
1

2
+ sin(G)H

4

)2

+
(
cos(G)H

4
+ G

2

4

)2

=
1

4
+ sin(G)H

4
+ sin(G)2H2

16
+ cos(G)2H2

16
+ cos(G)HG2

8
+ G

4

16

=
1

4
+ sin(G)H

4
+ H

2

16
+ cos(G)HG2

8
+ G

4

16

≤ 1

4
+ |H |

4
+ H

2

16
+ |H |G

2

8
+ G

4

16

≤ 1

4
+ 1

4
+ 1

16
+ 1

8
+ 1

16

=
3

4
≤ 1.

Example 2.47. Consider 5= ∈ � ((1, (1) with 5= (I) = I=. We check that the diagram

c1((1; 1) deg

�

//

( 5= )#
��

Z

=·
��

c1((1; 1) deg

�

// Z

commutes. Let [l] ∈ c1((1; 1). We compute

deg
(
( 5=)#([l])

)
= deg

(
[ 5= ◦ l]

)
= deg( 5= ◦ l)

= deg( 5= ◦ 5l) = deg( 5=) deg( 5l) = = deg
(
[l]

)
.

Remark 2.48. From Exercise 2.5 we know that for -1, -2 and G1 ∈ -1, G2 ∈ -2 we have

c1(-1 × -2; (G1, G2)) � c1(-1; G1) × c1(-2; G2) .

For the two-dimensional torus )2 = (1 × (1 we get c1()2; G) � Z × Z = Z2. More generally, we

get inductively for the =-torus )= = (1 × · · · × (1︸          ︷︷          ︸
=

that c1()=; G) � Z=. In particular, )= ; )<

for = ≠ <.
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Definition 2.49. Let - be a topological space.

1.) We call - connected iff - and ∅ are the only subsets of - which are both open and closed.

2.) We call - path-connected iff for all G1, G2 ∈ - there exists a path l ∈ Ω(-; G1, G2).

3.) Let - be path-connected. Then - is called simply-connected (or 1-connected) iff

c1(-; G0) = {1} for some (and hence all) G0 ∈ - .

Example 2.50. The interval [0, 1] is connected. To see this let � ⊂ [0, 1] be open and closed

and assume that � is neither empty nor all of [0, 1]. Then there exists C0 ∈ � and C1 ∈ [0, 1] \ �.
W.l.o.g. let C0 < C1, the other case being analogous. We put ) := sup(� ∩ [0, C1)). Then

0 ≤ C0 ≤ ) ≤ C1 ≤ 1. Since � is closed ) ∈ �.
If ) = 1 then ) = C1 which contradicts C1 ∉ �. If ) < 1 then there exists Y > 0 such that

[),) + Y) ⊂ � because � is open. This contradicts the maximality of ) .

Remark 2.51. If - is 1-connected then it is path-connected by definition but the converse is not

true. For example, (1 is path-connected but not 1-connected.

Remark 2.52. If - is path-connected then - is connected.

Proof. Let - be path-connected and let * ⊂ - be open and closed, * ≠ ∅. We show * = - .

Since * is non-empty we can find G1 ∈ *. Let G2 ∈ - be any point.

Since - is path-connected there is a path l ∈ Ω(-; G1, G2). Then � := l−1(*) is an open and

closed subset of [0, 1]. Since l(0) = G1 ∈ * we have 0 ∈ � and hence � is non-empty. Thus

� = [0, 1] because [0, 1] is connected. We conclude 1 ∈ � and hence G2 = l(1) ∈ *. This shows

that * contains all points of - . �

Again, the converse implication does not hold in general. Consider for example the space

- := {(C, sin(1/C)) | C > 0} ∪ {(0, B) | −1 ≤ B ≤ 1},

see Figure 23. Then - is connected but not path-connected.

Remark 2.53. Let - be path-connected. Then the following are equivalent (see Exercise 2.2):

(i) - is simply connected;

(ii) Every l ∈ � ((1, -) is homotopic to a constant map;

(iii) Every l ∈ � ((1, -) has a continuous extension to a map �2 → - .
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2. Homotopy Theory

Figure 23. Connected but not path-connected

2.4. The Seifert-van Kampen theorem

The Seifert-van Kampen theorem will allow us to compute the fundamental group of spaces

which are built out of simpler spaces whose fundamental groups we already know. We start with

an excursion to group theory.

Definition 2.54. Let � be a group. A subgroup � ⊂ � is called normal iff

6 · � = � · 6 for all 6 ∈ � .

The condition on a subgroup of being normal can be reformulated in various ways. It is equivalent

to any of the following:

(i) 6 · � · 6−1 = � for all 6 ∈ �;

(ii) 6 · � · 6−1 ⊂ � for all 6 ∈ �;

(iii) 6 · ℎ · 6−1 ∈ � for all 6 ∈ � and ℎ ∈ �.

Example 2.55. Consider the cartesian product of two groups � = �1 × �2 = {(61, 62) | 6 9 ∈
� 9} with componentwise multiplication. Then {(61, 1) | 61 ∈ �1} � �1 is a normal subgroup

of � because

(61, 62) · (6̃1, 1) · (61, 62)−1
=

(
616̃16

−1
1 , 6216−1

2

)
=

(
616̃16

−1
1 , 1

)
.

Example 2.56. Let i : � →  be a group homomorphism. Then � = ker(i) is a normal

subgroup because for ℎ ∈ ker(i) and 6 ∈ � we have

i(6 · ℎ · 6−1) = i(6) · i(ℎ)︸︷︷︸
1

·i(6)−1
= 1 ,

hence 6 · ℎ · 6−1 ∈ ker(i).
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2.4. The Seifert-van Kampen theorem

Remark 2.57. If � ⊂ � is a normal subgroup then �/� is again a group via

(6 · �) · (6̃ · �) = (66̃) · �.

Normality of � ensures that this multiplication is well defined. The group � is then the kernel of

� → �/� with 6 ↦→ 6 · �. Thus the normal subgroups are exactly those which arise as kernels

of group homomorphisms.

Now let ( ⊂ � be any subset. Then

N(() :=
⋂

�⊂� normal subgroup,
�⊃(

�

is the smallest normal subgroup containing (. We call N(() the normal subgroup generated by

(.

Example 2.58. N(∅) = {1}.

Definition 2.59

Let �1 and �2 be groups. A group � is called free product of

�1 and �2 iff there exist homomorphisms 8 9 : � 9 → � such

that for all groups � and for all homomorphisms i 9 : � 9 → �

there exists a unique homomorphism

i1 ★ i2 : � → �

such that the diagram to the right commutes.

�1

i1

  ❆
❆❆

❆❆
❆❆

❆
81

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

�
i1★i2 // �

�2

82

``❆❆❆❆❆❆❆❆ i2

>>⑥⑥⑥⑥⑥⑥⑥⑥

Remark 2.60. Here we have characterized free products by

their universal property. This universal property implies for

example that the maps 8 9 : � 9 → � are injective.

Namely, choose � = �1, i1 = id�1
and i2(62) = 1 for all

62 ∈ �2. The diagram now tells us that the map 81 must be

injective because the identity is injective. Similarly, we see that

82 is injective.

�1

id

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

81

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

�
id★i2 // �1

�2

82

``❅❅❅❅❅❅❅❅ i2

==⑤⑤⑤⑤⑤⑤⑤⑤

Remark 2.61. The free product of �1 and �2 is unique up to isomorphism.
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Namely, let �′ be another free product of �1 and �2 with

8′9 : � 9 → �′ the corresponding homomorphisms. By the

universal property of � with � = �′ and i 9 = 8
′
9 we get the

following commutative diagram:

�1
8′
1

!!❇
❇❇

❇❇
❇❇

81

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

�
8′
1
★8′

2 // �′

�2

82

``❆❆❆❆❆❆❆❆ 8′
2

==⑤⑤⑤⑤⑤⑤⑤⑤

Interchanging the roles of� and�′ we get another commutative

diagram:

�1

81

  ❆
❆❆

❆❆
❆❆

❆
8′
1

}}⑤⑤
⑤⑤
⑤⑤
⑤

�′
81★82 // �

�2

8′
2

aa❇❇❇❇❇❇❇❇ 82

>>⑥⑥⑥⑥⑥⑥⑥⑥

Combining both diagrams we obtain

�1

81

  ❆
❆❆

❆❆
❆❆

❆
81

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

8′
1

��
�

8′
1
★8′

2 // �′
81★82 // �

�2

82

``❆❆❆❆❆❆❆❆ 82

>>⑥⑥⑥⑥⑥⑥⑥⑥
8′
2

OO

On the other hand, this diagram commute as well.

�1

81

  ❆
❆❆

❆❆
❆❆

❆
81

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

�
id // �

�1

82

``❆❆❆❆❆❆❆❆ 82

>>⑥⑥⑥⑥⑥⑥⑥⑥

By the uniqueness of the induced homomorphisms we have

(81 ★ 82) ◦
(
8′1 ★ 8

′
2

)
= id�

and similarly (
8′1 ★ 8

′
2

)
◦ (81 ★ 82) = id�′ .

Hence the map 81 ★ 82 : � → �′ is a group isomorphism with inverse 8′
1
★ 8′

2
.

Next we show the existence of the free product of two groups by a direct construction. For this

purpose let �1 and �2 be groups. For formal reasons we assume without loss of generality that
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2.4. The Seifert-van Kampen theorem

�1 ∩ �2 = ∅.2 We define

�1 ★�2 :=
{
(G1, . . . G=) | = ∈ N0, G 9 ∈

(
�1 \ {1�1

)} ∪ (�2 \ {1�2
}
)

such that

if G8 ∈ �1 then G8+1 ∈ �2 or conversely
}
.

The group multiplication in �1 ★�2 is then inductively defined as

(G1, . . . , G=) · (G=+1, . . . , G=+<)

:=




(G1, . . . , G=−1, G= · G=+1, G=+2, . . . , G=+<) if (G=, G=+1 ∈ �1 or G=, G=+1 ∈ �2)
and G= · G=+1 ≠ 1,

(G1, . . . , G=−1) · (G=+2, . . . , G=+<) if (G=, G=+1 ∈ �1 or G=, G=+1 ∈ �2)
and G= · G=+1 = 1,

(G1, . . . , G=, G=+1, . . . , G=+<) otherwise.

This turns�1★�2 into a group with neutral element the empty sequence (). The inverse element

for (G1, . . . G=) is given by (G−1
= , . . . , G

−1
1
) because of

(G1, . . . , G=) ·
(
G−1
= , . . . , G

−1
1

)
= (G1, . . . , G=−1) ·

(
G−1
=−1, . . . , G

−1
1

)
= · · · = (G1) (G−1

1 ) = ().

Now consider the map 8 9 : � 9 → �1 ★�2 given by

8 9 (G) =
{
(G), G ≠ 1

(), G = 1

For i 9 : � 9 → � homomorphisms we put

(i1 ★ i2) (G1, . . . , G=) := i81 (G1) · i82 (G2) · . . . · i8= (G=)

where 8 9 is chosen such that G 9 ∈ �8 9 .

Remark 2.62

1.) The subset 8 9 (� 9) ⊂ �1 ★ �2 is a subgroup isomorphic to � 9 . The intersection 81(�1) ∩
82 (�2) = {1} is trivial. The union 81(�1) ∪ 82 (�2) generates 81 (�1) ★ 82 (�2) as a group.

2.) If �1 = {1} then �1 ★�2 = 82(�2) � �2. Similarly, if �2 = {1} then �1 ★�2 � �1.

3.) If �1 ≠ {1} and �2 ≠ {1} then we may choose G ∈ �1 \ {1} and H ∈ �2 \ {1}. Then

(G), (G, H), (G, H, G), (G, H, G, H), . . .

yields infinitely many pairwise different elements in �1 ★ �2, hence |�1 ★ �2 | = ∞ (even if

|� 9 | < ∞). In addition, we have

(G) · (H) = (G, H) ≠ (H, G) = (H) · (G) ,

hence the group �1 ★�2 is not abelian, even if �1 and �2 are.

2Otherwise replace �2 by an isomorphic group which is disjoint to �1.
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2. Homotopy Theory

Remark 2.63. Usually one identifies �1 with 81 (�1) and �2 with 82(�2) and writes

G1 · G2 · . . . · G= instead of (G1, G2, . . . , G=).

Example 2.64. Consider �1 = Z/2Z = {1, −1} and �2 = Z/2Z = {1′,−1′}. Elements of

Z/2Z★ Z/2Z are for example

0 = (−1) · (−1′) · (−1) · (−1′)
1 = (−1′) · (−1) · (−1′) · (−1) · (−1′) .

Now we calculate

0 · 1 = (−1) · (−1′) · (−1) ·(−1′) · (−1′)︸           ︷︷           ︸
1′

·(−1) · (−1′) · (−1) · (−1′)

= (−1) · (−1′) ·(−1) · (−1)︸         ︷︷         ︸
1

·(−1′) · (−1) · (−1′)

= (−1) ·(−1′) · (−1′)︸           ︷︷           ︸
1′

·(−1) · (−1′)

= (−1) · (−1)︸        ︷︷        ︸
1

·(−1′)

= (−1′) .

Now we are ready to return to topology.

Proposition 2.65. Let - be a topological space and let*,+ ⊂ - be open such that*∪+ = - .

Let G0 ∈ * ∩ + . Furthermore, assume that *,+ and * ∩ + are path-connected. Then - is

path-connected and the map

8# ★ 9# : c1(*; G0) ★ c1(+ ; G0) → c1(-; G0)

is onto where 8 : * → - and 9 : + → - are the corresponding inclusion maps.

Proof. First of all we note that the space - is path-connected because each point in - lies in *

or in + and can therefore be connected to G0 by a path.

The statement of the proposition is equivalent to saying that

8#
(
c1(*; G0)

)
∪ 9#

(
c1(+ ; G0)

)
generates c1 (-; G0) as a group. Now let [l] ∈ c1(-; G0) and subdivide the unit interval � = [0, 1]
by 0 = C0 ≤ C1 · · · < C= = 1 such that l([C8, C8+1]) ⊂ * or ⊂ + .
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2.4. The Seifert-van Kampen theorem

-

*

+

* ∩+ * ∩+[1 [2
[3

l0

l1

l2

l(C1) l(C2) l(C3)

G0

Figure 24. Subdividing l

By removing subdivision points if necessary we can assume that if l([C8−1, C8]) ⊂ * then

l([C8, C8+1]) ⊂ + or conversely. Reparametrize l8 (C) = l((1 − C)C8 + CC8+1). Then l8 ∈
Ω(* or + ;l(C8), l(C8+1)) and in particular l(C8) ∈ * ∩ + . Since by assumption * ∩ + is

path-connected there exist [ 9 ∈ Ω(* ∩+ ; G0, l(C 9)). Then

l0 ★ [
−1
1 , [1 ★l1 ★ [

−1
2 , [2 ★l2 ★ [

−1
3 , . . . , [=−1 ★l=−1

are loops with base point G0 contained entirely in * or + . We then calculate

(
l0 ★ [

−1
1

)
★

(
[1 ★l1 ★ [

−1
2

)
★

(
[2 ★l2 ★ [

−1
3

)
★ · · ·★ ([=−1 ★l=−1)
≃{0,1} l0 ★l1 ★ · · ·★l=−1 ≃{0,1} l

in - . Denoting the homotopy class of a loop l in - ,*, + , or * ∩+ by [l]- , [l]* , [l]+ , and

[l]*∩+ respectively, we have

[l]- =
[
l0 ★ [

−1
1

]
-
·
[
[1 ★l1 ★ [

−1
2

]
-
· . . . ·

[
[=−1 ★l=−1

]
-

and it follows that

[l]- = 8#

( [
l0 ★ [

−1
1

]
*

)
· 9#

( [
[1 ★l1 ★ [

−1
2

]
+

)
· 8#

( [
[2 ★l2 ★ [

−1
3

]
*

)
. . .

= (8# ★ 9#)
( [
l0 ★ [

−1
1

]
*
·
[
[1 ★l1 ★ [

−1
2

]
+
·
[
[2 ★l2 ★ [

−1
3

]
*
. . .︸                                                                    ︷︷                                                                    ︸

∈c1 (*;G0 )★c1 (+ ;G0 )

)

which proves the assertion. �
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Corollary 2.66. Let - is a topological space and let *,+ ⊂ - be open such that * ∪+ = -

and* ∩+ ≠ ∅. If * and + are 1-connected and * ∩+ is path-connected, then the space - is

1-connected.

Proof. Since

{1} = {1} ★ {1} = c1(*; G0) ★ c1(+ ; G0) → c1(-; G0)
is onto we get that c1(-; G0) = {1}. �

Example 2.67. Consider - = (= and put * = (= \ {41}. The stereographic projection yields

a homeomorphism * → R=. Hence * is 1-connected. Similarly, + = (= \ {−41} is also

1-connected. Now

* ∩+ = (= \ {41,−41} ≈ R= \ {0}.
For = ≥ 2 the space * ∩+ is path-connected. Corollary 2.66 shows that (= is simply connected

for = ≥ 2.

Recall that we know already that this is not true for = = 1 because c1((1; 1) � Z.

To determine c1(-; G0) more precisely we compute the kernel of the homomorphism

8# ★ 9# : c1(*; G0) ★ c1(+ ; G0) → c1(-; G0).

Consider the inclusion maps 8′ : * ∩+ → * and 9 ′ : * ∩+ → + .

Clearly the diagram on the right commutes. This implies

9# ◦ 9 ′# = 8# ◦ 8′#.

*
8 // -

* ∩+
8′

OO

9′
// +

9

OO

For U ∈ c1(* ∩+ ; G0) we calculate

1 = 8#
(
8′#(U)

)
·
(
9#

(
9 ′#(U)

))−1

= 8#
(
8′# (U)

)
· 9#

(
9 ′# (U)−1

)
= (8# ★ 9#)

(
8′# (U) · 9 ′#(U)−1

)
︸               ︷︷               ︸
∈c1 (*;G0 )★c1 (+ ;G0 )

.

Hence 8′
#
(U) · 9 ′

#
(U)−1 ∈ ker(8# ★ 9#) and it follows that

N
({
8′# (U) · 9 ′# (U)−1 | U ∈ c1(* ∩+ ; G0)

})
⊂ ker(8# ★ 9#) .

Theorem 2.68 (Seifert-van Kampen). Let - be a topological space and let*,+ ⊂ - be open

subsets such that * ∪ + = - and G0 ∈ * ∩ + . Let *,+ and * ∩ + be path connected. Then

the map 8# ★ 9# induces an isomorphism

c1(*; G0) ★ c1(+ ; G0)
N

({
8′
#
(U) · 9 ′

#
(U)−1 | U ∈ c1(* ∩+ ; G0)

}) � c1(-; G0).
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2.4. The Seifert-van Kampen theorem

Proof. It remains to show that

ker(8# ★ 9#) ⊂ N
({
8′# (U) · 9 ′#(U)−1 | U ∈ c1(* ∩+ ; G0)

})
.

Let l1, l3, · · · ∈ Ω(*; G0) and l2, l4, · · · ∈ Ω(+ ; G0) be such that

1 = 8# ★ 9#
(
[l1]* · [l2]+ · [l3]* · . . .

)
= 8#([l1]*) · 9# ([l2]+ ) · 8#([l3]*) · . . .
= [l1]- · [l2]- · [l3]- · . . .
= [l1 ★l2 ★l3 ★ . . . ]-

Then there exists a homotopy � : [0, 1] ×
[0, 1] → - such that

� (C, 0) = (l1 ★l2 ★l3 ★ . . . ) (C),
� (C, 1) = G0,

� (0, B) = � (1, B) = G0.

In Figure 25 the red area gets mapped to G0.

B

C
| |
0 1

−

−

0

1

| | |
l1 l2 l#

Figure 25. The homotopy to start with

Now subdivide [0, 1] × [0, 1] further such that

� maps each closed subsquare entirely to * or

to + .

| | |
l1 l2 l#

b

E

Figure 26. Subdividing the homotopy
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Considering the edges of the subsquares we

get homotopies

D

A;

3

>

>

∧ ∧

Figure 27. Deforming the homotopy in each

square

and hence the relation

3 ★ A ≃{0,1} ; ★ D (2.2)

resulting in

(� ◦ 3) ★ (� ◦ A) ≃{0,1} (� ◦ ;) ★ (� ◦ D) in * or in + .

For each vertex E in this subdivision of [0, 1] × [0, 1] choose [E ∈ Ω(-; G0, � (E)) in such a way

that [E ∈ Ω(, ; G0, � (E)) if � (E) ∈ , where , = *,+ or * ∩ + . This is possible because

G0 ∈ , and , is path-connected by assumption. If � (E) = G0 choose [E = YG0
. For each edge

with endpoints E0 and E1 we obtain a loop in* or in + by

[E0
★ (� ◦ 2) ★ [−1

E1
∈ Ω(* or + ; G0) .

Now look at one row of the subdivision, see Figure 28. We find that

�8 := [38 (0) ★ (� ◦ 38) ★ [−1
38 (1) ∈ Ω(* or + ; G0).

Similarly we define !8, '8, *8 ∈ Ω(* or + ; G0) and we conclude that by (2.2)

[�8],8 · ['8],8 = [!8],8 · [*8],8 ∈ c1(,8; G0) (2.3)

where,8 = *or + . We now compute in c1(*; G0)★c1(+ ; G0) modulo N({8′
#
(U) · 9 ′

#
(U)−1 | U ∈

c1(* ∩+ ; G0)}):

[�1],1
· [�2],2

· . . . · [�# ],# = [�1],1
· [�2],2

· . . . · [�# ],# · ['# ],#

= [�1],1
· . . . · [�#−1],#−1

· [!# ],# · [*# ],#

= [�1],1
· . . . · [�#−1],#−1

· ['#−1],# · [*# ],# .

If now,#−1 = ,# then we can apply (2.3) once more and get

[�1],1
· [�2],2

·. . .· [�# ],# = [�1],1
·. . .· [�#−2],#−2

· [!#−1],#−1
· [*#−1],#−1

· [*# ],#

(2.4)
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> >

> >

>

>
∧ ∧ ∧ ∧ ∧

31 32 3#

D1 D2 D#

YG0
= ;1 A# = YG0

Figure 28. Deforming along one row

In case ,#−1 ≠ ,# , say ,#−1 = * and ,# = + , then !# = '#−1 ∈ Ω(* ∩+ ; G0). Hence

['#−1]+ = 9 ′#(['#−1]*∩+ )
mod N(... )

= 8′# (['#−1]*∩+ ) = ['#−1]* .

In

� :=
c1(*; G0) ★ c1(+ ; G0)

N ({8′
#
(U) · 9 ′

#
(U)−1 | U ∈ c1(* ∩+ ; G0)})

the computation (2.4) is still possible. By induction on all squares in the row from right to the

left we find that

[�1],1
· . . . · [�# ],# =

=1︷  ︸︸  ︷
[!1],1

·[�1],1
· . . . · [�# ],# = [*1],1

· . . . · [*# ],# .

A second induction on all rows from bottom to top yields in �

[l1]* · [l2]+ · [l3]* · . . .
mod N(... )

= [YG0
],1
· [YG0

],2
· [YG0

],3
· . . . = 1 .

We have shown that in c1(*; G0) ★ c1(+ ; G0)

[l1]* · [l2]+ · [l3]* · . . . ∈ N ({8′# (U) · 9 ′# (U)−1 | U ∈ c1(* ∩+ ; G0)})

and hence

ker(8# ★ 9#) ⊂ N
({
8′#(U) · 9 ′#(U)−1 | U ∈ c1(* ∩+ ; G0)

})
. �

49



2. Homotopy Theory

Corollary 2.69. Let - be a topological space. Let *,+ ⊂ - be open subsets such that

* ∪ + = - and let G0 ∈ * ∩ + . Assume that * and + are path connected and that * ∩ + is

1-connected. Then

c1(-; G0) � c1(*; G0) ★ c1(+ ; G0)

where the isomorphism is induced by the inclusion maps.

Proof. By assumption c1(* ∩+, G0) = {1} and hence

N({8′# (U) · 9 ′#(U)−1 | U ∈ c1(* ∩+ ; G0)}) = {1} .

The assertion then follows from Theorem 2.68. �

Example 2.70. Consider the figure 8 space and the two subsets * and + as indicated in the

picture:
-

b

G0

+
b

G0

*

Figure 29. Covering the figure 8

It is easy to see that * ≃ (1 and also + ≃ (1. Moreover, the intersection

* ∩+ ≃ point

is 1-connected. Hence we have

c1(-; G0) � c1((1; G0) ★ c1((1; G0) � Z★ Z .

Example 2.71. Let - be a connected =-dimensional manifold with = ≥ 3.

"
b?

+

Figure 30. Punctured manifold

Let ? ∈ - and * := - \ {?}. Now let + be an open neighborhood of ? homeomorphic to R=,

which is contractible and hence 1-connected. Then the space

* ∩+ ≈ R= \ {0} ≃ (=−1
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is 1-connected. By Corollary 2.69 we then deduce

c1(-; G0) � c1(*; G0) ★ c1(+ ; G0) = c1(- \ {?}; G0) .

Removing a point from a manifold of dimension at least 3 does not change its fundamental group.

Example 2.72. Let " and # be two connected manifold of dimension = ≥ 3. Let - = "## .

" #

Figure 31. Start with two manifolds...

Now choose * and + as in Figure 32. Then we have that * ≈ " \ {?} and + ≈ # \ {@}.

