Christian Bär

Gauge Theory

Summer Term 2009

(C) Christian Bär 2011. All rights reserved.

Picture on the title page is taken from www.sxc.hu

Contents

Preface v
1 Lie groups and Lie algebras 1
1.1 Lie groups 1
1.2 Lie algebras 4
1.3 Representations 7
1.4 The exponential map 15
1.5 Group actions 21
2 Bundle theory 31
2.1 Fiber bundles 31
2.2 Principal bundles 35
2.3 Connections 44
2.4 Curvature 49
2.5 Characteristic classes 53
2.6 Parallel transport 59
2.7 Gauge transformations 69
3 Applications to Physics 73
3.1 The Hodge-star operator 73
3.2 Electrodynamics 78
3.3 Yang-Mills fields 91
4 Algebraic Topology 101
4.1 Homotopy theorv 101
4.2 Homology theorv 110
4.3 Orientations and the fundamental class 120
5 4-dimensional Manifolds 125
5.1 The intersection form 125
5.2 Classification results 132
5.3 Donaldson's theorem 138

Preface

These are the lecture notes of an introductory course on gauge theory which I taught at Potsdam University in 2009. The aim was to develop the mathematical underpinnings of gauge theory such as bundle theory, characteristic classes etc. and to give applications both in physics (electrodynamics, Yang-Mills fields) as well as in mathematics (theory of 4-manifolds).

To keep the necessary prerequisites of the students at a minimum, there are introductory chapters on Lie groups and on algebraic topology. Basic differential geometric notions such as manifolds are assumed to be known.

I am very grateful to Christian Becker, who wrote a first draft of these lecture notes in excellent quality and produced most of the pstricks-figures.

Potsdam, February 2011
Christian Bär

1 Lie groups and Lie algebras

1.1 Lie groups

Definition 1.1.1. A differentiable manifold G which is at the same time a group is called a Lie group iff the maps

$$
\begin{aligned}
G \times G & \rightarrow G, & & \left(g_{1}, g_{2}\right) \mapsto g_{1} \cdot g_{2} \\
G & \rightarrow G, & & g \mapsto g^{-1}
\end{aligned}
$$

are smooth.

Example 1.1.2

1. $G=\mathbb{R}^{n}$ with addition is a Lie group.
2. $G=\operatorname{GL}(n ; \mathbb{R})=\{A \in \operatorname{Mat}(n \times n ; \mathbb{R}) \mid \operatorname{det}(A) \neq 0\} \subset \operatorname{Mat}(n \times n ; \mathbb{R})=\mathbb{R}^{n^{2}}$ is an open subset, since det : $\operatorname{Mat}(n \times n ; \mathbb{R}) \rightarrow \mathbb{R}$ is continuous. The multiplication map $(A, B) \mapsto A \cdot B$ is smooth, because the matrix coefficients of $A \cdot B$ are polynomials in the matrix coefficients of A and B. The inversion $A \mapsto A^{-1}$ is smooth, because the matrix coefficients of A^{-1} are rational functions of the matrix coefficients of A.
3. $\operatorname{GL}(n ; \mathbb{C}) \subset \operatorname{Mat}(n \times n ; \mathbb{C})=\mathbb{C}^{n^{2}}=\mathbb{R}^{(2 n)^{2}}$.

Theorem 1.1.3

Let G be a Lie group, let $H \subset G$ be a subgroup (algebraically) and closed as a subset. Then $H \subset G$ is a submanifold and a Lie group in its own right.

Example 1.1.4

1. $H=\mathrm{O}(n):=\left\{A \in \mathrm{GL}(n ; \mathbb{R}) \mid A^{t} \cdot A=\mathbb{1}_{n}\right\}$ is called the orthogonal group.

1 Lie groups and Lie algebras
$\mathrm{O}(n)$ is a subgroup: For $A, B \in \mathrm{O}(n)$, we have:

$$
(A B)^{t} \cdot(A B)=B^{t} A^{t} A B=B^{t} \mathbb{1}_{n} B=B^{t} B=\mathbb{1}_{n},
$$

hence $A B \in \mathrm{O}(n)$. Similarly, for $A \in \mathrm{O}(n)$, we have $A^{-1}=A^{t}$, hence $\mathbb{1}_{n}=A \cdot A^{-1}=\left(A^{-1}\right)^{t} \cdot A^{-1}$. Thus $A^{-1} \in \mathrm{O}(n)$.
$\mathrm{O}(n) \subset \mathrm{GL}(n ; \mathbb{R})$ is a closed subset, because the map $A \mapsto A^{t} A$ is continuous, i.e. $A^{t} \cdot A=\mathbb{1}_{n}$ is a closed condition.
2. $H=\operatorname{SL}(n ; \mathbb{R}):=\{A \in \operatorname{Mat}(n \times n ; \mathbb{R}) \mid \operatorname{det}(A)=1\}$ is called the special linear group.
3. $H=\mathrm{SO}(n):=\mathrm{O}(n) \cap \mathrm{SL}(n ; \mathbb{R})$ is called the special orthogonal group.
4. $H=\mathrm{U}(n):=\left\{A \in \operatorname{Mat}(n \times n ; \mathbb{C}) \mid A^{*} \cdot A=1\right\}$ is called the unitary group. Here $A^{*}:=(\bar{A})^{t}$.
5. $H=\operatorname{SL}(n ; \mathbb{R}):=\{A \in \operatorname{Mat}(n \times n ; \mathbb{C}) \mid \operatorname{det}(A)=1\}$ is called the special linear group.
6. $H=\mathrm{SU}(n):=\mathrm{U}(n) \cap \mathrm{SL}(n ; \mathbb{C})$ is called the special unitary group.

Example 1.1.5. Let G, G^{\prime} be Lie groups. Then $G \times G^{\prime}$ is a Lie group with the group structure given as follows:

$$
\begin{aligned}
\left(g_{1}, g_{1}^{\prime}\right) \cdot\left(g_{2}, g_{2}^{\prime}\right) & :=\left(g_{1} \cdot g_{2}, g_{1}^{\prime} \cdot g_{2}^{\prime}\right) \\
\left(g, g^{\prime}\right)^{-1} & :=\left(g^{-1},\left(g^{\prime}\right)^{-1}\right) .
\end{aligned}
$$

Remark 1.1.6. Hilbert's $5^{\text {th }}$ problem, formulated at the International Congress of Mathematicians in Paris 1900: In the definiton of Lie group, can one replace "smooth" by "continuous"?
The answer (found around 1950's): Yes, replacing "smooth" by "continuous" does not change anything.

Definition 1.1.7. Let G, H be Lie groups. A smooth group homomorphism $\varphi: G \rightarrow H$ is called a homomorphism of Lie groups.
A Lie group homomorphism $\varphi: G \rightarrow H$ is called an isomorphism of Lie groups if it is invertible and the inverse is again a Lie group homomorphism. In this case, G and H are called isomorphic as Lie groups.

Example 1.1.8. For any $A \in G=\mathrm{SO}(2), A=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ the condition

$$
1=A^{t} \cdot A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=\left(\begin{array}{ll}
a^{2}+b^{2} & a c+b d \\
a c+b d & c^{2}+d^{2}
\end{array}\right)
$$

yields the equations

$$
\begin{align*}
a^{2}+b^{2} & =1 \tag{1.1}\\
c^{2}+d^{2} & =1 \tag{1.2}\\
a c+b d & =0 \tag{1.3}
\end{align*}
$$

Further we have the condition

$$
\begin{equation*}
1 \stackrel{!}{=} \operatorname{det}(A)=a d-b c \tag{1.4}
\end{equation*}
$$

Multiplying (1.4) by c and d respectively, yields

$$
\begin{aligned}
& c=a c d-b c^{2} \stackrel{(1.3)}{=}-b\left(c^{2}+d^{2}\right) \stackrel{(1.2)}{=}-b \\
& d=a d^{2}-b c d \stackrel{(1.3)}{=} a\left(c^{2}+d^{2}\right) \stackrel{(1.2)}{=} a .
\end{aligned}
$$

Hence any $A \in \mathrm{SO}(2)$ is of the form $A=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ with $a^{2}+b^{2}=1$. Thus there is a $\varphi \in \mathbb{R}$ such that $\binom{a}{b}=\binom{\cos \varphi}{\sin \varphi}$. We thus have

$$
\mathrm{SO}(2)=\left\{\left.\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right) \right\rvert\, \varphi \in \mathbb{R}\right\}
$$

For $H=\mathrm{U}(1)$, we find:

$$
\begin{aligned}
\mathrm{U}(1) & =\{(z) \in \mathrm{GL}(1 ; \mathbb{C}) \mid \bar{z} \cdot z=1\} \\
& =\{(z)| | z \mid=1\} \\
& =\left\{\left(e^{i \varphi}\right) \mid \varphi \in \mathbb{R}\right\} .
\end{aligned}
$$

Now the map

$$
\mathrm{SO}(2) \rightarrow \mathrm{U}(1),\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right) \mapsto\left(e^{i \varphi}\right)
$$

is an isomorphism of Lie groups: to see that it is a group homomorphism, use the addition theorems for sin and cos, to see that it is invertible, use Eulers formula. Hence $\mathrm{U}(1) \cong \mathrm{SO}(2)$. Both are diffeomorphic to the unit circle S^{1}.

1.2 Lie algebras

Definition 1.2.1. A vector space V together with a map $[\cdot, \cdot]: V \times V \rightarrow V$ is called a Lie algebra, iff
(i) $[\cdot, \cdot]$ is bilinear.
(ii) $[\cdot, \cdot]$ is antisymmetric, i.e. $\forall v, w \in V:[v, w]=-[v, w]$.
(iii) $[\cdot, \cdot]$ satisfies the Jacobi identity:

$$
\forall u, v, w \in V:[[u, v], w]+[[v, w], u]+[[w, u], v]=0 .
$$

The map $[\cdot, \cdot]$ is called the Lie bracket.

Example 1.2.2

1. Every vector space together with the map $[\cdot, \cdot] \equiv 0$ is a Lie algebra. A Lie algebra with the trivial bracket $[\cdot, \cdot] \equiv 0$ is called abelian.
2. The space $V=\operatorname{Mat}(n \times n ; \mathbb{K}), \mathbb{K}=\mathbb{R}$ or \mathbb{C} together with the commutator $[A, B]:=A \cdot B-B \cdot A$ is a Lie algebra. The Jacobi identity is given by a simple computation:

$$
\begin{aligned}
& {[[A, B], C]+[[B, C], A]+[[C, A], B]} \\
& =\quad(A B-B A) C-C(A B-B A)+(B C-C B) A-A(B C-C B) \\
& \quad+(C A-A C) B-B(C A-A C) \\
& =\quad 0
\end{aligned}
$$

This computation shows that the Jacobi identity is a consequence of the associativity of matrix multiplication. In general, the Jacobi identity can be thought of as a replacement for associativity.
3. $V=\mathbb{R}^{3}$ together with the Lie bracket $[\cdot, \cdot]=(\cdot) \times(\cdot)$ defined as the vector product is a Lie algebra. Again, the verification of the Jacobi identity is a simple computation.
4. Let M be a differentiable manifold, let $V=\mathfrak{X}(M)$ be the space of smooth vector fields on M. Let $[\cdot, \cdot]$ be the usual Lie bracket of vector fields. Then $(V,[\cdot, \cdot])$ is an infinite dimensional Lie algebra.

Definition 1.2.3. Let $(V,[,, \cdot])$ be a Lie algebra. A vector subspace $W \subset V$ together with the map $\left.[\cdot, \cdot]\right|_{W \times W}$ is called a Lie subalgebra of V iff $\forall w, w^{\prime} \in W,\left[w, w^{\prime}\right] \in W$.

Obviously, a Lie subalgebra is a Lie algebra in its own right.
Now the goal is to associate in a natural way to each Lie group a Lie algebra. To this end, let G be a fixed Lie group. For a fixed $g \in G$, we have the following maps:

$$
\begin{aligned}
& L_{g}: G \rightarrow G, L_{g}(h):=g \cdot h, \quad(\text { left translation by } g) \\
& R_{g}: G \rightarrow G, R_{g}(h):=h \cdot g, \quad(\text { right translation by } g) \\
& \alpha_{g}: G \rightarrow G, \alpha_{g}(h):=\left(L_{g} \circ R_{g^{-1}}\right)(h)=g \cdot h \cdot g^{-1}, \quad(\text { conjugation by } g) .
\end{aligned}
$$

Note that conjugation is a Lie group isomorphism, whereas left and right translation are diffeomorphisms, but they are not group homomorphisms.

Remark 1.2.4. Let M be a differentiable manifold and $F: M \rightarrow M$ a diffeomorphism. For a smooth vector field X on $M, p \in M$, set

$$
d F(X)(p):=d_{F^{-1}(p)} F\left(X\left(F^{-1}(p)\right)\right) .
$$

Then $d F(X)$ is again a smooth vector field on M and the following diagram commutes:

Furthermore, $\forall X, Y \in \mathfrak{X}(M)$, we have

$$
\begin{equation*}
d F([X, Y])=[d F(X), d F(Y)] . \tag{1.5}
\end{equation*}
$$

Definition 1.2.5. Let $M=G$ be a Lie group. A vector field $X \in \mathfrak{X}(G)$ is called left-invariant iff $\forall g \in G: d L_{g}(X)=X$.

By (1.5), if $X, Y \in \mathfrak{X}(G)$ are left-invariant, then

$$
d L_{g}([X, Y])=\left[d L_{g}(X), d L_{g}(Y)\right]=[X, Y],
$$

1 Lie groups and Lie algebras

so $[X, Y]$ is again left-invariant. Thus the vector space

$$
\mathfrak{g}:=\{X \in \mathfrak{X}(G) \mid X \text { left-invariant }\}
$$

of left-invariant smooth vector fields on G is a Lie subalgebra of $\mathfrak{X}(G)$.

Definition 1.2.6. \mathfrak{g} is called the Lie algebra of G.

For $g \in G$ and $X \in \mathfrak{g}$

$$
X(g)=d L_{g}(X)(g)=d_{\left(L_{g^{-1}}(g)\right)} L_{g}\left(X\left(L_{g^{-1}}(g)\right)\right)=d_{e} L_{g}(X(e)),
$$

where e is the neutral element in G. Conversely, given $X_{0} \in T_{e} G$, then $X(g):=d_{e} L_{g}\left(X_{0}\right)$ yields a left-invariant vector field $X \in \mathfrak{g}$. We thus have a linear isomorphism $T_{e} G \rightarrow \mathfrak{g}$. In particular, $\operatorname{dim} \mathfrak{g}$ (as real vector space) equals $\operatorname{dim} G$ (as smooth manifold).

Example 1.2.7

1. For $G=\mathrm{GL}(n ; \mathbb{R}), \mathfrak{g}=T_{1_{n}} \mathrm{GL}(n ; \mathbb{R})=\operatorname{Mat}(n \times n ; \mathbb{R})$. The Lie bracket $[\cdot, \cdot]$ is the commutator, as discussed in example 1.2 .2 above.
2. For $G=\mathrm{O}(n)$,

$$
\mathfrak{g}=: \mathfrak{o}(n)=T_{\mathbb{1}_{n}} \mathrm{O}(n)=\left\{\dot{c}(0) \mid c:(-\epsilon, \epsilon) \rightarrow \mathrm{O}(n) \text { smooth, } c(0)=\mathbb{1}_{n}\right\} .
$$

We compute

$$
\begin{aligned}
& c(s) \in \mathrm{O}(n) \quad \Leftrightarrow \quad \mathbb{1}_{n}=c(s)^{t} \cdot c(s) \\
& \Longrightarrow \quad 0=\left.\frac{d}{d s}\right|_{s=0}\left(c(s)^{t} \cdot c(s)\right)=\dot{c}(0)^{t} \cdot c(0)+c(0)^{t} \cdot \dot{c}(0) \\
&=\dot{c}(0)^{t} \cdot \mathbb{1}_{n}+\mathbb{1}_{n} \cdot \dot{c}(0)=\dot{c}(0)^{t}+\dot{c}(0)
\end{aligned}
$$

Hence $\mathfrak{o}(n) \subset\left\{A \in \operatorname{Mat}(n \times n ; \mathbb{R}) \mid A^{t}+A=0\right\}$. Further,

$$
\operatorname{dim} \mathfrak{o}(n)=\operatorname{dim} \mathrm{O}(n)=\frac{n(n-1)}{2}=\operatorname{dim}\left\{A \in \operatorname{Mat}(n \times n ; \mathbb{R}) \mid A^{t}+A=0\right\}
$$

so that indeed

$$
\mathfrak{o}(n)=\left\{A \in \operatorname{Mat}(n \times n ; \mathbb{R}) \mid A^{t}+A=0\right\} .
$$

3. Similarly, for $G=\operatorname{SL}(n ; \mathbb{R})$, we have

$$
\mathfrak{g}=: \mathfrak{s l}(n ; \mathbb{R})=T_{1_{n}} \mathrm{SL}(n ; \mathbb{R})=\left\{\dot{c}(0) \mid c:(-\epsilon, \epsilon) \rightarrow \mathrm{SL}(n ; \mathbb{R}) \text { smooth }, c(0)=\mathbb{1}_{n}\right\} .
$$

which yields

$$
\begin{aligned}
c(s) \in \operatorname{SL}(n ; \mathbb{R}) & \Leftrightarrow 1=\operatorname{det} c(s) \\
& \Longrightarrow \quad 0=\left.\frac{d}{d s}\right|_{s=0}(\operatorname{det} c(s))=\operatorname{tr}(\dot{c}(0)) .
\end{aligned}
$$

As before, a dimensional argument yields

$$
\mathfrak{s l}(n ; \mathbb{R})=\{A \in \operatorname{Mat}(n \times n ; \mathbb{R}) \mid \operatorname{tr}(A)=0\}
$$

4. For $G=\operatorname{SO}(n)$, we find

$$
\mathfrak{g}=: \mathfrak{s o}(n)=\mathfrak{o}(n) \cap \mathfrak{s l}(n ; \mathbb{R})=\mathfrak{o}(n),
$$

since $\mathfrak{o}(n) \subset \mathfrak{s l}(n ; \mathbb{R})$.
5. For $G=\mathrm{U}(n)$, we compute:

$$
\begin{aligned}
& c(s) \in \mathrm{U}(n) \quad \Leftrightarrow \quad \mathbb{1}_{n}=c(s)^{*} \cdot c(s) \\
& \Longrightarrow \quad 0=\left.\frac{d}{d s}\right|_{s=0}\left(c(s)^{*} \cdot c(s)\right)=\dot{c}(0)^{*} \cdot c(0)+c(0) \cdot \dot{c}(0) \\
&=\dot{c}(0)^{*}+\dot{c}(0)
\end{aligned}
$$

Thus $\mathfrak{g}=: \mathfrak{u}(n)=\left\{A \in \operatorname{Mat}(n \times n ; \mathbb{C}) \mid A^{*}=-A\right\}$.
6. For $G=\operatorname{SL}(n ; \mathbb{C})$, we find $\mathfrak{g}=: \mathfrak{s l}(n ; \mathbb{C})=\{A \in \operatorname{Mat}(n \times n ; \mathbb{C}) \mid \operatorname{tr}(A)=0\}$.
7. For $G=\operatorname{SU}(n)$, we find $\mathfrak{g}=: \mathfrak{s u}(n)=\left\{A \in \operatorname{Mat}(n \times n ; \mathbb{C}) \mid A^{*}=-A, \operatorname{tr}(A)=0\right\}$.

1.3 Representations

Definition 1.3.1. A representation of a Lie group G is a Lie group homomorphism $\varrho: G \rightarrow \operatorname{Aut}(V)$ for some finite dimensional \mathbb{K}-vector space V (and $\mathbb{K}=\mathbb{R}$ or \mathbb{C}). If $\mathbb{K}=\mathbb{R}$, then ϱ is called a real representation, whereas if $\mathbb{K}=\mathbb{C}$, ϱ is called a complex representation.

Remark 1.3.2. Upon the choice of a basis $V \cong \mathbb{K}^{n}$ and $\operatorname{Aut}(V) \cong \mathrm{GL}(n ; \mathbb{K})$.

Definition 1.3.3. A representation ϱ is called faithful, iff it is injective.

Example 1.3.4

1. The trivial representation defined by $\varrho(g):=\operatorname{id}_{V}$ for any $g \in G$, is faithful only for the trivial Lie group $G=\{e\}$.
2. Let G be a Lie group and \mathfrak{g} its Lie algebra. The adjoint representation

$$
\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g})
$$

is defined as follows: For any $g \in G$, we have $\alpha_{g}(e)=g \cdot e \cdot g^{-1}=e$. By differentiating α_{g} at the neutral element e, we get a linear map

$$
\operatorname{Ad}_{g}:=d_{e} \alpha_{g}: \mathfrak{g} \cong T_{e} G \rightarrow T_{e} G \cong \mathfrak{g} .
$$

We need to show that Ad is a group homomorphism, i.e. that $\operatorname{Ad}_{g_{1} \cdot g_{2}}=\operatorname{Ad}_{g_{1}} \circ \operatorname{Ad}_{g_{2}}$. To this end, take $X \in \mathfrak{g}$, and let $c:(-\epsilon, \epsilon) \rightarrow G$ be a smooth curve such that $c(0)=e$ and $\dot{c}(0)=X$. Then we compute:

$$
\begin{aligned}
\operatorname{Ad}_{g_{1} \cdot g_{2}}(X) & =d_{e} \alpha_{g_{1} \cdot g_{2}}(X) \\
& =\left.\frac{d}{d s}\right|_{s=0}\left(\alpha_{g_{1} \cdot g_{2}}(c(s))\right) \\
& =\left.\frac{d}{d s}\right|_{s=0}\left(\left(\alpha_{g_{1}} \circ \alpha_{g_{2}}\right)(c(s))\right) \\
& =d_{e} \alpha_{g_{1}}\left(d_{e} \alpha_{g_{2}}(X)\right) \\
& =\operatorname{Ad}_{g_{1}}\left(\operatorname{Ad}_{g_{2}}(X)\right) \\
& =\operatorname{Ad}_{g_{1}} \circ \operatorname{Ad}_{g_{2}}(X)
\end{aligned}
$$

(Here we have used the obvious property $\alpha_{g_{1} \cdot g_{2}}=\alpha_{g_{1}} \circ \alpha_{g_{2}}$.) Further, we have $\operatorname{Ad}_{e}=\operatorname{id}_{\mathfrak{g}}$ and $\left(\operatorname{Ad}_{g}\right)^{-1}=\operatorname{Ad}_{g^{-1}}$. Thus we have obtained a group homomorphism $\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g})$. By the definition of a Lie group we know that $\alpha_{g}(h)$ depends smoothly on g. This implies that $\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g})$ is a smooth map.

Remark 1.3.5. If G is abelian, then $\alpha_{g}=\operatorname{id}_{G}$ for any $g \in G$, so $\operatorname{Ad}_{g}=d_{e} \alpha_{g}=\mathrm{id}_{\mathfrak{g}}$. Thus the adjoint representation is trivial in this case.

Example 1.3.6. $G=\mathrm{U}(1)$ is abelian, so $\mathrm{Ad}=\mathrm{id}_{\mathfrak{g}}$.

Remark 1.3.7. Let G be any of the matrix groups from example 1.1.4. Conjugation in G is the ordinary conjugation by a matrix from G. Namely, for $X \in \mathfrak{g}$ let $c:(-\epsilon, \epsilon) \rightarrow G$ be a smooth curve with $c(0)=e$ and $\dot{c}(0)=X$. Then the adjoint representation is given by:

$$
\operatorname{Ad}_{g}(X)=\left.\frac{d}{d s}\right|_{s=0} \alpha_{g}(c(s))=\left.\frac{d}{d s}\right|_{s=0}\left(g \cdot c(s) \cdot g^{-1}\right)=g \cdot X \cdot g^{-1} .
$$

Example 1.3.8. We now compute the adjoint representation of $G=\mathrm{SU}(2)$. The Lie algebra $\mathfrak{s u}(2)$ is given by

$$
\mathfrak{s u}(2)=\left\{A \in \operatorname{Mat}(n \times n ; \mathbb{C}) \mid A^{*}=-A, \operatorname{tr}(A)=0\right\}=\left\{\left.\left(\begin{array}{cc}
i t & z \\
-\bar{z} & -i t
\end{array}\right) \right\rvert\, z \in \mathbb{C}, t \in \mathbb{R}\right\},
$$

so a natural basis of $\mathfrak{s u}(2)$ is given by $-i$ times the so called Pauli matrices $\sigma_{1}, \sigma_{2}, \sigma_{3}$:

$$
-i \sigma_{1}:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),-i \sigma_{2}:=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right),-i \sigma_{3}:=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) .
$$

For $g=\left(\begin{array}{cc}e^{i \varphi} & 0 \\ 0 & e^{-i \varphi}\end{array}\right) \in \mathrm{SU}(2)$, we get

$$
\begin{aligned}
\operatorname{Ad}_{g}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) & =\left(\begin{array}{cc}
e^{i \varphi} & 0 \\
0 & e^{-i \varphi}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
e^{-i \varphi} & 0 \\
0 & e^{i \varphi}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{i \varphi} & 0 \\
0 & e^{-i \varphi}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & e^{i \varphi} \\
-e^{-i \varphi} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & e^{2 i \varphi} \\
-e^{-2 i \varphi} & 0
\end{array}\right) \\
& =\cos (2 \varphi) \cdot\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)+\sin (2 \varphi) \cdot\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
\end{aligned}
$$

By similar computations, we get

$$
\begin{aligned}
\operatorname{Ad}_{g}\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) & =\cos (2 \varphi) \cdot\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)-\sin (2 \varphi) \cdot\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
\operatorname{Ad}_{g}\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) & =\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
\end{aligned}
$$

With respect to the basis $-i \sigma_{1},-i \sigma_{2},-i \sigma_{3}$ of $\mathfrak{s u}(2)$, the adjoint representation of $\mathrm{SU}(2)$ thus has the matrix

$$
\operatorname{Ad}_{g}=\left(\begin{array}{ccc}
\cos (2 \varphi) & -\sin (2 \varphi) & 0 \\
\sin (2 \varphi) & \cos (2 \varphi) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Remark 1.3.9. The adjoint representation of $\operatorname{SU}(2)$ is not faithful, since $\operatorname{Ad}_{-1_{n}}=\mathbb{1}_{n}$.

Example 1.3.10. For the classical matrix groups from example 1.1.4, we have the standard representations:

1. For $G=\operatorname{GL}(n ; \mathbb{K})$, take $\varrho_{\text {st }}:=\mathrm{id}: G \rightarrow \mathrm{GL}(n ; \mathbb{K})=\operatorname{Aut}\left(\mathbb{K}^{n}\right)$.
2. For $G=\mathrm{O}(n), \mathrm{SL}(n ; \mathbb{R}), \mathrm{SO}(n)$, take the natural inclusion

$$
\varrho_{\text {st }}: G \hookrightarrow \mathrm{GL}(n ; \mathbb{R})=\operatorname{Aut}\left(\mathbb{R}^{n}\right)
$$

3. Similarly, for $G=\mathrm{U}(n), \mathrm{SL}(n ; \mathbb{C}), \mathrm{SU}(n)$, take the natural inclusion

$$
\varrho_{\text {st }}: G \hookrightarrow \mathrm{GL}(n ; \mathbb{C})=\operatorname{Aut}\left(\mathbb{C}^{n}\right)
$$

Now we consider several techniques to manufacture new representations of a fixed Lie group G out of given ones:

Definition 1.3.11. Let $\varrho: G \rightarrow \operatorname{Aut}(V)$ and $\varrho_{j}: G \rightarrow \operatorname{Aut}\left(V_{j}\right), j=1,2$, be representations of a fixed Lie group G.

1. The direct sum representation is defined as:

$$
\begin{aligned}
\varrho_{1} \oplus \varrho_{2}: G & \rightarrow \text { Aut }\left(V_{1} \oplus V_{2}\right) \\
\left(\varrho_{1} \oplus \varrho_{2}\right)(g)\left(v_{1} \oplus v_{2}\right) & :=\varrho_{1}(g)\left(v_{1}\right) \oplus \varrho_{2}(g)\left(v_{2}\right) .
\end{aligned}
$$

Thus with respect to a basis of $V_{1} \oplus V_{2}$ induced from bases of V_{1} and V_{2} respectively, $\varrho_{1} \oplus \varrho_{2}$ has block diagonal form:

$$
\left(\varrho_{1} \oplus \varrho_{2}\right)(g)=\left(\begin{array}{cc}
\varrho_{1}(g) & 0 \\
0 & \varrho_{2}(g)
\end{array}\right) .
$$

2. Similarly, the tensor product representation $\varrho_{1} \otimes \varrho_{2}: G \rightarrow \operatorname{Aut}\left(V_{1} \otimes V_{2}\right)$ is defined on the homogeneous elements $v_{1} \otimes v_{2}$ by

$$
\left(\varrho_{1} \otimes \varrho_{2}\right)(g)\left(v_{1} \otimes v_{2}\right):=\varrho_{1}(g)\left(v_{1}\right) \otimes \varrho_{2}(g)\left(v_{2}\right)
$$

and expanded linearly to all of $V_{1} \otimes V_{2}$.
3. The antisymmetric tensor product representation (or wedge product representation) is defined by:

$$
\begin{aligned}
\Lambda^{k} \varrho: G & \rightarrow \operatorname{Aut}\left(\Lambda^{k} V\right) \\
\left(\Lambda^{k} \varrho\right)(g)\left(v_{1} \wedge \ldots \wedge v_{k}\right) & :=\varrho(g) v_{1} \wedge \ldots \wedge \varrho(g) v_{k}
\end{aligned}
$$

4. The symmetric tensor product representation is defined by:

$$
\begin{aligned}
\odot^{k} \varrho: G & \rightarrow \operatorname{Aut}\left(\odot^{k} V\right) \\
\left(\odot^{k} \varrho\right)(g)\left(v_{1} \odot \ldots \odot v_{k}\right) & :=\varrho(g) v_{1} \odot \ldots \odot \varrho(g) v_{k}
\end{aligned}
$$

5. Associated to any \mathbb{K}-vector space V is the dual vector space V^{*} of all linear maps from V to the field \mathbb{K}. So we expect associated to any representation $\varrho: G \rightarrow \operatorname{Aut}(V)$ a dual representation $\varrho^{*}: G \rightarrow \operatorname{Aut}\left(V^{*}\right)$. Let's see how to define ϱ^{*} : Since for $g \in G$, the representation $\varrho(g)$ is a linear automorphism of V, we might take the dual automorphism $\varrho(g)^{*}: V^{*} \rightarrow V^{*}$, defined by $\varrho(g)^{*}(\lambda):=\lambda \circ \varrho(g)$, as a candidate for the dual representation. Now let's check whether the map $g \mapsto \varrho(g)^{*}$ is a group homomorphism $G \rightarrow \operatorname{Aut}\left(V^{*}\right)$:

$$
\begin{aligned}
g_{1} \cdot g_{2} \mapsto \varrho\left(g_{1} \cdot g_{2}\right)^{*} & =\left(\varrho\left(g_{1}\right) \cdot \varrho\left(g_{2}\right)\right)^{*} \\
& =\varrho\left(g_{2}\right)^{*} \cdot \varrho\left(g_{1}\right)^{*} \\
& \neq \varrho\left(g_{1}\right)^{*} \cdot \varrho\left(g_{2}\right)^{*} \text { in general. }
\end{aligned}
$$

To fix the problem, we define the dual representation as:

$$
\begin{aligned}
\varrho^{*}: G & \rightarrow \operatorname{Aut}\left(V^{*}\right) \\
\varrho^{*}(g) & :=\varrho\left(g^{-1}\right)^{*} .
\end{aligned}
$$

Now we compute

$$
\begin{aligned}
\varrho^{*}\left(g_{1} \cdot g_{2}\right) & =\left(\varrho\left(\left(g_{1} \cdot g_{2}\right)^{-1}\right)\right)^{*} \\
& =\left(\varrho\left(g_{2}^{-1} \cdot g_{1}^{-1}\right)\right)^{*} \\
& =\left(\varrho\left(g_{2}^{-1}\right) \cdot \varrho\left(g_{1}^{-1}\right)\right)^{*} \\
& =\varrho\left(g_{1}^{-1}\right)^{*} \cdot \varrho\left(g_{2}^{-1}\right)^{*} \\
& =\varrho^{*}\left(g_{1}\right) \cdot \varrho^{*}\left(g_{2}\right)
\end{aligned}
$$

so that $\varrho^{*}: G \rightarrow \operatorname{Aut}\left(V^{*}\right)$ is indeed a group homomorphism.
6. Suppose that the representation $\varrho: G \rightarrow \operatorname{Aut}(V)$ is real. We can manufacture a complex vector space out of V by setting $V_{\mathbb{C}}:=V \otimes_{\mathbb{R}} \mathbb{C}$. The complexification of ϱ is the complex representation

$$
\varrho_{\mathbb{C}}: G \rightarrow \operatorname{Aut}\left(V_{\mathbb{C}}\right), \varrho_{\mathbb{C}}:=\varrho \otimes \operatorname{id}_{\mathbb{C}}
$$

In terms of matrices this means that the representation ϱ is given by real matrices. If we now consider them as complex matrices, then we have the complexification.

Definition 1.3.12. Let G be a Lie group, let $\varrho: G \rightarrow \operatorname{Aut}(V), \tilde{\varrho}: G \rightarrow \operatorname{Aut}(\tilde{V})$ be representations. Then ϱ and $\tilde{\varrho}$ are called equivalent, iff there exists an isomorphism $T: V \rightarrow \tilde{V}$ such that for every $g \in G$ the following diagram commutes:

Example 1.3.13. Let $\varrho: G \rightarrow \operatorname{Aut}(V)$ be a given representation on a \mathbb{K}-vector space V. The choice of a basis on V yields an isomorphism $F_{1}: V \rightarrow \mathbb{K}^{n}$ and a representation $\varrho_{1}: G \rightarrow \operatorname{GL}(n ; \mathbb{K})=\operatorname{Aut}\left(\mathbb{K}^{n}\right) . \quad F_{1}$ is an equivalence of representations from ϱ to ϱ_{1}. Another basis of V leads to another isomorphism $F_{2}: V \rightarrow \mathbb{K}^{n}$ and another (equivalent) representation $\varrho_{2}: G \rightarrow \operatorname{GL}(n ; \mathbb{K})=\operatorname{Aut}\left(\mathbb{K}^{n}\right)$. The automorphism $T:=F_{2} \circ F_{1}^{-1}: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ is an equivalence of the representations ϱ_{1} and ϱ_{2}.

Example 1.3.14. We now construct several (complex) representations of $G=\mathrm{U}(1)$ out of the standard representation $\varrho_{\text {st }}: \mathrm{U}(1) \rightarrow \mathrm{GL}(1 ; \mathbb{C})=\mathbb{C}-\{0\}$. For any integer $k \in \mathbb{Z}$, we set:

$$
\varrho_{k}: \mathrm{U}(1) \rightarrow \mathrm{GL}(1 ; \mathbb{C}), z \mapsto z^{k}
$$

ϱ_{k} is a representation, since

$$
\varrho\left(z \cdot z^{\prime}\right)=\left(z \cdot z^{\prime}\right)^{k}=z^{k} \cdot\left(z^{\prime}\right)^{k}=\varrho_{k}(z) \cdot \varrho_{k}\left(z^{\prime}\right) .
$$

For $k=0$, we obtain the trivial representation: $\varrho_{0}(z)=z^{0}=1$. For $k=1$, we obtain the standard representation $\varrho_{1}=\varrho_{\text {st }}$.
Note that we have a natural isomorphism $\mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C}$ given by $u \otimes w \mapsto u \cdot w$. Under this isomorphism, the tensor product representation $\varrho_{k} \otimes \varrho_{l}$ is equivalent to the representation ϱ_{k+l}, since

$$
\left(\varrho_{k} \otimes \varrho_{l}\right)(z)(u \otimes w)=\left(\varrho_{k}(z) u\right) \otimes\left(\varrho_{l}(z) w\right)=\left(z^{k} v\right) \otimes\left(z^{l} w\right)=z^{k+l} \cdot u \otimes w
$$

For $\lambda \in \mathbb{C}^{*}$, we find:

$$
\varrho_{k}^{*}(z)(\lambda):=\left(\varrho_{k}\left(z^{-1}\right)\right)^{*}(\lambda):=\lambda \circ \varrho_{k}\left(z^{-1}\right)=\lambda \circ z^{-k}=z^{-k} \cdot \lambda
$$

Thus $\varrho_{k}^{*} \cong \varrho_{-k}$.
It turns out that every complex representation of $\mathrm{U}(1)$ is equivalent to the direct sum of 1 -dimensional representations ϱ_{k}. Thus we now know that whole complex representation theory of $\mathrm{U}(1)$.

Example 1.3.15. We study the (complex) representations of $G=\operatorname{SU}(2)$. We already know two of them, namely $\varrho_{0}: \mathrm{SU}(2) \rightarrow \mathrm{GL}(2 ; \mathbb{C})$ - the trivial representation - and $\varrho_{1}:=\varrho_{\text {st }}: \mathrm{SU}(2) \rightarrow \mathrm{GL}(2 ; \mathbb{C})$ - the standard representation. For $k \geq 2$, we set:

$$
\varrho_{k}:=\odot^{k} \varrho_{1} .
$$

Since a basis of $\odot^{k} \mathbb{C}^{2}$ is constructed from a basis e_{1}, e_{2} of \mathbb{C}^{2} by $e_{1} \odot e_{1} \odot \ldots \odot e_{1}$, $e_{2} \odot e_{1} \odot \ldots \odot e_{1}, \ldots, e_{2} \odot e_{2} \odot \ldots \odot e_{2}$, we find $\operatorname{dim}_{\mathbb{C}}\left(\odot^{k} \mathbb{C}^{2}\right)=k+1$. Since the (real) representation $\operatorname{Ad}_{\mathrm{SU}(2)}$ is 3 -dimensional, ϱ_{2} is the only of those representations, that could be equivalent to (the complexifation of) $\operatorname{Ad}_{\mathrm{SU}(2)}$.
To check this, let us compute ϱ_{2} on the basis $e_{1} \odot e_{1}, e_{2} \odot e_{2}, e_{2} \odot e_{1}$.
For $g=\left(\begin{array}{cc}e^{i \varphi} & 0 \\ 0 & e^{-i \varphi}\end{array}\right)$, we obtain on the first vector:

$$
\varrho_{2}(g)\left(e_{1} \odot e_{1}\right)=\varrho_{1}(g) e_{1} \odot \varrho_{1}(g) e_{1}=e^{i \varphi} e_{1} \odot e^{i \varphi} e_{1}=e^{2 i \varphi} e_{1} \odot e_{1} .
$$

Similarly, for the other two basis vectors, we obtain:

$$
\begin{aligned}
& \varrho_{2}(g)\left(e_{2} \odot e_{2}\right)=e^{-2 i \varphi} e_{2} \odot e_{2}, \\
& \varrho_{2}(g)\left(e_{2} \odot e_{1}\right)=e^{-i \varphi} e_{2} \odot e^{i \varphi} e_{1}=e_{2} \odot e_{1} .
\end{aligned}
$$

Hence, in the basis $e_{1} \odot e_{1}, e_{2} \odot e_{2}, e_{2} \odot e_{1}$, the element $\varrho_{2}(g)$ has the matrix

$$
\varrho_{2}\left(\begin{array}{cc}
e^{i \varphi} & 0 \\
0 & e^{-i \varphi}
\end{array}\right)=\left(\begin{array}{ccc}
e^{2 i \varphi} & 0 & 0 \\
0 & e^{-2 i \varphi} & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

In order to see that this is equivalent to the complexification of the adjoint representation we put

$$
T:=\left(\begin{array}{ccc}
-i & 1 & 0 \\
1 & -i & 0 \\
0 & 0 & 1
\end{array}\right)
$$

One computes

$$
T^{-1}=\left(\begin{array}{ccc}
\frac{i}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{i}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
T \cdot\left(\begin{array}{ccc}
\cos (2 \varphi) & -\sin (2 \varphi) & 0 \\
\sin (2 \varphi) & \cos (2 \varphi) & 0 \\
0 & 0 & 1
\end{array}\right) \cdot T^{-1}=\left(\begin{array}{ccc}
e^{2 i \varphi} & 0 & 0 \\
0 & e^{-2 i \varphi} & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

It can be checked that the relation

$$
T \cdot \operatorname{Ad}_{g} \cdot T^{-1}=\varrho_{2}(g)
$$

holds for all $g \in \mathrm{SU}(2)$, not just for g of the form $g=\left(\begin{array}{cc}e^{i \varphi} & 0 \\ 0 & e^{-i \varphi}\end{array}\right)$.
Therefore T provides an equivalence of ϱ_{2} and the complexification of Ad.
It turns out that every complex representation of $\mathrm{SU}(2)$ is equivalent to a direct sum of the representations ϱ_{k}.

Definition 1.3.16. A representation of a Lie algebra \mathfrak{g} is a Lie algebra homomorphism $\lambda: \mathfrak{g} \rightarrow \operatorname{End}(V)$, where V is a finite dimensional \mathbb{K}-vector space. If $\mathbb{K}=\mathbb{R}$, then λ is called a real representation, whereas if $\mathbb{K}=\mathbb{C}$, then λ is called a complex representation.
Given representations $\lambda: \mathfrak{g} \rightarrow \operatorname{End}(V), \tilde{\lambda}: \tilde{\mathfrak{g}} \rightarrow \operatorname{End}(\tilde{V})$, a linear isomorphism $T: V \rightarrow \tilde{V}$ is called an equivalence of λ and $\tilde{\lambda}$, iff for every $X \in \mathfrak{g}$ the following diagram commutes:

In this case, the representations λ and $\tilde{\lambda}$ are called equivalent.

Remark 1.3.17. Up to equivalence, a Lie algebra representation is a Lie algebra homomorphism $\lambda: \mathfrak{g} \rightarrow \operatorname{Mat}(n \times n ; \mathbb{K})$.

Example 1.3.18

1. As for Lie groups, we have the trivial representation: for any $X \in \mathfrak{g}$, set $\lambda(X):=0$.
2. The adjoint representation ad $: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ is defined as $\operatorname{ad}(X)(Y):=[X, Y]$. Since the Lie bracket is linear in the second variable, $\operatorname{ad}(X): Y \mapsto[X, Y]$ is indeed an endomorphism on \mathfrak{g}, i.e., $\operatorname{ad}(X) \in \operatorname{End}(\mathfrak{g})$. Since the Lie bracket is linear in the first variable, the map $X \mapsto \operatorname{ad}(X)=[X, \cdot] \in \operatorname{End}(\mathfrak{g})$ is indeed a linear map. It remains to check that it is also a Lie algebra homomorphism, i.e., that $\operatorname{ad}([X, Y])=[\operatorname{ad}(X), \operatorname{ad}(Y)] \in \operatorname{End}(\mathfrak{g})$. We compute, using the Jacobi identity and the antisymmetry of the Lie bracket on \mathfrak{g} :

$$
\begin{aligned}
\operatorname{ad}([X, Y])(Z) & =[[X, Y], Z] \\
& =-[[Y, Z], X]-[[Z, X], Y] \\
& =[X,[Y, Z]]-[Y,[X, Z]] \\
& =\operatorname{ad}(X)(\operatorname{ad}(Y)(Z))-\operatorname{ad}(Y)(\operatorname{ad}(X)(Z)) \\
& =(\operatorname{ad}(X) \circ \operatorname{ad}(Y)-\operatorname{ad}(Y) \circ \operatorname{ad}(X))(Z) \\
& =[\operatorname{ad}(X), \operatorname{ad}(Y)](Z)
\end{aligned}
$$

Remark 1.3.19. If $\varrho: G \rightarrow \operatorname{Aut}(V)$ is a Lie group representation, then

$$
\varrho_{*}:=d_{e} \varrho: \mathfrak{g} \cong T_{e} G \rightarrow T_{\operatorname{id}_{V}} \operatorname{Aut}(V) \cong \operatorname{End}(V)
$$

is a Lie algebra representation. The proof will be given later, see Corollary 1.4.10,

1.4 The exponential map

Exercise 1.4.1

Show that the maximal integral curves of left-invariant vector fields on Lie groups are defined on all of \mathbb{R}.

