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Preface

These are the lecture notes of an introductory course on relativity theory that I gave in 2013.
Ihe course was designed such that no prior knowledge of differential geometry was required.
The course itself also did not introduce differential geometry (as it is often done in relativity
classes). Instead, students unfamiliar with differential geometry had the opportunity to learn the
subject in another course precisely set up for this purpose. This way, the relativity course could
concentrate on its own topic. Of course, there is a price to pay; the first half of the course was
dedicated to Special Relativity which does not require much mathematical background. Only
the second half then deals with General Relativity. This gave the students time to acquire the
geometric concepts.
The part on Special Relativity briefly recalls classical kinematics and electrodynamics empha-
sizing their conceptual incompatibility. It is then shown how Minkowski geometry is used to
unite the two theories and to obtain what we nowadays call Special Relativity. Some famous
phenomena like length contraction, time dilation, and the twin paradox are discussed. Relativis-
tic velocity addition is investigated using hyperbolic geometry.
The part on General Relativity concentrates on the two most relevant models: Robertson-Walker
spacetimes as models for the whole universe and the Schwarzschild model describing the vac-
uum neighborhood of a static star or black hole. The first model is used to discuss cosmic
redshift, the expansion of the universe, big bang and big crunch. In the Schwarzschild model,
we discuss the trajectories of massive particles and of light and see how they differ from the
classical orbits.
It is my pleasure to thank all those who helped to improve the manuscript by suggestions,
corrections or by work on the LATEX code. My particular thanks go to Andrea Röser who wrote
the first version in German language and created many pictures in wonderful quality, to Matthias
Ludewig who translated the manuscript into English and to Ramona Ziese who improved the
layout.

Potsdam, August 2013

Christian Bär

iii





1 Special Relativity

Before starting with relativity theory we will briefly recall two older theories in physics, New-
ton’s classical mechanics and Maxwell’s electromagnetism theory. These two theories are in-
compatible in the sense that their laws transform differently under coordinate changes. This
incompatibility was one of Einstein’s main motivations to seek a theory that would combine the
two. Einstein found a unification of mechanics and electromagnetism, now known under the
term special relativity theory. In a way, Maxwell defeated Newton, the transformation laws of
special relativity are those of electrodynamics. The laws of Newtonian mechanics are only valid
approximately at low velocities.

1.1 Classical Kinematics

Absolute Space

In Sir Isaac Newton’s (1643-1727) world space exists independently of all the objects contained
in it. In his own words:

Godfrey Kneller’s portrait of

Isaac Newton (1689) 1

Absolute space, in its own nature, without regard to anything external, remains always similar
and immovable.
The geometry of space is assumed to be Euclidean, i.e., it is as-
sumed that the laws of Euclidean geometry hold for measurements
performed in physical space. In other words, we can introduce Carte-
sian coordinates to identify space with R3 and then apply the usual
rules of Cartesian geometry,

absolute space ident.←→ R3.

Such a coordinate system is not unique but the Euclidean structure is
invariant under coordinate transformations of the form

Φ : R3→ R3, Φ(x) = Ax+b,

with A ∈ O(3), i.e., A⊤A = I, and b ∈ R3. The set of all such transformations is called the
Euclidean transformation group.
It should be emphasized that such an assumption requires empirical justification. Indeed, mea-
surements performed in every-day-life support Newton’s ideas about space; if you measure the
sum of angles in a triangle it will give 180 degrees to very high precision and is thus in accor-
dance with Euclidean geometry.

1Source: http://en.wikipedia.org/wiki/Isaac_Newton
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1 Special Relativity

Absolute Time

Newton’s ideas about time are similar to those about space:
Absolute, true and mathematical time, of itself, and from its own nature flows equably without
regard to anything external.
From a mathematical point of view, this means that we can measure time by a real parameter

absolute time ident.←→ R.

More precisely, we fix a time interval, e.g., a second, and we then measure time in real multiples
of this chosen time unit. The resulting identification of absolute time with R is unique up to
transformations of the form

R→ R, t 7→ t + t0,

with some fixed t0 ∈ R. Because we can distinguish future and past, we do not admit transfor-
mations of the form R→ R, t 7→ −t + t0, t0 ∈ R.
The trajectory of a point particle is described by a curve, i.e., by a map

x : [a,b]→ R3,

where to each time coordinate t we associate the corresponding space coor-
dinates x(t) = (x1(t),x2(t),x3(t)) of the particle. Usually, we can and will
assume that the curve x is smooth, x ∈ C∞([a,b],R3). The velocity of the
particle is then given by

ẋ : [a,b]→ R3

and the acceleration by
ẍ : [a,b]→ R3.

b

b

b

x(a)

x(b)

ẋ(t)x(t)

We measure the mass of the particle in real multiples of a fixed unit mass, like kilogram. Hence
mass is mathematically given by a function

m : [a,b]→ R.

The momentum is then given by

p = m · ẋ : [a,b]→ R3

and the kinetic energy by

E =
m · ∥ẋ∥2

2
: [a,b]→ R.

Finally, the length of the trajectory swept out by the particle can by calculated by the formula∫ b

a
∥ẋ(t)∥dt.

A choice of space and time coordinates as described above will be called an inertial frame.
According to Newton we can check whether or not our chosen coordinate system is “correct” as
follows:

2



1.1 Classical Kinematics

Newton’s First Law
In any inertial frame, particles that are not subject to any force, are characterized by

ẍ = 0,

which is equivalent to x(t) = x(0)+ t · ẋ(0).

The transformations of space and time that were discussed above map inertial frames to other
inertial frames. On top of that, we can admit an inertial frame the origin of which moves with
constant velocity to the other. This leads to the following set of transformations mapping inertial
frames to inertial frames, the so-called Galilean transformations.

R×R3 → R×R3,(
t
x

)
7→

(
t + t0

Ax+b0 + tb1

)
=

(
1 0
b1 A

)
·
(

t
x

)
+

(
t0
b0

)
,

where A ∈ O(3), b0,b1 ∈ R3 and t0 ∈ R.
If x is the trajectory of a particle in one inertial frame, its trajectory, velocity and acceleration in
another inertial frame take the form

x̃ = Ax+b0 + tb1,

˙̃x = Aẋ+b1,

¨̃x = Aẍ.

Observe that ẍ = 0 if and only if ¨̃x = 0, so indeed, Newton’s first law is compatible with Galilean
transformations.
In the special case A = I and t0 = 0, we have
−v := b1 = velocity of observer 2, measured by observer 1
v1 := ẋ = velocity of the particle, measured by observer 1
v2 := ˙̃x = velocity of the particle, measured by observer 2

Hence we have derived the velocity-addition formula

v1 = v+v2 (1.1)

Newton’s second law
In any inertial system, if a particle is subject to the force F, then

d
dt (m(t)ẋ(t)) = F(t,x(t), ẋ(t)).

Here a force is described by a (smooth) mapping of the form F :R×R3×R3→R3. In particular,
for m > 0 we have

ẍ(t) =
1

m(t)

(
F(t,x(t), ẋ(t))− ṁ(t)ẋ(t)

)
.

A solution of such an ordinary differential equation is uniquely determined by its initial values

x(t0) and ẋ(t0).

3



1 Special Relativity

Therefore, the theory is deterministic (we can predict the future, given initial values).

Example 1.1.1. A mass m is suspended between
two springs with spring constant k > 0. We want
to find the equations of motion, given x(0) and
ẋ(0).

b
x

By Hooke’s law, the force is F(t,x,y) = −kx. From this it follows that mẍ(t) = −kx(t), hence
ẍ(t) =− k

m x(t). This ODE has the general solution

x(t) = A · sin

(√
k
m

t

)
+B · cos

(√
k
m

t

)
,

where B = x(0) and ẋ(0) = A
√

k
m . Therefore

x(t) = ẋ(0) ·
√

m
k
· sin

(√
k
m

t

)
+ x(0) · cos

(√
k
m

t

)
.

Energy Equation

Let us assume that the mass m is constant. We differentiate the kinetic energy of a particle and
obtain the energy equation

d
dt

E =
m
2

d
dt
∥ẋ∥2 = m⟨ẍ, ẋ⟩= ⟨F,v⟩ (1.2)

Exercise 1.1.2. A spacecraft travels from earth to a distant object X , its rear engine inducing
constant acceleration (=gravitational acceleration) g= 9.81ms−2. At half the distance, the space-
craft is turned over (so its rear engine now induces the same deceleration).
How long does the journey take and what is the maximal velocity for

(a) X = moon (400.000 km),

(b) X = mars (56-400 million km),

(c) X = Proxima Centauri (4,3 light years) und

(d) X = Andromeda galaxy (2 million lightyears)?

Remember: 1 light year ≈ 9.461 ·1012km.

Solution. We write x(t) for the distance from space craft to earth at time t. From x(0) = 0,
ẋ(0) = 0 and ẍ = g, we get

x(t) = 1
2 gt2

for the first half of the journey. Is D the distance between earth and the object X and T is the
total time of travel, we obtain D/2 = 1

2 g(T/2)2 and therefore

T = 2
√

D/g.
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1.2 Electrodynamics

The maximal velocity vmax is achieved after the time T/2, just before initiating the deceleration.
From ẋ(t) = gt, we obtain

vmax = g
T
2
=
√

gD.

Plugging in the different values for D results in

1. X = moon: T ≈ 3,5 h, vmax ≈ 63 km/s.

2. X = Mars: T ≈ 42−112 hours, vmax ≈ 742−1980 km/s.

3. X = Proxima Centauri: T ≈ 4 years, vmax ≈ 2,1 c.

4. X = Andromeda galaxy: T ≈ 2784 years, vmax ≈ 1434 c.

1.2 Electrodynamics

James Clerk Maxwell

(1831–1879) 2

Now we turn to Maxwell’s electrodynamics. Assume that we are in
a vacuum without any electric charges present. In this case, electric
and magnetic phenomena are described by functions

f : R×R3→ R,

that solve the wave equation, i.e.,

□ f :=
1
c2

∂ 2 f
∂ t2 −∆ f = 0,

where ∆ = ∑3
i=1

∂ 2

∂ (xi)2 is the Laplace operator and c the speed of light
in vacuum (about 300,000 km/s). As all observers in an inertial frame
have equal right, the question arises which transformations preserve
the wave equation. More precisely, which are the transformations

Φ : R×R3→ R×R3, Φ(x) = Lx+
(

t0
b0

)
,

with L ∈Mat(4×4,R) such that whenever f solves the wave equation, so does f̃ := f ◦Φ?
To find out, we set x0 := c · t and x := (x0,x1,x2,x3). The wave equation then is

□ f =
∂ 2 f

∂ (x0)2 −
3

∑
i=1

∂ 2 f
∂ (xi)2 = 0.

We now calculate □ f̃ . To this end, write

L = (L0,L1,L2,L3) =


L0

0 L0
1 L0

2 L0
3

L1
0 L1

1 L1
2 L1

3
L2

0 L2
1 L2

2 L2
3

L3
0 L3

1 L3
2 L3

3

 ,

2Source: http://de.wikipedia.org/wiki/James_Clerk_Maxwell
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1 Special Relativity

where Li ∈ R4 for i = 0, . . . ,3 and x0 := (t0,b0)
⊤. We compute

∂ f̃
∂xi =

∂
∂xi f (L0x0 +L1x1 +L2x2 +L3x3 +x0)

=
3

∑
m=0

∂ f
∂xm (Lx+x0) ·Lm

i ,

hence
∂ 2 f̃

∂ (xi)2 =
3

∑
m,n=0

∂ 2 f
∂xm∂xn (Lx+x0)Lm

i Ln
i . (1.3)

Define

I1,3 :=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The Hessian matrix of a twice continuously differentiable function f is the symmetric matrix
hess f = ( ∂ 2 f

∂xi∂x j )i, j. On the vector space of the symmetric (n× n)-matrices, we can define the
following scalar product:

(A,B)S :=
n

∑
i, j=1

Ai
jB

i
j.

Then, by definition of the □-operator,

□ f = (hess f ,I1,3)S.

By (1.3) we have

□ f̃ = (L⊤ ·hess f ·L,I1,3)S = (hess f ,L⊤ · I1,3 ·L)S.

We see that □ f = 0 means that hess f is perpendicular to I1,3 while □ f̃ = 0 means that hess f is
perpendicular to L⊤ · I1,3 ·L. These two conditions are equivalent if and only if L⊤ · I1,3 ·L =
κ · I1,3 for some κ ∈ R. Without loss of generality we will assume κ = 1 for the scaling factor,
because a transformation of the form κ · I just corresponds to a change of the physical unit of
length.

Definition 1.2.1. The set of transformations

L := {L ∈Mat(4×4,R) |L⊤ · I1,3 ·L = I1,3}

is called the Lorentz group. The corresponding set of affine-linear transformations

P := {Φ : R4→ R4 |Φ(x) = Lx+x0, L ∈L , x0 ∈ R4}

is called the Poincaré group.

6



1.3 The Lorentz group and Minkowski geometry

We have seen that the “admissible” coordinate transformations of Newtonian mechanics are
the Galilean transformations while those for electrodynamics are the Poincaré transformations.
These two groups are not contained in one another, in this sense classical kinematics and elec-
trodynamics are incompatible.

Exercise 1.2.2. Determine all Poincaré transformations of R4 which are also Galilean transfor-
mations. Why is this subgroup of transformations not sufficient to derive (1.1)?

Henri Poincaré

(1854–1912) 3

Now the question is: Which theory is correct if any?
One should be able to answer this question by means of suitable ex-
periments. For instance, look at the following situation: Observer 2
is located on a spacecraft that travels towards earth and sends a light
signal to observer 1 on the earth. Observer 1 measures the velocity
c1 for the incoming light signal, observer 2 however measures an-
other velocity c2. According to (1.1), classical kinematics predicts
c1 = c2 + v, where v is the velocity of the spacecraft with respect to
the earth. On the other hand, the theory of electrodynamics states
that the speed of light in vacuum is a fixed value c, independently
of the motions of the source and the observer.
In fact, experiments, such as the famous Michelson-Morley experi-
ment, have confirmed the predictions of electrodynamics!

1.3 The Lorentz group and Minkowski geometry

Hermann Minkowski

(1864 –1909) 4

In order to develop a kinematic theory which is invariant under
Poincaré transformations we first need to understand these Poincaré
transformations better. The crucial part are the Lorentz transforma-
tions because adding translations then yields all Poincaré transfor-
mations. The resulting geometry of lightlike, timelike and spacelike
vectors is known as Minkowski geometry, named after the mathe-
matician Hermann Minkowski, a close friend of David Hilbert.

Convention. For (x0,x1,x2,x3) ∈ R4 write (x0, x̂) with x̂ :=
(x1,x2,x3). We write ⟨·, ·⟩ for the usual scalar product in R4, i.e.,

⟨x,y⟩=
4

∑
i=1

xiyi.

We further define another inner product ⟨⟨·, ·⟩⟩ on R4 by

⟨⟨x,y⟩⟩ := ⟨x,I1,3 ·y⟩=−x0y0 + ⟨x̂, ŷ⟩ .
3Source: http://en.wikipedia.org/wiki/Henri_Poincare
4Source: http://en.wikipedia.org/wiki/Hermann_Minkowski
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1 Special Relativity

The symmetric bilinear form ⟨⟨·, ·⟩⟩ is indefinite and non-degenerate. Recall that “non-
degenerate” means that ⟨⟨x,y⟩⟩= 0 for all x ∈ R4 implies that y = 0.

By definition, L ∈L if and only if L⊤I1,3L = I1,3. This is equivalent to⟨
x,L⊤I1,3Ly

⟩
= ⟨x,I1,3y⟩

for all x,y ∈ R4. For the left-hand-side we get
⟨
x,L⊤I1,3Ly

⟩
= ⟨Lx,I1,3Ly⟩= ⟨⟨Lx,Ly⟩⟩ while

the right-hand-side is ⟨x,I1,3y⟩ = ⟨⟨x,y⟩⟩. Hence we have obtained another characterization of
the Lorentz group as

L = {L ∈Mat(4×4,R) | ⟨⟨Lx,Ly⟩⟩= ⟨⟨x,y⟩⟩ for all x,y ∈ R4}.

This formally resembles the definition of the orthogonal group O(n), which by definition is

O(n) = {A ∈Mat(n×n,R) | ⟨Ax,Ay⟩= ⟨x,y⟩ for all x,y ∈ Rn}.

Definition 1.3.1. We call (R4,⟨⟨·, ·⟩⟩) the (4-dimensional) Minkowski space. The inner prod-
uct ⟨⟨·, ·⟩⟩ is called the Minkowski product.

Any Lorentz transformation L ∈L has the following properties:

1. det(I1,3) = det(L⊤I1,3L) = det(L)2 ·det(I1,3), hence det(L) =±1.

2. We have

−1 = (I1,3)
0
0 = (L⊤I1,3L)0

0 =−(L0
0)

2 +
3

∑
i=1

(L0
i )

2,

thus

(L0
0)

2 = 1+
3

∑
i=1

(L0
i )

2.