* ∩+

︸                                ︷︷                                ︸
= * ︸                                ︷︷                                ︸

= +

Figure 32. ... and consider their connected sum.

Since

* ∩+ ≈ (=−1 × (0, 1) ≃ (=−1

is 1-connected we find by Corollary 2.69 once again that

c1("##) � c1(*) ★ c1(+) � c1(") ★ c1(#) .

For example, if " = # = )3 then c1()3#)3) = (Z3) ★ (Z3).

Remark 2.73. We now see easily that the torus )= with = ≥ 3 cannot be homotopy equivalent

to the connected sum )= ≃ "## of two non-1-connected manifolds " and # .3 If it were

possible then c1()=) � c1(") ★ c1(#) would not be abelian but we know that c1()=) � Z=, a

contradiction.

2.5. The fundamental group of surfaces

Our aim is to prove that orientable compact connected surfaces of different genus (as depicted

by the pastries in Example 1.5) are not homotopy equivalent and therefore not homeomorphic.

3If one allows simply connected summands then it is of course possible, )= ≈ )=#(= .
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2. Homotopy Theory

Definition 2.74. We call �6 := )2# · · · #)2︸       ︷︷       ︸
6−times

a surface of genus 6 ≥ 1.

�6 = · · ·

︸                                                                 ︷︷                                                                 ︸
6−times

Figure 33. Surface of genus 6

Remark 2.75. We also put �0 := (2.

We now want to compute c1(�6) and show that the fundamental groups for surfaces of different

genus are not isomorphic. This then shows in particular that they are not homotopy equivalent.

Proposition 2.76. For any 6 ≥ 1

�6 = )
2# · · · #)2︸       ︷︷       ︸
6−times

≈ �2/∼

where G ∼ H iff G = H or G, H ∈ m�2 and are identified according to the following scheme:

· · · ≈

0−1
2

12

02

1−1
1

0−1
1

11
011−1

6
0−1
6

�2

Figure 34. Building a surface from the disk

This identification is to be understood as follows: Each line segment labelled by 08 (or 1 9
respectively) is identified with with 0−1

8 (or 1−1
9 ) with respect to the direction indicated by the

arrow. Note that there are 26 labels 08 , 18 , 8 = 1, .., 6.
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2.5. The fundamental group of surfaces

Proof. We do an induction on 6.

Induction basis for 6 = 1: We see that the labelled disk �2/∼ is homeomorphic to the labelled

,2/∼ which is homeomorphic to the two-dimensional torus, i.e. to �1.

01
1−1

1

0−1
1

11

≈ 1−1
1

11

01

0−1
1

≈ 1−1
1

11

01

≈

Figure 35. Starting the induction with the torus

Inductive step, 6 − 1⇒ 6: We perform a cut along the line 2.

0−1
2

12

02

1−1
1

0−1
1

11

011−1
6

0−1
6

≈
1−1

1

0−1
1

11

01

2

0−1
2

12

02

1−1
6

0−1
6

2

Figure 36. Induction step by cutting off a segment

The endpoints of 2 in the two pieces are identified. This yields a homeomorphism where the

interior of the now closed loop 2 is cut out of the two remaining disks.
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1−1
1

0−1
1

11

01

2

0−1
2

12

02

1−1
6

0−1
6

2

≈ 1−1
2

0−1
2

12
021−1

6
0−1
6

2

01
1−1

1

0−1
1

11

2

Figure 37. Closing the loop 2

By induction hypothesis the left-hand disc is homeomorphic to a surface of genus 6 − 1 with

a disc removed that is bounded by 2. The right-hand disc becomes a torus, also with a disc

removed that is bounded by 2.

Gluing these two spaces together along 2, we obtain a space which is homeomorphic to a surface

of genus 6:

22

︸                          ︷︷                          ︸
(6−1)−times

≈

︸                                          ︷︷                                          ︸
6−times

Figure 38. Completing the induction step

�

Remark 2.77. We note that �0 ≈ �2/m�2.

Remark 2.78. Let � be a group. Assume � is generated by 61, ..., 6= ∈ � as a group. We have

group homomorphisms i8 : Z→ �, i8 (:) = 6:8 . Repeated application of the universal property

of free products of groups yields the group homomorphism

(...(i1★i2)★ i3)★ · · ·★ i= =: i1★ · · ·★i= : (...(Z★Z)★Z)★ · · ·★Z =: Z★ · · ·★Z→ �

with

(i1 ★ · · ·★ i=) ((:1, 81), ..., (:A , 8A )) = 6:1

81
· · · 6:A8A ,

where 8 9 ∈ {1, ..., =} is an index used to make the Z-factors formally disjoint.
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2.5. The fundamental group of surfaces

The fact that 61, ..., 6= generate � is equivalent to the fact that i1 ★ · · ·★ i= : Z★ · · ·★ Z→ �

is onto. It follows that

� �
Z★ · · ·★ Z

ker(i1 ★ · · ·★ i=)

If the normal subgroup ker(i1 ★ · · ·★ i=) is also finitely generated as a group, with generators

G1, ..., G<, then we call � finitely presentable and

〈61, ..., 6= | G1, ..., G<〉

a presentation of �.

Example 2.79. For the cartesian product Z2 of two copies of Z we have the presentation

Z2
� 〈0, 1 | 010−11−1〉.

The cyclic group Z/2Z of order 2 is presentable as

Z/2Z � 〈0 | 02〉.

Remark 2.80. A word of caution: isomorphic groups may have several, quite different presen-

tations. For example

〈G, H | GHGH−1G−1H−1〉 � 〈G, H, F, I | GHGH−1G−1H−1, GHGF−1, IH−1G−1〉

because the generators GHGF−1 and IH−1G−1 on the right-hand side can be used to eleminate F

and I. It is therefore often not obvious whether two presentations give rise to isomorphic groups.

Theorem 2.81. For any 6 ∈ N we have

c1(�6) � 〈01, 11, ..., 06, 16 | 01110
−1
1 1−1

1 · · · 06160−1
6 1

−1
6 〉.

Proof. Recall that �6 ≈ �2/∼ as in Proposition 2.76. To apply the Seifert-van Kampen theo-

rem 2.68 we put * := �̊2 and + := (�2/∼) \ �2( 1
2
). We have �6 = * ∪+ .
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0−1
2

12

02

1−1
1

0−1
1

11

011−1
6

0−1
6

+

Figure 39. Applying the Seifert-van Kampen theorem to the disk representation

The subset * is contractible and therefore c1(*) = {1}. The subset + is homotopy equivalent

to the boundary m� subject to the identifications of the equivalence relation, + ≃ m�/∼. The

identifications induced by ∼ generate a bouquet of 26 circles, one for each relation 08 and 18 .

The bouquet is denoted by (1 ∨ · · · ∨ (1, where the wedge sum “∨” of two topological spaces -

and . is defined to be the disjoint union of - and . with identification of two base points G0 ∈ - ,

H0 ∈ . such that - ∨. := - ∪ ./{G0 ∼ H0}. For the bouquet of circles all (1’s are joined at the

same base point. Graphically we can depict the bouquet of circles as follows

(1 ∨ · · · ∨ (1 =

Figure 40. Bouquet of circles

So we have

+ ≃ m�2/∼≈ (1 ∨ · · · ∨ (1︸          ︷︷          ︸
26 times

.

The fundamental group of + follows immediately from Example 2.70 by induction:

c1(+) � Z★ Z★ · · ·★ Z︸             ︷︷             ︸
26 times

with generators again denoted by 01, 11, 02, 12, ..., 06 , 16. For the intersection of * and + we

have* ∩+ = �̊2 \ �̄2 ( 1
2
) ≃ (1 and thus by Theorem 2.42 we have c1(* ∩+) � Z. A generator
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2.5. The fundamental group of surfaces

of c1(* ∩+) is given by a loop 2 of degree 1.

0−1
2

12

02

1−1
1

0−1
1

11

011−1
6

0−1
6

2

Figure 41. Finding the generator

The inclusion map 8′ : *∩+ → * induces the trivial homomorphism 8′
#

because c1(*) is trivial.

For the inclusion map 9 ′ : * ∩ + → + we note that the induced isomorphism maps 2 onto

01110
−1
1
1−1

1
· · · 06160−1

6 1
−1
6 .

By the Seifert-van Kampen theorem 2.68 we find

c1(�6) �
c1(*) ★ c1(+)

N ( 9 ′
#
(U) · 8′

#
(U)−1 | U ∈ c1(* ∩+))

=
c1(+)

N ( 9 ′
#
(U) | U ∈ c1(* ∩+))

=
Z★ · · ·★ Z
N( 9 ′

#
(2))

= 〈01, 11, ..., 06, 16 | 01110
−1
1 1−1

1 · · · 06160−1
6 1

−1
6 〉. �

Example 2.82. For the two-dimensional torus )2 we find with Example 2.79

c1()2) = c1(�1) = 〈0, 1 | 010−11−1〉 � Z2,

in agreement with Remark 2.48.

Corollary 2.83. For 6, 6′ ∈ N, 6 ≠ 6′ we have �6 ; �6′ and hence �6 0 �6′ .
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2. Homotopy Theory

Proof. The statement follows once we see that c1(�6) � c1(�6′). Attention here: as noted in

2.80 different presentations can yield isomorphic groups.

For any group � let [�,�] be the normal subgroup generated by all commutators 010−11−1,

0, 1 ∈ �. The abelian factor group�/[�,�] is called the abelianization of�. We now calculate

the abelianization of c1(�6).

c1(�6)
[c1(�6), c1(�6)]

= 〈01, 11, ..., 06, 16 | 01110
−1
1 1−1

1 · · · 06160−1
6 1

−1
6 , 01110

−1
1 1−1

1 , ...

..., 01020
−1
1 0−1

2 , ...〉
= 〈01, 11, ..., 06, 16 | 01110

−1
1 1−1

1 , ..., 01020
−1
1 0−1

2 , ...〉
� Z26,

where the second equality follows because the simple commutators 08180
−1
8 1

−1
8 , 8 = 1, ..., 6

generate the relation 01110
−1
1
1−1

1
· · · 06160−1

6 1
−1
6 .

Hence if �6 ≃ �6′ then c1(�6) � c1(�6′) and thus

c1(�6)/[c1(�6), c1(�6)] � c1(�′6)/[c1(�′6), c1(�′6)].

Thus Z26
� Z26′ and therefore 6 = 6′. �

Remark 2.84. This proves the uniqueness part of the classification for surfaces, see Example 1.5.

2.6. Higher homotopy groups

We now generalize the definition of c1(-; G0).

Definition 2.85. Let ,= = [0, 1] × . . . × [0, 1]︸                   ︷︷                   ︸
= times

be the =-cube. Let - be a topological space

and G0 ∈ - . Then

c= (-; G0) := {[f]m,= | f ∈ � (,=, -), f (m,=) = {G0}}

is called the =-th homotopy group of - with base point G0. Here [f]m,= denotes the homotopy

class of f relative to m,=.

The group structure on c= (-; G0) is obtained as follows: For f, g ∈ � (,=, -) with f (m,=) =
g(m,=) = {G0} define f ★ g by

(f ★ g) (C1, . . . , C=) =
{
f (2C1, C2, . . . , C=), 0 ≤ C1 ≤ 1/2,
g(2C1 − 1, C2, . . . , C=), 1/2 ≤ C1 ≤ 1.

Then f ★ g ∈ � (,=, -) with (f ★ g) (m,=) = {G0}.
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,= ,= ,=

b

G0

-

g

f f ★ g

C1

C2, . . . , C=

Figure 42. Concatenation

Now put [f]m,= · [g]m,= := [f ★ g]m,= . The proof that this yields a well-defined group

multiplication on c= (-; G0) for = ≥ 2 is literally the same as in the case for = = 1. The neutral

element is represented by the constant map Y=G0
: ,= → - , Y=G0

(C1, . . . , C=) = G0, and [f]−1
m,= is

represented by f (1 − C1, C2, . . . , C=).

Unlike for the case = = 1 the higher homotopy groups are abelian:

Proposition 2.86. Let - be a topological space and G0 ∈ - . Then for = ≥ 2 the group

c= (-; G0) is abelian.

Proof. For f, g ∈ � (,=, -) with f (m,=) = g(m,=) = {G0} we need to show that f ★ g and

g ★ f are homotopic relative to m,=. The homotopy is obtained by precomposing with the

homotopy of the =-cube indicated in the following picture (which illustrates the case = = 2):
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f g
deform−→

f

g

deform−→
f

g

deform−→
f

g

deform−→
g f

Figure 43. Commutativity of higher homotopy groups

Remark 2.87. This proof also shows that replacing C1 by any other variable in the definition of

f ★ g gives the same group multiplication on c= (-; G0).

For 5 ∈ � (-,. ) with 5 (G0) = H0 we get a group homomorphism

5# : c= (-; G0) → c= (. ; H0)

defined by [f]m,= ↦→ [ 5 ◦ f]m,= .

Remark 2.88. Lemma 2.18, 2.19, Corollary 2.20, Propositions 2.21, 2.22, Theorem 2.23 and

Corollary 2.24 also hold for c= (-; G0). In particular, if 5 : - → . is a homotopy equivalence

then the map 5# : c= (-; G0) → c= (. ; 5 (G0)) is an isomorphism. For W ∈ Ω(-; G0, G1) there is

an isomorphism

ΦW : c= (-; G1) → c= (-; G0)

given by [f]m,= ↦→ [f′]m,= where

f′(C) =
{
f (2C), ‖C‖max ≤ 1

2
,

W(2 − 2‖C‖max), 1
2
≤ ‖C‖max ≤ 1.

f

W

G1G0

Figure 44. “Independence” of base point
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Remark 2.89. By Exercise 1.7 we have the maps

,= c // ,=/m,=
i

≈
// (=

and we see that f ∈ � (,=, -) with f (m,=) = {G0} corresponds uniquely to 5f ∈ � ((=, -)
with 5f (B0) = G0, where B0 = i(m,=) such that f = 5f ◦ i ◦ c. Thus there is a canonical

bĳection

c= (-; G0)
1:1←→ {[ 5 ] {B0 } | 5 ∈ � ((=, -), 5 (B0) = G0} .

Remark 2.90. The Seifert-van-Kampen theorem for c= works only under very restrictive as-

sumptions. For this reason the computation of c= for explicit examples can be very difficult. We

will be able to compute c= ((<) for = ≤ < but many of the c= ((<) for = > < are actually still

unknown.

Remark 2.91. The definition of c= (-; G0) also works for = = 0. A map f ∈ � (,0, -)
corresponds to the point f (,0) ∈ - . Two such maps are homotopic iff the corresponding points

can be joined by a path. Hence

c0(-; G0) = {path components of -}.

But there is no (natural) group structure on c0(-; G0). More precisely, c0(-; G0) is a pointed set,

i.e., a set with a distinguished point, namely the path component containing G0. This corresponds

to the neutral element in c= (-; G0) for = ≥ 1.

Definition 2.92. Let ,, � and � be topological spaces and let ? ∈ � (�, �). We say that ?

has the homotopy lifting property (HLP for short) for , iff for every 5 ∈ � (,, �) and every

ℎ ∈ � (, × [0, 1], �) with ℎ(F, 0) = ?( 5 (F)) for all F ∈ , there exists � ∈ � (, × [0, 1], �)
such that

� (F, 0) = 5 (F) ∀F ∈ , and ℎ = ? ◦ � .

In other words, there exists an � ∈ � (, × [0, 1], �) such that the diagram

F❴

��

∈ ,
5 //

��

�

?

��
(F, 0) ∈ , × [0, 1] ℎ //

�

::✉
✉

✉
✉

✉

�

commutes.
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Example 2.93. Consider the spaces � = {point},
� = R,, = ,0 and the map given by ?(4) = 0.

No ℎ : , × [0, 1] → � except the constant path Y0

can be lifted because it leaves the image of ?. Here

the problem is the lack of surjectivity of ?. |
0

R

40
b

ℎ

Figure 45. Failure of HLP due to

lack of surjectivity

Example 2.94. Now consider � = [0,∞) × {0} ∪ (−∞, 0] × {1} ⊂ R2, � = R and let ? be the

projection onto the first factor, ?(C, B) = C.

| �

5
�b

ℎ

, = {F0}

Figure 46. Surjective but HLP still fails

The map ? is surjective but still does not have the HLP for , = ,0. For example, choose

ℎ(F0, C) = C, 5 (F0) = (0, 1).

Definition 2.95. A map ? ∈ � (�, �) is called a Serre fibration or weak fibration iff it has the

HLP for all,=, = ≥ 0. The space � is called the total space and � is called the base space of

the fibration. For 10 ∈ � we call ?−1(10) the fiber over 10.

Example 2.96. For topological spaces � and � put � := � × � and ? = ?A1, the projection on

the �-factor. Then ? has the HLP for all , . In particular, ? is a Serre fibration. Namely, let

5 ∈ � (,, �×�) and ℎ ∈ � (, × [0, 1], �) be given such that ?( 5 (F)) = ℎ(F, 0) for all F ∈ , .

Now write 5 (F) = (V(F), i(F)) with V ∈ � (,, �) and i ∈ � (,, �). Hence

ℎ(F, 0) = ?( 5 (F)) = V(F).

Now put � (F, C) := (ℎ(F, C), i(F)). Then � ∈ � (, × [0, 1], � × �) and

?(� (F, C)) = ?A1(ℎ(F, C), i(F)) = ℎ(F, C) ,
� (F, 0) = (ℎ(F, 0), i(F)) = (V(F), i(F)) = 5 (F) ,

as required. Hence ? has the HLP for any , .
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[0, 1]

,=

,= × [0, 1]

&11

Figure 47. Subdivision for which the fiber bundle is trivial over each subcube

Definition 2.97. A map ? ∈ � (�, �) is called fiber bundle with fiber � iff for each 1 ∈ �
there exists an open subset * ⊂ � with 1 ∈ * and a homeomorphism Φ : ?−1(*) → * × �
such that the diagram

* × �
?A1

��

?−1(*)Φ

≈
oo

? |
?−1 (*)yytt

tt
tt
tt
tt

*

commutes.

Lemma 2.98. Every fiber bundle is a Serre fibration.

Proof. Let 5 ∈ � (,=, �) and ℎ ∈ � (,=×[0, 1], �) such that ℎ(F, 0) = ?( 5 (F)) for all F ∈ , .

Now subdivide ,= × [0, 1] into small subcubes such that ℎ maps each subcube entirely into an

open subset * as in the definition of the fiber bundle, see Figure 47.

By Example 2.96, products have the HLP, hence we can extend the map 5 to a continuous map

�11 : (,= × {0}) ∪&11 → � such that ? ◦ �11 = ℎ.

Next we want to extend the lift to &12, see Figure 48. Now there seems to be a problem because

the required lift �12 need not only coincide with 5 along the edge &12 ∩ (,= × {0}) but also

with �11 along &11 ∩&12.

But there are homeomorphisms of a cube onto itself mapping two edges onto one as indicated in

Figure 49.
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[0, 1]

,=

,= × [0, 1]

&11 &12

Figure 48. Lift over second cube

≈

Figure 49. Homeomorphism mapping two faces to one
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Thus we can apply the HLP and extend the lift to (,= × {0}) ∪ &11 ∪ &12. Iteration of this

procedure proves the assertion. �

Example 2.99. Let � be a Lie group, e.g. a closed subgroup of GL(=; ) with  = R or  = C.

Let � ⊂ � be a closed subgroup. We equip the space � = �/� = {6 · � | 6 ∈ �} with the

quotient topology. Such a space is called a homogeneous space. Then� → �/� with 6 ↦→ 6 ·�
is a fiber bundle with fiber �. The proof of this fact requires some technical work, see [8, p. 120

ff].

Example 2.100. Let � = SO(= + 1) and

� =

{(
� 0

0 1

) ����� ∈ SO(=)
}
.

Then � is a closed subgroup of� isomorphic to SO(=). We now show that�/� ≈ (=. Consider

the map 5 : � → (= with � ↦→ � · 4=+1 where 4=+1 the (= + 1)-st unit vector of the canonical

basis. The map 5 is continuous and surjective. We observe

5 (�) = 5 ( �̃) ⇐⇒ � · 4=+1 = �̃ · 4=+1
⇐⇒ �̃−1 · � · 4=+1 = 4=+1

⇐⇒ �̃−1 · � =

(
★ 0

★ 1

)

⇐⇒ �̃−1 · � ∈ �
⇐⇒ c(�) = c( �̃)

where the map c : � → �/� is the canonical projection. We conclude that the map 5 descends

to a bĳective map 5̄ : �/� → (=. By the universal property of the quotient topology the map

5̄ : �/� → (= is continuous. Since � is compact the space �/� is also compact. Moreover,

the sphere (= is a Hausdorff space, hence the map 5̄ is a homeomorphism. Thus we obtain a

fiber bundle SO(= + 1) → (= with fiber SO(=).

Let ? : � → � be any Serre fibration and fix 40 ∈ � . Put 10 := ?(40) ∈ � and let � := ?−1(10).
Then 40 ∈ �. Let ] : � → � be the inclusion map. We obtain the following two homomorphisms:

]# : c= (�; 40) → c= (�; 40),
?# : c= (�; 40) → c= (�; 10).

Now we construct a map m : c= (�; 10) → c=−1(�; 40). We define

Box0 := {1} and Box: := (, : × {1}) ∪ (m, : × [0, 1]) for : ≥ 1.

Then we have

m,=
= (,=−1 × {0}) ∪ Box=−1,

(,=−1 × {0}) ∩ Box=−1 = m,=−1 × {0} .
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b ( 1
2
, . . . , 1

2
,−1)

b G

b [: (G)

Figure 50. Mapping the box to the (bottom) cube

Consider the homeomorphism [: : Box: → , : obtained by the central projection from

( 1
2
, . . . , 1

2
,−1). This homeomorphism maps the faces out of which Box: is built onto the

regions depicted in Figure 50.

In order to define m : c= (�; 10) → c=−1(�; 40) let f ∈ � (,=, �) with f (m,=) = {10}.
Since (C1, . . . , C=−1) ↦→ f (C1, . . . , C=−1, 0) = 10 is constant we can lift it to the constant map

(C1, . . . , C=−1) ↦→ 40, see Figure 51. Now the HLP of ? for ,=−1 yields a continuous map

Σ : ,= → � with Σ(C1, . . . , C=−1, 0) = 40 and ? ◦ Σ = f. From f (m,=) = {10} we

have Σ(m,=) ⊂ �. We put f̃ := Σ ◦ [−1
=−1

: ,=−1 → �. We want to define the map

m ([f]m,= ) := [f̃]m,=−1 . We have to check well-definedness of this map:

a) We have to show that [f̃]m,=−1 does not depend on the particular choice of the lift Σ.

Let Σ′ ∈ � (,=, �) be another lift of f with Σ′ (C1, . . . , C=−1, 0) = 40. Then Σ−1 • Σ′ is a lift

of f−1 • f. Here • denotes the concatenation with respect to the variable C=, Σ
−1(C1, . . . , C=) =

Σ(C1, . . . , C=−1, 1 − C=) and similarly for f−1. Since f−1 • f ≃m,= Y=
10

we can find a homotopy

ℎ : ,=+1 → � relative to m,= with

ℎ(C1, . . . , C=, 0) = (f−1 • f) (C1, . . . , C=) and ℎ(C1, . . . , C=, 1) = 10.

Then ℎ(Box=) = {10}. We apply the HLP of ? for ,=+1 to get a lift � ∈ � (,=+1, �) of ℎ with

� (C1, . . . , C=, 0) = Σ
−1 • Σ′(C1, . . . , C=).

From ℎ(Box=) = {10} we have � (Box=) ⊂ �. Then we get a homotopy in � relative to m,=−1

from f̃ = Σ ◦ [−1
=−1

to f̃′ = Σ′ ◦ [−1
=−1

as shown in Figure 52.

b) We also have to show that f ≃m,= f′ in � implies f̃ ≃m,=−1 f̃′ in �.

Let ℎ : ,= × [0, 1] → � be a homotopy in � from f to f′ relative to m,=. The HLP for ,=
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��

?

C=

C1, . . . , C=−1

b

b

10

40

f

Figure 51. Lift f

C=C=+1

C1, . . . , C=−1

Σ−1

Σ′

Figure 52. Homotopy between projected lifts
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10

�

b

ℎ

f′

f

C=C=+1

C1, . . . , C=−1

Figure 53. Homotopy invariance

yields a lift � : ,=+1 → � of ℎ with � (C1, . . . , C=−1, 0, C=+1) = 40, see Figure 53. We thus obtain

a homotopy

�̂ (C1, . . . , C=−1, B) = � ([−1
=−1(C1, . . . , C=−1), B)

in � from f̃ to f̃′ relative to m,=−1 and hence

[f̃]m,=−1 = [f̃′]m,=−1 .

We have shown that the map m : c= (�; 10) → c=−1(�, 40) is well defined.

Lemma 2.101. For = ≥ 2 the map m : c= (�; 10) → c=−1(�, 40) is a group homomorphism.

Proof. Let f, g ∈ � (,=, �) such that f (m,=) = g(m,=) = {10}. Choose a lift � ∈ � (,=, �)
of f ★ g with � (C1, . . . , C=−1, 0) = 40. Restriction yields lifts Σ of f and ) of g up to stretching

in the C1-direction. Moreover, we have

(Σ ◦ [−1
=−1) ★ () ◦ [−1

=−1) ≃m,=−1 � ◦ [−1
=−1.