Lemma 1.4.2

Let G be a Lie group and $\gamma: \mathbb{R} \rightarrow G$ a smooth curve with $\gamma(0)=e$. Then γ is a group homomorphism, i.e. $\forall s, t \in \mathbb{R}, \gamma(s+t)=\gamma(s) \cdot \gamma(t)$ iff γ is an integral curve to a left-invariant vector field on G.

Proof.

\Rightarrow : Suppose that $\forall s, t \in \mathbb{R}$, we have $\gamma(s+t)=\gamma(s) \cdot \gamma(t)$. Then

$$
\dot{\gamma}(t)=\left.\frac{d}{d s}\right|_{s=0} \gamma(s+t)=\left.\frac{d}{d s}\right|_{s=0}(\gamma(t) \cdot \gamma(s))=d L_{\gamma(t)} \dot{\gamma}(0)
$$

Let X be the unique left-invariant vector field on G with $X(e)=\dot{\gamma}(0)$. Then

$$
\dot{\gamma}(t)=d L_{\gamma(t)} X(e)=X(\gamma(t))
$$

Hence γ is an integral curve to X.
\Leftarrow : This direction is slightly more involved.

In the following let G be a Lie group and \mathfrak{g} its Lie algebra. For any $X \in \mathfrak{g}$, let $\gamma_{X}: \mathbb{R} \rightarrow G$ denote the integral curve to X with $\gamma_{X}(0)=e$.

Definition 1.4.3. The map $\exp : \mathfrak{g} \rightarrow G, \exp (X):=\gamma_{X}(1)$, is called the exponential map of G.

1 Lie groups and Lie algebras

By the general theory of ordinary differential equations the exponential map is a smooth map exp : $\mathfrak{g} \rightarrow G$.

For a fixed $\alpha \in \mathbb{R}$, and $X \in \mathfrak{g}$, we set $\tilde{\gamma}(t):=\gamma_{X}(\alpha \cdot t)$. Then $\tilde{\gamma}$ is again a Lie group homomorphism $\tilde{\gamma}: \mathbb{R} \rightarrow G$ and thus an integral curve to a left-invariant vector field on G. Further, we have $\tilde{\gamma}(0)=\gamma_{X}(0)=e$, and $\dot{\tilde{\gamma}}(t)=\alpha \cdot \dot{\gamma}_{X}(t)=\alpha \cdot X(\tilde{\gamma}(t))$. Since $\tilde{\gamma}$ is uniquely determined as an integral curve to a left-invariant vector field on G, we find $\tilde{\gamma}=\gamma_{\alpha X}$. We thus have

$$
\gamma_{X}(\alpha)=\tilde{\gamma}(1)=\gamma_{\alpha X}(1)=\exp (\alpha X)
$$

Renaming α by t, we found the relation:

$$
\begin{equation*}
\gamma_{X}(t)=\exp (t X) . \tag{1.6}
\end{equation*}
$$

Hence the curve $t \mapsto \exp (t X)$ coincides with the integral curve γ_{X} to le left-invariant vector field $X \in \mathfrak{g}$. By Lemma 1.4.2, we have $\exp ((s+t) X)=\exp (s X) \cdot \exp (t X)$, so that in particular $\exp (0)=e$ and $\exp (-X)=(\exp (X))^{-1}$.

Lemma 1.4.4

The differential at 0 of the exponential map is the identity:

$$
d_{0} \exp =\mathrm{id}_{\mathfrak{g}}: \mathfrak{g} \rightarrow \mathfrak{g} .
$$

Proof. Directly from the definition, we compute:

$$
d_{0} \exp (X)=\left.\frac{d}{d s}\right|_{s=0} \exp (s X)=X
$$

Corollary 1.4.5

Let G be a Lie group and \mathfrak{g} its Lie algebra. There exist neighbourhoods $U \subset \mathfrak{g}$ of 0 in \mathfrak{g} and $V \subset G$ of e in G such that $\left.\exp \right|_{U}: U \rightarrow V$ is a diffeomorphism.

Proof. This follows from Lemma 1.4.4 and the inverse function theorem.

Corollary 1.4.6

Let inv : $G \rightarrow G, g \mapsto g^{-1}$, be the inversion map of a Lie group G. Then

$$
d_{e} \mathrm{inv}=-\mathrm{id}_{\mathfrak{g}}: \mathfrak{g} \rightarrow \mathfrak{g}
$$

Proof. Choose open sets U, V as in Corollary 1.4.5 such that the following diagram commutes:

$$
\begin{gathered}
U \xrightarrow{-\mathrm{id}_{\mathfrak{g}}} U \\
\exp \mid \cong \\
\bigvee \underset{\mathrm{inv}}{ } \quad \mid \exp \\
V
\end{gathered}
$$

Differentiating the diagram at $0 \in \mathfrak{g}$ yields

which proves the claim.

1 Lie groups and Lie algebras

Corollary 1.4.7

For any Lie group homomorphism $\varphi: G \rightarrow H$, the following diagram commutes:

Proof. For any $X \in \mathfrak{g}$, the map $\mathbb{R} \rightarrow H, t \mapsto \varphi(\exp (t X))$ is a Lie group homomorphism and $\left.\frac{d}{d t}\right|_{t=0} \varphi(\exp (t X))=d_{e} \varphi(X)$. By Lemma 1.4.2, $t \mapsto \varphi(\exp (t))$ is an integral curve to a left-invariant vector field on H defined by $d_{e} \varphi(X) \in T_{e} H$. Evaluating at $t=1$, we thus get

$$
\exp \left(d_{e} \varphi(X)\right)=\varphi(\exp (X)) .
$$

Remark 1.4.8. For any Lie group G with Lie algebra \mathfrak{h}, the adjoint representations of G and \mathfrak{g} are related as $\operatorname{Ad}_{*}=$ ad. This is easily checked for the matrix groups $G \subset \operatorname{Mat}(n \times n ; \mathbb{R}):$ Here, $\operatorname{Ad}_{g}(X)=g \cdot X \cdot g^{-1}$. We compute:

$$
\begin{aligned}
\operatorname{Ad}_{*}(X)(Y) & =\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}_{\exp (t X)}(Y) \\
& =\left.\frac{d}{d t}\right|_{t=0}(\exp (t X) \cdot Y \cdot \exp (-t X)) \\
& =X \cdot Y \cdot \mathbb{1}_{n}+\mathbb{1}_{n} \cdot Y \cdot(-X) \\
& =[X, Y] \\
& =\operatorname{ad}(X)(Y) .
\end{aligned}
$$

Lemma 1.4.9

If $\varphi: G \rightarrow H$ is a Lie group homomorphism, then $\varphi_{*}:=d_{e} \varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ is a Lie algebra homomorphism.

Proof. For $X, Y \in \mathfrak{g}$, we compute ${ }^{1}$

$$
\begin{aligned}
& \varphi_{*}([X, Y])=\varphi_{*}\left(\operatorname{Ad}_{*}(X)(Y)\right) \\
&=\varphi_{*}\left(\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}_{\exp (t X)}(Y)\right) \\
&=\left.\frac{d}{d t}\right|_{t=0} \varphi_{*}\left(\operatorname{Ad}_{\exp (t X)}(Y)\right) \\
&=\left.\frac{\partial}{\partial t}\right|_{t=0} \varphi_{*}\left(\left.\frac{\partial}{\partial s}\right|_{s=0} \alpha_{\exp (t X)}(\exp (s Y))\right) \\
&=\left.\left.\frac{\partial}{\partial t}\right|_{t=0} \frac{\partial}{\partial s}\right|_{s=0} \varphi\left(\alpha_{\exp (t X)}(\exp (s Y))\right) \\
&=\left.\left.\frac{\partial}{\partial t}\right|_{t=0} \frac{\partial}{\partial s}\right|_{s=0} \alpha_{\varphi(\exp (t X))} \varphi(\exp (s Y)) \\
&\left.\left.\boxed{1.4 .7} \frac{\partial}{=} \frac{\partial}{\partial t}\right|_{t=0} \frac{\partial}{\partial s}\right|_{s=0} \alpha_{\exp \left(t \varphi_{*}(X)\right)} \exp \left(s \varphi_{*}(Y)\right) \\
&=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}_{\exp \left(t \varphi_{*} X\right)}\left(\varphi_{*} Y\right) \\
&=\operatorname{Ad}_{*}\left(\varphi_{*}(X)\right)\left(\varphi_{*}(Y)\right) \\
&=\operatorname{ad}\left(\varphi_{*}(X)\right)\left(\varphi_{*}(Y)\right) \\
&=\left[\varphi_{*}(X), \varphi_{*}(Y)\right] .
\end{aligned}
$$

Hence φ_{*} is a Lie algebra homomorphism.

Corollary 1.4.10

If $\varphi: G \rightarrow \operatorname{Aut}(V)$ is a Lie group representation, then $\varphi_{*}: \mathfrak{g} \rightarrow \operatorname{End}(V)$ is a Lie algebra representation.

Remark 1.4.11. If G is an abelian Lie group, then the inversion inv : $G \rightarrow G, g \mapsto g^{-1}$, is a Lie group homomorphism, since

$$
\operatorname{inv}(g \cdot h)=(g \cdot h)^{-1}=h^{-1} \cdot g^{-1}=g^{-1} \cdot h^{-1}=\operatorname{inv}(g) \cdot \operatorname{inv}(h) .
$$

By Corollary 1.4.6 and Lemma 1.4.9, $-\operatorname{id}_{\mathfrak{g}}=\operatorname{inv}_{*}: \mathfrak{g} \rightarrow \mathfrak{g}$ is a Lie algebra homomorphism, and we have:

$$
-[X, Y]=\operatorname{inv}_{*}([X, Y])=\left[\operatorname{inv}_{*}(X), \operatorname{inv}_{*}(Y)\right]=[-X,-Y]=[X, Y] .
$$

[^0]
1 Lie groups and Lie algebras

Hence $[\cdot, \cdot] \equiv 0$: the Lie algebra of an abelian Lie group is abelian.

Now let $G \subset \operatorname{GL}(n ; \mathbb{K})$ be a matrix group. For any $X \in \operatorname{Mat}(n \times n ; \mathbb{K})$, we set

$$
\begin{equation*}
e^{X}:=\sum_{k=0}^{\infty} \frac{X^{k}}{k!} \tag{1.7}
\end{equation*}
$$

(Note that the series converges absolutely). Then we have $e^{0}=\mathbb{1}_{n}$ and $\left.\frac{d}{d t}\right|_{t=0} e^{t X}=X$. We further compute (substituting $m=k-l$):

$$
\begin{aligned}
e^{(s+t) X} & =\sum_{k=0}^{\infty} \frac{(s+t)^{k} X^{k}}{k!} \\
& =\sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{s^{k-l} t^{l}}{(k-l)!l!} X^{k} \\
& =\sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \frac{s^{m}}{m!} X^{m} \cdot \frac{t^{l}}{l!} X^{l} \\
& =e^{s X} \cdot e^{t X}
\end{aligned}
$$

Thus $t \mapsto e^{t X}$ is a Lie group homomorphism from \mathbb{R} to G. By Lemma 1.4.2, it is the integral curve to the left-invariant vector field on G defined by $X \in T_{e} G$. Hence $e^{t X}=\exp (t X)$ and $e^{X}=\exp (X)$, i.e. for a matrix Lie group G, the exponential map $\exp : \mathfrak{g} \rightarrow G$ coincides with the usual exponential map of matrices as defined by (1.7).

Example 1.4.12. For $G=\mathrm{SO}(2)$, we have $\mathfrak{g}=\mathfrak{s o}(2)=\left\{\left.\left(\begin{array}{cc}0 & -\theta \\ \theta & 0\end{array}\right) \right\rvert\, \theta \in \mathbb{R}\right\}$. For $A=\left(\begin{array}{cc}0 & -\theta \\ \theta & 0\end{array}\right) \in \mathfrak{s o}(2)$, we compute

$$
\begin{aligned}
A^{2} & =\left(\begin{array}{cc}
-\theta^{2} & 0 \\
0 & -\theta^{2}
\end{array}\right) \\
A^{2 k} & =(-1)^{k} \theta^{2 k} \cdot \mathbb{1}_{n} \\
A^{2 k+1} & =(-1)^{k} \theta^{2 k+1} \cdot\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

Using the power series expansions of cos and sin respectively, we find:

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{A^{2 k}}{(2 k)!} & =\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k}}{(2 k)!} \mathbb{1}_{2}=\cos (\theta) \mathbb{1}_{2} \\
\sum_{k=0}^{\infty} \frac{A^{2 k+1}}{(2 k+1)!} & =\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k+1}}{(2 k+1)!}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\sin (\theta)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

For the exponential of A we thus get:

$$
e^{A}=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

Obviously from this expression, the exponential map exp : $\mathfrak{s o}(2) \rightarrow \mathrm{SO}(2)$ is surjective but not injective.

Remark 1.4.13. If G is a compact, connected Lie group, then the exponential map $\exp : \mathfrak{g} \rightarrow G$ is surjective.

1.5 Group actions

Definition 1.5.1. Let G be a Lie group, M a smooth manifold. A smooth map $G \times M \rightarrow M,(g, x) \mapsto g \cdot x$, is called a left action (or action in short) of G on M iff
(i) $\forall x \in M, \forall g, h \in G:(g \cdot h) \cdot x=g \cdot(h \cdot x)$.
(ii) $\forall x \in M: e \cdot x=x$.

Remark 1.5.2. From (i) and (ii), we conclude that for any $g \in G$, the following holds:

$$
\begin{aligned}
x=e \cdot x & =\left(g \cdot g^{-1}\right) \cdot x=g \cdot\left(g^{-1} \cdot x\right)=L_{g}\left(L_{g^{-1}}(x)\right) \\
& =\left(g^{-1} \cdot g\right) \cdot x=g^{-1} \cdot(g \cdot x)=L_{g^{-1}}\left(L_{g}(x)\right) .
\end{aligned}
$$

Hence for any $g \in G$, the map $L_{g}: M \rightarrow M, L_{g}(x):=g \cdot x$, is a diffeomorphism with inverse $\left(L_{g}\right)^{-1}=L_{g^{-1}}$.
Condition (i) yields $L_{g} \circ L_{h}=L_{g \cdot h}$. Hence the map $g \mapsto L_{g}$ is a group homomorphism $G \rightarrow \operatorname{Diff}(M)$.

Example 1.5.3

1. Any Lie group acts on any manifold M in an uninteresting manner, namely by $g \cdot x:=x$. This is called the trivial action.
2. Associated to any representation $\varrho: G \rightarrow \operatorname{Aut}(V)$ is an action of G on V by $g \cdot v:=\varrho(g)(v)$.
3. Any Lie group acts on itself by the following natural actions $G \times G \rightarrow G$, $(g, h) \mapsto g * h:$

1 Lie groups and Lie algebras

- by the group multiplication: $g * h:=g \cdot h$. In this case, condition (i) is equivalent to the associativity of the group multiplication \cdot, whereas (ii) is the definition of the neutral element $e \in G$.
- by conjugation: $g * h:=\alpha_{g}(h)$.

Definition 1.5.4. A (left) action of G on M is called effective, iff

$$
\begin{aligned}
& \forall g \in G:((\forall x \in M: g \cdot x=x) \Longrightarrow g=e) \\
\Leftrightarrow & \forall g \in G:\left(L_{g}=\operatorname{id}_{M} \Longrightarrow g=e\right) \\
\Leftrightarrow & \text { the group homomorphism } G \rightarrow \operatorname{Diff}(M) \text { is injective. }
\end{aligned}
$$

It is called free, iff $\forall g \in G:((\exists x \in M: g \cdot x=x) \Longrightarrow g=e)$.
It is called transitive, iff $\forall x, y \in M: \exists g \in G: g \cdot x=y$.

Remark 1.5.5. Every free action is effective (unless $M=\emptyset$).

Example 1.5.6

1. The trivial action is effective $\Leftrightarrow G=\{e\} \Leftrightarrow$ The trivial action is free.
2. The action given by a representation ϱ on V is never transitive (unless $V=\{0\}$), since $\forall g \in G: \varrho(g) \cdot 0=0$.
3. For the two natural actions of a Lie group G on itself, we find:

- The action by left multiplication is free (hence also effective), since $g \cdot g^{\prime}=g^{\prime}$ implies $g=e$ (by right multiplication with $\left(g^{\prime}\right)^{-1}$). The action is transitive, since for given $x, y \in G$, the equation $g \cdot x=y$ is solved by $g=y \cdot x^{-1}$.
- For the action by conjugation, we have:

$$
\forall x \in G: g x g^{-1}=x \Leftrightarrow \forall x \in G: x g=g x \Leftrightarrow g \in Z(G),
$$

where $Z(G):=\{g \in G \mid \forall h \in G: g h=h g\}$ is the center of G. Thus the action by conjugation is not effective iff $Z(G) \neq\{e\}$. In general, the action is not transitive either, unless the group has only one conjugacy class.

Example 1.5.7. Now we consider two more concrete examples:

1. $G=\mathrm{SO}(2)$ acts on $M=S^{2}$ by rotations around the z axis, i.e.:

$$
g \cdot x:=\left(\begin{array}{cc}
g & 0 \\
0 & 0
\end{array}\right) \cdot x .
$$

The action is effective: if $\forall x \in S^{2}: g \cdot x=x$, then $g=\mathbb{1}_{2}$.
The action is not free, since $\forall g \in \mathrm{SO}(2): g \cdot\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $g \cdot\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
The action is not transitive, since the circles of latitude are invariant under rotation about the z-axis.
2. $G=\mathrm{U}(1)$ acts on $M=S^{2 n-1} \subset \mathbb{R}^{2 n} \cong \mathbb{C}^{n}$ by scalar multiplication on the complex coordinates, i.e. $(z, x) \mapsto z \cdot x$.
The action is free, since for $w \neq 0, z \cdot w=w$ implies $z=1$.
The action is not transitive, unless $n=1$. In this case, the action is just left multiplication on the Lie group $\mathrm{U}(1)$.
In any case, $z \cdot x=y$ for $x, y \in S^{2 n-1} \subset \mathbb{C}^{n}$ implies that x, y are linearly dependent in the complex vector space \mathbb{C}^{n}. Thus the action is not transitive iff $n>1$.

Definition 1.5.8. Let G act on M. Then for any $x \in M$,

$$
G \cdot x:=\{g \cdot x \mid g \in G\}
$$

is called the orbit of x under this action. G acts transitively on M, iff $G \cdot x=M$. The set

$$
G \backslash M:=\{G \cdot x \mid x \in M\}
$$

is called the orbit space of the action.

Example 1.5.9. For the rotation action of $G=\mathrm{U}(1)$ on $M=S^{2}$, the orbits are the circles of latitude, including the north and south pole. Hence the orbits are naturally parametrised by the z-coordinate, and the orbit space is thus identified with the interval $[-1,1]$.

1 Lie groups and Lie algebras

Example 1.5.10. We consider the action of $G=\mathrm{U}(1)$ on $M=S^{3} \subset \mathbb{C}^{2}$ by scalar multiplication in more detail. Given $w=\left(w_{1}, w_{2}\right), w^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$, they lie in the same orbit iff $\frac{w_{1}}{w_{2}}=\frac{w_{1}^{\prime}}{w_{2}^{2}} \in \mathbb{C} \cup \infty=: \widehat{\mathbb{C}}$. So the orbit space $\mathrm{U}(1) \backslash S^{3}$ is naturally identified with the Riemann sphere $\hat{\mathbb{C}}$.

By stereographic projection

$$
u \mapsto \frac{1}{4+|u|^{2}} \cdot\left(4 u, 4-|u|^{2}\right) .
$$

Hence for $u=\frac{w_{1}}{w_{2}}$ we get

$$
\begin{aligned}
\frac{1}{4+\left|\frac{w_{1}}{w_{2}}\right|^{2}} \cdot\left(4 \frac{w_{1}}{w_{2}}, 4-\left|\frac{w_{1}}{w_{2}}\right|^{2}\right) & =\frac{\left|w_{2}\right|^{2}}{4\left|w_{2}\right|^{2}+\left|w_{1}\right|^{2}} \cdot\left(4 \frac{w_{1}}{w_{2}}, 4-\left|\frac{w_{1}}{w_{2}}\right|^{2}\right) \\
& =\frac{1}{4\left|w_{2}\right|^{2}+\left|w_{1}\right|^{2}} \cdot\left(4 w_{1} \bar{w}_{2}, 4\left|w_{2}\right|^{2}-\left|w_{1}\right|^{2}\right) .
\end{aligned}
$$

We thus found the so called Hopf map

$$
\text { Hopf : } S^{3} \rightarrow S^{2}, w \mapsto \frac{1}{4\left|w_{2}\right|^{2}+\left|w_{1}\right|^{2}} \cdot\left(4 w_{1} \bar{w}_{2}, 4\left|w_{2}\right|^{2}-\left|w_{1}\right|^{2}\right) .
$$

This map is smooth and its pre-images $\operatorname{Hopf}^{-1}(p)$ are the orbits of the $\mathrm{U}(1)$-action on S^{3}. The $\mathrm{U}(1)$-orbits can be visualized by mapping S^{3} minus one point to \mathbb{R}^{3} via a stereographic projection just as we did for S^{2}. Then R^{3} becomes a disjoint union of circles and one straight line corresponding to the orbit through the exceptional point of S^{3}.

Three nearby Hopf circles after stereographic projection to \mathbb{R}^{3}

One regular and the exceptional Hopf circle

It turns out that any two of the Hopf circles in \mathbb{R}^{3} are linked, they form a Hopf link.

Theorem 1.5.11

Let G be a compact Lie group acting freely on a manifold M. Then $G \backslash M$ carries the structure of a smooth manifold such that
(i) the map

$$
M \rightarrow G \backslash M, \quad x \mapsto G \cdot x,
$$

is smooth and its differential has maximal rank at each point.
(ii)

$$
\operatorname{dim}(G \backslash M)=\operatorname{dim}(M)-\operatorname{dim}(G)
$$

(iii) $G \backslash M$ has the following universal property: for every differentiable manifold N and every smooth map $f: M \rightarrow N$, which is constant along the orbits of the action there exists a unique smooth map $\tilde{f}: G \backslash M \rightarrow N$ such that the following diagram commutes:

Idea of proof. For $x \in M$, choose a small embedded disc D of maximal dimension intersecting $G \cdot x$ transversely at x. Then to any y in the disc, there corresponds an orbit $G \cdot y$ near the orbit $G \cdot x$ through x. Check that (after possibly shrinking the disc) the map $G \times D \rightarrow M,(g, y) \mapsto g \cdot y$, is a diffeomorphism onto its image. This yields a local chart of the orbit space.
The compactness of G is needed to ensure that the points in a sufficiently small disc are in $1: 1$ correspondence to the orbits and that the quotient topology is Hausdorff.

Example 1.5.12. We consider again the action of $\mathrm{U}(1)$ on $S^{2 n-1} \subset \mathbb{C}^{n}$ by complex scalar multiplication. Since the action is free $\mathrm{U}(1) \backslash S^{2 n-1}$ is a smooth manifold. Two points $w, w^{\prime} \in S^{2 n-1}$ lie in the same orbit iff for some $Z \in \mathbb{C}$ with $|z|=1: w^{\prime}=z \cdot w$, i.e. iff w, w^{\prime} are linearly dependent, i.e. the complex lines panned by w, w coincide: $\mathbb{C} \cdot w=\mathbb{C} \cdot w^{\prime}$. Hence the orbit space is identified with

$$
\mathbb{C} P^{n-1}:=\mathrm{U}(1) \backslash S^{2 n-1} \cong\left\{1 \text {-dim } \mathbb{C} \text { vector subspaces of } \mathbb{C}^{n}\right\}
$$

Definition 1.5.13. $\mathbb{C} P^{n-1}$ is called the ($n-1$)-dimensional complex projective space.

Remark 1.5.14.

$$
\operatorname{dim}_{\mathbb{R}}\left(\mathbb{C} P^{n-1}\right)=\operatorname{dim}_{\mathbb{R}}\left(S^{2 n-1}\right)-\operatorname{dim}_{\mathbb{R}}(\mathrm{U}(1))=(2 n-1)-1=2(n-1)
$$

$\mathbb{C} P^{n-1}$ is compact and connected, because it is the image of $S^{2 n-1}$ under a continuous map. For $n=2$, we have

The map Hopf : $\mathbb{C} P^{1} \rightarrow S^{2}$ is smooth and bijective. By explicit computation, we find that the differential of the Hopf map has maximal rank everywhere. Hence by the commutativity of the diagram the same holds for Hopf. Thus $\widetilde{\text { Hopf }: ~} \mathbb{C} P^{1} \rightarrow S^{2}$ is a diffeomorphism.

Remark 1.5.15. The sequence of natural linear embeddings $\mathbb{C} \subset \mathbb{C}^{2} \subset \mathbb{C}^{3} \subset \cdots \subset \mathbb{C}^{n}$ yields a sequence of embeddings $S^{1} \subset S^{3} \subset S^{5} \subset \cdots \subset S^{2 n-1}$ and by taking the quotient of the $\mathrm{U}(1)$ action the sequence $\{*\} \subset \mathbb{C} P^{1} \subset \mathbb{C} P^{2} \subset \cdots \subset \mathbb{C} P^{n-1}$. There is a natural inductive procedure to construct $\mathbb{C} P^{n}$ from $\mathbb{C} P^{n-1}$ by attaching \mathbb{C}^{n} :

There are two types of 1-dimensional subspaces of $\mathbb{C}^{n+1}=\mathbb{C}^{n} \oplus \mathbb{C}$: the lines contained in the hyperplane \mathbb{C}^{n} (they form $\mathbb{C} P^{n-1}$) and the ones intersecting the hyperplane only at 0 . The latter ones intersect the parallel affine hyperplane $\mathbb{C}^{n}+e_{n+1}$ at exactly one point. Therefore they are in 1-1-correspondence with points in that affine hyperplane.

Hence we have decomposed $\mathbb{C} P^{n}$ disjointly into two subsets, one which is naturally identified with $\mathbb{C} P^{n-1}$ and one which is naturally identified with $\mathbb{C}^{n}+e_{n+1}$ (which we can in turn identify with \mathbb{C}^{n}),

$$
\mathbb{C} P^{n}=\mathbb{C} P^{n-1} \sqcup \mathbb{C}^{n} .
$$

Definition 1.5.16. Let G be a Lie group acting on a differentiable manifold M. For $p \in M$ let $R_{p}: G \rightarrow M$ be the map $R_{p}(g):=g \cdot p$. The differential of R_{p} is a linear $\operatorname{map} d_{e} R_{p}: \mathfrak{g} \cong T_{e} G \rightarrow T_{p} M$. For $X \in \mathfrak{g}$ we set $\bar{X}(p):=d_{e} R_{p}(X)$ and we obtain a vector field $\bar{X} \in \mathfrak{X}(M)$.

\bar{X} is called the fundamental vector field associated with $X \in \mathfrak{g}$.

Remark 1.5.17. As remarked above a Lie group action can be thought of as a (Lie) group homomorphism $G \rightarrow \operatorname{Diff}(M)$. The map $\mathfrak{g} \ni X \mapsto \bar{X} \in \mathfrak{X}(M)$ is the corresponding Lie algebra homomorphism.

Example 1.5.18. For the action of $G=\mathrm{SO}(2)$ on $M=S^{2} \subset \mathbb{R}^{3}$, the fundamental vector fields are tangent to the circles of latitude:

$G=\operatorname{SO}(2)$

$M=S^{2}$

1 Lie groups and Lie algebras

Remark 1.5.19. For $X \in \mathfrak{g}$, we compute:

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=t_{0}} L_{\exp (t X)}(p) & =\left.\frac{d}{d t}\right|_{t=t_{0}} \exp (t X) \cdot p \\
& =\left.\frac{d}{d s}\right|_{s=0} \exp \left(t_{0}+s\right) \cdot p \\
& =\left.\frac{d}{d s}\right|_{s=0}\left(\exp (s X) \cdot \exp \left(t_{0} X\right) \cdot p\right) \\
& =\left.\frac{d}{d s}\right|_{s=0} R_{\exp \left(t_{0} X\right) \cdot p}(\exp (s X)) \\
& =d_{e} R_{\exp \left(t_{0} X\right) \cdot p}(X) \\
& =\bar{X}\left(\exp \left(t_{0} X\right) \cdot p\right)
\end{aligned}
$$

Hence $L_{\exp (t X)}$ is the flow of the fundamental vexctor field \bar{X}. In particular if $\bar{X}(p)=0$, then $\exp (t X) \cdot p=p$ for all $t \in \mathbb{R}$.
This observation yields an obstruction for the existence of free group actions: namely if M is acted upon freely by a Lie group G with $\operatorname{dim}(G) \geq 1$ (i.e. $\mathfrak{g} \neq\{0\}$) then M must have smooth nowhere vanishing vector fields. In particular, $\chi(M)=0$, e.g. $M \not \approx S^{2 n}$.

Definition 1.5.20. A zero-dimensional Lie group is called a discrete group.

Remark 1.5.21. A discrete group is compact iff it is finite. If a compact group acts freely on a manifold M then $G \backslash M$ is again a manifold. We are now looking for a similar criterion for discrete group actions.

Definition 1.5.22. An action of a discrete group on a differentiable manifold M is called properly discontinuous iff
(i) $\forall p \in M$ there exists a neighborhood U of p in M such that

$$
g \cdot U \cap U \neq \emptyset \Longrightarrow g=e
$$

(ii) $\forall p, q \in M$ with $G \cdot p \neq G \cdot q$ there exist neighborhoods U of p and V of q in M such that

$$
\forall g \in G: g \cdot U \cap V=\emptyset
$$

Theorem 1.5.23

If a discrete group G acts properly discontinuously on a manifold M then $G \backslash M$ carries a unique differentiable manifold structure such that the projection map $M \rightarrow G \backslash M$, $p \mapsto G \cdot p$, is smooth and a covering map (in particular a local diffeomorphism).
Furthermore, the quotient $G \backslash M$ has the following universal property: for any differentiable manifold N and any smooth map $f: M \rightarrow N$, which is constant along the orbits of G, there is a unique smooth map $\tilde{f}: G \backslash M \rightarrow N$ such that the following diagram commutes:

Idea of proof. Use the open neighborhoods U as in (i) as charts for the quotient $G \backslash M$. Then (ii) ensures that $G \backslash M$ is Hausdorff.

Example 1.5.24. Let $G=(\mathbb{Z},+)$ act on $M=\mathbb{R}$ by $\mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R},(k, t) \mapsto k+t$. This action is properly discontinuous:
(i) is satisfied by chosing for a $t \in \mathbb{R}$ the neighborhood $U:=\left(t-\frac{1}{2}, t+\frac{1}{2}\right)$.

For $s, t \in \mathbb{R}$ in different \mathbb{Z} orbits, i.e. with $t-s \notin \mathbb{Z}$, we put $\epsilon:=\min \{|t-(s+k)| \mid k \in \mathbb{Z}\}$. Then setting $U:=\left(s-\frac{\epsilon}{2}, s+\frac{\epsilon}{2}\right), V:=\left(t-\frac{\epsilon}{2}, t+\frac{\epsilon}{2}\right)$ yields separating neighborhoods as required for (ii) to hold.
The quotient $\mathbb{Z} \backslash \mathbb{R}$ is identified as follows: the map $f: \mathbb{R} \rightarrow S^{1}, f(t):=\binom{\cos (2 \pi t)}{\sin (2 \pi t)}$ is smooth and constant along the \mathbb{Z} orbits. By the universal property of the quotient,

1 Lie groups and Lie algebras

we have another smooth surjective map $\tilde{f}: \mathbb{Z} \backslash \mathbb{R} \rightarrow S^{1}$. It is then also injective. Furthermore, $d f \neq 0$ everywhere and thus same holds for $d \tilde{f}$. Hence $\tilde{f}: \mathbb{Z} \backslash \mathbb{R} \rightarrow S^{1}$ is a diffeomorphism.

Example 1.5.25. Let $G=(\mathbb{Q},+)$ with the discrete topology act on $M=\mathbb{R}$ by $(q, t) \mapsto q+t$. This map is not properly discontinous, since any two different orbits are arbitrarily close: if $x:=s-t \notin \mathbb{Q}$, then approximating x by rationals yields points in the orbit of s arbitrarily close to t. Indeed the quotient $\mathbb{Q} \backslash \mathbb{R}$ is not Hausdorff.

Definition 1.5.26. Let G be a Lie group and let M be a differentiable manifold. A right action of G on M is a smooth map $M \times G \rightarrow M,(x, g) \mapsto x \cdot g$, satisfying:
(i) $\forall x \in M, \forall g, h \in G: x \cdot(g \cdot h)=(x \cdot g) \cdot h$.
(ii) $\forall x \in M: x \cdot e=x$.

Remark 1.5.27. Note that if we set $g * p:=p \cdot g$, then (i) says: $(g \cdot h) * p=h *(g * p)$. Thus if $G \times M \rightarrow M,(g, p) \mapsto g \cdot p$, is a left action, then

$$
\begin{aligned}
M \times G & \rightarrow M, \\
(p, g) & \mapsto p * g:=g^{-1} \cdot p,
\end{aligned}
$$

defines a right action.
Conversely, if $M \times G \rightarrow M,(p, g) \mapsto p \cdot g$ is a right action, then

$$
\begin{aligned}
G \times M & \rightarrow M, \\
(g, p) & \mapsto g * p:=p \cdot g^{-1}
\end{aligned}
$$

defines a left action.

2 Bundle theory

2.1 Fiber bundles

Definition 2.1.1. Let E, B, F be differentiable manifolds, let $\pi: E \rightarrow B$ be a surjective smooth map. Then (E, π, B) is called a fiber bundle with typical fiber F iff each point $x \in B$ has an open neighborhood $U \subset B$ such that there exists a diffeomorphism $\psi_{U}: \pi^{-1}(U) \rightarrow U \times F$ such that the following diagram commutes:

B is called the base and E is called the total space of the fiber bundle. ψ_{U} is called a local trivialization over U.

Remark 2.1.2. For any $U \ni x \in B$, a local trivialization ψ_{U} yields a diffeomorphism $\left.\psi_{U}\right|_{\pi^{-1}(x)}: \pi^{-1}(x):=\{x\} \times F \cong F$. Thus the fibers $E_{x}:=\pi^{-1}(x)$ (of the projection $\operatorname{map} \pi$) of a fiber bundle are diffeomorphic to the typical fiber F (thus the name).

Example 2.1.3

1. The trivial fiber bundle is the cartesian product $\left(B \times F, \mathrm{pr}_{1}, B\right)$.
2. Let (B, g) be a Riemannian manifold of dimension n. The unit sphere bundle of (B, g) is defined as $E:=\left\{X \in T B \mid\|X\|_{g}=1\right\}$. The projection map is the restriction of the foot point projection of the tangent bundle $T B$. For $p \in B$, $\pi^{-1}(p)=\left\{X \in T_{p} B \mid\|X\|_{g}=1\right\}$, so $F=S^{n-1}$. Local trivializations of E are obtained from local trivializations of the tangent bundle.

Remark 2.1.4. Let F be a smooth manifold and $\varphi: F \rightarrow F$ be a diffeomorphism. Then \mathbb{Z} acts properly discontinuously on $\mathbb{R} \times F$ by $(k,(t, f)) \mapsto\left(t+k, \varphi^{k}(f)\right)$. Set $E:=\mathbb{Z} \backslash(\mathbb{R} \times F)$. The projection pr_{1} onto the first factor induces a projection map
$\pi: E \rightarrow \mathbb{Z} \backslash \mathbb{R} \cong S^{1}$. Then (E, π, B) is a fiber bundle with typical fiber F. To construct local trivializations, use the (global) triviality of the bundle $\mathbb{R} \times F \rightarrow \mathbb{R}$ together with the proper discontinuity of the action. Geometrically, the total space E is constructed from the trivial bundle $[0,1] \times F \rightarrow[0,1]$ by glueing the fibers over 0,1 by the diffeomorphism φ.

Example 2.1.5. For $F=(-1,1), \varphi: F \rightarrow F, x \mapsto-x$, the construction yields the Möbius strip.

Definition 2.1.6. Two fiber bundles (E, π, B) and $\left(E^{\prime}, \pi^{\prime}, B^{\prime}\right)$ are called isomorphic iff there exists a diffeomorphism $\psi: E \rightarrow E^{\prime}$ such that the following diagram commutes:

A fiber bundle is called trivial iff it is isomorphic to the trivial fiber bundle $B \times$ $F \rightarrow B$. (This is equivalent to the existence of a global trivialization, i.e. a local trivialization ψ_{U} defined on $U=B$).

Definition 2.1.7. A fiber bundle (E, π, B) is with typical fiber $\mathbb{K}^{n}(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$ is called a (real oder complex) vector (space) bundle of rank n iff each fiber E_{x} carries the structure of a \mathbb{K} vector space and the local trivializations ψ_{U} can be chosen such that $\left.\psi_{U}\right|_{\pi^{-1}(x)}: E_{x} \rightarrow\{x\} \times \mathbb{K}^{n} \cong \mathbb{K}^{n}$ is a linear isomorphism (i.e. the local trivializations are linear along each fiber).

Example 2.1.8. If B is a smooth manifold, then the tangent $T B$ is a vector bundle, and so are all bundles constructed from $T B$ by linear algebra (applied fiberwise), such as $T^{*} B, \Lambda^{k} T^{*} B, \odot^{k} T^{*} B$ etc.

Definition 2.1.9

Let (E, π, B) be a fiber bundle. A section is a map $s: B \rightarrow E$ such that $\pi \circ s=\operatorname{id}_{B}$.

Convention: From now on sections will be assumed smooth unless specified otherwise.
Remark 2.1.10. Any vector bundle (V, π, B) has (smooth) sections, e.g. the zero section defined by $s(x):=0_{x} \in V_{x}$ for every $x \in B$. General fiber bundles need not have any continuous sections at all as we shall see.

Let B be a smooth manifold. The following tabular indicates how several well known objects from geometry can be considered as sections of vector bundles over the base B :

vector bundle	sections
$T B$	vector fields
$T^{*} B$	differential 1-forms
$\Lambda^{k} T^{*} M$	differential k-forms
$\otimes^{k} T B \otimes \bigotimes^{l} T^{*} B$	(k, l)-tensor fields

Let (E, π, B) be a fiber bundle with typical fiber F. Let $\lambda: B \rightarrow B^{\prime}$ be a smooth map. We want to construct a fiber bundle over B^{\prime} with typical fiber F. To this end, put

$$
\begin{aligned}
E^{\prime} & :=\left\{\left(b^{\prime}, p\right) \in B^{\prime} \times E \mid \lambda\left(b^{\prime}\right)=\pi(p)\right\} \quad \text { and } \\
\pi^{\prime} & :=\left.\operatorname{pr}_{1}\right|_{E^{\prime}}: E^{\prime} \rightarrow B^{\prime}
\end{aligned}
$$

To construct a local trivialization for $\left(E^{\prime}, \pi^{\prime}, B^{\prime}\right)$ in a neighborhood of $b_{0}^{\prime} \in B^{\prime}$, choose an open neighborhood U of $\lambda\left(b_{0}^{\prime}\right)$ in B and a local trivialization $\psi_{U}: \pi^{-1}(U) \rightarrow U \times F$. Then take $U^{\prime}:=\lambda^{-1}(U)$ as a neighborhood of b_{0}^{\prime} in B^{\prime} and compute:

$$
\begin{aligned}
\left(\pi^{\prime}\right)^{-1}\left(U^{\prime}\right) & =\operatorname{pr}_{1}^{-1}\left(U^{\prime}\right) \\
& =\left\{\left(b^{\prime}, p\right) \in U^{\prime} \times E \mid \lambda\left(b^{\prime}\right)=\pi(p)\right\} \\
& \cong\left\{\left(b^{\prime}, u, f\right) \in U^{\prime} \times U \times F \mid \lambda\left(b^{\prime}\right)=u\right\} \\
& \cong U^{\prime} \times F
\end{aligned}
$$

2 Bundle theory

This identification shows that $E^{\prime} \subset B^{\prime} \times E$ is a smooth submanifold and that $\left(E^{\prime}, \pi^{\prime}, B^{\prime}\right)$ is a fiber bundle.

Definition 2.1.11. The fiber bundle $\lambda^{*}(E, \pi, B):=\left(E^{\prime}, \pi^{\prime}, B^{\prime}\right)$ as constructed above is called the pull-back of (E, π, B) along λ.

By construction, the following diagram commutes:

Now for $b_{0}^{\prime} \in B^{\prime}$, the fiber $E_{b_{0}^{\prime}}^{\prime}$ of the pull-back bundle is identified as follows:

$$
\begin{aligned}
E_{b_{0}^{\prime}}^{\prime} & =\operatorname{pr}_{1}^{-1}\left(b_{0}^{\prime}\right) \\
& =\left\{\left(b^{\prime}, p\right) \in B^{\prime} \times E \mid \lambda\left(b^{\prime}\right)=\pi(p), \operatorname{pr}_{1}\left(b^{\prime}, p\right)=b_{0}^{\prime}\right\} \\
& =\left\{\left(b_{0}^{\prime}, p\right) \in B^{\prime} \times E \mid \lambda\left(b_{0}^{\prime}\right)=\pi(p)\right\} \\
& =\left\{b_{0}^{\prime}\right\} \times E_{\lambda\left(b_{0}^{\prime}\right)} \\
& \stackrel{\operatorname{pr}_{2}}{\cong} E_{\lambda\left(b_{0}^{\prime}\right)} .
\end{aligned}
$$

Thus pr_{2} identifies the fiber of the pull-back bundle at b_{0}^{\prime} with the fiber of E at $\lambda\left(b_{0}^{\prime}\right)$.
Example 2.1.12. Let $E=T B$ be the tangent bundle of a smooth manifold B and let $\lambda:(-\epsilon, \epsilon) \rightarrow B$ be a smooth curve in B. Then sections of $\lambda^{*} T B$ are vector fields along λ. The velocity field $\dot{\lambda}$ of the curve is one particular such vector field along λ.

The velocity field of λ is tangent to the image of λ in B. More general vector fields along curves naturally occur in Riemannian geometry e.g. as variational fields of variations of the curve λ (Jacobi fields for geodesic variations etc).