In particular, we have (L0
0)

2 ≥ 1, i.e., L0
0 ≥ 1 or L0

0 ≤−1.

Definition 1.3.2. We define the following subsets of L:

L ↑
+ := {L ∈L | detL =+1, L0

0 ≥+1},
L ↑
− := {L ∈L | detL =−1, L0

0 ≥+1},
L ↓

+ := {L ∈L | detL =+1, L0
0 ≤−1},

L ↓
− := {L ∈L | detL =−1, L0

0 ≤−1}.

8



1.3 The Lorentz group and Minkowski geometry

Remark 1.3.3. The subset L ↑
+ is a subgroup of L , see Exercise 1.3.4, the other three subsets

are not because they do not contain the identity matrix. We make the further assignments for
subsets of L :

orientation preserving Lorentz tranformations: L+ := L ↑
+⊔L ↓

+,

time orientation preserving Lorentz tranformations: L ↑ := L ↑
+⊔L ↑

−,

space orientation preserving Lorentz tranformations: L ↑
+⊔L ↓

−.

Exercise 1.3.4. a) Show that L ↑
+ ·L

↑
+ ⊂L ↑

+, L ↑
+ ·L

↓
+ ⊂L ↓

+, and similarly for all other com-
binations.
b) Conclude from a) that L ↑

+, L+, L ↑, and L ↑
+⊔L ↓

− are subgroups of L .

Remark 1.3.5. The subsets L ↑
+, L ↓

+, L ↑
− and L ↓

− are the connected components of the Lorentz
group.

L ↑
+

L ↑
− L ↓

−

L ↓
+

L+

L

L ↑

Compare: O(n)

SO(n)
det =−1

The Lorentz group contaings the following special elements.

1. L =

(
1 0
0 A

)
, A ∈ O(3), for example space-like rotations:


1 0 0 0
0 cosφ −sinφ 0
0 sinφ cosφ 0
0 0 0 1




1 0 0 0
0 cosφ 0 −sinφ
0 0 1 0
0 sinφ 0 cosφ


rotation about x3-axis rotation about x2-axis

or space-like reflections 
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


reflection at x2,x3-plane

9



1 Special Relativity

2. Boosts are special Lorentz transformations which mix space and time components, for
example

L1 =


coshφ sinhφ 0 0
sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 , L2 =


coshφ 0 sinhφ 0

0 1 0 0
sinhφ 0 coshφ 0

0 0 0 1

 . (1.4)

Lemma 1.3.6 (Hyperbolic identities)
For all φ1,φ2 ∈ R, we have

1. cosh(φ1 +φ2) = cosh(φ1)cosh(φ2)+ sinh(φ1)sinh(φ2).

2. sinh(φ1 +φ2) = cosh(φ1)sinh(φ2)+ sinh(φ1)cosh(φ2).

Proof. By definition, coshφ = 1
2(e

φ + e−φ) and sinhφ = 1
2(e

φ − e−φ), hence

eφ = coshφ + sinhφ . (1.5)

Inserting (1.5) into

cosh(φ1 +φ2) =
1
2
(eφ1+φ2 + e−(φ1+φ2)) =

1
2
(eφ1eφ2 + e−φ1e−φ2)

yields (a) and similarly for (b). □

Remark 1.3.7. We have coshφ − sinhφ = cosh(−φ)+ sinh(−φ) = e−φ . Multiplication with
(1.5) gives

1 = eφ · e−φ = (coshφ + sinhφ) · (coshφ− sinhφ) = cosh2 φ− sinh2 φ.

Geometrically, this means that for each φ ∈ R the point (coshφ,sinhφ)⊤ lies on the upper
branch of the hyperbola in R2 given by (x0)2 = 1+(x1)2. In fact, φ 7→ (coshφ,sinhφ)⊤ maps
R bijectively onto this curve.

x0

x1

10



1.3 The Lorentz group and Minkowski geometry

Lemma 1.3.8 (Hyperbolic angular identities)
For all φ1,φ2 ∈ R, we have(

coshφ1 sinhφ1
sinhφ1 coshφ1

)
·
(

coshφ2 sinhφ2
sinhφ2 coshφ2

)
=

(
cosh(φ1 +φ2) sinh(φ1 +φ2)
sinh(φ1 +φ2) cosh(φ1 +φ2)

)
.

Proof. This follows directly from Lemma 1.3.6. □

This lemma tells us for instance that the boosts of the form
coshφ sinhφ 0 0
sinhφ coshφ 0 0

0 0 1 0
0 0 0 1


form a subgroup of the Lorentz group. More precisely,

R→L , φ 7→


coshφ sinhφ 0 0
sinhφ coshφ 0 0

0 0 1 0
0 0 0 1


is a group homomorphism. The first and second column traces a hyperbola when φ runs through
R.

x0

x1

e1

e0

Le0

Le1

L =

(
coshφ sinhφ
sinhφ coshφ

)
Le0 perpendicular to Le1 with
respect to ⟨⟨·, ·⟩⟩.

Definition 1.3.9. A vector v ∈ R4 is called

• timelike iff ⟨⟨v,v⟩⟩< 0,

11



1 Special Relativity

• lightlike iff ⟨⟨v,v⟩⟩= 0 and v , 0,

• spacelike iff ⟨⟨v,v⟩⟩> 0 or v = 0.

The set C := {v ∈ R4 |v lightlike } is called the light cone.

We observe that v = (v0, v̂) is lightlike if and only if

0 =−(v0)2 +∥v̂∥2 ⇐⇒ |v0|= ∥v̂∥.

This is the equation of a cone, hence the terminology “light cone”.

b

x0

x1,x2,x3

timelike

C
timelike

spacelike

Remark 1.3.10. The set Z := {v ∈ R4 |v timelike } is open (the ”interior” of the light cone)
and decomposes into two components

Z ↑ := {v ∈Z |v0 > 0} and Z ↓ := {v ∈Z |v0 < 0}.

Remark 1.3.11. Since ⟨⟨Lv,Lv⟩⟩= ⟨⟨v,v⟩⟩ for all vectors and Lorentz tranformations, the type
(time-, light- or spacelike) of a vector v ∈ R4 is left invariant under Lorentz transformations.

Remark 1.3.12. In fact,

L ↑ ·Z ↑ = Z ↑ and L ↑ ·Z ↓ = Z ↓.

This can be seen as follows: Let L ∈ L ↑. Then the special vector e0 ∈ Z ↑ fulfills Le0 =
( L0

0︸︷︷︸
≥1

,L1
0,L

2
0,L

3
0)
⊤ ∈Z ↑. To any other vector v∈Z ↑, we associate the vector vt := (1−t)v+te0

for t ∈ [0,1]. It is easy to see that vt is always timelike and that v0 = v as well as v1 = e0. As
L leaves the type of v invariant, Lvt is timelike as well for any t ∈ [0,1]. Because the map
t 7→ Lvt is continuous, Lvt is contained in just one of the two components for all t and since
Lv1 = Le0 ∈Z ↑, we also have Lv0 = Lv ∈Z ↑.
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1.3 The Lorentz group and Minkowski geometry

This shows LZ ↑⊂Z ↑. In a similar fashion one shows that LZ ↓⊂Z ↓. Because L is invertible,
we can use the same argument for L−1 and conclude LZ ↑ = Z ↑ and LZ ↓ = Z ↓.
The same argument shows L ↓

± ·Z ↑ = Z ↓ and L ↓
± ·Z ↓ = Z ↑.

Lemma 1.3.13
Let v ∈ R4 be timelike. Then every w ∈ R4 with ⟨⟨v,w⟩⟩= 0 is spacelike.

b

v

v⊥

Proof. Write v = (v0, v̂). Choose a matrix A ∈O(3) such that Av̂ = α ·e1 = (α,0,0)⊤ for some

α ∈ R. For L1 =

(
1 0
0 A

)
∈L , we have L1v = (v0,α,0,0)⊤. Choose a boost L2 ∈L with

L2 ·


v0

α
0
0

=


β
0
0
0

 .

For L = L2L1 ∈L we have

0 = ⟨⟨v,w⟩⟩= ⟨⟨Lv,Lw⟩⟩=

⟨⟨ β
0
0
0

 ,Lw

⟩⟩
=−β (Lw)0.

This shows (Lw)0 = 0, hence Lw ∈ {0}×R3 is spacelike. Therefore w = L−1Lw is also space-
like. □

Remark 1.3.14. If w is ⟨⟨·, ·⟩⟩-perpendicular to a spacelike v, it can be of any type.
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1 Special Relativity

b vvy

From now on we use the notation

vy := {w ∈ R4 | ⟨⟨v,w⟩⟩= 0}

for the ⟨⟨·, ·⟩⟩-orthogonal complement of a vector v ∈ R4. If v , 0, then vy is a 3-dimensional
vector subspace of R4.

Let v ∈ R4 be lightlike. Then vy is the tangent space to the light cone at v.

b

v

vy

To see this, choose a differentiable curve
c : I→ C with c(0) = v. Then ċ(0) is a tangent
vector to C and all tangent vectors are of this
form. We compute

0 =
d
dt
⟨⟨c(t),c(t)⟩⟩ |0

= ⟨⟨ċ(0),c(0)⟩⟩+ ⟨⟨c(0), ċ(0)⟩⟩
= 2⟨⟨v, ċ(0)⟩⟩ .

This shows ċ(0) ∈ vy and we conclude that the tangent space to C at p is contained in vy. Since
both, the tangent space and vy, are 3-dimensional vector subspaces, they must be equal. In
particular, vy contains lightlike and spacelike vectors but no timelike vectors.

Lemma 1.3.15
Let v ∈ R4 be timelike. Then

vy = {w ∈ R4 |∃ α ∈ R\{0}, such that αv+w and αv−w lightlike}∪{0 ∈ R4}.
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1.3 The Lorentz group and Minkowski geometry

αv

−αv

w

x0

x1

C

Proof. We show both inclusions.
We start with “⊃”: Let w ∈ R4 be such that there exists α ∈ R \ {0} with αv+w and αv−w
lightlike. Then

0 = ⟨⟨αv±w,αv±w⟩⟩= α2 ⟨⟨v,v⟩⟩±2α ⟨⟨v,w⟩⟩+ ⟨⟨w,w⟩⟩

and hence
4α ⟨⟨v,w⟩⟩= 0.

Since α , 0 this shows ⟨⟨v,w⟩⟩= 0, i.e., w ∈ vy.
Now we show “⊂”: Let w ∈ vy \{0}. Then we have for all α ∈ R:

⟨⟨αv±w,αv±w⟩⟩= α2 ⟨⟨v,v⟩⟩±2α ⟨⟨v,w⟩⟩︸    ︷︷    ︸
=0

+⟨⟨w,w⟩⟩= α2 ⟨⟨v,v⟩⟩+ ⟨⟨w,w⟩⟩ .

Since ⟨⟨v,v⟩⟩< 0 and ⟨⟨w,w⟩⟩ ≥ 0 we can choose

α =

√
−⟨⟨w,w⟩⟩
⟨⟨v,v⟩⟩

which does the job. □

Lemma 1.3.16
Let x,y ∈Z ↑ with ⟨⟨x,x⟩⟩= ⟨⟨y,y⟩⟩=−1. Then

⟨⟨x,y⟩⟩ ≤ −1

and equality holds if and only if x = y.

15



1 Special Relativity

Proof. We choose A∈O(3) such that Ax̂= (α,0,0)⊤. Then we have for L1 :=
(

1 0
0 A

)
∈L

that

L1x =


β
α
0
0

 .

From
−1 = ⟨⟨x,x⟩⟩= ⟨⟨L1x,L1x⟩⟩=−β 2 +α2

we see that the point (β ,α)⊤ lies on the hyperbola as in Remark 1.3.7. Because of x ∈ Z ↑ it
lies on the upper branch. Therefore there exists φ ∈ R such that (β ,α)⊤ = (coshφ,sinhφ)⊤.

Putting L2 :=


cosh(−φ) sinh(−φ) 0 0
sinh(−φ) cosh(−φ) 0 0

0 0 1 0
0 0 0 1

 ∈L and L := L2L1 ∈L we obtain Lx =

L2L1x = e0.
Next we observe

−1 = ⟨⟨y,y⟩⟩= ⟨⟨Ly,Ly⟩⟩=−((Ly)0)2 +∥L̂y∥2 ≥−((Ly)0)2

with equality if and only if L̂y = 0. Hence |(Ly)0| ≥ 1 with equality if and only if L̂y = 0.
Both L1 and L2 preserve time orientation, hence Ly∈Z ↑. In other words, (Ly)0 > 0. Therefore
we know (Ly)0 ≥ 1 with equality if and only if L̂y = 0.
Now we see

⟨⟨x,y⟩⟩= ⟨⟨Lx,Ly⟩⟩= ⟨⟨e0,Ly⟩⟩=−(Ly)0 ≤−1

with equality if and only if L̂y = 0. Since Ly ∈Z ↑ with ⟨⟨Ly,Ly⟩⟩=−1 the condition L̂y = 0
is equivalent to Ly = e0 = Lx and hence to y = x. □

Recall that cosh maps [0,∞) bijectively onto [1,∞).

Definition 1.3.17. We set

H3 := {x ∈Z ↑ | ⟨⟨x,x⟩⟩=−1}.

The unique function dH : H3×H3→ [0,∞) satisfying

cosh(dH(x,y)) =−⟨⟨x,y⟩⟩

is called hyperbolic distance. The pair (H3,dH) is called the (3-dimensional) hyperbolic
space.
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1.3 The Lorentz group and Minkowski geometry

H3

Remark 1.3.18. Hyperbolic space (H3,dH) is a metric space, i.e., for all x,y,z ∈ H3, we have

1. dH(x,y)≥ 0 and dH(x,y) = 0 if and only if x = y,

2. dH(x,y) = dH(y,x),

3. dH(x,z)≤ dH(x,y)+dH(y,z).

Assertion (b) is clear and (a) is a consequence of Lemma 1.3.16. A proof of the triangle inequal-
ity can be found in [1, Satz 4.2.6].
Lorentz transformations preserving time orientation act on H3 and preserve the hyperbolic dis-
tance. In other words, L ↑(H3) = H3 and dH(Lx,Ly) = dH(x,y) for all x,y ∈ H3 and L ∈L ↑.

Remark 1.3.19. For any x ∈ H3, the orthogonal complement xy coincides with the tangent
space TxH3 to H3 at the point x. To see this, take a smooth curve c : (−ε ,ε)→H3 with c(0) = x.
Differentiating the equation

⟨⟨c(t),c(t)⟩⟩ ≡ −1

at t = 0 yields
0 = ⟨⟨ċ(0),c(0)⟩⟩+ ⟨⟨c(0), ċ(0)⟩⟩= 2⟨⟨ċ(0),x⟩⟩

and hence ċ(0) ∈ xy. Thus TxH3 ⊂ xy and since both spaces have the same dimension three,
TxH3 = xy.
By Lemma 1.3.13, TxH3 contains only spacelike vectors. Hence the restriction of ⟨⟨·, ·⟩⟩ to TxH3

is positive definite. Restricted to any tangent space of H3, the Minkowski inner product becomes
a Euclidean scalar product.

Remark 1.3.20. Two points x and y ∈ H3, x , y, determine a great hyperbola G = Gx,y as
follows: Take the plane E that is spanned by 0, x and y. The intersection of E with H3 defines
the great hyperbola G = E ∩H3.
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1 Special Relativity

0

E

We can parametrize the great hyperbola as follows: Choose u ∈ E ∩TxH3 with ⟨⟨u,u⟩⟩= 1. The
plane E contains with x a timelike vector, TxH3 = xy however contains only spacelike vectors.
Hence E is not contained in TxH3 and E∩TxH3 must be one-dimensional. This means that there
are only two possibilities to choose u; we can only replace u by −u. Both choices are equally
valid. The curve parametrized by

c(t) = cosh(t) ·x+ sinh(t) ·u,

is contained in E, as c(t) is always a linear combination of x and u ∈ E. The curve c(t) is also
contained in H3, because

⟨⟨c(t),c(t)⟩⟩ = ⟨⟨cosh(t) ·x+ sinh(t) ·u,cosh(t) ·x+ sinh(t) ·u⟩⟩
= cosh(t)2 ⟨⟨x,x⟩⟩︸   ︷︷   ︸

=−1

+2cosh(t)sinh(t)⟨⟨x,u⟩⟩︸    ︷︷    ︸
=0

+sinh(t)2 ⟨⟨u,u⟩⟩︸    ︷︷    ︸
=1

= −cosh(t)2 + sinh(t)2

= −1.