The homotopy is given by shrinking the marked region in the C1-direction, see Figure 54. We

conclude that

m ([f]m,= ) · m ([g]m,= ) = [Σ ◦ [−1
=−1]m,=−1 · [) ◦ [−1

=−1]m,=−1

= [(Σ ◦ [−1
=−1) ★ () ◦ [

−1
=−1)]m,=−1

= [� ◦ [−1
=−1]m,=−1

= m ([f ★ g]m,= )
= m ([f]m,= · [g]m,= ). �
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Σ★) �

(Σ ◦ [−1
=−1
) ★ () ◦ [−1

=−1
)

b b b

� ◦ [−1
=−1

Figure 54. Boundary map is a group homomorphism

Hence m : c= (�; 10) → c=−1(�, 40) is a homomorphism if = ≥ 2. For = = 1 this statement

does not make sense because c0(�, 40) is not a group. But m still maps the neutral element of

c1(�, 10) to the distinguished element of c0(�, 40).

Theorem 2.102 (Long exact homotopy sequence of a Serre fibration). Let ? : � → � be

a Serre fibration, 40 ∈ � , 10 = ?(40) ∈ � and � = ?−1(10). Let ] : � → � be the inclusion

map. Then the following sequence is exact:

. . .
m // c= (�; 4>)

]# // c= (�; 40)
?# // c= (�; 10) m // c=−1(�; 40)

]# // . . .

. . .
m // c0(�; 40)

]# // c0(�; 40)
?# // c0(�; 10)

Remark 2.103. Exactness means that the image of the incoming map equals the kernel of the

outgoing map. The question arises what this means on the c0-level where we do not have

homomorphisms. The image is defined for an arbitrary map. For the kernel we recall that c0 is

a set together with a distinguished element which corresponds to the neutral element of a group.

It is therefore natural to define the kernel of a map to be the set of all elements in the domain of

the map which are mapped to the distinguished element. Having clearified this, exactness of the

above sequence also makes sense on the c0-level.
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Proof. a) Exactness at c= (�; 40) for = ≥ 0:

i) im(]#) ⊂ ker(?#):
Since ? ◦ ] is the constant map, we have for any [f]m,= ∈ c= (�; 40):

?#(]#([f]m,= )) = (? ◦ ])#([f]m,= ) = [? ◦ ] ◦ f]m,= = [Y=10
]m,= = 0.

ii) ker(?#) ⊂ im(]#):
Let [g]m,= ∈ c= (�; 40) with ?#([g]m,= ) = [? ◦ g]m,= = 0. Hence ? ◦ g ≃m,= Y=10

. Let

ℎ : ,= × [0, 1] → � be a homotopy in � relative to m,= from ? ◦ g to Y=10
. Lift the map

ℎ to a homotopy � : ,= × [0, 1] → � with initial conditions g, i.e. � (·, 0) = g. The red

area in the diagram gets mapped to � by � because it gets mapped to 10 by ℎ.

[0, 1]

,=

Figure 55. Bottom-to-box homotopy

We obtain a homotopy in � relative to m,= from g to � ◦ [−1
= . Hence g ≃m,= � ◦ [−1

=

and we conclude that

[g]�,m,= = [� ◦ [−1
= ]�,m,= = ]#([� ◦ [−1

= ]�,m,= ) ∈ im ]#.

b) Exactness at c= (�; 40) for = ≥ 0:

i) im m ⊂ ker ]#:

Let [f]m,=+1 ∈ c=+1 (�; 10). Then we have m ([f]m,=+1) = [Σ ◦ [−1
= ]�,m,= where Σ is a

lift of f with initial conditions Y=40
. The map Σ yields a homotopy relative to m,= in �

from Y=40
to Σ ◦ [−1

= , see Figure 56. Hence

]#(m ([f]m,=+1)) = ]#([Σ ◦ [−1
= ]�,m,= ) = [Σ ◦ [−1

= ]�,m,= = [Y=40
]�,m,= = 0.

ii) ker ]# ⊂ im m:

Let [g]m,= ∈ c= (�; 40) with 0 = ]#([g]m,= ). Hence g ≃m,= Y=40
in � . Let � be a

homotopy in � relative to m,= from Y=40
to g, see Figure 57. Then � is a lift of ℎ := ? ◦�.

Since � maps m,=+1 to �, the map ℎ maps m,=+1 to 10. Thus ℎ represents an element in

c=+1 (�; 10). By definition of m, we have [� ◦ [−1
= ]m,= = m ([ℎ]m,=+1 ).

In the image of Box= under [= we let the interior cube grow and thereby obtain a homotopy

in � relative to m,= from�◦[−1
= to g, see Figure 58. Therefore [g]m,= = [�◦[−1

=−1
]m,= =

m [ℎ]m,=+1 ∈ im(m).
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Y=40

Σ

Figure 56. Bottom-to-box homotopy, again

[0, 1]

,=

g

Y=40

Figure 57. Homotopy between g and constant map

c) Exactness at c= (�; 10) for = ≥ 1:

i) im ?# ⊂ ker m:

Let [g]m,= ∈ c= (�; 40). Then g is a lift of ? ◦ g with initial conditions Y=−1
40

. Since g maps

the boundary of,= to 40 we have g ◦ [−1
=−1

= Y=−1
40

. Thus

m (?#([g]m,= ) = m ([? ◦ g]m,= )) = [g ◦ [−1
=−1]m,=−1 = [Y=−1

40
]m,=−1 = 0.

ii) ker m ⊂ im ?#:

Let [f]m,= ∈ c= (�; 10) with m ([f]m,=) = 0. Let Σ be a lift of f with initial condition

Y=−1
40

. Then Σ ◦ [−1
=−1

represents m ([f]m,= ) = 0. Hence we have in �

Σ ◦ [−1
=−1 ≃m,=−1 Y=−1

40

Now choose a homotopy in � relative to m,=−1 from Σ ◦[−1
=−1

to Y=−1
40

. Use this homotopy

to continuously extend Σ to the larger cube with boundary values 40, see Figure 59. Call

this extension g. We then have

[g]m,= ∈ c= (�; 40) and ?#([g]�,m,= ) = [? ◦ g]m,= .
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40 40

40

40

g deform−→ 40 40

40

40

g deform−→ g

Figure 58. Shrink “constant region” to boundary

Σ

maps to �

40

40

40

40

��

�

Figure 59. Extension of Σ

Now ? ◦ g is homotopic relative to m,= to f as shown in Figure 60. Thus [f]m,= =

[? ◦ g]m,= ∈ im ?#. �

Definition 2.104. A fiber bundle with discrete fiber is called a covering.

Corollary 2.105. If ? : � → � is a covering with 40 ∈ �, 10 = ?(40) ∈ �, then the map

?# : c= (�, 40) → c= (�; 10)

is an isomorphism for all = ≥ 2.
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10 10

10

f

deform−→

f

deform−→

f

Figure 60. Homotopy between ? ◦ g and f

Proof. The assertion follows from the long exact sequence:

{0} = c= (�; 4>)
]# // c= (�; 40)

?# // c= (�; 10) m // c=−1(�; 40) = {0}. �

Example 2.106. The map Exp : R→ (1 with C ↦→ 42c8C is a covering with fiber Z. Hence

c: ((1; 1) � c: (R, 0) = {0}

for all : ≥ 2. More generally, Exp : R= → )= = (1 × . . . × (1 with

(C1, . . . , C=) ↦→ (42c8C1 , . . . , 42c8C= )

is a covering with fiber Z=. Hence c: ()=) � c: (R=) = {0} for all : ≥ 2.

Example 2.107. Consider the real projective space, defined by RP= := (=/∼, where G ∼ H

⇐⇒ G = H or G = −H. Then the map ? : (= → RP= with G ↦→ [G]∼ is a covering with fiber

Z/2Z. Hence c: (RP=) � c: ((=) for all : ≥ 2. For = ≥ 2 we investigate the sequence:

{0} = c1((=) // c1(RP=) // c0(Z/2Z) // c0((=) = {0}

We deduce that c1(RP=) � c0(Z/2Z) � Z/2Z as sets. But then c1(RP=) � Z/2Z also as groups

because there is only one group of order 2 (up to isomorphism).

Example 2.108. We know that SO(= + 1)/SO(=) ≈ (= from Example 2.99. In the case of = = 2

this means that SO(3)/SO(2) ≈ (2. We also know that SO(2) ≈ (1. For : ≥ 3 we consider the

long exact sequence

· · · // c: (SO(2)) // c: (SO(3)) // c: ((2) // c:−1(SO(2))

We know that c: ((1) = {0} and c:−1((1) = {0}. Hence we find

c: (SO(3)) � c: ((2) for all : ≥ 3.
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The map 5 : (3 → SO(3) given by

5 (G, H, D, E) = ©«
G2 + H2 − D2 − E2 2(HD − GE) 2(HE − GD)

2(HD + GE) G2 − H2 + D2 − E2 2(DE − GH)
2(HE − GD) 2(DE + GH) G2 − H2 − D2 + E2

ª®¬
satisfies 5 (−G,−H,−I,−E) = 5 (G, H, I, E) and therefore induces a continuous map

5̄ : RP3 → SO(3). This map is bĳective and thus a homeomorphism. Hence we have

SO(3) ≈ RP3. It follows that

c: ((2) � c: (SO(3)) � c: (RP3) � c: ((3)

for all : ≥ 3. Later we will see (Example 3.121 on page 151) that c3((3) � Z and consequently

c3((2) � Z.

Example 2.109. By the same proof as for SO(= + 1)/SO(=) ≈ (= we get that

SU(= + 1)/SU(=) ≈ (2=+1.

Therefore there is a fiber bundle SU(= + 1) → (2=+1 with fiber SU(=). For = ≥ 1 we consider

the following part of the long exact homotopy sequence:

c0(SU(=)) ]# // c0(SU(= + 1)) ?# // c0((2=+1) = {0}.

Hence the map ]# : c0(SU(=)) → c0(SU(= + 1)) is onto. Since SU(1) = {1} we have

c0(SU(1)) = {0} and thus c0(SU(=)) = {0} by induction on =. Thus SU(=) is path-connected

for all = ≥ 1.

Now let us analyze c1(SU(=)). Consider

c1(SU(=)) ]# // c1(SU(= + 1)) ?# // c1((2=+1) = {0}.

Again, we conclude that the map ]# : c1(SU(=)) → c1(SU(=+1)) is onto. By the same induction

as before we find c1(SU(=)) = {0} for all = ≥ 1. Thus SU(=) is simply connected for all = ≥ 1.

2.7. Exercises

2.1. Let - be a set and let G0 ∈ - . Determine c1(-; G0) where

a) - carries the discrete topology;

b) - carries the coarse topology.

2.2. Let - be a topological space and let l : (1 → - be continuous. Show that the following

are equivalent:

(i) l is homotopic to a constant map.
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(ii) l has a continuous extension �2 → - .

2.3. Let - be a topological space and let 5 , 6 : - → (= be continuous. Assume 5 (G) ≠ −6(G)
for all G ∈ - . Show that 5 and 6 are homotopic.

2.4. Let - and . be topological spaces. Show that - × . is contractible if and only if - and .

are contractible.

2.5. Let -1, -2 be topological spaces, G8 ∈ -8. Put - := -1 × -2 and G := (G1, G2) ∈ - . Let

?8 : - → -8 be the canonical projections. Show that

(?1#, ?2#) : c1(-; G) → c1(-; G1) × c1(-2; G2)

is a group isomorphism.

2.6. Let - = [0, 1] × [0, 1] ⊂ R2 and let � ⊂ - be the comb space. Show that there is no

retraction - → �.

2.7. For 5 ∈ � ((1,R2) and ? ∈ R2 \ 5 ((1) consider 5? ∈ � ((1, (1) given by

5? (I) =
5 (I) − ?
| 5 (I) − ? | .

Then

* ( 5 , ?) := deg( 5?)

is called the winding number of 5 around ?.

a) Show that for ?, @ ∈ R2 \ 5 ((1) which can be joined by a continuous path in R2 \ 5 ((1) we

have * ( 5 , ?) = * ( 5 , @).

b) Compute * ( 5=, ?) for all ? ∈ R2 \ 5 ((1) and all = ∈ Z where 5= (I) = I=.

2.8. Show that the system of equations

cos
(
1 + G2H3 + sin(GH2)

)
− G2

= 0,

H + 1

cosh(G + H + 10) = 0,

has a solution (G, H) ∈ R2.

2.9. a) Compute c1(�2 \ {G0}; G1) for all G0 ≠ G1 ∈ �2.

b) Show that each homeomorphism 5 : �2 → �2 maps the boundary onto itself, 5 (m�2) =
m�2.
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2.10. On [0, 1] × [−1, 1] consider the equivalence relation ∼ given by (C, B) ∼ (C′, B′) iff

(C, B) = (C′, B′) or |C − C′ | = 1 and B′ = −B. The quotient space " := [0, 1] × [−1, 1]/∼ is called

the Möbius strip. The image ( of [0, 1] × {0} is called the chord of " , that of [0, 1] × {−1, 1}
is the boundary m" of " .

a) Show that m" is homeomorphic to (1.

b) Show that ( is a strong deformation retract of " .

c) Determine c1("; G0) for some G0 ∈ m" and the subgroup ]#(c1(m"; G0)) ⊂ c1("; G0)
where ] : m" ↩→ " is the inclusion map.

d) Show that m" is not a retract of " .

2.11. Let - = {(C, C= ) | 0 ≤ C ≤ 1, = ∈ N} ∪ {(B, 0) | 1
2
≤ B ≤ 1} ⊂ R2 equipped with the

induced topology. Show that - is connected but not path-connected.

2.12. Let �1 and �2 be groups. Show that �1 ∗ �2 � �2 ∗ �1

a) using the construction of the free product;

b) using the universal property.

2.13. Let �1 and �2 be groups. Show:

a) If 6 ∈ �1 ∗ �2 has finite order then 6 is conjugate to an element in 81 (�1) or in 82(�2).

b) If �1 and �2 are nontrivial then �1 ∗ �2 contains elements of infinite order.

2.14. Provide a presentation for the following group �:

a) � = Z/2Z × Z/3Z;

b) Z ∗ Z;

c) � = (Z ∗ Z) × (Z ∗ Z);

d) � = Z ∗ Z/[Z ∗ Z,Z ∗ Z].

2.15. Decide whether or not the groups � and � are isomorphic where

a) � = 〈0, 1 | 0212〉 and � = 〈G, H, I | GH2, GI2〉;

b) � = 〈0, 1 | 01〉 and � = 〈G, H | G2〉.

2.16. Let - be a path-connected topological space. Show that the suspension Σ- (see Exer-

cise 1.11) is also path-connected.
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2.17. Show that the map C→ C, I ↦→ I2, has the homotopy lifting property for ,0 but not for

,1.

2.18. Let - = R3 \ ((1 × {0}) = R3 \ {(G, H, I) ∈ R3 | G2 + H2 = 1, I = 0}. Show:

c1(-, {0}) � Z

and draw a generator of the fundamental group.

2.19. On (= consider the equivalence relation ∼ given by G ∼ H ⇔ G = H or G = −H. The

quotient RP= := (=/∼ is called the =-dimensional real projective space.

Show inductively using the Seifert-van Kampen theorem that for = ≥ 2

c1(RP=) � Z/2Z.

Hint: Exercise 2.10 may be helpful for the induction base = = 2.

2.20. Decide by proof or counter-example whether or not the following assertion holds true:

The Seifert-van Kampen theorem also holds if one only assumes that * ∩+ is connected rather

than path-connected.

2.21. Let � = � × � and ? = pr1 : � → � be the product fibration. Show that the boundary

map m : c=+1 (�; 10) → c= (�; 40) is trivial in this case.

2.22. Show that the inclusion SU(=) ↩→ U(=) induces an isomorphism

c: (SU(=)) � c: (U(=))

for all : ≥ 2.

2.23. The complex projective space is defined as C%= := (2=+1/∼ where I ∼ F iff there exists

D ∈ (1 ⊂ C such that I = D · F. Here we have regarded (2=+1 = {I ∈ C=+1 | |I | = 1} as a subset

of C=+1. The map ? : (2=+1 → C%=, I ↦→ [I]∼, is called the Hopf fibration.

Compute

c: (C%=)
for all : ≤ 2=.

Hint: You can use c: ((<) = {0} for all 1 ≤ : < < and < ≥ 2.

2.24. Let ? : - → . and @ : . → / be Serre fibrations. Prove that @ ◦ ? : - → / is a Serre

fibration as well.

2.25. Let ? : � → � be a Serre fibration, 40 ∈ � , 10 = ?(40) and � = ?−1(10). Show

a) If � is simply connected then c1(�; 40) � c1(�; 10).
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b) If � is contractible then c=+1 (�; 10) � c= (�; 40) for all = ≥ 1.

2.26. Let 0 → �
8−→ �′

?−→ �′′ → 0 be an exact sequence of abelian groups. Show that the

following three conditions are equivalent:

(i) There exists an isomorphism Ψ : �′ → �×�′′ such that the following diagram commutes:

0 // �
8 //

=

��

�′
? //

Ψ

��

�′′ //

=

��

0

0 // � // � × �′′ // �′′ // 0

where the arrows � → � × �′′ and � × �′′ → �′′ are given by the canonical maps

0 ↦→ (0, 0) and (0, 0′′) ↦→ 0′′, respectively.

(ii) There exists a homomorphism ?′ : �′′ → �′ such that ? ◦ ?′ = id�′′ .

(iii) There exists a homomorphism A : �′ → � such that A ◦ 8 = id�.

If these conditions hold then we say that the exact sequence is split.

2.27. a) Show that every exact sequence 0 → �
8−→ �′

?−→ �′′ → 0 of vector spaces (i.e. all

spaces are vector spaces over some fixed field and all homomorphisms are linear maps) is split.

b) Show that the exact sequence 0→ Z 2−→ Z→ Z/2Z→ 0 is not split.
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Homotopy groups are in general hard to compute. For instance, for spheres not all homotopy

groups are known even now. In this chapter we introduce rougher invariants which are much

easier to determine, the homology groups.

3.1. Singular homology

We will use the notation

40 = (0, . . . , 0) ∈ R=

41 = (1, . . . , 0) ∈ R=

...

4= = (0, . . . , 1) ∈ R=

Now we define

Δ
= := convex hull of 40, . . . , 4= =

{
=∑
8=0

C848

���� C8 ≥ 0,

=∑
8=0

C8 ≤ 1

}
.

Then Δ= is called =-dimensional standard simplex.

Example 3.1. For = = 0, 1, 2, and 3 the standard simplices are familiar, compare Figure 61:

= = 0 : Δ
0
= {40} = point

= = 1 : Δ
1
= [0, 1] = line segment

= = 2 : Δ
2
= triangle

= = 3 : Δ
3
= tetrahedron

Definition 3.2. Let - be a topological space. A singular =-simplex in - is a continuous map

Δ= → - .

Now we fix a commutative ring ' with 1. The most important examples will be

' = R,Q,C,Z,Z/=Z.
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40 41

42

b

b

b b

b

b

b

Δ3

Figure 61. 2 and 3-dimensional standard simplices

Definition 3.3. We define the set of singular =-chains (= (-; ') as the free '-module generated

by � (Δ=, -).

Then (= (-; ') is an '-module. Elements of (= (-; ') are formal linear combinations
∑<
8=1 U8f8

where U8 ∈ ' and f8 ∈ � (Δ=, -). See Appendix A.1 for more on free modules generated by

sets.

For = ≥ 0 we consider the affine linear map � 8=+1 : Δ= → Δ=+1 given by

� 8=+1(4 9 ) =
{
4 9 , 9 < 8

4 9+1, 9 ≥ 8
(3.1)

Note that � 8= maps Δ= to the face of Δ=+1 opposite to 48 .

Example 3.4. Consider the special case �1
2
:

40 41

�1
2

f (8)

40 41

42 f

-

b

b

b

Figure 62. Face maps

Definition 3.5. If f is an (= + 1)-dimensional singular simplex in - then f (8) := f ◦ � 8= is

called the 8-th face of f.

80



3.1. Singular homology

The boundary of a singular =-simplex in - is given by:

mf :=

=∑
8=0

(−1)8f (8) .

We see that the boundary of a singular =-simplex is a singular (= − 1)-chain. We extend m to

chains by linearity. The boundary of a singular =-chain in - is thus given by

m

( <∑
9=0

U 9f9

)
=

<∑
9=0

U 9mf9 .

Hence we obtain a linear map m : (= (-; ') → (=−1 (-; ') and we set m (0-chain) := 0.

Lemma 3.6. m ◦ m = 0.

Proof. It suffices to prove mmf = 0 for all =-simplices f. For 9 < 8 we have

� 8= ◦ �
9
=−1

= �
9
= ◦ � 8−1

=−1. (3.2)

We compute

mmf = m

(
=∑
8=0

(−1)8f ◦ � 8=

)

=

=∑
8=0

(−1)8m
(
f ◦ � 8=

)

=

=∑
8=0

(−1)8
=−1∑
9=0

(−1) 9f ◦ � 8= ◦ �
9
=−1

=

∑
0≤ 9<8≤=

(−1)8+ 9f ◦ � 8= ◦ �
9
=−1
+

∑
0≤8≤ 9≤=−1

(−1)8+ 9f ◦ � 8= ◦ �
9
=−1

=

∑
0≤ 9<8≤=

(−1)8+ 9f ◦ � 9= ◦ � 8−1
=−1 +

∑
0≤ 9′<8′≤=

(−1) 9′+8′−1f ◦ � 9
′
= ◦ � 8

′−1
=−1

= 0.

In the last step we used (3.2) for the first sum and changed the summation indices from 8 → 9 ′

and 9 → 8′ − 1 in the second sum. �

Now we define the set of singular =-cycles by

/= (-; ') := ker(m : (= (-; ') → (=−1 (-; '))
={2 ∈ (= (-; ') | m2 = 0}
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and the set of singular =-boundaries by

�= (-; ') := im(m : (=+1 (-; ') → (= (-; '))
={2 ∈ (= (-; ') | ∃ 1 ∈ (=+1 (-; ') such that 2 = m1} .

Lemma 3.6 says �= (-; ') ⊂ /= (-; ').

Definition 3.7. The quotient

�= (-; ') :=
/= (-; ')
�= (-; ')

is called =-th singular homology of - with coefficients in '.

Remark 3.8. The =-th homology �= (-; ') is an '-module.

Example 3.9. Assume that - = {point}. Then there is only one singular =-simplex, namely

the constant map f= : Δ= → - . In other words, (= (-; ') = ' · f=. Consequently,

f
(8)
= = f= ◦ � 8= = f=−1 and

mf= =

=∑
8=0

(−1)8f=−1 =




0, = odd,

f=−1, = even, = ≠ 0,

0, = = 0.

This implies

/= (-; ') =
{
' · f=, = odd or = = 0,

0, = even and = ≠ 0,

and

�= (-; ') =
{
' · f=, = odd,

0, = even.

We conclude that

�= (-; ') �
{
', if = = 0,

0, otherwise.

As in homotopy theory we not only associate groups to spaces but also homomorphisms to

maps. Let 5 : - → . be a continuous map. Then we obtain an '-module homomorphism

(= ( 5 ) : (= (-; ') → (= (. ; ') by setting

(= ( 5 )
( <∑
8=1

U8 · f8
)

:=

<∑
8=1

U8 · ( 5 ◦ f8).
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Lemma 3.10. The diagram

(= (-; ') (= ( 5 ) //

m
��

(= (. ; ')

m
��

(=−1 (-; ')(=−1 ( 5 )// (=−1 (. ; ')

commutes for all = ≥ 0.

Proof. We compute

m ((= ( 5 ) (f)) = m ( 5 ◦ f)

=

=∑
8=0

(−1)8 ( 5 ◦ f) ◦ � 8=

=

=∑
8=0

(−1)8 5 ◦ (f ◦ � 8=)

= (=−1 ( 5 )
( =∑
8=0

(−1)8f ◦ � 8=
)

= (=−1 ( 5 ) (mf). �

This lemma implies (= ( 5 ) (/= (-; ')) ⊂ /= (. ; ') and (= ( 5 ) (�= (-; ')) ⊂ �= (. ; '). Hence

we obtain a well-defined '-module homomorphism �= ( 5 ) : �= (-; ') → �= (. ; ') where

�= ( 5 ) ([G]) := [(= ( 5 ) (G)]. Here the square brackets denote the homology classes of the

=-cycles. One sees directly from the definition that �= (·) has the functorial properties

(i) �= (id-) = id�= (-;') ,

(ii) �= ( 5 ◦ 6) = �= ( 5 ) ◦ �= (6).

Exactly as for homotopy groups these functorial properties imply that a homeomorphism 5 :

- → . induces an isomorphism �= ( 5 ) : �= (-; ') → �= (. ; '). Homeomorphic spaces have

isomorphic homology groups.

3.2. Relative homology

For a topological space - and � ⊂ - we call (-, �) a pair of spaces and set

� ((-, �), (., �)) := { 5 ∈ � (-,. ) | 5 (�) ⊂ �} .

We abbreviate (= (-) = (= (-; ') if ' is understood. We observe that (= (�) ⊂ (= (-) and

m ((= (�)) ⊂ (=−1 (�). Writing (= (-, �) = (= (-, �; ') := (= (-; ')/(= (�; '), the map m
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induces a well-defined homomorphism m̄ such that

(= (-)

m
��

// (= (-, �)

m̄
��

(=−1 (-) // (=−1 (-, �)

(3.3)

commutes. Since m ◦ m = 0 and since (= (-) → (= (-, �) is onto we also have that m̄ ◦ m̄ = 0.