2.2 Principal bundles

Definition 2.2.1. A fiber bundle (P, π, B) together with a right action of a Lie group G on P is called a G-principal bundle iff
(i) The group action is free.
(ii) The group actions is transitive on the fibers of the bundle, i.e. for any $p \in P$ we have $p \cdot G=P_{\pi(p)}$.
(iii) The local trivializations $\psi_{U}: \pi^{-1}(U) \rightarrow U \times G$ can be chosen such that the following diagram commutes ${ }^{1}$ (where $\mu_{G}: G \times G \rightarrow G$ is thne multiplication in the Lie group G):

G is called the structure group of the principal bundle.

Remark 2.2.2. For a fixed $p \in P$ look at the map $L_{p}: G \rightarrow P_{\pi(p)}, g \mapsto p \cdot g$. Then L_{p} is a smooth map by definition, moreover it is injective by (i) and surjective by (ii). The differential $d_{e} L_{p}$ has maximal rank, since for a free group action, $d_{e} L_{p}: \mathfrak{g} \cong T_{e} G \ni X \mapsto \bar{X}(p)$ is injective by Remark 1.5.19. Moreover, for $g \in G$, we have $L_{p}=L_{p \cdot g} \circ L_{g^{-1}}$, so

$$
d_{g} L_{p}=\underbrace{d_{e} L_{p \cdot g}}_{\text {injective }} \circ \underbrace{d_{g} L_{g-1}}_{\text {bijective }}
$$

since $L_{g^{-1}}: G \rightarrow G$ is a diffeomorphism. Therefore, $L_{p}: G \rightarrow P_{\pi(p)}$ is a diffeomorphism, and the typical fiber of a G-principal bundle is the Lie group G.
Note that the fibers of a G-principal bundle are naturally diffeomorphic to G but they do not carry a natural group structure!

Remark 2.2.3. As an extension of Theorem 1.5.11, we have the following statement: If a compact group acts freely (from the right) on a manifold P, then $(P, \pi, G \backslash P)$ is a G-principal bundle. Here $\pi: P \rightarrow G \backslash P$ is the natural projection to the orbits, i.e. $\quad \pi(p):=p \cdot G$. Properties (i) and (ii) are obviously satisfied, (iii) follows from the sketch of proof of Theorem 1.5.11.

Example 2.2.4. The Hopf fibration $\pi: S^{2 n-1} \rightarrow \mathbb{C} P^{n}$ from Example 1.5.12 is a U(1)-principal bundle.

Example 2.2.5. Let $V \rightarrow B$ be a \mathbb{K}-vector bundle of rank n. For any $b \in B$, the fiber V_{b} is an n-dimensional \mathbb{K}-vector space. Set $P_{b}:=\left\{\right.$ (ordered) bases $\left(b_{1}, \ldots, b_{n}\right)$ of $\left.V_{b}\right\}$. Then $G=\mathrm{GL}(n ; \mathbb{K})$ acts freely and transitively on P_{b} from the right by:

$$
\left(b_{1}, \ldots, b_{n}\right) \cdot A:=\left(\sum_{i=1}^{n} A_{i 1} b_{i}, \ldots, \sum_{i=1}^{n} A_{i n} b_{i}\right)
$$

where $A=\left(A_{i j}\right)_{i, j=1 \ldots n}$. Then $P:=\bigsqcup_{b \in B} P_{b}$ together with the projection $\pi: P \rightarrow B$ defined such that $\left.\pi\right|_{P_{b}} \equiv b$ is a $\operatorname{GL}(n ; \mathbb{K})$-principal bundle.

Example 2.2.6. Similarly, we can construct principal bundles for different structure groups by considering the bundles of bases of vector bundles with further structures: Let $V \rightarrow B$ be a \mathbb{K}-vector bundle of rank n with a Riemannian or Hermitian metric resp. For $b \in B$, set $P_{b}:=\left\{(\right.$ ordered $)$ orthonormal bases $\left(b_{1}, \ldots, b_{n}\right)$ of $\left.V_{b}\right\}$. Then $G=\mathrm{O}(n)$ resp. $G=\mathrm{U}(n)$ acts on P_{b} freely and transitively. We thus obtain an $\mathrm{O}(n)-$ or $\mathrm{U}(n)$-principal bundle resp.

Definition 2.2.7. Let B be a smooth n-manifold and let $V=T B \rightarrow B$ be the tangent bundle. Then the $\mathrm{GL}(n ; \mathbb{K})$-principal bundle (P, π, B) constructed in Example 2.2.5 is called the frame bundle of B. Let (B, g) be a Riemannian manifold, and let $V \rightarrow B$ be the tangent bundle. Then the $\mathrm{O}(n)$-principal bundle from Example 2.2.6 is called the orthonormal frame bundle.

By considering several structures on \mathbb{K}-vector bundles, we naturally obtain the following G-principal bundles as bundles of (ordered) bases respecting the given structure:

\mathbb{K}	vector bundle	ordered bases	G
\mathbb{R}, \mathbb{C}	any	all	$\mathrm{GL}(n ; \mathbb{K})$
\mathbb{R}	Riemannian	orthonormal	$\mathrm{O}(n)$
\mathbb{C}	Hermitian	orthonormal	$\mathrm{U}(n)$
\mathbb{R}	oriented	positively oriented	$\mathrm{GL}^{+}(n ; \mathbb{R})$
\mathbb{R}	Riemannian, oriented	orthonormal, oriented	$\mathrm{SO}(n)$

$\left(\right.$ Here $\left.\mathrm{GL}^{+}(n ; \mathbb{R}):=\{A \in \mathrm{GL}(n ; \mathbb{R}) \mid \operatorname{det}(A)>0\}\right)$.

Remark 2.2.8. Let (P, π, B) be a G-principal bundle. If $\lambda: B \rightarrow B^{\prime}$ is a smooth map, then $\lambda^{*} P \rightarrow B^{\prime}$ is again a G-principal bundle. The pull-back bundle is given by $\lambda^{*} P:=\left\{\left(b^{\prime}, p\right) \in B^{\prime} \times P \mid \lambda\left(b^{\prime}\right)=\pi(p)\right\}$ with the right action given by $\left(b^{\prime}, p\right) \cdot g:=\left(b^{\prime}, p \cdot g\right)$.

Next we want to replace the structure group G of a principal bundle: So let $P \rightarrow B$ be a G-principal bundle and let $\varphi: G \rightarrow H$ be a Lie group homomorphism. Now G acts from the right on $P \times H$ by $(p, h) \cdot g:=\left(p \cdot g, \varphi\left(g^{-1}\right) \cdot h\right)$ (this follows from Remark 1.5.27). The action is free, since $(p, h) \cdot g=(p, h)$ implies $p \cdot g=p$ and thus $g=e$, because the action of G on P is free.
Now if G is compact, then we know from Remark 2.2.3 that $P^{\prime}:=(P \times H) / G$ is a smooth manifold. Actually, this also holds for non-compact Lie groups G. Consider the diagram

Since $\pi \circ p r_{1}$ is constant along the G-orbits, there is a unique map π^{\prime} making the diagram commutative. It is smooth by the general theory of group actions.
In fact, P^{\prime} is the total space of an H-principal bundle over $B . H$ acts from the right on $P \times H$ by $(p, h) \cdot h^{\prime}=\left(p, h h^{\prime}\right)$. Since this H-action commutes with the G-action, it descends to an action on $P \times H / G$ by

$$
[p, h] \cdot h^{\prime}=\left[p, h h^{\prime}\right]
$$

This H-action on $P \times{ }_{\varphi} G$ is free:

$$
\begin{aligned}
{\left[p, h h^{\prime}\right]=[p, h] \cdot h^{\prime}=[p, h] } & \Rightarrow \exists g \in G:\left(p, h h^{\prime}\right)=\left(p \cdot g, \varphi\left(g^{-1}\right) h\right) \\
& \Rightarrow p=p \cdot g \\
& \Rightarrow g=e \\
& \Rightarrow h h^{\prime}=\varphi\left(e^{-1}\right) h=h \\
& \Rightarrow h^{\prime}=e
\end{aligned}
$$

Conclusion 2.2.9

$\left(P \times_{\varphi} H, \pi^{\prime}, B\right)$ is an H-principal bundle.

We proved this for the case that H is compact but it is also true for the general case.

Definition 2.2.10. $\left(P \times{ }_{\varphi} H, \pi^{\prime}, B\right)$ is called the H-principal bundle associated to (P, π, B) with respect to φ.

If $\varphi: G \rightarrow H$ is an embedding of a subgroup, then one says that $\left(P \times_{\varphi} H, \pi^{\prime}, B\right)$ is obtained from (P, π, B) by extension of the structure group. Conversely, given an H-principal bundle $Q \rightarrow B$, a G-principal bundle $P \rightarrow B$ such that its extension to an H-principle bundle is isomorphic to $Q \rightarrow B$ is called a reduction to the structure group G.

Example 2.2.11. An H-principal bundle can be reduced to the trivial group $G=\{e\}$ if and only if it is trivial.

Now let $P \xrightarrow{\pi} B$ be a G-principal bundle and let $\rho: G \rightarrow \operatorname{Aut}(V)$ be a representation. We define

$$
P \times_{\rho} V:=P \times V / G
$$

where G acts as before: $(p, v) \cdot g=\left(p \cdot g, \rho\left(g^{-1}\right) v\right)$. The same construction now yields a vector bundle

$$
P \times{ }_{\rho} V \rightarrow B
$$

Definition 2.2.12. $P \times{ }_{\rho} V$ is called the associated vector bundle.

Example 2.2.13. If E is a \mathbb{K}-vector bundle, let P be its frame bundle with structure group $G=G L(n ; \mathbb{K})$. If $\rho_{\text {std }}$ is the standard representation of G on \mathbb{K}^{n}, then we have the following isomorphism of vector bundles:

$$
\begin{aligned}
P \times_{\rho_{s t d}} \mathbb{K}^{n} & \cong E \\
{\left[\left(b_{1}, \ldots, b_{n}\right),\left(x_{1}, \ldots, x_{n}\right)\right] } & \mapsto \sum_{j=1}^{n} x_{j} b_{j} .
\end{aligned}
$$

This map is well-defined because

$$
\begin{aligned}
{[b, x]=\left[b^{\prime}, x^{\prime}\right] } & \Rightarrow \exists g \in G L(n ; \mathbb{K}):\left(b^{\prime}, x^{\prime}\right)=\left(b \cdot g, \rho_{s t d}\left(g^{-1}\right) x\right)=\left(b \cdot g, g^{-1} x\right) \\
& \Rightarrow\left[b^{\prime}, x^{\prime}\right] \mapsto b \cdot g \cdot g^{-1} x=b \cdot x
\end{aligned}
$$

Remark 2.2.14. Let $E \rightarrow B$ be a vector bundle and P its frame bundle (again, $G=G L(n ; \mathbb{K}))$. Taking the k-th exterior power of the standard representation, $\rho:=\wedge^{k} \rho_{s t d}$, we have

$$
P \times_{\rho} \Lambda^{k} \mathbb{K}^{n} \cong \Lambda^{k} E
$$

This works as well for tensor products, direct sums, dual representations etc.

In the following, we are going to discuss the local description of principal bundles. Let $P \xrightarrow{\pi} B$ be a G-principal bundle and $U \subset B$ an open set such that there is a local trivialization

$$
\psi_{U}: \pi^{-1}(U)=:\left.P\right|_{U} \rightarrow U \times G,
$$

that is, the following diagram commutes

Define a local section $s:\left.U \rightarrow P\right|_{U}$ by $s(x):=\psi^{-1}(x, e)$, which is obviously smooth. By the definition of principal fibre bundle, we have

This implies, that the local trivialization may be expressed using the section s :

$$
\psi_{U}^{-1}(u, g)=\psi_{U}^{-1}(u, e g)=\psi_{U}^{-1}(u, e) \cdot g=s(x) \cdot g
$$

Conversely, let $s:\left.U \rightarrow P\right|_{U}$ be a smooth section. For any $p \in P_{x}$, there exists a unique $g(p) \in G$ such that $p=s(\pi(p)) \cdot g(p)$, because the group action is free and transitive.
Define $\psi_{U}(p):=(\pi(p), g(p)) \in U \times G$. This is a local trivialization.

Conclusion 2.2.15

There is a 1-1 correspondence

$$
\text { local trivializations } \leftrightarrow \text { local sections }
$$

In particular, a principal bundle has global sections if and only if it is trivial.

Example 2.2.16. The Hopf bundle $S^{3} \rightarrow S^{2}, G=U(1)$ has no global section because otherwise, it would be trivial. So in particular $S^{3} \cong S^{2} \times S^{1}$. But this would imply

$$
\{e\} \cong \pi_{1}\left(S^{3}\right) \cong \pi_{1}\left(S^{2} \times S^{1}\right) \cong \pi_{1}\left(S^{2}\right) \times \pi_{1}\left(S^{1}\right) \cong\{e\} \times \mathbb{Z}=\mathbb{Z}
$$

Now cover B by open sets $U_{\alpha}, \alpha \in A$, such that $\left.P\right|_{U_{\alpha}}$ is trivial and we can choose sections $s_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$. We consider the intersection $U_{\alpha} \cap U_{\beta}$:

For $x \in U_{\alpha} \cap U_{\beta}=: U_{\alpha \beta}:$

$$
\exists!g_{\alpha \beta}(x) \in G \text { such that } s_{\beta}(x)=s_{\alpha}(x) \cdot g_{\alpha \beta}(x)
$$

This yields smooth maps $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow G$ (so called transition functions) satisfying the cocycle conditions:

1. $g_{\alpha \alpha}=e$
2. $g_{\alpha \beta}=g_{\beta \alpha}^{-1}$
3. $g_{\alpha \beta} g_{\beta \gamma} g_{\gamma \alpha}=e$

The first identity is trivial. By the definition of $g_{\alpha \beta}$ and $g_{\beta \alpha}$, we have

$$
s_{\beta}=s_{\alpha} g_{\alpha \beta}=s_{\beta} g_{\beta \alpha} g_{\alpha \beta}
$$

This implies the second identity because the group action is free.

To prove the third equation, let $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Similar to the second part, we have

$$
s_{\alpha}=s_{\beta} g_{\beta \alpha}=s_{\gamma} g_{\gamma \beta} g_{\beta \alpha}=s_{\alpha} g_{\alpha \gamma} g_{\gamma \beta} g_{\beta \alpha}
$$

which implies the claim since G acts freely.

If we choose a second set of local sections, $\tilde{s}_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$, we obtain corresponding transition functions $\tilde{g}_{\alpha \beta}: U_{\alpha \beta} \rightarrow G$. We may now ask: What is the relation between $g_{\alpha \beta}$ and $\tilde{g}_{\alpha \beta}$?

For any $x \in U_{\alpha}$, we have:

$$
\begin{aligned}
& \exists!h_{\alpha}(x) \in G: \tilde{s}_{\alpha}(x)=s_{\alpha}(x) h_{\alpha}(x) \\
\Rightarrow & s_{\beta} h_{\beta}=\tilde{s}_{\beta}=\tilde{s}_{\alpha} \tilde{g}_{\alpha \beta}=s_{\alpha} h_{\alpha} \tilde{g}_{\alpha \beta}=s_{\beta} g_{\beta \alpha} h_{\alpha} \tilde{g}_{\alpha \beta} \\
\Rightarrow & h_{\beta}=g_{\beta \alpha} h_{\alpha} \tilde{g}_{\alpha \beta}
\end{aligned}
$$

Hence, we obtain the coboundary condition:

$$
\begin{equation*}
g_{\alpha \beta}=h_{\alpha} \tilde{g}_{\alpha \beta} h_{\beta}^{-1} \tag{2.1}
\end{equation*}
$$

We will now discuss the construction of a principal fibre bundle out of prescribed local data. Let B be a smooth manifold and $\left\{U_{\alpha}\right\}$ an open covering. Let $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow G$ be smooth maps such that the cocycle conditions 1., 2., and 3. hold. We construct the total space of the bundle a follows:

$$
P:=\bigsqcup_{\alpha} U_{\alpha} \times G / \sim
$$

Here, the equivalence relation \sim is given by

$$
\underbrace{(x, g)}_{\in U_{\alpha} \times G} \sim \underbrace{\left(x^{\prime}, g^{\prime}\right)}_{\in U_{\beta} \times G} \quad: \Leftrightarrow \quad \begin{aligned}
i) & =x^{\prime} \\
i i) & =g_{\alpha \beta}(x) \cdot g^{\prime}
\end{aligned} \quad \text { and }
$$

2 Bundle theory

Since $s_{\alpha}(x) \cdot g$ and $s_{\beta}\left(x^{\prime}\right) \cdot g^{\prime}$ are supposed to represent the same element in the resulting bundle, property ii) of the preceeding definition is motivated by the following computation:

$$
s_{\beta}(x) g_{\beta \alpha}(x) \cdot g=s_{\alpha}(x) \cdot g \stackrel{!}{=} s_{\beta}\left(x^{\prime}\right) \cdot g^{\prime}=s_{\beta}(x) \cdot g^{\prime}
$$

The definition yields a G-principal bundle $P \rightarrow B$. This way, one reconstructs a given G-principle bundle P from a system of transition functions (up to isomorphism). The cocycle conditions are needed to ensure that \sim indeed defines an equivalence relation. If we have two systems of transition functions $\left\{g_{\alpha \beta}\right\},\left\{\tilde{g}_{\alpha \beta}\right\}$ and a system of maps $\left\{h_{\alpha}: U_{\alpha} \rightarrow G\right\}$ such that the coboundary conditions (2.1) hold, then the corresponding G-principal bundles P and \tilde{P} are isomorphic. An isomorphism is given by the map

$$
\begin{aligned}
P:=\bigsqcup_{\alpha} U_{\alpha} \times G / \sim & \longrightarrow \tilde{P}:=\bigsqcup_{\alpha} U_{\alpha} \times G / \approx \\
{[x, g] } & \mapsto
\end{aligned}
$$

It is well-defined: If $[x, g] \sim\left[x, g^{\prime}\right]$, that is $g=g_{\alpha \beta} g^{\prime}=h_{\alpha} \tilde{g}_{\alpha \beta} h_{\beta}^{-1} g^{\prime}$ by using (2.1), we see that $\tilde{g}=h_{\alpha}^{-1} g$ and $\tilde{g}^{\prime}=h_{\beta}^{-1} g^{\prime}$ are related by $\tilde{g}=\tilde{g}_{\alpha \beta} \tilde{g}^{\prime}$ and thus, $[x, \tilde{g}] \approx[x, \tilde{g}]^{\prime}$.

Example 2.2.17. We are going to determine transition functions for the Hopf bundle:

$$
\text { Hopf } \begin{aligned}
: S^{3} \subset \mathbb{C}^{2} & \longrightarrow S^{2} \subset \mathbb{C} \times \mathbb{R} \\
\left(w_{1}, w_{2}\right) & \mapsto \frac{\left(4 w_{1} \bar{w}_{2}, 4\left|w_{2}\right|^{2}-\left|w_{1}\right|^{2}\right)}{4\left|w_{2}\right|^{2}+\left|w_{1}\right|^{2}}
\end{aligned}
$$

For $(z, t) \in S^{2}$, that is $|z|^{2}+t^{2}=1$, we define

$$
s_{1}(z, t):=\left(\frac{4|z|^{2}}{(1+t)^{2}}+1\right)^{-1 / 2}\left(\frac{2 z}{1+t}, 1\right)
$$

s_{1} is a smooth and defined on $U_{1}:=S^{2} \backslash\{(0,-1)\}$. Furthermore, s_{1} is a section because

$$
\left.\begin{array}{rl}
\operatorname{Hopf}\left(s_{1}(z, t)\right) & =\frac{\left(4 \cdot \frac{2 z}{1+t} \cdot \overline{1}, 4 \cdot 1^{2}-\left|\frac{2 z}{1+t}\right|^{2}\right)}{4 \cdot 1^{2}+\left|\frac{2 z}{1+t}\right|^{2}}
\end{array}=\frac{\left(2 z(1+t),(1+t)^{2}-|z|^{2}\right)}{(1+t)^{2}+|z|^{2}}\right)
$$

In the last step, we used $|z|^{2}+t^{2}=1$. Analogously, we define a smooth section on $U_{2}:=S^{2} \backslash\{(0,1)\}$:

$$
s_{2}(z, t):=\left(1+\frac{|z|^{2} / 4}{(1-t)^{2}}\right)^{-1 / 2}\left(1, \frac{\bar{z} / 2}{1-t}\right)
$$

We calculate the transition function g_{12} with respect to these sections using $(1-t)(1+t)=$ $1-t^{2}=\left|z^{2}\right|$ and $(1+t)^{2}=|z|^{4} /(1-t)^{2}$:

$$
\begin{aligned}
s_{1}(z, t) \cdot \frac{\bar{z}}{|z|} & =\left(\frac{4|z|^{2}}{(1+t)^{2}}+1\right)^{-1 / 2}\left(\frac{2|z|}{1+t}, \frac{z}{|z|}\right) \\
& =\left(\frac{4|z|^{2}}{(1+t)^{2}}+1\right)^{-1 / 2} \frac{2|z|}{1+t}\left(1, \frac{(1+t) \bar{z}}{2|z|^{2}}\right) \\
& =\frac{2|z|}{\sqrt{4|z|^{2}+(1+t)^{2}}}\left(1, \frac{\bar{z} / 2}{1-t}\right) \\
& =\left(1+\frac{(1+t)^{2}}{4|z|^{2}}\right)^{-1 / 2}\left(1, \frac{\bar{z} / 2}{1-t}\right) \\
& =\left(1+\frac{|z|^{2} / 4}{(1-t)^{2}}\right)^{-1 / 2}\left(1, \frac{\bar{z} / 2}{1-t}\right) \\
& =s_{2}(z, t)
\end{aligned}
$$

Hence, the transition function is given by

$$
g_{12}: U_{12}=S^{2} \backslash\{(0,1),(0,-1)\} \rightarrow \mathrm{U}(1), \quad g_{12}(z, t)=\frac{\bar{z}}{|z|}=\frac{|z|}{z} .
$$

Remark 2.2.18. Let $P \rightarrow B$ be a G-principal bundle, $\varphi: G \rightarrow H$ a Lie group homomorphism and $P^{\prime}:=P \times H / G$ the associated H-principal bundle. Let $s_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$ be local sections with corresponding transition functions $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow G$. Then we have induced sections of the associated bundle:

$$
\begin{aligned}
s_{\alpha}^{\prime}: U_{\alpha} & \left.\rightarrow P^{\prime}\right|_{U_{\alpha}} \\
s_{\alpha}^{\prime}(u) & :=\left[s_{\alpha}(u), e\right]
\end{aligned}
$$

On one hand we have

$$
s_{\beta}^{\prime}=s_{\alpha}^{\prime} g_{\alpha \beta}^{\prime}=\left[s_{\alpha}, e\right] g_{\alpha \beta}^{\prime}=\left[s_{\alpha}, g_{\alpha \beta}^{\prime}\right]
$$

and on the other hand:

$$
s_{\beta}^{\prime}=\left[s_{\beta}, e\right]=\left[s_{\alpha} g_{\alpha \beta}, e\right]=\left[s_{\alpha} g_{\alpha \beta} g_{\beta \alpha}, \varphi\left(g_{\beta \alpha}^{-1}\right) e\right]=\left[s_{\alpha}, \varphi\left(g_{\alpha \beta}\right)\right]
$$

Since the action of G on P is free, we conclude

$$
g_{\alpha \beta}^{\prime}=\varphi \circ g_{\alpha \beta}
$$

Thus forming the associated bundle with respect to φ amounts to composing the transition functions with φ.

2 Bundle theory

Remark 2.2.19. We can think of local sections (or equivalently, local trivializations) as local gauges. For example, if $G=\mathbb{R}$, then a local section identifies points in a fibre P_{b} with real numbers. If elements of fibres P_{b} are results of measurements, then the choice of local sections correspond to the choice of a system of units.

2.3 Connections

Definition 2.3.1. Let $P \rightarrow B$ be a G-principal bundel. A 1 -form $\omega \in \Omega^{1}(P, \mathfrak{g})$ (i.e. a section of $T^{*} P \otimes \mathfrak{g}$) is called a connection 1-form iff

1. $R_{g}^{*}=\operatorname{Ad}_{g^{-1}} \circ \omega \quad \forall g \in G$ or equivalently, the following diagram commutes:

2. For any $X \in \mathfrak{g}$, let \bar{X} be the corresponding fundamental vector field on P. Then:

$$
\omega(\bar{X}(p))=X
$$

All the vectors tangent to the fibres P_{b} are given in the form \bar{X} for a suitible $X \in \mathfrak{g}$. Thus, the second condition determines the values of a connection 1 -form ω for the vectors tangent to the fibers.

Remark 2.3.2. The two conditions 1. and 2. are compatible. On one hand, we have

$$
\omega\left(d R_{g}(\bar{X}(p))\right) \stackrel{(1)}{=} \operatorname{Ad}_{g^{-1}}(\omega(\bar{X}(p))) \stackrel{(2)}{=} \operatorname{Ad}_{g^{-1}}(X)
$$

On the other hand, we have

$$
d R_{g}\left(d L_{p}(X)\right)=\left.\frac{d}{d t}\right|_{0}(p \cdot \exp (t X) g)=\left.\frac{d}{d t}\right|_{0}\left(p \cdot g g^{-1} \exp (t X) g\right)=d L_{p g}\left(\operatorname{Ad}_{g^{-1}}(X)\right)
$$

which implies

$$
\begin{aligned}
\omega\left(d R_{g}(\bar{X}(p))\right) & =\omega\left(d R_{g}\left(d L_{p}(X)\right)\right)=\omega\left(d L_{p g}\left(\operatorname{Ad}_{g^{-1}}(X)\right)\right) \\
& =\omega\left(\overline{\operatorname{Ad}_{g^{-1}}(X)}(p g)\right)=\operatorname{Ad}_{g^{-1}}(X)
\end{aligned}
$$

Hence, 1. and 2. are consistent. Changing $\operatorname{Ad}_{g^{-1}}$ to Ad_{g} would lead to inconsistent conditions.

Example 2.3.3 (Fundamental example). Let $V \rightarrow B$ be a vector bundle with a connection (i.e. covariant derivative) ∇. Let $P \xrightarrow{\pi} B$ be the frame bundle of V, $G=G L(n ; \mathbb{K})$ and $\mathfrak{g}=\operatorname{Mat}(n \times n ; \mathbb{K})$. Let $X \in T_{p} P$ be a vector tangent to P and choose a curve $t \mapsto p(t)=\left(p_{1}(t), \ldots, p_{n}(t)\right)$ such that $\dot{p}(0)=X$ and $p(0)=p$. Putting $c(t):=\pi(p(t))$, we have $p_{j}(t) \in V_{c(t)}$. Hence p_{j} is a section in $c^{*} V$ and its covariant derivative along c can again be expressed in terms of the basis p :

$$
\left.\frac{\nabla}{d t}\right|_{0} p_{j}(t)=: \sum_{i=1}^{n} \Gamma_{j}^{i}(x) \cdot p_{i}(0)=:(p(0) \cdot \omega(X))_{j}
$$

Here, $\omega(X) \in \operatorname{Mat}(n \times n ; \mathbb{K})$ is defined by its action on the basis $p(0)$ of $V_{c(0)}$. Since $\left.\frac{\nabla}{d t}\right|_{0} p_{j}(t)$ depends only on X and not on the particular choice of the curve $p(t)$, also $\omega(X)$ is independent of this choice.

Check of property 2: Let $X \in \mathfrak{g}=\operatorname{Mat}(n \times n ; \mathbb{K})$ and put $p(t):=p \cdot \exp (t X)$. Then we have $\dot{p}(0)=\bar{X}(p)$. Thus

$$
p(0) \cdot \omega(\bar{X}(p))=\left.\frac{\nabla}{d t}\right|_{0} p(t)=\dot{p}(0)=p(0) \cdot X \quad \Rightarrow \quad \omega(\bar{X}(p))=X
$$

Here, we used, that $p(t)$ is a curve in a fixed fiber of P and therefore, the covariant derivate ist just an ordinary derivate.

Check of property 1: Let $X \in T_{p} P$ and choose a curve $p(t)$ such that $p(0)=p$ and $\dot{p}(0)=X$. We obtain

$$
\begin{array}{rlrl}
& d R_{g}(X) & =\left.\frac{d}{d t}\right|_{0} R_{g}(p(t))=\left.\frac{d}{d t}\right|_{0}(p(t) \cdot g)=\dot{p}(0) \cdot g \\
\Rightarrow & p(0) \cdot g \cdot\left(d R_{g}(X)\right) & =\left.\frac{\nabla}{d t}\right|_{0}(p(t) \cdot g)=\left.\frac{\nabla}{d t}\right|_{0} p(t) \cdot g=p(0) \cdot \omega(X) \cdot g \\
\Rightarrow \quad & g \cdot \omega\left(d R_{g}(X)\right) & =\omega(X) \cdot g \\
\Rightarrow \quad \omega\left(d R_{g}(X)\right) & =g^{-1} \omega(X) g=\operatorname{Ad}_{g^{-1}}(\omega(X))
\end{array}
$$

Remark 2.3.4

Let $P \xrightarrow{\pi} B$ be a G-principal bundle with connection 1-form ω. Let $s:\left.U \subset B \rightarrow P\right|_{U}$ be a local section.
Then $s^{*} \omega \in \Omega(U, \mathfrak{g})$ is given by $s^{*} \omega(Y)=\omega(d s(Y))$. If $V=T B \rightarrow B$ and x^{1}, \ldots, x^{n} are local coordinates of the manifold on U, then $s:=\left(\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right)$ is a local section of the frame bundle of $T B$.

The usual Christoffel symbols are then given by

$$
\Gamma_{i k}^{j}:=\Gamma_{i}^{j}\left(d s\left(\frac{\partial}{\partial x^{k}}\right)\right)=s^{*} \omega\left(\frac{\partial}{\partial x^{k}}\right)_{i}^{j} \in \mathfrak{g}=\operatorname{Mat}(n \times n ; \mathbb{K})
$$

Let $\omega \in \Omega^{1}(P ; \mathfrak{g})$ be a connection 1-form on $P \xrightarrow{\pi} B$. For a fixed $p \in P$, the restriction of the linear map $\omega_{p}: T_{p} P \rightarrow \mathfrak{g}$ to the tangent space of the fiber yields an isomorphism $\left.\omega_{p}\right|_{T_{p} P_{\pi(p)}}: T_{p} P_{\pi(p)} \rightarrow \mathfrak{g}$.

Setting $H_{p}:=\operatorname{ker}\left(\omega_{p}\right)$, we have the decomposition

$$
H_{p} \oplus T_{p} P_{\pi(p)}=T_{p} P
$$

In particular, $\operatorname{dim}\left(H_{p}\right)=\operatorname{dim}(P)-\operatorname{dim}\left(P_{\pi(p)}\right)=\operatorname{dim}(B)$. The subspace H_{p} is called the horizontal subspace .

For $X \in H_{p}$, we find

$$
\omega_{p g}\left(d R_{g}(X)\right)=\left(R_{g}^{*} \omega\right)(X) \stackrel{1 .}{=} A d_{g^{-1}}(\underbrace{\omega(X)}_{=0})=0
$$

Hence $d R_{g}\left(H_{p}\right) \subset H_{p g}$. Since $d R_{g}$ is a linear isomorphism and $\operatorname{dim}\left(H_{p}\right)=\operatorname{dim}\left(H_{p g}\right)=$ $\operatorname{dim}(B)$, we conclude $d R_{g}\left(H_{p}\right)=H_{p g}$ 。

Example 2.3.5. The Hopf bundle $S^{3} \rightarrow S^{2}$ has structure group $G=\mathrm{U}(1)$ with the Lie algebra $\mathfrak{g}=\mathfrak{u}(1)=i \mathbb{R}$. For a fixed $p \in S^{3} \subset \mathbb{C}^{2}$ and $X=i \in \mathfrak{u}(1)$, the fundamental vector is given by $\bar{X}(p)=\left.\frac{d}{d t}\right|_{t=0}\left(p \cdot e^{i t}\right)=p \cdot i$.
We denote by $\langle\cdot, \cdot\rangle$ the real scalar product on $\mathbb{C}^{2} \cong \mathbb{R}^{4}$. For $p \in S^{3}$ and $Y \in T_{p} S^{3} \subset \mathbb{R}^{4}$, set $\omega_{p}(Y):=i\langle Y, p \cdot i\rangle$. Then $\omega \in \Omega^{1}\left(S^{3} ; i \mathbb{R}\right)$ and property 2. from Definition 2.3.1hholds:

$$
\begin{aligned}
R_{z}^{*} \omega(Y) & =\omega_{p z}\left(d R_{z}(Y)\right) \\
& =\omega_{p z}(z \cdot Y) \\
& =i\langle z \cdot Y, p \cdot z \cdot i\rangle \\
& =i\langle Y, p \cdot i\rangle \quad(z \text { acts as isometry }) \\
& =\omega_{p}(Y)
\end{aligned}
$$

Hence $R_{z}^{*} \omega=\omega=\operatorname{Ad}_{z^{-1}} \circ \omega$, since the adjoint representation is trivial. The horizontal space is given by $H_{p}=\operatorname{ker} \omega_{p}=(p \cdot i)^{\perp}$. Property 1 holds as well:

$$
\begin{aligned}
\omega(\bar{X}) & =\omega(p \cdot i) \\
& =i \cdot\langle p \cdot i, p \cdot i\rangle \\
& =i
\end{aligned}
$$

Local description of connections

Let $P \rightarrow B$ be a G-principal bundle. Take an open cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of B and choose local sections $s_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$. We set $U_{\alpha \beta}:=U_{\alpha} \cap U_{\beta}$. The transition functions are the uniquely defined functions $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow G$ such that $s_{\beta}=s_{\alpha} \cdot g_{\alpha \beta}$. Let $\omega \in \Omega^{1}(P, \mathfrak{g})$ be a connection 1 -form and set $\omega_{\alpha}:=s_{\alpha}^{*} \omega \in \Omega^{1}\left(U_{\alpha}, \mathfrak{g}\right)$. Then we have the following transformation formula:

$$
s_{\beta}(u)=s_{\alpha}(u) \cdot g_{\alpha \beta}(u)=s_{\alpha}(u) \cdot g_{\alpha \beta}\left(u_{0}\right) \cdot g_{\alpha \beta}^{-1}\left(u_{0}\right) \cdot g_{\alpha \beta}(u) .
$$

Differentiating at $u=u_{0}$ yields:

$$
\left.d s_{\beta}\right|_{\left(u_{0}\right)}=\left.d R_{g_{\alpha \beta}\left(u_{0}\right)} \circ d s_{\alpha}\right|_{u_{0}}+\left.d L_{s_{\alpha}\left(u_{0}\right) \cdot g_{\alpha \beta}\left(u_{0}\right)} \circ d\left(g_{\alpha \beta}^{-1}\left(u_{0}\right) \cdot g_{\alpha \beta}\right)\right|_{u_{0}}
$$

For the locally defined 1-forms we get:

$$
\begin{align*}
\left.\omega_{\beta}\right|_{u_{0}} & =\left.s_{\beta}^{*} \omega\right|_{u_{0}} \\
& =\left.\omega \circ d s_{\beta}\right|_{u_{0}} \tag{2.2}\\
& =\left.\omega \circ d R_{g_{\alpha \beta}\left(u_{0}\right)} \circ d s_{\alpha}\right|_{u_{0}}+\left.\omega \circ d L_{s_{\alpha}\left(u_{0}\right) \cdot g_{\alpha \beta}\left(u_{0}\right)} \circ d\left(g_{\alpha \beta}^{-1}\left(u_{0}\right) \cdot g_{\alpha \beta}\right)\right|_{u_{0}} \\
& \left.\stackrel{1 ., 2 .}{=} \operatorname{Ad}_{g_{\alpha \beta}^{-1}\left(u_{0}\right)} \circ \omega \circ d s_{\alpha}\right|_{u_{0}}+\left.d\left(g_{\alpha \beta}^{-1}\left(u_{0}\right) \cdot g_{\alpha \beta}\right)\right|_{u_{0}} \\
& =\left.\operatorname{Ad}_{g_{\alpha \beta}^{-1}\left(u_{0}\right)} \circ \omega_{\alpha}\right|_{u_{0}}+\left.d\left(g_{\alpha \beta}^{-1}\left(u_{0}\right) \cdot g_{\alpha \beta}\right)\right|_{u_{0}} \tag{2.3}
\end{align*}
$$

Example 2.3.6. The connection 1 -form $\omega \in \Omega^{1}(P, \mathfrak{g})$ is uniquely defined by the collection of (locally defined) 1 -forms $\left(\omega_{\alpha}\right)_{\alpha \in I}$.
By condition 2., ω_{α} determines ω on U_{α} at the points $s_{\alpha}(u), u \in U_{\alpha}$. By condition 1., it already determines ω for all points of the corresponding fiber and hence on $\left.P\right|_{U_{\alpha}}$. If a collection $\left(\omega_{\alpha}\right)_{\alpha \in I}, \omega_{\alpha} \in \Omega^{1}\left(U_{\alpha}, \mathfrak{g}\right)$ is given such that (2.2) holds for all $\alpha, \beta \in I$, then this defines a unique connection 1-form $\omega \in \Omega^{1}(P ; \mathfrak{g})$.

Example 2.3.7. Each principal bundle has connection 1 -forms since one can use a partition of unity to construct them out of locally defined 1 -forms. Our next question is: how many connection 1 -forms are there on a given principal bundle?

Let $\omega, \tilde{\omega}$ be connection 1-forms on $P \rightarrow B$. Let $\omega_{\alpha}, \tilde{\omega}_{\alpha} \in \Omega^{1}\left(U_{\alpha}, \mathfrak{g}\right)$ be the corresponding locally defined 1 -forms associated with the local sections s_{α}. Then

$$
\omega_{\beta}-\tilde{\omega}_{\beta}=\operatorname{Ad}_{g_{\alpha \beta}^{-1}} \circ\left(\omega_{\alpha}-\tilde{\omega}_{\alpha}\right) .
$$

For any vector field X on B, we look at the local section $\left[s_{\alpha},\left(\omega_{\alpha}-\tilde{\omega}_{\alpha}\right)(X)\right]$ of the associated bundle $P \times_{\text {Ad }} \mathfrak{g}$. We observe that on $U_{\alpha \beta}$

$$
\left[s_{\beta},\left(\omega_{\beta}-\tilde{\omega}_{\beta}\right)(X)\right]=\left[s_{\alpha} g_{\alpha \beta}, \operatorname{Ad}_{g_{\alpha \beta}^{-1}} \circ\left(\omega_{\alpha}-\tilde{\omega}_{\alpha}\right)(X)\right]=\left[s_{\alpha},\left(\omega_{\alpha}-\tilde{\omega}_{\alpha}\right)(X)\right] .
$$

Hence $\left[s_{\alpha},\left(\omega_{\alpha}-\tilde{\omega}_{\alpha}\right)(X)\right]$ is the restriction of a globally defined section of $P \times_{\mathrm{Ad}} \mathfrak{g}$. Putting $\left[s_{\alpha},\left(\omega_{\alpha}-\tilde{\omega}_{\alpha}\right)\right](X):=\left[s_{\alpha},\left(\omega_{\alpha}-\tilde{\omega}_{\alpha}\right)(X)\right]$ we get a globally well-defined 1-form on B with values in $P \times_{\text {Ad }} \mathfrak{g}$, i.e., a section of $T^{*} B \otimes\left(P \times_{\text {Ad }} \mathfrak{g}\right)$. Hence the differences $\omega-\tilde{\omega}$ of any two connection 1-forms on P correspond to elements of $\Omega^{1}\left(B ; P \times_{\mathrm{Ad}} \mathfrak{g}\right)$.
Remark 2.3.8. Note that the space $\mathcal{C}(P):=\{$ connection 1-forms on $P \rightarrow B\}$ is not a vector space, because $0 \notin \mathcal{C}(P)$. We have thus found that $\mathcal{C}(P)$ is an affine space over the vector space $\Omega^{1}\left(B ; P \times_{\text {Ad }} \mathfrak{g}\right)$. In particular, it is an infinite-dimensional affine space.

Remark 2.3.9. Let $P \xrightarrow{\pi} B$ be a G-principal bundle with connection 1-form ω. Let $\varrho: G \rightarrow \operatorname{Aut}(V)$ be a representation of G. Let $E:=P \times_{\varrho} V \rightarrow B$ be the associated vector bundle. We construct a covariant derivative ∇ on E out of the connection 1-form ω as follows: For $X \in T_{u_{0}} B$, set

$$
\nabla_{X}[p(u), v(u)]:=\left[p\left(u_{0}\right), \partial_{X} v+\varrho_{*}\left(p^{*} \omega(X)\right) v\left(u_{0}\right)\right]
$$

A simple computation shows that this is well-defined. Indeed,

$$
[p(u), v(u)]=\left[p(u) \cdot g(u), \varrho\left(g^{-1}(u)\right) v(u)\right]
$$

yields

$$
\begin{aligned}
& {\left[p\left(u_{0}\right), \partial_{X} v\left(u_{0}\right)+\varrho_{*}\left(p^{*} \omega(X)\right) v\left(u_{0}\right)\right]} \\
& \quad=\left[p\left(u_{0}\right) \cdot g\left(u_{0}\right), \partial_{X}\left(\varrho\left(g^{-1}(u)\right) v(u)\right)+\varrho_{*}\left((p g)^{*} \omega(X)\right) \varrho\left(g^{-1}(u)\right) v(u)\right] .
\end{aligned}
$$

2.4 Curvature

Let $P \rightarrow B$ be a G-principal bundle with connection 1-form ω. For any $p \in P$, we have the decomposition $T_{p} P=T_{p} P_{\pi(p)} \oplus H_{p}$. Let $\pi_{H}: T_{p} P \rightarrow H_{p}$ be the horizontal projection.

Definition 2.4.1. The 2 -form $\Omega \in \Omega^{2}(P, \mathfrak{g})$ given by $\Omega(X, Y):=d \omega\left(\pi_{H}(X), \pi_{H}(Y)\right)$ is called the curvature form of ω.

Notation: For $\eta, \varphi \in \Omega^{1}(P, \mathfrak{g})$ we define $[\eta, \varphi](X, Y):=[\eta(X), \varphi(Y)]-[\eta(Y), \varphi(X)]$.