In fact, c passes exactly once through the great hyperbola G, when t traverses the real numbers.
Furthermore, c(0)= x and c(±dH(x,y))= y, where the sign depends on the choice of u (whether
u points in direction of y or not).

bc

x
u

G = H3∩E

0

Let c and c̃ be two great hyperbolic arcs starting at x, parametrized by c(t) = cosh(t) · x +
sinh(t) ·u and c̃(t) = cosh(t) · x+ sinh(t) · v with u,v ∈ TxH3 and ⟨⟨u,u⟩⟩ = ⟨⟨v,v⟩⟩ = 1. The
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1.3 The Lorentz group and Minkowski geometry

angle α ∈ [0,π) between the two great hyperbolas is characterized by

cos(α) = ⟨⟨u,v⟩⟩ .

We have the following trigonometric identities of hyperbolic geometry:
Let x,y,z∈H3 three different points and let α be the angle between the great hyperbolas running
from x to y and to z, respectively. Similarly, let β be the angle at y and γ the angle at z. Let
furthermore a = dH(y,z), b = dH(x,z) and c = dH(x,y).

x α

y
β

z

γ

a
b

c

Theorem 1.3.21
The following identities hold:
Law of sines:

sinh(a)
sin(α)

=
sinh(b)
sin(β )

=
sinh(c)
sin(γ)

,

Law of cosines for angles:

cos(α) = cosh(a)sin(β )sin(γ)− cos(β )cos(γ),

Law of cosines for sides:

cosh(a) = cosh(b)cosh(c)− sinh(b)sinh(c)cos(α).

The law of cosines for sides will be helpful in the investigation of the relativistic addition of
velocities. It allows to determine the length of a side of a hyperbolic triangle, given the other
lengths and the opposite angle.
For proofs of these laws see [1, Section 4.2].

Exercise 1.3.22. Use the law of cosines for sides to show

α +β + γ < π.
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1.4 Relativistic Kinematics

Albert Einstein (1879–1955) 5

We now start to develop relativistic kinematics as introduced by
Albert Einstein in 1905. We merge space and time to the 4-
dimensional spacetime. The elements of spacetime are called
events. To model particles, we use their world lines in spacetime

{(t,x(t)) ∈ R×R3 | t ∈ R}.

instead of their parametrizations x : R→ R3 in space. Observe that
the world line is a subset of R4 while t 7→ x(t) is a parametrized
curve. Both contain the same information, they determine each
other.

We use the canonical parametrization of the world
line t 7→ (t,x(t)) to compute its tangent:

d
dt
(t,x(t)) = (1, ẋ(t)).

Therefore the tangents to a world line are never par-
allel to {0}×R3.

bc bc

R

R3x(0)

Conversely, by the implicit function theorem, any
smooth curve in R×R3 with tangents never paral-
lel to {0}×R3 can be parametrized in the form

t 7→ (t,x(t)).

Hence it is a world line.

bc bc bc

b
R

R3

not a
world line

The Postulate of Special Relativity

Inertial frames. There exist distinguished coordinate systems for spacetime (i.e., identifications
of physical spacetime with R×R3) called inertial frames. In an inertial frame the world lines of
particles not subject to any forces are straight lines.
A coordinate system is an inertial frame if and only if it can be mapped to an inertial frame by a
time orientation preserving Poincaré transformation.

We compute the velocity of a particle X in an inertial frame from the view of an ob-
server not in motion with respect to this frame, i.e., one that has the world line R · e0.

5Source: http://en.wikipedia.org/wiki/Albert_Einstein
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1.4 Relativistic Kinematics

To this end, parametrize the world line of X in the
form

t 7→ (ct, x̂(t)), x0 := ct.

Here c is the vacuum speed of light. The physical
velocity of the particle X is then given by

vphys :=
dx̂
dt

= c
dx̂
dx0 .

bc bc

R

R3

The mathematical velocity is

v =
dx̂
dx0 =

1
c

vphys.

For a reparametrization σ 7→ (φ(σ), x̂(φ(σ))) = x(φ(σ)) of the world line, we have

d
dσ

(x◦φ) =
(

φ ′(σ),
dx̂
dx0 (φ(σ)) ·φ ′(σ)

)
= φ ′(σ)

(
1,

dx̂
dx0 (φ(σ))

)
.

This implies the invariance of the mathematical velocity under reparametrizations:

v =
dx̂
dx0 =

d(x̂◦φ)
dσ

/
d(x0 ◦φ)

dσ
.

The mathematical velocity of the particle X is determined by the slope of the tangent: For a
tangent vector ẋ = (ẋ0(s), ˙̂x(s)), we have

⟨⟨ẋ(s), ẋ(s)⟩⟩ =
⟨⟨
(ẋ0(s), ˙̂x),(ẋ0(s), ˙̂x)

⟩⟩
= −ẋ0(s)2 +

∥∥ ˙̂x(s)
∥∥2

= ẋ0(s)2(−1+ ||v(s)||2).

We observe:

ẋ(s) is timelike ⇔ −1+ ||v(s)||2 < 0 ⇔ ||v(s)||< 1 ⇔
∣∣∣∣vphys(s)

∣∣∣∣< c,
ẋ(s) is lightlike ⇔ −1+ ||v(s)||2 = 0 ⇔ ||v(s)||= 1 ⇔

∣∣∣∣vphys(s)
∣∣∣∣= c,

ẋ(s) is spacelike ⇔ −1+ ||v(s)||2 > 0 ⇔ ||v(s)||> 1 ⇔
∣∣∣∣vphys(s)

∣∣∣∣> c.

We measured velocity of X with respect to an observer B1 with world line R · e0 in a given
inertial frame. Which velocity of X will be measured by a second observer B2 moving with
constant velocity with respect to B1?
We choose a time orientation preserving Poincaré transformation which maps the world line of
B2 to Re0. By the postulate of special relativity, this yields another inertial frame. We write
P(x) = Lx+p with L ∈L ↑ and p ∈ R4. In the new coordinates B2 has the world line Re0 and
the world line of X is parametrized by t 7→ P(ct, x̂(t)) = P(x(t)) =: y(t). This means that in these
coordinates, B2 observes the tangent vector ẏ(t) = Lẋ(t) to the world line of X and therefore
measures the mathematical velocity

˙̂y(t)
ẏ0(t) . Here we have ẏ = ẏ0 · e0 + ˙̂y, the splitting of ẏ into
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the part tangential to e0 and the normal part corresponding to the factorization R4 = Re0⊕ey0 =
Re0⊕Te0H3. Reversing the transformation yields

ẋ = L−1ẏ

= L−1(ẏ0 · e0 + ˙̂y)

= ẏ0 ·L−1e0 +L−1 ˙̂y

=−⟨⟨ẏ,e0⟩⟩ ·L−1e0 +L−1 ˙̂y

=−
⟨⟨

ẋ,L−1e0
⟩⟩
·L−1e0 +L−1 ˙̂y

=−⟨⟨ẋ,z⟩⟩ · z+L−1 ˙̂y

where we put z := L−1e0 ∈H3 for the tangent vector to the world line of B2 (with respect to the
original inertial frame before transformation). We conclude that in the original coordinates, B2
observes the mathematical velocity vector

L−1 ˙̂y
−⟨⟨ẋ,z⟩⟩

=
ẋ+ ⟨⟨ẋ,z⟩⟩ · z
−⟨⟨ẋ,z⟩⟩

∈ zy = TzH3. (1.6)

Simultaneity

How does our inertial observer B1 determine if two events happen simultaneously?
Observer B1 sends out a light signal at the event −αv, which is reflected at the event E2 and is
again received by B1 at the event αv. Because the light took the same time for the way to E2
and the way back, the event E2 must happen at the same time as the event E1= 0.
For observer B2 having constant velocity with re-
spect to B1, the event E1 happens at the same time
as E2’. But for B1, the events E1 and E2’ do not
happen simultaneously.
Lemma 1.3.15 can now be interpreted as follows:
The set of events that are simultaneous to 0∈R×R3

for an observer with world line Rv, is precisely vy.
There is a different way to establish this statement:
For observer B1, two events are simultaneous if and
only if they have the same x0 component, as the x0

component was introduced to by the time compo-
nent from the view of B1.
The hyperplanes {x0}×R3 in R4 with fixed x0 are
exactly those perpendicular to the world line of B1
(with respect to the Mikowski product). Using a
Lorentz transformation that converts B1 to B2, this
converts events which are simultaneous for B1 into
events which are simultaneous for B2, by the pos-
tulate of special relativity. On the other hand, we
know that our Lorentz transformation respects the
Minkowski product, in particular, it maps e0

y to vy.

b b

b

x0

x1

αv

−αv

B1

B2

E1

E2

E2’

22



1.4 Relativistic Kinematics

This shows that simultaneity of events is seen differently by different inertial observers. But
who is right? Since no inertial observer is distinguished from another, all are equally right.
We have to abandon the idea that simultaneity of two events is a property of these events only;
simultaneity is not an absolute concept. Simultaneity is a relative concept in the sense that it
depends on the observer.

Remark 1.4.1. ”Being at the same place” is already a relative concept in classical mechanics. If
observer B2 is moving with constant velocity with respect to the inertial observer B1, then, from
the point of view of B1, B2 occupies different locations at different times, while B2 considers
itself as staying in the same place for all times.

Superluminal Velocity

Consider the world lineRw of a hypothetical particle
X moving with constant speed higher than that of
light with respect to an inertial observer B1. In other
words, the tangent vector w to the world line of X is
spacelike. We may choose the inertial frame such

that B1 has the world line Re0 and w =


w0

w1

0
0

.

The vector v :=


w1

w0

0
0

 is timelike and perpendic-

ular to w with respect to the Minkowski product,
v y w. Let now B2 by the inertial observer with the
world line Rv.

b

x0

x1

e0

B1

B2

v

C

w

X

Rw

This means that the whole world line of Rw is perpendicular to the world line of B2, i.e., B2
observes the particle X to be at all places at the same time. Nothing like this has ever been
observed.
Even worse: Denote the boost matrix L1 in (1.4) by B(φ). We choose φ such that v = B(φ)e0.
For the third observer B3 with world line R ·B(2φ)e0 we find:
After the transformation B(−2φ), the observer B3
gets the world line Re0. The world line of X gets the
tangent vector

B(−2φ)w = B(−2φ)B(φ)e1 = B(−φ)e1.

From the point of view of B3, the world line of X
moves into the past! This leads to causality prob-
lems. If one were able to send signals to the past one
could influence the past and thus change the present.

b

B3

x̄1

B(−φ)e1
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These considerations lead to the conclusion that nothing can move faster than light. Hypothetical
particles moving at superluminous velocity are sometimes called tachyons.

Absolute Velocity and Hyperbolic Distance

Let X be a particle with world line Rx+p and B an inertial observer with world line Ry+q.
Here p,q ∈ R4 and, without loss of generality, we can choose x and y normalized such that
x,y ∈ H3. By (1.6) B observes the particle X to have the mathematical velocity v = x+⟨⟨x,y⟩⟩·y

−⟨⟨x,y⟩⟩ .
For the square of the absolute velocity, we calculate

⟨⟨v,v⟩⟩ =

=−1︷   ︸︸   ︷
⟨⟨x,x⟩⟩+2⟨⟨x,y⟩⟩2 + ⟨⟨x,y⟩⟩2

=−1︷   ︸︸   ︷
⟨⟨y,y⟩⟩

⟨⟨x,y⟩⟩2

=
−1+ ⟨⟨x,y⟩⟩2

⟨⟨x,y⟩⟩2

=
−1+ cosh(dH(x,y))2

cosh(dH(x,y))2

=
sinh(dH(x,y))2

cosh(dH(x,y))2

= tanh(dH(x,y))2.

Therefore we get
||v||= tanh(dH(x,y))

for the absolute velocity.

Addition of Velocity

As preparation we need a little lemma on hyperbolic functions.

Lemma 1.4.2
For any x ∈ (−1,1) we have

(a) cosh(artanh(x)) =
1√

1− x2
;

(b) sinh(artanh(x)) =
x√

1− x2
;

(c) eartanh(x) =
1+ x√
1− x2

=

√
1+ x√
1− x

.
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1.4 Relativistic Kinematics

Proof. (a) Set y := artanh(x). Then

x2 = tanh(y)2 =
sinh(y)2

cosh(y)2 =
cosh(y)2−1

cosh(y)2 = 1− 1
cosh(y)2 ,

which implies cosh(y)2 = 1
1−x2 . Because cosh is positive, we are allowed to take the positive

square root, which gives the statement.

(b) From (a), we get

sinh(artanh(x))2 = cosh(artanh(x))2−1 =
1

1− x2 −1 =
x2

1− x2 .

Here we have to be careful with the sign, namely we have

x > 0⇔ artanh(x)> 0⇔ sinh(artanh(x))> 0.

Taking the square root with the correct sign yields the claim.

(c) follows from ey = cosh(y)+ sinh(y). □

Let us now consider the following situation: We have an inertial observer with world line Rx+p,
and inertial observer B2 with world line Ry+q and an object X with world line Rz+r. Let v =
tanh(dH(y,z)) the absolute velocity of X in the view of B2 and V = tanh(dH(x,y)) the absolute
velocity of B2 in the view of B1. We want to determine the absolute velocity w = tanh(dH(x,z))
of X in the view of B1. This is a problem of hyperbolic trigonometry.

x
y

α

z

artanh(v)
artanh(w)

artanh(V )

Write α for the angle at the vertex y in this hyperbolic triangle. This is the angle between the two
velocity vectors of B1 and of X in the view of B2. The law of cosines for sides of the hyperbolic
geometry (Theorem 1.3.21) now states

cosh(artanh(w)) =cosh(artanh(v))cosh(artanh(V ))

− sinh(artanh(v))sinh(artanh(V ))cos(α),

and Lemma 1.4.2 gives

1√
1−w2

=
1√

1− v2

1√
1−V 2

− v√
1− v2

V√
1−V 2

cos(α)

=
1− vV cos(α)√
(1− v2)(1−V 2)
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Hence

1−w2 =
(1− v2)(1−V 2)

(1− vV cos(α))2

and therefore

w2 = 1− (1− v2)(1−V 2)

(1− vV cos(α))2

=
(1− vV cos(α))2− (1− v2)(1−V 2)

(1− vV cos(α))2

=
1−2vV cos(α)+ v2V 2 cos(α)2− (1− v2−V 2 + v2V 2)

(1− vV cos(α))2

=
v2 +V 2−2vV cos(α)− v2V 2 sin(α)2

(1− vV cos(α))2

This gives the general formula for relativistic addition of velocities:

w =

√
v2 +V 2−2vV cos(α)− v2V 2 sin(α)2

1− vV cos(α)

Let us look at two special cases. For α = π , we have cos(α) = −1 and sin(α) = 0. Hence we
get

w =

√
v2 +V 2 +2vV

1+ vV
=

v+V
1+ vV

.

The is a deviation from the classical result w = v+V by the factor 1
1+vV . For velocities that are

small compared to the speed of light, vV is very small and the difference is barely measurable.
Now look at the case that the velocities are perpendicular to each other. For α = π/2, we have
cos(α) = 0 and sin(α) = 1. Therefore we get

w =
√

v2 +V 2− v2V 2.

In classical mechanics, the Pythagorean theorem would have given the result w =
√

v2 +V 2.
For general α the law of cosines for the Euclidean geometry yields

w =
√

v2 +V 2−2vV cos(α)

for classical mechanics.

α

vw

V
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1.4 Relativistic Kinematics

It is also interesting to consider that case v = 1, i.e., X moves with the speed of light relative to
B2. Relativistic velocity addition gives us

w =

√
1+V 2−2V cos(α)−V 2 sin(α)2

1−V cos(α)
=

√
1+V 2 cos(α)2−2V cos(α)

1−V cos(α)
= 1.

Thus X also moves with the same speed of light relative of B1, independently of the relative
motion of B1 and B2.

Length Contraction

Regard a bar not subject to any acceleration. Choose the coordinate system such that one end
of the bar has the world line Re0 and the other end has the world line Re0 +Le1. An inertial
observer B1 sitting at the first end of the bar (i.e. having world the world line Re0) measures L
for the length of the bar. To see this, note that in the view of B1, the events 0 and (0,L,0,0)⊤

are simultaneous events on the world lines of the two ends and there distance in space is√
⟨⟨0− (0,L,0,0)⊤,0− (0,L,0,0)⊤⟩⟩=

√
⟨⟨(0,L,0,0)⊤,(0,L,0,0)⊤⟩⟩= L.