Set

/= (-, �) = /= (-, �; ') := ker
(
m̄ : (= (-, �) → (=−1 (-, �)

)
,

�= (-, �) = �= (-, �; ') := im
(
m̄ : (=+1 (-, �) → (= (-, �)

)
.

We define the relative singular homology of (-, �) by

�= (-, �) = �= (-, �; ') :=
/= (-, �; ')
�= (-, �; ') .

Now consider the preimage of /= (-, �) under (= (-) → (= (-, �) and set

/ ′= (-, �) := {2 ∈ (= (-) | m2 ∈ (=−1 (�)},
�′= (-, �) := {2 ∈ (= (-) | ∃1 ∈ (=+1 (-) such that 2 + m1 ∈ (= (�)}.

Since /= (-, �) = / ′= (-, �)/(= (�) and �= (-, �) = �′= (-, �)/(= (�) we obtain

�= (-, �) =
/ ′= (-, �)/(= (�)
�′= (-, �)/(= (�)

=
/ ′= (-, �)
�′= (-, �)

.

Remark 3.11. For � = ∅ we have the special cases

/ ′= (-, ∅) = /= (-),
�′= (-, ∅) = �= (-),
�= (-, ∅) = �= (-).

Example 3.12. Let - = (1× [0, 1] be the cylinder over (1 and � = (1×{0} ⊂ - , see Figure 63.

To construct an element in the relative homology �1(-, �) take the 1-simplex

f : Δ1 → -,

(C41 + (1 − C)40) ↦→ (cos (2cC), sin (2cC), 1),

see Figure 64. Since f is a closed curve in - we find for its boundary

mf = f (41) − f (40) = 0.

Therefore f ∈ /1(-) ⊂ / ′1(-, �) and, as we will see later, represents a nontrivial element in

�1(-). For the 2-simplices f1 and f2 defined as indicated in Figure 65.

we find for the 2-chain f1 + f2 the boundary m (f1 + f2) = f + 0 where 0 ∈ (1 (�). Hence,

modulo 0 ∈ (1 (�), we have f ∈ �1(-, �) and therefore 0 = [f] ∈ �1(-, �).
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�

-

Figure 63. Cylinder relative to bottom

�

-

Δ1

f

|
>

Figure 64. The representative f
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�

-

<

f
>

Δ2

f1

f2

Figure 65. f is null-homologous

Let (-, �) and (., �) be pairs of spaces and 5 ∈ � ((-, �), (., �)). Then, for each = ∈ N0, we

have the commutative diagram

(= (-)
(= ( 5 ) // (= (. )

(= (�)
� ?

OO

(= ( 5 |�)// (= (�)
?�

OO

Thus we obtain a well-defined homomorphism (= ( 5 ) : (= (-, �) → (= (., �) such that

(= (-)

��

(= ( 5 ) // (= (. )

��
(= (-, �)

(= ( 5 ) // (= (., �)

commutes. Combining with Lemma 3.10 and diagram (3.3) we get the commutative diagram

(= (-, �)

(= ( 5 )

))

m̄
��

(= (-)

m
��

oo (= ( 5 ) // (= (. ) //

m
��

(= (., �)

m̄
��

(=−1 (-, �)
(=−1 ( 5 )

55(=−1 (-)oo (=−1 ( 5 )// (=−1 (. ) // (=−1 (., �)

We have extended Lemma 3.10 to relative homology. In particular, we obtain a well-defined

86



3.2. Relative homology

homomorphism �= ( 5 ) : �= (-, �) → �= (., �) such that

/= (-, �)

��

(= ( 5 ) // /= (., �)

��
�= (-, �)

�= ( 5 ) // �= (., �)

commutes.

Let (-, �) be a pair of spaces. The inclusion map 8 : � ↩→ - induces a homomorphism

�= (8) : �= (�) → �= (-). Furthermore we have the inclusion map 9 : (-, ∅) → (-, �) which

induces the homomorphism �= ( 9) : �= (-) = �= (-, ∅) → �= (-, �).
We define the connecting homomorphism or boundary operator

m : �= (-, �) → �=−1(�), (3.4)

[2] ↦→ [m2],

where 2 ∈ / ′= (-, �). Note that m2 ∈ /=−1(�) since m2 = 0. The connecting homomorphism is

well defined because replacing 2 by another representative 2 + m1 + 0 where 1 ∈ (=+1 (-) and

0 ∈ (= (�) yields

2 + m1 + 0 ↦→ m (2 + m1 + 0) = m2 + m0.

Since m0 ∈ �=−1(�) we get [m2 + m0] = [m2] ∈ �=−1 (�). Since m : / ′= (-, �) → (=−1 (�) is a

homomorphism, the connecting homomorphism is also a homomorphism.

Lemma 3.13. The connecting homomorphism is natural, i.e. the diagram

�= (-, �)
�= ( 5 ) //

m
��

�= (., �)

m
��

�=−1(�)
�=−1 ( 5 |�) // �=−1(�)

commutes for every 5 ∈ � ((-, �), (., �)) and = ∈ N.

Proof. We compute

�=−1( 5 |�)
(
m
( [ ∑

8

U8f8
] ) )

= �=−1 ( 5 |�)
( [
m
∑
8

U8f8
] )

= �=−1 ( 5 |�)
( [ ∑

8

U8

∑
9

(−1) 9f9 ◦ � 9=−1

] )
=

[ ∑
8

U8

∑
9

(−1) 9 ( 5 |�) ◦ (f8 ◦ � 9=−1
)
]

=
[ ∑
8

U8

∑
9

(−1) 9 ( 5 ◦ f8) ◦ � 9=−1

]
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=
[
m
∑
8

U8 ( 5 ◦ f8)
]

= m
[ ∑
8

U8 ( 5 ◦ f8)
]

= m
(
�= ( 5 )

( [∑
8

U8f8
] ) )
. �

3.3. The Eilenberg-Steenrod axioms and applications

Now we list the most important properties of homology theory known as Eilenberg-Steenrod

axioms. The first axiom is exactly Example 3.9.

Dimension Axiom.

�= ({point}; ') �
{
', = = 0

0, otherwise

The next axiom deals with homotopy invariance. Two continuous maps 50, 51 : (-, �) → (., �)
of pairs of spaces are called homotopic (in symbols 50 ≃ 51) iff there exists an� ∈ � (-×[0, 1], . )
such that for all G ∈ -

� (G, 0) = 50 (G),
� (G, 1) = 51 (G),

� (� × [0, 1]) ⊂ �.

Homotopy Axiom.

Let 50, 51 ∈ � ((-, �), (., �)) be homotopic, 50 ≃ 51. Then the induced maps on homology

coincide, i.e.,

�= ( 50) = �= ( 51) : �= (-, �) → �= (., �)

holds for all =.

Remark 3.14. Let (-, �) ≃ (., �), i.e., there exist 5 ∈ � ((-, �), (., �)) and

6 ∈ � ((., �), (-, �)) such that 5 ◦ 6 ≃ id(. ,�) and 6 ◦ 5 ≃ id(-,�) . It then follows as be-

fore that �= (-, �; ') � �= (., �; ').
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Exactness Axiom.

For any pair of spaces (-, �) and inclusion maps 8 : � ↩→ - , 9 : (-, ∅) ↩→ (-, �), the sequence

�=+1 (-, �)

m
��

· · ·�=+1 ( 9)oo

�= (�)
�= (8) // �= (-)

�= ( 9)// �= (-, �)

m
��

· · · �=−1 (�)
�=−1 (8)oo

is exact and natural.

Notation: For � ⊂ - we call

�̊ =

⋃
*⊂�

* with * open in -

the interior of � and

�̄ =

⋂
�⊂-

� with � closed in -

the closure of �.

Excision Axiom.

For every pair of spaces (-, �) and every * ⊂ � with *̄ ⊂ �̊ the homomorphism

�= ( 9) : �= (- \*, � \*) → �= (-, �)

induced by the inclusion map

9 : (- \*, � \*) ↩→ (-, �)

is an isomorphism.

The proofs of axioms A2, A3, and A4 will be given later. Before that we will show their

usefulness by studying some basic examples.

Remark 3.15. (cf. Exercise 3.1)

1.) If - ≠ ∅ is path-connected then �0(-; ') � ' and generators are represented by every 0-

simplex f : Δ0 → - . In other words, the isomorphism �0(-; ') → ' is given by
∑
9 U 9f9 ↦→∑

9 U 9 .

2.) If -: , : ∈  , are the path-components of - then �= (-; ') �
⊕

:∈ �= (-:; ').
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Theorem 3.16. For = ≥ 1 we have

�< ((=; ') �
{
', if < = 0 or < = =

0, otherwise

�< (�=, (=−1; ') �
{
', if < = =

0, otherwise

Proof. a) For = ≥ 1 the sphere (= is path-connected and therefore �0((=; ') � '.

For = = 0 we have that (0 = {G, H} with the discrete topology and therefore �0((0; ') � ' ⊕ '.

b) We have the exact sequence

�0((0) −→ �0 (�1) −→ �0(�1, (0) −→ 0

� �

'2 '

∈ ∈

(0, 1) ↦−→ 0 + 1

Since the map (0, 1) ↦→ 0 + 1 is onto, the map �0 (�1) → �0(�1, (0) must be zero. Hence

�0(�1, (0) = 0.

For = ≥ 2 we have the following exact sequence

�0((=−1) −→ �0(�=) −→ �0(�=, (=−1) −→ 0

� id �

' −→ '

Again the second arrow has to be trivial and therefore �0(�=, (=−1) = 0. This settles the case

< = 0.

c) We will now use the exact sequence

�1(�=) −→ �1(�=, (=−1) −→ �0((=−1) −→ �0(�=)

For = = 1 we have

�1(�1) −→ �1(�1, (0) −→ �0 ((0) −→ �0(�1)

� � �

�1 ({point}) '2 '

= ∈ ∈

0 (0, 1) ↦−→ 0 + 1

which implies �1(�1, (0) � ker((0, 1) ↦→ 0 + 1) � '.
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For = ≥ 2 we have

0 �
�1(�=) −→ �1(�=, (=−1) −→ �0((=−1) −→ �0(�=)

=
0

from which we get �1(�=, (=−1) = 0.

d) Consider the pair of spaces ((=, �=−) where �=− = {G ∈ (= | G0 ≤ 0} is the lower hemisphere.1

(=

�=−

Figure 66. Sphere relative to southern hemisphere

For = ≥ 1 both �=− and (= are path-connected, hence the inclusion �=− ↩→ (= induces an

isomorphism �0(�=−) → �0((=). From

0 = �1(�=−) −→ �1 ((=) −→ �1((=, �=−) −→ �0 (�=−)
�−→ �0((=)

we see that the connecting homomorphism �1 ((=, �=−) → �0(�=−) must be zero. Therefore

�1((=) → �1 ((=, �=−) is onto. Since �1(�=−) = 0 we get �1((=) � �1 ((=, �=−).

e) Put *=− := {G ∈ (= | G0 < − 1
2
}.

(=

�=−

*=−

Figure 67. Excising a southern cap

By the excision axiom the inclusion

((= \*=−, �=− \*=−) ↩→ ((=, �=−)
1For later use, we also define the upper hemisphere �=+ = {G ∈ (= | G0 ≥ 0}.
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induces an isomorphism

�< ((= \*=−, �=− \*=−) � �< ((=, �=−)

since *̄=− ⊂ �̊=−. We also have that

((= \*=−, �=− \*=−) ≃ (�=+, (=−1) ≈ (�=, (=−1)

where the homeomorphism is given by a vertical projection. This gives us the isomorphism

�< ((= \*=−, �=− \*=−) � �< (�=, (=−1).

In particular,

�1 ((=) � �1((=, �=−) � �1 (�=, (=−1) =
{
', for = = 1

0, otherwise
(3.5)

This concludes the case < = 1.

f) Finally we treat the case < ≥ 2 by induction. Observe that

�< (�=−) −→ �< ((=) −→ �< ((=, �=−) −→ �<−1(�=)

= =

0 0

and
�< (�=) −→ �< (�=, (=−1) −→ �<−1((=−1) −→ �<−1(�=)

= =

0 0

This yields

�< ((=) � �< ((=, �=−) � �< (�=, (=−1) � �<−1((=−1) (3.6)

Induction over < concludes the proof. �

Remark 3.17. Let us describe a generator of �1 ((1) � Z geometrically. We use the isomor-

phisms in (3.5) and start with �1(�1, (0). The map 2 : Δ1 → �1, C ↦→ cos(c(1 − C)), is a

singular 1-simplex with m2 = const1 − const−1. Under the isomorphism �0((0) � '2 it maps

to (1,−1) which generates the kernel of the map '2 → ' given by (0, 1) ↦→ 0 + 1. Hence 2

represents a generator of �1(�1, (0).
The isomorphism �1(�1

+, (
0) → �1(�1, (0) induced by vertical projection gives us a generator

of �1(�1
+, (

0), namely the homology class represented by 2′ : Δ1 → �1
+, C ↦→ 48c (1−C ) .

The isomorphism �1(�1
+, (

0) → �1((1, �1
−) is induced by the inclusion. Hence [2′] ∈

�1((1, �1
−) is a generator. Now

� : Δ1 × [0, 1] → (1, (C, B) ↦→ 48c (1−(B+1)C ) ,
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is continuous and satisfies

� (C, 0) = 2′ (C),
� (C, 1) = 48c (1−2C )

=: 2′′ (C),
� (0, B) = −1 ∈ �1

−,

� (1, B) = 4−8cB ∈ �1
− .

Thus 2′ ≃ 2′′ as maps (Δ1, {0, 1}) → ((1, �1
−). Using the homotopy axiom we compute

[2′] = [2′ ◦ idΔ1] = �1(2′) [idΔ1] = �1(2′′) [idΔ1] = [2′′ ◦ idΔ1] = [2′′].

Therefore [2′′] ∈ �1((1, �1
−) is a generator. Since m2′′ = const2′′ (1) − const2′′ (0) = const−1 −

const−1 = 0, the 1-simplex 2′′ represents a homology class in �1((1). Moreover, since inclusion

induces an isomorphism �1((1) → �1((1, �1
−) we find that [2′′] ∈ �1((1) is a generator.

Using the homotopy (C, B) ↦→ 48c (B−2C ) we see that C ↦→ 4−28cC also represents a generator of

�1((1). Finally, playing the same game with lower and upper hemispheres interchanged shows

that C ↦→ 428cC represents a generator of �1((1) as well.

As a first application of Theorem 3.16 we now prove Brouwer’s fixed point theorem in all

dimensions.

Theorem 3.18 (Brouwer’s fixed point theorem). Let 5 : �= → �=, = ≥ 1, be a continuous

map. Then 5 has a fixed point, i.e., there exists an G ∈ �= such that 5 (G) = G.

Proof. We assume that the map 5 does not have a fixed point and then derive a contradiction.

Let = ≥ 2 (the case = = 1 having been treated in Remark 1.6).

Now consider the continuous map 6 : �= → (=−1 as in

the picture. Denote the inclusion map by ] : (=−1 → �=

and note that 6 ◦ ] = id(=−1 .

6(G)•
5 (G)

G

m�= = (=−1

�=

Figure 68. Constructing a retraction

By the functorial properties of homology we obtain the following commutative diagram:

�=−1((=−1;Z) � Z

�=−1 ( ]) ))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙

�=−1 (id)=id // �=−1((=−1;Z) � Z

�=−1(�=;Z) = 0

�=−1 (6)

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
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Since the identity Z→ Z does not factor through 0 we run into a contradiction. �

Now we are in the position to answer the third question on page 3.

Theorem 3.19. For = ≠ < the space R= is not homeomorphic to R<.

Proof. Let us assume there exists a homeomorphism 5 : R= → R<. Then

5 : R= \ {0} → R< \ { 5 (0)}

is also a homeomorphism. Since R= \ {point} ≃ (=−1 we obtain an isomorphism on the level of

homology groups:

� 9 ((=−1) � � 9 (R= \ {0}) � � 9 (R< \ { 5 (0)}) � � 9 ((<−1).

By Theorem 3.16 this is a contradiction for 9 = = − 1 or 9 = < − 1 unless = = <. �

Proposition 3.20. For = ≥ 1 let B : (= → (= be the reflection given by

B(G0, G1, . . . , G=) = (−G0, G1, . . . , G=).

Then the map

�= (B) : �= ((=) → �= ((=)

is given by �= (B) = − id.

Proof. The proof is given by induction. First consider the case = = 1. Let 2 : Δ1 → (1 be a

1-simplex generating �1((1) and let (1 (B) (2) be its image under the induced homomorphism on

1-chains.

b b∧ ∨

2

(1 (B)

Figure 69. The reflection in one dimension

We need to show that �1(B) [2] = [(1 (B)2] = −[2]. We construct two 2-simplices. The first one

is as indicated in Figure 70.
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b

b

b

b

f1

40 41

42

∧

Figure 70. First 2-simplex f1

Applying the boundary operator yields

mf1 = (1 (B)2 − const + 2.

The second 2-simplex is the constant map.

b

b

b

b

f2

40 41

42

Figure 71. Second 2-simplex f2

We apply the boundary operator again and we get

mf2 = const − const + const = const

It follows that for the chain f1 + f2 that

m (f1 + f2) = (1 (B)2 + 2

and hence

0 = [m (f1 + f2)] = [(1 (B)2 + 2] = [(1 (B)2] + [2] .
This yields the desired result in the case of = = 1.

The induction step = − 1⇒ = follows from the following commutative diagram:

�= ((=)

�= (B)
��

� // �= ((=, �=−)

�= (B)
��

�= (�=+, (=−1)�oo � //

�= (B)
��

�=−1 ((=−1)

�=−1 (B)
��

�= ((=) � // �= ((=, �=−) �= (�=+, (=−1)�oo � // �=−1 ((=−1)

where the horizontal isomorphisms are the ones in (3.6). Commutativity of the last square

follows from Lemma 3.13 and that of the first and the second one from the fact that the horizontal

isomorphisms are induced by inclusion maps (which commute with B). Note here that we have to

choose the lower hemisphere with respect to a different coordinate than the one which is reflected

by B so that B(�=−) = �=−. �
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3. Homology Theory

Remark 3.21. Let 0 : (= → (= with 0(G) = −G for all G ∈ (= be the antipodal map then

�= (0) = (−1)=+1. This follows from the fact that 0 is the composition of = + 1 reflections.

Definition 3.22. A vector field on (= is a map E : (= → R=+1 such that E(G) ⊥ G for all G ∈ (=.

b

G

E(G)

Figure 72. Vector field on (=

Theorem 3.23 (Hairy ball theorem). The =-dimensional sphere (= admits a continuous vec-

tor field without zeros iff = is odd.

In particular, every continuous vector field on (2 has a zero.

Loosely speaking, this means that every continuously combed hedgehog has a “bald” spot.

Proof. If = is odd we simply set E(G) := (−G1, G0,−G3, G2, . . . ,−G=, G=−1). This defines a nowhere

vanishing continuous vector field.

Now let = be even and let E : (= → R=+1 be a continuous vector

field without a zero. Then we can put F (G) :=
E (G)
|E (G) | . We define

the continuous map � : (= × [0, 1] → (= by

� (G, C) := G cos(cC) + F (G) sin(cC) .

Since � (G, 0) = G and � (G, 1) = −G = 0(G) with 0(G) the

antipodal map we have found that 0 ≃ id. Hence �= (0) =
�= (id) = 1.

b

G

−G
∧

F (G)

Figure 73. The retraction

This contradicts �= (0) = (−1)=+1 = −1. �

3.4. The degree of a continuous map

For = ≥ 1 we consider a continuous map 5 : (= → (=. Then the homomorphism

�= ( 5 ) : �= ((=;Z) � Z→ �= ((=;Z) � Z

is given by multiplication with a number which we denote deg( 5 ) ∈ Z.
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3.4. The degree of a continuous map

Definition 3.24. The number deg( 5 ) is called the degree of the map 5 . The degree can be

defined in the same way for continuous maps 5 : (�=, (=−1) → (�=, (=−1).

Examples 3.25. 1.) For a reflection we have deg(B) = −1.

2.) For the antipodal map we have seen that deg(0) = (−1)=+1.

Lemma 3.26. The degree of a function has the following properties

(i) deg(id) = 1;

(ii) deg(const) = 0;

(iii) deg( 5 ◦ 6) = deg( 5 ) deg(6);

(iv) If 5 ≃ 6 then deg( 5 ) = deg(6);

(v) If the map 5 is a homotopy equivalence then deg( 5 ) = ±1;

(vi) For 5 : (�=+1, (=) → (�=+1, (=) we have deg( 5 ) = deg( 5
��
(=
).

Proof. The first and third assertion follow directly from the functorial property of �= ( 5 ). The

fourth and fifth statement follow from the homotopy axiom. The second assertion follows from

the fact that the homomorphism induced by a constant map factors through �= (?C) = 0. The last

statement of the lemma follows fromm the commutativity of the following diagram:

�=+1 (�=+1, (=)
�=+1 ( 5 ) //

� m

��

�=+1 (�=+1, (=)
�m

��
�= ((=)

�=+1 ( 5 |(= ) // �= ((=)

Theorem 3.27. (i) Every 5 ∈ � ((=, (=) without fixed points satisfies deg( 5 ) = (−1)=+1.

(ii) Every 5 ∈ � ((=, (=) without an antipodal point, i.e., 5 (G) ≠ −G for all G ∈ (=, satisfies

deg( 5 ) = 1.

(iii) For = even every 5 ∈ � ((=, (=) has a fixed point or an antipodal point.
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3. Homology Theory

Proof. (i) Let 5 ∈ � ((=, (=) be without a fixed point. Then the line segment joining 5 (G)
and −G does not contain the origin.

b

G
b

bb

0

5 (G) −G

Hence we can define the continuous map

� : (= × [0, 1] → (=, � (G, C) :=
(1 − C) 5 (G) − CG
| (1 − C) 5 (G) − CG | .

Since � (G, 0) = 5 (G) and � (G, 1) = −G = 0(G) with 0 being the antipodal map the map �

is a homotopy for 5 ≃ 0. Thus

deg( 5 ) = deg(0) = (−1)=+1.

(ii) Now let 5 ∈ � ((=, (=) be without antipodal points. Then we can define

� (G, C) :=
(1 − C) 5 (G) + CG
| (1 − C) 5 (G) + CG | .

b

b

b

0

b

G

5 (G)

−G

Since � (G, 0) = 5 (G) and � (G, 1) = G we have that 5 ≃ id and deg( 5 ) = deg(id) = 1

follows.

(iii) Finally, assume that 5 ∈ � ((=, (=) has neither fixed points nor antipodal points. Then

deg( 5 ) = (−1)=+1 by ((i)) and by deg( 5 ) = 1 by ((ii)). Thus = must be odd. �
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3.4. The degree of a continuous map

Let ` : (= × (= → (= for = ≥ 1 be a continuous map. We choose ? ∈ (= arbitrarily and define

91 : (= → (= × (=, G ↦→ (G, ?),
92 : (= → (= × (=, G ↦→ (?, G) .

We then get the following diagram:

Z2
� �= ((=) ⊕ �= ((=)

(�= ( 91 ) ,�= ( 92 ) ) //

(31 ,32 )

66�= ((= × (=)
�= (`) // �= ((=) � Z

with 3` ∈ Z.

Definition 3.28. The pair of numbers (31, 32) ∈ Z2 is called the bidegree of the map `.

Remark 3.29. The bidegree does not depend on the choice of ?. If one chooses another ?′, then

a path from ? to ?′ will yield a homotopy between the corresponding embedding maps 9a and 9 ′a .
Hence they induce the same homomorphisms on homology and therefore the same bidegrees.

Examples 3.30. 1.) Consider the case = = 1, (1 ⊂ C and let the map ` be given by `(I1, I2) =
I1I2. Choose ? = 1 ∈ (1. Then ` ◦ 91 = id and thus

31 = deg(` ◦ 91) = deg(id) = 1.

Similarly, we get 32 = 1. Hence the bidegree by (31, 32) = (1, 1).

2.) In the case of = = 3, (3 ⊂ H we consider the map ` given by quaternionic multiplication,

`(ℎ1, ℎ2) = ℎ1ℎ2. Similar reasoning shows that the bidegree is again given by (31, 32) = (1, 1).

Remark 3.31. The quaternions H form a division algebra isomorphic to R4 as a vector space.

The algebra H is associate and noncommutative. The standard vector space basis we be denoted

by 1, 8, 9 , :. Therefore any ℎ ∈ H can be uniquely written as

ℎ = ℎ0 + ℎ18 + ℎ2 9 + ℎ3: .

Quaternionic multiplication is now determined by the relations 82 = 92 = :2 = 8 9 : = −1. With

the help of the conjugation

ℎ∗ = ℎ0 − ℎ18 − ℎ2 9 − ℎ3:

we can define |ℎ | :=
√
ℎ∗ℎ. We regard (3 ⊂ H as the set of unit-length quaternions.
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3. Homology Theory

Proposition 3.32. Let = = 1 or = = 3 and let : ∈ Z. The map 5: : (= → (= with 5: : I ↦→ I:

given by complex multiplication in the case = = 1 and by quaternionic multiplication in the

case = = 3 has degree :.