Proposition 2.4.2 (Structure equations)

Let $P \rightarrow B$ be a G-principal bundle with connection 1-form ω. Then the curvature form Ω satisfies

$$
\begin{equation*}
\Omega=d \omega+\frac{1}{2}[\omega, \omega] . \tag{2.4}
\end{equation*}
$$

Proof. We check the formula by inserting $X, Y \in T_{p} P$, distinguishing the following different cases:
(i) If X, Y are fundamental vector fields, i.e. $X=\bar{X}^{\prime}$ and $Y=\bar{Y}^{\prime}$ for $X^{\prime}, Y^{\prime} \in \mathfrak{g}$, then $\Omega(X, Y)=d \omega\left(\pi_{H}(X), \pi_{H}(Y)\right)=0$. On the other hand, $[\omega, \omega](X, Y)=2[\omega(X), \omega(Y)]=2\left[X^{\prime}, Y^{\prime}\right]$ and (using that X^{\prime} and Y^{\prime} are constant)

$$
\begin{aligned}
d \omega(X, Y) & =\partial_{X} \omega(Y)-\partial_{Y} \omega(X)-\omega([X, Y]) \\
& =\partial_{X} Y^{\prime}-\partial_{Y} X^{\prime}-\left[X^{\prime}, Y^{\prime}\right] \\
& =-\left[X^{\prime}, Y^{\prime}\right] \\
& =-\frac{1}{2}[\omega, \omega](X, Y) .
\end{aligned}
$$

(ii) If X, Y are horizontal, then $[\omega, \omega](X, Y)=2[\omega(X), \omega(Y)]=0$ and $\Omega(X, Y)=d \omega\left(\pi_{H}(X), \pi_{H}(Y)\right)=d \omega(X, Y)$.
(iii) If X is a fundamental vector field, i.e. $X=\bar{X}^{\prime}, X^{\prime} \in \mathfrak{g}$ and Y is horizontal, then

$$
[\omega, \omega](X, Y)=2[\omega(X), \underbrace{\omega(Y)}_{=0}]=0
$$

2 Bundle theory
and

$$
d \omega(X, Y)^{\boxed{2.4 .3}} \partial_{X}(\underbrace{\omega(Y)}_{=0})-\underbrace{\partial_{Y}(\omega(X))}_{=\partial_{Y} X^{\prime}=0}-\underbrace{\omega(\underbrace{[X, Y]}_{\text {horizontal }}}_{=0})=0
$$

For the curvature form Ω, we find

$$
\Omega(X, Y)=d \omega(\underbrace{\pi_{H}(X)}_{=0}, \pi_{H}(Y))=0 .
$$

Lemma 2.4.3

Let $P \rightarrow B$ be a G-principal bundle with connection 1-form ω. Let \bar{X} be a fundamental vector field $(X \in \mathfrak{g})$, let Y be a horizontal vector field. Then $[\bar{X}, Y]$ is horizontal.

Proof. The flow of \bar{X} is given by $R_{\exp (t X)}$. Using the Lie derivative, we compute:

$$
\begin{aligned}
\omega([\bar{X}, Y]) & =\omega\left(\mathcal{L}_{\bar{X}} Y\right) \\
& =\mathcal{L}_{\bar{X}}(\underbrace{\omega(Y)}_{\equiv 0})-\left(\mathcal{L}_{\bar{X}} \omega\right)(Y) \\
& =-\left.\frac{d}{d t}\right|_{t=0} R_{\exp (t X)}^{*} \omega(Y) \\
& =-\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}_{\exp (t X)^{-1}} \circ \underbrace{\omega(Y)}_{\equiv 0} \\
& =0
\end{aligned}
$$

Lemma 2.4.4
For any $g \in G$, we have:

$$
\begin{equation*}
R_{g}^{*} \Omega=\operatorname{Ad}_{g^{-1}} \circ \Omega \tag{2.5}
\end{equation*}
$$

Proof. For any tangent vectors X, Y, we have:

$$
\begin{aligned}
\left(R_{g}^{*} \Omega\right)(X, Y) & =\Omega\left(d R_{g}(X), d R_{g}(Y)\right) \\
& =d \omega\left(\pi_{H} \circ d R_{g}(X), \pi_{H} \circ d R_{g}(Y)\right) \\
& =d \omega\left(d R_{g} \circ \pi_{H}(X), d R_{g} \circ \pi_{H}(Y)\right) \\
& =\left(R_{g}^{*} d \omega\right)\left(\pi_{H} X, \pi_{H} Y\right) \\
& =d\left(R_{g}^{*} \omega\right)\left(\pi_{H} X, \pi_{H} Y\right) \\
& =d\left(\operatorname{Ad}_{g^{-1}} \circ \omega\right)\left(\pi_{H} X, \pi_{H} Y\right) \\
& =\operatorname{Ad}_{g^{-1} d \omega\left(\pi_{H} X, \pi_{H} Y\right)} \\
& =\operatorname{Ad}_{g^{-1}} \Omega(X, Y) .
\end{aligned}
$$

Here we used that $d R_{g}$ preserves the splitting of $T P$ into the horizontal and vertical part, i.e. $d R_{g} \circ \pi_{H}=\pi_{H} \circ d R_{g}$.

Proposition 2.4.5 (Bianchi identity)

Let ω be a connection 1-form on a G-principal bundle $P \rightarrow B$ and let Ω be the curvature of ω. Then $d \Omega$ vanishes on $H \times H \times H$.

Proof. Since $d \Omega=d d \omega+\frac{1}{2} d[\omega, \omega]=\frac{1}{2} d[\omega, \omega]$, we need to show that $\frac{1}{2} d[\omega, \omega]$ vanishes on $H \times H \times H$. For $\eta:=[\omega, \omega] \in \Omega^{2}(P ; \mathfrak{g})$, we know that $\eta(X, Y)=0$ if X or Y is horizontal. For horizontal vectors X_{1}, X_{2}, X_{3} we thus have:

$$
\begin{aligned}
d \eta\left(X_{1}, X_{2}, X_{3}\right)= & \partial_{X_{1}} \eta\left(X_{2}, X_{3}\right)-\partial_{X_{2}} \eta\left(X_{1}, X_{3}\right)+\partial_{X_{3}} \eta\left(X_{1}, X_{2}\right) \\
& -\eta\left(\left[X_{1}, X_{2}\right], X_{3}\right)+\eta\left(\left[X_{1}, X_{3}\right], X_{2}\right)-\eta\left(\left[X_{2}, X_{3}\right], X_{1}\right) \\
= & 0
\end{aligned}
$$

Remark 2.4.6. If G is abelian, then the structure equation yields $\Omega=d \omega$ and thus

$$
\begin{equation*}
d \Omega=0 . \tag{2.6}
\end{equation*}
$$

Let us now consider the implications of the structure equation in terms of the local data describing the bundle and connection by transition functions $g_{\alpha \beta}$ and local 1-forms ω_{α}. So we cover B by $\left\{U_{\alpha}\right\}_{\alpha \in I}$, we choose local sections $s_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$ which define the transition functions $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow G$ such that $s_{\beta}=s_{\alpha} \cdot g_{\alpha \beta}$. For the connection 1-form ω
and curvature Ω, we set $\omega_{\alpha}:=s_{\alpha}^{*} \omega$ and $\Omega_{\alpha}:=s_{\alpha}^{*} \Omega$. The structure equation in the local data reads:

$$
\begin{align*}
\Omega_{\alpha} & =s_{\alpha}^{*} \Omega \\
& =s_{\alpha}^{*}\left(d \omega+\frac{1}{2}[\omega, \omega]\right) \\
& =d s_{\alpha}^{*} \omega+\frac{1}{2}\left[s_{\alpha}^{*} \omega, s_{\alpha}^{*} \omega\right] \\
& =d \omega_{\alpha}+\frac{1}{2}\left[\omega_{\alpha}, \omega_{\alpha}\right] . \tag{2.7}
\end{align*}
$$

If G is abelian, then $\Omega_{\alpha}=d \omega_{\alpha}$ depends linearly on ω_{α}. In general, (2.7) is a semilinear partial differential equation of first order for ω_{α}.
Now let us compute the transformation behaviour of the local curvature forms Ω_{α} under the transitions between the open sets from the cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$. Differentiating $s_{\beta}=s_{\alpha} \cdot g_{\alpha \beta}$ at $u_{0} \in U_{\alpha \beta}$, we get:

$$
\begin{aligned}
\left.d s_{\beta}\right|_{u_{0}} & =d R_{g_{\alpha \beta}\left(u_{0}\right)} \circ d s_{\alpha}+d L_{s_{\alpha}\left(u_{0}\right)} \circ d\left(g_{\alpha \beta}\left(u_{0}\right) \cdot g_{\alpha \beta}\left(u_{0}\right)^{-1} \cdot g_{\alpha \beta}\right) \\
& =d R_{g_{\alpha \beta}\left(u_{0}\right)} \circ d s_{\alpha}+d L_{s \alpha\left(u_{0}\right) \cdot g_{\alpha \beta}\left(u_{0}\right)} \circ d\left(g_{\alpha \beta}\left(u_{0}\right)^{-1} \cdot g_{\alpha \beta}\right)
\end{aligned}
$$

This yields for the transformation of the local curvature forms:

$$
\begin{aligned}
\Omega_{\beta} & =s_{\beta}^{*} \Omega \\
& =\Omega \circ d s_{\beta} \\
& =\Omega \circ d R_{g_{\alpha \beta}\left(u_{0}\right)} \circ d s_{\alpha}+\Omega \circ \underbrace{d L_{s \alpha\left(u_{0}\right) \cdot g_{\alpha \beta}\left(u_{0}\right)} \circ d\left(g_{\alpha \beta}^{-1}\left(u_{0}\right) \cdot g_{\alpha \beta}\right)}_{\text {vertical }} \\
& =\left(R_{g_{\alpha \beta}\left(u_{0}\right)}^{*} \Omega\right) \circ d s_{\alpha} \\
& =\operatorname{Ad}_{g_{\alpha \beta}^{-1}\left(u_{0}\right)} \circ \Omega \circ d s_{\alpha} \\
& =\operatorname{Ad}_{g_{\alpha \beta}^{-1}\left(u_{0}\right)} \circ \Omega_{\alpha} .
\end{aligned}
$$

Hence if G is abelian, then $\Omega_{\beta}=\Omega_{\alpha}$ on $U_{\alpha \beta}$. Thus the Ω_{α} are restrictions of a globally defined 2 -form $\bar{\Omega} \in \Omega^{2}(B ; \mathfrak{g})$, i.e., $\left.\bar{\Omega}\right|_{U_{\alpha}}=\Omega_{\alpha}$.
In general, the transformation behaviour for the local curvature forms implies that s_{α} and Ω_{α} together yield well-defined global sections of the bundle $P \times_{\text {Ad }} \mathfrak{g}$. Indeed for any $X, Y \in T_{u} B$, we have:

$$
\left[s_{\beta}, \Omega_{\beta}(X, Y)\right]=\left[s_{\alpha} \cdot g_{\alpha \beta}, \operatorname{Ad}_{g_{\alpha \beta}^{-1}} \Omega_{\alpha}(X, Y)\right]=\left[s_{\alpha}, \Omega_{\alpha}(X, Y)\right] .
$$

Thus for fixed $X, Y \in \mathfrak{X}(B),\left[s_{\alpha}, \Omega_{\alpha}(X, Y)\right]$ is the restriction of a globally defined section of $P \times_{\text {Ad }} \mathfrak{g}$. Hence the local 2-forms $\left[s_{\alpha}, \Omega_{\alpha}\right]$ defined by $\left[s_{\alpha}, \Omega_{\alpha}\right](X, Y):=\left[s_{\alpha}, \Omega_{\alpha}(X, Y)\right]$ are the restrictions to U_{α} of a globally defined 2-form $\bar{\Omega}$ on B with values in the bundle $P \times_{\mathrm{Ad}} \mathfrak{g}$, i.e. a section of $\Lambda^{2} T^{*} B \otimes\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)$.

Example 2.4.7. For the Hopf bundle $S^{3} \rightarrow S^{2}$, we have the connection 1-form $\omega_{p}(Y):=i \cdot\langle i p, Y\rangle$. For the curvature, we obtain:

$$
\begin{aligned}
\Omega_{p}(X, Y) & =d \omega_{p}(X, Y) \\
& =\partial_{X} \omega(Y)-\partial_{Y} \omega(X)-\omega([X, Y]) \\
& =i \cdot\left\langle i p, \partial_{X} Y\right\rangle-i \cdot\langle i X, Y\rangle-i \cdot\left\langle i p, \partial_{Y} X\right\rangle+i \cdot\langle i Y, X\rangle-i \cdot\langle i p,[X, Y]\rangle \\
& =i \cdot(\langle i X, Y\rangle-\underbrace{\langle i Y, X\rangle}_{=\langle X, i Y\rangle}) \\
& =i \cdot\left(\langle i X, Y\rangle-\left\langle i X, i^{2} Y\right\rangle\right) \quad(i \text { acts as isometry }) \\
& =2 i \cdot\langle i X, Y\rangle .
\end{aligned}
$$

It is easy to see, that Ω_{p} indeed vanishes on vertical vectors $X=i p$, since $\Omega_{p}(i p, Y)=2 i \cdot\langle-p, Y\rangle=0$, because $Y \in T_{p} S^{3}=p^{\perp}$.

2.5 Characteristic classes

Definition 2.5.1. A multilinear symmetric function $\lambda: \mathfrak{g} \times \cdots \times \mathfrak{g} \rightarrow \mathbb{K}$ is called invariant iff for all $g \in G$ and all $X_{1}, \ldots, X_{k} \in \mathfrak{g}$:

$$
\lambda\left(\operatorname{Ad}_{g}\left(X_{1}\right), \ldots, \operatorname{Ad}_{g}\left(X_{k}\right)\right)=\lambda\left(X_{1}, \ldots, X_{k}\right)
$$

Let $P \rightarrow B$ be a G-principal bundle and let $\lambda: \mathfrak{g} \times \cdots \times \mathfrak{g} \rightarrow \mathbb{K}$ be an invariant multilinear symmetric function of degree k. Then λ induces a well-defined symmetric multilinear map on each fiber of the bundle $P \times$ Ad \mathfrak{g}

$$
\left(\left[p, X_{1}\right], \ldots,\left[p, X_{k}\right]\right) \mapsto \lambda\left(X_{1}, \ldots, X_{k}\right) .
$$

This is well-defined because

$$
\begin{aligned}
\left(\left[p g, \operatorname{Ad}_{g^{-1}}\left(X_{1}\right)\right], \ldots,\right. & {\left.\left[p g, \operatorname{Ad}_{g^{-1}}\left(X_{k}\right)\right]\right) } \\
& \mapsto \lambda\left(\operatorname{Ad}_{g^{-1}}\left(X_{1}\right), \ldots, \operatorname{Ad}_{g^{-1}}\left(X_{k}\right)\right)=\lambda\left(X_{1}, \ldots, X_{k}\right) .
\end{aligned}
$$

We choose a connection 1-form ω on P. Let $\bar{\Omega} \in \Omega^{2}\left(B ; P \times_{\text {Ad }} \mathfrak{g}\right)$ be the corresponding curvature 2 -form on B. We then set $\lambda \circ \bar{\Omega} \in \Omega^{2 k}(B, \mathbb{K})$, where
$(\lambda \circ \bar{\Omega})\left(X_{1}, \ldots, X_{2 k}\right):=\frac{1}{k!} \sum_{\sigma \in S_{2 k}} \operatorname{sign}(\sigma) \cdot \lambda\left(\bar{\Omega}\left(X_{\sigma(1)}, X_{\sigma(2)}\right), \ldots, \bar{\Omega}\left(X_{\sigma(2 k-1)}, X_{\sigma(2 k)}\right)\right)$.
We have the following two important Lemmas:

Lemma 2.5.2

Let $P \xrightarrow{\pi} B$ be a G-principal bundle with connection 1-form ω and curvature form $\bar{\Omega} \in \Omega^{2}\left(B ; P \times_{\text {Ad }} \mathfrak{g}\right)$. Let $\lambda: \underbrace{\mathfrak{g} \times \ldots \times \mathfrak{g}}_{k} \rightarrow \mathbb{K}$ be an invariant, symmetric multilinear map. Then

$$
d(\lambda \circ \bar{\Omega})=0
$$

Proof.

Let $\left\{u_{\alpha}\right\}_{\alpha \in I}$ be an open cover of B with local sections $s_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$. For a given $b \in U_{\alpha} \subset B$ we can choose the local section s_{α} such that $d s_{\alpha}\left(T_{b} B\right)=H_{s_{\alpha}(b)}$. Then for any $X, Y, Z \in T_{b} B$, we find:

$$
\begin{array}{rl}
d \Omega_{\alpha}(X, Y, Z) & =d\left(s_{\alpha}^{*} \Omega\right)(X, Y, Z) \\
& =s_{\alpha}^{*}(d \Omega)(X, Y, Z) \\
& =(d \Omega)\left(d s_{\alpha}(X), d s_{\alpha}(Y), d s_{\alpha}(Z)\right) \\
\boxed{2.4 .5} & 0 .
\end{array}
$$

Thus $d \Omega_{\alpha}$ vanishes at b.

Now we have:

$$
\begin{aligned}
\lambda(\bar{\Omega})\left(X_{1}, \ldots, X_{2 k}\right) & =\frac{1}{k!} \sum_{\sigma \in S_{2 k}} \operatorname{sign}(\sigma) \lambda\left(\bar{\Omega}\left(X_{\sigma(1)}, X_{\sigma(2)}\right), \ldots, \bar{\Omega}\left(X_{\sigma(2 k-1)}, X_{\sigma(2 k)}\right)\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{2 k}} \operatorname{sign}(\sigma) \lambda\left(\Omega_{\alpha}\left(X_{\sigma(1)}, X_{\sigma(2)}\right), \ldots, \Omega_{\alpha}\left(X_{\sigma(2 k-1)}, X_{\sigma(2 k)}\right)\right)
\end{aligned}
$$

Choosing a basis Y_{1}, \ldots, Y_{N} of \mathfrak{g} and writing $\Omega_{\alpha}=\sum_{j=1}^{N} \Omega_{\alpha}^{j} \cdot Y_{j}$ with $\Omega_{\alpha}^{j} \in \Omega^{2}\left(U_{\alpha} ; \mathbb{R}\right)$, we obtain:

$$
\begin{aligned}
& \lambda(\bar{\Omega})\left(X_{1}, \ldots, X_{2 k}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{2 n}} \operatorname{sign}(\sigma) \sum_{j_{1}, \ldots, j_{k}=1}^{N} \Omega_{\alpha}^{j_{1}}\left(X_{\sigma(1)}, X_{\sigma(2)}\right) \cdots \Omega_{\alpha}^{j_{k}}\left(X_{\sigma(2 k-1)}, X_{\sigma(2 k)}\right) \cdot \lambda\left(Y_{j_{1}}, \ldots, Y_{j_{k}}\right) \\
& =\sum_{j_{1}, \ldots, j_{k}=1}^{N}\left(\Omega_{\alpha}^{j_{1}} \wedge \ldots \wedge \Omega_{\alpha}^{j_{k}}\right)\left(X_{1}, \ldots, X_{2 k}\right) \cdot \lambda\left(Y_{j_{1}}, \ldots, Y_{j_{k}}\right)
\end{aligned}
$$

At the point $b \in U_{\alpha}$ with the section s_{α} chosen above, we thus obtain:

$$
\begin{aligned}
d \lambda(\bar{\Omega}) & =d \sum_{j_{1}, \ldots, j_{k}=1}^{N}\left(\Omega_{\alpha}^{j_{1}} \wedge \ldots \wedge \Omega_{\alpha}^{j_{k}}\right) \cdot \lambda\left(Y_{j_{1}}, \ldots, Y_{j_{k}}\right) \\
& =\sum_{j_{1}, \ldots, j_{k}=1}^{N}\left\{d \Omega_{\alpha}^{j_{1}} \wedge \Omega_{\alpha}^{j_{2}} \wedge \ldots \wedge \Omega_{\alpha}^{j_{k}}+\ldots+\Omega_{\alpha}^{j_{1}} \wedge \ldots \wedge \Omega_{\alpha}^{j_{k-1}} \wedge d \Omega_{\alpha}^{j_{k}}\right\} \lambda\left(Y_{j_{1}}, \ldots, Y_{j_{k}}\right) \\
& =0 .
\end{aligned}
$$

Since $b \in B$ was arbitrary, this shows that $d \lambda(\bar{\Omega})=0$.

Lemma 2.5.3

Let ω^{\prime} be another connection with curvature 2 -form $\bar{\Omega}^{\prime} \in \Omega^{2}\left(B ; P \times_{\mathrm{Ad}} \mathfrak{g}\right)$. Then $\lambda \circ \bar{\Omega}-\lambda \circ \bar{\Omega}^{\prime}$ is exact.

Definition 2.5.4. The k-th de Rham cohomology of M is defined as

$$
H_{\mathrm{dR}}^{k}(M ; \mathbb{K}):=\frac{\operatorname{ker}\left(d: \Omega^{k}(M ; \mathbb{K}) \rightarrow \Omega^{k+1}(M ; \mathbb{K})\right)}{\operatorname{im}\left(d: \Omega^{k-1}(M ; \mathbb{K}) \rightarrow \Omega^{k}(M ; \mathbb{K})\right)} .
$$

The number $b_{k}(M):=\operatorname{dim}_{\mathbb{R}}\left(H^{k} ; \mathbb{R}\right)$ is called the k-th Betti number of M.

Note that since $d \circ d \equiv 0$, we have

$$
\operatorname{im}\left(d: \Omega^{k-1}(M ; \mathbb{K}) \rightarrow \Omega^{k}(M ; \mathbb{K})\right) \subset \operatorname{ker}\left(d: \Omega^{k}(M ; \mathbb{K}) \rightarrow \Omega^{k+1}(M ; \mathbb{K})\right)
$$

so the quotient is well-defined.

Definition 2.5.5. $c_{\lambda}(P):=[\lambda \circ \bar{\Omega}] \in H^{2 k}(B ; \mathbb{K})$ is called the characteristic class of the bundle $P \rightarrow B$ associated with λ.

2 Bundle theory

Remark 2.5.6. Lemma[2.5.2]says that $\lambda \circ \bar{\Omega}$ indeed represents a de Rham class. Lemma 2.5 .3 in turn says that this class is independent of the choice of connection on $P \rightarrow B$.

Remark 2.5.7. Let $P \xrightarrow{\pi} B$ be a G-principal bundle and let $f: M \rightarrow B$ be a smooth map. Then the pull-back bundle $f^{*} P \xrightarrow{\mathrm{pr}_{2}} P$ fits into the following commutative diagram:

Let ω be a connection 1-form on P with curvature form Ω. Then $\operatorname{pr}_{2}^{*} \omega \in \Omega^{1}\left(f^{*} P ; \mathfrak{g}\right)$ is a connection 1 -form on the pull-back bundle $f^{*} P$: To check property 1 . from the definition (i.e. equivariance), we compute:

$$
\begin{aligned}
R_{g}^{*} \operatorname{pr}_{2}^{*} \omega & =\left(\operatorname{pr}_{2} \circ R_{g}\right)^{*} \omega \\
& =\left(R_{g} \circ \operatorname{pr}_{2}\right)^{*} \omega \\
& =\operatorname{pr}_{2}^{*} R_{g}^{*} \omega \\
& =\operatorname{pr}_{2}^{*} \operatorname{Ad}_{g^{-1}} \omega \\
& =\operatorname{Ad}_{g^{-1}} \operatorname{pr}_{2}^{*} \omega .
\end{aligned}
$$

As to property 2. (i.e. the evaluation on fundamental vector fields), for any $X \in \mathfrak{g}$, we have:

$$
\left(\operatorname{pr}_{2}^{*} \omega\right)(\underbrace{\bar{X}}_{\in \mathfrak{X}\left(f^{*} P\right)})=\omega(\underbrace{\bar{X}}_{\in \mathfrak{X}(P)})=X .
$$

For the curvature form Ω^{\prime} of $\operatorname{pr}_{2}^{*} \omega$, we obtain:

$$
\Omega^{\prime}=d\left(\operatorname{pr}_{2}^{*} \omega\right)+\frac{1}{2}\left[\operatorname{pr}_{2}^{*} \omega, \operatorname{pr}_{2}^{*} \omega\right]=\operatorname{pr}_{2}^{*}\left(d \omega+\frac{1}{2}[\omega, \omega]\right)=\operatorname{pr}_{2}^{*} \Omega .
$$

Now let $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be an open cover with local sections $s_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$ for the bundle $P \rightarrow B$. Then setting $V_{\alpha}:=f^{-1}\left(U_{\alpha}\right)$ and $s_{\alpha}^{\prime}:=\operatorname{pr}_{2}^{-1} \circ s_{\alpha} \circ f$, we obtain an open cover with local sections for the pull-back bundle $f^{*} P \rightarrow M$. The local curvature forms Ω_{α}^{\prime} for $f^{*} P$ now read:

$$
\Omega_{\alpha}^{\prime}=\left(s_{\alpha}^{\prime}\right)^{*} \Omega^{\prime}=f^{*} \circ s_{\alpha}^{*} \circ\left(\operatorname{pr}_{2}^{-1}\right)^{*} \operatorname{pr}_{2}^{*} \Omega=f^{*} \Omega_{\alpha} .
$$

Thus pulling back the form $\lambda(\bar{\Omega}) \in \Omega^{2 k}(B ; \mathbb{K})$ along f to $\Omega^{2 k}(M ; \mathbb{K})$, we obtain:

$$
\begin{aligned}
f^{*}(\lambda(\bar{\Omega})) & =f^{*} \sum_{j_{1}, \ldots, j_{k}=1}^{N} \Omega_{\alpha}^{j_{1}} \wedge \ldots \wedge \Omega_{\alpha}^{j_{k}} \cdot \lambda\left(Y_{1}, \ldots, Y_{k}\right) \\
& =\sum_{j_{1}, \ldots, j_{k}=1}^{N} f^{*} \Omega_{\alpha}^{j_{1}} \wedge \ldots \wedge f^{*} \Omega_{\alpha}^{j_{k}} \cdot \lambda\left(Y_{1}, \ldots, Y_{k}\right) \\
& =\sum_{j_{1}, \ldots, j_{k}=1}^{N}\left(\Omega^{\prime}\right)_{\alpha}^{j_{1}} \wedge \ldots \wedge\left(\Omega^{\prime}\right)_{\alpha}^{j_{k}} \cdot \lambda\left(Y_{1}, \ldots, Y_{k}\right) \\
& =\lambda\left(\bar{\Omega}^{\prime}\right) .
\end{aligned}
$$

Hence we have shown that the assignment of de Rham cohomomology classes to G principal bundles by means of the construction above is natural, i.e. :

$$
\begin{equation*}
H^{2 k}(M ; \mathbb{K}) \ni c_{\lambda}\left(f^{*} P\right)=f^{*}(\underbrace{c_{\lambda}(P)}_{\in H^{2 k}(B ; \mathbb{K})}) \tag{2.8}
\end{equation*}
$$

Remark 2.5.8. Let $\lambda: \mathfrak{g} \times \ldots \times \mathfrak{g} \rightarrow \mathbb{K}$ be a multilinear, symmetric, invariant map and let $P, P^{\prime} \rightarrow B$ be isomorphic G-principal bundles. Then we have $c_{\lambda}(P)=c_{\lambda}\left(P^{\prime}\right)$:
If $\varphi: P \rightarrow P^{\prime}$ is an isomorphism and ω is a connection 1-form on P, then $\omega^{\prime}:=\varphi^{*} \omega$ is a connection 1-form on P^{\prime}. Further, the corresponding curvatures are related by $\Omega^{\prime}=\varphi^{*} \Omega$. Given an open cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ with local sections $s_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$, then $s_{\alpha}^{\prime}:=\varphi^{-1} \circ s_{\alpha}$ define local sections for P^{\prime} on the same cover. The local curvature forms are related by

$$
\Omega_{\alpha}^{\prime}=\left(s_{\alpha}^{\prime}\right)^{*} \Omega^{\prime}=s_{\alpha}^{*} \circ\left(\varphi^{-1}\right)^{*} \varphi^{*} \Omega=s_{\alpha}^{*} \Omega=\Omega_{\alpha} .
$$

This implies $\lambda\left(\bar{\Omega}^{\prime}\right)=\lambda(\bar{\Omega})$ and hence $c_{\lambda}(P)=c_{\lambda}\left(P^{\prime}\right)$.

Remark 2.5.9. Let $\lambda: \overbrace{\mathfrak{g} \times \ldots \times \mathfrak{g}}^{k} \rightarrow \mathbb{K}$ be a multilinear, symmetric, invariant map, $k \geq 1$. If P is a trivial G-principal bundle, then $c_{\lambda}(P)=0 \in H^{2 k}(B ; \mathbb{K})$:
By Remark [2.5.8, it suffices to prove that $c_{\lambda}(B \times G)$, i.e. we may replace the trivial bundle P by the product $B \times G$. Let $\varphi \in \Omega^{1}(G ; \mathfrak{g})$ be given by $\varphi_{g}:=d L_{g^{-1}}$. Then $\omega:=\operatorname{pr}_{2}^{*} \varphi \in \Omega^{1}(B \times G ; \mathfrak{g})$ is a connection 1-form: To show property 1., we compute:

$$
\begin{aligned}
R_{g}^{*} \omega_{\left(b, g^{\prime}\right)} & =R_{g}^{*} \operatorname{pr}_{2}^{*} \varphi_{g^{\prime}} \\
& =\left(\operatorname{pr}_{2} \circ R_{g}\right)^{*} \varphi_{g^{\prime}} \\
& =\left(R_{g} \circ \operatorname{pr}_{2}\right)^{*} \varphi_{g^{\prime}} \\
& =\operatorname{pr}_{2}^{*} R_{g}^{*} \varphi_{g^{\prime}} \\
& =\operatorname{pr}_{2}^{*}\left(d L_{\left.\left(g^{\prime}\right)\right)^{-1}} \circ d R_{g}\right) \\
& =\operatorname{pr}_{2}^{*}\left(\operatorname{Ad}_{g^{-1}} \circ d L_{\left.g \cdot\left(g^{\prime}\right)\right)^{-1}}\right) \\
& =\operatorname{Ad}_{g^{-1}} \circ \operatorname{pr}_{2}^{*} \varphi_{g^{\prime} \cdot g^{-1}} \\
& =\operatorname{Ad}_{g^{-1}} \circ \omega_{\left(b, g^{\prime} \cdot g^{-1}\right)} .
\end{aligned}
$$

2 Bundle theory

As to property 2., for any $X \in \mathfrak{g}$, we have:

$$
\omega(\bar{X})=\left(\operatorname{pr}_{2}^{*} \varphi\right)(\bar{X})=\varphi(\bar{X})=\varphi .
$$

For the curvature form of the connection ω, we obtain:

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega]=d \operatorname{pr}_{2}^{*} \varphi+\frac{1}{2}\left[\operatorname{pr}_{2}^{*} \varphi, \operatorname{pr}_{2}^{*} \varphi\right]=\operatorname{pr}_{2}^{*}\left(d \varphi+\frac{1}{2}[\varphi, \varphi]\right) .
$$

Now let $X, Y \in \mathfrak{g}$ be left-invariant vector fields on G. We then have:

$$
\begin{aligned}
d \varphi(X, Y) & =\partial_{X} \varphi(Y)-\partial_{Y} \varphi(X)-\varphi([X, Y]) \\
& =\partial_{X}(Y(e))-\partial_{Y}(X(e))-[X, Y](e) \\
& =[X, Y](e) \\
{[\varphi, \varphi](X, Y) } & =[\varphi(X), \varphi(Y)]-[\varphi(Y, \varphi(X)] \\
& =2[X, Y]
\end{aligned}
$$

Hence $d \varphi+\frac{1}{2}[\varphi, \varphi]=0$ and thus $\Omega=0$. Consequently, $\lambda(\bar{\Omega})=0$ and $c_{\lambda}(B \times G)=0$.

Corollary 2.5.10

Let $\lambda: \mathfrak{g} \times \ldots \times \mathfrak{g} \rightarrow \mathbb{K}$ be a multilinear, symmetric, invariant map, $k \geq 1$. If $c_{\lambda}(P) \neq 0 \in H^{2 k}(B ; \mathbb{K})$, then P is not a trivial bundle.

Example 2.5.11. For $G=\mathrm{GL}(n ; \mathbb{C})$ or $G=\mathrm{U}(n)$ and $\lambda: \mathfrak{g} \rightarrow \mathbb{K}, \lambda(A):=\frac{1}{2 \pi i} \operatorname{tr}(A)$, the characteristic class $c_{\lambda}(P)=: c_{1}(P)$ is called the 1. Chern class of P. (The field \mathbb{K} can be taken $\mathbb{K}=\mathbb{C}$ for $G=\mathrm{GL}(n ; \mathbb{C})$ or $\mathbb{K}=\mathbb{R}$ for $G=\mathrm{U}(n)$.)

Example 2.5.12. Let $P \rightarrow B$ be a $\mathrm{U}(1)$-principal bundle over a closed surface B (i.e. B is a compact two dimensional manifold with no boundary). Then $c_{1}(P)=\left[\frac{1}{2 \pi i} \bar{\Omega}\right] \in H_{d R}^{2}(B ; \mathbb{R})$. If $c_{1}(P)=0$, there exists a form $\eta \in \Omega^{1}(B ; i \mathbb{R})$ such that $\bar{\Omega}=d \eta$. Integrating over the base and using Stokes theorem, we obtain:

$$
\int_{B} \bar{\Omega}=\int_{B} d \eta=\int_{\partial B} \eta=0 .
$$

Hence if $\int_{B} \bar{\Omega} \neq 0$, then the bundle cannot be trivial.

Example 2.5.13. For $G=\mathrm{GL}(n ; \mathbb{C})$ or $G=\mathrm{U}(n)$ and $\lambda: \mathfrak{g} \rightarrow \mathbb{K}$,

$$
\lambda\left(A_{1}, \ldots, A_{n}\right):=\frac{1}{(2 \pi i)^{n}} A_{1} \wedge \ldots \wedge A_{n} \in \operatorname{End}\left(\Lambda^{n} \mathbb{C}^{n}\right) \cong \mathbb{C}
$$

the characteristic class $c_{\lambda}(P)=: c_{n}(P)$ is called the $\boldsymbol{n}^{\text {th }}$ Chern class of P. (As above, the field \mathbb{K} can be taken $\mathbb{K}=\mathbb{C}$ for $G=\mathrm{GL}(n ; \mathbb{C})$ or $\mathbb{K}=\mathbb{R}$ for $G=\mathrm{U}(n)$.)

Example 2.5.14. For $G=\operatorname{SO}(2 m)$, we have $\mathfrak{g}=\mathfrak{s o}(2 m) \cong \Lambda^{2} \mathbb{R}^{2 m}$. Let $\lambda: \underbrace{\mathfrak{g} \times \ldots \times \mathfrak{g}}_{m} \rightarrow \mathbb{R}$ be defined as

$$
\lambda\left(\sigma_{1}, \ldots, \sigma_{m}\right):=\sigma_{1} \wedge \ldots \wedge \sigma_{m} \in \Lambda^{2 m} \mathbb{R}^{2 m}
$$

(The map Pf : $\sigma \mapsto \lambda(\sigma, \ldots, \sigma)$ is called the Pfaffian.) The characteristic class

$$
\left[\frac{\operatorname{Pf}(\bar{\Omega})}{(2 \pi)^{m} \cdot m!}\right]=: e(P) \in H^{2 m}(B ; \mathbb{R})
$$

is called the Euler class of P.

Example 2.5.15. For $G=\mathrm{SO}(2)=\mathrm{U}(1)$, we have $\mathfrak{s o}(2) \cong \mathbb{R}$ and $\mathfrak{u}(1) \cong i \mathbb{R}$. Since Pf : $\mathfrak{s o}(2) \rightarrow \mathbb{R}, \sigma \mapsto \sigma$ and $\operatorname{tr}: \mathfrak{u}(1) \rightarrow i \mathbb{R}, A \mapsto A$, we have:

$$
e(P)=\left[\frac{\operatorname{Pf}(\bar{\Omega})}{(2 \pi)^{1} \cdot 1!}\right]=\left[\frac{\operatorname{tr}(\bar{\Omega})}{2 \pi i}\right]=c_{1}(P) .
$$

2.6 Parallel transport

In this section, let $P \rightarrow B$ be a G-principal bundle with a fixed connection 1-form ω.

Lemma 2.6.1

For any (piecewise) smooth curve $c: I \rightarrow B, t_{0} \in I$ and any point $p \in P_{c\left(t_{0}\right)}$ there exists a unique (piecewise) smooth curve $\tilde{c}: I \rightarrow P$ with the following three properties:
(i) $c=\tilde{c} \circ \pi$, i.e. \tilde{c} is a lift of c.
(ii) $\forall t \in I: \dot{\tilde{c}}(t) \in H_{\tilde{c}(t)}$, i.e. $\dot{\tilde{c}}$ is horizontal.
(iii) $\tilde{c}\left(t_{0}\right)=p$.

The curve \tilde{c} is called the horizontal lift of c with initial condition (iii).

2 Bundle theory

Proof. W.l.o.g. we assume c to be smooth and $c(I) \subset U_{\alpha}$ with a local section $s_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$. A curve \tilde{c} satisfies (i) iff for any $t \in I$, we have $\tilde{c}(t)=s_{\alpha}(c(t)) \cdot h_{\alpha}(t)$ for some function $h_{\alpha}: I \rightarrow G$.

Then $h_{\alpha}\left(t_{0}\right)$ is uniquely determined by condition (iii). We express condition (ii) in terms of the function h_{α}. At $t=t_{1}$, we have:

$$
\begin{aligned}
0 & =\omega\left(\dot{\tilde{c}}\left(t_{1}\right)\right) \\
& =\omega\left(\left.\frac{d}{d t}\right|_{t=t_{1}} s_{\alpha}(c(t)) \cdot h_{\alpha}(t)\right) \\
& =\omega(d L_{s_{\alpha}\left(c\left(t_{1}\right)\right) \cdot h_{\alpha}\left(t_{1}\right)}\left(\left.\frac{d}{d t}\right|_{t=t_{1}}\left(h_{\alpha}\left(t_{1}\right)^{-1} \cdot h_{\alpha}(t)\right)\right)+d R_{h_{\alpha}\left(t_{1}\right)}(\underbrace{\left.\frac{d}{d t}\right|_{t=t_{1}} s_{\alpha}\left(c\left(t_{1}\right)\right)}_{=: \dot{s}_{\alpha}\left(t_{1}\right)})) \\
& =\omega\left(\overline{\left.\frac{d}{d t}\right|_{t=t_{1}}\left(h_{\alpha}\left(t_{1}\right)^{-1} \cdot h_{\alpha}(t)\right)}\right)+\left(R_{h_{\alpha}\left(t_{1}\right)}^{*} \omega\right)\left(\dot{s}_{\alpha}\left(t_{1}\right)\right) \\
& =\left.\frac{d}{d t}\right|_{t=t_{1}}\left(h_{\alpha}\left(t_{1}\right)^{-1} \cdot h_{\alpha}(t)\right)+\operatorname{Ad}_{h_{\alpha}\left(t_{1}\right)^{-1}} \circ \omega\left(\dot{s}_{\alpha}\left(t_{1}\right)\right) \\
& =d L_{h_{\alpha}\left(t_{1}\right)^{-1}}\left(\dot{h}_{\alpha}\left(t_{1}\right)\right)+\left(d L_{\left.h_{\alpha}\left(t_{1}\right)^{-1} \circ d R_{h_{\alpha}\left(t_{1}\right)}\right)\left(\omega\left(\dot{s}_{\alpha}\left(t_{1}\right)\right)\right)}\right.
\end{aligned}
$$

Applying $\left(d L_{h_{\alpha}\left(t_{1}\right)^{-1}}\right)^{-1}$ to both sides of the last equation, we obtain the equivalent condition

$$
\begin{equation*}
\dot{h}_{\alpha}\left(t_{1}\right)=-d R_{h_{\alpha}\left(t_{1}\right)}\left(\omega\left(\dot{s}_{\alpha}\left(t_{1}\right)\right)\right) . \tag{2.9}
\end{equation*}
$$

This is a first order ODE for the function h_{α}, which has, for a given initial condition, a unique solution defined on all of I.

Remark 2.6.2. The fact that the solution to (2.9) exists on all of I is not apparent from the usual Picard-Lindelöf theorem on ODEs. In case that G is a matrix group, $G \subset \mathrm{GL}(n ; \mathbb{K})$, then (2.9) reads

$$
\dot{h}_{\alpha}=-d R_{h_{\alpha}}\left(\omega\left(\dot{s}_{\alpha}\right)\right)=-\omega\left(\dot{s}_{\alpha}\right) \cdot h_{\alpha} .
$$

This is a linear ODE, hence the solution exists on the whole interval I.
In the general case, one can argue as follows: Suppose the maximal solution to (2.9) exists only up to t_{1} where t_{1} is smaller than the right border of I. Choose a horizontal lift \hat{c} of c in a neighborhood of t_{1}. For some $\tau<t_{1}$ choose $g \in G$ such that $\tilde{c}(\tau)=\hat{c}(\tau) \cdot g$. Then $\bar{c}:=\hat{c} \cdot g$ is another horizontal lift of c in a neighborhood of t_{1} (compare Remark [2.6.5.5 below). It coincides with \tilde{c} at τ, by uniqueness they coincide whereever they are both defined. Hence \bar{c} extends \tilde{c} beyond t_{1} contradicting the maximality of t_{1}.

Remark 2.6.3. Let $\varrho: G \rightarrow \operatorname{Aut}(V)$ be a representation and $\mathcal{V}:=P \times{ }_{\varrho} V$ the associated vector bundle. For $c: I \rightarrow B$ let \tilde{c} be a horizontal lift. Then for any fixed $v \in V$, the map

$$
I \rightarrow \mathcal{V}, t \mapsto[\tilde{c}(t), v]
$$

is a parallel section of \mathcal{V} along c. Indeed, covariant differention by t yields:

$$
\frac{\nabla}{d t}[\tilde{c}(t), v]=[\tilde{c}(t), \underbrace{\frac{d}{d t} v}_{=0}+\varrho_{*}(\underbrace{\omega_{\tilde{c}(t)}\left(\dot{s}_{\alpha}(t)\right)}_{=0})]=0
$$

In case P is the frame bundle of a vector bundle E and ϱ is the standard representation, then $\tilde{c}(t)=\left(b_{1}(t), \ldots, b_{n}(t)\right)$ is a curve of basis vectors and \tilde{c} is horizontal iff b_{1}, \ldots, b_{n} are parallel.

Definition 2.6.4

For a fixed curve $c:\left[t_{0}, t_{1}\right] \rightarrow B$, we get a map $\Gamma(c): P_{c\left(t_{0}\right)} \rightarrow P_{c\left(t_{1}\right)}$ by setting

$$
\Gamma(c)(p):=\tilde{c}\left(t_{1}\right),
$$

where \tilde{c} is the horizontal lift of c with initial condition $\tilde{c}\left(t_{0}\right)=p$. $\Gamma(c)$ is called the parallel transport along c.

2 Bundle theory

Remark 2.6.5. The parallel transport has the following properties:

1. If c is constant, then \tilde{c} is also constant, hence $\Gamma(c)=\mathrm{id}$.
2. If $c^{\prime}=c \circ \varphi$, where φ is an orientation preserving reparametrization, then $\tilde{c}^{\prime}:=\tilde{c} \circ \varphi$ is a horizontal lift for c^{\prime} with the same initial condition as \tilde{c}. Hence $\Gamma(c)=\Gamma\left(c^{\prime}\right)$.
3. If $c^{\prime}=c \circ \varphi$, where φ is an orientation reversing reparametrization, then $\tilde{c}^{\prime}:=\tilde{c} \circ \varphi$ is a horizontal lift for c^{\prime} with the initial condition $\tilde{c}^{\prime}\left(t_{0}\right)=\tilde{c}\left(t_{1}\right)$. Hence $\Gamma\left(c^{\prime}\right)=\Gamma(c)^{-1}$. In particular, $\Gamma(c)$ is always a diffeomorphism.
4. For the concatenation $c_{2} * c_{1}$ of piecewise smooth curves, we have $\Gamma\left(c_{2} * c_{1}\right)=\Gamma\left(c_{2}\right) \circ \Gamma\left(c_{1}\right)$.
5. If \tilde{c} is the horizontal lift of c with initial condition $c\left(t_{0}\right)=p$, then for $g \in G, \tilde{c} \cdot g$ is the horizontal lift of c with initial condition $c\left(t_{0}\right)=p \cdot g$. Hence for any $g \in G$, we have $R_{g} \circ \Gamma(c)=\Gamma(c) \circ R_{g}$.