Let now B2 be a second inertial observer with world line Rx. Which length L̃ will by measured
by B2?

x̂
e0x

L
α

To calculate this, we have to determine the event on the world line Re0+Le1 that is simultaneous
to 0. Since in the view of B2, the events simultaneous to 0 are exactly the points on xy. We
solve

0 =
⟨⟨

(t,L,0,0)⊤,x
⟩⟩

=−tx0 +Lx1

for t and we obtain

t = L
x1

x0 = L
⟨x̂,e1⟩

x0 = L
cos(α) · ||x̂||

x0 = L · cos(α) ·V,

where V is the absolute velocity between B1 and B2 and α is the angle between e1 and the ve-
locity vector. Hence in the view of B2, the events 0 and (L ·cos(α) ·V,L,0,0)⊤ are simultaneous

27
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events lying on the world lines of the ends of the bar. B2 measures the distance in space

L̃2 =
⟨⟨

0− (L · cos(α) ·V,L,0,0)⊤,0− (L · cos(α) ·V,L,0,0)⊤
⟩⟩

=
⟨⟨

(L · cos(α) ·V,L,0,0)⊤,(L · cos(α) ·V,L,0,0)⊤
⟩⟩

= −L2 · cos(α)2 ·V 2 +L2

= L2 · (1− cos(α)2V 2)

and therefore
L̃ = L ·

√
1− cos(α)2V 2

From the point of view of the inertial observer B2 moving towards the bar, the length of the
bar is shortened by the factor

√
1− cos(α)2V 2. For motion in direction of the bar (α = 0 or

α = π), we have the strongest length contraction, namely by the factor
√

1−V 2. For motion
perpendicular to the bar (α =±π/2) there is no contraction.
The length of an object measured by an observer in rest relatively to the object is called proper
length of the object. It is the maximal length of the object that an observer can measure.
Hence the length of an object has also become a relative concept in the sense that it depends on
the observer. This leads to a number of puzzling questions. Here is an example:
The Tunnel Paradox. A train with proper length L is travelling through a tunnel that also has
proper length L. Is the train contained completely in the tunnel at some point?
From an outside view:
Because of length contraction, the train is shorter than the tunnel. Therefore, for some time, the
train is completely contained in the tunnel.
From the traindriver’s view:
Because of length contraction, the tunnel is shorter than the train. Therefore the train is never
completely contained in the tunnel.
Who is right?
”Being completely contained in the tunnel” means that both ends of the train are in the tunnel
simultaneously. Simultaneity, however, is a relative concept (depending on the inertial observer)
and hence this is also the case for the concept of ”being completely contained in the tunnel”.
Both observers are right from there respective points of view.

Time Dilation

An inertial observer B1 with world line R · e0 observes the elapsed time T between the events
0 and T · e0. More generally, if B1 has the world line R · x with x ∈ H3, then B1 observes the
elapsed time T between the events 0 and T · x. Let now B2 be another inertial observer with
world line R ·y where y ∈ H3. Which is the time T̃ elapsed between the events 0 und T ·x from
the viewpoint of B2?
To answer this question, we have to find the time T̃ for which the event T̃ · y is simultaneous
to the event T · x in the view of B2. This is the case when the difference vector T · x− T̃ · y is
perpendicular to the world line of B2, or equivalently, to y:

0 =
⟨⟨

y,T ·x− T̃ ·y
⟩⟩

= T · ⟨⟨y,x⟩⟩− T̃ · ⟨⟨y,y⟩⟩=−T · cosh(dH(y,x))+ T̃ ,
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1.4 Relativistic Kinematics

hence, by Lemma 1.4.2,

T̃ = T · cosh(dH(y,x)) = T · cosh(artanh(V )) = T · 1√
1−V 2

,

where V is the velocity between B1 and B2. Because of the correction factor 1√
1−V 2 > 1, the

time elapsed is longer in the view of B2. This phenomenon is known as time dilation. In the
view of observer B2, the clock of B1 runs slower than his own. Exchanging roles of B1 and B2,
we analogously obtain that the clock of B2 runs slower than his own in the view of B1.
In physical units, we have

T̃ =
T√

1−
Vphys

2

c2

For velocities much below the speed of light, Vphys≪ c, i.e. V ≪ 1, the correction factor is very
close to 1. For this reason, time dilation is not noticed in daily life.

Example 1.4.3. Cosmic radiation and µ-mesons

10 km

Earth C
os

m
ic

R
ad

ia
tio

n
bc
bc
bc
bc
bc
bc
bc

bc
bc

formation of µ-mesons

Cosmic radiation generates certain elementary particles, so-called µ-mesons, on impact with the
outer atmosphere. These µ-mesons have a mean lifetime of 2 · 10−6 s. Even with light speed,
the µ-mesons can cover a distance of only

3 ·105 km
s
·2 ·10−6s = 6 ·10−1km

on average. Therefore one would expect that only very few µ-mesons reach the surface of the
earth because the distance between the outer atmosphere and the surface of the earth is roughly
10 km. It is a fact however, that µ-mesons can be detected on the earth’s surface in great
numbers. What is the explanation for this?
Explanation from our point of view on earth: Time dilation implies that time goes by much
slower for the µ-mesons moving with very high speed towards the earth. For this reason, from
our point of view, the lifetime of µ-mesons is much longer than 2 ·10−6 s.
Explanation from the µ-meson’s point of view: Because of length contraction the distance be-
tween the outer atmosphere and the surface of the earth is much less than 10 km. Therefore the
distance to the surface can be overcome even in the short time at disposal.
This example shows nicely that length contraction and time dilation are really two sides of the
same medal.
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1 Special Relativity

We now consider an observer B that is subject to acceleration. We
assume that B always has velocity below light speed with respect
to inertial observers, i.e. its world line is timelike. Parametrize the
world line of B by x : [a,b]→ R4. After possibly using the para-
meter transform s 7→ −s, we can assume that x is future directed,
i.e. that dx

ds (s) ∈Z ↑ for all s ∈ [a,b]. b

b

E1

E2

B

What is the time elapsed between two events E1= x(a) and E2= x(b), measured on a clock
taken along by observer B? In the special case that B moves with constant velocity (with respect
to inertial observers), we already know that the time elapsed between E1 and E2 is given by√

−⟨⟨E2−E1,E2−E1⟩⟩.

We reduce the general case to this one. For a sufficiently fine partition a = s0 < s1 < .. . < sn = b
we have x(si)−x(si−i) ∈Z ↑, i = 1, . . . ,n, because

x(si)−x(si−i)

si− si−i
→ dx

ds︸︷︷︸
∈Z ↑

,

as the mesh of the partition tends to 0. Since Z ↑ is open, x(si)−x(si−i)
si−si−i

has to be in Z ↑ if si− si−1

is small enough6.
This partition leads to the approximation of an accelerated ob-
server B by a ”piecewiese inertial observer”. This approximation
becomes better as the mesh of the partition gets smaller. The
time elapsed between to subsequent events x(si−1) and x(si) in
the view of the corresponding inertial observer with world line
R · (x(si)−x(si−1))+x(si−1) is b

b

+

+

+

√
−⟨⟨x(si)−x(si−1),x(si)−x(si−1)⟩⟩.

Summation gives an approximate value for the time elapsed between E1= x(a) and E2= x(b)
from the viewpoint of B:

n

∑
i=1

√
−⟨⟨x(si)−x(si−1),x(si)−x(si−1)⟩⟩

=
n

∑
i=1

√
−
⟨⟨

x(si)−x(si−1)

si− si−1
,
x(si)−x(si−1)

si− si−1

⟩⟩
· (si− si−1)

→
∫ b

a

√
−
⟨⟨

dx
ds

(s),
dx
ds

(s)
⟩⟩

ds ,

6 In fact, it is not hard to see that for every future-directed timelike curve x, we always have x(t2)− x(t1) ∈ Z ↑

even if t2 is much larger than t1. However, we will not need this.
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1.4 Relativistic Kinematics

as the mesh tends to 0 (theorem on Riemann sums). We summarize: From the view of an
accelerated observer B with word line x, the time elapsed between the events x(a) and x(b) is
given by

∫ b

a

√
−
⟨⟨

dx
ds

(s),
dx
ds

(s)
⟩⟩

ds

Definition 1.4.4. A future-directed parametrization x : [a,b]→ R4 of a timelike world line is
called a parametrization by proper time if⟨⟨

dx
dτ

,
dx
dτ

⟩⟩
≡−1.

In other words, we have for all τ :
dx
dτ

(τ) ∈ H3.

Remark 1.4.5. If the world line of an observer is parametrized by proper time, the parameter τ
always gives the time elapsed from the view of this observer:

∫ τ0

a

√
−
⟨⟨

dx
dτ

,
dx
dτ

⟩⟩
dτ = τ0−a.

Lemma 1.4.6
Every timelike world line can be parametrized by proper time. The parametrization by proper
time is unique up to parameter transformations of the form τ 7→ τ + τ0 for fixed τ0 ∈ R.

Proof. Existence: Let s 7→ x(s) a parametrization of the world line. Without loss of generality
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let
dx0

ds
> 0 (otherwise replace s by −s). For fixed t0 ∈ R set

ψ(s) :=
∫ s

t0

√
−
⟨⟨

dx
ds

(t),
dx
ds

(t)
⟩⟩

dt, so that ψ ′(s) =

√
−
⟨⟨

dx
ds

(s),
dx
ds

(s)
⟩⟩

> 0.

Hence ψ is strictly increasing and for the inverse φ := ψ−1 we have

dφ
dτ

(τ) =
1

ψ ′(φ(τ))
=

1√
−
⟨⟨

dx
ds

(φ(τ)),
dx
ds

(φ(τ))
⟩⟩ .

This implies⟨⟨
d(x◦φ)

dτ
(τ),

d(x◦φ)
dτ

(τ)
⟩⟩

=

⟨⟨
dx
ds

(φ(τ)) · dφ
dτ

(τ),
dx
ds

(φ(τ)) · dφ
dτ

(τ)
⟩⟩

=

(
dφ
dτ

(τ)
)2

·
⟨⟨

dx
ds

(φ(τ)),
dx
ds

(φ(τ))
⟩⟩

= −1.

Uniqueness: Let x and x◦φ be parametrizations by proper time. Then

−1 =

⟨⟨
d(x◦φ)

dτ
,
d(x◦φ)

dτ

⟩⟩
=

(
dφ
dτ

)2

·
⟨⟨

dx
ds

,
dx
ds

⟩⟩
︸            ︷︷            ︸

=−1

.

This implies
∣∣∣dφ

dτ

∣∣∣= 1 and hence φ(τ) =±τ +τ0 for some fixed τ0 ∈R. Since both parametriza-
tions are future directed, we have

0 <
d(x◦φ)0

dτ
=

dφ
dτ
· dx0

ds︸︷︷︸
>0

and hence
dφ
dτ

> 0.

Thus φ(τ) = τ + τ0. □

The Twin Paradox
Suppose A and B are twins. Twin B decides to go on a round trip in a space craft while twin A
remains at home in an inertial frame. On his return, B is younger than A! This can be seen as
follows: In the inertial frame of A, let E1= 0 the event of B’s departure and E2= (T,0,0,0)⊤

the event of his or her return. This means that A has aged by time T during the separation of the
twins.
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To compute the aging of B let s 7→ x(s) = (s, x̂(s)) be a
parametrization of the worldline of B in the inertial system of
A. We compute the time that has passed for B:

∫ T

0

√
−
⟨⟨

dx
ds

,
dx
ds

⟩⟩
ds =

∫ T

0

√
1−
∣∣∣∣∣∣∣∣dx̂

ds

∣∣∣∣∣∣∣∣2︸              ︷︷              ︸
≤1 and =1 only,

if || dx̂
ds ||=0

ds < T.

We conclude: traveling keeps you young!

b

b

E1= (0,0)

E2= (T,0)

A B

In fact, this was verified experimentally. In the Hafele-Keating experiment (1971), one compared
two atomic clocks, one on board of a Boeing 747, the other one remaining on earth. Here one
had to take into account the rotation of the earth. We will see later, in the part about general
relativity, that another effect also plays a role, namely the influence of gravitation. Gravitation
is weaker on board of the airplane while in high altitude.

Exercise 1.4.7. Redo the computations of Exercise 1.1.2 using special relativity instead of New-
tonian mechanics. Calculate both earth times and proper times as well as the maximal velocities
(as seen from the earth).

Definition 1.4.8. Let x : I → R4 by a parametrization by proper time of the world line of a
timelike particle. The vector

u :=
dx
dτ

is called four-velocity of the particle (at x(τ)) and

a :=
d2x
dτ2

is called its four-acceleration.

Remark 1.4.9. By definition of a proper-time parametrization, the four-velocity is a curve in
H3. Hence its derivative, the four-acceleration, is always tangent to H3,

a(τ) =
du
dτ

(τ) ∈ Tu(τ)H
3 = u(τ)y.

In particular, by Lemma 1.3.13, four-acceleration is always spacelike.
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Write x = (x0, x̂) for the world line of a particle. The observed velocity of x from the view of an
inertial observer with world line Re0 is given by

û
u0 ,

as discussed before. The observed acceleration from the viewpoint of this inertial observer is
the change of velocity per change of time, which is

d
dx0

(
û
u0

)
=

1
u0

d
dτ

(
û
u0

)
=

1
u0

d
dτ û ·u0− d

dτ u0 · û
(u0)2 =

â
(u0)2 −

a0

(u0)3 û.

If the inertial frame is the rest frame of the particle at time τ = τ0, i.e., u(τ0) = e0, then the
four-acceleration satisfies a(τ0) = (0, â(τ0)), because a(τ0) y u(τ0) = e0 and hence a0(τ0) = 0.
Since u0(τ0) = 1 and a0(τ0) = 0, the observed acceleration is just â(τ0). The absolute value of
the observed acceleration in the rest frame is therefore

||â(τ0)||=
√
⟨⟨a(τ0),a(τ0)⟩⟩.

Solution to Exercise 1.4.7. We perform the computations in the inertial frame of the earth. The
earth’s world line is then Re0 and we choose the coordinates such that the destination X has the
world line Re0 +(0,D,0,0). Let τ 7→ x(τ) the world line of the space ship, parametrized by
proper time. The four-velocity is then

u(τ) = (cosh(φ(τ)),sinh(φ(τ)),0,0)

for a function φ(τ) yet to be determined. For the four-acceleration, we have

a(τ) = φ ′(τ)(sinh(φ(τ)),cosh(φ(τ)),0,0).

The absolute value of the four-acceleration is

g2 = ⟨⟨a(τ0),a(τ0)⟩⟩= (φ ′(t))2 ·1,

therefore φ ′(τ) =±g and hence φ(τ) =±gτ +φ0. From e0 = u(0) = (cosh(φ0),sinh(φ0),0,0)
we conclude φ0 = 0 and therefore φ(τ) =±gτ .
During the first half of the travel, the spacecraft accelerates in direction X. Thus φ ′(τ)> 0, hence
φ(τ) = gτ . We conclude u(τ) = (cosh(gτ),sinh(gτ),0,0) and therefore

x(τ) =
1
g
(sinh(gτ),cosh(gτ),0,0)+x0.

From
(0,0,0,0) = x(0) =

1
g
(0,1,0,0)+x0

we get x0 = −1
g e1. Summarizing we have the proper-time parametrization of the world line of

the spacecraft:

x(τ) =
1
g
(sinh(gτ),cosh(gτ)−1,0,0).
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For the time of travel Tship from the viewpoint of the crew we obtain

D
2
= x1

(
Tship

2

)
=

1
g

(
cosh

(
g

Tship

2

)
−1
)

and hence

Tship =
2
g

arcosh
(

Dg
2

+1
)
.

For the time of travel Tearth from the viewpoint of the earth we get

Tearth

2
= x0

(
Tship

2

)
= x0

(
1
g

arcosh
(

Dg
2

+1
))

=
1
g

sinh
(

arcosh
(

Dg
2

+1
))

=
1
g

√
g2D2

4
+gD

=

√
D2

4
+

D
g

hence

Tearth =

√
D2 +

4D
g
.

Furthermore, the maximal velocity vmax can be calculated by

vmax =
u1(Tship/2)
u0(Tship/2)

= tanh
(

arcosh
(

gD
2

+1
))

=

√
g2D2

4 +gD
gD
2 +1

=

√
g2D2 +4gD
gD+2

.

Here, we always calculated in terms of the dimensionless mathematical velocity v, which is
related to the physical velocity by the speed of light,

v =
vphys

c
.

Mathematical length and time therefore have to have the same dimension. We choose the con-
vention to calculate in units of length, i.e.

D = Dphys, T = c ·Tphys, g =
gphys

c2 .
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Then we get

Tship, phys =
2c

gphys
arcosh

(
Dgphys

2c2 +1
)

Tearth, phys =

√
D2

c2 +
4D

gphys

vmax, phys =
c
√

D2gphys
2 +4Dgphys

2c2

Dgphys +2c2

Inserting the values for our destinations we get the following table:

classical relativistic
object X distance D time T vmax Tearth Tship vmax

moon 400.000 km 3,5 h 63 km/s 3,5 h 3,5 h 63 km/s
Mars (near) 56 mill. km 42 h 742 km/s 42 h 42 h 741 km/s

Mars (far) 400 mill. km 112 h 1980 km/s 112 h 112 h 1980 km/s
Proxima
Centauri

4,3 light years 4 years 2,1 c 5,9 years 3,6 years 0,95 c

Andromeda
galaxy

2 mill.
light
years

2784 years 1434 c
2 mill.
light
years

28 years almost c

For a convenient way to compute such travel values, see the applet at http://mobius.
maplesoft.com/maplenet/mobius/application.jsp?appId=11532144. Java support
must be activated in the browser for the applet to work.