Proof. The proof is by induction on :. For : = 0 and : = 1 the statement is trivial because

constant maps have degree 0 while the identity has degree 1. The case of : = −1 has already

been shown for = = 1, since here I ↦→ I−1 = Ī is a reflection and hence deg( 5−1) = −1. On the

other hand for : = −1, = = 3 we note that (1 ⊂ (2 ⊂ (3 regarding C ⊂ H. Now the following

commutative diagram

�1((1)
�1 ( 5−1 |(1 )=deg ( 5−1 |(1 )=−1

��

� �2((2) � �3 ((3)

�3 ( 5−1 )=deg ( 5−1 )
��

�1((1) � �2((2) � �3 ((3)

implies that deg( 5−1) = −1 in the quaternionic case too. The horizontal isomorphisms are

obtained as the composition of the isomorphisms

�: ((:) � �:+1 (�:+1, (:) � �:+1 ((:+1, �:+1− ) � �:+1 ((:+1).

We used that the quaternionic multiplication restricted to the complex numbers C is just complex

multiplication.

Now we are ready to carry out the induction over :. We consider : > 0 and we show that the

statement for : −1 implies that for :. Let ` be complex (resp. quaternionic) multiplication. Then

deg( 5:) = deg(` ◦ ( 5:−1, 51))

= (1, 1) ·
(
deg( 5:−1)
deg( 51)

)
= deg( 5:−1) + deg( 51)
= : − 1 + 1 = :.

The case : < 0 is treated similarly. �

Now we can show that the fundamental theorem of algebra 2.34 also holds for quaternionic

polynomials.

Theorem 3.33 (Fundamental theorem of algebra for quaternions). Every quaternionic

polynomial

?(I) = I: + U1I
:−1 + . . . + U:
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3.4. The degree of a continuous map

of positive degree : has a quaternionic root.

Proof. Suppose the polynomial ? has no root. Then we can define the continuous map

?̂ : (3 → (3 with ?̂(I) :=
? (I)
| ? (I) | . Now consider � (I, C) : (3×[0, 1] → (3 with � (I, C) :=

? (C I)
| ? (C I) | .

We observe that � (I, 0) = const and � (I, 1) = ?̂(I), hence we have ?̂(I) ≃ const and conse-

quently deg( ?̂) = 0.

On the other hand, we can put for I ∈ (3 and C > 0

� (I, C) :=
C: ?

(
I
C

)
|C: ?

(
I
C

)
|

and observe that the expression

C: ?
( I
C

)
= I: + CU1I

:−1 + . . . + C:U

extends continuously to C = 0. The map � : (3 × [0, 1] → (3 satisfies � (I, 0) = 5: (I) and again

� (I, 1) = ?̂(I). Thus ?̂ ≃ 5: and hence deg( ?̂) = :. This contradicts : > 0. �

Now let * ⊂ (= be open, = ≥ 1. Consider a continuous map 5 : * → (= and a point ? ∈ (=
such that 5 −1(?) is compact. Then we have the following diagram (with deg? ( 5 ) ∈ Z):

Z � �= ((=;Z)
(8) //

deg? ( 5 )
��

�= ((=, (= \ 5 −1 (?);Z) �= (*,* \ 5 −1(?);Z)(88)
�

oo

�= ( 5 )
��

Z � �= ((=;Z)
(888)
�

// �= ((=, (= \ {?};Z)

(3.7)

We observe:

1. Concerning (8): This homomorphism is induced by the inclusion

(= = ((=, ∅) ↩→ ((=, (= \ 5 −1(?)).

2. Concerning (88): The inclusion (*,* \ 5 −1(?)) ↩→ ((=, (= \ 5 −1(?)) induces an isomor-

phism by the excision axiom.

3. Concerning (888): Consider the exact homology sequence of ((=, (= \ {?})

0 = �= ((= \ {?}) → �= ((=) → �= ((=, (= \ {?}) → �=−1((= \ {?})︸              ︷︷              ︸
=



0 for = ≥ 2

Z for = = 1

�→ �=−1((=) .

Hence in both cases = = 1 and = ≥ 2 the homomorphism (888) is an isomorphism.
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3. Homology Theory

Definition 3.34. The number deg? ( 5 ) is called the local degree of 5 over ?.

Examples 3.35. 1.) If ? ∉ im( 5 ) then deg? ( 5 ) = 0 because �= ((=, (=) = 0.

2.) If 5 : * → (= is the inclusion map then deg? ( 5 ) = 1 for all ? ∈ *. Namely, in this case the

homomorphisms (i) and (iii) in (3.7) coincide and so do �= ( 5 ) and (ii).

3.) For a homeomorphism 5 : * → 5 (*) ⊂ (= we have that deg? ( 5 ) = ±1 for all ? ∈ 5 (*).
Namely, the homomorphisms (i) and �= ( 5 ) in (3.7) are isomorphisms in this case, hence

multiplication by deg? ( 5 ) is an isomorphism, thus deg? ( 5 ) = ±1.

Proposition 3.36. Assume that 5 −1(?) ⊂  ⊂ + ⊂ * where  is compact and + open. Then

the degree deg? ( 5 ) is given by:

�= ((=) //

deg? ( 5 )
��

�= ((=, (= \  ) �= (+,+ \  )�oo

�= ( 5 |+ )
��

�= ((=)
�

// �= ((=, (= \ {?})

Hence we can replace 5 −1(?) by a larger compact set in * and also * by a smaller open

neighborhood of 5 −1(?). For this reason we call deg? ( 5 ) local.

Proof. The assertion follows from the commutativity of the following diagram:

�= ((=, (= \ 5 −1(?)) �= (*,* \ 5 −1(?))�oo

�= ( 5 )

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙

�= ((=)

66♠♠♠♠♠♠♠♠♠♠♠♠♠

((◗◗
◗◗

◗◗
◗◗◗

◗◗
◗◗

�= ((=, (= \ {?}) �= ((=)�oo

�= ((=, (= \  )

OO

�= (+,+ \  )�oo

OO

�= ( 5 |+ )

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

where all but two arrows are induced by inclusions. �

Corollary 3.37. For 5 : (= → (= we have that deg( 5 ) = deg? ( 5 ) for all ? ∈ (=.

Proof. Choose  = + = (= in Proposition 3.36. �
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3.4. The degree of a continuous map

Lemma 3.38. Let 5 : (�=+, (=−1) → (�=+, (=−1) be continuous and ? ∈ �̊=+ such that

5 −1 (?) ⊂ �̊=+ is compact. Then

deg( 5 ) = deg?

(
5 |�̊=

+

)
.

Proof. We extend 5 to a continuous map � : ((=, �=−) → ((=, �=−) by mapping the circular arc

from a point G on the equator (=−1 to the south pole to the corresponding arc from 5 (G) to the

south pole. In formulas,

� (G0, G
′) =




5 (G0, G
′) if G0 ≥ 0,(

G0, ‖G′‖ ·
(
5 (0, G′/‖G′‖)

)′)
if − 1 < G0 < 0,

(−1, 0) if G0 = −1.

Here we wrote G = (G0, G
′) = (G0, G1, . . . , G=) ∈ (= ⊂ R=+1. Then by Corollary 3.37 and

Proposition 3.36 with  = 5 −1(?), + = �̊=+ and * = (= we find

deg(�) = deg? (�) = deg? (� |�̊=
+
) = deg? ( 5 |�̊=

+
) . (3.8)

On the other hand, the commutative diagram

(�=+, (=−1) //

5
��

((=, �=−)

�

��

(=oo

�

��
(�=+, (=−1) // ((=, �=−) (=oo

yields on the level of homology

�= (�=+, (=−1) � //

· deg( 5 )
��

�= ((=, �=−)

�= (� )
��

�= ((=)�oo

· deg(� )
��

�= (�=+, (=−1) � // �= ((=, �=−) �= ((=)�oo

Hence deg(�) = deg( 5 ). This together with (3.8) concludes the proof. �

Proposition 3.39. Let 5 : * ⊂ (= → (= be continuous, let ? ∈ (= with 5 −1(?) compact and

let 6 ∈ � ((=, (=). Then

deg? ( 5 ◦ 6) = deg? ( 5 ) · deg(6).
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3. Homology Theory

Proof. This follows from the commutative diagram:

�= ((=) //

deg? ( 5 )
--

�= ((=, (= \ 5 −1 (?)) � �= (*,* \ 5 −1(?))

�= ( 5 )
��

�= ((=) � �= ((=, (= \ {?})

�= ((=)

deg(6)=�= (6)

OO

//

deg? ( 5 ◦6)
11

�= ((=, (= \ ( 5 ◦ 6)−1(?)) � �= (6−1(*), 6−1(*) \ ( 5 ◦ 6)−1(?))

�= ( 5 ◦6)
OO

�

Remark 3.40. If -8 are the path-components of - then

�< (-) �
⊕
8

�< (-8),

see Exercise 3.1. The isomorphism is induced by the inclusion maps of the connected components

into - . Similarly one sees that for � ⊂ - and �8 = � ∩ -8

�< (-, �) �
⊕
8

�< (-8, �8) .

Proposition 3.41 (Additivity of the local degree). Let 5 : * → (= be a continuous map. Let

? ∈ (= be such that 5 −1(?) is compact. Let*_ ⊂ * be open and put 5_ := 5 |*_ , _ = 1, . . . , A.

Assume that 5 −1(?) is the disjoint union of the 5 −1
_ (?), i.e. 5 −1(?) = ⊔A_=1

5 −1
_ (?). Then

deg? ( 5 ) =
A∑
_=1

deg? ( 5_) .

Before proving the proposition we give some examples.
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3.4. The degree of a continuous map

Example 3.42

Assume that 5 −1(?) is a finite set, i.e.

5 −1(?) = {?1, . . . , ?A }. Now choose*_ such

that ?_ ∈ *_ and ?a ∉ *_ for a ≠ _. It fol-

lows that

deg? ( 5 ) =
A∑
_=1

deg? ( 5_) .

If the map 5 is a local homeomorphism, then

deg? ( 5_) = ±1 for every _.

*

b

b

b

*_

Figure 74. The case of finite preimage

Example 3.43. Consider the map 5: : (1 → (1 with 5 (I) = I: , : > 0, and set ? = 1. We write

5 −1
: (1) = {:-th unit roots} = {b1, . . . , b:}

and find that 5: |small neighborhood of b_ is a homeomorphism. Hence deg( 5:,_) = ±1. Since : > 0,

the restriction of 5: to a small neighborhood of b_ is homotopic to an embedding of a (: times

larger) neighborhood of b_ into (1. Hence deg1( 5:,_) = 1. We conclude deg1( 5:) = :.

Proof of Proposition 3.41. Choose open neighborhoods +_ such that 5 −1
_ (?) ⊂ +_ ⊂ *_ with

+_ ∩+` = ∅ for _ ≠ `. Now put + = ∪A_=1
+_. Proposition 3.36 tells us deg? ( 5 ) = deg? ( 5 |+).

The commutative diagram

�= ((=)

©
«

1
...

1

ª®®®®
¬
��

//

deg? ( 5 |+ )

,,
�= (+,+ \ 5 −1(?)) �= ( 5 |+ ) // �= ((=, (= \ {?}) �= ((=)

�

oo

⊕A
_=1 �= ((=) //

©
«

deg? ( 51)
. . .

deg? ( 5A )

ª®®®®®
¬

22

⊕A
_=1 �= (+_, +_ \ 5 −1

_ (?))

�

OO

⊕_�= ( 5_ ) //
⊕A

_=1 �= ((=, (= \ {?})

(1,... ,1)

OO

⊕A
_=1 �= ((=)

OO

(1,...,1)

OO

�oo
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yields

deg? ( 5 |+) = (1, . . . , 1) ·
©«
deg? ( 51)

. . .

deg? ( 5A )

ª®®¬
·
©«
1
...

1

ª®®¬
= deg? ( 51) + . . . + deg? ( 5A ). �

3.5. Homological algebra

Before continuing with topological considerations we clarify some of the underlying algebra.

Throughout this section let ' be a commutative ring with unit element.

Definition 3.44. A complex of '-modules  ∗ is a sequence

. . . //  =+1
m=+1 //  =

m= //  =−1
// . . .

of '-modules  = together with homomorphisms m= such that

m= ◦ m=+1 = 0 (3.9)

for all = ∈ Z. We define the space of =-cycles

/= ∗ := {G ∈  = | m=G = 0} = ker(m=) ,

and the space of =-boundaries

�= ∗ := {m=+1G ∈  = | G ∈  =+1} = im(m=+1).

By (3.9) �= ⊂ /= so that we can define the =-th homology by

�= ∗ :=
/= ∗
�= ∗

.

Example 3.45. For

 = =

{
(= (-, �; ') = (= (-; ')/(= (�; '), = ≥ 0

0, = < 0

we obtain relative singular homology �= ∗ = �= (-, �; ').
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3.5. Homological algebra

Definition 3.46. Given two complexes  ∗ and  ′∗ a chain map i∗ :  ∗ →  ′∗ is a sequence of

homomorphisms i= :  = →  ′= such that

 =+1
i=+1 //

m=+1
��

 ′=+1

m′
=+1

��
 =

i= //  ′=

commutes for all = ∈ Z.

Example 3.47. For a continuous map 5 : (-, �) → (., �) the homomorphisms i= = (= ( 5 )
constitute a chain map.

Given a general chain map i∗ we conclude from

i= ◦ m=+1 = m′=+1 ◦ i=+1

that i= (/= ∗) ⊂ /= ′∗ and also that i= (�= ∗) ⊂ �= ′∗. Hence i∗ induces homomorphisms

�= (i∗) : �= ∗ → �= 
′
∗ by �= (i∗) ([I]) = [i=I]. This construction is functorial in the sense

that

�= (i∗ ◦ k∗) = �= (i∗) ◦ �= (k∗) and �= (id ∗) = id�= ∗ .

Definition 3.48. A sequence · · · −→  ′∗
i∗−→  ∗

k∗−→  ′′∗ −→ · · · of chain maps is called

exact iff the sequence · · · −→  ′=
i=−→  =

k=−→  ′′= −→ · · · is exact for every = ∈ Z.

Proposition 3.49. If 0 →  ′∗
8∗−→  ∗

?∗−→  ′′∗ → 0 is an exact sequence of complexes then

the sequence �= 
′
∗
�= (8∗ )−→ �= ∗

�= (?∗ )−→ �= 
′′
∗ is exact for every = ∈ Z.

Proof. a) By assumption we have that ?∗ ◦ 8∗ = 0 and hence

0 = �= (?∗ ◦ 8∗) = �= (?∗) ◦ �= (8∗).

Therefore im�= (8∗) ⊂ ker�= (?∗).

b) It remains to show that ker�= (?∗) ⊂ im�= (8∗).
Let I ∈ /= ∗ represent [I] ∈ ker�= (?∗). Hence ?=I = m

′′G′′ for some G′′ ∈  ′′=+1. Since ?=+1
is surjective we can choose G ∈  =+1 with ?=+1G = G′′. We compute

?= (I − mG) = m′′G′′ − m′′?=+1G = m′′G′′ − m′′G′′ = 0 .
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By exactness of the complex there exists H′ ∈  ′= such that I − mG = 8=H′. Now we get

8=−1m
′H′ = m8=H

′
= m [I − mG] = mI − mmG = 0 .

Since 8=−1 is injective it follows that m′H′ = 0, i.e., H′ ∈ /= ′∗ represents an element in homology.

Finally we see

�= (8∗) ([H′]) = [8=H′] = [I − mG] = [I].
This shows ker�= (?∗) ⊂ im�= (8∗). �

Definition 3.50. Let 0 →  ′∗
8∗−→  ∗

?∗−→  ′′∗ → 0 be an exact sequence of complexes. We

construct the connecting homomorphism

m∗ : �= 
′′
∗ → �=−1 

′
∗

as follows: Let I′′ ∈ /= ′′∗ represent an element [I′′] ∈ �= ′′∗ . Since ?= is surjective we can

choose G ∈  = with ?=G = I
′′. For mG ∈  =−1 we observe

?=−1mG = m
′′?=G = m

′′I′′ = 0.

By exactness there is a unique H′ ∈  ′
=−1

with 8=−1H
′ = mG. Moreover,

8=−2m
′H′ = m8=−1H

′
= mmG = 0.

Since 8=−2 is injective we have m′H′ = 0, i.e., H′ ∈ /=−1 
′
∗. Now put

m∗[I′′] := [H′].

Lemma 3.51. The conncecting homomorphism m∗ : �= 
′′
∗ → �=−1 

′
∗ is well defined, i.e.,

independent of the choices made in its construction.

Proof. There are two choices in the construction of the connecting homomorphism: that of the

preimage G with ?=G = I
′′ and that of the representing cycle I′′ itself.

As to the choice of G, let ?=G = ?=Ḡ = I′′. For the corresponding elements H′, H̄′ ∈  ′
=−1

we

have and 8=−1H
′ = mG and 8=−1 H̄

′ = mḠ. Since ?= (G − Ḡ) = 0 there exists an l′ ∈  ′= with

G − Ḡ = 8= (l′). We compute

8=−1 (H′ − H̄′) = m (G − Ḡ) = m (8=l′) = 8=−1ml
′ ,

from which we conclude that H − H̄′ = ml′ and therefore [H′] = [ H̄′].
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As to the choice of the representing cycle I′′, it suffices to show that if I′′ is a boundary then

[H′] = 0. Let I′′ = m′′Z ′′ be a boundary. Since ?=+1 is onto we can choose b ∈  =+1 with

?=+1b = Z ′′. Then G = mb is an admissible choice because

?=G = ?=mb = m
′′?=+1b = m

′′Z ′′ = I′′ .

Thus mG = mmb = 0 and hence H′ = 0. �

It is easy to see that the connecting homomorphism is indeed a homomorphism. Now we are

ready to prove the Exactness Axiom.

Proposition 3.52. If 0 →  ′∗
8∗−→  ∗

?∗−→  ′′∗ → 0 is an exact sequence of complexes then

the long homology sequence

· · · // �=+1 ′′∗
m∗ // �= 

′
∗
�= (8∗ ) // �= ∗

�= (?∗ )// �= ′′∗
m∗ // �=−1 

′
∗ // · · ·

is also exact.

Proof. In view of Proposition 3.49 it remains to show ker� (8) = im m∗ and ker m∗ = im� (?).

a) im m∗ ⊂ ker� (8):
Using the notation of Definition 3.50 we compute

� (8)m∗[I′′] = � (8)m∗[?G] = � (8) [8−1mG] = [mG] = 0 .

b) ker� (8) ⊂ im m∗:
Let � (8) [I′] = 0. Then we have [8I′] = 0 and therefore 8I′ = mG. Put I′′ := ?G. Then

m′′I′′ = m′′?G = ?mG = ?8I′ = 0. Hence I′′ ∈ /= ∗ represents an element in homology. We

compute

m∗[I′′] = m∗ [?G] = [8−1mG] = [I′] .

Hence [I′] ∈ im m∗.

c) im� (?) ⊂ ker m∗:
This follows from

m∗� (?) [I] = m∗[?I] = [8−1 mI︸︷︷︸
=0

] = 0 .

d) ker m∗ ⊂ im� (?):
Let m∗[I′′] = 0. We write I′′ = ?G and compute

0 = m∗[I′′] = m∗ [?G] = [8−1mG] .
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This implies that 8−1mG is a boundary in  ′. Hence we have that 8−1mG = m′G′ and therefore

m (G − 8G′) = mG − 8m′G′ = 0 .

This finally leads to

� (?) [G − 8G′] = [?G − ?8G′] = [?G] = [I′′] ,

hence [I′′] ∈ im� (?). �

Example 3.53. For  ′= = (= (�),  = = (= (-) and

 ′′= = (= (-, �) =
(= (-)
(= (�)

Proposition 3.52 now yields the Exactness Axiom for singular homology.

Example 3.54. Consider a triple of spaces (-, �, �) with � ⊂ � ⊂ - and set

 ′= = (= (�)/(= (�) = (= (�, �)
 = = (= (-)/(= (�) = (= (-, �)
 ′′= = (= (-)/(= (�) = (= (-, �) .

Then the canonical sequence

0 //  ′= //  = //  ′′= // 0

is again exact. By Proposition 3.52 we obtain the long exact homology sequence for a triple:

. . . // �=+1 (-, �)
m∗

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣

�= (�, �) // �= (-, �) // �= (-, �)
m∗

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣❣

❣❣❣
❣❣❣

�=−1 (�, �) // . . .

Proposition 3.55. The long homology sequence is natural, i.e., if the diagram of chain maps

0 //  ′∗
8∗ //

i′∗
��

 ∗
?∗ //

i∗
��

 ′′∗ //

i′′∗
��

0

0 // !′∗
9∗ // !∗

@∗ // !′′∗ // 0
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is commutative with exact rows then the diagram

. . .
�=+1 (?∗ ) // �=+1 ′′∗

m∗ //

�=+1 (i′′∗ )
��

�= 
′
∗
�= (8∗ ) //

�= (i′∗ )
��

�= ∗
�= (?∗ )//

�= (i∗ )
��

�= 
′′
∗

m∗ //

�= (i′′∗ )
��

. . .

. . .
�=+1 (@∗ ) // �=+1!′′∗

m∗ // �=!
′
∗
�= ( 9∗ ) // �=!∗

�= (@∗ )// �=!′′∗
m∗ // . . .

is commutative as well.

Proof. By assumption we have i ◦ 8 = 9 ◦ i′ and i′′ ◦ ? = @ ◦ i, hence

�= (i) ◦ �= (8) = �= ( 9) ◦ �= (i′),
�= (i′′) ◦ �= (?) = �= (@) ◦ �= (i).

We are left to show that the diagram

�= 
′′ m∗ //

�= (i′′ )
��

�=−1 
′

�=−1 (i′ )
��

�=!
′′ m∗ // �=!

′

commutes. We calculate

�=−1 (i′)m∗[?G] = �=−1(i′) [8−1mG] = [i′8−1mG] = [ 9−1imG]
= [ 9−1miG] = m∗[?iG] = m∗[i′′?G] = m∗�= (i′′) [?G] ,

which proves the assertion. �

Example 3.56. Let 5 ∈ � ((-, �), (., �)). For  ′= = (= (�),  = = (= (-),  ′′= = (= (-, �)
and i′= = (= ( 5 |�), i= = (= ( 5 ), and i′′= the induced homomorphism on (= (-, �) we recover

Lemma 3.13.

Definition 3.57. Let i, k :  →  ′ be chain maps. A chain homotopy between i and k is a

sequence of homomorphisms

ℎ= :  = →  ′=+1

such that

i= − k= = m′=+1ℎ= + ℎ=−1m= ,

for all = ∈ Z. The maps i and k are called homotopic if such a homotopy exists. In this case

we write i ≃ k.
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Proposition 3.58. (i) The relation “≃” is an equivalence relation on the set of all chain

maps  →  ′.

(ii) If i ≃ k :  →  ′ and i′ ≃ k′ :  ′ →  ′′ then i′i ≃ k′k :  →  ′′.

Proof. (i) First we show that “≃” is an equivalence relation.

a) To show that i ≃ i choose ℎ = 0.

b) The statement i ≃ k ⇒ k ≃ i follows from replacing ℎ by −ℎ.

c) If i ≃
ℎ
k and k ≃

:
j then i ≃

ℎ+:
j .

(ii) Assume that i ≃
ℎ
k and i′ ≃

ℎ′
k′. Now we calculate

i′i − i′k = i′(m′ℎ + ℎm) = mi′ℎ + i′ℎm ,

hence i′i ≃
i′ℎ

i′k. Similarly we see

i′k − k′k = (m′ℎ′ + ℎ′m)k = m′ℎ′k + ℎ′km ,

hence i′k ≃
ℎ′k

k′k. Combining both equivalences we get the desired result, namely

i′i ≃ i′k ≃ k′k .

Homotopic chain maps induce the same homomorphisms on homology:

Proposition 3.59. If i ≃ k :  →  ′ then �= (i) = �= (k) : �= → �= 
′ for all =.

Proof. Let I ∈ /= . We compute

�= (i) [I] = [iI] = [kI + m′ℎI + ℎmI] = [kI] = �= (k) [I]

because mI = 0 and [m′ℎI] = 0. �

Definition 3.60. A chain map i :  →  ′ is called a homotopy equivalence if there exists a

chain map k :  ′ →  such that ki ≃ id and ik ≃ id ′ . If such a homotopy equivalence

exists we write  ≃  ′.
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Corollary 3.61. If  ≃
i
 ′ then �= �

�= (i)
�= 

′ for all =.

3.6. Proof of the homotopy axiom

We put � := [0, 1] and define the affine linear map

)
9
= : Δ=+1 → Δ

= × �

for 9 = 0, . . . , = by

)
9
= (4:) =

{
(4: , 0), : ≤ 9 ,
(4:−1, 1), : > 9 .