Remark 2.6.6. As seen above, $\Gamma(c)$ does not depend on a particular parametrization of the curve c. But in general, it does depend on c. For a closed curve c, we have $\Gamma(c) \neq \mathrm{id}$ in general. This is related to curvature, as we shall see soon.

As we have seen, for matrix groups $G \subset G L(n ; \mathbb{K})$, the horizontal lift is the solution of a linear first order ODE. So let us consider the following linear ODE of first order on $[0, t]$:

$$
\begin{align*}
\dot{v}(t) & =-A(t) \cdot v(t) \tag{2.10}\\
v(0) & =v_{0} .
\end{align*}
$$

If all $A(t)$ commute, i.e. $t \mapsto A(t)$ takes values in an abelian subalgebra of $\operatorname{Mat}(n \times n ; \mathbb{K})$, then the solution of (2.10) is given by $v(t)=\exp \left(-\int_{0}^{t} A(\tau) d \tau\right) \cdot v_{0}$. Indeed, differentiating by t, we get:

$$
\begin{aligned}
\dot{v}(t)= & \frac{d}{d t} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!}\left(\int_{0}^{t} A(\tau)\right)^{j} \cdot v_{0} \\
= & \sum_{j=1}^{\infty} \frac{(-1)^{j}}{j!}\left\{A(t) \cdot \int_{0}^{t} A(\tau) d \tau \ldots \int_{0}^{t} A(\tau) d \tau\right. \\
& \left.+\ldots+\int_{0}^{t} A(\tau) d \tau \ldots \int_{0}^{t} A(\tau) d \tau \cdot A(t)\right\} \cdot v_{0} \\
= & \sum_{j=1}^{\infty} \frac{(-1)^{j}}{j!} \cdot j \cdot A(t) \cdot\left(\int_{0}^{t} A(\tau) d \tau\right)^{j-1} \cdot v_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =-A(t) \cdot \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} \cdot\left(\int_{0}^{t} A(\tau) d \tau\right)^{j-1} \cdot v_{0} \\
& =-A(t) \cdot \sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!} \cdot\left(\int_{0}^{t} A(\tau) d \tau\right)^{j} \cdot v_{0} \\
& =-A(t) \cdot v_{0}
\end{aligned}
$$

For the third equation we used the fact that all $A(\tau)$ commute to move $A(t)$ in front. In the general case, this is not possible and we have an ordering problem. This problem is fixed as follows:

Lemma 2.6.7

Let $I=[0, L] \subset \mathbb{R}$ be a fixed interval and let $A: I \rightarrow \operatorname{Mat}(n \times n ; \mathbb{K})$ be a continuous curve. Then the solution of the $O D E(2.10)$ is given by:

$$
\begin{align*}
v(t) & =\sum_{j=0}^{\infty}(-1)^{j} \int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j}\right) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0} \tag{2.11}\\
& =\lim _{N \rightarrow \infty}\left(\mathbb{1}_{n}-\frac{t}{N} A\left(\frac{N-1}{N} t\right)\right) \ldots\left(\mathbb{1}_{n}-\frac{t}{N} A\left(\frac{1}{N} t\right)\right)\left(\mathbb{1}_{n}-\frac{t}{N} A(0)\right) v_{0} \tag{2.12}
\end{align*}
$$

Proof.
a) The difference quotient $\frac{v(s+\epsilon)-v(s)}{\epsilon}=\dot{v}(s)+\mathrm{O}(\epsilon)=-A(s) \cdot v(s)+\mathrm{O}(\epsilon)$ yields

$$
v(s+\epsilon)=v(s)-\epsilon A(s) \cdot v(s)+\mathrm{O}\left(\epsilon^{2}\right)=\left(\mathbb{1}_{n}-\epsilon A(s)\right) \cdot v(s)+\mathrm{O}\left(\epsilon^{2}\right)
$$

Setting $s=\frac{k}{N} t$ and $\epsilon=\frac{t}{N}$, we get:

$$
v\left(\frac{k+1}{N} t\right)=\left(\mathbb{1}_{n}-\frac{t}{N} A\left(\frac{k}{N} t\right)\right) \cdot v\left(\frac{k}{N} t\right)+\mathrm{O}\left(\frac{t^{2}}{N^{2}}\right) .
$$

Setting iteratively $k=N-1, N-2, \ldots, 0$, we get:

$$
\begin{aligned}
v(t) & =v\left(\frac{N}{N} t\right) \\
& =\left(\mathbb{1}_{n}-\frac{t}{N} A\left(\frac{N-1}{N} t\right)\right) \cdot v\left(\frac{N-1}{N} t\right)+\mathrm{O}\left(\frac{t^{2}}{N^{2}}\right) \\
& =\left(\mathbb{1}_{n}-\frac{t}{N} A\left(\frac{N-1}{N} t\right)\right) \cdot\left(\mathbb{1}_{n}-\frac{t}{N} A\left(\frac{N-2}{N} t\right)\right) \cdot v\left(\frac{N-2}{N} t\right)+2 \mathrm{O}\left(\frac{t^{2}}{N^{2}}\right)
\end{aligned}
$$

$$
=\left(\mathbb{1}_{n}-\frac{t}{N} A\left(\frac{N-1}{N} t\right)\right) \cdot \ldots \cdot\left(\mathbb{1}_{n}-\frac{t}{N} A(0)\right) \cdot v_{0}+\underbrace{N \mathrm{O}\left(\frac{t^{2}}{N^{2}}\right)}_{\mathrm{O}\left(\frac{1}{N}\right)} .
$$

This proves (2.12).
b) By a simple induction on j, we show that

$$
\int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1}=\frac{t^{j}}{j!}
$$

Indeed, for $j=1$, the claim is obviously true. For the induction step from $j-1$ to j, we have:

$$
\int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1}=\int_{0}^{t} d \tau_{j} \frac{\tau_{j}^{j-1}}{(j-1)!}=\frac{1}{j} \cdot \frac{\tau^{j}}{(j-1)!}=\frac{\tau^{j}}{j!}
$$

c) Let $\|\cdot\|$ be the operator norm on $\operatorname{Mat}(n \times n ; \mathbb{K})$. Then we have:

$$
\begin{aligned}
& \left\|\int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j}\right) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0}\right\| \\
& \quad \leq \int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} \underbrace{\left\|A\left(\tau_{j}\right) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right)\right\|}_{\leq\|A\|_{C^{0}(I)}^{j}} \cdot v_{0} \\
& \quad \leq \frac{t^{j}}{j!}\|A\|_{C^{0}(I)}^{j}
\end{aligned}
$$

whence

$$
\left\|t \mapsto \int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j}\right) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0}\right\|_{C^{0}(I)} \leq \frac{L^{j}}{j!} \cdot\|A\|_{C^{0}(I)}^{j}
$$

This tells us that the series in (2.11) converges absolutely in the Banach space $C^{0}(I ; \operatorname{Mat}(n \times n ; \mathbb{K}))$. We further need to control the C^{1}-norm of the series:

$$
\begin{aligned}
& \left\|\frac{d}{d t} \int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j}\right) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0}\right\| \\
& \quad=\left\|\int_{0}^{t} d \tau_{j-1} \int_{0}^{\tau_{j-1}} d \tau_{j-2} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j}\right) \cdot A(t) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0}\right\| \\
& \quad \leq \frac{t^{j-1}}{(j-1)!} \cdot\|A\|_{C^{0}(I)}^{j}
\end{aligned}
$$

whence

$$
\begin{aligned}
& \left\|\frac{d}{d t}\left(t \mapsto \int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j}\right) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0}\right)\right\|_{C^{0}(I)} \\
& \quad \leq \frac{L^{j-1}}{(j-1)!} \cdot\|A\|_{C^{0}(I)}^{j}
\end{aligned}
$$

Together, we have the required estimate of the C^{1}-norm:

$$
\begin{aligned}
& \left\|t \mapsto \int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j}\right) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0}\right\|_{C^{0}(I)} \\
& \quad \leq\left(\frac{L^{j}}{j!}+\frac{L^{j-1}}{(j-1)!}\right) \cdot\|A\|_{C^{0}(I)}
\end{aligned}
$$

Hence the series in (2.11) converges absolutely in the Banach space $C^{1}(I ; \operatorname{Mat}(n \times n ; \mathbb{K}))$. This implies that the series defines a C^{1}-function and we may differentiate termwise.
d) Doing so, we obtain:

$$
\begin{aligned}
\frac{d}{d t} & \sum_{j=0}^{\infty}(-1)^{j} \int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j}\right) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0} \\
& =\sum_{j=1}^{\infty}(-1)^{j} \frac{d}{d t} \int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j}\right) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0} \\
& =\sum_{j=1}^{\infty}(-1)^{j} A(t) \int_{0}^{t} d \tau_{j-1} \int_{0}^{\tau_{j-1}} d \tau_{j-2} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0} \\
& =-A(t) \cdot \sum_{j=1}^{\infty}(-1)^{j-1} \int_{0}^{t} d \tau_{j-1} \int_{0}^{\tau_{j-1}} d \tau_{j-2} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \cdot v_{0} \\
& =-A(t) \cdot v(t) .
\end{aligned}
$$

Definition 2.6.8. The solution operator to the ODE (2.10)

$$
\begin{align*}
& \operatorname{Pexp}\left(-\int_{0}^{t} A(\tau) d \tau\right) \\
& :=\sum_{j=0}^{\infty}(-1)^{j} \int_{0}^{t} d \tau_{j} \int_{0}^{\tau_{j}} d \tau_{j-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{j}\right) \cdot A\left(\tau_{j-1}\right) \cdot \ldots \cdot A\left(\tau_{1}\right) \tag{2.13}\\
& =\lim _{N \rightarrow \infty}\left(\mathbb{1}_{n}-\frac{t}{N} A\left(\frac{N-1}{N} t\right)\right) \cdot \ldots \cdot\left(\mathbb{1}_{n}-\frac{t}{N} A\left(\frac{1}{N} t\right)\right) \cdot\left(\mathbb{1}_{n}-\frac{t}{N} A(0)\right) \tag{2.14}
\end{align*}
$$

is called the path-ordered exponential of A.

Lemma 2.6.7 says that the solution to (2.10) is given by

$$
v(t)=\operatorname{Pexp}\left(-\int_{0}^{t} A(\tau) d \tau\right) \cdot v_{0}
$$

Remark 2.6.9. Let G be abelian, let $c: I \rightarrow B$ be a closed curve contained in a U_{α}, $c(I) \subset U_{\alpha}$, on which a section s_{α} is defined. Assume that the curve bounds a surface S, also contained in U_{α}. Using Stokes's theorem and $\Omega_{\alpha}=d \omega_{\alpha}$ we have
$\Gamma(c)=\exp \left(-\int_{I} \omega_{\alpha}(\dot{c}(t)) d t\right)=\exp \left(-\int_{c} \omega_{\alpha}\right)=\exp \left(-\int_{S} d \omega_{\alpha}\right)=\exp \left(-\int_{S} \Omega_{\alpha}\right)$.

This shows that in general, $\Gamma(c) \neq \mathrm{id}$, if $\Omega \neq 0$.

Now let $G \subset \mathrm{GL}(n ; \mathbb{K})$ be a (not necessarily abelian) matrix group and let $P \rightarrow B$ be a G-principal bundle with connection 1 -form ω. For any $b_{0} \in B$, let $c_{L}:[0,1] \rightarrow B$ be a 1-parameter family of closed curves satisfying $c_{L}(0)=c_{L}(1)=b_{0}$ and length $\left(c_{L}\right)=\mathrm{O}(L)$. W.l.o.g. assume that every c_{L} is parametrized proportionally to arclength, i.e. $\quad\left\|\dot{c}_{L}\right\|=\mathrm{const}=\mathrm{O}(L)$. Let c_{L} bound a surface $S_{L} \subset B$ such that S_{L} is contained in the ball of radius $C \cdot L$ about b_{0} (w.r.t. some metric) where C is a fixed constant and area $\left(S_{L}\right)=\mathrm{O}\left(L^{2}\right)$. Then, for sufficiently small L, we have $S_{L} \subset U_{\alpha}$, where $U_{\alpha} \subset B$ is an open neighborhood of b_{0} with a section $s_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$.

Now for an arbitrary fixed L, denoting c_{L} by c and S_{L} by S, we have:

$$
\begin{align*}
\Gamma(c)= & \operatorname{Pexp}\left(-\int_{c} \omega_{\alpha}\right) \\
= & \mathbb{1}_{n}-\int_{0}^{1} d \tau \omega_{\alpha}(c(\tau))(\dot{c}(\tau)) \\
& +\int_{0}^{1} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1} \underbrace{\left(\omega_{\alpha}\left(c\left(\tau_{2}\right)\right)\left(\dot{c}\left(\tau_{2}\right)\right)\right)}_{\in \mathfrak{g}} \cdot \underbrace{\left(\omega_{\alpha}\left(c\left(\tau_{1}\right)\right)\left(\dot{c}\left(\tau_{1}\right)\right)\right)}_{\in \mathfrak{g}}+\mathrm{O}\left(L^{3}\right) . \tag{2.15}
\end{align*}
$$

Using Stokes' theorem, we find for the first integral:

$$
\int_{0}^{1} d \tau \omega_{\alpha}(c(\tau))(\dot{c}(\tau))=\int_{c} \omega_{\alpha}=\int_{S} d \omega_{\alpha}=\mathrm{O}\left(L^{2}\right)
$$

To estimate the second integral, we set

$$
\int_{0}^{1} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1}\left(\left(\omega_{\alpha}\left(c\left(\tau_{2}\right)\right)\left(\dot{c}\left(\tau_{2}\right)\right)\right) \cdot\left(\omega_{\alpha}\left(c\left(\tau_{1}\right)\right)\left(\dot{c}\left(\tau_{1}\right)\right)\right)=I_{s}+I_{a}\right.
$$

where $I_{s / a}:=\frac{1}{2} \cdot \int_{0}^{1} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1}\left(\omega_{\alpha}\left(\dot{c}\left(\tau_{2}\right)\right) \cdot \omega_{\alpha}\left(\dot{c}\left(\tau_{1}\right)\right) \mp \omega_{\alpha}\left(\dot{c}\left(\tau_{1}\right)\right) \cdot \omega_{\alpha}\left(\dot{c}\left(\tau_{2}\right)\right)\right)$. Then we have:

$$
\begin{aligned}
2 \cdot I_{s} & =\iint_{0 \leq \tau_{1} \leq \tau_{2} \leq 1} d \tau_{2} d \tau_{1} \omega_{\alpha}\left(\dot{c}\left(\tau_{2}\right)\right) \cdot \omega_{\alpha}\left(\dot{c}\left(\tau_{1}\right)\right)+\iint_{0 \leq \tau_{2} \leq \tau_{1} \leq 1} d \tau_{2} d \tau_{1} \omega_{\alpha}\left(\dot{c}\left(\tau_{2}\right)\right) \cdot \omega_{\alpha}\left(\dot{c}\left(\tau_{1}\right)\right) \\
& =\int_{0}^{1} \int_{0}^{1} d \tau_{2} d \tau_{1} \omega_{\alpha}\left(\dot{c}\left(\tau_{2}\right)\right) \cdot \omega_{\alpha}\left(\dot{c}\left(\tau_{1}\right)\right) \\
& =\left(\int_{0}^{1} d \tau \omega_{\alpha}(\dot{c}(\tau))\right)^{2} \\
& =\mathrm{O}\left(L^{4}\right)
\end{aligned}
$$

Hence I_{s} is swallowed by the error term $\mathrm{O}\left(L^{3}\right)$ in (2.15). To determine I_{a}, we introduce local coordinates $x^{1}, \ldots x^{n}$ around b_{0} such that b_{0} has the coordinates $(0, \ldots, 0)$ and we

2 Bundle theory

write $\omega_{\alpha}=\sum_{j=1}^{n} \omega_{\alpha, j} d x^{j}=: \omega_{j} d x^{j}$. We compute:

$$
\begin{aligned}
\int_{0}^{1} & \int_{0}^{\tau_{2}} d \tau_{2} d \tau_{1} \omega_{\alpha}\left(\dot{c}\left(\tau_{2}\right)\right) \cdot \omega_{\alpha}\left(\cdot c\left(\tau_{1}\right)\right) \\
= & \int_{0}^{1} \int_{0}^{\tau_{2}} d \tau_{2} d \tau_{1} \omega_{j}\left(c\left(\tau_{2}\right)\right) \dot{c}^{j}\left(\tau_{2}\right) \cdot \omega_{k}\left(c\left(\tau_{1}\right)\right) \dot{c}^{k}\left(\tau_{1}\right) \\
= & \int_{0}^{1} \int_{0}^{\tau_{2}} d \tau_{2} d \tau_{1} \omega_{j}(0) \dot{c}^{j}\left(\tau_{2}\right) \cdot \omega_{k}\left(c\left(\tau_{1}\right)\right) \dot{c}^{k}\left(\tau_{1}\right) \\
& +\int_{0}^{1} \int_{0}^{\tau_{2}} d \tau_{2} d \tau_{1} \underbrace{\left(\omega_{j}\left(c\left(\tau_{2}\right)\right)-\omega_{j}(0)\right)}_{\mathrm{O}(L)} \cdot \underbrace{\dot{j}^{j}\left(\tau_{2}\right)}_{\mathrm{O}(L)} \cdot \underbrace{\omega_{k}\left(c\left(\tau_{1}\right)\right)}_{\mathrm{O}(1)} \underbrace{\dot{c}^{k}\left(\tau_{1}\right)}_{\mathrm{O}(L)} \\
= & \omega_{j}(0) \cdot \int_{0}^{1} \int_{0}^{\tau_{2}} d \tau_{2} d \tau_{1} \dot{c}^{j}\left(\tau_{2}\right) \cdot \omega_{k}\left(c\left(\tau_{1}\right)\right) \cdot \dot{c}^{k}\left(\tau_{1}\right)+\mathrm{O}\left(L^{3}\right) \\
= & \omega_{j}(0) \cdot \omega_{k}(0) \cdot \int_{0}^{1} \int_{0}^{\tau_{2}} d \tau_{2} d \tau_{1} \dot{c}^{j}\left(\tau_{2}\right) \cdot \dot{c}^{k}\left(\tau_{1}\right)+\mathrm{O}\left(L^{3}\right) .
\end{aligned}
$$

For the term I_{a}, we thus get:

$$
\begin{aligned}
2 \cdot I_{a} & =\omega_{j}(0) \cdot \omega_{k}(0) \cdot \int_{0}^{1} \int_{0}^{\tau_{2}} d \tau_{2} d \tau_{1}\left(\dot{c}^{j}\left(\tau_{2}\right) \cdot \dot{c}^{k}\left(\tau_{1}\right)-\dot{c}^{j}\left(\tau_{1}\right) \cdot \dot{c}^{k}\left(\tau_{2}\right)\right)+\mathrm{O}\left(L^{3}\right) \\
& =\omega_{j}(0) \cdot \omega_{k}(0) \cdot \int_{0}^{1} d \tau_{2}\left(\dot{c}^{j}\left(\tau_{2}\right) c^{k}\left(\tau_{2}\right)-c^{j}\left(\tau_{2}\right) \dot{c}^{k}\left(\tau_{1}\right)\right)+\mathrm{O}\left(L^{3}\right) \\
& =\omega_{j}(0) \cdot \omega_{k}(0) \cdot \int_{c}\left(x^{k} d x^{j}-x^{j} d x^{k}\right)+\mathrm{O}\left(L^{3}\right) \\
& \stackrel{\text { Stokes }}{=} \omega_{j}(0) \cdot \omega_{k}(0) \cdot \int_{S}\left(d x^{k} \wedge d x^{j}-d x^{j} \wedge d x^{k}\right)+\mathrm{O}\left(L^{3}\right) \\
& =-\left[\omega_{j}(0), \omega_{k}(0)\right] \cdot \int_{S} d x^{j} \wedge d x^{k}+\mathrm{O}\left(L^{3}\right) \\
& =-\int_{S}\left[\omega_{j}, \omega_{k}\right] d x^{j} \wedge d x^{k}+\int_{S} \underbrace{\left(\left[\omega_{j}, \omega_{k}\right]-\left[\omega_{j}, \omega_{k}\right](0)\right)}_{\mathrm{O}(L)} d x^{j} \wedge d x^{k}+\mathrm{O}\left(L^{3}\right) \\
& =-\int_{S}\left[\omega_{j}, \omega_{k}\right] d x^{j} \wedge d x^{k}+\mathrm{O}\left(L^{3}\right)
\end{aligned}
$$

$$
=-\int_{S}\left[\omega_{\alpha}, \omega_{\alpha}\right]+\mathrm{O}\left(L^{3}\right) .
$$

We thus have:

$$
\begin{aligned}
\Gamma(c) & =\mathbb{1}_{n}-\int_{S} d \omega_{\alpha}-\frac{1}{2} \int_{S}\left[\omega_{\alpha}, \omega_{\alpha}\right]+\mathrm{O}\left(L^{3}\right) \\
& =\mathbb{1}_{n}-\int_{S} \Omega_{\alpha}+\mathrm{O}\left(L^{3}\right) \quad(L \searrow 0)
\end{aligned}
$$

2.7 Gauge transformations

Definition 2.7.1. Let $P \xrightarrow{\pi} B$ be a G-principal bundle. A diffeomorphism $f: P \rightarrow P$ is called an automorphism of P iff

$$
\forall g \in G,, \forall p \in P: f(p \cdot g)=f(p) \cdot g
$$

$\operatorname{Aut}(P):=\{$ automorphisms of $P\}$ is called the automorphism group of P.

Remark 2.7.2

1. $\operatorname{Aut}(P) \subset \operatorname{Diff}(P)$ is a subgroup.
2. Any $f \in P$ takes the fibers of P to fibers of P. Indeed, if $p, p^{\prime} \in P$ are in the same fiber, then there exists a (unique) $g \in G$ such that $p^{\prime}=p \cdot g$. Applying f, we find $f\left(p^{\prime}\right)=f(p \cdot g)=f(p) \cdot g$, thus $f(p), f\left(p^{\prime}\right)$ are in the same fiber again. This implies that there is a (unique) smooth map $\bar{f}: B \rightarrow B$ making the following diagram commute:

3. Aut (P) acts from the right on $\mathcal{C}(P):=\{$ connection 1-forms on $P\}$ by pull-back: We first check that for any $\omega \in \mathcal{C}(P)$ and any $f \in \operatorname{Aut}(P)$, the pull-back $f^{*} \omega$ is again a connection 1-form, i.e. $f^{*} \omega \in \mathcal{C}(P)$. Indeed, for any $g \in G$, we have:

$$
\begin{aligned}
R_{g}^{*}\left(f^{*} \omega\right) & =\left(f \circ R_{g}\right)^{*} \omega=\left(R_{g} \circ f\right)^{*} \omega=f^{*}\left(R_{g}^{*} \omega\right)=f^{*}\left(\operatorname{Ad}_{g^{-1}} \circ \omega\right) \\
& =\operatorname{Ad}_{g^{-1}} \circ\left(f^{*} \omega\right) .
\end{aligned}
$$

For any $X \in \mathfrak{g}$, we find:

$$
\begin{aligned}
\left(f^{*} \omega\right)(\bar{X}(p)) & =\omega(d f(\bar{X}(p)))=\omega\left(d f \circ d L_{p}(X)\right)=\omega\left(d L_{f(p)}(X)\right)=\omega(\bar{X}(f(p))) \\
& =X
\end{aligned}
$$

Here we have used $\left(f \circ L_{p}\right)(g)=f(p \cdot g)=f(p) \cdot g=L_{f(p)}(g)$.
Finally, the pull-back is indeed a right action, since for any $f, g \in \operatorname{Aut}(P)$, we have $(f \circ g)^{*} \omega=g^{*}\left(f^{*} \omega\right)$.

Definition 2.7.3. An automorphism $f \in \operatorname{Aut}(P)$ with $\bar{f}=\operatorname{id}_{B}$ is called a gauge transformation of P. The group

$$
\mathcal{G}(P):=\{\text { gauge transformations on } P\}
$$

of gauge transformations on P is called the gauge group of P.

Remark 2.7.4. The map $\operatorname{Aut}(P) \rightarrow \operatorname{Diff}(B), f \mapsto \bar{f}$, is a group homomorphism. Hence $\mathcal{G}(P)=\operatorname{ker}(f \mapsto \bar{f}) \subset \operatorname{Aut}(P)$ is a subgroup.

Example 2.7.5. If G is abelian, then each smooth map $g: B \rightarrow G$ gives rise to a gauge transformation by $f(p):=p \cdot g(\pi(p))$. Indeed, we have:

$$
f\left(p \cdot g^{\prime}\right)=p \cdot g^{\prime} \cdot g(\pi(p))=p \cdot g(\pi(p)) \cdot g^{\prime}=f(p) \cdot g^{\prime}
$$

In the next to last equality, we used that G is abelian. In fact, in the abelian case, all gauge transformations are of this form (see the general case below).

Remark 2.7.6. If G is non-abelian, this construction does not give a gauge transformation unless $g: B \rightarrow Z(G)$.

Remark 2.7.7. Let $P \rightarrow B$ be a G-principal bundle. Let us consider the associated bundle $P \times{ }_{\alpha} G:=P \times G / \sim$, where α denotes the conjugation action of G on itself, so that $[p, g] \sim\left[p \cdot h, h^{-1} \cdot g \cdot h\right]$. The fibers of $P \times{ }_{\alpha} G$ carry a group structure making them isomorphic to G. Indeed, the multiplication $[p, g] \cdot\left[p, g^{\prime}\right]:=\left[p, g \cdot g^{\prime}\right]$ is well-defined, because

$$
\left[p h, h^{-1} g h\right] \cdot\left[p h, h^{-1} g^{\prime} h\right]=\left[p h, h^{-1} g h \cdot h^{-1} g^{\prime} h\right]=\left[p h, h^{-1} g g^{\prime} h\right]=\left[p, g g^{\prime}\right] .
$$

If $b \mapsto[p(b), g(b)]$ is a smooth section of $P \times_{\alpha} G$, then there is a unique $f \in \mathcal{G}(P)$ such that $f(p(b))=p(b) \cdot g(b)$: For any $p^{\prime} \in P$, we find $p^{\prime}=p(b) \cdot h$, where $b=\pi(p)$ and $h \in G$ is uniquely determined. We then have:

$$
f\left(p^{\prime}\right)=f(p(b) \cdot h)=f(p(b)) \cdot h=p(b) \cdot g(b) \cdot h=p^{\prime} \cdot h^{-1} \cdot g(b) \cdot h .
$$

This shows that f is uniquely determined by the section $b \mapsto[p(b), g(b)]$. As to existence, $f\left(p^{\prime}\right)=f(p(b) \cdot h):=p^{\prime} \cdot h^{-1} \cdot g(b) \cdot h$ defines a gauge transformation.
Conversely, given a gauge transformation $f \in \mathcal{G}(P)$, then for any $p \in P$ there exists a unique $g(p) \in G$ such that $f(p)=p \cdot g(p)$. For $p^{\prime}=p h$ we find on the one hand

$$
f\left(p^{\prime}\right)=p^{\prime} \cdot g\left(p^{\prime}\right)=p \cdot h \cdot g\left(p^{\prime}\right)
$$

and on the other hand

$$
f\left(p^{\prime}\right)=f(p h)=f(p) h=p \cdot g(p) \cdot h .
$$

Thus $g\left(p^{\prime}\right)=h^{-1} \cdot g(p) \cdot h$. Therefore $\pi(p) \mapsto[p, g(p)]$ is a well-defined smooth section of $P \times_{\alpha} G$ giving rise to the gauge transformation f.
This yields an isomorphism of groups:

$$
\left\{\mathcal{C}^{\infty} \text {-sections of } P \times_{\alpha} G\right\} \cong \mathcal{G}(P)
$$

Note that $P \times_{\alpha} G$ is a group bundle (with typical fiber the Lie group G) but not a G-principal bundle. In general, this group bundle is not trivial, but it always has smooth global sections, e.g. the map $\pi(p) \mapsto[p, e]$ which corresponds to id $\in \mathcal{G}(P)$.

Definition 2.7.8. Let $b \in B$ be an arbitrary point in the basis of a G-principal bundle $P \rightarrow B$. The kernel of the group homomorphism

$$
\mathcal{G}(P) \rightarrow \operatorname{Diff}\left(P_{b}\right),\left.f \mapsto f\right|_{P_{b}},
$$

given by

$$
\mathcal{G}_{b}(P):=\left\{f \in \mathcal{G}(P)|f|_{P_{b}}=\operatorname{id}_{P_{b}}\right\} .
$$

is called the reduced gauge group.

The reduced gauge group fits into the following table of groups and homomorphisms (where the horizontal maps are the natural inclusions):

2 Bundle theory

At least one reason to define the reduced gauge is the following nice property:

Proposition 2.7.9

If B is connected, then the action of the reduced gauge group $\mathcal{G}_{b}(P)$ on the space of connections $\mathcal{C}(P)$ is free.

Proof. Let $f \in \mathcal{G}_{b}(P)$ and $\omega \in \mathcal{C}(P)$ be a connection 1-form such that $f^{*} \omega=\omega$. Then we need to show that $f=\operatorname{id}_{P}$. To this end, fix a point $p \in P$ and choose a curve $c:[0,1] \rightarrow B$ such that $c(0)=b$ and $c(1)=\pi(p)$. Let $\tilde{c}:[0,1] \rightarrow P$ be the ω-horizontal lift of c with initial condition $\tilde{c}(1)=p$. Now we put $\hat{c}:=f \circ \tilde{c}$. Obviously, \hat{c} is a lift of c. We show that \hat{c} is ω-horizontal:
For any $X \in H_{q}^{\omega}$, we have

$$
\omega(d f(X))=f^{*} \omega(X)=\omega(X)=0 .
$$

Thus $d f(X) \in H_{f(q)}^{\omega}$. Hence $d f$ preserves the horizontal spaces: we have $d f\left(H_{q}^{\omega}\right) \subset H_{f(q)}^{\omega}$, and since f is a diffeomorphism, we have also $\operatorname{dim} d f\left(H_{q}^{\omega}\right)=\operatorname{dim} H_{q}^{\omega}=\operatorname{dim} B$, which yields $d f\left(H_{q}^{\omega}\right)=H_{f(q)}^{\omega}$. This implies that \hat{c} is horizontal, because \tilde{c} is.
Now we have:

$$
\hat{c}(0)=f(\underbrace{\tilde{c}(0)}_{\in P_{b}}) \stackrel{f \in \mathcal{G}_{b}(P)}{=} \tilde{c}(0),
$$

which says that \hat{c} is a horizontal lift of c with the same initial condition as \tilde{c} and hence coincides with \tilde{c}. We conclude that

$$
f(p)=f(\tilde{c}(1))=\hat{c}(1)=\tilde{c}(1)=p,
$$

whence $f=\operatorname{id}_{P}$.

3 Applications to Physics

3.1 The Hodge-star operator

Let V be an n-dimensional \mathbb{R}-vector space, equipped with a (not necessarily definite) non-degenerate inner product $\langle\cdot, \cdot\rangle$. Let e_{1}, \ldots, e_{n} be a generalized orthonormal basis of V, i.e.

$$
\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}0 & : i \neq j \\ \epsilon_{j}= \pm 1 & : i=j\end{cases}
$$

Then there is an inner product on $\Lambda^{k} V^{*}$, naturally induced by the one on V, denoted by the same symbol $\langle\cdot, \cdot\rangle$ and defined by:

$$
\langle\omega, \eta\rangle:=\sum_{i_{1}<\ldots<i_{k}} \epsilon_{i_{1}} \cdot \ldots \cdot \epsilon_{i_{k}} \cdot \omega\left(e_{i_{1}}, \ldots, e_{i_{k}}\right) \cdot \eta\left(e_{i_{1}}, \ldots, e_{i_{k}}\right) .
$$

Lemma 3.1.1

The definition of the inner product on $\Lambda^{k} V^{*}$ above does not depend on the choice of generalized orthonormal basis e_{1}, \ldots, e_{n}.

Proof. Let f_{1}, \ldots, f_{n} be another generalized orthonormal basis of V, i.e. $\left\langle f_{i}, f_{j}\right\rangle=\epsilon_{j}^{\prime} \cdot \delta_{i j}$, $\epsilon_{j}^{\prime}= \pm 1$. We write the unique $A \in \operatorname{Aut}(V)$ such that $A e_{i}=f_{i}$ in matrix coefficients with respect to e_{1}, \ldots, e_{n} as $f_{i}=A e_{i}=\sum_{i=1}^{n} A_{i}^{j} e_{j}$. We then have:

$$
\begin{aligned}
\delta_{i j} \cdot \epsilon_{j}^{\prime} & =\left\langle f_{i}, f_{j}\right\rangle \\
& =\left\langle A e_{i}, A e_{j}\right\rangle \\
& =\sum_{k, l=1}^{n}\left\langle A_{i}^{k} e_{k}, A_{j}^{l} e_{l}\right\rangle \\
& =\sum_{k, l=1}^{n} A_{i}^{k} \cdot A_{j}^{l} \cdot \underbrace{\left\langle e_{k}, e_{l}\right\rangle}_{=\delta_{k l} \cdot \epsilon_{k}} \\
& =\sum_{k=1}^{n} A_{i}^{k} \cdot A_{j}^{k} \cdot \epsilon_{k} .
\end{aligned}
$$

3 Applications to Physics

Putting

$$
\epsilon:=\left(\begin{array}{ccc}
\epsilon_{1} & & 0 \\
& \ddots & \\
0 & & \epsilon_{2}^{\prime} n
\end{array}\right) \quad \text { and } \quad \epsilon^{\prime}:=\left(\begin{array}{ccc}
\epsilon_{1}^{\prime} & & 0 \\
& \ddots & \\
0 & & \epsilon_{n}^{\prime}
\end{array}\right),
$$

we have $\epsilon^{\prime}=A \cdot \epsilon \cdot A^{*}$, hence $A^{*}=\epsilon \cdot A^{-1} \cdot \epsilon^{\prime}$, and thus

$$
A^{*} \epsilon^{\prime} A=\epsilon \cdot A^{-1} \cdot \underbrace{\epsilon^{\prime} \cdot \epsilon^{\prime}}_{=1_{n}} \cdot A=\epsilon .
$$

We thus find $\delta_{i j} \epsilon_{i}=\sum_{l=1}^{n} A_{l}^{i} \cdot A_{l}^{j} \cdot \epsilon_{l}^{\prime}$. Inserting this into the definition of the inner product on $\Lambda^{k} V^{*}$, we find:

$$
\begin{aligned}
& \sum_{i_{1}<\ldots<i_{k}} \epsilon_{i_{1}}^{\prime} \cdot \ldots \cdot \epsilon_{i_{k}}^{\prime} \cdot \omega\left(f_{i_{1}}, \ldots, f_{i_{k}}\right) \cdot \eta\left(f_{i_{1}}, \ldots, f_{i_{k}}\right) \\
= & \frac{1}{k!} \sum_{i_{1}, \ldots, i_{k}} \epsilon_{i_{1}}^{\prime} \cdot \ldots \cdot \epsilon_{i_{k}}^{\prime} \cdot \omega\left(f_{i_{1}}, \ldots, f_{i_{k}}\right) \cdot \eta\left(f_{i_{1}}, \ldots, f_{i_{k}}\right) \\
= & \frac{1}{k!} \sum_{i_{i_{1}, \ldots, i_{k}}} \epsilon_{i_{1}}^{\prime} \cdot \ldots \cdot \epsilon_{i_{k}}^{\prime} \cdot A_{i_{1}}^{j_{1}} \ldots \ldots \cdot A_{i_{k}}^{j_{k}} \cdot A_{i_{1}}^{l_{1}} \cdot \ldots \cdot A_{i_{k}}^{l_{k}} \cdot \omega\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \cdot \eta\left(e_{l_{1}}, \ldots, e_{l_{k}}\right) \\
= & \frac{1}{k!} \sum_{j_{1}, \ldots, \ldots, j_{k}, l_{1}, \ldots, l_{k}} \epsilon_{j_{1}} \cdot \ldots \cdot \epsilon_{j_{k}} \cdot \omega\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \cdot \eta\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \\
= & \sum_{j_{1}<\ldots<j_{k}} \epsilon_{j_{1}} \cdot \ldots \cdot \epsilon_{j_{k}} \cdot \omega\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \cdot \eta\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \\
= & \langle\omega, \eta\rangle .
\end{aligned}
$$

Remark 3.1.2. If e_{1}, \ldots, e_{n} is a generalized orthonormal basis of V and $e_{1}^{*}, \ldots, e_{n}^{*}$ is the dual basis, i.e. $e_{i}^{*}\left(e_{j}\right)=\delta_{i j}$, then $\left\{e_{i_{1}}^{*} \wedge \ldots \wedge e_{i_{k}}^{*}\right\}_{i_{1}<\ldots<i_{k}}$ is a generalized orthonormal basis of $\Lambda^{k} V^{*}$ with

$$
\left\langle e_{i_{1}}^{*} \wedge \ldots \wedge e_{i_{k}}^{*}, e_{i_{1}}^{*} \wedge \ldots \wedge e_{i_{k}}^{*}\right\rangle=\epsilon_{i_{1}} \cdot \ldots \cdot \epsilon_{i_{k}} .
$$

Definition 3.1.3. Let V be an n-dimensional \mathbb{R}-vector space with a fixed orientation. Let e_{1}, \ldots, e_{n} be a positively oriented generalized orthonormal basis of V. Then vol $:=e_{1}^{*} \wedge \ldots \wedge e_{n}^{*} \in \Lambda^{n} V^{*}$ is called the volume form on V associated with the given orientation.

Remark 3.1.4. The volume form defined above does not depend on the choice of generalized orthonormal basis, hence it is well-defined as an element of $\Lambda^{n} V^{*}$:
Since $\Lambda^{n} V^{*}$ is 1-dimensional, and

$$
\left\langle e_{1}^{*} \wedge \ldots \wedge e_{n}^{*}, e_{1}^{*} \wedge \ldots \wedge e_{n}^{*}\right\rangle=\epsilon_{1} \cdot \ldots \cdot \epsilon_{n}=(-1)^{\operatorname{ind}\langle\cdot \cdot \cdot\rangle}
$$

the element $e_{1}^{*} \wedge \ldots \wedge e_{n}^{*}$ is determined up to sign independently of the choice of generalized orthonormal basis e_{1}, \ldots, e_{n}. The orientation determines the sign.

Lemma 3.1.5

There exists a unique linear map $*: \Lambda^{k} V^{*} \rightarrow \Lambda^{n-k} V^{*}$ such that $\forall \omega \in \Lambda^{k} V^{*}$, $\forall \eta \in \Lambda^{n-k} V^{*}$, we have:

$$
\begin{equation*}
\omega \wedge \eta=\langle * \omega, \eta\rangle \cdot \mathrm{vol} . \tag{3.1}
\end{equation*}
$$

Proof. For any $\sigma \in \Lambda^{n} V^{*}$, there is a unique $a_{\sigma} \in \mathbb{R}$ such that $\sigma=a_{\sigma} \cdot$ vol. We may thus formally write $a_{\sigma}=\frac{\sigma}{\text { vol }}$. Now for any fixed $\omega \in \Lambda^{k} V^{*}$, the map

$$
\Lambda^{n-k} V^{*} \rightarrow \mathbb{R}, \eta \mapsto \frac{\omega \wedge \eta}{\mathrm{vol}}
$$

is linear. Since $\langle\cdot, \cdot\rangle$ is non-degenerate there is a unique element $* \omega \in \Lambda^{n-k} V^{*}$ satisfying $\frac{\omega \lambda \eta}{\text { vol }}=\langle * \omega, \eta\rangle$, whence $\omega \wedge \eta=\langle * \omega, \eta\rangle$ •vol for all $\eta \in \Lambda^{n-k} V^{*}$. The map $\Lambda^{k} V^{*} \rightarrow \Lambda^{n-k} V^{*}$, $\omega \mapsto * \omega$, is linear, since $\omega \mapsto \frac{\omega \wedge \eta}{\text { vol }}$ is linear.

Definition 3.1.6. The map $*: \Lambda^{k} V^{*} \rightarrow \Lambda^{n-k} V^{*}$ is called the Hodge-star operator associated with the inner product $\langle\cdot, \cdot\rangle$.

Remark 3.1.7. The Hodge-star operator $*$ depends on the inner product.

Proposition 3.1.8

Let V be an oriented n-dimensional \mathbb{R}-vector space, equipped with a non-degenerate inner product $\langle\cdot, \cdot\rangle$ of index p. Then the Hodge-star operator $*$ associated with $\langle\cdot, \cdot\rangle$ has the following properties:

1. For a positively oriented generalized orthonormal basis e_{1}, \ldots, e_{n} of V and the dual basis $e_{1}^{*}, \ldots, e_{n}^{*}$ of V^{*}, we have:

$$
\begin{equation*}
\left(e_{i_{1}}^{} \wedge \ldots \wedge e_{i_{k}}^{*}\right)=\epsilon_{j_{1}} \cdot \ldots \cdot \epsilon_{j_{n-k}} \cdot \operatorname{sign}(I J) \cdot e_{j_{1}}^{*} \wedge \ldots \wedge e_{j_{n-k}}^{*} \tag{3.2}
\end{equation*}
$$

where $(I J)=\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)$ is a permutation of $(1, \ldots, n)$.
2. $\forall \omega \in \Lambda^{k} V^{*}$, we have:

$$
\begin{equation*}
* * \omega=(-1)^{k(n-k)+p} \cdot \omega . \tag{3.3}
\end{equation*}
$$

3. $\forall \omega, \eta \in \Lambda^{k} V^{*}$, we have:

$$
\begin{equation*}
\langle * \omega, * \eta\rangle=(-1)^{p} \cdot\langle\omega, \eta\rangle . \tag{3.4}
\end{equation*}
$$

4. $\forall \omega, \eta \in \Lambda^{k} V^{*}$, we have:

$$
\begin{equation*}
\omega \wedge * \eta=\eta \wedge * \omega=(-1)^{p} \cdot\langle\omega, \eta\rangle \cdot \operatorname{vol} \tag{3.5}
\end{equation*}
$$

5. $\forall \omega \in \Lambda^{k} V^{*}, \forall \eta \in \Lambda^{n-k} V^{*}$, we have:

$$
\begin{equation*}
\omega \wedge \eta=(-1)^{k(n-k)} \cdot\langle\omega, * \eta\rangle \cdot \operatorname{vol} \tag{3.6}
\end{equation*}
$$

Proof.