1.5 Mass and Energy

Definition 1.5.1. A force field F is a smooth mapping F : R4×H3 → R4 such that for all
x ∈ R4 and u ∈ H3 we have

⟨⟨F(x,u),u⟩⟩= 0.

This means F(x,u) ∈ TuH3. We impose this condition because we know already that it is ful-
filled for the four-acceleration and we want to demand later that the force is proportional to
acceleration, as in Newton’s second law.
Let m0 > 0 be a constant which we interpret as the rest mass of a particle. Let the particle have
world line x in an inertial system. The analog to the Newton’s second law is then:
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1.5 Mass and Energy

If the world line of a particle is parametrized by proper time and the particle is subject to the
force F, then

d
dτ

(m0u(τ)) = F(x(τ),u(τ)), (1.7)

or, in slightly different words,

m0
d2

dτ2 x(τ) = F
(
x(τ),

dx
dτ

(τ)
)
.

This is an ordinary differential equation of second order. Given any initial conditions x(τ0) and
u(τ0) =

dx
dτ (τ) it has a unique solution. Hence special relativity is, as the theory of classical

mechanics, a deterministic theory.
In the rest frame of the particle, i.e. if u(τ0) = e0, the relation F(x(τ0),u(τ0)) y u(τ0) means

F(x(τ0),u(τ0)) = (0, F̂(x(τ0),u(τ0))).

Hence in the rest frame, we are left with the classical Newtonian equation of motion m0 â(τ0) =
F̂(x(τ0),u(τ0)).
Without the assumption that the given inertial frame is the rest system of the particle, we define
the relativistic mass

m(τ) :=
m0√

1−
∣∣∣∣∣∣ û(τ)

u0(τ)

∣∣∣∣∣∣2 .
The inertial frame is the rest frame of the particle at the event x(τ0) if and only if u(τ0) = e0, i.e.
if and only if m(τ0) = m0. Otherwise, m(τ)> m0. We then have

d
dx0

(
m

û
u0

)
= m0

d
dx0

û√
(u0)2−||û||2︸               ︷︷               ︸

=1

=
m0

u0
d

dτ
û =

m0

u0 â =
F̂
u0 .

This is the classical Newtonian equation of motion with mass m and force F̂
u0 . Therefore, the

relativistic mass is interpreted as the mass of the particle from the viewpoint of our inertial
observer and F̂

u0 as the observed force acting on the particle from the viewpoint of this observer.

Definition 1.5.2. For a particle with constant rest mass m0 and a world line parametrized by
proper time, the four-momentum is given by

p := m0 ·u.

rest
mass

four-
velocity
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1 Special Relativity

Equation (1.7) then takes the form

d
dτ

p(τ) = F(x(τ),u(τ)).

As we have seen,
d

dx0

(
m · û

u0

)
=

F̂
u0 .

relativistic
mass

observed
velocity

observed
force

where m = m0√
1−∥û/u0∥2

. We write u0 in terms of the ob-

served velocity û/u0:

−1 = ⟨⟨u,u⟩⟩=−(u0)2 + ||û||2

⇒ 1
(u0)2 = 1−

∣∣∣∣∣∣∣∣ û
u0

∣∣∣∣∣∣∣∣2
⇒ u0 =

1√
1−
∣∣∣∣ û

u0

∣∣∣∣2
Hence we can write m= u0m0 for the relativistic mass. The
time component of the vector equation (1.7) is then

u0 d
dx0 m =

d
dτ

(m0 ·u0)
(1.7)
= F0(x,u) =

1
u0

⟨
F̂, û
⟩
,

because 0 = ⟨⟨F(x,u),u⟩⟩=−F0u0 +
⟨
F̂, û
⟩
. This implies

d
dx0 m =

⟨
F̂
u0 ,

û
u0

⟩
.

0

0.5

1.0

1.5

2.0

0 0.5 1.0

relativistic
kinetic
energy

classical
kinetic
energy v

This is the classical energy equation (1.2) with the relativistic mass m instead of the kinetic
energy E. Therefore we can interpret the relativistic mass as the energy of the particle as well.

E = m =
m0√

1−
∣∣∣∣ û

u0

∣∣∣∣2 = m0︸︷︷︸
rest

energy

+
m0

2

∣∣∣∣∣∣∣∣ û
u0

∣∣∣∣∣∣∣∣2︸        ︷︷        ︸
classical
kinetic
energy

+
3m0

8

∣∣∣∣∣∣∣∣ û
u0

∣∣∣∣∣∣∣∣4 +O

(∣∣∣∣∣∣∣∣ û
u0

∣∣∣∣∣∣∣∣6
)

︸                                                 ︷︷                                                 ︸
relativistic kinetic energy

,

where we used that 1√
1−x

= 1+ 1
2 x+ 3

8 x2 +O(x3). Since energy has has the same physical units

as mass ·velocity2 we get the famous formula

Ephys = mphys · c2
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1.5 Mass and Energy

Example 1.5.3 (Electromagnetic field). Suppose we are given

Ê = (E1,E2,E3) : R×R3→ R3 an electric field and

B̂ = (B1,B2,B3) : R×R3→ R3 a magnetic field.

We combine the two fields to the electromagnetic field

F : R×R3→{skew-symmetric bilinear forms on R4}= {skew-symmetric 4×4 matrices}

by

F :=


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 ,

or, more accurately,

F |x =


0 −E1(x) −E2(x) −E3(x)

E1(x) 0 B3(x) −B2(x)
E2(x) −B3(x) 0 B1(x)
E3(x) B2(x) −B1(x) 0

 .

The electromagnetic field is not to be confused with a force field. It exposes a particle with
charge q to the force F that is characterized by

⟨⟨F(x,u),y⟩⟩=−q ·F |x(u,y)

for all y ∈ R4. Observe that for x and u fixed, the right hand side is linear in y. Because the
Minkowski product is non-degenerate, there exists a unique vector F(x,u) such that the equation
is fulfilled for all y. Hence F is well defined. We then have

⟨⟨F(x,u),u⟩⟩=−q ·F (u,u) = 0

as desired because F is skew-symmetric. Let us explicitly calculate F.

F

((
u0

û

)
,

(
y0

ŷ

))
=

(⟨
û, Ê

⟩
,−E1u0−u2B3 +u3B2,−u0E2 +u1B3−u3B1,

−u0E3−u1B2 +u2B1
)( y0

ŷ

)
=

(⟨
û, Ê

⟩
,−u0Ê+ B̂× û

)( y0

ŷ

)
=

⟨⟨(
−
⟨
û, Ê

⟩
−u0Ê+ B̂× û

)
,

(
y0

ŷ

)⟩⟩
and therefore

F(x,u) = q
( ⟨

û, Ê(x)
⟩

u0Ê(x)− B̂(x)× û

)
.
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1 Special Relativity

The space coordinates result in the observable force

F̂
u0 = q

(
Ê− B̂× û

u0

)
.

This is the formula for the Lorentz force acting on a charged particle, as established in electro-
dynamics. The energy equation reads

dm
dx0 = q

⟨
Ê,

û
u0

⟩
.

Note that the magnetic field does not enter into the energy equation.

So far, we only discussed point particles. For extended bodies we have in classical mechanics
Mass density: ρ : R×R3→ R. The total mass of a body at time t is then given by∫

R3
ρ(t, x̂)dx1 dx2 dx3.

Momentum density: p : R×R3→ R3. The total momentum of the body at time t is then given
by ∫

R3
p(t, x̂)dx1 dx2 dx3.

Stress tensor: σ : R×R3 → {symmetric bilinear forms on R3}. The physical interpretation is
the following:
For a diagonalizing orthonormal basis b1,b2,b3 of σ |(t,x̂), we have

σ |(t,x̂)(bi,bj) =

{
λi, i = j
0, i , j

At time t and at the point x̂, the body exerts pressure of strength λi in direction bi.

x
b

body

σ |(t,x) x
b

b1b2
body

In relativity theory, these entities are combined to the stress-energy tensor

T : R4→{symmetric bilinear forms on R4},

where T is given by the matrix (
ρ p⊤

p σ

)
.
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1.6 Closing Remarks about Special Relativity

To every extended body we assign such a T, with the following physical interpretation: For an
observer B whose world line has the four-velocity u at event x,

T|x(u,u) = mass density of the body at the event x, observed by B

= energy density of the body at the event x, observed by B

For e y u : T|x(u,e) = ⟨momentum density of the body observed by B at event x,e⟩

For e,e′ y u : T|x(e,e′) = (stress tensor of the body at event x, observed by B)(e,e′)

Example 1.5.4. (1) Vacuum: T = 0.

(2) Dust: Positive mass density ρ > 0, no pressure. The
four-velocities of the dust particles define a timelike,
future-directed unit vector field u, the momentum
density vanishes. Hence

T|x(y,z) = ρ(x)⟨⟨y,u(x)⟩⟩ · ⟨⟨z,u(x)⟩⟩ .

u

(3) Ideal Liquid: Positive mass density ρ > 0, isotropic pressure, i.e. σ |x = λ (x)⟨·, ·⟩, momen-
tum density vanishes. Again, the four-velocities of the liquid molecules define a timelike,
future-directed unit vector field u. Hence

T|x(y,z) = (ρ(x)+λ (x))⟨⟨y,u(x)⟩⟩ · ⟨⟨z,u(x)⟩⟩+λ (x)⟨⟨y,z⟩⟩ .

(4) Electromagnetic field: Here one finds

T 00 =
1

8π
(∥Ê∥2 +∥B̂∥2),

T 0 j = T j0 =
1

4π
(Ê× B̂) j,

T jk =
1

4π

[
−(E jEk +B jBk)+

1
2
(∥Ê∥2 +∥B̂∥2)δ jk

]
.

Later we will find a more conceptual way of finding the energy stress tensor for the different
kinds of matter.

1.6 Closing Remarks about Special Relativity

Let us summarize briefly the structure of special relativity, now making use of differential ge-
ometric language. Space and time are joined to the 4-dimensional spacetime. The Postulate of
Special Relativity states that the mathematical model for spacetime is a time-oriented Lorentz
manifold M which is isometric to (R4,gMink). An isometry M→ (R4,gMink) preserving the time
orientation is called an inertial frame. The coordinates (x0, x̂) that are assigned to an event by
such an isometry are the time and space coordinates from the point of view of an observer with
world line R · e0.
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1 Special Relativity

The world lines of particles slower than light are the timelike smooth curves in M. The world
lines of particles moving at the speed of light are null curves. The world lines of particles not
subject to any acceleration are geodesics (straight lines) in M.
Let H := {ξ ∈ T M |g(ξ ,ξ ) = −1 and ξ is future directed}. An external force is given by a
vector field F along the footpoint map π : H →M with g(F(ξ ),ξ ) = 0 for all ξ ∈H . We have
an analog to Newton’s second law,

m0
∇
dτ

dx
dτ

= m0
d2

dτ2 x(τ) =
d

dτ
(m0u)(τ) = F(x(τ),u(τ)).

This equation can be studied in arbitrary coordinate systems, not only in inertial frames.
All relevant physical objects possess a stress-energy tensor containing information about the
mass density, momentum density and stress density.
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2 General Relativity

The goal is now to include gravitation into relativity theory. From now on the reader will be
assumed to be familiar with differential geometry. We start by quickly reviewing classical New-
tonian gravity theory.

2.1 Classical theory of gravitation

In a Galilean inertial frame Newton’s law of gravitation holds: Let x,y ∈ R3 the position vectors
of two point particles with masses m and M, respectively. Then y exerts the force

F =− GmM

||x−y||2
x−y
||x−y||

on x. Here G = 6,673 ·10−11 m3kg−1s−2 is the gravitational constant.
We assume that M≫ m so that the gravitational force of x exerted on y is negligible. Hence we
may assume that y = 0 ∈ R3 is constant. Combining the law of gravitation and Newton’s second
law F = mẍ we get

ẍ =−GM

||x||3
x. (2.1)

Remark 2.1.1. The mass m of x has canceled in (2.1), so the orbit of x does not depend on
its mass. A priori, one would have to distinguish between the inertial mass minert occurring in
Newton’s second law F = minert · ẍ and the gravitational mass mgrav in

F =−
GmgravMgrav

||x−y||2
x−y
||x−y||

.

Equation (2.1) and hence the equality minert = mgrav of these two concepts of mass is experimen-
tally well tested (see http://www.youtube.com/watch?v=5C5_dOEyAfk) and is therefore
considered an empirical fact.

Define the angular momentum per mass by L(t) := x(t)× ẋ(t).

Lemma 2.1.2 (Preservation of angular momentum)
If x satisfies equation (2.1) then L is constant.
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2 General Relativity

Proof. We compute
d
dt

L = ẋ× ẋ︸ ︷︷ ︸
=0

+x× ẍ (2.1)
= −GM

||x||3
x×x︸ ︷︷ ︸
=0

= 0. □

Remark 2.1.3. Assume that x satisfies (2.1) so that L is constant. If L , 0, then x(t)⊥ L for all
t. Hence x is confined to the plane perpendicular to L.
If L = 0, then x(t) = 0 or ẋ(t) = λ (t)x(t), that is

x(t) = x(t0) · e
∫ t

t0
λ (s)ds

.

This means x(t) lies on the straight line through 0 and x(t0) (with t0 fixed). In this case x is even
confined to a one-dimensional subspace.

Let L , 0. We choose the coordinate system such that L = ∥L∥ · e3. Hence x stays in the
x1-x2-plane. We introduce polar coordinates (r,φ) in the x1-x2-plane:

x1 = r cosφ and x2 = r sinφ .

We express (2.1) in polar coordinates:

ẍ =
∇
dt

ẋ =
∇
dt

(
ṙ

∂
∂ r

+ φ̇
∂

∂φ

)

covariant Derivative
w.r.t. geukl

= r̈
∂
∂ r

+ ṙ
∇
dt

∂
∂ r

+ φ̈
∂

∂φ
+ φ̇

∇
dt

∂
∂φ

= r̈
∂
∂ r

+ ṙ∇ṙ ∂
∂ r+φ̇ ∂

∂φ

∂
∂ r

+ φ̈
∂

∂φ
+ φ̇∇ṙ ∂

∂ r+φ̇ ∂
∂φ

∂
∂φ

(2.2)

In polar coordinates the metric coefficients of the Euclidean metric geukl are

(gi j) =

(
1 0
0 r2

)
and the Christoffel symbols are easily computed to be

Γ2
12 = Γ2

21 =
1
r
, Γ1

22 =−r, and all other Γk
i j = 0.

Therefore

∇ṙ ∂
∂ r+φ̇ ∂

∂φ

∂
∂ r

= ṙ ∇ ∂
∂ r

∂
∂ r︸   ︷︷   ︸

=0

+φ̇ ∇ ∂
∂φ

∂
∂ r︸   ︷︷   ︸

= 1
r

∂
∂φ

=
φ̇
r

∂
∂φ
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2.1 Classical theory of gravitation

and

∇ṙ ∂
∂ r+φ̇ ∂

∂φ

∂
∂φ

= ṙ ∇ ∂
∂ r

∂
∂φ︸     ︷︷     ︸

= 1
r

∂
∂φ

+φ̇ ∇ ∂
∂φ

∂
∂φ︸     ︷︷     ︸

=−r ∂
∂ r

=
ṙ
r

∂
∂φ
− φ̇r

∂
∂ r

.

Inserting this into (2.2) yields

∇
dt

ẋ = (r̈− φ̇2r)
∂
∂ r

+

(
φ̈ +2φ̇

ṙ
r

)
∂

∂φ
.

Now (2.1) reads
∇
dt

ẋ =−GM
r3 r

∂
∂ r

=−GM
r2

∂
∂ r

.

so that (2.1) takes the form

r̈− φ̇2r =−GM
r2 , φ̈ +2φ̇

ṙ
r
= 0 (2.3)

in polar coordinates.

Lemma 2.1.4 (Kepler’s Second Law)
Let x satisfy (2.1). Then

r2φ̇ =±||L||

is constant.

Proof. We compute

||L|| = ||x× ẋ||

=

∣∣∣∣∣∣∣∣r ∂
∂ r
×
(

ṙ
∂
∂ r

+ φ̇
∂

∂φ

)∣∣∣∣∣∣∣∣
= r|φ̇ | ·

∣∣∣∣∣∣∣∣ ∂
∂ r
× ∂

∂φ

∣∣∣∣∣∣∣∣
= r|φ̇ | ·

∣∣∣∣∣∣∣∣ ∂
∂ r

∣∣∣∣∣∣∣∣︸  ︷︷  ︸
=1

·
∣∣∣∣∣∣∣∣ ∂

∂φ

∣∣∣∣∣∣∣∣︸   ︷︷   ︸
=r

= r2|φ̇|.

b0

∂
∂ r

∂
∂φ

. □

After possibly applying a reflection, we can w.l.o.g. assume r2φ̇ = ||L||.