In the case = = 0 we have

)0
0 : Δ1 → Δ

0 × � = {40} × � ,
which is visualized in Figure 75.

b b

40 41

)0
0

b

b

(40, 1)

(40, 0)

Figure 75. )0
0

In the case = = 1 we find

b b

b

40 41

42

)0
1

b

bb

b

(40, 0) (41, 0)

(40, 1) (41, 1)

b b

b

40 41

42

)1
1

b

b

b

b

(40, 0) (41, 0)

(40, 1) (41, 1)

Figure 76. )0
1

and )1
0
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Lemma 3.62. The composition of the operators ) and the affine linear map � (defined in (3.1)

on page 80) yields:

)
9+1
= ◦ � 8=+1 = (� 8= × id) ◦ ) 9

=−1
( 9 ≥ 8),

)
9
= ◦ � 8+1=+1 = (� 8= × id) ◦ ) 9

=−1
( 9 < 8),

) 8= ◦ � 8=+1 = ) 8−1
= ◦ � 8=+1 (1 ≤ 8 ≤ =),

)0
= ◦ �0

=+1 = 81,

)== ◦ �=+1=+1 = 80,

with 8C : Δ= → Δ= × � being the inclusion map G ↦→ (G, C).

Proof. Let us prove the first formula where 9 ≥ 8. If : < 8 then

)
9+1
= ◦ � 8=+1(4:) = )

9+1
= (4:) = (4: , 0) = (� 8= × id) (4: , 0) = (� 8= × id) ◦ ) 9

=−1
(4:).

If 8 ≤ : ≤ 9 then

)
9+1
= ◦ � 8=+1 (4:) = )

9+1
= (4:+1) = (4:+1, 0) = (� 8= × id) (4: , 0) = (� 8= × id) ◦ ) 9

=−1
(4:).

If : > 9 then

)
9+1
= ◦ � 8=+1 (4:) = )

9+1
= (4:+1) = (4: , 1) = (� 8= × id) (4:−1, 1) = (� 8= × id) ◦ ) 9

=−1
(4:).

The proofs of the other formulas are similar exercises in index shifting. �

Now let f : Δ= → - be a singular =-simplex. Note that (f × id) ◦ ) 9= ∈ � (Δ=+1, - × �). We

define %f ∈ (=+1 (- × �) by

%f :=

=∑
9=0

(−1) 9 (f × id) ◦ ) 9= .

We extend % linearly to chains and get a linear map

% : (= (-) → (=+1 (- × �).

This homomorphism descends to relative chains

% : (= (-, �) → (=+1 (- × �, � × �).

The operator % is called prism operator.
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Lemma 3.63. Let (-, �) be a pair of spaces. The operator % is a chain homotopy for

((8-0 ), ((8-1 ) : ((-, �) → ((- × �, � × �) ,

where 8-C : - → - × � denotes the inclusion map G ↦→ (G, C).

Proof. We have to show that

((8-0 ) − ((8
-
1 ) = %m + m%. (3.10)

Let f : Δ= → - be a singular =-simplex. We compute, using Lemma 3.62:

%mf = %

=∑
8=0

(−1)8 (f ◦ � 8=)

=

=∑
8=0

(−1)8
=−1∑
9=0

(−1) 9 (f ◦ � 8= × id) ◦ ) 9
=−1

=

∑
0≤ 9<8≤=

(−1)8+ 9 (f × id) ◦ (� 8= × id) ◦ ) 9
=−1

+
∑

0≤8≤ 9≤=−1

(−1)8+ 9 (f × id) ◦ (� 8= × id) ◦ ) 9
=−1

= −
∑

0≤ 9<8≤=
(−1)8+ 9+1 (f × id) ◦ ) 9= ◦ � 8+1=+1

−
∑

0≤8≤ 9≤=−1

(−1)8+ 9+1 (f × id) ◦ ) 9+1= ◦ � 8=+1.

On the other hand, we find

m%f = m

=∑
9=0

(−1) 9 (f × id) ◦ ) 9=

=

=∑
9=0

(−1) 9
=+1∑
8=0

(−1)8 (f × id) ◦ ) 9= ◦ � 8=+1

=

∑
0≤8< 9≤=

(−1)8+ 9 (f × id) ◦ ) 9= ◦ � 8=+1 (8 < 9)

+
=∑
8=0

(f × id) ◦ ) 8= ◦ � 8=+1 (8 = 9)

−
=+1∑
8=1

(f × id) ◦ ) 8−1
= ◦ � 8=+1 (8 = 9 + 1)

+
∑

1≤ 9+1<8≤=+1
(−1)8+ 9 (f × id) ◦ ) 9= ◦ � 8=+1 (8 > 9 + 1)
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=

∑
0≤8≤ 9′≤=−1

(−1)8+ 9′+1 (f × id) ◦ ) 9
′+1
= ◦ � 8=+1

+(f × id) ◦ 81 − (f × id) ◦ 80
+

∑
0≤ 9<8′≤=

(−1)8′+ 9+1 (f × id) ◦ ) 9= ◦ � 8
′+1
=+1

In the last step we changed the summation indices to 9 ′ = 9 − 1 and 8′ = 8 − 1. We see that

%mf + m%f = (f × id) ◦ 81 − (f × id) ◦ 80
= 8-1 ◦ f − 8-0 ◦ f
= (= (8-1 )f − (= (8-0 )f

which proves the lemma. �

Proposition 3.64. If 5 ≃ 6 : (-, �) → (., �) then we have

(( 5 ) ≃ ((6) : ((-, �) → ((., �)

Proof. Let � be a homotopy for 5 and 6, i.e., � ∈ � ((- × �, � × �), (., �)) with

5 = � ◦ 8-1 , 6 = � ◦ 8-0 .

Then by (3.10) we get

(( 5 ) − ((6) = ((�)((8-1 ) − ((�)((8-0 ) = ((�)%m + ((�)m% = ((�)%m + m((�)%.

Hence ((�)% is a chain homotopy for (( 5 ) and ((6). �

Corollary 3.65. The homotopy axiom holds for singular homology.

3.7. Proof of the excision axiom

We want to show that the inclusion (- \*, � \*) ↩→ (-, �) induces an isomorphism

�= (- \*, � \*) � �= (-, �)

provided *̄ ⊂ �̊. -

*�

Figure 77. Setup for the excision axiom
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Let - be a topological space and let U = {*8}8∈� be an open cover of - . A chain

f =
∑
9 U 9f9 ∈ (= (-) is called U-small iff for each 9 there exists an 8 such that f9 (Δ=) ⊂ *8.

We denote

(U= (-) := {f ∈ (= (-) | f isU-small}

= im

(⊕
8∈�

(= (*8)
⊕8(= ( 98 )
−−−−−−−−−→ (= (-)

)

with 98 : *8 → - the inclusion map. For � ⊂ - we put

(U= (-, �) :=
(U= (-)
(U= (�)

.

Theorem 3.66 (Small chain theorem). The inclusion (U= (-, �) → (= (-, �) induces an iso-

morphism in homology.

Before coming to the proof we show that the small chain theorem implies the excision axiom.

To this extent let (-, �) be a pair of spaces and let * ⊂ � be such that *̄ ⊂ �̊. Now set *1 := �̊

and *2 := - \ *̄. ThenU = {*1, *2} forms an open cover of the space - . We compute

(U= (-, �) =
(U= (-)
(U= (�)

=
(= ( �̊) + (= (- \ *̄)
(= ( �̊) + (= (� \ *̄)

=
(= (- \ *̄)

((= ( �̊) + (= (� \ *̄)) ∩ (= (- \ *̄)

=
(= (- \ *̄)
(= (� \ *̄)

.

Similarly we get

(U= (- \*, � \*) =
(= ( �̊ \*) + (= (- \ *̄)
(= ( �̊ \*) + (= (� \ *̄)

=
(= (- \ *̄)
(= (� \ *̄)

.

Thus

(U= (-, �) = (U= (- \*, � \*).
In the following commutative diagram all arrows are induced by inclusions.

(U< (- \*, � \*)

��

= // (U= (-, �)

��
(< (- \*, � \*) // (= (-, �)
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By the small chain theorem the vertical arrows induce isomorphisms on homology and the

excision theorem is proved.

It remains to prove Theorem 3.66. We define the barycenter of Δ= by

�= :=
1

= + 1

=∑
9=0

4 9 .

Example 3.67. For example,

�0 = 40,

�1 =
1

2
(40 + 41),

�2 =
1

3
(40 + 41 + 42).

40 41

�1

40 41

42

�2
b

Figure 78. Barycenters in 1 and 2 di-

mensions

For an affine map f : Δ= → Δ=+1 we define the affine map �=f : Δ=+1 → Δ=+1 by

(�=f) (4:) =
{
�=+1, : = 0,

f (4:−1), : ≥ 1.

Example 3.68. For the example f = �0
2

: Δ1 → Δ2 see Figure 79.

Now we set

(aff
: (Δ

=) :=
{
f ∈ (: (Δ=)

��f =

∑
9

U 9f9 and each f9 is affine
}
.

By linear extension we get a homomorphism

�= : (aff
= (Δ=+1) → (aff

=+1 (Δ
=+1) .

Lemma 3.69. The homomorphism �= has the following properties:

(i) m�0(2) = 2 − (
∑
9 U 9)�0 where 2 =

∑
9 U 9f9;

(ii) m�= (2) = 2 − �=−1m2 for = ≥ 1.
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40 41

b

b

b

40 41

42

40 41

42
b

bb

�

�1�

Figure 79. �1

Proof. (i) It suffices to show the assertion for an affine simplex 2. We then find

(�02) (40) = �0, (�02) (41) = 2(40)

and hence

m�0(2) (40) = (�0(2)) (41) − (�0(2)) (40) = 2(40) − �0 = (2 − 1�0) (40)

as desired.

(ii) is left as an exercise. �

Lemma 3.70. To each topological space - and each = ∈ N0 we can associate homomorphisms

Sd= : (= (-) → (= (-),
&= : (= (-) → (=+1 (-),

such that

(i) Sd∗ is a chain map, i.e., m ◦ Sd= = Sd=−1 ◦ m;

(ii) &∗ is a chain homotopy between id and Sd∗, i.e., id−Sd= = m ◦ &= +&=−1 ◦ m;
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(iii) Sd∗ and &∗ are natural, i.e., for every 5 ∈ � (-,. ) the following diagrams commute:

(= (-)
Sd= //

(= ( 5 )
��

(= (-)
(= ( 5 )
��

(= (-)
&= //

(= ( 5 )
��

(=+1 (-)
(=+1 ( 5 )
��

(= (. )
Sd= // (= (. ) (= (. )

&= // (=+1 (. )

(iv) If the map f : Δ= → Δ= is affine then each simplex f9 occuring in Sd= (f) or in &= (f)
is affine and

diam(f9) ≤
=

= + 1
diam(f).

Proof. The construction of Sd= and &= will be done recursively, the proof is by induction over

=. We start by considering the case = = 0. We put Sd0 := id : (0 (-) → (0 (-) and &0 := 0. It

is obvious that the four assertions hold.

In the case = ≥ 1 we assume that Sd=−1 and &=−1 are already defined and we set for a singular

simplex f : Δ= → -:

Sd= (f) := (= (f) (�=−1(Sd=−1(m (idΔ=)︸︷︷︸
∈(aff

= (Δ= )

)

︸       ︷︷       ︸
∈(aff

=−1
(Δ= )

)

︸                  ︷︷                  ︸
∈(aff

=−1
(Δ= )

)

︸                            ︷︷                            ︸
∈(aff

= (Δ= )

and

&= (f) = (=+1 (f) (�=(idΔ= −Sd= (idΔ=) −&=−1m idΔ=︸                                  ︷︷                                  ︸
∈(aff

= (Δ= )

)

︸                                         ︷︷                                         ︸
∈(aff

=+1 (Δ= )

).

We have to verify assertions (i)-(iv). We check (iii):

Sd= ((= ( 5 ) (f)) = (= ((= ( 5 ) (f)) (�=−1(Sd=−1(m (idΔ=))))
= (= ( 5 ◦ f) (�=−1(Sd=−1 (m (idΔ=))))
= (= ( 5 ) ◦ (= (f) (�=−1(Sd=−1 (m (idΔ=))))
= (= ( 5 ) (Sd= (f)).

The computation for &= is similar.
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Next we check (i): First we consider the case that - = Δ= and f = idΔ= .

m (Sd= (idΔ=)) = m (�=−1(Sd=−1 (m idΔ=)))
L. 3.69

= Sd=−1(m idΔ=) − �=−2m (Sd=−1(m idΔ=))
ind. hyp.

= Sd=−1(m idΔ=) − �=−2Sd=−2 mm︸︷︷︸
=0

idΔ=

= Sd=−1(m idΔ=).

For a general simplex f : Δ= → - we then find

m (Sd= (f)) = m ((= (f) (Sd= (idΔ=)))
= (= (f) (m (Sd= (idΔ=)))
= (= (f) (Sd=−1(m idΔ=))
(888)
= Sd=−1 ((= (f) (m (idΔ=)))
= Sd=−1 (m(= (f) (idΔ=))
= Sd=−1 (mf).

Now we check (ii): Again we first consider the case - = Δ= and f = idΔ= .

m& (idΔ=) = m�= (idΔ= −Sd= (idΔ=) −&=−1m idΔ=)
L. 3.69

= idΔ= −Sd= (idΔ=) −&=−1m idΔ=

−�=−1m
(
idΔ= −Sd= (idΔ=) −&=−1m idΔ=

)
ind. hyp.

= idΔ= −Sd= (idΔ=) −&=−1m idΔ=

−�=−1

(
m idΔ= −mSd= (idΔ=) − (m idΔ= −Sd=−1 (m idΔ=)

+&=−2 ( mm︸︷︷︸
=0

idΔ=))
)

(8)
= idΔ= −Sd= (idΔ=) −&=−1m idΔ= .

The passage to general f can now be done as before.

Finally we check (iv): It is clear from the recursive definition of Sd= and of &= that each simplex

f9 occuring in Sd= (f) or in &= (f) is again affine. The diameter of an affine simplex is the

maximal distance of any two of its vertices. We distinguish two cases:

1. The vertices ?, @ of f9 of maximal distance lie on mf.

? @

Figure 80. Vertices of maximal distance
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3. Homology Theory

Then we find by the induction hypothesis

3 (?, @) ≤ = − 1

=
diam(face of f) <

=

= + 1
diam(f) .

2. One vertex is �=:

�=
?8

Figure 81. Barycenter is a vertex

Then we find

3 (?8, �=) =
����?8 − 1

= + 1

=∑
9=0

? 9

����
=

���� 1

= + 1

=∑
9=0

(?8 − ? 9)
����

≤ 1

= + 1

=∑
9=0

|?8 − ? 9 |︸    ︷︷    ︸
≤diam(f) and =0 for 9=8

≤ =

= + 1
diam(f) . �

Conclusion 3.71. We have that Sd ≃ id and therefore

Sd − Sd2
= Sd ◦ m ◦& + Sd ◦ & ◦ m
= m ◦ Sd ◦& + Sd ◦ & ◦ m.

We conclude that Sd2 ≃ Sd ≃ id. Iterating this procedure we find that SdA ≃ id for all A ∈ N.

Hence there exist homomorphisms &
(A )
= : (= (-) → (=+1 (-) with

SdA= − id = m ◦& (A )= + & (A )=−1
◦ m .

For f affine, we have for every f9 occuring in SdA (f) that

diam(f9) ≤
( =

= + 1

)A
diam(f)
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Lemma 3.72. For f : Δ= → - continuous there exists a Y > 0 such that all Y-balls ∩Δ= are

completely contained in f−1(*8) for some *8 ∈ U.

Proof. Assume the assertion were false. Then for Y: = 1/: there exists a point ?: ∈ Δ= such

that

� 1
:
(?:) = {G ∈ Δ= | |G − ?: | < Y:}

is not contained in any of thef−1(*8). After passing to a subsequence we have that ?: → ? ∈ Δ=
by compactness of Δ=. Choose 80 with ? ∈ f−1(*80). Since f−1(*80) is open there exists a X > 0

such that �X (?) ⊂ f−1(*80). Now choose : so large, that |?: − ? | < X/2 and Y: = 1
: < X/2.

We then find

� 1
:
(?:) ⊂ �X (?) ⊂ f−1(*80),

a contradiction. �

Corollary 3.73. Assume that f : Δ= → - is continuous. Then there exists an A (f) ∈ N such

that every simplex f9 occuring in SdA (f) or in & (A ) (f) for A ≥ A (f) is completely contained

in one of the*8, i.e., SdA (f), & (A ) (f) ∈ (U= (-).

Finally we can prove the small chain theorem.

Proof of Theorem 3.66. a) First we consider the case � = ∅.

i) We show injectivity: Assume that I ∈ /U= (-) with �= ( 9) ([I]�U= ) = 0. Then there exists

an G ∈ (=+1 (-) with mG = I. Now we calculate

m SdAG︸︷︷︸
∈(U

=+1 (-) for large A

= SdAmG

= SdA I

= I − m& (A ) I −& (A ) mI︸︷︷︸
=0

.

Hence

I = m ( SdAG + & (A ) I︸          ︷︷          ︸
∈(U= (-) for large A

)

and therefore [I]�U= = 0.
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3. Homology Theory

ii) We show surjectivity: Let [I] ∈ �= (-) be given. We know that SdA I ∈ (U= (-) for A large

enough. We compute

[SdA=I]︸ ︷︷ ︸
∈�= ( 9) (�U= (-) )

= [I − m& (A )= I −& (A )
=−1

mI︸︷︷︸
=0

] = [I].

b) Now we pass to general (-, �). Consider the commutative diagram with exact rows:

�U= (�) //

�

��

�U= (-) //

�

��

�U= (-, �) //

��

�U
=−1
(�) //

�

��

�U
=−1
(-)

�

��
�= (�) // �= (-) // �= (-, �) // �=−1 (�) // �=−1(-)

By part a) of the proof we know that the outer four arrows are isomorphisms. The Five Lemma

(Exercise 3.11) implies that the map �U= (-, �) → �= (-, �) is also an isomorphism. �

3.8. The Mayer-Vietoris sequence

Let - be a topological space and let � ⊂ - be a subset. Assume that *1, *2 ⊂ - are open with

*1 ∪*2 = - , hence U = {*1, *2} forms an open cover of - . Consider the exact sequence of

chain complexes

0 // (= (*1 ∩*2)

(
(= (81 )
−(= (82 )

)
// (= (*1) ⊕ (= (*2)

((= ( 91 ) ,(= ( 92 ) )// (U= (-) // 0

with the inclusion maps 8a : *1 ∩*2 → *a and 9a : *a → - . We then get the following long

exact homology sequence:

· · · → �= (*1 ∩*2)

(
�= (81 )
−�= (82 )

)
// �= (*1) ⊕ �= (*2)

(�= ( 91 ) ,�= ( 92 ) ) // �U= (-)
m→ �=−1 (*1 ∩*2) → · · ·

By the small chain theorem �U= (-) is canonically isomorphic to�= (-). Using this isomorphism

we can replace �U= (-) in the above exact homology sequence by �= (-).

· · · → �= (*1) ⊕ �= (*2)
(�= ( 91 ) ,�= ( 92 ) )//

(�= ( 91 ) ,�= ( 92 ) ) **❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱
�U= (-)

m //

�

��

�=−1(*1 ∩*2) → · · ·

�= (-)
m"+

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

The same reasoning applies to relative homology and we obtain
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Theorem 3.74 (Mayer-Vietoris sequence). Let - be a topological space, let � ⊂ - and let

*1, *2 ⊂ - be open such that *1 ∪*2 = - . Set �a := � ∩*a and let

8a :(*1 ∩*2, �1 ∩ �2) → (*a, �a),
9a :(*a, �a) → (-, �),

be the inclusion maps, a = 1, 2. Then the following sequence is exact and natural

· · · m"+
// �= (*1 ∩*2, �1 ∩ �2)

(
�= (81 )
−�= (82 )

)
// �= (*1, �1) ⊕ �= (*2, �2)

(�= ( 91 ) ,�= ( 92 ) )
qq❝❝❝❝❝❝❝❝

❝❝❝❝❝❝
❝❝❝❝❝❝

❝❝❝❝❝❝
❝❝❝❝❝❝

❝❝❝❝❝❝
❝❝❝❝

�= (-, �)
m"+

// �=−1(*1 ∩*2, �1 ∩ �2) // · · ·

Example 3.75. We give a new computation of the homology of (1. To this extent we cover the

circle as indicated in the picture.

*1 *2

Figure 82. Open cover of (1

We directly see that

*1 ≈ *2 ≈ (0, 1) ≃ {?}

and

*1 ∩*2 ≈ (0, 1) ⊔ (0, 1) ≃ {?1, ?2}

Consider the following part of the Mayer-Vietoris sequence.

�= (*1 ∩*2) = �= ({?1, ?2}) // �= (*1) ⊕ �= (*2) = �= ({?}) ⊕ �= ({?}) // �= ((1)

m"+
qq❜❜❜❜❜❜❜❜❜❜

❜❜❜❜❜❜❜
❜❜❜❜❜❜❜

❜❜❜❜❜❜❜
❜❜❜❜❜❜❜

❜❜❜❜❜❜❜
❜❜❜❜❜❜❜

❜❜❜❜❜

�=−1(*1 ∩*2) = �=−1({?1, ?2}) // �=−1 (*1) ⊕ �=−1 (*2) = �=−1 ({?}) ⊕ �=−1 ({?})

If = ≥ 2 then all homologies of the point occuring in this diagram vanish. Hence �= ((1) = 0 for

all = ≥ 2. Since (1 is path-connected we have that �0((1) � '. In the case = = 1 we find

0 // �1 ((1) // '2

(
1 1
1 1

)
// '2
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3. Homology Theory

To compute �1 ((1) we calculate

�1 ((1) � ker

(
1 1

1 1

)
=

{(
−G
G

) ����G ∈ '
}
� '.

Example 3.76. Now we consider the space - = �2 as given in the picture.

*1 *2

Figure 83. Open cover of figure 8

It is easy to see that *1 ≈ *2 ≃ (1 and *1 ∩ *2 ≃ {?}. Since �2 is path-connected we find

�0(�2) � '.

�= (*1 ∩*2) → �= (*1) ⊕ �= (*2)︸                 ︷︷                 ︸
��= ((1 )⊕�= ((1 )

→ �= (�2) → �=−1 (*1 ∩*2)︸             ︷︷             ︸
��=−1 ({?})

In the case of = ≥ 2 we find the exact sequence

0 // �= (�2) // 0

and hence �= (�2) = 0. For = = 1 we find

�1({?})︸    ︷︷    ︸
=0

→ �1 ((1) ⊕ �1 ((1)︸                ︷︷                ︸
�'2

→ �1(�2) → �0({?})︸    ︷︷    ︸
�'

→ �0((1) ⊕ �0((1)︸                ︷︷                ︸
�'2

.

The last map in this diagram is given by

�0 ({?}) � ' (
1
1

) ::
// �0((1) ⊕ �0((1) � '2

and hence injective. Consequently we find the isomorphism

�1(�2) � �1(*1) ⊕ �1(*2) � '2 .

3.9. Generalized Jordan curve theorem

In this section we will use the Mayer-Vietoris sequence to prove the Jordan curve theorem in

arbitrary dimensions.
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3.9. Generalized Jordan curve theorem

Lemma 3.77. Let - be a topological space and let *8 ⊂ - be open with *8 ⊂ *8+1 and

∪8∈N*8 = - . Furthermore let ]= : *= ↩→ - and ]=,< : *= ↩→ *< for < ≥ = be the inclusion

maps. Then we have:

(i) For each U ∈ �: (-; ') there exists an =0 such that U ∈ im(�: (]=)) for all = ≥ =0.

(ii) For each U= ∈ �: (*=; ') with �: (]=) (U=) = 0 there exists an <0 such that

�: (]=,<) (U=) = 0 for all < ≥ <0.

Proof. (i) Let U ∈ �: (-). We represent U by

;∑
9=1

U 9f9 ∈ /: (-; '), U 9 ∈ ', f9 ∈ � (Δ:, -).

Note that f9 (Δ:) ⊂ - is a compact subset and therefore � :=
⋃;
9=1 f9 (Δ:) ⊂ - is

compact. Hence there exists an =0 such that for all = ≥ =0 we have � ⊂ *=. We conclude

that
;∑
9=1

U 9f9 ∈ /: (*=; ')

for all = ≥ =0 and therefore

U =

[∑
U 9f9

]
�: (-)

= �= (]=)
( [∑

U 9f9

]
�: (*= )

)
.

(ii) Again represent U= ∈ �: (*=) by
∑;
9=1 U 9f9 . From �= (]=) (U=) = 0 we know that there

exists a V ∈ �:+1 (-; ') such that
∑;
9=1 U 9f9 = mV. As before there exists a compact

subset �′ ⊂ - such that V ∈ �:+1(�′; '). Since there exists an <0 with �′ ⊂ *< for all

< ≥ <0 and thus V ∈ �:+1 (*<; ') we have that �: (]=,<) (U=) = 0. �

By an embedding we mean a continuous map 5 : - → . which is a homeomorphism onto its

image. In other words, 5 is continuous, open and injective. In the considerations which follow

the domain will be compact and the target will be Hausdorff so that 5 is automatically open.

Proposition 3.78. Let = ∈ N and let . be a compact topological space such that for any

embedding 5 : . → (=

�∗ ((= \ 5 (. ); ') � �∗(point; ') .

Then the space [0, 1] × . also has this property.
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Proof. Let 5 : [0, 1] ×. → (= be an embedding. Suppose 0 ≠ U ∈ �8 ((= \ 5 ([0, 1] ×. )). Put

*0 := (= \ 5 ([0, 1
2
] × . )︸           ︷︷           ︸

compact

and *1 := (= \ 5 ([ 1
2
, 1] × . )︸           ︷︷           ︸

compact

.