1. If $\left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right\} \neq\{1, \ldots, n\}$, then $\left\{e_{i_{1}}, \ldots, e_{i_{k}}\right\} \cap\left\{e_{j_{1}}, \ldots, e_{j_{n-k}}\right\} \neq \emptyset$, so that $e_{i_{1}}^{*} \wedge \ldots \wedge e_{i_{k}}^{*} \wedge e_{j_{1}}^{*} \wedge \ldots \wedge e_{j_{n-k}}^{*}=0$ and thus $\left\langle *\left(e_{i_{1}}^{*} \wedge \ldots \wedge e_{i_{k}}^{*}\right), e_{j_{1}}^{*} \wedge \ldots \wedge e_{j_{n-k}}^{*}\right\rangle=0$. Hence $*\left(e_{i_{1}}^{*} \wedge \ldots \wedge e_{i_{k}}^{*}\right)=c \cdot e_{j_{1}}^{*} \wedge \ldots \wedge e_{j_{n-k}}^{*}$, where $\left\{j_{1}, \ldots, j_{n-k}\right\}$ is complementary to $\left\{i_{1}, \ldots, i_{k}\right\}$ in $\{1, \ldots, n\}$ (in other words, $I J=\left(i_{1}, \ldots, i_{k}, j_{1} \ldots, j_{n-k}\right)$ is a permutation of $(1, \ldots, n))$. To determine the constant c, we compute:

$$
\begin{aligned}
\operatorname{sign}(I J) \cdot \operatorname{vol} & =e_{i_{1}}^{*} \wedge \ldots \wedge e_{i_{k}}^{*} \wedge e_{j_{1}}^{*} \wedge \ldots \wedge e_{j_{n-k}}^{*} \\
& =\left\langle *\left(e_{i_{1}}^{*} \wedge \ldots \wedge e_{i_{k}}^{*}\right), e_{j_{1}}^{*} \wedge \ldots \wedge e_{j_{n-k}}^{*}\right\rangle \cdot \operatorname{vol} \\
& =c \cdot \epsilon_{j_{1}} \cdot \ldots \cdot \epsilon_{j_{n-k}} \cdot \operatorname{vol}
\end{aligned}
$$

2. exercise
3. exercise
4. exercise
5. We compute, using (3.3) and (3.4):

$$
\begin{aligned}
\omega \wedge \eta & = \\
& \stackrel{(3.4)}{=} \\
& (-1)^{p} \cdot\langle * * \omega\rangle \cdot \mathrm{vol} \\
& \stackrel{(3.3)}{=} \\
& (-1)^{k(n-k)+2 p}\langle\omega, * \eta\rangle \cdot \mathrm{vol} \\
& =(-1)^{k(n-k)} \cdot\langle\omega, * \eta\rangle \cdot \mathrm{vol}
\end{aligned}
$$

Remark 3.1.9. Let us consider the important special case of the Hodge-star operator * : $\Lambda^{2} V^{*} \rightarrow \Lambda^{2} V^{*}$ on 2 -forms on a 4-dimensional euclidean vector space V, i.e. $n=4$, $k=2, p=0$. By (3.3), we have $* \circ *=(-1)^{2(4-2)}=1$. By (3.4), $*$ is an isometry. Hence * has eigenvalues ± 1, and we have the eigenspace decomposition:

$$
\Lambda^{2} V^{*}=\Lambda_{+}^{2} V^{*} \oplus \Lambda_{-}^{2} V^{*}
$$

where $\Lambda_{ \pm}^{2} V^{*}=\left\{\omega \in \Lambda^{2} \mid * \omega= \pm \omega\right\}$ is the space of self-dual resp. anti-self-dual 2-forms. Choosing an orthonormal basis e_{1}, \ldots, e_{4} of V, we have:

$$
\begin{aligned}
\left(e_{1}^{} \wedge e_{2}^{*}\right) & =e_{3}^{*} \wedge e_{4}^{*} \\
\left(e_{1}^{} \wedge e_{3}^{*}\right) & =-e_{2}^{*} \wedge e_{4}^{*} \\
\left(e_{1}^{} \wedge e_{4}^{*}\right) & =e_{2}^{*} \wedge e_{3}^{*}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& e_{1}^{*} \wedge e_{2}^{*} \pm e_{3}^{*} \wedge e_{4}^{*} \in \Lambda_{ \pm}^{2} V^{*} \\
& e_{1}^{*} \wedge e_{3}^{*} \mp e_{2}^{*} \wedge e_{4}^{*} \in \Lambda_{ \pm}^{2} V^{*} \\
& e_{1}^{*} \wedge e_{4}^{*} \pm e_{2}^{*} \wedge e_{3}^{*} \in \Lambda_{ \pm}^{2} V^{*}
\end{aligned}
$$

These elements are easily seen to be linearly independent: indeed, they are pairwise orthogonal. We thus have $\operatorname{dim} \Lambda_{ \pm}^{2} V^{*} \geq 3$. In fact, $\operatorname{dim} \Lambda^{2} V^{*}=\binom{4}{2}=6$, so that $\operatorname{dim} \Lambda_{ \pm}^{2} V^{*}=3$, and the elements given above form bases of $\Lambda_{ \pm}^{2} V^{*}$.

Remark 3.1.10. A reversal of orientation turns the volume form into its negative. By (3.1), the same holds for the Hodge-star operator. In the special situation above, the subspaces $\Lambda_{ \pm}^{2} V^{*}$ are interchanged upon reversal of orientation.

Remark 3.1.11. If W is another \mathbb{R}-vector space with inner product $\langle\cdot, \cdot\rangle$, then $V \otimes W$ carries a natural inner product characterized by

$$
\left\langle v \otimes w, v^{\prime} \otimes w^{\prime}\right\rangle=\left\langle v, v^{\prime}\right\rangle \cdot\left\langle w, w^{\prime}\right\rangle
$$

This induces a natural Hodge-star operator on W-valued forms by

$$
: \Lambda^{k} V^{} \otimes W \rightarrow \Lambda^{n-k} V^{*} \otimes W, \quad *(\omega \otimes w):=(* \omega) \otimes w
$$

3.2 Electrodynamics

Throughout this section, let M be an oriented Lorentzian 4-manifold. This manifold is the mathematical model for spacetime in general relativity. For example, the spacetime of special relativity is Minkowski space.
Furthermore, let $P \rightarrow M$ be a $\mathrm{U}(1)$-principal bundle. For any $\omega \in \mathcal{C}(P)$ let Ω be its curvature form. The 2 -form $s^{*} \Omega$ for some local section s does not depend on the choice of s. This yields a well-defined 2-form $\bar{\Omega} \in \Omega^{2}(M ; i \mathbb{R})$. We write $\Omega=i F, F \in \Omega^{2}(M ; \mathbb{R})$. The Bianchi identity (2.6) tells us that $d F=0$.
Now we introduce local coordinates (t, x, y, z) on M such that $\left\langle\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right\rangle<0$ and $\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right\rangle,\left\langle\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right\rangle,\left\langle\frac{\partial}{\partial z}, \frac{\partial}{\partial z}\right\rangle>0$. With respect to these coordinates, we write

$$
F=E_{x} d x \wedge d t+E_{y} d y \wedge d t+E_{z} d z \wedge d t+B_{x} d y \wedge d z+B_{y} d z \wedge d x+B_{z} d x \wedge d y
$$

Now we compute $d F$ in these coordinates:

$$
\begin{aligned}
d F & =\frac{\partial E_{x}}{\partial y} d y \wedge d x \wedge d t+\frac{\partial E_{x}}{\partial z} d z \wedge d x \wedge d t+\frac{\partial E_{y}}{\partial x} d x \wedge d y \wedge d t+\frac{\partial E_{y}}{\partial z} d z \wedge d y \wedge d t \\
& +\frac{\partial E_{z}}{\partial x} d x \wedge d z \wedge d t+\frac{\partial E_{z}}{\partial y} d y \wedge d z \wedge d t+\frac{\partial B_{x}}{\partial t} d t \wedge d y \wedge d z+\frac{\partial B_{x}}{\partial x} d x \wedge d y \wedge d z \\
& +\frac{\partial B_{y}}{\partial t} d t \wedge d z \wedge d x+\frac{\partial B_{y}}{\partial y} d y \wedge d z \wedge d x+\frac{\partial B_{z}}{\partial t} d t \wedge d x \wedge d y+\frac{\partial B_{z}}{\partial z} d z \wedge d x \wedge d y \\
& =\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right) \cdot d x \wedge d y \wedge d z+\left(-\frac{\partial E_{z}}{\partial y}+\frac{\partial E_{z}}{\partial y}+\frac{\partial B_{x}}{\partial t}\right) \cdot d t \wedge d y \wedge d z \\
& +\left(\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}+\frac{\partial B_{y}}{\partial t}\right) \cdot d t \wedge d z \wedge d y+\left(-\frac{\partial E_{x}}{\partial y}+\frac{\partial E_{y}}{\partial x}+\frac{\partial B_{z}}{\partial t}\right) \cdot d t \wedge d x \wedge d y
\end{aligned}
$$

To abbreviate this, we introduce the time dependent vector fields $\vec{B}:=\left(B_{x}, B_{y}, B_{z}\right)$ and $\vec{E}:=\left(E_{x}, E_{y}, E_{z}\right)$. In terms of classical electrodynamics, \vec{E} is the electric field and \vec{B} is the magnetic field. Note that the definition of these vector fields depends on the choice of coordinate system. Then we have:

$$
\begin{align*}
& d F=0 \Leftrightarrow \quad \operatorname{div} \vec{B}=0 \quad\left(\text { Gauß } \boldsymbol{\beta}^{\prime} \text { law }\right) \tag{3.7}\\
& \text { and } \quad \frac{\partial \vec{B}}{\partial t}+\operatorname{rot} \vec{E}=0 \quad(\text { Faraday's law }) . \tag{3.8}
\end{align*}
$$

Hence the first two of the classical Maxwell equations for the electric field \vec{E} and the magnetic field \vec{B} have shown up as special instances of the Bianchi identity for a connection on a $\mathrm{U}(1)$-principal bundle. To derive the two remaining (non-homogeneous) Maxwell equations, we need to introduce an appropriate action functional for the connection ω. Let $J \in \Omega^{3}(M ; \mathbb{R})$ and pick a "back-ground" connection (or reference connection) $\omega_{0} \in \mathcal{C}(P)$. Then for any connection $\omega \in \mathcal{C}(P)$, we have that $s^{*}\left(\omega-\omega_{0}\right)$ for some local section s is independent of the choice of s and yields a well-defined 1-form $i A=i A\left(\omega, \omega_{0}\right) \in \Omega^{1}(M ; i \mathbb{R})$. We then have $d A=F-F_{0}$. With these data, we introduce the Lagrangian

$$
\mathcal{L}: \mathcal{C}(P) \rightarrow \Omega^{4}(M ; i \mathbb{R}), \quad \mathcal{L}(\omega):=\frac{1}{2} F \wedge * F+A \wedge J .
$$

We say that ω is critical for \mathcal{L} iff

$$
\forall \text { open } U \Subset M, \forall \eta \in \Omega^{1}(M ; \mathbb{R}), \operatorname{supp}(\eta) \subset U:\left.\quad \frac{d}{d t}\right|_{t=0} \int_{\bar{U}} \mathcal{L}\left(\omega_{t, \eta}\right)=0,
$$

where $\omega_{t, \eta} \in \mathcal{C}(P)$ is such that $A\left(\omega_{t, \eta}, \omega_{0}\right)=A\left(\omega, \omega_{0}\right)+t \eta$. For the corresponding curvature, we obtain:

$$
F\left(\omega_{t, \eta}\right)-F(\omega)=d\left(A\left(\omega_{t, \eta}, \omega_{0}\right)-A\left(\omega, \omega_{0}\right)\right)=t \cdot d \eta
$$

hence $F\left(\omega_{t, \eta}\right)=F(\omega)+t \cdot d \eta$. To compute the Euler-Lagrange equations for the Lagrangian \mathcal{L}, we write $\mathcal{L}=\mathcal{L}_{1}+\mathcal{L}_{2}$ with $\mathcal{L}_{1}(\omega):=\frac{1}{2} F \wedge * F$ and $\mathcal{L}_{2}(\omega)=A \wedge J$. Now we compute:

$$
\begin{aligned}
\left.\frac{\partial}{\partial t}\right|_{t=0} \mathcal{L}_{1}\left(\omega_{t, \eta}\right) & =\left.\frac{1}{2} \cdot \frac{d}{d t}\right|_{t=0}(F+t \cdot d \eta) \wedge *(F+t \cdot d \eta) \\
& =\frac{1}{2} \cdot(d \eta \wedge * F+F \wedge * d \eta) \\
& \stackrel{(3.5)}{=} d \eta \wedge * F,
\end{aligned}
$$

hence

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \int_{\bar{U}} \mathcal{L}_{1}\left(\omega_{t, \eta}\right) & =\int_{\bar{U}} d \eta \wedge * F \\
& =\int_{\bar{U}} d(\eta \wedge * F)+\eta \wedge d(* F) \\
& \stackrel{\text { Stokes }}{=} \int_{\bar{U}} \eta \wedge d(* F) \\
& \operatorname{supp} \stackrel{(\eta) \subset U}{=} \int_{M} \eta \wedge d(* F)
\end{aligned}
$$

3 Applications to Physics

Similarly, for \mathcal{L}_{2}, we compute:

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \int_{\bar{U}} \mathcal{L}_{2}\left(\omega_{t, \eta}\right) & =\left.\frac{d}{d t}\right|_{t=0} \int_{\bar{U}}(A+t \cdot \eta) \wedge J \\
& =\int_{\bar{U}} \eta \wedge J \\
\operatorname{supp}(\eta) \subset U & \int_{M} \eta \wedge J .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\omega & \in \mathcal{C}(P) \text { is critical for } \mathcal{L} \\
& \Leftrightarrow \forall \eta \in \Omega^{1}(M ; \mathbb{R}), \operatorname{supp}(\eta) \Subset M: \int_{M} \eta \wedge(d * F+J)=0 \\
& \Leftrightarrow d * F+J=0
\end{aligned}
$$

We observe that the Lagrangian \mathcal{L} depends on the choice of the background connection ω_{0} but the Euler-Lagrange equation $d * F+J=0$ does not. This is because replacing ω_{0} by some other background connection $\tilde{\omega}_{0}$ yields for the Lagrangians

$$
\mathcal{L}(\omega)-\tilde{\mathcal{L}}(\omega)=A\left(\tilde{\omega}_{0}, \omega_{0}\right) \wedge J
$$

Hence, after integration, the Lagrangians differ only by a constant.

In the local coordinates as above, we write:

$$
J=\varrho \cdot d x \wedge d y \wedge d z-j_{x} \cdot d t \wedge d y \wedge d z-j_{y} \cdot d t \wedge d z \wedge d x-j_{z} \cdot d t \wedge d x \wedge d y
$$

As for \vec{E} and \vec{B} above, we write the coefficients as a time dependent vector field $\vec{j}:=\left(j_{x}, j_{y}, j_{z}\right)$. In terms of classical electrodynamics, ϱ is the electric charge density and \vec{j} is the electric current density.

Now for Minkowski space with the standard coordinates (t, x, y, z), we compute:

$$
\begin{array}{ll}
* d t \wedge d x=d y \wedge d z & \\
* d t \wedge \wedge d z=-d t \wedge d x \\
* d t \wedge d y=d z \wedge d x & \\
* d z \wedge d x=-d t \wedge d y \\
* d x \wedge d y & \\
* d x \wedge d y=-d t \wedge d z
\end{array}
$$

Hence for $* F$, we obtain:

$$
\begin{aligned}
* F= & -E_{x} d y \wedge d z-E_{y} d z \wedge d x-E_{z} d x \wedge d y \\
& +B_{x} d x \wedge d t+B_{y} d y \wedge d t-B_{z} d z \wedge d t
\end{aligned}
$$

and for $d * F$, we obtain by a computation similar to the one for $d F$ above:

$$
\begin{aligned}
d(* F)= & (-\operatorname{div} \vec{E}) \cdot d x \wedge d y \wedge d z+\left(\operatorname{rot} \vec{B}-\frac{\partial \vec{E}}{\partial t}\right)_{x} \cdot d t \wedge d y \wedge d z \\
& +\left(\operatorname{rot} \vec{B}-\frac{\partial \vec{E}}{\partial t}\right)_{y} \cdot d t \wedge d z \wedge d x+\left(\operatorname{rot} \vec{B}-\frac{\partial \vec{E}}{\partial t}\right)_{z} \cdot d t \wedge d x \wedge d y
\end{aligned}
$$

Hence on Minkowski space with the standard coordinates, we have:

$$
\begin{array}{rlrl}
\omega \text { critical for } \mathcal{L} \Leftrightarrow & d(* F)+J=0 \\
& \Leftrightarrow & \operatorname{div} \vec{E}=\varrho
\end{array} \quad \text { (Coulomb's law) }
$$

From the equation $d(* F)+J=0$, we deduce $0=d(d(* F)+J)=d J$. In standard coordinates on Minkowski space, we thus have

$$
\begin{align*}
0=d J & =\left(\frac{\partial \varrho}{\partial t}+\frac{\partial j_{x}}{\partial x}+\frac{\partial j_{y}}{\partial y}+\frac{\partial j_{z}}{\partial z}\right) \cdot d t \wedge d x \wedge d y \wedge d z \\
& \Leftrightarrow \frac{\partial \varrho}{\partial t}+\operatorname{div} \vec{j}=0 . \quad(\text { continuity equation }) \tag{3.11}
\end{align*}
$$

To illustrate this equation, let $B \subset \mathbb{R}^{3}$ be compact with smooth boundary. Then we have:

$$
\begin{aligned}
0 & =\int_{\text {Stokes }}^{=} \int_{\left[t_{0}, t_{1}\right] \times B} d J \\
& =\underbrace{\int_{B} \varrho\left(t_{1}\right) d x d y d z}_{\left.\partial\left(t_{0}, t_{1}\right] \times B\right)}-\underbrace{\int_{B} \varrho\left(t_{0}\right) d x d y d z}_{\text {charge of } B \text { at time } t_{1}}+\underbrace{\int_{t_{0}}^{t_{0}} \underbrace{t_{1}}_{\text {flux through } \partial B}\langle\vec{j}, \nu\rangle d v^{3} v_{\partial B} d t}_{\text {charge of } B \text { at time } t_{0}} .
\end{aligned}
$$

(Here ν denotes the exterior normal of ∂B). Hence the continuity equation yields the conservation of charge.

How do we feel the electromagnetic field F ? A test particle (of mass 1 and charge 1) is described by its worldline, meaning a timelike smooth curve $c: I \rightarrow M,\left\langle c^{\prime}, c^{\prime}\right\rangle<0$. In standard coordinates on Minkowski space we write

$$
c(\tau)=(t(\tau), x(\tau), y(\tau), z(\tau))=(t(\tau), \vec{c}(\tau)) \quad \text { and } \quad c^{\prime}(\tau)=\left(t^{\prime}(\tau), \vec{c}^{\prime}(\tau)\right)
$$

The condition for c to be timelike reads $\left\langle c^{\prime}, c^{\prime}\right\rangle=-\left(t^{\prime}\right)^{2}+\left|\vec{c}^{\prime}\right|^{2}<0$. For the observed velocity

$$
\vec{v}=\frac{d \vec{c}}{d t}=\frac{d \vec{c}}{d \tau} \cdot \frac{d \tau}{d t}=\frac{\vec{c}^{\prime}}{t^{\prime}},
$$

we thus have the condition $|\vec{v}|^{2}<1$, i.e. the observed velocity of the test particle is less than the speed of light. The force imposed on the test particle in the electromagnetic field is given by the curvature F, so by Newton's law, we have the following equation of motion ${ }^{1}$

$$
\begin{equation*}
\frac{\nabla}{d \tau} c^{\prime}+F\left(c^{\prime}, \cdot\right)^{\sharp}=0 . \tag{3.12}
\end{equation*}
$$

Remark 3.2.1. For any timelike smooth curve c satisfying (3.12), we have:

$$
\frac{d}{d t}\left\langle c^{\prime}, c^{\prime}\right\rangle=2\left\langle\frac{\nabla}{d \tau} c^{\prime}, c^{\prime}\right\rangle=2\left\langle F\left(c^{\prime}, \cdot\right)^{\sharp}, c^{\prime}\right\rangle=2 F\left(c^{\prime}, c^{\prime}\right)=0
$$

i.e. c^{\prime} is parametrized proportionally to eigentime.

Remark 3.2.2. Note that since (3.12) is a linear ODE of second order, for any $p \in M$ and any $X \in T_{p} M$, there exists a unique maximal solution c to (3.12) satisfying $c\left(t_{0}\right)=p$ and $c^{\prime}\left(t_{0}\right)=X$.
W.l.o.g. we will henceforth assume c to be parametrized by eigentime, so that $\left\langle c^{\prime}, c^{\prime}\right\rangle=-\left(t^{\prime}\right)^{2}+\left|\vec{c}^{\prime}\right|^{2}=-1$. This can of course always be achieved by an appropriate rescaling. We will henceforth also assume that $t^{\prime}>0$, which can be achieved by replacing τ by $-\tau$.
Recall that the mass m of a test particle with rest mass m_{0} varies with the velocity of the particle as

$$
m=\frac{m_{0}}{\sqrt{1-|\vec{v}|^{2}}}=\frac{m_{0}}{\sqrt{1-\left|\frac{\vec{c}^{\prime}}{t^{\prime}}\right|^{2}}}=\frac{m_{0} \cdot t^{\prime}}{\sqrt{\left(t^{\prime}\right)^{2}-\left|\vec{c}^{\prime}\right|^{2}}}=m_{0} \cdot t^{\prime}
$$

Now let us compute the equation of motion in the standard coordinates on Minkowski space. For the left hand side of (3.12), we have:

$$
\frac{d}{d t} m \vec{v}=\frac{d}{d t} m_{0} \cdot t^{\prime} \cdot \frac{\vec{c}^{\prime}}{t^{\prime}}=m_{0} \cdot \frac{d}{d t} \vec{c}^{\prime}=m_{0} \cdot \frac{d \tau}{d t} \cdot \vec{c}^{\prime \prime}=m_{0} \cdot \frac{\vec{c}^{\prime \prime}}{t^{\prime}} .
$$

[^1]For the right hand side we have:

$$
\begin{aligned}
F\left(c^{\prime}, \cdot\right)^{\sharp}= & F\left(t^{\prime} \cdot \frac{\partial}{\partial t}+x^{\prime} \cdot \frac{\partial}{\partial x}+y^{\prime} \frac{\partial}{\partial y}+z^{\prime} \cdot \frac{\partial}{\partial z}, \cdot\right)^{\sharp} \\
= & \left(-t^{\prime} \cdot\left(E_{x} d x+E_{y} d y+E_{z} d z\right)+x^{\prime} \cdot\left(E_{x} d t-B_{y} d z+B_{z} d y\right)\right. \\
& \left.+y^{\prime} \cdot\left(E_{y} d t+B_{x} d z-B_{z} d x\right)+z^{\prime} \cdot\left(E_{z} d t-B_{x} d y+B_{y} d x\right)\right)^{\sharp} \\
= & \left(x^{\prime} \cdot E_{x}+y^{\prime} \cdot E_{y}+z^{\prime} \cdot E_{z}\right) \cdot d t^{\sharp}+\left(-t^{\prime} \cdot E_{x}-y^{\prime} \cdot B_{z}+z^{\prime} \cdot B_{y}\right) \cdot d x^{\sharp} \\
& +\left(-t^{\prime} \cdot E_{y}+x^{\prime} \cdot B_{z}-z^{\prime} \cdot B_{x}\right) \cdot d y^{\sharp}+\left(-t^{\prime} \cdot E_{z}-x^{\prime} \cdot B_{y}+y^{\prime} \cdot B_{x}\right) \cdot d z^{\sharp} \\
= & -\left\langle\vec{c}^{\prime}, \vec{E}\right\rangle \cdot \frac{\partial}{\partial t}+\left(-t^{\prime} \cdot \vec{E}+\vec{B} \times \vec{c}^{\prime}\right) .
\end{aligned}
$$

Hence (3.12) is equivalent to the equations:

$$
\begin{aligned}
t^{\prime \prime}+\left\langle\vec{c}^{\prime}, \vec{E}\right\rangle & =0 \\
\text { and } \quad \vec{v}^{\prime \prime}-t^{\prime} \cdot \vec{E}+\vec{B} \times \vec{c}^{\prime} & =0
\end{aligned}
$$

Now note that $0=\frac{d}{d t}\left\langle c^{\prime}, c^{\prime}\right\rangle=-2 t^{\prime} t^{\prime \prime}+2\left\langle\vec{c}^{\prime}, \vec{c}^{\prime \prime}\right\rangle$ yields $t^{\prime}=\left\langle\vec{v}, \vec{c}^{\prime \prime}\right\rangle$. Hence the first equation follows from the second by scalar multiplication with \vec{v}. We thus found:

$$
\begin{align*}
\frac{\nabla}{d \tau} c^{\prime}+F\left(c^{\prime}, \cdot\right)^{\sharp}=0 & \Leftrightarrow \frac{\vec{c}^{\prime \prime}}{t^{\prime}}-\vec{E}+\vec{B} \times \vec{v}=0 \\
& \Leftrightarrow \frac{d}{d t}(m \cdot \vec{v})=\vec{E}+\vec{v} \times \vec{B} \tag{Lorentzforcelaw}
\end{align*}
$$

Let \mathcal{L} be the Lagrangian for classical electrodynamics as defined above. So far, we only considered variations of \mathcal{L} with respect to the connection ω on the $\mathrm{U}(1)$-principal bundle $P \rightarrow M$. We derived the two inhomogeneous Maxwell equations as the Euler-Lagrange equations for this variation. But the Lagrangian $\mathcal{L}:=\frac{1}{2} F \wedge * F+A \wedge J$ also depends on the chosen Riemannian metric, since the Hodge-star operator does.
In general relativity, the metric is to be considered as a dynamical variable, so we should also study variations of the metric in \mathcal{L} and compute the Euler-Lagrange equations thereof. So we take another look at the Lagrangian \mathcal{L}, varying the metric this time (and fixing the connection ω). First of all, we have:

$$
\mathcal{L}_{1}(\omega, g)=\frac{1}{2} F \wedge *_{g} F=\frac{1}{2}\langle F, F\rangle_{g} \cdot \operatorname{vol}_{g}
$$

so we should first compute the derivatives of the two factors separately. To this end, let $g(t)$ be a smooth 1-parameter family of Riemannian metrics on M such that $g(0)=g$
and $\left.\frac{d}{d t}\right|_{t=0} g(t)=h \in \odot^{2} T^{*} M$. Computing in local coordinates, we find $\sqrt[2]{2}$

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \operatorname{vol}_{g(t)} & =\left.\frac{d}{d t}\right|_{t=0} \sqrt{-\operatorname{det} g_{i j}(t)} \cdot d x^{0} \wedge \ldots \wedge d x^{3} \\
& =-\frac{1}{2}\left(-\operatorname{det} g_{i j}\right)^{-1 / 2} \cdot \operatorname{det}\left(g_{i j}\right) \cdot \operatorname{tr}\left(\left(g^{i j} \cdot h_{j k}\right)_{k}^{i}\right) \cdot d x^{0} \wedge \ldots \wedge d x^{3} \\
& =\frac{1}{2}\left(-\operatorname{det} g_{i j}\right)^{1 / 2} \cdot g^{i j} \cdot h_{j i} \cdot d x^{0} \wedge \ldots \wedge d x^{3} \\
& =\frac{1}{2} \operatorname{tr}_{g}(h) \cdot \operatorname{vol}_{g}
\end{aligned}
$$

For the curvature term, we find $\sqrt[3]{3}$

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\langle F, F\rangle_{g(t)}= & \left.\frac{d}{d t}\right|_{t=0}\left\langle\sum_{\alpha<\beta} F_{\alpha \beta} d x^{\alpha} \wedge d x^{\beta}, \sum_{\gamma<\delta} F_{\gamma \delta} d x^{\gamma} \wedge d x^{\delta}\right\rangle_{g(t)} \\
= & \left.\frac{1}{4} \cdot \frac{d}{d t}\right|_{t=0} F_{\alpha \beta} \cdot F_{\gamma \delta}\left\langle d x^{\alpha} \wedge d x^{\beta}, d x^{\gamma} \wedge d x^{\delta}\right\rangle_{g(t)} \\
= & \left.\frac{1}{4} \cdot F_{\alpha \beta} \cdot F_{\gamma \delta} \frac{d}{d t}\right|_{t=0}\left(g^{\alpha \gamma}(t) \cdot g^{\beta \delta}(t)-g^{\alpha \delta}(t) \cdot g^{\beta \gamma}(t)\right) \\
= & \frac{1}{4} \cdot F_{\alpha \beta} F_{\gamma \delta} \cdot\left(-g^{\alpha i} h_{i j} g^{j \gamma} g^{\beta \delta}-g^{\alpha \gamma} g^{\beta i} h_{i j} g^{j \delta}\right. \\
& \left.+g^{\alpha i} h_{i j} g^{j \delta} g^{\beta \gamma}+g^{\alpha \delta} g^{\beta i} h_{i j} g^{j \gamma}\right) \\
= & \frac{1}{4} \cdot\left(-F^{i \delta} F^{j}{ }_{\delta}-F^{\gamma i} F_{\gamma}{ }^{i}+F^{i \gamma} F_{\gamma}{ }^{j}+F^{\delta i} F^{j}{ }_{\delta}\right) \cdot h_{i j} \\
= & F^{\delta i} F^{j}{ }_{\delta} h_{i j} .
\end{aligned}
$$

Collecting the terms, we find:

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \mathcal{L}_{1}(\omega, g(t)) & =\frac{1}{2} \cdot\left(F^{\delta i} F^{j}{ }_{\delta} h_{i j}+\langle F, F\rangle_{g} \cdot \frac{1}{2} \cdot \operatorname{tr}_{g}(h)\right) \\
& =-\frac{1}{2} \cdot T^{i j} h_{i j} \cdot \operatorname{vol}_{g}
\end{aligned}
$$

where $T^{i j}:=-F^{\delta i} F^{j}{ }_{\delta}-\frac{1}{2} \cdot\langle F, F\rangle_{g} \cdot g^{i j}$. The $(2,0)$-tensor field $T:=T^{i j} \frac{\partial}{\partial x^{i}} \otimes \frac{\partial}{\partial x^{j}}$ is called the energy momentum tensor (field) of ω (or of F).
To see at which point the energy momentum tensor becomes important, we briefly recall that general relativity deals with yet another action functional of the metric, given by the geometric Lagrangian or the Einstein-Hilbert action:

$$
\mathcal{L}_{\text {geom }}(g):=-\frac{1}{2} \cdot \mathrm{scal}_{g} \cdot \operatorname{vol}_{g}
$$

One computes that for a smooth curve $g(t)$ as above with $g^{\prime}(0)=h$, we have: $\left.\frac{d}{d t}\right|_{t=0} \operatorname{scal}_{g(t)}=-\operatorname{ric}_{g}^{i j} h_{i j}+\operatorname{div}(X)$ for some vector field X (which is of no further interest

[^2]for us, since the divergence term vanishes upon integration anyway). If $h \in \odot^{2} T^{*} M$ has compact support, then we get for the corresponding action functional:
\[

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \int_{M} \mathcal{L}_{\text {geom }}(g(t)) & =-\frac{1}{2} \cdot \int_{M}\left(-\operatorname{ric}_{g}^{i j} h_{i j}+\frac{1}{2} \cdot g^{i j} h_{i j} \cdot \mathrm{scal}_{g}\right) \cdot \operatorname{vol}_{g} \\
& =\frac{1}{2} \cdot \int_{M}\left(\operatorname{ric}_{g}^{i j}-\frac{1}{2} \cdot g^{i j} \cdot \mathrm{scal}_{g}\right) \cdot h_{i j} \cdot \operatorname{vol}_{g}
\end{aligned}
$$
\]

Putting the two action principles together, we find:

$$
\begin{align*}
g & \text { is critical for } \mathcal{L}_{\text {geom }}(g)+\mathcal{L}_{1}(\omega, g)+\mathcal{L}_{2}(\omega) \tag{3.14}\\
& \Leftrightarrow \quad \forall h \in \odot^{2} T^{*} M, \operatorname{supp}(h) \Subset M: \int_{M}\left(\operatorname{ric}_{g}^{i j}-\frac{1}{2} \cdot g^{i j} \cdot \operatorname{scal}_{g}-T^{i j}\right) \cdot h_{i j} \cdot \operatorname{vol}_{g} \\
& \Leftrightarrow \quad \operatorname{ric}_{g}-\frac{1}{2} \operatorname{scal}_{g} \cdot g=T \quad(\text { Einstein field equations }) \tag{3.15}
\end{align*}
$$

(Here $T:=T_{i j} d x^{i} \otimes d x^{j}$ is the $(0,2)$-tensor field associated to the $(2,0)$-tensor field defined above.)
Next we want to express the energy momentum tensor T in terms of the electric field \vec{E} and the magnetic field \vec{B}. On Minkowski space with the standard coordinates we find:

$$
\begin{aligned}
\langle F, F\rangle & =-\sum_{k=1}^{3} F_{0 k} F_{0 k}+\sum_{1 \leq i<k \leq 3} F_{i k} F_{i k} \\
& =-\langle\vec{E}, \vec{E}\rangle+\langle\vec{B}, \vec{B}\rangle \\
& =-|\vec{E}|^{2}+|\vec{B}|^{2} \\
T^{00} & =F^{0 k} F^{0}{ }_{k}-\frac{1}{2} \cdot\left(|\vec{B}|^{2}-|\vec{E}|^{2}\right) \cdot g^{00} \\
& =|\vec{E}|^{2}+\frac{1}{2} \cdot\left(|\vec{B}|^{2}-|\vec{E}|^{2}\right) \\
& =\frac{1}{2} \cdot\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right) \quad \quad(\text { energy density }) \\
T^{01} & =F^{0 k} F^{1}{ }_{k}-\frac{1}{2} \cdot\left(|\vec{B}|^{2}-|\vec{E}|^{2}\right) \cdot g^{01} \\
& =E_{2} B_{3}-E_{3} B_{2} \\
& =(\vec{E} \times \vec{B})_{1} \\
\text { and similarly } T^{02} & =(\vec{E} \times \vec{B})_{2} \\
T^{03} & =(\vec{E} \times \vec{B})_{3} .
\end{aligned}
$$

The vector field $\left(T^{01}, T^{02}, T^{03}\right)=\vec{E} \times \vec{B}=: \vec{S}$ is called the Poynting vector. Finally,
for $1 \leq i, j \leq 3$, we find:

$$
\begin{aligned}
T^{i j} & =F^{i 0} F^{j}{ }_{0}+\sum_{k=1}^{3} F^{i k} F^{j}{ }_{k}-\frac{1}{2} \cdot\left(|\vec{B}|^{2}-|\vec{E}|^{2}\right) \cdot g^{i j} \\
& = \begin{cases}-E_{i} E_{j}-B_{j} B_{i} & : \quad i \neq j \\
-E_{i}^{2}+|\vec{B}|^{2}-B_{i}^{2}-\frac{1}{2} \cdot\left(|\vec{B}|^{2}-|\vec{E}|^{2}\right) & : \quad i=j\end{cases} \\
& =-E_{i} E_{j}-B_{i} B_{j}+\frac{1}{2} \cdot\left(|\vec{B}|^{2}+|\vec{E}|^{2}\right) \cdot g^{i j} \\
& =-\sigma^{i j} .
\end{aligned}
$$

The (2,0)-tensor field

$$
\sigma:=\vec{E} \otimes \vec{E}+\vec{B} \otimes \vec{B}-\frac{1}{2} \cdot\left(|\vec{B}|^{2}+|\vec{E}|^{2}\right) \cdot g
$$

is called the Maxwell stress tensor. (Note that the g on the right is the inverse metric.)
Now we exploit some geometrical properties of the electromagnetic Lagrangian (resp. the associated action functional) to derive further physical properties of the energy momentum tensor.

Conformal invariance

Let V be an oriented n-dimensional \mathbb{R}-vector space with inner product $g=\langle\cdot, \cdot\rangle$. We discuss how the Hodge-star operator $*$ changes, if we rescale the metric g to $g^{\prime}=\lambda^{2} \cdot g$ by a positive factor $\lambda>0$:
If e_{1}, \ldots, e_{n} is a generalized orthonormal basis of V for g, then $e_{1}^{\prime}:=\frac{1}{\lambda} \cdot e_{1}, \ldots, e_{n}^{\prime}:=\frac{1}{\lambda} \cdot e_{n}$ is a generalized orthonormal basis of V for g^{\prime}. If $e_{1}^{*}, \ldots, e_{n}^{*}$ is the basis of V^{*} dual to e_{1}, \ldots, e_{n}, then $\left(e_{1}^{*}\right)^{\prime}:=\lambda \cdot e_{1}^{*}, \ldots,\left(e_{n}^{*}\right)^{\prime}:=\lambda \cdot e_{n}^{*}$ is the basis of V^{*} dual to $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$. Correspondingly, $\left(e_{i_{1}}^{*}\right)^{\prime} \wedge \ldots \wedge\left(e_{i_{k}}^{*}\right)^{\prime}=\lambda^{k} e_{i_{1}}^{*} \wedge \ldots \wedge e_{i_{k}}^{*}, 1 \leq i_{1}<\ldots<i_{k} \leq n$, is a generalized orthonormal basis for the inner product on $\Lambda^{k} V^{*}$ induced by g^{\prime}. Hence this product itself is given as $\langle\cdot, \cdot\rangle^{\prime}=\lambda^{-2 k} \cdot\langle\cdot, \cdot\rangle$. In particular, we have for the volume forms induced from the two inner products:

$$
\operatorname{vol}_{g^{\prime}}=\lambda^{n} \cdot \operatorname{vol}_{g}
$$

For any $\omega \in \Lambda^{k} V^{*}, \eta \in \Lambda^{n-k} V^{*}$, we then have:

$$
\begin{aligned}
\langle\omega, * \eta\rangle \cdot \operatorname{vol}_{g} & =\omega \wedge \eta \\
& =\left\langle\omega, *^{\prime} \eta\right\rangle^{\prime} \cdot \operatorname{vol}_{g^{\prime}} \\
& =\lambda^{-2 k} \cdot\left\langle\omega, *^{\prime} \eta\right\rangle \cdot \lambda^{n} \cdot \operatorname{vol}_{g} \\
& =\lambda^{n-2 k} \cdot\left\langle\omega, *^{\prime} \eta\right\rangle \cdot \operatorname{vol}_{g}
\end{aligned}
$$

whence $*^{\prime}=\lambda^{2 k-n} \cdot *$. In particular, if $2 k=n$, then $*^{\prime}=*$.

In electrodynamics, we have $n=4, k=2$, hence the electrodynamical Lagrangian \mathcal{L} is conformally invariant, meaning that for $g^{\prime}=\lambda \cdot g, g \in \mathcal{C}^{\infty}(M), \lambda>0$, we have $\mathcal{L}\left(\omega, g^{\prime}\right)=\mathcal{L}(\omega, g)$. So let us compute the effect of the conformal invariance on the energy momentum tensor. To this end, we take the family $g(t):=(1+t) \cdot g$ of conformally equivalent metrics, so that $g(0)=g, \dot{g}(0)=g$. We then have:

$$
\begin{aligned}
0 & =\left.\frac{d}{d t}\right|_{t=0} \mathcal{L}_{1}(\omega, g) \\
& =\left.\frac{d}{d t}\right|_{t=0} \mathcal{L}_{1}(\omega, g(t)) \\
& =-\frac{1}{2} \cdot T \cdot \dot{g}(0) \cdot \operatorname{vol}_{g} \\
& =-\frac{1}{2} \cdot T \cdot g \cdot \operatorname{vol}_{g} \\
& =-\frac{1}{2} \operatorname{tr}_{g}(T) \cdot \operatorname{vol}_{g}
\end{aligned}
$$

which yields $\operatorname{tr}_{g}(T)=0$. Hence by conformal invariance of the electrodynamic Lagrangian, the energy momentum tensor is trace free.