45



2 General Relativity

Remark 2.1.5. Kepler’s second law is often formulated in a more geometrical way as follows:
The line segment from 0 to the point x(t) sweeps out equal areas during equal intervals of time.
To see this, we compute the area of the surface that
is bordered by the line segments from 0 to x(t0) and
x(t1) respectively (t0 < t1) and the corresponding
segment of the orbit.
From differential geometry, it is known that the area
element is given in polar coordinates by 0 x(t0)

x(t1)

√
det(gi j)dr dφ =

√
det
(

1 0
0 r2

)
dr dφ = r dr dφ.

Employing the substitution rule for integration, we find for the area∫ φ(t1)

φ(t0)

∫ r(φ)

0
r dr dφ =

∫ φ(t1)

φ(t0)

r(φ)2

2
dφ =

1
2

∫ t1

t0
r(t)2 φ̇(t)dt =

||L||
2

(t1− t0).

So indeed, the area swept out is proportional to the time elapsed.

Now we restrict ourselves to the interesting case L , 0. By Lemma 2.1.4 we have r(t)> 0 and
φ̇(t) , 0 for all t. Consider the auxiliary function u : I→ R, given by

u(s) :=
1

r(φ−1(s))
i.e., u(φ(t)) =

1
r(t)

.

Such a u exists and is smooth because φ̇ , 0. For the sake of brevity we write a dot for d
dt and a

prime for d
ds .

Lemma 2.1.6 (Orbit Equation)
Let x satisfy (2.1). Then we have

u′′+u =
GM

||L||2
.

Proof. From r2φ̇ = ||L|| we see

φ̇(t) =
||L||
r(t)2 = ||L|| ·u(φ(t))2.

Hence

ṙ(t) =− u′(φ(t))
u(φ(t))2 · φ̇(t) =−||L|| ·u

′(φ(t))
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2.1 Classical theory of gravitation

and therefore

r̈(t) =−||L|| ·u′′(φ(t)) · φ̇(t) =−||L||2 ·u′′(φ(t)) ·u(φ(t))2.

Inserting this into (2.3) yields

−GMu2 =−||L||2 u′′u2−||L||2 u4 1
u
=−||L||2 u2(u′′+u). □

The orbit equation can be solved explicitly. Its general solution is

u(φ) =
GM

||L||2
+Acos(φ−φ0)

where A,φ0 ∈ R are constants. After applying a rotation in the x1-x2-plane if necessary, we can
assume w.l.o.g. that φ0 = φ(t0) = 0 and A≥ 0. We then have

r(t) =
1

GM
||L||2

+Acos(φ(t))
=

||L||2 /GM
1+ e · cos(φ(t))

,

where e := A||L||2
GM is called the eccentricity. Geometrically, the solution is

1. an ellipse1 for 0≤ e < 1 (Kepler’s first law),

2. a parabola for e = 1,

3. a hyperbola for e > 1.

e = 0

circle

e = 3
4

ellipse

e = 1

parabola

e = 2

hyperbola

1As a special case we get a circle for e = 0.
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2 General Relativity

The gravitational potential V : R3 \{0}→ R is defined by

V (x) :=−GM
||x||

.

We have

−gradV =−GM
r2

∂
∂ r

=−GM
r3 x =

1
m

F.

For the energy we have

kinetic energy: Ekin =
m
2
||ẋ||2

potential energy: Epot = m ·V (x)
total energy: E = Ekin +Epot.

Lemma 2.1.7 (Energy Equation)
Let x satisfy (2.1). Then

2
m

E = ṙ2 +
||L||2

r2 −
2GM

r
is constant.

Proof. We have

||ẋ||2 =
∣∣∣∣∣∣∣∣ṙ ∂

∂ r
+ φ̇

∂
∂φ

∣∣∣∣∣∣∣∣2 = ṙ2 ·1+ φ̇2 · r2 = ṙ2 +
||L||2

r2

because of φ̇ = ||L||
r2 . This implies

2
m

E = ||ẋ||2− 2GM
||x||

= ṙ2 +
||L||2

r2 −
2GM

r
.

Therefore
2
m

d
dt

E = 2ṙr̈−2
||L||2 ṙ

r3 +
2GMṙ

r2 = 0

by the equation of motion (2.3). □

We now define the effective potential

W (r) :=
||L||2

r2 −
2GM

r
.

By the energy equation ṙ2+W (r) is constant. From ṙ2≥ 0 we get that W (r)≤ const. The energy
diagram then takes the following form:
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2.2 Equivalence Principle and the Einstein Field Equations

1

2

−1
1 2 3 4 5 6 7 8

r

W (r)

E

b

b b

b

b

circular orbit

elliptic orbit

parabolic orbit

hyperbolic orbit

Exercise 2.1.8. Prove Kepler’s third law which states that for elliptic orbits,

GM ·orbital period2 =
4π2

(1+ e)3 · r
3
max.

2.2 Equivalence Principle and the Einstein Field Equations

Problem. In classical mechanics, the gravitational field carries signals with infinite velocity.
A similar gravitational law with a suitable Four-Force F is therefore problematic in relativity
theory.
The equivalence principle wants to explain why minert = mgrav.

not accelerated accelerated

in weight-
lessness

A

F = 0

a

B

F = ma

in a
graviational

field

a

C

F = ma

free
fall

D

F = 0

By means of physical experiments, an observer (under complete isolation from the outside
world) cannot distinguish A from D nor B from C. On the other hand, A and C are inertial
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2 General Relativity

observer, but B and D are not.
Therefore, from now on we no longer demand the existence of global inertial frames. Indeed,
realistic coordinate systems are usually only local and do not describe the whole universe. They
locally approximate inertial frames. A spacetime will be modeled by a four-dimensional Lorentz
manifold which is not necessarily Minkowski space.

Definition 2.2.1. A time orientation on a Lorentz manifold M is a mapping that assigns to
each p ∈M one of the two connected components of

Zp := {v ∈ TpM |g|p(v,v)< 0}.

b

p

U

M

b p

M

TpM

Write Z ↑
p for this component. We require a time orientation to be continuous in the following

sense: For all p ∈M there is an open neighborhood U of p and a continuous vector field v on
U such that v(q) ∈Z ↑

q for all q ∈U .

Remark 2.2.2. Not every Lorentz manifold is time orientable, i.e., there are Lorentz manifolds
which do not have a time orientation. The following picture shows two different Lorentz metrics
on the same manifold R× S1 so that the first Lorentz manifold is time orientable whereas the
second isn’t.

time orientable not time orientable
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2.2 Equivalence Principle and the Einstein Field Equations

Definition 2.2.3. Once a time orientation is chosen, timelike tangent vectors v ∈Z ↑
p will be

called future directed. If −v ∈Z ↑
p , then v will be called past directed.

From now on, gravitation will no longer be considered as an external force (as opposed to the
electromagnetic force, for instance), but will be modeled by the geometry of the spacetime M.
In special relativity the world lines of point particles subject to no force are straight lines. These
are the geodesics of Minkowski space. Generalizing this, the world lines of point particles that
move only under the influence of gravitation will be the geodesics of the spacetime.
Question. Which Lorentz manifold should be taken? What is the connection between geometry
and physics?
On the physical side we will use the stress-energy tensor T of the matter generating the gravita-
tion. On the geometric side we will use the Einstein tensor G.
What is this?
Recall the basic curvature tensors of a Lorentz manifold:

1. The Riemann curvature tensor

R : TpM×TpM×TpM×TpM→ R.

2. The Ricci curvature

ric : TpM×TpM→ R, ric(ξ ,η) :=
n

∑
i=1

εiR(ξ ,ei,ei,η),

where e1, . . . ,en is a generalized orthonormal basis, that is

g(ei,ej) = εiδi, j with εi =±1.

The map ric is a symmetric bilinear form on TpM.

3. The scalar curvature

scal(p) :=
n

∑
i=1

εiric(ei,ei).

Then scal : M→ R is a function on M.

4. The Einstein tensor
G := ric− 1

2 scal·g.

Why do we use G and not simply ric?
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2 General Relativity

Lemma 2.2.4
On any semi-Riemannian manifold we have 2div(ric) = dscal and hence div(G) = 0.

Proof. The divergence of a symmetric (0,2)-tensor field like ric is a 1-form defined by

div(ric)(X) = ∑
j

ε j∇ejric(ej,X)

where ej is a generalized orthonormal tangent frame, g(ej,ek) = ε jδ jk with ε j = ±1. We now
check the formula 2div(ric) = dscal at a fixed point p in the manifold and we may assume that X
and the tangent frame are synchronous at p, i.e., ∇X = ∇ej = 0 at p. Using the second Bianchi
identity we get

dscal(X) = ∂X ∑
jk

ε jεkg(R(ej,ek)ek,ej)

= ∑
jk

ε jεkg(∇X R(ej,ek)ek,ej)

=−∑
jk

ε jεkg((∇ejR(ek,X)+∇ekR(X ,ej))ek,ej)

=−∑
jk

ε jεk(g(∇ejR(ek,X)ek,ej)+g(∇ejR(X ,ek)ej,ek))

= 2∑
jk

ε jεkg(∇ejR(ek,X)ej,ek)

= 2∑
j

ε j∇ejric(X ,ej)

= 2div(ric)(X).

The formula div(G) = 0 follows readily. □

For physical reasons the stress-energy tensor T is divergence free and hence so should be its
geometric counterpart. This is the reason for preferring G over ric.
We now postulate the Einstein field equation.

κ ·T = G (EFE)

Here κ is a universal constant. The value of κ is determined by transition to the Newtonian limit.
If

(1) T is the stress-energy tensor of dust (only mass density),

(2) the Einstein field equation is replaced by its linearization and
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2.2 Equivalence Principle and the Einstein Field Equations

(3) c tends to infinity,

then the geodesic equations become Newton’s equations of motions with

κ = 2,07 ·10−48 s2

g · cm
.

It is possible to derive the Einstein field equation from a variational principle and one can give
various heuristic arguments for it. Ultimately however, one has to verify it by checking the
predicted results experimentally.

Definition 2.2.5. A Lorentz manifold M is called vacuum solution, if T ≡ 0 and hence (by
the Einstein field equation) G≡ 0.

Example 2.2.6. Let M be Minkowski space. Here we even have R≡ 0.

Lemma 2.2.7
In general, on 4-dimensional semi-Riemannian manifolds, we have

ric = G− 1
2

4

∑
i=1

εi ·G(ei,ei) ·g.

Corollary 2.2.8
We have G = 0 if and only if ric = 0. Hence by (EFE) the vacuum solutions are exactly the
Ricci-flat Lorentz manifolds.
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Proof of Lemma 2.2.7.

4

∑
1=1

εi ·G(ei,ei) =
4

∑
i=1

εi(ric(ei,ei)− 1
2 scal ·g(ei,ei))

= scal− 1
2 scal ·4

=−scal

=⇒ G− 1
2

4

∑
i=1

εi ·G(ei,ei) ·g = ric− 1
2 scal ·g− 1

2(−scal ·g)

= ric □

Since the metric itself is divergence free, i.e., divg = 0, the tensor G+Λg is also divergence free
for any constant Λ. Therefore G+Λg could replace G in the field equation which leads to the
Einstein field equation with cosmological constant:

G+Λ ·g = κ ·T, (EFEΛ)

where Λ∈R is called the cosmological constant. The general opinion whether or not one should
allow a nonzero cosmological constant has changed various times. Einstein once considered its
introduction as the ”greatest stupidity of his life” but changed his mind later. At the moment, a
nonzero cosmological constant is often considered.

Example 2.2.9 (deSitter spacetime). Let r > 0. Set

S4
1(r) := {x ∈ (R5,gMink)| ⟨⟨x,x⟩⟩= r2}.

A Lorentz metric is obtained by restricting ⟨⟨·, ·⟩⟩ to the tangent spaces of S4
1(r). This way, one

gets a four-dimensional Lorentz manifold. A time orientation is defined by requiring x0 > 0.
Calculation shows

G =− 3
r2 g.

Hence S4
1(r) is a vacuum solution of (EFEΛ) with Λ = 3

r2 .
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2.3 Robertson-Walker spacetime

x0

S 4
1 (r)

Convention. From now on, choose physical units in such a way that the speed of light and the
gravitational constant are equal to 1. This leads to κ = 8π .

2.3 Robertson-Walker spacetime

Goal. Find a simple model for the whole spacetime.
Ansatz. Describe the ”spacial part” of the universe by a three-dimensional Riemannian manifold
(S,gS) which is connected and complete (i.e. geodesics are defined for all times). Let us assume
that the space part of the universe looks the same in whatever direction one looks (at least when
observing objects not too far away). This property is called (local) isotropy and is formulated
mathematically as follows.

Definition 2.3.1. A manifold S is called locally isotropic, if for all p∈ S and for all X ,Y ∈ TpS
with ||X ||= ||Y ||, there exists an open neighborhood U of p and an isometry Φ : U →U with
Φ(p) = p and dΦ|p(X) = Y .

On a 3-dimensional Riemannian manifold we have for the sectional curvature that K(E) =K(E ′)
whenever E,E ′ ⊂ TpS are 2-dimensional subspaces. This can be seen as follows:
Given planes E,E ′ ⊂ TpS choose X ∈ TpS with ||X || = 1 and X ⊥ E as well as Y ∈ TpS with
||Y || = 1 and Y ⊥ E ′. Then an appropriate local isometry Φ takes X to Y , i.e., dΦ|p(X) = Y .
Hence Φ(E) = E ′. This implies

K(E ′) = K(dΦ|p(E)) = K(E),

as claimed.
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2 General Relativity

If the manifold is connected, Schur’s theorem (compare the differential geometry lecture) now
implies

K ≡ ε ,

i.e., the sectional curvature is constant.

Example 2.3.2. Here is a table for the candidates of our Riemannian manifold S for the different
signs of ε .

ε −1 0 1

model spaces (H3,ghyp) (R3,geucl) (S3,gstd)

T 3 = S1×S1×S1 RP3

S1×R2

... T 2×R
...

...

infinitely many, essentially infinitely many,
not completely finitely many, all known

understood all known
some compact, some compact, all compact

others not others not

Now set

M := I×S,

for our spacetime, where I ⊂ R is an open interval. For the Lorentz metric we make the ansatz

g =−dt⊗dt + f (t)2 ·gS

where t ∈ I and f : I→ R is a positive smooth function (warped product). Put differently: For
ξ = α ∂

∂ t +X ,η = β ∂
∂ t +Y ∈ T(t,p)M with X ,Y ∈ TpS, we have

g(ξ ,η) =−αβ + f (t)2 ·gS(X ,Y ).

Example 2.3.3. For (S,gS) = (R3,geukl), I = R and f = 1 we obtain the Minkowski space
(M,g) = (R4,gMink).

Remark 2.3.4. If (N,g) is a Riemannian manifold with sectional curvature K and if c > 0, then
the Riemannian manifold (N,c2 · g) has the sectional curvature 1

c2 K. For this reason it suffices
to consider the cases ε =−1,0,1.
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2.3 Robertson-Walker spacetime

Geodesics of the spacetime

A straightforward computation shows: A curve s 7→ c(s) = (t(s),γ(s)) is a geodesic in M if and
only if

(i)
d2t
ds2 + f (t) ḟ (t)gS(γ ′(s),γ ′(s)) = 0 and

(ii)
∇
ds

γ ′(s)+2
ḟ (t)
f (t)
· dt

ds
· γ ′(s) = 0.

Example 2.3.5. The curve c(s) = (s,γ0), where γ0 ∈ S is constant, is a timelike geodesic. We
interpret it as the world line of a galaxy.

Let now s 7→ c(s) = (t(s),γ(s)) be a null geodesic. Then

0 = g
(

dc
ds

,
dc
ds

)
= g

(
dt
ds

∂
∂ t

+ γ ′(s),
dt
ds

∂
∂ t

+ γ ′(s)
)

= −
(

dt
ds

)2

+ f 2 ·gS(γ ′(s),γ ′(s)).

This implies

d
ds

(
f · dt

ds

)
= ḟ ·

(
dt
ds

)2

+ f · d
2t

ds2

= ḟ · f 2 ·gS(γ ′,γ ′)+ f · d
2t

ds2
(i)
= 0.

Hence f · dt
ds is constant.

b

b

t1

t2

nullgeodesic =
world line of a
photon

our world
line

world
line of a

far
galaxy

∂
∂ t

From the point of view of an observer with world line s 7→ (s,γ0), we get for the energy of a
photon

E = g
(

∂
∂ t

,
dt
ds

∂
∂ t

+ γ ′(s)
)
=−dt

ds
=⇒ E(t1)

E(t2)
=

f (t2)
f (t1)

.