Both *0 and *1 are open. We also find

*0 ∩*1 = (= \ 5 ([0, 1] × . ) and *0 ∪*1 = (= \ 5 ({ 1
2
} × .︸   ︷︷   ︸
≈.

) .

The Mayer-Vietoris sequence yields:

0 = �8+1 ((= \ 5 ({ 1
2
} × . )) // �8 ((= \ 5 ([0, 1] × . ))

��
�8 ((= \ 5 ([0, 1

2
] × . )) ⊕ �8 ((= \ 5 ([ 12 , 1] × . ))

Thus the inclusions (= \ 5 ([0, 1] × . ) ↩→ (= \ 5 ([0, 1
2
] × . ) and (= \ 5 ([0, 1] × . ) ↩→

(= \ 5 ([ 1
2
, 1] × . ) induce an injective homomorphism

�8 ((= \ 5 ([0, 1] × . )) → �8 ((= \ 5 ([0, 1
2
] × . ) ⊕ �8 ((= \ 5 ([ 12 , 1] × . )) .

Hence

0 ≠ �8 (inclusion) (U) ∈ �8 ((= \ 5 ([0, 1
2
] × . )) or

0 ≠ �8 (inclusion) (U) ∈ �8 ((= \ 5 ([ 12 , 1] × . )) .

By iterating this procedure we obtain a sequence of intervals �: such that

�0 = [0, 1], �:+1 ⊂ �: , |�: | = 2−:

and

0 ≠ �8 (]0,:) (U) ∈ �8 ((= \ 5 (�: × . ))
for all :. Here +: := (= \ 5 (�: × . ) is open in (= and ]:,; : +: ↩→ +; for ; ≥ : denotes the

inclusion map. We find

∩:∈N�: = {C}
∪:∈N+: = (= \ 5 ({C} × . ) =: -

Now we apply the previous Lemma 3.77 for the inclusion ] : +0 ↩→ - . Hence, for 8 ≥ 1,

0 ≠ �8 (]) (U) ∈ �8 (-) = �8 ((= \ 5 ({C} × . )︸   ︷︷   ︸
≈.

) = 0

giving a contradiction. The proof for 8 = 0 is similar (or in fact the same if one uses augmented

homology). �
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Corollary 3.79. If 5 : �A → (= is an embedding then

�∗ ((= \ 5 (�A )) � �∗ ({point})

Proof. The proof is by induction on A. For A = 0 we find

(= \ 5 (�0) ≈ R= ≃ {point}

and hence �∗((= \ 5 (�A )) � �∗({point}).
For the induction step “A − 1⇒ A” we observe �A ≈ ,A = [0, 1] ×,A−1 ≈ [0, 1] × �A−1 and

hence Proposition 3.78 applies. �

Theorem 3.80. Let A < = and let 5 : (A → (= be an embedding. Then

�∗((= \ 5 ((A )) � �∗((=−A−1).

Proof. Again the proof is done by induction on A. For A = 0 we find

(= \ 5 ((0) = (= \ {?, @} ≈ R= \ {0} ≃ (=−1.

For the induction step “A − 1 ⇒ A” we write (A = �A+ ∪ �A−. Then �A+ ∩ �A− = (A−1. We put

*+ := (= \ 5 (�A+) and*− := (= \ 5 (�A−). Both sets*+, *− are open because 5 (�A±) is compact.

In addition

*+ ∩*− = (= \ 5 ((A ) and *+ ∪*− = (= \ 5 ((A−1).

Now we look at the Mayer-Vietoris sequence and use Corollary 3.79:

�8+1 (*+) ⊕ �8+1 (*−)︸                      ︷︷                      ︸
��8+1 (point)⊕�8+1 (point)=0

// �8+1 ((= \ 5 ((A−1)) // �8 ((= \ 5 ((A ))

��
�8 (*+) ⊕ �8 (*−)︸                 ︷︷                 ︸
��8 (point)⊕�8 (point)=0

if 8≥1

Thus for 8 ≥ 1 (and by similar reasoning also for 8 = 0) we get an isomorphism

�8 ((= \ 5 ((A )) � �8+1 ((= \ 5 ((A−1)) � �8+1 ((=−A ) � �8 ((=−A−1).

This proves the theorem. �
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Theorem 3.81 (Jordan-Brouwer separation theorem). For any embedding 5 : (=−1 → (=

the complement (= \ 5 ((=−1) consists of exactly two path-components * and + . Both * and

+ are open in (= and m* = m+ = 5 ((=−1).

Proof. a) We know that �0((= \ 5 ((=−1)) � �0 ((0) � '2, hence (= \ 5 ((=−1) has exactly two

path-components * and + .

b) Since 5 ((=−1) is compact the union*∪+ = (=\ 5 ((=−1) is open and therefore both connected

components * and + are open.

c) Since * and + are open they contain no boundary point of *, thus m* ⊂ 5 ((=−1). Assume

that there exists ? ∈ (=−1 with 5 (?) ∉ m*. Then there exists , ⊂ (= open with 5 (?) ∈ , and

, ∩* = ∅. Since 5 is continuous we can choose an open ball � ⊂ (=−1 with 5 (�) ⊂ , . Since

(=−1 \ � ≈ �=−1 we find that the space . := (= \ 5 ((=−1 \ �) is path-connected because of

Corollary 3.79:

�0(. ) = �0 ((= \ 5 ((=−1 \ �)) � �0 (point) � ' .

Moreover, we have

. = * ∪+ ∪ 5 (�) ⊂ * ∪+ ∪, and * ∩ (+ ∪,) = ∅

and hence

. = (. ∩*︸  ︷︷  ︸
*

) ⊔ (. ∩ (+ ∪,))︸            ︷︷            ︸
⊃+

can be written as a disjoint union of open non-empty subsets. This contradicts . being path-

connected. �

Corollary 3.82 (Generalized Jordan curve theorem). For every embedding 5 : (=−1 → R=
the complement R= \ 5 ((=−1) consists of exactly two path components * and + . Both * and

+ are open, * is bounded, + is unbounded and m* = m+ = 5 ((=−1).

Proof. We use the stereographic projection to identify R= with a subset of (=,

(= = R= ∪ {∞}, 5 : (=−1 → R= ⊂ (=.

By the Jordan-Brouwer separation theorem the two path-components *̃ and +̃ of (= \ 5 ((=−1)
are both open and m*̃ = m+̃ = 5 ((=−1). Let +̃ be the component containing ∞. Then * = *̃

and + = +̃ \ {∞} are the two path-components of R= \ 5 ((=−1). Clearly, + is unbounded and

m* = m*̃ = m+ = m+̃ = 5 ((=−1). If * were unbounded then ∞ ∈ m* which is not the case.

Hence * is bounded. �
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Remark 3.83. Consider an embedding 5 : (=−1 → (=. If 8 ≥ 1 we find for the homology of the

components of the complement

� (* ⊔+) = �8 (*) ⊕ �8 (+) � �8 ((0) = 0

and hence * and + have the same homology as a point. This makes us suspect that *,+ ≈ �̊=.
For = = 2 this is indeed true, but it is false for = ≥ 3. The Alexander horned sphere is an example

of an embedding of (2 into (3 where one component of the complement is not even simply

connected:

Figure 84. Alexander horned sphere2

The red circle in the picture is a non-contractible loop giving rise to a non-trivial element in

the fundamental group. A very nice video illustrating this embedding of (2 can be found at

http://www.youtube.com/watch?v=d1Vjsm9pQlc.

3.10. CW-complexes

We now describe a type of topological spaces for which there is a particularly efficient way to

compute their homology. These space are obtained by gluing together balls of various dimensions.

Definition 3.84. A finite CW-complex is a pair (-,X) where - is a Hausdorff space,

X =
∐
=∈N0
X=, X= ⊂ P(-) and |X| < ∞ with the following properties:

(i) - =
∐
f∈X f.

(ii) Set -= := ∪f∈X<
<≤=

f ⊂ - . For every f ∈ X= we have f̄ \ f ⊂ -=−1.

(iii) For every f ∈ X= there exists a surjective continuous map

if : �= → f̄ ⊂ -

2Taken fromhttps://matteocapucci.wordpress.com/2019/02/05/you-wont-believe-what-this-space-is-homeomorphic-to
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3. Homology Theory

such that if |�̊= : �̊= → f is a homeomorphism.

Definition 3.85. An element f ∈ X= is called an n-cell. The map if is called the characteris-

tic map of f and -= is called the n-skeleton of (-,X). The map if
��
(=−1=m�= : (=−1 → -=−1

is called the attaching map of f.

b b

b b -0

-1

-2

Figure 85. A 2-dimensional CW-complex

Example 3.86. Consider - = (= for = ≥ 1. Then the choice

X0 = {{41}},
X= = {f= = (= \ {41}},
X< = ∅, otherwise,

turns the =-sphere into a CW-complex.

�=

if=

b (=
41

Figure 86. Attaching an =-cell to a point to obtain an =-sphere

The attaching map to the =-cell is the constant map (=−1 → {41}. We have

-0
= -1

= -2
= . . . = -=−1

= {41},
(= = -= = -=+1 = . . .
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Example 3.87. If a space - has the structure of a CW-complex there are in general many different

ways to write - as a CW-complex, i.e., there are many different X for the same - . Let us look

again at - = (=. We start with the case = = 0. Here the CW-structure is unique:

X< =

{
{{41}, {−41}}, < = 0

∅, < > 0 .

For = > 0 we use that (=−1 ⊂ (= and define recursively

X(=< :=



X(=−1

< , < ≤ = − 1

{�̊=+ , �̊=−}, < = =

∅, < > =

(=

(=−1

◦
�
+
=

◦
�
−
=

Figure 87. Cell decomposition of (= with two =-cells

Therefore we have in this case

-0
= (0, -1

= (1, . . . , -= = (=.

Example 3.88. Real projective space RP=. We define the real projective space as

RP= = {1-dimensional real vector subspace of R=+1} = R=+1 \ {0}/∼

where

G = (G0, . . . , G=) ∼ H = (H0, . . . , H=)

iff there exists a C ≠ 0 such that G = CH. We consider the canonical projection map

c : R=+1 \ {0} → RP=, G ↦→ [G0, . . . , G=].

The restrictionk := c
��
(=

: (= → RP= is continuous and surjective. ThusRP= is compact. Clearly

k (G) = k (H) iff G = ±H. We set

f: := {[G0, . . . , G=] ∈ RP= | G:+1 = . . . = G= = 0, G: ≠ 0} .
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3. Homology Theory

Then

f̄: = {[G0, . . . , G=] ∈ RP= | G:+1 = . . . = G= = 0} ≈ RP: .

For the characteristic map i: : �: → f̄: we can take

b ↦→ [b1, . . . , b: ,

√
1 − |b |2, 0, . . . , 0] .

It is clear that the map i: is continuous. Now we check that it is also surjective. Let

[G′, G: , 0] ∈ f̄: where G′ = (G0, . . . , G:−1). Without loss of generality we assume that G: ≥ 0.

Set b := G′√
|G′ |2+|G: |2

∈ �: . We compute

i: (b) =
[

G′√
|G′ |2 + |G: |2

,

√
1 − |G′ |2
|G′ |2 + |G: |2

, 0

]

=

[
G′√

|G′ |2 + |G: |2
,

√
|G: |2

|G′ |2 + |G: |2
, 0

]

= [G′, |G: |, 0]
= [G′, G: , 0] .

Next we show that i: |�̊: is injective. Let i: (b) = i: ([) for b, [ ∈ �̊: . This leads to the two

equations:

b = C[ and

√
1 − |b |2 = C

√
1 − |[ |2

for some C ≠ 0. Squaring and adding both equations we find

|b |2 + 1 − |b |2 = C2 |[ |2 + C2(1 − |[ |2)

leading to C2 = 1 and consequently C = ±1. Since |b |, |[ | < 1 it follows that
√

1 − |b |2 > 0 and√
1 − |[ |2 > 0 and therefore C > 0. Hence C = 1 and thus b = [.

The map i: : �: → f̄: is closed, therefore the restriction

i:
��
�̊:

: �̊ → f:

is bĳective, continuous and closed, hence a homeomorphism. We find:

-0
= {point} ⊂ -1︸︷︷︸

≈RP1

⊂ -2︸︷︷︸
≈RP2

⊂ · · · ⊂ -=︸︷︷︸
=RP=

.

Finally let us discuss the gluing map. For b ∈ m�: = (:−1, i.e. |b | = 1, the gluing map is given

by i: (b) = [b, 0, 0] and hence i: = k : (:−1 → - :−1 ≈ RP:−1.

Example 3.89. Complex projective space CP=. For the complex projective space the discussion

is analogous to the real case with complex parameters instead of real parameters,

CP= = {1-dimensional complex vector subspace of C=+1} = C=+1 \ {0}/∼
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with G ∼ H iff G = CH for some C ∈ C, C ≠ 0. We find

|X< | =
{

1, < even and 0 ≤ < ≤ 2=

0, otherwise

and

-0
= {point} = -1 ⊂ -2︸︷︷︸

≈CP1

= -3 ⊂ -4︸︷︷︸
≈CP2

= -5 ⊂ · · · ⊂ -2=−1
= -2=︸︷︷︸

=CP=

.

Example 3.90. Quaternionic projective space HP=. Similarly, for the quaternionic projective

space

HP= = {1-dimensional quaternionic vector subspace of H=+1} = H=+1 \ {0}/∼

with G ∼ H iff G = CH for some C ∈ H, C ≠ 0, we find that

|X< | =
{

1, < divisible by 4 and 0 ≤ < ≤ 4=,

0, otherwise,

and

-0
= {point} = -1

= -2
= -3 ⊂ -4︸︷︷︸

≈HP1

= . . . ⊂ -4=−3
= · · · = -4=︸︷︷︸

=HP=

.

Remark 3.91. Every compact differentiable manifold can be triangulated and is consequently a

finite CW-complex.

3.11. Homology of CW-complexes

Throughout this section we assume that (-,X) is a finite CW-complex. Our goal is to prove

Theorem 3.100 which will provide us with an efficient way to compute the homology of - .

Lemma 3.92. The map

⊕
f∈X=

�8 (�=, (=−1)
⊕f∈X=�8 (if ) // �8 (-=, -=−1)

is an isomorphism.

Once we have this lemma, Theorem 3.16 implies
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3. Homology Theory

Corollary 3.93. We have the isomorphisms

�8 (-=, -=−1) �
{
' |X= | , for 8 = =

0, otherwise

Proof of Lemma 3.92. We set ¤�= := �= \ {0} and

¤-= := -=−1 ∪
⋃
f∈X=

if ( ¤�=) = -= \ {if (0) | f ∈ X=}.

The inclusion (=−1 ↩→ ¤�= is a homotopy equivalence with homotopy inverse G ↦→ G
|G | .

b

�=

Figure 88. Punctured =-disk is homotopy equivalent to (=−1

We define

. = :=
∐
f∈X=

�=, . =−1 :=
∐
f∈X=

(=−1, ¤. = :=
∐
f∈X=

¤�=

The inclusions yield homotopy equivalences . =−1 → ¤. = and -=−1 → ¤-=.

-2

-1

b

Figure 89. Punctured =-skeleton is homotopy equivalent to (= − 1)-skeleton

Now consider:

(. =, . =−1) � � // (. =, ¤. =)
Φ:=∪f∈X= if // (-=, ¤-=) (-=, -=−1)? _oo
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3.11. Homology of CW-complexes

Both inclusions induce isomorphisms on �8. Due to the diagram

�8 (. =−1) //

�

��

�8 (. =) //

=

��

�8 (. =, . =−1) //

��

�8−1 (. =−1) //

�

��

�8−1 (. =)
=

��
�8 ( ¤. =) // �8 (. =) // �8 (. =, ¤. =) // �8−1 ( ¤. =) // �8−1 (. =)

and the Five Lemma the map �8 (. =, . =−1) → �8 (. =, ¤. =) is also an isomorphism. Similarly,

we get that the inclusion (-=, -=−1) ↩→ (-=, ¤-=) induces an isomorphism �8 (-=, -=−1) →
�8 (-=, ¤-=). The inclusions

(. = \ . =−1, ¤. = \ . =−1) ↩→ (. =, ¤. =),
(-= \ -=−1, ¤-= \ -=−1) ↩→ (-=, ¤-=),

induce isomorphisms on homology by the excision axiom. In addition, we have

(. = \ . =−1, ¤. = \ . =−1) ≈ (-= \ -=−1, ¤-= \ -=−1)

Hence we find ⊕
f∈X=

�8 (�=, (=−1) � �8 (. =, . =−1)

� �8 (. =, ¤. =)
� �8 (. = \ . =−1, ¤. = \ . =−1)
� �8 (-= \ -=−1, ¤-= \ -=−1)
� �8 (-=, ¤-=)
� �8 (-=, -=−1) . �

Set  = (-,X) := �= (-=, -=−1) � ' |X= | . We define a homomorphism

m= :  = (-,X) →  =−1 (-,X)

by the following diagram:

· · · // �= (-=, -=−1) m //

m=

**

�=−1(-=−1)
=

��

// �=−1 (-=) // · · ·

· · · // �=−1 (-=−2) // �=−1(-=−1) // �=−1 (-=−1, -=−2) // · · ·

Lemma 3.94. The sequence of groups  = (-,X) together with m= forms a complex.

The pair ( ∗(-,X), m∗) is called the cellular complex of (-,X).
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3. Homology Theory

Proof. The diagram

�= (-=, -=−1) m //

m=

**

�=−1 (-=−1)
=

��
�=−1 (-=−1) //

=0

22�=−1 (-=−1, -=−2)
m=−1

**

m // �=−1(-=−2)
=

��
�=−1(-=−2) // �=−2(-=−2, -=−3)

shows m=−1 ◦ m= = 0 which is the claim. �

Lemma 3.95. For ? ≥ @ ≥ = or = > ? ≥ @ we have �= (- ?, -@) = 0.

Proof. The proof is by induction on ?−@. The assertion is certainly true for ?−@ = 0. To analyze

the situation ? − @ > 0 we look at the exact homology sequence for the triple (- ?, -@+1, -@):

�= (-@+1, -@) // �= (- ?, -@) // �= (- ?, -@+1)
ind. hyp.

= 0.

Since either @ ≥ = or @ < ? < = we have = ≠ @ + 1. Thus �= (-@+1, -@) = 0 by Lemma 3.92

and hence �= (- ?, -@) = 0. �

Corollary 3.96. For = > ? we have that �= (- ?) = 0.

Proof. Lemma 3.95 with @ = 0 says �= (- ?, -0) = 0. The claim now follows from the exact

sequence

0 = �= (-0) −→ �= (- ?) −→ �= (- ?, -0) = 0.

Corollary 3.97. For @ ≥ = we have �= (-, -@) = 0.

Proof. Choose ? ≥ @ so large that - ? = - and use Lemma 3.95. �

Corollary 3.98. For A > = the inclusion -A ↩→ - induces an isomorphism

�= (-) � �= (-A ) .
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3.11. Homology of CW-complexes

Proof. The assertion follows from Corollary 3.97 and the exact sequence

0 = �=+1 (-, -A ) −→ �= (-A ) −→ �= (-) −→ �= (-, -A ) = 0.

Lemma 3.99. For A > = and A ≥ @ the inclusion induces an isomorphism

�= (-, -@) � �= (-A , -@) .

Proof. Since A ≥ = + 1, Corollary 3.97 gives us �=+1 (-, -A ) = �= (-, -A ) = 0. The assertion

now follows from the exact homology sequence of the triple (-, -A , -@):

�=+1 (-, -A ) −→ �= (-A , -@) −→ �= (-, -@) −→ �= (-, -A ).

Theorem 3.100. We have the following isomorphism:

�= ∗ (-,X) � �= (-)

Proof. Consider the commutative diagram with exact columns and rows

�=+1 (-=+1, -=)

m

��

m=

((❘❘
❘❘❘

❘❘❘
❘❘

❘❘
❘

�=−1(-=−2) = 0

��
0 = �= (-=−1) // �= (-=)

8∗ //

��

�= (-=, -=−1) //

m=−1

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘
�=−1(-=−1)

��
�= (-=+1)

��

�=−1 (-=−1, -=−2)

�= (-=+1, -=) = 0

Now we compute

�= (-) � �= (-=+1)

�
�= (-=)

m�=+1 (-=+1, -=)
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3. Homology Theory

�
8∗�= (-=)

8∗m�=+1 (-=+1, -=)

�
ker(�= (-=, -=−1) → �=−1(-=−1))

m=�=+1 (-=+1, -=)

�
ker(m=−1)

m=�=+1 (-=+1, -=)
= �= ∗ (-,X)

and the theorem is proved. �

In the following examples we set U= := |X= |.

Example 3.101. We consider - = (= for = ≥ 2. The CW-decomposition of (= from Exam-

ple 3.86 has

U0 = U= = 1, U 9 = 0 otherwise.

Hence we have to compute the homology of the complex

'←− 0←− · · · ←− 0←− '←− 0←− · · ·

Since all arrows are 0 the homology coincides with the complex, hence

� 9 ((=) �
{
', 9 = 0 or =,

0, otherwise,

which confirms our earlier findings.

Example 3.102. Now look at - = CP=. Then we have for the CW-decomposition from Exam-

ple 3.89

U0 = U2 = . . . = U2= = 1, U 9 = 0 otherwise.

Again all arrows in the complex

'←− 0←− · · · ←− 0←− '←− 0←− · · ·

must be zero, hence the homology is given by

� 9 (CP=) �
{
', 9 = 0, 2, . . . , 2=,

0, otherwise.

Example 3.103. Consider - = HP=. For the CW-decomposition from Example 3.90 we have

U0 = U4 = U8 = . . . = U4= = 1, U 9 = 0 otherwise

and all arrows in

0←− '←− 0←− 0←− 0←− '←− · · · ←− 0←− '←− 0←− · · ·
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3.12. Betti numbers and the Euler number

must be zero. We find for the homology

� 9 (HP=) �
{
', 9 = 0, 4, 8, . . . , 4=,

0, otherwise.

3.12. Betti numbers and the Euler number

Throughout this section let ' be a field.

Definition 3.104. The dimension 1 9 (-; ') := dim' � 9 (-; ') is called 9-th Betti number of

the space - (over the field ').

Now let (-,X) be a finite CW-complex. Denote the number of 9-cells in (-,X) by U 9 . Then

we get the following estimate for the Betti numbers:

1 9 (-; ') = dim' � 9 (-; ')

= dim'

ker(m 9 :  9 (-,X) →  9−1 (-,X))
im(m 9+1 :  9+1 (-,X) →  9 (-,X))

≤ dim' ker(m 9 :  9 (-,X) →  9−1 (-,X))
≤ dim'  9 (-,X)
= U 9 .

We conclude that 1 9 (-; ') ≤ U 9 . In particular, the Betti numbers are finite, 1 9 (-; ') < ∞.

Definition 3.105. For a finite CW-complex (-,X) we call

j(-,X) =
∞∑
8=0

(−1)8U8

the Euler number or Euler-Poincaré characteristic.

Note that the sum in this definition is finite. It ends at the highest dimension occuring in the cell

decomposition.

Proposition 3.106. We have the following relation between Euler and Betti numbers:

j(-,X) =
∞∑
8=0

(−1)8 18 (-; ').

141
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In particular, the Euler number does not depend on the cell decomposition because the Betti

numbers don’t. On the other hand, the Euler number does not depend on the coefficient field

because the U8’s don’t. We will henceforth write j(-) instead of j(-,X).
In order to prove the proposition we use the following

Lemma 3.107. Let

0 +0
oo +1

31oo · · ·32oo +=
3=oo 0oo 0oo · · ·oo

be a complex of finite-dimensional '-vector spaces. Then

∞∑
9=0

(−1) 9 dim� 9+∗ =
∞∑
9=0

(−1) 9 dim+ 9 .

Proof of Lemma 3.107. To show the lemma we compute, using the dimension formula from

linear algebra, ∑
9

(−1) 9 dim+ 9 =
∑
9

(−1) 9 (dim(3 9+ 9) + dim ker(3 9 ))

=

∑
9

(−1) 9 (dim ker(3 9 ) − dim(3 9+1+ 9+1))

=

∑
9

(−1) 9 dim

(
ker(3 9 )
3 9+1+ 9+1

)

=

∑
9

(−1) 9 dim� 9+∗ . �

Proof of Proposition 3.106. This follows from Lemma 3.107 with + 9 =  9 (-,X) � 'U9 . �

Example 3.108. For - = (= we have

10 = 1= = 1, 1 9 = 0 otherwise

and therefore

j((=) =
{

2, = even

0, = odd .

The case = = 2 contains Euler’s classical formula for polyhedra as a special case. It says that for

the alternating sum of the number of vertices, edges and faces of a polyhedron is always equal to

2. In particular, for platonic solids we have the following list:
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U0 U1 U2

Tetrahedron 4 6 4

Cube 8 12 6

Octahedron 6 12 8

Dodecahedron 20 30 12

Icosahedron 12 30 20

Figure 90. Platonic solids

Examples 3.109. We compute the Euler numbers of the projective spaces.

1.) For - = CP= we have 10 = 12 = . . . = 12= = 1 and 1 9 = 0 otherwise. Hence j(CP=) = =+1.

2.) For - = HP= we have 10 = 14 = . . . = 14= = 1 and 1 9 = 0 otherwise. Hence j(HP=) = =+1.