Diffeomorphism invariance

For any diffeomorphism $\varphi \in \operatorname{Diff}(M)$ with $\operatorname{supp}(\varphi) \subset U \Subset M$, we have the pull-back diagram:

So let us compute the effect of a diffeomorphism $\varphi \in \operatorname{Diff}(M)$ and its induced bundle isomorphism $\Phi: \varphi^{*} P \rightarrow P$ on the action functional for the electrodynamics Lagrangian:

$$
\begin{aligned}
\int_{U} \mathcal{L}_{1}\left(\Phi^{*} \omega, \varphi^{*} g\right) & =\frac{1}{2} \cdot \int_{U} \varphi^{*} F \wedge *_{\varphi^{*} g} \varphi^{*} F \\
& =\frac{1}{2} \cdot \int_{U}\left\langle\varphi^{*} F, \varphi^{*} F\right\rangle_{\varphi^{*} g} \cdot \varphi^{*} \operatorname{vol}_{g} \\
& =\frac{1}{2} \cdot \int_{U}\langle F, F\rangle_{g} \circ \varphi \cdot \varphi^{*} \operatorname{vol}_{g} \\
& =\frac{1}{2} \cdot \int_{U}\langle F, F\rangle_{g} \cdot \operatorname{vol}_{g} \\
& =\frac{1}{2} \cdot \int_{U} \mathcal{L}_{1}(\omega, g)
\end{aligned}
$$

3 Applications to Physics

Hence the action functional given by the electrodynamic Lagrangian \mathcal{L} is invariant under (compactly supported) diffeomorphisms of the basis M. Note that in contrast to the pointwise conformal invariance, this diffeomorphism invariance is not a pointwise invariance of the Lagrangian density itself, but only of the corresponding action functional.
Now let us compute the effect of diffeomorphism invariance on the energy momentum tensor. To this end, let $X \in \mathfrak{X}(M)$ be a smooth vector field with compact support and let φ_{t} be its flow. Then we study the family $g_{t}:=\varphi_{t}^{*} g$. We first claim that $h=\left.\frac{d}{d t}\right|_{t=0} \varphi_{t}^{*} g=\mathcal{L}_{X} g=2 \nabla^{\text {sym }} X$, where $\nabla^{\text {sym }} X$ is the symmetrization of the covariant derivative, to be defined in the following justification of the claim:

$$
\begin{aligned}
\left(\mathcal{L}_{X} g\right)(Y, Z) & =\mathcal{L}_{X}(g(Y, Z))-g\left(\mathcal{L}_{X} Y, Z\right)-g\left(Y, \mathcal{L}_{X} Z\right) \\
& =\partial_{X} g(Y, Z)-g([X, Y], Z)-g(Y,[X, Z]) \\
& =g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)-g\left(\nabla_{X} Y-\nabla_{Y} X, Z\right)-g\left(Y, \nabla_{X} Z-\nabla_{Z} X\right) \\
& =g\left(\nabla_{Y} X, Z\right)+g\left(Y, \nabla_{Z} X\right) \\
& =: 2\left(\nabla^{\text {sym }} X\right)(Y, Z) .
\end{aligned}
$$

Putting the above family g_{t} of metrics into the action functional, we may now compute the effect of diffeomorphism invariance. (Note that to compute the derivative with respect to t of $\Phi_{t}^{*} \omega$, we need to identify the forms $\Phi_{t}^{*} \omega$ for different t, which by construction live on the different bundles $\varphi_{t}^{*} P$. This is most easily done via the local sections $s_{\alpha, t}$ of $\varphi_{t}^{*} P$ given by $s_{\alpha, t}:=\Phi_{t}^{-1} \circ s_{\alpha} \circ \varphi_{t}$, where s_{α} is any local section of P.) For the variation of the electrodynamic Lagrangian \mathcal{L}_{1} along the family $\left(\Phi_{t}^{*} \omega, \varphi_{t}^{*} g\right)$, we thus find:

$$
\begin{aligned}
0 & =\left.\frac{d}{d t}\right|_{t=0} \int_{U} \mathcal{L}_{1}(\omega, g) \\
& =\left.\frac{d}{d t}\right|_{t=0} \int_{U} \mathcal{L}_{1}\left(\Phi_{t}^{*} \omega, \varphi_{t}^{*} g\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} \int_{U} \mathcal{L}_{1}\left(\Phi_{t}^{*} \omega, g\right)+\left.\frac{d}{d t}\right|_{t=0} \int_{U} \mathcal{L}_{1}\left(\omega, \varphi_{t}^{*} g\right) \\
& =\int_{U} \eta \wedge d * F-\frac{1}{2} \cdot \int_{U} T \cdot h \cdot \operatorname{vol}_{g},
\end{aligned}
$$

where η is the following 1 -form 4^{4}

$$
\begin{aligned}
i \eta & :=\left.\frac{d}{d t}\right|_{t=0} s_{\alpha, t}^{*} \Phi_{t}^{*} \omega \\
& =\left.\frac{d}{d t}\right|_{t=0} \varphi_{t}^{*} s_{\alpha}^{*} \omega \\
& =\mathcal{L}_{X}\left(s_{\alpha}^{*} \omega\right)
\end{aligned}
$$

[^3]\[

$$
\begin{aligned}
& \stackrel{\text { Cartan }}{=} \iota_{X} d\left(s_{\alpha}^{*} \omega\right)+d(\underbrace{s_{\alpha}^{*} \omega(X)}_{=: f}) \\
& =\quad i \cdot\left(\iota_{X} F+d f\right) .
\end{aligned}
$$
\]

We thus have as a consequence of the diffeomorphism invariance:

$$
\begin{aligned}
\int_{M} T \cdot \nabla^{\operatorname{sym}} X \cdot \operatorname{vol}_{g} & =\int_{M}\left(\iota_{X} F+d f\right) \wedge d * F \\
& =\int_{M} \iota_{X} F \wedge d * F+d(f \cdot d * F) \\
& \stackrel{\text { Stokes }}{=} \int_{M}\left\langle\iota_{X} F, * d * F\right\rangle \cdot \operatorname{vol}_{g}
\end{aligned}
$$

To see what this equations means for the energy momentum tensor T, we define the divergence of T (and similarly of any (2,0)-tensor) as:

$$
\operatorname{div}(T):=\sum_{i=1}^{n}\left(\nabla_{e_{i}} T\right)\left(e_{i}^{*}, \cdot\right) \in \mathfrak{X}(M),
$$

where e_{1}, \ldots, e_{n} is a generalized orthonormal basis of $T M$. The vector field $\operatorname{div}(T)$ does not depend on the choice of orthonormal basis.
With this definition, we find $\int_{M} T \cdot \nabla^{\text {sym }} X \cdot \operatorname{vol}_{g}=-\int_{M}\langle\operatorname{div}(T), X\rangle \cdot \operatorname{vol}_{g}$ by Stokes theorem, and hence:

$$
\begin{align*}
& \forall X \in \mathfrak{X}(M), \operatorname{supp}(X) \Subset M: \quad-\int_{M}\langle\operatorname{div}(T), X\rangle \cdot \operatorname{vol}_{g}=\int_{M}\left\langle\iota_{X} F, * d * F\right\rangle \cdot \operatorname{vol}_{g} \\
\Leftrightarrow & \forall X \in T M: \quad-\langle\operatorname{div}(T), X\rangle=\left\langle\iota_{X} F, * d * F\right\rangle . \tag{3.16}
\end{align*}
$$

If ω is critical for \mathcal{L}, thus $d * F=J$, then $-\langle\operatorname{div}(T), X\rangle=\left\langle\iota_{X} F, * J\right\rangle$. So in Minkowski space with standard coordinates, we find for $X=\frac{\partial}{\partial t}$ in the left hand side of (3.16):

$$
\begin{aligned}
-\left\langle\operatorname{div}(T), \frac{\partial}{\partial t}\right\rangle & =(-\operatorname{div}(T))^{0} \\
& =-\partial_{i} T^{i 0} \\
& =-\frac{\partial}{\partial t} T^{00}-\sum_{i=1}^{3} \frac{\partial}{\partial x^{i}} T^{i 0} \\
& =-\frac{1}{2} \cdot \frac{\partial}{\partial t}\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right)-\operatorname{div}(\vec{S})
\end{aligned}
$$

For $X=\frac{\partial}{\partial t}$ we find in the right hand side of (3.16):

$$
\left\langle\iota_{\frac{\partial}{\partial t}} F, * J\right\rangle=\left\langle\sum_{i=1}^{3}-E_{x^{i}} d x^{i}, \varrho d t-\sum_{i=1}^{3} j_{x^{i}} d x^{i}\right\rangle=\langle\vec{E}, \vec{j}\rangle
$$

3 Applications to Physics

Finally, the diffeomorphism invariance of the action functional associated with the electromagnetic Lagrangian \mathcal{L}_{1} results in the equation:

$$
\begin{equation*}
\frac{1}{2} \cdot \frac{\partial}{\partial t}\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right)+\operatorname{div}(\vec{S})=-\langle\vec{E}, \vec{j}\rangle . \quad(\text { Poynting's theorem }) \tag{3.17}
\end{equation*}
$$

In case $\vec{j}=0$, we can (similarly to what we did for the continuity equation) use Stokes theorem to get an interpretation of the Poynting vector \vec{S}. So let $B \subset \mathbb{R}^{3}$ be compact with smooth boundary. Then we have:

$$
\begin{aligned}
0 & =\int_{\left[t_{0}, t_{1}\right] \times B} \frac{1}{2} \cdot \frac{\partial}{\partial t}\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right)+\operatorname{div}(\vec{S}) \\
\text { Stokes } & \underbrace{\frac{1}{2} \cdot \int_{B}\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right)\left(t_{1}\right)}_{\text {energy at time } t_{1}}-\underbrace{\frac{1}{2} \cdot \int_{B}\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right)\left(t_{0}\right)}_{\text {energy at time } t_{0}} \\
& -\underbrace{\int_{t_{0}}^{t_{1}} \int\langle\overrightarrow{\partial B}}_{\text {energy flux through } \partial B}\langle\vec{\nu}\rangle(t) d \operatorname{vol}_{\partial B} d t
\end{aligned}
$$

(Here ν denotes the exterior normal of ∂B). This yields an interpretation of the Poynting vector \vec{S} as the current density of the energy of the electromagnetic field F.

Gauge invariance

For $\omega \in \mathcal{C}(P)$ and $\varphi \in \mathcal{G}(P)$, we have: $\mathcal{L}_{1}\left(\varphi^{*} \omega, g\right)=\mathcal{L}_{1}(\omega, g)$. Indeed, since $G=\mathrm{U}(1)$ is abelian, for $\omega^{\prime}:=\varphi^{*} \omega$ we have $\bar{\Omega}^{\prime}=\bar{\Omega}$, hence $F^{\prime}=F$ and

$$
\mathcal{L}_{1}\left(\omega^{\prime}, g\right)=\frac{1}{2} F^{\prime} \wedge * F^{\prime}=\frac{1}{2} F \wedge * F=\mathcal{L}_{1}(\omega, g) .
$$

3.3 Yang-Mills fields

Let M be a smooth manifold and let $E \rightarrow M$ be a smooth \mathbb{K}-vector bundle $(\mathbb{K}=\mathbb{R}, \mathbb{C})$ with covariant derivative ∇. Recall that differential forms $\eta \in \Omega^{k}(M ; E)$ with values in E are just smooth sections of the vector bundle $\Lambda^{k} T^{*} M \otimes E$.

Definition 3.3.1. The exterior derivative $d^{\nabla}: \Omega^{k}(M ; E) \rightarrow \Omega^{k+1}(M ; E)$ associated with ∇ is defined by:

$$
\begin{aligned}
d^{\nabla} \eta\left(X_{0}, \ldots, X_{k}\right):= & \sum_{i=0}^{k}(-1)^{i} \nabla_{X_{i}}\left(\eta\left(X_{0}, \ldots, \widehat{X_{i}}, \ldots, X_{k}\right)\right) \\
& +\sum_{i<j}(-1)^{i+j} \eta\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \widehat{X_{i}}, \ldots, \widehat{X_{j}}, \ldots, X_{k}\right)
\end{aligned}
$$

Remark 3.3.2. This exterior derivative does not satisfy $d^{\nabla} \circ d^{\nabla}=0$ in general! Indeed, on $\Omega^{0}(M ; E)=\Gamma(E)$, we find:

$$
\begin{aligned}
\left(d^{\nabla} \circ d^{\nabla} \sigma\right)(X, Y) & =\nabla_{X}\left(d^{\nabla} \sigma(Y)\right)-\nabla_{Y}\left(d^{\nabla} \sigma(X)\right)-d^{\nabla} \sigma([X, Y]) \\
& =\nabla_{X}\left(\nabla_{Y} \sigma\right)-\nabla_{Y}\left(\nabla_{X} \sigma\right)-\nabla_{[X, Y]} \sigma \\
& =R(X, Y) \cdot \sigma
\end{aligned}
$$

where R is the curvature tensor of the covariant derivative ∇. Indeed, $d^{\nabla} \circ d^{\nabla} \equiv 0$ iff the curvature $R \equiv 0$.

Remark 3.3.3. Let E carry a Riemannian resp. Hermitean metric $\langle\cdot, \cdot\rangle$. For $\eta \in$ $\Omega^{k}(M ; E)$ and $\mu \in \Omega^{l}(M ; E)$, we can build $\omega \wedge \eta \in \Omega^{k+l}(M ; E \otimes E)$ by writing in local coordinates:

$$
\begin{aligned}
\eta & =\sum_{i_{1}<\ldots<i_{k}} \eta_{i_{1}, \ldots, i_{k}} \otimes d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \\
\mu & =\sum_{j_{1}<\ldots<j_{l}} \eta_{j_{1}, \ldots, j_{l}} \otimes d x^{j_{1}} \wedge \ldots \wedge d x^{j_{l}} \\
\eta \wedge \mu & :=\sum_{\substack{i_{1}<\ldots<i_{k} \\
j_{1}<\ldots<j_{l}}} \eta_{i_{1}, \ldots, i_{k}} \otimes \mu_{j_{1}, \ldots, j_{l}} \otimes d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{l}} .
\end{aligned}
$$

3 Applications to Physics

Using the metric in E, we can also build a real resp. complex valued $k+l$ form out of η and μ by setting:

$$
\langle\eta \wedge \mu\rangle:=\sum_{\substack{i_{1}<\ldots<i_{k} \\ j_{1}<\ldots<j_{l}}}\left\langle\eta_{i_{1}, \ldots, i_{k}}, \mu_{j_{1}, \ldots, j_{l}}\right\rangle d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{l}}
$$

If ∇ is a metric connection with respect to $\langle\cdot, \cdot\rangle$, then we have:

$$
d\langle\eta \wedge \mu\rangle=\left\langle d^{\nabla} \eta \wedge \mu\right\rangle+(-1)^{k}\left\langle\eta \wedge d^{\nabla} \mu\right\rangle
$$

Now let M be a Riemannian 4-manifold and let $P \rightarrow M$ be an $\mathrm{SU}(N)$-principal bundle, $N \geq 2$. On the Lie algebra $\mathfrak{s u}(N)$, we have an Ad-invariant positiv definite symmetric bilinear form defined by $(A, B) \mapsto-\operatorname{tr}(A \cdot B)$. Bilinearity and symmetry are fairly obvious. Let us check that the expression is real valued, i.e. for any $A, B \in \mathfrak{s u}(N)$, we have $-\operatorname{tr}(A \cdot B) \in \mathbb{R}$:

$$
\begin{aligned}
\overline{-\operatorname{tr}(A \cdot B)} & =-\operatorname{tr}(\overline{A \cdot B}) \\
& =-\operatorname{tr}(\bar{A} \cdot \bar{B}) \\
& =-\operatorname{tr}\left((\bar{A} \cdot \bar{B})^{t}\right) \\
& =-\operatorname{tr}\left(\bar{B}^{t} \cdot \bar{A}^{t}\right) \\
& =-\operatorname{tr}\left(B^{*} \cdot A^{*}\right) \\
& =-\operatorname{tr}((-B) \cdot(-A)) \\
& =-\operatorname{tr}(B \cdot A) \\
& =-\operatorname{tr}(A \cdot B) .
\end{aligned}
$$

To see that $(A, B) \mapsto-\operatorname{tr}(A \cdot B)$ is positive definite, we compute:

$$
-\operatorname{tr}(A \cdot A)=-\sum_{i, j=1}^{N} A_{j}^{i} \cdot A_{i}^{j}=\sum_{i, j=1}^{N} A_{j}^{i} \bar{A}_{j}^{i}=\sum_{i, j=1}^{N}\left|A_{j}^{i}\right|^{2} \geq 0
$$

and obviously, $-\operatorname{tr}(A \cdot A)=0$ iff $A=0$.
Finally, $\lambda:(A, B) \mapsto-\operatorname{tr}(A \cdot B)$ is Ad-invariant, since for matrix groups, the adjoint representation Ad is given by conjugation, and we have:

$$
\begin{aligned}
\lambda\left(\operatorname{Ad}_{g} A, \operatorname{Ad}_{g} B\right) & =-\operatorname{tr}\left(g \cdot A \cdot g^{-1} \cdot g \cdot B \cdot g^{-1}\right) \\
& =-\operatorname{tr}\left(g \cdot A \cdot B \cdot g^{-1}\right) \\
& =-\operatorname{tr}\left(A \cdot B \cdot g^{-1} \cdot g\right) \\
& =-\operatorname{tr}(A \cdot B) \\
& =\lambda(A, B)
\end{aligned}
$$

By the Ad-invariance, the inner product λ on $\mathfrak{g}=\mathfrak{s u}(N)$ gives a well-defined Riemannian metric λ on the adjoint bundle $P \times{ }_{\text {Ad }} \mathfrak{g}$ by:

$$
\lambda([p, A],[p, B]):=\lambda(A, B)=-\operatorname{tr}(A \cdot B)
$$

As explained in Remark 2.3.9, any connection 1-form $\omega \in \mathcal{C}(P)$ yields a covariant derivative ∇^{ω} on the vector bundle $P \times_{\text {Ad }} \mathfrak{g}$ by:

$$
\nabla_{X}^{\omega}[s, A]:=\left[s, \partial_{X} s+\operatorname{ad}\left(s^{*} \omega(X)\right) \cdot A\right] .
$$

In fact, ∇^{ω} is a metric connection with respect to the Riemannian metric λ. On the one hand, we have:

$$
\partial_{X} \lambda([s, A],[s, B])=-\partial_{X} \operatorname{tr}(A \cdot B)=-\operatorname{tr}\left(\left(\partial_{X} A\right) \cdot B+A \cdot \partial_{X}(B)\right)
$$

On the other hand, we find:

$$
\begin{aligned}
\lambda & \left(\nabla_{X}^{\omega}[s, A],[s, B]\right)+\lambda\left([s, A], \nabla_{X}^{\omega}[s, B]\right) \\
& =\lambda\left(\left[s, \partial_{X} A+\operatorname{ad}\left(s^{*} \omega(X)\right) \cdot A\right],[s, B]\right)+\lambda\left([s, A],\left[s, \partial_{X} B+\operatorname{ad}\left(s^{*} \omega(Y)\right) \cdot B\right]\right) \\
& =-\operatorname{tr}\left(\left(\partial_{X} A\right) \cdot B+\left[s^{*} \omega(X), A\right] \cdot B\right)-\operatorname{tr}\left(A \cdot\left(\partial_{X} B\right)+A \cdot\left[s^{*} \omega(Y), B\right]\right) \\
& =\partial_{X}(-\operatorname{tr}(A \cdot B))-\underbrace{\operatorname{tr}\left(\left[s^{*} \omega(X), A\right] \cdot B+A \cdot\left[s^{*} \omega, B\right]\right)}_{=\operatorname{tr}\left(\left[s^{*} \omega(X), A \cdot B\right]\right)=0} \\
& =\partial_{X} \lambda([s, A],[s, B]) .
\end{aligned}
$$

In the abelian case, the Bianchi identity implies that for any connection ω on P, the curvature 2-form $\bar{\Omega}$ on the base M is closed. What does the Bianchi identity tell us in the nonabelian case? To answer this question, let $\omega \in \mathcal{C}(P)$ be a connection 1form and let $\bar{\Omega} \in \Omega\left(M ; P \times_{\text {Ad }} \mathfrak{g}\right)$ be its curvature 2 -form on M. For any $x \in M$, let $X, Y, Z \in T_{x} M$ be tangent vectors, and extend them to vector fields around $x \in M$ such that $[X, Y]_{x}=[X, Z]_{x}=[Y, Z]_{x}=0$. Further let $s:\left.U \rightarrow P\right|_{U}$ be a local section around x with $d s_{x}\left(T_{x} M\right)=H_{s(x)}$. Then we have:

$$
\begin{aligned}
&\left(d^{\omega} \bar{\Omega}\right)_{x}(X, Y, Z):\left(d^{\nabla^{\omega}} \bar{\Omega}\right)(X, Y, Z) \\
&= \nabla_{X}^{\omega} \bar{\Omega}(Y, Z)-\nabla_{Y}^{\omega} \bar{\Omega}(X, Z)+\nabla_{Z}^{\omega} \bar{\Omega}(X, Y) \\
&= \nabla_{X}^{\omega}\left[s,\left(s^{*} \Omega\right)(Y, Z)\right]-\nabla_{Y}^{\omega}\left[s,\left(s^{*} \Omega\right)(X, Z)\right]+\nabla_{Z}^{\omega}\left[s,\left(s^{*} \Omega\right)(X, Y)\right] \\
&= {\left[s, \partial_{X}\left(s^{*} \omega\right)(Y, Z)+\operatorname{ad}\left(s^{*} \omega(X)\right) s^{*} \Omega(Y, Z)\right] } \\
&-\left[s, \partial_{Y}\left(s^{*} \omega\right)(X, Z)+\operatorname{ad}\left(s^{*} \omega(Y)\right) s^{*} \Omega(X, Z)\right] \\
&+\left[s, \partial_{Z}\left(s^{*} \omega\right)(X, Y)+\operatorname{ad}\left(s^{*} \omega(Z)\right) s^{*} \Omega(X, Y)\right] \\
&= {\left[s, d s^{*} \Omega(X, Y, Z)\right]+[s, \operatorname{ad}(\underbrace{\omega(d s(X))}_{=0}) \cdot \Omega(d s(Y), d s(Z))] } \\
&-[s, \operatorname{ad}(\underbrace{\omega(d s(Y))}_{=0}) \cdot \Omega(d s(X), d s(Z))] \\
&+[s, \operatorname{ad}(\underbrace{\omega(d s(Z))}_{=0}) \cdot \Omega(d s(X), d s(Y))] \\
&= {[s, d \Omega(d s(X), d s(Y), d s(Z))] } \\
& \underline{2.4 .5)} 0 .
\end{aligned}
$$

Hence the Bianchi identity [2.4.5 is equivalent to the statement $d^{\omega} \bar{\Omega}=0$. Note that this is a nonlinear equation in ω ! With respect to local sections $s_{\alpha}:\left.U_{\alpha} \rightarrow P\right|_{U_{\alpha}}$, this equation reads $d \Omega_{\alpha}+\left[\omega_{\alpha}, \Omega_{\alpha}\right]=0$.

Definition 3.3.4. The Yang-Mills Lagrangian $\mathcal{L}_{\mathrm{YM}}$ is given as:

$$
\mathcal{L}_{\mathrm{YM}}: \mathcal{C}(P) \rightarrow \Omega^{4}(M ; \mathbb{R}), \quad \omega \mapsto \frac{1}{2} \cdot \lambda(\bar{\Omega} \wedge * \bar{\Omega}) .
$$

Remark 3.3.5. By Remark 3.3.3, the real valued 4 -form $\lambda(\bar{\Omega} \wedge * \bar{\Omega})$ is build from a scalar product on the adjoint bundle $P \times_{\text {Ad }} \mathfrak{g}$. By the definition of the Hodge-star operator, we can likewise write this form as $\lambda(\bar{\Omega} \wedge * \bar{\Omega})=\langle\bar{\Omega}, \bar{\Omega}\rangle \cdot$ vol, where $\langle\cdot, \cdot\rangle$ denotes the scalar product on $\Lambda^{2} T^{*} M \otimes\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)$ induced from the Riemannian metric on M and the metric λ on $P \times_{\text {Ad }} \mathfrak{g}$. Stated this way, the action functional for the Yang-Mills Lagrangian is given by the L^{2}-norm square of the curvature 2-form, hence $\int_{M} \mathcal{L}_{\mathrm{YM}}(\omega)=\frac{1}{2} \cdot\|\bar{\Omega}\|_{L^{2}}^{2} \geq 0$ for any $\omega \in \mathcal{C}(P)$.

Remark 3.3.6. The Yang-Mills Lagrangian is gauge invariant, i.e. for any $\omega \in \mathcal{C}(P)$, $\varphi \in \mathcal{G}(P)$, we have $\mathcal{L}_{\mathrm{YM}}\left(\varphi^{*} \omega\right)=\mathcal{L}_{\mathrm{YM}}(\omega)$. Indeed, for $\omega^{\prime}:=\varphi^{*} \omega$ and $X, Y \in T M$, we find:

$$
\begin{aligned}
\bar{\Omega}^{\prime}(X, Y) & =\left[s, \Omega^{\prime}(d s(X), d s(Y))\right] \\
& =\left[s,\left(\varphi^{*} \Omega\right)(d s(X), d s(Y))\right] \\
& =\left[\varphi^{-1} \circ s^{\prime},\left(s^{\prime}\right)^{*} \Omega(X, Y)\right] \quad \text { where } s^{\prime}:=\varphi \circ s \\
& =\left[s^{\prime}, \operatorname{Ad}_{g^{-1} \circ s^{\prime}}\left(s^{\prime}\right)^{*} \Omega(X, Y)\right] .
\end{aligned}
$$

Here $g: P \rightarrow G$ is the section of the group bundle $P \times_{\alpha} \operatorname{SU}(N)$ associated with φ as explained in Remark [2.7.7, i.e. $\varphi(p)=p \cdot g(p)$. We thus have $\bar{\Omega}^{\prime}=\operatorname{Ad}_{g^{-1}} \bar{\Omega}$, hence by the Ad-invariance of the inner product: $\lambda\left(\bar{\Omega}^{\prime} \wedge * \bar{\Omega}^{\prime}\right)=\lambda(\bar{\Omega} \wedge * \Omega)$.

Definition 3.3.7. A connection 1-form $\omega \in \mathcal{C}(P)$ is called Yang-Mills connection iff ω is critical for the action functional associated with the Lagrangian $\mathcal{L}_{\text {YM }}$.

To understand what it means for a connection 1-form to be critical in this sense, let us compute the Euler-Lagrange equations for this action functional. To this end, let $\omega_{t}=$ $\omega+t \eta$ be a variation of connection 1-forms, i.e. $\omega, \omega_{t} \in \mathcal{C}(P)$, hence $\eta \in \Omega_{\mathrm{Ad}}^{1}(P ; \mathfrak{s u}(N))$ is an Ad-invariant 1-form on P. Then we find for the curvatures ${ }^{5}$

$$
\begin{aligned}
\Omega_{t} & =d \omega_{t}+\frac{1}{2}\left[\omega_{t}, \omega_{t}\right] \\
& =d \omega+t d \eta+\frac{1}{2}[\omega, \omega]+\frac{1}{2} t([\omega, \eta]+[\eta, \omega])+\mathrm{O}\left(t^{2}\right) \\
& =\Omega+t(d \eta+[\omega, \eta])+\mathrm{O}\left(t^{2}\right),
\end{aligned}
$$

whence $\bar{\Omega}_{t}=\bar{\Omega}+t \cdot d^{\omega} \bar{\eta}+\mathrm{O}\left(t^{2}\right)$. For any $\bar{\eta} \in \Omega^{1}(M ; \mathfrak{s u}(N)), \operatorname{supp}(\eta) \Subset M$, we thus have:

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \int_{\bar{U}} \mathcal{L}_{\mathrm{YM}}\left(\omega_{t}\right) & =-\left.\frac{1}{2} \frac{d}{d t}\right|_{t=0} \int_{\bar{U}} \operatorname{tr}\left(\bar{\Omega}_{t} \wedge * \bar{\Omega}_{t}\right) \\
& =-\frac{1}{2} \int_{\bar{U}} \operatorname{tr}\left(\bar{\Omega} \wedge * d^{\omega} \bar{\eta}+d^{\omega} \bar{\eta} \wedge * \bar{\Omega}\right) \\
& =-\int_{\bar{U}} \operatorname{tr}\left(d^{\omega} \bar{\eta} \wedge \bar{\Omega}\right) \\
& =-\int_{\bar{U}} d(\operatorname{tr}(\bar{\eta} \wedge * \bar{\Omega}))+\operatorname{tr}\left(\bar{\eta} \wedge d^{\omega} * \bar{\Omega}\right) \quad\left(\nabla^{\omega} \text { metric }\right) \\
& \text { Stokes } \\
= & -\int_{\bar{U}} \operatorname{tr}\left(\bar{\eta} \wedge d^{\omega} * \bar{\Omega}\right) .
\end{aligned}
$$

We thus found:
ω is critical for $\mathcal{L}_{\mathrm{YM}}$

$$
\begin{aligned}
& \Leftrightarrow \quad \forall \bar{\eta} \in \Omega^{1}\left(M ; P \times_{\text {Ad }} \mathfrak{g}\right), \operatorname{supp}(\eta) \Subset M: \quad \int_{M} \operatorname{tr}\left(\bar{\eta} \wedge d^{\omega} * \bar{\Omega}\right)=0 \\
& \Leftrightarrow \quad d^{\omega} * \bar{\Omega}=0 .
\end{aligned}
$$

[^4]
Corollary 3.3.8

If the curvature form $\bar{\Omega}$ of a connection $\omega \in \mathcal{C}(P)$ is (anti-)selfdual, then ω is a Yang-Mills connection.

Proof. In this case $d^{\omega} * \bar{\Omega}= \pm d^{\omega} \bar{\Omega}=0$ by the Bianchi identity.

Definition 3.3.9. A connection 1 -form ω with self-dual curvature form $\bar{\Omega} \in$ $\Omega^{2}\left(M ; P \times_{\mathrm{Ad}} \mathfrak{g}\right)$ is called instanton.

Definition 3.3.10. Let $P \rightarrow M$ be a $\mathrm{GL}(n ; \mathbb{R})$-principal bundle. The 1. Pontrjagin class $p_{1}(P)$ of P is the de Rham cohomology class

$$
p_{1}(P):=\left[\frac{1}{8 \pi^{2}} \cdot(\operatorname{tr}(\bar{\Omega}) \wedge \operatorname{tr}(\bar{\Omega})-\operatorname{tr}(\bar{\Omega} \wedge \bar{\Omega}))\right] \in H_{\mathrm{dR}}^{4}(M)
$$

where $\bar{\Omega} \in \Omega^{2}\left(M ; P \times_{\text {Ad }} \mathfrak{g}\right)$ is the curvature 2 -form on M of any connection $\omega \in \mathcal{C}(P)$. The first Pontrjagin class $p_{1}(E)$ of a real vector bundle $E \rightarrow M$ is the de Rham cohomology class $p_{1}(P)$, where P is the frame bundle of P.

Here, the term $\operatorname{tr}(\bar{\Omega} \wedge \bar{\Omega})$ is to be understood in the sense of Remark 3.3.3.
Remark 3.3.11. The first Pontrjagin class of a real vector bundle has the following properties, similar to those of the first Chern class for complex vector bundles:

1. $p_{1}(E)$ is independent of the choice of connection $\omega \in \mathcal{C}(P)$ on the frame bundle of E.
2. If the vector bundle E is trivial, then $p_{1}(E)=0$.
3. For a smooth map $\varphi: N \rightarrow M$ and a real vector bundle $E \rightarrow M$, we have $p_{1}\left(\varphi^{*} E\right)=\varphi^{*} p_{1}(E)$.

Remark 3.3.12. On an oriented connected compact 4-manifold M, the integration of differential forms yields an isomorphism

$$
H_{\mathrm{dR}}^{4}(M) \stackrel{\cong}{\rightrightarrows} \mathbb{R}, \quad[\omega] \mapsto \int_{M} \omega .
$$

Using this isomorphism, one often identifies cohomology classes in $H_{\mathrm{dR}}^{4}(M)$ with their evaluation by integration over M. So we will not distinguish in notation between the first Pontrjagin class $p_{1}(E)$ of a real vector bundle $E \rightarrow M$ over a compact, oriented 4-manifold and the real number given by integrating over M a form $\eta \in \Omega^{4}(M)$ representing $p_{1}(E)$.

By 3.3.5, we know that the action functional for the Yang-Mills Lagrangian is nonnegative. The following Theorem gives a sharp lower bound in terms of the first Pontrjagin class of the adjoint bundle:

Theorem 3.3.13

Let $P \rightarrow M$ be an $\mathrm{SU}(N)$-principal bundle on a compact, oriented 4-manifold M. Then we have for any $\omega \in \mathcal{C}(P)$:

$$
\begin{equation*}
\int_{M} \mathcal{L}_{\mathrm{YM}}(\omega) \geq \frac{2 \pi^{2}}{N} \cdot\left|p_{1}\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)\right| \tag{3.18}
\end{equation*}
$$

Furthermore, we have:

1. If $p_{1}\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)<0$, then P has no selfdual connections. For any $\omega \in \mathcal{C}(P)$, we have $\int_{M} \mathcal{L}_{\mathrm{YM}}(\omega) \geq-\frac{2 \pi^{2}}{N} \cdot p_{1}\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)$ with equality iff ω is anti-selfdual.
2. If $p_{1}\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)=0$, then $\omega \in \mathcal{C}(P)$ is (anti-)selfdual iff $\bar{\Omega} \equiv 0$, i.e. iff ω is flat.
3. If $p_{1}\left(P \times_{\text {Ad }} \mathfrak{g}\right)>0$, then P has no anti-selfdual connections. For any $\omega \in \mathcal{C}(P)$, we have $\int_{M} \mathcal{L}_{\mathrm{YM}}(\omega) \geq \frac{2 \pi^{2}}{N} \cdot p_{1}\left(P \times_{\text {Ad }} \mathfrak{g}\right)$ with equality iff ω is selfdual.

Proof. By definition, $p_{1}\left(P \times_{\text {Ad }} \mathfrak{g}\right)=\frac{1}{8 \pi^{2}} \int_{M}(\operatorname{tr}(\bar{\Phi}) \wedge \operatorname{tr}(\bar{\Phi})-\operatorname{tr}(\bar{\Phi} \wedge \bar{\Phi}))$, where $\bar{\Phi}$ is the curvature of any connection φ on the frame bundle of $P \times_{\text {Ad }} \mathfrak{g}$. Given a connection $\omega \in \mathcal{C}(P)$, we obtain a connection φ on the frame bundle of $P \times_{\text {Ad }} \mathfrak{g}$ via the covariant derivative on $P \times_{\mathrm{Ad}} \mathfrak{g}$ induced from ω (see Example 2.3 .3 and Remark (2.3.9). The curvature $\bar{\Phi}$ of this particular connection φ is related to the curvature $\bar{\Omega}$ of ω as $\bar{\Phi}=\operatorname{ad} \circ \bar{\Omega}$.
Now recall that the scalar product $\lambda(A, B):=-\operatorname{tr}(A \cdot B)$ on $\mathfrak{g}=\mathfrak{s u}(N)$ is Ad-invariant,
hence for any $g \in \operatorname{SU}(N)$, we have:

$$
\lambda\left(\operatorname{Ad}_{g}(A), \operatorname{Ad}_{g}(B)\right)=\lambda(A, B)
$$

Inserting a curve $t \mapsto g(t):=\exp (t X), X \in \mathfrak{g}=\mathfrak{s u}(N)$, and differentiating with respect to t, we obtain:

$$
\lambda(\operatorname{ad}(X)(A), B)+\lambda(A, \operatorname{ad}(X)(B))=0
$$

Hence $\operatorname{ad}(X)$ is skew symmetric with respect to λ and hence trace free as endomorphism on \mathfrak{g}. Applying this to the first Pontrjagin class, we observe:

$$
\operatorname{tr}(\bar{\Phi})=\operatorname{tr}(\operatorname{ad} \circ \bar{\Omega})=0 .
$$

Next we claim that the map $\lambda^{\prime}:(A, B) \mapsto-\operatorname{tr}(\operatorname{ad}(A) \circ \operatorname{ad}(B))$ defines another positive definite, Ad-invariant scalar product on the Lie algebra $\mathfrak{g}=\mathfrak{s u}(N)$. (The bilinear form $(A, B) \mapsto \operatorname{tr}(\operatorname{ad}(A) \circ \operatorname{ad}(B))$ is the so called Killing form of \mathfrak{g}. It can be defined for any Lie group G, and it is negative definite iff G is semisimple.) It follows from an elementary fact in representation theory, that the two bilinear forms $\lambda, \lambda^{\prime}$ are related by a constant. For $\mathfrak{g}=\mathfrak{s u}(N)$, we have: $2 N \cdot \lambda=\lambda^{\prime}$.
With these observations, we obtain for the first Pontrjagin class of the adjoint bundle:

$$
\begin{aligned}
p_{1}\left(P \times_{\text {Ad }} \mathfrak{g}\right) & =\frac{1}{8 \pi^{2}} \cdot \int_{M}(\operatorname{tr}(\bar{\Phi}) \wedge \operatorname{tr}(\bar{\Phi})-\operatorname{tr}(\bar{\Phi} \wedge \bar{\Phi})) \\
& =\frac{1}{8 \pi^{2}} \cdot \int_{M}(\operatorname{tr}(\operatorname{ad} \circ \bar{\Omega}) \wedge \operatorname{tr}(\operatorname{ad} \circ \bar{\Omega})-\operatorname{tr}(\operatorname{ad} \circ \bar{\Omega} \wedge \operatorname{ad} \circ \bar{\Omega})) \\
& =-\frac{1}{8 \pi^{2}} \cdot \int_{M} \operatorname{tr}(\operatorname{ad} \circ \bar{\Omega} \wedge \operatorname{ad} \circ \bar{\Omega}) \\
& =-\frac{2 N}{8 \pi^{2}} \cdot \int_{M} \operatorname{tr}(\bar{\Omega} \wedge \bar{\Omega}) \\
& =\frac{2 N}{8 \pi^{2}} \cdot \int_{M} \lambda(\bar{\Omega}, * \bar{\Omega}) \cdot \operatorname{vol} .
\end{aligned}
$$

Now we use the fact, that the L^{2}-norm square (with respect to the scalar product on $\Lambda^{2} T^{*} M \otimes\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)$ induced from the Riemannian metric on M and the metric λ on $\left.P \times_{\mathrm{Ad}} \mathfrak{g}\right)$ of $\bar{\Omega} \mp * \bar{\Omega}$ is nonnegative, to obtain:

$$
\begin{aligned}
0 & \leq(\bar{\Omega} \mp * \bar{\Omega}, \bar{\Omega} \mp * \bar{\Omega})_{L^{2}} \\
b & =\|\bar{\Omega}\|_{L^{2}}^{2}+\|* \bar{\Omega}\|_{L^{2}}^{2} \mp 2(\bar{\Omega}, * \bar{\Omega})_{L^{2}} \\
& =2\left(\|\bar{\Omega}\| \mp(\bar{\Omega}, * \bar{\Omega})_{L^{2}}\right) \quad(* \text { is an isometry }) \\
& =2\left(2 \cdot \int_{M} \mathcal{L}_{\mathrm{YM}}(\omega) \mp \frac{8 \pi^{2}}{2 N} \cdot p_{1}\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)\right)
\end{aligned}
$$

This yields the estimate (3.18). We also see from this computation, that equality holds iff $\bar{\Omega}= \pm * \bar{\Omega}$.
Now, if $p_{1}\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)<0$, then $\int_{M} \mathcal{L}_{\mathrm{YM}}(\omega) \geq-\frac{2 \pi^{2}}{N} \cdot p_{1}\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)>0$. But if ω was a connection with $\bar{\Omega}=* \bar{\Omega}$, then we would have $\int_{M} \mathcal{L}_{\mathrm{YM}}(\omega)=\frac{2 \pi^{2}}{N} \cdot p_{1}\left(P \times_{\text {Ad }} \mathfrak{g}\right)<0$. Hence such a connection cannot exist. With a similar argument for the case $p_{1}\left(P \times_{\text {Ad }} \mathfrak{g}\right)>0$, we have proved the assertions 1 . and 3 .
As to assertion 2., let ω be a connection with $* \bar{\Omega}= \pm \bar{\Omega}$. We then have:

$$
2 \int_{M} \mathcal{L}_{\mathrm{YM}}(\omega)=\|\bar{\Omega}\|_{L^{2}}^{2}= \pm(\bar{\Omega}, * \bar{\Omega})_{L^{2}}= \pm \frac{8 \pi^{2}}{2 N} \cdot p_{1}\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right) .
$$

Hence if $p_{1}\left(P \times_{\text {Ad }} \mathfrak{g}\right)=0$, then $* \bar{\Omega}= \pm \bar{\Omega}$ iff $\bar{\Omega} \equiv 0$.

4 Algebraic Topology

4.1 Homotopy theory

Definition 4.1.1. Let X, Y be topological spaces, and let

$$
\mathcal{C}(X, Y):=\{f: X \rightarrow Y \text { continuous }\} .
$$

Then $f_{0}, f_{1} \in \mathcal{C}(X, Y)$ are called homotopic, if there exists an $f \in \mathcal{C}(X \times I, Y)$, $I=[0,1]$, satisfying $f(\cdot, 0)=f_{0}$ and $f(\cdot, 1)=f_{1}$. In this case, we write $f_{0} \simeq f_{1}$. The map f is called a homotopy from f_{0} to f_{1}.

Example 4.1.2. Let $X=Y=\mathbb{R}^{n}$ and take $\forall x \in X: f_{0}(x):=x, f_{1}(x):=0$. Then $f_{0} \simeq f_{1}$ by $f(x, t):=t \cdot x$.

Remark 4.1.3. The relation \simeq is an equivalence relation on $\mathcal{C}(X, Y)$:

* For any $f_{0} \in \mathcal{C}(X, Y)$, we have $f_{0} \simeq f_{0}$ by the constant homotopy $f(x, t):=f_{0}(x)$. This shows reflexivity.
* As to symmetry, let f be a homotopy from f_{0} to f_{1}. Then $\tilde{f}(x, t):=f(x, 1-t)$ is a homotopy from f_{1} to f_{0}.
* As to transitivity, let \tilde{f} be a homotopy from f_{0} to f_{1}, and let \hat{f} be a homotopy from f_{1} to f_{2}. Then

$$
f(x, t):=\left\{\begin{array}{lll}
\tilde{f}(x, 2 t) & : & t \in\left[0, \frac{1}{2}\right] \\
\hat{f}(x, 2 t-1) & : & t \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

defines a homotopy from f_{0} to f_{2}.

Example 4.1.4. As in Example 4.1.2 above, take $X=Y=\mathbb{R}^{n}$. Then any two maps $f, g \in \mathcal{C}(X, Y)$ are homotopic: as in Example 4.1.2 one sees $f \simeq 0, g \simeq 0$, where 0 is the constant map $x \mapsto 0$. By symmetry and transitivity, this implies $f \simeq g$.

Definition 4.1.5. Topological spaces X, Y are called homotopy equivalent iff there exist $f \in \mathcal{C}(X, Y), g \in \mathcal{C}(Y, X)$ such that $f \circ g \simeq \operatorname{id}_{Y}$ and $g \circ f \simeq \operatorname{id}_{Y}$. In this case, f and g are called homotopy equivalences and f, g are homotopy iverses of each other. We denote homotopy equivalence by $X \simeq Y$.

Remark 4.1.6. Homotopy equivalence is an equivalence relation on the class of all topological spaces.

Definition 4.1.7. A topological space X with $X \simeq\{*\}$ is called contractible.

Example 4.1.8. \mathbb{R}^{n} is contractible: Take $f:\{0\} \rightarrow \mathbb{R}^{n}, 0 \mapsto 0$ and $g: \mathbb{R}^{n} \rightarrow\{0\}$, $x \mapsto 0$. Then $f \circ g=0 \simeq \operatorname{id}_{\mathbb{R}^{n}}$ and $g \circ f=\operatorname{id}_{\{0\}}$. Hence f and g are homotopy inverses of each other.

Remark 4.1.9. A homeomorphism $f: X \rightarrow Y$ is a homotopy equivalence, but homotopic spaces X, Y are in general not homeomorphic, as the previous example has shown.

Example 4.1.10. Let $X=S^{n}, Y=\mathbb{R}^{n+1}-\{0\}$, and let $f: S^{n} \rightarrow \mathbb{R}^{n+1}-\{0\}, x \mapsto x$, and $g: \mathbb{R}^{n+1}-\{0\} \rightarrow S^{n}, y \mapsto \frac{y}{\|y\|}$. Then $g \circ f=\operatorname{id}_{S^{n}}$ and $f \circ g=g \simeq \operatorname{id}_{\mathbb{R}^{n+1}-\{0\}}$ by $G(y, t):=\left(1-t+\frac{t}{\|y\|}\right) \cdot y$.

Definition 4.1.11. Let $f_{0}, f_{1} \in \mathcal{C}(X, Y)$ and $A \subset X$. Then f_{0}, f_{1} are called homotopic relative A iff there is a homotopy $f \in \mathcal{C}(X \times I, Y)$ from f_{0} to f_{1} satisfying:

$$
\forall a \in A, \forall t \in I: f(a, t)=f_{0}(a)
$$

In this case we write $f_{0} \simeq f_{1}$ rel. A.

Remark 4.1.12. As above one easily sees that the relation \simeq rel. A is an equivalence relation on $\mathcal{C}(X, Y)$.

Definition 4.1.13. Let X be a topological space and $x \in X, n \in \mathbb{N}_{0}$.

$$
\pi_{n}(X, x):=\left\{f \in \mathcal{C}\left(S^{n}, X\right) \mid f(N P)=x\right\} / \simeq \operatorname{rel} .\{N P\}
$$

is called the $\boldsymbol{n}^{\text {th }}$ homotopy group of (X, x). Here $N P \in S^{n}$ is a fixed point (which we call north pole).

Remark 4.1.14. For $n=0$, we have $S^{0}=\{N P, S P\}$ so that

$$
\left\{f \in \mathcal{C}\left(S^{0}, X\right) \mid f(N P)=x\right\} \cong X
$$

by $x^{\prime} \mapsto\left(f: N P \mapsto x, S P \mapsto x^{\prime}\right)$. Further, we have $f \simeq f^{\prime}$ rel. $N P$ iff there exists a continuous curve $g \in \mathcal{C}(I, X)$ satisfying $g(0)=f(S P), g(1)=f^{\prime}(S P)$. Hence we have $\pi_{0}(X, x) \stackrel{1: 1}{\longleftrightarrow}\{$ path components of $X\}$.