Definition 2.3.6. The quantity

z :=
f (t2)− f (t1)

f (t1)
=

f (t2)
f (t1)

−1

is called redshift (of the null geodesic).
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2 General Relativity

Redshift can be observed and measured very precisely because chemical elements emit light at
specific energy levels (frequencies, colors). This light, emitted by other other galaxies arrives
with a color shift that is easy to determine.
Taylor expansion of f in the variable t2 yields

f (t1) = f (t2)+ ḟ (t2)(t1− t2)+O(|t1− t2|2)
= f (t2)

(
1+H(t2)(t1− t2)+O(|t1− t2|2)

)
,

where H(t) = ḟ (t)
f (t) . This implies

z =
1

1+H(t2)(t1− t2)+O(|t1− t2|2)
−1

= 1−H(t2)(t1− t2)+O(|t1− t2|2)+O(|t1− t2|2)−1

= H(t2)(t1− t2)+O(|t1− t2|2).

Hence if we observe light from galaxies not too far away, such that the term O(|t1− t2|2) is
negligible compared to the term H(t2)(t1− t2), then the redshift is essentially proportional to the
time difference |t1− t2|, hence to the distance to the other galaxy. The constant H(now) is called
the Hubble constant. In fact, one observes z > 0, so the Hubble constant is positive. Therefore
ḟ (now) is positive, i.e., the universe is currently extending.
The formulas for warped products give

ric
(

∂
∂ t

,
∂
∂ t

)
= −3

f̈
f
,

ric
(

∂
∂ t

,X
)

= ric
(

X ,
∂
∂ t

)
= 0 and

ric(X ,Y ) =

{
2
(

ḟ
f

)2

+2
ε
f 2 +

f̈
f

}
g(X ,Y ),

where X and Y are tangent to S. This implies

scal = 3
f̈
f
+3

{
2
(

ḟ
f

)2

+2
ε
f 2 +

f̈
f

}
= 6

(
ḟ
f

2

+
ε
f 2 +

f̈
f

)

and we get for the Einstein tensor

G
(

∂
∂ t

,
∂
∂ t

)
= 3

{(
ḟ
f

)2

+
ε
f 2

}
,

G
(

∂
∂ t

,X
)

= G
(

X ,
∂
∂ t

)
= 0,

G(X ,Y ) = −

{(
ḟ
f

)2

+
ε
f 2 +2

f̈
f

}
g(X ,Y ).
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2.3 Robertson-Walker spacetime

So in this setting, the Einstein field equations are

8π
3

ρ =

(
ḟ
f

)2

+
ε
f 2 , (6)

−8π p =

(
ḟ
f

)2

+
ε
f 2 +2

f̈
f
, (7)

where ρ is the energy/mass density and p the (isotropic) pressure.

Definition 2.3.7. Let (S,gS) by a complete, 3-dimensional Riemannian manifold with con-
stant sectional curvature K ≡ ε ∈ {−1,0,1}. Let f : I → R be a positive smooth function.
Then (M,g) with

M = I×S, g =−dt⊗dt + f (t)2gS,

is called a Robertson-Walker spacetime.

Example 2.3.8. We already saw that the four-dimensional Minkowski space is a Robertson-
Walker spacetime. Here (S,gS) = (R3,geukl), ε = 0 and f ≡ 1.

Subtracting (6) from (7) gives

3
f̈
f
= −4π(ρ +3p). (8)

Differentiation of (6) and insertion of (8) and (6) yields

8π
3

ρ̇ = 2 · ḟ
f
· f̈ f − ḟ 2

f 2 −2 · ε ḟ
f 3

=

(
2

f̈
f
−2

((
ḟ
f

)2

+
ε
f 2

))
· ḟ

f

=

(
−8π

3
(ρ +3p)− 16π

3
ρ
)
· ḟ

f

= (−8πρ−8π p) · ḟ
f
,

hence

ρ̇ = −3(ρ + p) · ḟ
f
. (9)
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Singularities

Let the domain I = (t∗, t∗) of f be maximal in the sense that f cannot be extended beyond I as a
positive smooth function. Here −∞≤ t∗ < t∗ ≤ ∞.

Definition 2.3.9. (1) t∗ or t∗ is called a physical singularity, if ρ → ∞ for t ↘ t∗ or t ↗ t∗,
respectively.

(2) t∗ is called a big bang, if f (t)→ 0 and ḟ (t)→ ∞ for t↘ t∗.

(3) t∗ is called a big crunch or collapse, if f (t)→ 0 and ḟ (t)→−∞ for t↗ t∗.

Remark 2.3.10. If ρ + 3p ≥ 0 and H0 = H(t0) > 0, then M has a starting singularity, i.e.,
t∗ > −∞. To see this, notice that f is concave
because f̈ =−4π

3 (ρ +3p) f ≤ 0. From H(t0)> 0
we see ḟ (t0)> 0 and, by concavity, ḟ ≥ ḟ (t0) on
(t∗, t0]. This implies that for any t1 ∈ (t∗, t0],

f (t0)> f (t0)− f (t1)=
∫ t0

t1
ḟ (t)dt ≥ (t0−t1)· ḟ (t0)

and thus

(t0− t1)≤
f (t0)
ḟ (t0)

=
1

H0
.

b

bc

f

t
t0

estimate for
the age of
the universe

If we let t1 tend to t∗, we obtain

(t0− t∗)≤
1

H0
.

This way, we did not only show t∗ > −∞, but also derived an upper bound for the age of the
universe in terms of the Hubble constant. Remember that the Hubble constant can be quite well
determined experimentally via the observation of redshift. Current estimates for the age of the
universe give a value of about 13.8 billion years.

Proposition 2.3.11
Suppose t∗ and t∗ are physical singularities if they are finite. Let H0 > 0, ρ > 0 and suppose
there are constants −1

3 < a < A, such that a≤ p
ρ ≤ A. Then

(1) The initial singularity t∗ is a big bang.
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2.3 Robertson-Walker spacetime

(2) If ε = 0 or ε =−1, then I = (t∗,∞) and f → ∞, ρ → 0 for t→ ∞.

(3) If ε = 1, then I = (t∗, t∗) and t∗ < ∞ is a big crunch.

Proof. Set δ := 3a+1. Because of a >−1
3 we have δ > 0 and

−1
3
+

δ
3
= a≤ p

ρ
=⇒ 3p+ρ ≥ δρ > 0

(8)
=⇒ f̈ < 0(

with ḟ (t0)> 0
)

=⇒ ḟ > 0 on (t∗, t0].

Furthermore,

ρ̇ (9)
= −3(ρ + p)

ḟ
f
≥−3(ρ +Aρ)

ḟ
f
=−C ·ρ · ḟ

f

with C := 3(1+A)> 0. This implies

(lnρ )̇≥−C(ln f )̇ = (ln f−C )̇

=⇒ (ln(ρ f C))̇≥ 0

=⇒ (ρ f C )̇≥ 0

=⇒ ρ · f C ≤ ρ(t0) f (t0)C on (t∗, t0]

=⇒ f → 0 for t→ t∗

Furthermore we have

ρ̇ (9)
= −3(ρ + p)

ḟ
f
≤−(δρ +2ρ)

ḟ
f
=−(2+δ )ρ · ḟ

f

and in a similar fashion to before we obtain

(ρ f 2+δ )̇≤ 0 =⇒ ρ · f 2+δ︸     ︷︷     ︸
=ρ f 2· f δ

≥ ρ(t0) f (t0)2+δ on (t∗, t0].

With f → 0, we get f δ → 0 and thus ρ f 2→ ∞ for t→ t∗. With (6) we then get

∞← 8π
3

ρ f 2 = ḟ 2 + ε =⇒ ḟ → ∞.

This shows (1).
Case 1: The function f has a maximum at tm ∈ I.

0 < ρ(tm)
(6)
=

3
8π

{ =0︷    ︸︸    ︷
ḟ (tm)2

f (tm)2 +
ε

f (tm)2

}
=⇒ ε > 0, which means ε = 1.
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With f̈ < 0 this implies ḟ < 0 on (tm, t∗). A discussion similar to the one before shows that t∗ is
a big crunch. This is the situation in (3).
Case 2: The function f does not have a maximum on I.
This implies ḟ > 0 on I because f̈ < 0. From ρ > 0 and 3p+ρ > 0 it follows that 3(p+ρ)> 0.
Hence

ρ̇ =−3(ρ + p)
ḟ
f
< 0.

Thus I does not have an ending singularity, t∗ = ∞.
Subcase A: f → ∞ for t→ ∞.
We have (ρ f 2+δ )̇ ≤ 0 so that ρ f 2+δ is bounded on (t0,∞). With f → ∞, this implies ρ f 2→ 0
for t→ ∞. Now (6) implies

0← 8π
3

ρ f 2 (6)
= ḟ 2 + ε =⇒ ε ≤ 0

i.e., ε =−1 or e = 0. This is the situation in (2).
Subcase B: f → b < ∞ for t→ ∞.
This implies ḟ → 0 for t→ ∞.

=⇒ 8π
3

ρ f 2 = ḟ 2 + ε t→∞−→ ε =⇒ ε ≥ 0

which means ε = 0 or ε = 1.

Because ρ f C is increasing, we have ρ f 2↛ 0. This implies
ε , 0, i.e. ε = 1. This shows ρ f 2 → 3

8π for t → ∞. By
the mean value theorem, there is a sequence ti ∈ (i, i− 1)
with f̈ (ti) = ḟ (i+1)− ḟ (i). Because of ḟ → 0 we then get
f̈ (ti)→ 0.

b

b

ḟ

t
i i+1

This implies

3
f̈
f

(8)
= −4π(ρ +3p) =⇒ ρ(ti)+3p(ti)→ 0 for i→ ∞,

i.e., ρ(ti)+3p(ti)→ 0 for i→ ∞. On the other hand,

0← ρ(ti)+3p(ti)≥ δρ(ti) =⇒ ρ(ti)→ ∞ =⇒ ρ(ti) f (ti)2→ 0

This is a contradiction, so Subcase B does not occur. □

Remark 2.3.12. In the literature, the case ε ≤ 0 is often called open case as opposed to the
closed case ε > 0, because for the model spaces we have

S is noncompact for ε ≤ 0 and S is compact for ε > 0.
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2.3 Robertson-Walker spacetime

Indeed, S is always compact when ε = 1. However, when ε = 0 or ε =−1, the manifold S can
be compact as well, for example S = T 3. Therefore this terminology is somewhat misleading.

Definition 2.3.13. The constant ρc :=
3H0

2

8π
is called the critical energy density.

The reason for this terminology is given by

Proposition 2.3.14
We have

ρ(t0)< ρc ⇐⇒ ε =−1

ρ(t0) = ρc ⇐⇒ ε = 0

ρ(t0)> ρc ⇐⇒ ε = 1

Proof. From the equation

ρ(t0)−ρc
(6)
=

3
8π

{
H0

2 +
ε

f (t0)
−H0

2
}
=

3
8π
· ε

f (t0)

we see that the sign of ε is the same as that of ρ(t0)−ρc. □

Definition 2.3.15. A dust cosmos is a Robertson-Walker spacetime with p = 0. A dust cos-
mos with H0 > 0 is called Friedmann cosmos.
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Proposition 2.3.16
For a Robertson-Walker spacetime M with nonconstant f ,
the following statements are equivalent.

(i) M is a dust cosmos.

(ii) ρ · f 3 =: m is constant.

(iii) The Friedmann equation

ḟ 2 + ε =
A
f

holds with A = 8π
3 m > 0.

Alexander Alexandrovich Fried-

mann (1888–1925) 2

Proof. “(ii)⇔ (iii)” is clear because of

8π
3

ρ f 3 (6)
= f · ( ḟ 2 + ε).

“(i)⇒(ii)” We have ρ̇ (9)
= −3ρ

ḟ
f

which implies

(lnρ )̇−3(ln f )̇ = 0.

Hence (lnρ f 3)̇ = 0 and (ρ f 3)̇ = 0.
“(ii)⇒(i)” On the one hand,

(ρ f 3)̇ = 0 =⇒ ρ̇ =−3ρ
ḟ
f
.

On the other hand,

ρ̇ =−(3ρ + p)
ḟ
f
.

Therefore
p · ḟ = 0.

Set J := {t ∈ I | p(t) , 0}. We have to show J = /0. Suppose J , /0 and let J0 be a connected
component of J which must be an open interval. It follows that ḟ ≡ 0 on J0, hence f ≡ c > 0 on
J0. By (7) this means

−8π p≡ ε
c2 , 0 on J0.

Because p is continuous,
p≡− ε

8πc2 , 0 on J0

2Source: http://en.wikipedia.org/wiki/Alexander_Friedmann
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2.3 Robertson-Walker spacetime

where J0 is the closure of J0 in I. This implies J0 ⊂ J, i.e., J0 = J0. This means that either J0 = /0
or J0 = I. The latter implies that f is constant, contradictory to the assumption. □

We now determine the solutions of the Friedmann equation. Without loss of generality, let t∗= 0.

(1) ε = 0: f (t) = (3
2)

2
3 A

1
3 t

2
3 (semicubical parabola).

(2) ε =−1: Set T :=
∫ t

0
dt ′
f (t ′) . Then

t =
A
2
(sinh(T )−T ) and f =

A
2
(cosh(T )−1).

(3) ε = 1: Set T as before. Then

t =
A
2
(T − sin(T )) and f =

A
2
(1− cos(T ))

(cycloid).

ε = 1

ε = 0

ε =−1

t

f

Definition 2.3.17. A Robertson-Walker spacetime is called a radiation cosmos, if

p =
ρ
3
.

Exercise 2.3.18. Show

(1) ρ · f 4 =: A is constant.

(2) We have f (t)2 =−ε(t− t∗)2 +4
√

2π
3 A · (t− t∗).

ε = 1

ε = 0

ε =−1

t

f (t)

Horizons

Let M = I×S be a Robertson-Walker spacetime with distortion function f . Let γ : [s0,∞)→M,

γ(s) = (γ0(s)︸ ︷︷ ︸
∈I

, γ̂(s)︸︷︷︸
∈S

)
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a future-directed null curve, for example a lightlike geodesic (i.e. the world line of a photon).
Then

0 =−((γ0)′)2 + f (γ0)2 ·
∣∣∣∣γ̂ ′∣∣∣∣S2

=⇒
∣∣∣∣γ̂ ′∣∣∣∣S = (γ0)′

f (γ0)

For the length of γ̂ we have

L [γ̂] =
∫ ∞

s0

∣∣∣∣γ̂ ′(s)∣∣∣∣S ds =
∫ ∞

s0

(γ0)′(s)
f (γ0(s))

ds =
∫ ∞

γ0(s0)

dγ0

f (γ0)

If f growth fast enough, for example f (t) = t2 or f (t) = et , then R := L [γ̂] < ∞. This shows
that photons starting in a point p cannot leave the ball around p of radius R in S. This means that
parts of the universe cannot be observed. This is called the horizon problem.

b rs

M

S
p BR(p)

γworld line
of p

Remark 2.3.19. The existence of big bang singularities is not that much dependent on the par-
ticular ansatz used here but can be derived in great generality. This is the content of singularity
theorem by Hawking, see e.g. [2, Satz 2.8.1].

2.4 The Schwarzschild solution

Goal. We want to find a model for a vacuum spacetime outside a
static, radially symmetric astronomical object.
Ansatz. Set M := R×J×S2, where J ⊂ R, and for t ∈ R, r̃ ∈ J set

g :=−F(r̃)2dt⊗dt +H(r̃)2dr̃⊗dr̃+G(r̃)2gS2

with positive smooth functions F,G,H : J → R. W.l.o.g. assume
H ≡ 1, otherwise substitute ˜̃r = h(r̃) with h′ = H.

Karl Schwarzschild

(1873–1916) 3

3Source: http://en.wikipedia.org/wiki/Karl_Schwarzschild
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2.4 The Schwarzschild solution

After introducing polar coordinates φ,ϑ on S2, the metric takes
the form

gS2 = sin2 ϑdφ⊗dφ +dϑ ⊗dϑ ,

hence

g = −F(r̃)2dt⊗dt +dr̃⊗dr̃

+G(r̃)2(sin2 ϑdφ⊗dφ +dϑ ⊗dϑ).

b

S2

∂
∂φ

∂
∂ϑ

The mapping (t, r̃,φ,ϑ) 7→ (2t0− t, r̃,φ,ϑ) is an isometry. This implies that the fixed point set
{t0}× J×S2 =: N1(t0) is a totally geodesic hypersurface whose unit normal field is given by

ν1 =
1

F(r̃)
∂
∂ t

.

Since N1(t0) is totally geodesic, we have ∇ξ ν1 = 0 for all ξ tangent to N1(t0) and thus

∇ ∂
∂ r̃

∂
∂ t

= ∇ ∂
∂ r̃
((F(r̃)ν1) = F ′(r̃)

1
F(r̃)

∂
∂ t

+0 =
F ′(r̃)
F(r̃)

∂
∂ t

,

∇ ∂
∂φ

∂
∂ t

= ∇ ∂
∂φ

∂
∂ t

= 0.