3.) In the case of - = RP= we do not know the Betti numbers yet. So we use Proposition 3.106

to compute the Euler number. For the cell decomposition described in Example 3.88 we have

U0 = . . . = U= = 1, U 9 = 0 otherwise.

Hence

j(RP=) =
{

1, = even,

0, = odd.

3.13. Incidence numbers

We return to a general commutative ring ' with unit 1. Throughout this section let (-,X) be

a finite CW-complex. In order to compute the cellular homology of (-,X) we need a better

understanding of the homomorphism m=+1 :  =+1 (-,X) →  = (-,X). In the case of = = 0 we

find

 1 (-,X)
m1 //  0 (-,X)

�1(-1, -0) m // �0(-0)

�

��⊕
g∈X1

�1(ig) (�1(�1, (0))
⊕
f∈X0

'
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Hence m1 is given by the (U0 × U1)-matrix (mgf) where g ∈ X1 and f ∈ X0. The entries mgf ∈ '
of this matrix are easily computed. Namely, recall that a generator of �1(�1, (0) is represented

by 2 : Δ1 = [0, 1] → �1 = [−1, 1] with 2(C) = 2C − 1. Then

m1�1(ig) ([2]) = m [ig ◦ 2] = ig (2(1)) − ig (2(0)) = ig (1) − ig (−1).

Thus if ig (−1) = ig (1) then mgf = 0 for all f. If ig (−1) ≠ ig (1) then

mgf =




1, for f = ig (1),
−1, for f = ig (−1),
0, otherwise.

Example 3.110. We compute the homology of the following CW-complex consisting of two

0-cells and three 1-cells:

b bf1 f2g1

g2

g3

Figure 91. A cell decomposition of the figure 8

Clearly, m
g1
f1

= m
g1
f2

= 0. Depending on how the characteristic maps parametrize the 1-cells g2
and g3 we get

mg2
f1

= m
g3
f1

= 1 and mg2
f2

= m
g3
f2

= −1,

or possibly different signs which will not affect the homology however. Thus the cellular complex

is

· · · 0oo '2oo '3

©«
0 1 1

0 −1 −1
ª®¬oo 0oo · · ·oo

The image of the matrix is {(G,−G) | G ∈ '} = ' · (1,−1) and hence

�0(-; ') � '2/' · (1,−1) � '

where the latter isomorphism is induced by '2 → ', (G, H) ↦→ G + H. Moreover,

�1(-; ') � ker

(
0 1 1

0 −1 −1

)
= {(G, H,−H) | G, H ∈ '} � '2.

We summarize

� 9 (-; ') �



' if 9 = 0,

'2 if 9 = 1,

0 else.
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Returning to our general CW-complex (-,X) we find for = ≥ 1:

 =+1 (-,X)
m=+1 //  = (-,X)

�=+1 (-=+1, -=) �= (-=, -=−1)

⊕
g∈X=+1

�=+1 (ig) (�=+1 (�=+1, (=))

�

��

⊕
f∈X=

�= (if) (�= (�=, (=−1))

�

��
'U=+1

(mgf ) // 'U=

Hence m=+1 is given by the (U= × U=+1)-matrix (mgf) where g ∈ X=+1 and f ∈ X=. The entries

(mgf) ∈ ' of this matrix are called the incidence numbers. We want to see how we can compute

them.

Fix f ∈ X=, g ∈ X=+1, and ? ∈ �̊=. From the commutative diagram

�=+1 (-=+1, -=)

m=+1

**
m // �= (-=) // �= (-=, -=−1)

prf // �= (if)�= (�=, (=−1)

�= (�=, (=−1)

��= (if )

OO

�=+1 (�=+1, (=)

�=+1 (ig )

OO

m

�

// �= ((=)

��

�= (ig |(= )

OO

deg? (i−1
f ◦ig :i−1

g (f)→�=⊂(= )
// �= ((=)

�

OO

�= ((=, (= \ i−1
g (if (?))) �= (i−1

g (f), i−1
g (f) \ i−1

g (if (?)))
�oo

�= (i−1
f ◦ig )

OO

we conclude that

mgf = deg? (i−1
f ◦ ig |i−1

g (f) : i−1
g (f) → �= ⊂ (=).

We used the canonical isomorphism �= ((=) � �= (�=, (=−1). We have intepreted the incidence

numbers as certain local mapping degrees. In applications they can often be computed by

counting preimages.

Example 3.111. Look at - = RP=. We want to compute the homology of

0 'oo '
m1oo '

m2oo · · ·m3oo '
m=oo 0oo · · ·oo

The operator m 9+1 is given by the (1×1)-matrix (mgf) with f ∈ X9 and g ∈ X9+1. The gluing map

ig |( 9 : ( 9 → - 9 ≈ RP 9 is given by the canonical projection. The image point if (?) ∈ - 9 has
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exactly two preimages under ig which we call G,−G ∈ ( 9 . Put Φ := i−1
f ◦ ig : i−1

g (f) → � 9 .

From the additivity of the local degree we obtain

deg? (Φ : i−1
g (f) → � 9 ) = deg? (Φ

��
* (G) : * (G) → � 9 ) + deg? (Φ

��
* (−G) : * (−G) → � 9 )

where * (G) is a small neighborhood of G. W.l.o.g. we assume * (−G) = −* (G). Since Φ
��
* (G) is

a homeomorphism onto its image we have

deg? (Φ
��
* (G) : * (G) → � 9 ) = ±1 =: Y .

Let 0 : ( 9 → ( 9 be the antipodal map. Then Φ = Φ ◦ 0 and hence

deg? (Φ
��
* (−G) : * (−G) → � 9) = deg? (Φ ◦ 0 : * (−G) → � 9)

= deg? (Φ : * (G) → �=) · deg(0)
= Y · (−1) 9+1.

We conclude that m 9+1 = Y · (1 + (−1) 9+1). For = even we obtain the complex

0 'oo '
0oo · · ·±2oo '

0oo '
±2oo 0oo

whereas for = odd we find

0 'oo '
0oo · · ·oo '

±2oo '
0oo 0.oo

For ' = Z/2Z all arrows are zero so that

� 9 (RP=;Z/2Z) =
{
Z/2Z, 9 = 0, . . . , =,

0, otherwise.

For ' = Z the homology is computed to

� 9 (RP=;Z) =




Z, 9 = 0,

Z/2Z, 9 = 1, 3, = − 1 or = − 2 resp.,

Z, 9 = = odd,

0, 9 = = even,

0, otherwise.

For ' = Q we find

� 9 (RP=;Q) =
{
Q, 9 = 0 or 9 = = odd,

0, else.

3.14. Homotopy versus homology

The final goal of this chapter is to compare homotopy groups and homology groups. We start by

examining the fundamental group of CW-complexes.
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Proposition 3.112. Let (-,X) be a finite CW-complex and let G0 ∈ -0. Then the inclusion

map 9 : -2 ↩→ - induces an isomorphism

9# : c1(-2; G0) → c1(-; G0) .

Proof. We have to show that attaching a :−cell for : ≥ 3 does not alter c1 in the sense that the

inclusion induces an isomorphism on c1. We assume that -2 is path-connected, since otherwise

we may replace -2 by the path-component that contains G0.

Let. be a path-connected finite CW-complex and let .̃ be obtained from . by attaching a :-cell.

More precisely, .̃ = . ∪i �: = . ⊔ �:/∼ where G ∼ i(G) for all G ∈ (:−1. Here i : (:−1 → .

is a continuous map. We have to show that the inclusion map induces an isomorphism

9# : c1(. ; G0) → c(.̃ ; G0)
if : ≥ 3. Let �: ( 1

2
) ⊂ �̊: be the closed :-dimensional subball of radius 1

2
. Cover .̃ by the two

open subsets *1 = �̊: and *2 = .̃ \ �: ( 1
2
) ≃ . .

*2.

Figure 92. Attaching a cell of dimension ≥ 3

We then find *1 ∩*2 = �̊: \ �: ( 1
2
) ≃ (:−1. To apply the Seifert-van-Kampen Theorem 2.68

we calculate

c1(*1) = {1},
c1(*2) � c1(. ),

c1(*1 ∩*2) � c1((:−1) = {1}, (here we use : − 1 ≥ 2)

and we find

c1(.̃ ) �
c1(*1) ★ c1(*2)
im c1(*1 ∩*2)

� c1(. )
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3. Homology Theory

the isomorphisms being induced by inclusions. �

Example 3.113. Consider complex-projective space - = CP=. We use the cell decomposition

from Example 3.89:

-0
= {point} = -1 ⊂ -2︸︷︷︸

≈CP1

= -3 ⊂ -4︸︷︷︸
≈CP2

= -5 ⊂ . . . ⊂ -2=−1 ⊂ -2=︸︷︷︸
=CP=

We are now able to calculate the fundamental group

c1(CP=) � c1(-2) � c1(CP1) = c1((2) = {1}.

Hence complex-projective space CP= is simply connected.

Example 3.114. Similarly, for - = HP= we use the cell decomposition from Example 3.90:

-0
= {point} = -1

= -2
= -3 ⊂ -4︸︷︷︸

≈HP1

= . . . ⊂ -4=−3
= . . . ⊂ -4=︸︷︷︸

=HP=

For the fundamental group we find

c1(HP=) = c1(-2) = c1({point}) = {1}.

Thus HP= is also simply connected.

Remark 3.115. Proposition 3.112 can be generalized as follows: For a finite CW-complex the

inclusion map 9 : -=+1 ↩→ - always induces an isomorphism 9# : c= (-=+1; G0) → c= (-; G0)
where G0 ∈ -0.

Now we relate homotopy and homology groups. Recall that for the =-dimensional cube

,= = [0, 1]= we have (,=, m,=) ≈ (�=, (=−1). Fix a generator U= ∈ �= (,=, m,=;Z) �
�= (�=, (=−1;Z) � Z. The elements of c= (-; G0) are homotopy classes relative to m,= of

maps 5 : ,= → - with 5 (m,=) = {G0}. Then �= ( 5 ) (U=) ∈ �= (-, {G0};Z). The long exact

homology sequence of the pair (-, {G0}) yields for = ≥ 1

0 = �= ({G0};Z) // �= (-;Z) // �= (-, {G0};Z) 0 // �=−1({G0};Z).

Namely, if = ≥ 2 then �=−1 ({G0};Z) = 0. For = = 1 the arrow emanating from �0({G0};Z)
is injective so that the incoming arrow must again be zero. In either case the inclusion

9 : (-, ∅) ↩→ (-, {G0}) induces an isomorphism �= ( 9) : �= (-;Z) �−→ �= (-, {G0};Z). Now

set

ℎ([ 5 ]) := �= ( 9)−1�= ( 5 ) (U=) ∈ �= (-;Z) .
Due to homotopy invariance the expression ℎ([ 5 ]) only depends on the homotopy class of the

map 5 . Hence we have constructed a well-defined map

ℎ : c= (-; G0) → �= (-;Z), = ≥ 1.
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Proposition 3.116. The map ℎ : c= (-; G0) → �= (-;Z) is a homomorphism.

Proof. Consider the map B1 : ,=
1

= [0, 1
2
] × [0, 1]=−1 → ,= given by (G1, . . . , G=) ↦→

(2G1, G2, . . . , G=) and the map B2 : ,=
2
= [ 1

2
, 1] × [0, 1]=−1 → ,= defined by (G1, . . . , G=) ↦→

(2G1 − 1, G2, . . . , G=).
,= ,=,=

1
,=

2
B1

B2

Figure 93. The maps B1 and B2

For [ 51], [ 52] ∈ c= (-; G0) we have [ 51] + [ 52] = [6] with

6(G) =
{
51(B1 (G)), G1 ≤ 1

2
,

52(B2 (G)), G1 ≥ 1
2
.

We represent U= by 21 + 22 ∈ (= (,=;Z), where 2a ∈ (= (,=
a ;Z) and 2a represents the generator

�= (Ba)−1(U=) of �= (,=
a , m,

=
a ;Z).

= = 1:

21 22

= = 2:

f1

f2

f3

f4

21 = f1 + f2

22 = f3 + f4

Figure 94. Representative of U1 and U2

Now the proposition follows from

ℎ([ 51] · [ 52]) = ℎ([6])
= �= ( 9)−1�= (6) (U=)
= �= ( 9)−1�= (6) ([21 + 22])
= �= ( 9)−1�= (6) ([21]) + �= ( 9)−1�= (6) ([22])
= �= ( 9)−1�= ( 51 ◦ B1) ([21]) + �= ( 9)−1�= ( 52 ◦ B2) ([22])
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3. Homology Theory

= �= ( 9)−1�= ( 51)�= (B1) ([21]) + �= ( 9)−1�= ( 52)�= (B2) ([21])
= �= ( 9)−1�= ( 51) (U=) + �= ( 9)−1�= ( 52) (U=)
= ℎ( 51) + ℎ( 52). �

Definition 3.117. The map ℎ : c= (-; G0) → �= (-;Z) is called Hurewicz homomorphism.

Proposition 3.118. The Hurewicz homomorphism ℎ is natural, i.e., for every 5 ∈ � (-,. )
with 5 (G0) = H0 the following diagram commutes:

c= (-; G0) ℎ //

5#
��

�= (-;Z)
�= ( 5 )

��
c= (. ; H0) ℎ // �= (. ;Z)

Proof. The inclusion maps

9- : (-, ∅) ↩→ (-, {G0})
9. : (., ∅) ↩→ (., {H0})

satisfy

( 9. ◦ 5 ) (G) = 9. ( 5 (G)) = ( 5 (G), H0)
( 5 ◦ 9-) (G) = 5 ((G, G0)) = ( 5 (G), 5 (G0)) = ( 5 (G), H0)

and therefore 9. ◦ 5 = 5 ◦ 9-. On the level of homology groups we find

�= ( 9. ) ◦ �= ( 5 ) = �= ( 5 ) ◦ �= ( 9-)

and consequently

�= ( 5 ) ◦ �= ( 9-)−1
= �= ( 9. )−1 ◦ �= ( 5 ) .

Thus

(�= ( 5 ) ◦ ℎ) ([f]) = �= ( 5 ) ◦ �= ( 9-)−1 ◦ �= (f) (U=)
= �= ( 9. )−1 ◦ �= ( 5 ) ◦ �= (f) (U=)
= �= ( 9. )−1 ◦ �= ( 5 ◦ f) (U=)
= ℎ([ 5 ◦ f])
= (ℎ ◦ 5#) ([f])

as claimed. �
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3.14. Homotopy versus homology

Theorem 3.119 (Hurewicz). Let - be a topological space, G0 ∈ - and = ≥ 2. Assume that

c0(-; G0) = c1(-; G0) = . . . = c=−1(-; G0) = {1} .

Then

ℎ : c= (-;Z) → �= (-;Z)

is an isomorphism.

In particular, we conclude that �1(-;Z) = . . . = �=−1 (-;Z) = 0. For a proof of this theorem

see e.g. [2, Sec. 4.2].

Remark 3.120. For = = 1 this theorem cannot be true as it stands because �1(-;Z) is always

abelian while c1(-; G0) is not in general. However, ℎ induces a homomorphism

ℎ̄ : c1(-; G0)/[c1 (-;G0 ) , c1 (-;G0 ) ]→ �1 (-;Z).

Already Poincaré showed that if c0(-, G0) = {1} (i.e., - is path-connected) then the map ℎ̄ is an

isomorphism.

Example 3.121. Consider - = (= for = ≥ 2. We already know that (= is 1-connected. Now

apply the Hurewicz isomorphism with = = 2:

c2((=) � �2((=;Z) =
{
Z, = = 2,

0, = ≥ 3.

For = ≥ 3 we find due to Hurewicz:

c3((=) � �3((=;Z) =
{
Z, = = 3,

0, = ≥ 4.

By induction we then deduce that c1((=) = . . . = c=−1((=) = 0 and c= ((=) � Z.

Example 3.122. We know that - = CP= is 1-connected. With the help of the Hurewicz

isomorphism we calculate

c2(CP=) � �2 (CP=;Z) � Z .

Example 3.123. We also know that - = HP= is 1-connected. We apply the Hurewicz isomor-

phism three times and we get

c2(HP=) � �2(HP=;Z) = 0,

c3(HP=) � �3(HP=;Z) = 0,

c4(HP=) � �4(HP=;Z) � Z.
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Example 3.124. Now let us analyze the space - = RP= for = ≥ 2. The map k : (= → RP= is a

two-fold covering and by Theorem 2.102

c1((=)
k♯−−→ c1(RP=) → c0({?, @}) → c0((=)

is exact. Since (= is simply connected c1(RP=) → c0({?, @}) is an isomorphism of pointed

sets, thus c1(RP=) has exactly two elements. There is only one group with two elements, hence

c1(RP=) � Z/2Z. By Corollary 2.105 k# : c: ((=) → c: (RP=) is an isomorphism for all : ≥ 2.

We conclude that c2(RP=) = . . . = c=−1(RP=) = 0 and c= (RP=) � Z.

Remark 3.125. Under the assumptions of the theorem of Hurewicz 3.119 not much can be

said about ℎ : c: (-, G0) → �: (-;Z) for : > =. For example, consider the Hopf fibration

(3 → (2 with fiber (1. By Theorem 2.102 it induces an isomorphism c3((2) � c3((3) � Z.

But �3((2;Z) = 0 and hence ℎ : c3((2) → �3 ((2;Z) is not injective.

On the other hand, for the 2-torus )2 we have again by Corollary 2.105 c2()2) � c2(R2) = 0

while one can compute �2()2;Z) � Z. Thus ℎ : c2()2) → �2 ()2;Z) is not surjective.

Remark 3.126. We have seen that �: ((=;Z) = 0 whenever : > =. But in general this is not

true for the higher homotopy groups of the sphere, e.g. c3((2) � Z. The computation of c: ((=)
for : > = is a difficult problem and many of these groups are not known to date.

3.15. Exercises

3.1. Let - be a topological space. Show:

a) If - is path-connected then

�0 (-; ') � '

b) If -: , : ∈  , are the path-components of - then

�= (-; ') �
⊕
:∈ 

�= (-:; ')

3.2. Let .: = {1, ..., :} be equipped with the discrete topology. Compute �= (.:; ') without

using Exercise 3.1. Instead use the Eilenberg-Steenrod axioms.

Hint: Consider the pair (.: , .:−1).

3.3. Let - be a topological space. The augmented boundary operator is defined by

m# : (0 (-; ') → ',

m#
(∑

U8f8

)
=

∑
U8,

where f8 ∈ � (Δ0, -).
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a) Verify m# ◦ m = 0.

b) Compute the augmented homology

�#
0 (-; ') :=

ker(m# : (0 (-; ') → ')
im(m : (1 (-; ') → (0 (-; '))

for - = {point}.

3.4. a) Show that homeomorphisms f : Δ= → �= represent generators of �= (�=, (=−1; ').

b) Describe generators of �= ((=;Z). Make a drawing for = = 2.

3.5 (Topological invariance of the dimension). Let * ⊂ R= and + ⊂ R< be open and

nonempty. Show: If * and + are homeomorphic then = = <.

Hint: For ? ∈ * and @ ∈ + consider the pairs (*,* \ {?}) and (+,+ \ {@}).

3.6. Let ? be a complex polynomial without zeros on the unit circle (1 ⊂ C. Show: The degree

of the map

?̂ : (1 → (1, ?̂(I) = ?(I)
|?(I) | ,

coincides with the number of zeros of ? in the interior of the unit disk (counted with multiplicities).

3.7 (Homotopy invariance of the local mapping degree). Let + ⊂ (= be open and � : + ×
[0, 1] → (= continuous. We put 5C (G) := � (G, C). Let ? ∈ (= such that

⋃
C∈[0,1] 5

−1
C (?) is

compact. Show:

deg? ( 51) = deg? ( 50).

3.8. Let (-, �) be a pair such that � is closed and a strong deformation retract of an open

neighborhood *. Show that �= (-, �) = �= (-/�) for = ≠ 0.

3.9. Let / = (1 × [0, 1] be the cylinder. Compute �= (/, (1 × {0} ∪ (1 × {1}) for all =. Sketch

generators of the nontrivial homology groups.

Hint: Use the homology sequence of the triple

(/, (1 × {0} ∪ (1 × {1}, (1 × {0}).

3.10. Let (-, �) be a pair. Describe the 0th singular relative homology group �0(-, �).

3.11 (Five lemma). Let the rows in the following commutative diagram of abelian groups be

exact:

�1

51 //

i1

��

�2

52 //

i2

��

�3

53 //

i3

��

�4

54 //

i4

��

�5

i5

��
�1

61 // �2

62 // �3

63 // �4

64 // �5
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Show that if i1, i2, i4, and i5 are isomorphisms then so is i3.

Hint: i3 is injective if i1 is surjective and i2, i4 are injective; i3 is surjective if i5 is injective

and i2, i4 are surjective.

3.12. Suppose

· · · → �=+1
5=+1

−−−−−−−−→�=
5=

−−−−−−→�=−1 → · · ·

is a long exact sequence of abelian groups and

· · · → �′=+1
5 ′
=+1

−−−−−−−−→�′=
5 ′=

−−−−−−→�′=−1 → · · ·

is a subsequence, i.e., �′= ⊂ �= and 5 ′= = 5= |�′= . Prove that the subsequence is exact if and only

if the quotient sequence

· · · → �=+1/�′=+1 → �=/�′= → �=−1/�′=−1 → · · ·

is exact.

3.13. Let = ∈ N and < ∈ Z. Show that there exists 5 ∈ � ((=, (=) with deg( 5 ) = <.

3.14. Let 5 ∈ � ((=, (=) with 5 (�=+) ⊂ �=+ and 5 (�=−) ⊂ �=− . We identify (=−1 with �=+ ∩�=−
and therefore have 5 ((=−1) ⊂ (=−1. Show

deg( 5 ) = deg( 5 |(=−1 ).

3.15. Show that �1(R,Q;Z) is a free abelian group and find a basis as a Z-module.

3.16. Let " be an =-dimensional manifold, = ≥ 3. Let ? ∈ " . Show that the inclusion map

" \ {?} ↩→ " induces an isomorphism

� 9 (" \ {?}; ') � � 9 ("; ')

for all 9 ∈ {1, ..., = − 2}.

3.17. a) Show that for disjoint closed subsets �, � ⊂ R2 we have

�1(R2 \ (� ∪ �)) � �1(R2 \ �) ⊕ �1(R2 \ �).

b) Let ?1, ..., ?= ∈ R2 be pairwise distinct. Compute�1 (R2\{?1, ..., ?=}) and sketch generators.

3.18. Use the Mayer-Vietoris sequence to compute

a) the homology of the 2-torus;

b) the homology of surfaces �6 of genus 6 ≥ 2.

154



3.15. Exercises

Sketch generators.

3.19. Let (-,X) be a finite CW-complex. Show that - is compact.

3.20. Describe a CW-decomposition for the surfaces of genus 6 ≥ 1.

3.21. Show:

a) Each nonempty CW-complex has at least one 0-cell.

b) Each CW-complex consisting of exactly two cells is homeomorphic to a sphere.

3.22. Let = ≥ 2 and : ≥ 1. Let - be the topological space obtained from : copies of (= by

identifying them all at one point. More formally,

- =
( :⋃
9=1

{ 9} × (=
) /
∼

where ( 9 , G) ∼ ( 9 ′, G′) iff G = G′ = 41. Compute the homology of - .

3.23. Find a CW-decomposition of the 2-torus with exactly one 0-cell, two 1-cells, and one

2-cell and use it to compute the homology.
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A. Appendix

A.1. Free module generated by a set

Let ' be a commutative ring with unit 1 and let ( be a set. Then the set - of all maps from ( to

' forms an '-module.1 Addition and multiplication with scalars are defined pointwise, for any

5 , 6 : ( → ' and U ∈ ' we have, by definition,

( 5 + 6) (B) = 5 (B) + 6(B), (U · 5 ) (B) = U · 5 (B)

for all B ∈ (.

Now let . ⊂ - be the set of all 5 ∈ - for which 5 (B) = 0 for all but finitely many B ∈ (. Then .

is an '-submodule of - . The module . has a natural basis. Namely, for each B ∈ ( define

5B (B′) :=

{
1, if B′ = B,

0, if B′ ≠ B.

Then for each 5 ∈ . we have

5 =
∑
B∈(

5 (B) 5B . (A.1)

Note that we need to sum only over those B for which 5 (B) ≠ 0 which leaves us with a finite sum.

Thus the set { 5B | B ∈ (} generates . . The set is also linearly independent. Namely, if

U1 5B1 + . . . + U< 5B< = 0

for pairwise different B 9 then by inserting B8 we find

0 = (U1 5B1 + . . . + U< 5B<) (B8) = U1 5B1 (B8) + . . . + U< 5B< (B8) = U8 .

Thus { 5B | B ∈ (} is indeed a basis of . . Hence the dimension of . is given by the cardinality of

(. In particular, . is infinite-dimensional if ( is an infinite set.

Definition A.1. The '-module . is called the free '-module generated by (.

We usually use a somewhat sloppy notation and will not distinuish between an element B ∈ (
and the corresponding function 5B : (→ '. Thus, instead of (A.1) we will write

5 =
∑
B∈(

5 (B)B.

1If you are not familiar with modules over rings think of the special case that ' is a field. Then an '-module is just

an '-vector space.
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A. Appendix

In Section 3.1 we consider the free '-module generated by ( = � (Δ=, -) and write (= (-; ')
instead of . .
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