The mapping (t, r̃,φ,ϑ) 7→ (t, r̃,2φ0−φ,ϑ) is an isometry as well, so once again, its fixed point
set R× J×{σ ∈ S2|φ(σ) = φ0} =: N2(φ0) is a totally geodesic hypersurface. In this case, its
unit normal field is given by

ν2 =
1

G(r̃)sin(ϑ)

∂
∂φ

.

Once again, for all ξ tangent to N2(φ0), we have ∇ξ ν2 = 0 and

∇ ∂
∂ r̃

∂
∂φ

=
G′(r̃)
G(r̃)

∂
∂φ

,

∇ ∂
∂ϑ

∂
∂φ

= cot(ϑ)
∂

∂φ
.

For the covariant derivative of ∂
∂φ in direction ∂

∂φ , therefore we get⟨
∇ ∂

∂φ

∂
∂φ

,
∂

∂φ

⟩
=

1
2

∂
∂φ

⟨
∂

∂φ
,

∂
∂φ

⟩
︸           ︷︷           ︸
=G(r̃)2 sin(ϑ)2

= 0,

⟨
∇ ∂

∂φ

∂
∂φ

,
∂
∂ t

⟩
=

∂
∂φ

⟨
∂

∂φ
,

∂
∂ t

⟩
︸          ︷︷          ︸

=0

−
⟨

∂
∂φ

,∇ ∂
∂φ

∂
∂ t︸    ︷︷    ︸

=0

⟩
= 0,

⟨
∇ ∂

∂φ

∂
∂φ

,
∂
∂ r̃

⟩
= −

⟨
∂

∂φ
,∇ ∂

∂φ

∂
∂ r̃

⟩
= −

⟨
∂

∂φ
,
G′

G
∂

∂φ

⟩
= −G′Gsin(ϑ)2,⟨

∇ ∂
∂φ

∂
∂φ

,
∂

∂ϑ

⟩
= −

⟨
∂

∂φ
,∇ ∂

∂φ

∂
∂ϑ

⟩
= −cot(ϑ)

⟨
∂

∂φ
,

∂
∂φ

⟩
= −sin(ϑ)cos(ϑ)G2.
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This shows

∇ ∂
∂φ

∂
∂φ

=−G′Gsin(ϑ)2 ∂
∂ r̃
− sin(ϑ)cos(ϑ)

∂
∂ϑ

.

The other covariant derivatives of the coordinate fields can be derived in a similar fashion. Col-
lecting all derivatives we have

∇ ∂
∂ r̃

∂
∂ t

= ∇ ∂
∂ t

∂
∂ r̃

=
F ′

F
∂
∂ t

∇ ∂
∂φ

∂
∂ t

= ∇ ∂
∂ t

∂
∂φ

= 0

∇ ∂
∂ϑ

∂
∂ t

= ∇ ∂
∂ t

∂
∂ϑ

= 0

∇ ∂
∂ r̃

∂
∂φ

= ∇ ∂
∂φ

∂
∂ r̃

=
G′

G
∂

∂φ

∇ ∂
∂ϑ

∂
∂φ

= ∇ ∂
∂φ

∂
∂ϑ

= cot(ϑ)
∂

∂φ

∇ ∂
∂ϑ

∂
∂ϑ

= −G′G
∂
∂ r̃

∇ ∂
∂φ

∂
∂φ

= −sin(ϑ)2G′G
∂
∂ r̃
− sin(ϑ)cos(ϑ)

∂
∂ϑ

∇ ∂
∂ r̃

∂
∂ r̃

= 0

∇ ∂
∂ t

∂
∂ t

= F ′F
∂
∂ r̃

For the Ricci curvature, we obtain

0 !
= ric

(
∂
∂ t

,
∂
∂ t

)
= F

(
F ′′+2F ′

G′

G

)
(10)

0 !
= ric

(
∂
∂ r̃

,
∂
∂ r̃

)
= −

(
F ′′

F
+2

G′′

G

)
(11)

0 !
= ric

(
∂

∂φ
,

∂
∂φ

)
= −sin2 ϑ

(
F ′

F
GG′+GG′′−1+(G′)2

)
(12)

0 !
= ric

(
∂

∂ϑ
,

∂
∂ϑ

)
= −

(
F ′

F
GG′+GG′′−1+(G′)2

)
(13)

Equation −(11) ·F2G− (10) ·G yields

0 = FGF ′′+2F2G′′−FGF ′′−2F ′G′F = 2F(FG′′−F ′G′)

and hence (
G′

F

)′
=

G′′F−G′F ′

F2 = 0.
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2.4 The Schwarzschild solution

This means that G′
F =: a is constant and non-zero, for otherwise G′ ≡ 0 and also G′′ = 0, a

contradiction to (13). It follows that G is strictly monotonic and we can make the parameter
transformation

r := G(r̃).

Then dr
dr̃ = G′ hence dr = G′dr̃ and (abbreviating dx2 := dx⊗dx)

dr2 = (G′)2dr̃2 = a2F2dr̃2.

We have shown that the metric has the following form (with a ”new” F):

g =−F(r)2dt2 +
1

a2F(r)2 dr2 + r2(sin(ϑ)2dφ2 +dϑ 2)

=−F(r)2dt2 +
1

a2F(r)2 dr2 + r2gS2 .

We make the following physical assumption: Far from our astronomical object, the spacetime
should look approximately like Minkowski space.

gMink =−dt2 +dr2 + r2gS2 .

More precisely, this means lim
r→∞

F(r) = 1 and a2 = 1. Hence the metric must have the form

g =−F(r)2dt2 +
1

F(r)2 dr2 + r2(sin(ϑ)2dφ2 +dϑ 2)

For the Ricci curvature, we now obtain

0 = ric
(

∂
∂ t

,
∂
∂ t

)
= F2

(
(F ′)2 +FF ′′+2

FF ′

r

)
(14)

0 = ric
(

∂
∂ r̃

,
∂
∂ r̃

)
= −

((
F ′

F

)2

+
F ′′

F
+2

F ′

rF

)

0 = ric
(

∂
∂φ

,
∂

∂φ

)
= −sin2 ϑ

(
2FF ′r−1+F2)

0 = ric
(

∂
∂ϑ

,
∂

∂ϑ

)
= −2FF ′r+1−F2

Hence

(rF2)′′ = (F2 +2rFF ′)′ = 2FF ′+2FF ′+2r(F ′)2 +2rFF ′′

= 2(2FF ′+ r(F ′)2 + rFF ′′)
(14)
= 0

Therefore rF2 = br−2m with b,m ∈ R. In other words,

F2 = b− 2m
r
.
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Taking the limit shows

1 = lim
r→∞

F(r)2 = b

Hence F2 = 1−2m/r and

g =−(1− 2m
r
)dt2 +

1
1− 2m

r

dr2 + r2gS2 .

Then we indeed have ric≡ 0 and

∇ ∂
∂ t

∂
∂ t

=
(r−2m)m

r2
∂
∂ r

.

Definition 2.4.1. For any m≥ 0, the manifold R× ((0,2m)∪ (2m,∞))×S2 with the metric

g =−(1− 2m
r
)dt2 +

1
1− 2m

r

dr2 + r2gS2

is called a Schwarzschild spacetime.

Remark 2.4.2. The Schwarzschild spacetime has the following properties:
physical formulation mathematical formulation
radially symmetric SO(3) acts isometrically on S2, trivially on the r-

and t-axis.
static R acts isometrically by translation on the t-axis.
vacuum solution ric≡ 0
asymptotic to Minkowski spacetime g−gMink

r→∞−→ 0

Definition 2.4.3. A curve
γ : s 7→ (t(s),r(s),φ(s),ϑ(s))

is called a Schwarzschild observer, if r ≡ r0, φ ≡ φ0, ϑ ≡ ϑ0, and if γ is future directed and
parametrized by proper time, i.e., t ′ > 0, and g(γ ′,γ ′) =−1.
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2.4 The Schwarzschild solution

For any Schwarzschild observer (with γ ′ = t ′ ∂
∂ t ) we have

−1 = g(γ ′,γ ′) = (t ′)2g(
∂
∂ t

,
∂
∂ t

) =−(t ′)2(1− 2m
r0

).

⇒ t ′ =
1√

1− 2m
r0

.

⇒ γ(s) =
(

t0 + s√
1− 2m

r0

,r0,φ0,ϑ0

)
.

t

r
B1 B22m

This parametrization by proper time shows that for a Schwarzschild observer B1 with small
r0 > 2m, less time elapses to traverse the same cosmic time interval (measured in the coordinate
t) than for a distant Schwarzschild observer with big r0. Hence clocks run slower when under the
influence of gravitation. The Global Positioning System (GPS) was the first technical installation
where this effect had to be taken into account.

A Schwarzschild observer is subject to the acceleration

∇
ds

γ ′ = ∇( 1√
1− 2m

r0

∂
∂ t )

 1√
1− 2m

r0

∂
∂ t

=
1

1− 2m
r0

(r0−2m)m
r03

∂
∂ r

=
m
r02

∂
∂ r

.

This acceleration has the absolute value

m
r02

1√
1− 2m

r0

r0→∞∼ m
r02 ,

which approximates that of a central star of mass m, see Section 2.1. Hence m is interpreted as
the mass of the astronomical object.

Definition 2.4.4. Let M be a semi-Riemannian manifold and let Φ : (−ε,ε)→ Isom(M) be
such that Φ(0) = idM and assume that (−ε,ε)×M → M defined by (s, p) 7→ Φ(s)(p) is
smooth. Then the vector field ξ , defined by

ξ |p :=
d
ds

Φ(s)(p)|s=0,

is called a Killing vector field.
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2 General Relativity

Example 2.4.5. Let M = S2 and

Φ(s) =

1 0 0
0 cos(s) −sin(s)
0 sin(s) cos(s)

 .

The corresponding Killing vector field is
∂

∂φ
in polar coordinates. b

b

Lemma 2.4.6
Let M be a semi-Riemannian manifold, let ξ be a Killing vector field on M and let γ be a
geodesic in M. Then the function

t 7→ g(γ ′(t),ξ |γ(t))

is constant.

Sketch of proof. One can check that Killing vector fields ξ satisfy

⟨∇X ξ ,X⟩= 0

for all tangent vectors X . We then compute

d
dt
⟨γ ′(t),ξ (γ(t)⟩= ⟨∇

dt
γ ′(t),ξ (γ(t)⟩+ ⟨γ ′(t),∇γ ′(t)ξ (γ(t)⟩= 0+0 = 0. □

This lemma may be regarded as a version of Noether’s theorem; infinitesimal symmetries
(Killing vector fields) give rise to conservation laws.
In the Schwarzschild model M, ∂

∂ t is a Killing vector field because M is static and ∂
∂φ is a Killing

vector field because M is radially symmetric. Lemma 2.4.6 implies that for geodesics

γ(s) = (t(s),r(s),φ(s),ϑ(s))

with ϑ ≡ π
2 (i.e. in particular γ ′ = t ′ ∂

∂ t + r′ ∂
∂ r +φ ′ ∂

∂φ ),

the energy E :=
⟨

γ ′,
∂
∂ t

⟩
=−t ′h and the angular momentum L :=

⟨
γ ′,

∂
∂φ

⟩
= φ ′r2

are constant. Here, h(r) := 1−2m/r. This means that for light, we have

0 =
⟨
γ ′,γ ′

⟩
=−(t ′)2 ·h+ (r′)2

h
+ r2(φ ′)2 = t ′ ·E +

(r′)2

h
+φ ′ ·L.
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2.4 The Schwarzschild solution

This implies the energy equation for light particles

E2 = (r′)2 +φ ′ ·Lh = (r′)2 +
L2

r2 h.

For massive particles, we obtain

−1 =
⟨
γ ′,γ ′

⟩
= t ′E +

(r′)2

h
+φ ′.

This implies the energy equation for massive particles

E2 = (r′)2 +φ ′ ·Lh+h = (r′)2 +

(
L2

r2 +1
)

h.

Trajectories of Light Particles (L , 0)

Set

V (r) :=
L2

r2 h(r) =
L2

r2

(
1− 2m

r

)
.

We have V (2m) = 0, lim
r→∞

V (r) = 0 and lim
r→0

V (r) =−∞. We

determine the extrema

0 !
= V ′(r)

= −2
L2

r3

(
1− 2m

r

)
+

L2

r2
2m
r2

=
L2

r4 (−2r+4m+2m)

=
2L2

r4 (−r+3m)

This implies that the only extremum is at r = 3m. Because
of the behavior of V for large r, r = 3m must be a maximum
with V (3m) = L2

27m2 .

b b

Case 1

Case 2

Case 3

r

V (r)

2m 3m

The energy equation takes the form E2 = (r′)2 +V (r). In particular, V (r)≤ E2.

Case 1: E2 <
L2

27m2 .

(a) r0 < 3m: collision-collision orbit.

(b) r0 > 3m: fly-by orbit.

light deflection (First experimental verification of general relativity):

φ1 φ2

apparent
position of
fixed star

sun

moon

earth
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Case 2: E2 =
L2

27m2 .

(a) r ≡ 3m: Exceptional orbit.

(b) r0 < 3m or r0 > 3m: spiral orbits.

b

r0 < 3m

b

r0 = 3m

b

r0 > 3m

Case 3: E2 > L2

27m2 : Collision-escape orbit.
Sight angle. We have φ2 > φ1, i.e. astronomical objects seem bigger than they are.

classical relativistic

b φ1 b φ2

Orbits of Massive Particles

Now set

V (r) :=
(

L2

r2 +1
)

h(r).

We have V (2m) = 0, lim
r→∞

V (r) = 1 and lim
r→0

V (r) =−∞. The local extrema are at

r1,2 =
L2

2m2 ±L

√
L2

4m2 −3.

Case 1: L2 < 12m2, i.e. there are no local extrema

(a) E2 < 1: collision-collision orbit.

(b) E2 ≥ 1: collision-escape orbit.

V (r)

r
b

2m

1
Case 1.a

Case 1.b
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2.4 The Schwarzschild solution

Case 2: 12m2 ≤ L2 < 16m2.

(a) E2 <V (r1) and r0 < r1: collision-collision orbit.

(b) E2 <V (r1) and r0 > r1: bounded orbit.

(c) V (r1)< E2 < 1: collision-collision orbit.

(d) E2 ≥ 1: collision-escape orbit.

V (r)

r

1
Case
2.a Case 2.b

Case 2.c

Case 2.d

2m
b

Case 3: L2 ≥ 16m2.

(a) E2 <V (r1) and r0 < r1: collision-collision orbit.

(b) V (r2)< E2 < 1 and r0 > r1: bounded orbit.

(c) 1≤ E2 <V (r1) and r0 > r1: fly-by orbit.

(d) E2 >V (r1): collision- escape orbit.

V (r)

r

1
C

as
e

3.
a

Case 3.b

Case 3.c

Case 3.d

2m
b

Definition 2.4.7. The constant 2m is called the Schwarzschild radius.

Now we want to remove the singularity at r = 2m. Set

f (r) := (r−2m)er/2m−1.

Then f : (0,∞)→ (−2m
e ,∞) is a diffeomorphism, because

f ′(r) = e
r

2m−1 +(r−2m)
1

2m
e

r
2m−1 =

r
2m

e
r

2m−1 > 0.

We have f ((0,2m)) = (−2m
e ,0) and f ((2m,∞)) = (0,∞). We introduce the Kruskal coordinates

u and v by

f (r) = uv, t = 2m · ln
(∣∣∣ v

u

∣∣∣) .
For the metric, we obtain

g =
4m2

r
e1− r

2m (du⊗dv+dv⊗du)+ r2(sin(ϑ)2dφ2 +dϑ 2).
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II+

II−

I+
I−

r=0

r=0
r=m
u
r=3m

v

r=2m r

t

I

II

2m

The metric is also smooth at v = 0 corresponding to r = 2m. On the area II, the time orientation
is characterized by t ′ > 0. We have

0 < t ′ = 2m
v′u−u′v

u2

v
u

=
v′u−u′v

uv
⇐⇒ v′u−u′v > 0.

This implies that − ∂
∂u and ∂

∂v are positive and time oriented on II+, and because of continuity,
this holds on I+ as well. Converting to I then gives

positive time oriented ⇐⇒ r′ > 0.

In particular, this means that no future oriented causal curve can leave the area I. Not even
light can leave the region r < 2m. Therefore, astronomical objects with radius smaller than the
Schwarzschild radius are called black holes.
The singularity at r = 0 on the other hand cannot be removed for m> 0. This leads to the Penrose
singularity theorem.
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Poincaré, Henri, 7
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stress tensor, 40
stress-energy tensor, 40
superluminal velocity, 23
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timelike vector, 11
tunnel paradox, 28
twin paradox, 32

velocity, 2
velocity-addition formula, 3, 26

warped product, 56
wave equation, 5
world line, 20
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