Remark 4.1.15. $\pi_{0}(X, x)$ carries no canonical group structure.
In contrast, for $n \geq 1, \pi_{n}(X, x)$ is a group. To define the group structure we first introduce a different model for the homotopy groups $\pi_{n}(X, x)$. Namely, let

$$
I^{n}:=\underbrace{I \times \cdots \times I}_{n}
$$

be the n-dimensional standard cube, and let $\psi: I^{n} \rightarrow S^{n}$ be a fixed continuous map such that $\left.\psi\right|_{I^{n}}: I^{n} \rightarrow S^{n}-\{N P\}$ is a homeomorphism and $\psi\left(\partial I^{n}\right)=\{N P\}$.
Then for any $f \in \mathcal{C}\left(S^{n}, X\right)$ with $f(N P)=x$, we have $f \circ \psi \in \mathcal{C}\left(I^{n}, X\right)$ satisfying $(f \circ \psi)\left(\partial I^{n}\right)=\{x\}$. Conversely, for any $g \in \mathcal{C}\left(I^{n}, X\right)$ satisfying $g\left(\partial I^{n}\right)=\{x\}$, we find $f \in \mathcal{C}\left(S^{n}, X\right)$ with $f(N P)=x$ such that $g=f \circ \psi$. This gives 1:1-correspondences:

$$
\begin{aligned}
\left\{f \in \mathcal{C}\left(S^{n}, X\right) \mid f(N P)=x\right\} & \xrightarrow{1: 1} \quad\left\{g \in \mathcal{C}\left(I^{n}, X\right) \mid g\left(\partial I^{n}\right)=\{x\}\right\} \\
\simeq \text { rel. }\{N P\} & \xrightarrow{\longleftrightarrow 1: 1} \\
\text { hence } \quad \pi_{n}(X, x) & \stackrel{\text { rel. } \partial I^{n}}{\longleftrightarrow}\left\{g \in \mathcal{C}\left(I^{n}, X\right) \mid g\left(\partial I^{n}\right)=\{x\}\right\} / \simeq \text { rel. } \partial I^{n} .
\end{aligned}
$$

With this new model for the homotopy groups, we can easily define the multiplication in $\pi_{n}(X, x), n \geq 1$, by the concatenation of maps $g_{1}, g_{2}: I^{n} \rightarrow X, g_{1}\left(\partial I^{n}\right)=g_{2}\left(\partial I^{n}\right)=\{x\}$.

We write schematically, the coloured lines indicating the parts mapped to $\{x\}$:

$$
g_{1} * g_{2}
$$

More explicitly, we have:

$$
\left(g_{1} * g_{2}\right)\left(t_{1}, \ldots, t_{n}\right):=\left\{\begin{array}{lll}
g_{1}\left(2 t_{1}, t_{2}, \ldots, t_{n}\right) & : \quad t_{1} \in\left[0, \frac{1}{2}\right] \\
g_{2}\left(2 t_{1}-1, t_{2}, \ldots, t_{n}\right) & : \quad t_{1} \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

This induces a map $\pi_{n}(X, x) \times \pi_{n}(X, x) \rightarrow \pi_{n}(X, x)$ by $\left(\left[g_{1}\right],\left[g_{2}\right]\right) \mapsto\left[g_{1}\right] *\left[g_{2}\right]:=\left[g_{1} * g_{2}\right]$. This map induces a group structure on the homotopy groups $\pi_{n}(X, x)$. The neutral element is represented by the constant map $I^{n} \rightarrow\{x\} \subset X$.

Proposition 4.1.16

For $n \geq 2$, the homotopy groups $\pi_{n}(X, x)$ are abelian.

Proof. We give the proof by schematically performing the following chain of homotopies from $g_{1} * g_{2}$ to $g_{2} * g_{1}$ (here again, the coloured parts are those which are mapped to the base point $\{x\}$):

Remark 4.1.17. In general, $\pi_{1}(X, x)$ is not abelian.

Definition 4.1.18. $\pi_{1}(X, x)$ is also called the fundamental group of (X, x).
If $\pi_{0}(X, x)=\{x\}$, i.e. X is path connected, then X is called simply connected iff $\pi_{1}(X, x)=\{e\}$ for any and hence all $x \in X$. This means, that any continuous loop in X starting and ending at x can be deformed continuously to the constant map in x.

Lemma 4.1.19

Let $f_{0}, f_{1} \in \mathcal{C}(X, Y)$, let $g_{0}, g_{1} \in \mathcal{C}(Y, Z)$, and let $A \subset X, B \subset Y$ with $f_{i}(A) \subset B$, $i=0,1$. If $f_{0} \simeq f_{1}$ rel. A and $g_{0} \simeq g_{1}$ rel. B, then $g_{0} \circ f_{0} \simeq g_{1} \circ f_{1}$ rel. A.

Proof. exercise.

Corollary 4.1.20

If $\left[f_{0}\right]=\left[f_{1}\right] \in \pi_{n}(X, x)$, and $g \in \mathcal{C}(X, Y)$, then for $y=g(x)$, we have

$$
\left[g \circ f_{0}\right]=\left[g \circ f_{1}\right] \in \pi_{n}(Y, y) .
$$

Thus, any continuous map $g: X \rightarrow Y$ induces a group homomorphism

$$
\begin{aligned}
g_{\sharp}: \pi_{n}(X, x) & \rightarrow \pi_{n}(Y, g(x)) \\
{[f] } & \mapsto[g \circ f] .
\end{aligned}
$$

Corollary 4.1.21

Let $g_{0}, g_{1} \in \mathcal{C}(X, Y)$ with $g_{0} \simeq g_{1}$ rel. $\{x\}$. Then we have

$$
\left(g_{0}\right)_{\sharp}=\left(g_{1}\right)_{\sharp}: \pi_{n}(X, x) \rightarrow \pi_{n}(Y, g(x)) .
$$

Remark 4.1.22. Let X, Y, Z be topological spaces, $x \in X, y \in Y, z \in Z$ and $f \in \mathcal{C}(X, Y), g \in \mathcal{C}(Y, Z)$ with $f(x)=y, g(y)=z$. Then it follows directly from the definition that $(g \circ f)_{\sharp}=g_{\sharp} \circ f_{\sharp}$. It is also clear that $\left(\mathrm{id}_{X}\right)_{\sharp}=\mathrm{id}_{\pi_{n}(X, x)}$.

Remark 4.1.23. Let $(X, x) \simeq(Y, y)$, i.e. there exist $f \in \mathcal{C}(X, Y), g \in \mathcal{C}(Y, X)$ with $f(x)=y$ and $g(y)=x$ such that $f \circ g \simeq \operatorname{id}_{Y} \operatorname{rel} .\{y\}$ and $g \circ f \simeq \operatorname{id}_{X}$ rel. $\{x\}$. For the induced homomorphisms on homotopy groups, we find:

$$
f_{\sharp} \circ g_{\sharp}=(f \circ g)_{\sharp}=\left(\operatorname{id}_{Y}\right)_{\sharp}=\operatorname{id}_{\pi_{n}(Y, y)}
$$

and similarly $g_{\sharp} \circ f_{\sharp}=\operatorname{id}_{\pi_{n}(X, x)}$. Hence f_{\sharp} and g_{\sharp} are both group isomorphisms, inverse to each other.
In particular, homotopy equivalent spaces have isomorphic homotopy groups. Contractible spaces thus have trivial homotopy groups.

Example 4.1.24. For $X=S^{1}$, one can show that the map

$$
\mathbb{Z} \rightarrow \pi_{1}\left(S^{1}, 1\right), k \mapsto\left[z \mapsto z^{k}\right],
$$

is an isomorphism. Hence $\pi_{1}\left(S^{1}, 1\right) \cong \mathbb{Z}$, in particular, S^{1} is not simply connected. By Example 4.1.10, we then also have that $\mathbb{R}^{2}-\{0\} \simeq S^{1}$ is not contractible.

Example 4.1.25. For $n \geq 2$, we have that S^{n} is simply connected.

Remark 4.1.26. In general, we have: $\pi_{i}\left(S^{n}\right)=\{e\}$ if $i<n$ and $\pi_{n}\left(S^{n}\right)=\mathbb{Z}$. The higher homotopy groups $\pi_{m}\left(S^{n}\right), m>n$ are not known in general.

Definition 4.1.27. A fiber bundle with discrete fiber is called a covering.

Example 4.1.28. The map $\exp : \mathbb{R} \rightarrow S^{1}, t \mapsto e^{2 \pi i t}$, is a covering; actually, it is a \mathbb{Z}-principal bundle, where the action is defined as $(t, k) \mapsto t+k$.

Similarly the map exp : $\mathbb{R}^{n} \rightarrow T^{n}=\overbrace{S^{1} \times \ldots \times S^{1}}^{n}$, given by

$$
\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(e^{2 \pi i t_{1}}, \ldots, e^{2 \pi i t_{n}}\right)
$$

is a \mathbb{Z}^{n}-principal bundle.

Example 4.1.29. If X is a connected differentiable manifold, then there exists a covering $\bar{X} \rightarrow X$ such that \bar{X} is simply connected. The covering $\bar{X} \rightarrow X$ is unique up to isomorphism, and is called the universal covering.

Example 4.1.30. The map $S^{1} \rightarrow S^{1}, z \mapsto z^{k}$, is a (k-fold) covering; actually, it is a \mathbb{Z}_{k}-principal bundle.

Lemma 4.1.31 (Lifting Lemma)

Let $p: \tilde{Y} \rightarrow Y$ be a covering, $\tilde{y} \in \tilde{Y}, y=p(\tilde{y}) \in Y$. Let X be a path connected topological space, $x \in X$, and let $f: X \rightarrow Y$ be a continuous map with $f(x)=y$.

A lift of f through \tilde{y} is a continuous map $\tilde{f}: X \rightarrow \tilde{Y}$ with $f(x)=\tilde{y}$ satisfying $p \circ \tilde{f}=f$.

Such a lift exists iff $f_{\sharp}\left(\pi_{1}(X, x)\right) \subset p_{\sharp}\left(\pi_{1}(\tilde{Y}, \tilde{y})\right)$.

Proof. If \tilde{f} is such a lift, then we have for any $[c] \in \pi_{1}(X, x)$:

$$
f_{\sharp}([c])=[f \circ c]=[p \circ \tilde{f} \circ c]=p_{\sharp}(\underbrace{[\tilde{f} \circ c]}_{\in \pi_{1}(\tilde{Y}, \tilde{y})}) \in p_{\sharp}\left(\pi_{1}(\tilde{Y}, \tilde{y})\right),
$$

whence $f_{\sharp}\left(\pi_{1}(X, x)\right) \subset p_{\sharp}\left(\pi_{1}(\tilde{Y}, \tilde{y})\right)$.
The other direction is slightly more involved.

Corollary 4.1.32

If X is simply connected, then any $f \in \mathcal{C}(X, Y)$ can be lifted to any covering $\tilde{Y} \rightarrow Y$.

Example 4.1.33. Using the covering exp : $\mathbb{R} \rightarrow S^{1}$, we can easily determine the higher homotopy groups of S^{1} : Namely, since for $n \geq 2$, we have $\pi_{n}\left(S^{1}, 1\right)=\{1\}$, any $u \in \mathcal{C}\left(S^{n}, S^{1}\right), u(N P)=1$, can be lifted to $\tilde{u}: S^{n} \rightarrow \mathbb{R}, \tilde{u}(N P)=0$. We then have:

$$
[u]=[\exp \circ \tilde{u}]=\exp _{\sharp}([\tilde{u}])=0 \in \pi_{n}(\mathbb{R}, 0)=\{0\},
$$

since \mathbb{R} is contractible. Thus the higher homotopy groups of S^{1} are all trivial.

Definition 4.1.34. A sequence of groups and homomorphisms

$$
\cdots \rightarrow G_{i+1} \xrightarrow{f_{i+1}} G_{i} \xrightarrow{f_{i}} G_{i-1} \xrightarrow{f_{i-1}} G_{i-2} \rightarrow \cdots
$$

is called exact iff $\forall i$: $\operatorname{ker}\left(f_{i}\right)=\operatorname{im}\left(f_{i+1}\right)$.

Let $p: E \rightarrow B$ be a fiber bundle, let $e_{0} \in E, b_{0}=p\left(e_{0}\right)$. Let $F:=E_{b_{0}}=p^{-1}\left(b_{0}\right)$ be the fiber of p containing e_{0}. Denote the inclusion of that fiber into the total space E by $\iota: F \hookrightarrow E$. Then $p \circ \iota$ is the constant map to b_{0}, whence

$$
0=(p \circ \iota)_{\sharp}=p_{\sharp} \circ \iota_{\sharp}: \pi_{n}\left(F, e_{0}\right) \rightarrow \pi_{n}\left(B, b_{0}\right) .
$$

In particular, we have $\operatorname{im}\left(\iota_{\sharp}\right) \subset \operatorname{ker} p_{\sharp}$.
We now construct the so called boundary homomorphism (or connecting homomorphism) $\partial: \pi_{n}\left(B, b_{0}\right) \rightarrow \pi_{n-1}\left(F, e_{0}\right)$:

We start with a map $u \in \mathcal{C}\left(I^{n}, B\right)$ representing a homotopy class $[u] \in \pi_{n}\left(B, b_{0}\right)$, i.e. $u\left(\partial I^{n}\right)=\left\{b_{0}\right\}$. Any red line in I^{n} as in the picture gets mapped under u to a closed curve in B, starting and ending in b_{0} (we parametrize these lines starting at the right endpoint in J^{n-1}). Now we lift these closed curves in (B, b_{0}) to curves in (E, e_{0}) (meaning that the lifted curve starts in $e_{0} \in E_{b_{0}}$ and ends in some point in E_{0}). We may choose the family of lifted curves to depend continuously on the initial points in $I^{n-1} \times\{1\}$ of the red lines in I^{n}.

By this lifting procedure, we obtain a map $\tilde{u} \in \mathcal{C}\left(I^{n}, E\right)$ such that $p \circ \tilde{u}=u$ and $\tilde{u}\left(J^{n-1}\right)=\left\{e_{0}\right\}$. Now we put $\partial[u]:=\left[\left.\tilde{u}\right|_{I^{n-1} \times\{0\}}\right] \in \mathcal{C}\left(I^{n-1}, E\right)$. By construction, we have $\tilde{u}\left(\partial I^{n-1}\right)=\left\{e_{0}\right\}$, since $\partial I^{n-1} \subset J^{n-1}$.
This construction yields the following relation between the homotopy groups of the fiber, the total space and the base of a fiber bundle:

Theorem 4.1.35

The sequence

$$
\begin{equation*}
\cdots \xrightarrow{\partial} \pi_{n}\left(F, e_{0}\right) \xrightarrow{\iota_{\sharp}} \pi_{n}\left(E, e_{0}\right) \xrightarrow{p_{\sharp}} \pi_{n}\left(B, b_{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(F, e_{0}\right) \xrightarrow{\iota_{\sharp}} \cdots \xrightarrow{p_{\sharp}} \pi_{1}\left(B, b_{0}\right) \tag{4.1}
\end{equation*}
$$

is exact.

Example 4.1.36. Let us consider the trivial bundle $E=B \times F$. Then in addition to the bundle projection $p: E \rightarrow B$, we have another projection $\hat{p}: E \rightarrow F$, and $\hat{p} \circ \iota=\operatorname{id}_{F}$. We thus find for the induced maps on homotopy groups:

$$
\hat{p}_{\sharp} \circ \iota_{\sharp}=(\hat{p} \circ \iota)_{\sharp}=\left(\mathrm{id}_{F}\right)_{\sharp}=\mathrm{id}_{\pi_{n}\left(F, e_{0}\right)},
$$

which implies that ι_{\sharp} is injective and \hat{p}_{\sharp} is surjective. Hence the connecting homomorphisms $\partial: \pi_{n}\left(B, b_{0}\right) \rightarrow \pi_{n-1}\left(F, e_{0}\right)$ need to be trivial, and the long exact sequence 4.1 degenerates to a series of short exact sequences: for any $n \geq 1$, we have:

$$
0 \rightarrow \pi_{n}\left(F, e_{0}\right) \xrightarrow{\iota_{\sharp}} \pi_{n}\left(E,\left(b_{0}, e_{0}\right)\right) \xrightarrow{p_{\sharp}} \pi_{n}\left(B, b_{0}\right) \rightarrow 0 .
$$

Now the map $p_{\sharp} \times \hat{p}_{\sharp}: \pi_{n}\left(E,\left(b_{0}, e_{0}\right)\right) \rightarrow \pi_{n}\left(B, b_{0}\right) \times \pi_{n}\left(F, e_{0}\right)$ is surjective, since p_{\sharp} and \hat{p}_{\sharp} are. It is also injective: take $x \in \pi_{n}\left(E,\left(b_{0}, e_{0}\right)\right)$ with $p_{\sharp}(x)=0$ and $\hat{p}_{\sharp}(x)=0$. By exactness, $x=\iota_{\sharp}(y)$ for some $y \in \pi_{n}\left(F, e_{0}\right)$. But we also have

$$
0=\hat{p}_{\sharp}(x)=\hat{p}_{\sharp}\left(\iota_{\sharp}(y)\right)=(\hat{p} \circ \iota)_{\sharp}(y)=\left(\operatorname{id}_{F}\right)_{\sharp}(y)=\operatorname{id}_{\pi_{n}\left(F, e_{0}\right)}(y)=y,
$$

so that $x=\iota_{\sharp}(y)=\iota_{\sharp}(0)=0$ as well.
Consequently, $\pi_{n}\left(B \times F,\left(b_{0}, e_{0}\right)\right) \underset{\rightarrow}{\approx} \pi_{n}\left(B, b_{0}\right) \times \pi_{n}\left(F, e_{0}\right)$.

Example 4.1.37. For the Hopf bundle $H: S^{3} \rightarrow S^{2}$, we find:

$$
\underbrace{\pi_{3}\left(S^{1}\right)}_{=\{0\}} \stackrel{\text { 舁 }}{ } \pi_{3}\left(S^{3}\right) \xrightarrow{p_{\sharp}} \pi_{3}\left(S^{2}\right) \xrightarrow{\partial} \underbrace{\pi_{2}\left(S^{1}\right)}_{=\{0\}} .
$$

Hence $H_{\sharp}: \pi_{3}\left(S^{3}\right) \rightarrow \pi_{3}\left(S^{2}\right)$ is an isomorphism. Since $\pi_{3}\left(S^{3}\right) \cong \mathbb{Z}$, we find $\pi_{3}\left(S^{2}\right) \cong \mathbb{Z}$. Furthermore, since $\pi_{3}\left(S^{3}\right)$ is generated by $\left[\mathrm{id}_{S^{3}}\right]$, we have that $\pi_{3}\left(S^{2}\right)$ is generated by $H_{\sharp}\left(\left[\mathrm{id}_{S^{3}}\right]\right)=\left[H \circ \mathrm{id}_{S^{3}}\right]=[H]$. The Hopf map $H: S^{3} \rightarrow S^{2}$ thus represents a generator of $\pi_{3}\left(S^{2}\right)$.

4.2 Homology theory

Definition 4.2.1. A sequence of homomorphisms of abelian groups

$$
\cdots \rightarrow A_{k+1} \xrightarrow{f_{k+1}} A_{k} \xrightarrow{f_{k}} A_{k-1} \xrightarrow{f_{k-1}} A_{k-2} \rightarrow \cdots
$$

is called a complex (of abelian groups) iff $\forall k$: $\operatorname{im}\left(f_{k}\right) \subset \operatorname{ker}\left(f_{k-1}\right)$.

Definition 4.2.2. The $\boldsymbol{k}^{\text {th }} \boldsymbol{h o m o l o g y}$ of a complex $\left(A_{\bullet}, f_{\bullet}\right)$ is the abelian group defined by:

$$
H_{k}\left(A_{\bullet}, f_{\bullet}\right):=\frac{\operatorname{ker}\left(f_{k}: A_{k} \rightarrow A_{k-1}\right)}{\operatorname{im}\left(f_{k+1}: A_{k+1} \rightarrow A_{k}\right)}
$$

Remark 4.2.3. The $\mathrm{k}^{\text {th }}$ homology group of a complex $\left(A_{\bullet}, f_{\bullet}\right)$ measures the failure (at the $\mathrm{k}^{\text {th }}$ spot) of $\left(A_{\bullet}, f_{\bullet}\right)$ to be exact. In particular, $\left(A_{\bullet}, f_{\bullet}\right)$ is exact iff $\forall k$: $H^{k}\left(A_{\bullet}, f_{\bullet}\right)=0$.

Definition 4.2.4. For any $n \in \mathbb{N}_{0}$, the set

$$
\Delta_{n}:=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid t_{i} \geq 0, \sum_{i=0}^{n} t_{i}=1\right\}
$$

is called the $\boldsymbol{n}^{\text {th }}$ standard simplex.

For a topological space X, a singular n-simplex in X is a map $\sigma \in \mathcal{C}\left(\Delta_{n}, X\right)$. For any $n \in \mathbb{N}_{0}$ and $k \in\{0, \ldots, n\}$, the $\boldsymbol{k}^{\text {th }}$ side of $\partial \Delta_{n}$ is the map

$$
\iota_{k}^{n}: \Delta_{n-1} \rightarrow \Delta_{n},\left(t_{0}, \ldots, t_{n-1}\right) \mapsto\left(t_{0}, \ldots, t_{k-1}, 0, t_{k}, \ldots, t_{n-1}\right)
$$

Example 4.2.5.

Definition 4.2.6. Let R be a commutative ring with unit. Typical relevant examples are $R=\mathbb{Z}, \mathbb{Z} / k \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$. Then we set

$$
\begin{aligned}
C_{n}(X ; R): & \{\text { formal (finite) linear combinations with coefficients in } R \\
& \text { of singular } n \text {-simplices in } X\} \\
& =\left\{\sum_{k} \alpha_{k} \sigma_{k} \mid \alpha_{k} \in R, \sigma_{k} \in \mathcal{C}\left(\Delta_{n}, X\right)\right\} \\
& =\text { free } R \text {-module generated by } \mathcal{C}\left(\Delta_{n}, X\right)
\end{aligned}
$$

Elements in $C_{n}(X ; R)$ are called singular n-chains in \mathbf{X}. We define a so called boundary operator $\partial_{n}: C_{n}(X ; R) \rightarrow C_{n-1}(X ; R)$ by setting

$$
\partial_{n}(\sigma):=\sum_{k=0}^{n}(-1)^{k} \sigma \circ \iota_{k}^{n},
$$

on n-simplices and extending linearly to $C_{n}(X ; R)$.

This operator ∂ satisfies $\partial \circ \partial \equiv 0: C_{n}(X ; R) \rightarrow C_{n-2}(X ; R)$. Hence we obtain a complex of free R-modules

$$
\cdots \leftarrow C_{n-1}(X ; R) \stackrel{\partial}{\leftarrow} C_{n}(X ; R) \stackrel{\partial}{\leftarrow} C_{n+1}(X ; R) \stackrel{\partial}{\leftarrow} \cdots
$$

Definition 4.2.7. Moreover we set

$$
\begin{aligned}
Z_{n}(X ; R) & :=\operatorname{ker}\left(\partial: C_{n}(X ; R) \rightarrow C_{n-1}(X ; R)\right) \quad \text { and } \\
B_{n}(X ; R) & :=\operatorname{im}\left(\partial: C_{n+1}(X ; R) \rightarrow C_{n}(X ; R)\right)
\end{aligned}
$$

Elements in $Z_{n}(X ; R)$ are called (singular) n-cycles in X, elements of $B_{n}(X ; R)$ are called (singular) n-boundaries in X.
The $n^{\text {th }}$ homology of the singular chain complex $\left(C_{\bullet}(X ; R), \partial\right)$ is called the $\mathbf{n}^{\text {th }}$ singular homology of X (with coefficients in R), and is denoted by:

$$
\begin{aligned}
H_{n}(X ; R) & :=\frac{\operatorname{ker}\left(\partial: C_{n}(X ; R) \rightarrow C_{n-1}(X ; R)\right)}{\operatorname{im}\left(\partial: C_{n+1}(X ; R) \rightarrow C_{n}(X ; R)\right)} \\
& =\frac{Z_{n}(X ; R)}{B_{n}(X ; R)}
\end{aligned}
$$

Let X, Y be topological spaces and $f \in \mathcal{C}(X, Y)$. For

$$
f_{*}\left(\sum \alpha_{j} \sigma_{j}\right):=\sum \alpha_{j}\left(f \circ \sigma_{j}\right),
$$

we find $\partial \circ f_{*}=f_{*} \circ \partial$. This implies that $f_{*}\left(Z_{n}(X ; R)\right) \subset Z_{n}(Y ; R)$ and $f_{*}\left(B_{n}(X ; R)\right) \subset B_{n}(Y ; R)$. Hence f_{*} descends to a map on homology, defined as $f_{*}([z]):=\left[f_{*}(z)\right]$.

Remark 4.2.8. Singular homology has the following properties:

1. Functoriality: For $f \in \mathcal{C}(X, Y)$ and $g \in \mathcal{C}(Y, Z)$, we have $(g \circ f)_{*}=g_{*} \circ f_{*}$, and $\left(\mathrm{id}_{X}\right)_{*}=\operatorname{id}_{H_{n}(X ; R)}$.
2. Homotopy invariance: For $f, g \in \mathcal{C}(X, Y)$ with $f \simeq g$, we have $f_{*}=g_{*}$.
3. Coefficients: $H_{n}(\{p\} ; R) \cong\left\{\begin{array}{lll}R & : & n=0 \\ \{0\} & : & n \geq 1\end{array}\right.$
4. Mayer-Vietoris sequence: For a topological space X and open subsets $X_{0}, X_{1} \subset X$ with $X_{0} \cup X_{1}=X$, we have the inclusions $j^{\nu}: X_{\nu} \hookrightarrow X$ and $i^{\nu}: X_{0} \cap X_{1} \hookrightarrow X_{\nu}$, $\nu=0,1$. There exists a natural connecting homomorphism

$$
\partial_{n}: H_{n}(X ; R) \rightarrow H_{n-1}\left(X_{0} \cap X_{1} ; R\right)
$$

such that the following sequence is exact (for simplicity, we drop the coefficient ring R in the notation):
$\cdots \rightarrow H_{n}\left(X_{0} \cap X_{1}\right) \xrightarrow{\binom{i_{*}^{0}}{i_{*}^{1}}} H_{n}\left(X_{0}\right) \oplus H_{n}\left(X_{1}\right) \xrightarrow{\left(j_{*}^{0},-j_{*}^{1}\right)} H_{n}(X) \xrightarrow{\partial} H_{n-1}\left(X_{0} \cap X_{1}\right) \rightarrow \cdots$

Proof. Assertion 1. follows directly from the definitions. To show assertion 3., we observe that for any $n \in \mathbb{N}$, there exists precisely one n-simplex in $X=\{p\}$, namely the constant map $\Delta_{n} \rightarrow\{p\}$. Hence $C_{n}(X ; R) \cong R$ for any n and

$$
\partial \sigma_{n}=\sum_{k=0}^{n}(-1)^{k} \underbrace{\sigma_{n} \circ \iota_{k}^{n}}_{=\sigma_{n-1}}=\underbrace{\left(\sum_{k=0}^{n}(-1)^{k}\right)}_{\substack{=0 \\=1 \\ \\ n \\ n \\ n \\ \text { edd } \\ \text { even }}} \sigma_{n-1} .
$$

The singular chain complex thus reads:

$$
\{0\} \leftarrow R \stackrel{0}{\leftarrow} R \stackrel{1}{\leftarrow} \cdots \stackrel{1}{\leftarrow} R \stackrel{0}{\leftarrow} R \stackrel{1}{\leftarrow} \cdots
$$

Hence for $n \geq 1$, we have:

$$
H_{2 n}(X ; R)=\frac{\operatorname{ker}(1: R \rightarrow R)}{\operatorname{im}(0: R \rightarrow R)}=\{0\} \quad \text { and } \quad H_{2 n-1}(X ; R)=\frac{\operatorname{ker}(0: R \rightarrow R)}{\operatorname{im}(1: R \rightarrow R)}=\{0\}
$$

Finally for $n=0$, we have:

$$
H_{0}(\{p\} ; R)=\frac{\operatorname{ker}(1: R \rightarrow\{0\})}{\operatorname{im}(0: R \rightarrow R)}=R
$$

To prove assertions 2 . and 4 . requires some more work (to be done in a lecture course on algebraic topology).

Remark 4.2.9. Assertions 1. and 2. imply that if $X \simeq Y$, then for any $n \in \mathbb{N}$, we have: $H_{n}(X ; R) \cong H_{n}(Y ; R)$.

Remark 4.2.10. For $X=\emptyset$ and $n \in \mathbb{N}$, we have: $C_{n}(\emptyset ; R)=\{0\}$ and hence $H_{n}(\emptyset ; R)=\{0\}$.

Remark 4.2.11. In case $X_{0} \cap X_{1}=\emptyset$, i.e. $X=X_{0} \sqcup X_{1}$, since $H_{n}(\emptyset ; R)=\{0\}$, we obtain from the Mayer-Vietoris sequence the isomorphisms $H_{n}\left(X_{0} ; R\right) \oplus H_{n}\left(X_{1} ; R\right) \xlongequal{\cong} H_{n}(X ; R)$.

Remark 4.2.12. If X is path connected, then $H_{0}(X ; R) \cong R$.

Example 4.2.13. Using the Mayer-Vietoris sequence, we inductively compute the singular homology of the spheres S^{m}
a) For $m=0$, we have $S^{0}=\{N P, S P\}$, so from Remark 4.2.11 and assertion 3. of Remark 4.2.8, we have:

$$
H_{n}\left(S^{0} ; R\right)=H_{n}(\{N P\} ; R) \oplus H_{n}(\{S P\} ; R) \cong \begin{cases}R^{2} & : n=0 \\ \{0\} & : n \geq 1\end{cases}
$$

b) For $m=1$, we take $X_{0}=D_{-}, X_{1}=D_{+}$as depicted alongside: Then clearly $D_{ \pm} \simeq\{p\}$ and $D_{+} \cap D_{-} \simeq\left\{p_{1}, p_{2}\right\} \cong S^{0}$.
Since S^{1} is path connected, we have $H_{0}\left(S^{1} ; R\right) \cong R$.
Since $D_{ \pm}$is contractible, we have $H_{n}\left(D_{ \pm} ; R\right)=\{0\}$ for $n \geq 1$ and $H_{0}\left(D_{ \pm} ; R\right) \cong R$.

For $n \geq 2$, the Mayer-Vietoris now reads:

$$
\cdots \rightarrow \underbrace{H_{n}\left(D_{+} ; R\right) \oplus H_{n}\left(D_{-} ; R\right)}_{\cong H_{n}\left(\left\{p_{1}\right\} ; R\right) \oplus H_{n}\left(\left\{p_{1}\right\} ; R\right) \cong\{0\}} \rightarrow H_{n}\left(S^{1}\right) \rightarrow \underbrace{H_{n-1}\left(D_{+} \cap D_{-}\right)}_{\cong H_{n-1}\left(S^{0} ; R\right) \cong\{0\}} \rightarrow \cdots
$$

So $H_{n}\left(S^{1} ; R\right)=\{0\}$ for $n \geq 2$.
For $n=1$, we have:
$\underbrace{H_{1}\left(D_{+} ; R\right) \oplus H_{1}\left(D_{-} ; R\right)}_{\cong\{0\}} \rightarrow H_{1}\left(S^{1}\right) \rightarrow \underbrace{H_{0}\left(D_{+} \cap D_{-} ; R\right)}_{\cong R^{2}} \stackrel{\binom{1}{11}}{\substack{1 \\ H_{0}}} \underbrace{H_{0}\left(D_{+} ; R\right) \oplus H_{0}\left(D_{-} ; R\right)}_{\cong R^{2}}$
Hence $H_{1}\left(S^{1} ; R\right)=\operatorname{ker}\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right) \cong\left\{\left.\binom{x}{-x} \right\rvert\, x \in R\right\} \cong R$.
c) Similarly, for $m \geq 2$, we take $X_{0}=D_{+}, X_{1}=D_{-}$to be sufficiently large balls around $N P$ resp. $S P \in S^{m}$ such that $X_{0} \cap X_{1} \simeq S^{m-1}$.

For $k \geq 2$, the Mayer-Vietoris sequence

$$
\begin{aligned}
\underbrace{H_{k}\left(D_{+} ; R\right) \oplus H_{k}\left(D_{-} ; R\right)}_{\cong\{0\}} & \rightarrow H_{k}\left(S^{m} ; R\right) \xlongequal{\cong} \underbrace{H_{k-1}\left(D_{+} \cap D_{-} ; R\right)}_{\cong H_{k-1}\left(S^{m-1} ; R\right)} \\
& \rightarrow \underbrace{H_{n-1}\left(D_{+} ; R\right) \oplus H_{n-1}\left(D_{-} ; R\right)}_{\cong\{0\}}
\end{aligned}
$$

yields ismomorphisms $H_{k}\left(S^{m} ; R\right) \cong H_{k-1}\left(S^{m-1} ; R\right)$. For $k=0$, we have $H_{0}\left(S^{m} ; R\right) \cong R$, since S^{m} is path connected. For $k=1$, we have:

$$
\underbrace{H_{1}\left(D_{+} ; R\right) \oplus H_{1}\left(D_{-} ; R\right)}_{\cong\{0\}} \rightarrow H_{1}\left(S^{m} ; R\right) \rightarrow \underbrace{H_{0}\left(S^{m-1} ; R\right)}_{\cong R} \stackrel{\binom{1}{1}}{\longrightarrow} \underbrace{H_{0}\left(D_{+} ; R\right) \oplus H_{0}\left(D_{-} ; R\right)}_{\cong R^{2}}
$$

whence $H_{1}\left(S^{m} ; R\right) \cong\{0\}$.
Thus, we have shown:
For $m \geq 1: \quad H_{k}\left(S^{m} ; R\right)=\left\{\begin{array}{ll}R & : k=0, m \\ \{0\} & : \text { otherwise }\end{array} \quad\right.$ and $\quad H_{k}\left(S^{0} ; R\right)= \begin{cases}R^{2} & : k=0 \\ \{0\} & : \text { otherwise }\end{cases}$

4 Algebraic Topology

Example 4.2.14. For the homology of the complex projective spaces, we find:

$$
H_{n}\left(\mathbb{C} P^{n} ; R\right)= \begin{cases}R & : k=0,2,4, \ldots 2 n \tag{4.2}\\ \{0\} & : \text { otherwise }\end{cases}
$$

For $n=1$, we have $\mathbb{C} P^{1}=S^{2}$, and $H_{0}\left(S^{2} ; R\right)=H_{2}\left(S^{2} ; R\right)=R$ whereas $H_{1}\left(S^{2} ; R\right)=\{0\}$.
We proceed by the induction step from $n-1$ to n. To use the Mayer-Vietoris sequence, we first define an appropriate cover of $\mathbb{C} P^{n}$ as follows. By definition, $\mathbb{C} P^{n}$ is the space of all complex lines in \mathbb{C}^{n+1}. We depict $\mathbb{C} P^{n}$ as in the model from Remark 1.5.15,

Now we take two concentric balls $B_{1} \subset B_{2} \subset \mathbb{C}^{n}+e_{n+1}$, and we set:

$$
\begin{aligned}
& X_{0}:=\left\{\ell \in \mathbb{C} P^{n} \mid \ell \cap B_{2} \neq \emptyset\right\} \cong B_{2} \simeq\{p\} \\
& X_{1}:=\left\{\ell \in \mathbb{C} P^{n} \mid \ell \cap \bar{B}_{1}=\emptyset\right\} \simeq \mathbb{C} P^{n-1} .
\end{aligned}
$$

Then we have $X_{0} \cap X_{1} \cong B_{2} \backslash \bar{B}_{1} \simeq S^{2 n-1}$. The Mayer-Vietoris sequence now reads:

$$
\underbrace{H_{k}\left(X_{0} \cap X_{1} ; R\right)}_{\cong H_{k}\left(S^{2 n-1}\right)} \rightarrow \underbrace{H_{k}\left(X_{0} ; R\right) \oplus H_{k}\left(X_{1} ; R\right)}_{\cong H_{k}(\{p\} ; R) \oplus H_{k}\left(\mathbb{C} P^{n-1} ; R\right)} \rightarrow H_{k}\left(\mathbb{C} P^{n} ; R\right) \rightarrow \underbrace{H_{k-1}\left(X_{0} \cap X_{1} ; R\right)}_{\cong H_{k-1}\left(S^{2 n-1}\right)}
$$

For $k \neq 0,1,2 n-1,2 n$, we thus obtain isomorphisms $H_{k}\left(\mathbb{C} P^{n} ; R\right) \cong H_{k}\left(\mathbb{C} P^{n-1} ; R\right)$.
For $k=0$, we have $H_{0}\left(\mathbb{C} P^{n} ; R\right)=R$, since $\mathbb{C} P^{n}$ is path connected.
For $k=1$, we have (using the induction hypothesis that (4.2) holds for $\mathbb{C} P^{n-1}$):

$$
\underbrace{H_{1}\left(\mathbb{C} P^{n-1} ; R\right)}_{\cong\{0\}} \rightarrow H_{1}\left(\mathbb{C} P^{n} ; R\right) \rightarrow \underbrace{H_{0}\left(S^{1} ; R\right)}_{\cong R} \xrightarrow{\binom{1}{1}} \underbrace{H_{0}(\{p\} ; R) \oplus H_{0}\left(\mathbb{C} P^{n-1} ; R\right)}_{\cong R^{2}}
$$

Since the map on the right is injective, we find $H_{1}\left(\mathbb{C} P^{n} ; R\right)=\{0\}$.

For $k=2 n-1$, the Mayer-Vietoris sequence reads:

$$
\underbrace{H_{2 n-1}(\{p\} ; R) \oplus H_{2 n-1}\left(\mathbb{C} P^{n-1} ; R\right)}_{=\{0\}} \rightarrow H_{2 n-1}\left(\mathbb{C} P^{n} ; R\right) \rightarrow \underbrace{H_{2 n-2}\left(S^{2 n-1} ; R\right)}_{=\{0\}}
$$

whence $H_{2 n-1}\left(\mathbb{C} P^{n} ; R\right)=\{0\}$.
Finally, for $k=2 n$, the Mayer-Vietoris sequence reads:

$$
\begin{aligned}
\underbrace{H_{2 n}(\{p\} ; R) \oplus H_{2 n}\left(\mathbb{C} P^{n-1} ; R\right)}_{=\{0\}} & \rightarrow H_{2 n}\left(\mathbb{C} P^{n} ; R\right) \rightarrow \underbrace{H_{2 n-1}\left(S^{2 n-1} ; R\right)}_{\cong R} \\
& \rightarrow \underbrace{H_{2 n-1}(\{p\}) \oplus H_{2 n-1}\left(\mathbb{C} P^{n-1} ; R\right)}_{=\{0\}}
\end{aligned}
$$

whence $H_{2 n}\left(\mathbb{C} P^{n} ; R\right) \cong R$.

Example 4.2.15. Connected sums provide yet another example of the usefulness of the Mayer-Vietoris sequence: Let M be a (topological) manifold, $x \in M$, and put $\dot{M}:=M \backslash\{x\}$. Let X_{0} be any ball containing x and define $X_{1}:=\dot{M}$. Then $X_{0} \simeq\{x\}$ and $X_{0} \cap X_{1} \simeq S^{n-1}$. The Mayer-Vietoris sequence reads:

$$
H_{k}\left(S^{n-1} ; R\right) \rightarrow H_{k}(\{x\} ; R) \oplus H_{k}(\dot{M} ; R) \rightarrow H_{k}(M ; R) \rightarrow H_{k-1}\left(S^{n-1} ; R\right)
$$

For $k \notin\{0,1, n-1, n\}$, we thus have:

$$
\{0\} \rightarrow H_{k}(\dot{M} ; R) \rightarrow H_{k}(M ; R) \rightarrow\{0\}
$$

Hence, in these cases, the inclusion $\dot{M} \hookrightarrow M$ induces isomorphisms $H_{k}(\dot{M} ; R) \cong$ $H_{k}(M ; R)$.
Now let N be another (topological) manifold. Then we can build the connected sum $M \sharp N$ by removing a small ball in M and N respectively and glueing the remaining parts of M and N along the boundaries of those balls (by filling in a small neck):

We take $X_{0}:=\dot{M}, X_{1}:=\dot{N}$, so that $X_{0} \cap X_{1} \cong S^{n-1} \times(0,1) \simeq S^{n-1}$. Then the Mayer-Vieroris sequence reads:

$$
H_{k}\left(S^{n-1} ; R\right) \rightarrow H_{k}(\dot{M} ; R) \oplus H_{k}(\dot{N} ; R) \rightarrow H_{k}(M \sharp N ; R) \rightarrow H_{k-1}\left(S^{n-1} ; R\right)
$$

Again, for $k \notin\{0,1, n-1, n\}$, we obtain isomorphisms $H_{k}(M) \oplus H_{k}(N) \cong H_{k}(M \sharp N ; R)$. This holds especially for $n=4, k=2$.

Example 4.2.16. Here is an example how homology groups are used to solve geometrical problems. We prove the following statement:
There exists no continuous map

$$
f: \bar{B}^{n+1}=\left\{x \in \mathbb{R}^{n+1}| | x \mid \leq 1\right\} \rightarrow S^{n}
$$

satisfying $\left.f\right|_{S^{n}}=\mathrm{id}_{S^{n}}$.
Namely, if there was such an f, then composing f with the inclusion $\iota: S^{n} \hookrightarrow \bar{B}^{n+1}$, we would have $f \circ \iota=\operatorname{id}_{S^{n}}$, hence on homomology groups, $(f \circ \iota) *=\operatorname{id}_{H_{*}\left(S^{n} ; \mathbb{Z}\right)}$. But since \bar{B}^{n+1} is contractible, we have in the $n^{\text {th }}$ homology:

$$
\underbrace{H_{n}\left(S^{n} ; \mathbb{Z}\right)}_{\cong \mathbb{Z}} \stackrel{\iota_{\rightarrow}^{*}}{\rightarrow} \underbrace{H_{n}\left(\bar{B}^{n+1} ; \mathbb{Z}\right)}_{\cong\{0\}} \stackrel{f_{*}}{\rightarrow} \underbrace{H_{n}\left(S^{n} ; \mathbb{Z}\right)}_{\cong \mathbb{Z}}
$$

The identity of \mathbb{Z} would thus factorize through $\{0\}$, which is impossible.

Now let us briefly discuss the relation between the homotopy and homology groups.

Definition 4.2.17. Fix a generator $[c] \in H_{n}\left(S^{n} ; \mathbb{Z}\right) \cong \mathbb{Z}$. Let X be a path connected topological space, and let $x \in X$. Assume $[f] \in \pi_{n}(X, x)$, represented by $f \in \mathcal{C}\left(S^{n}, X\right)$. Then the Hurewicz homomorphism $h: \pi_{n}(X, x) \rightarrow H_{n}(X ; \mathbb{Z})$ is defined by $h([f]):=f_{*}([c])$.

Remark 4.2.18. By the homotopy invariance of homology, the element $f_{*}([c])$ only depends on the homotopy class of f, but not on the particular map f. So the map h is well-defined. To show that it is indeed a group homomorphism requires some more work (to be done in a lecture course on algebraic topology).

Remark 4.2.19. For any group G, we denote by $[G, G]$ the normal subgroup generated by all elements of the form $g h g^{-1} h^{-1}$, where $g, h \in G$. Then $G^{\text {abel }}:=G /[G, G]$ is an abelian group called the abelianization of G.
If G is abelian, then we have $[G, G]=\{e\}$, so $G^{\text {abel }}=G$.

Example 4.2.20. For $G=\mathbb{Z} * \mathbb{Z}:=\left\{a^{k_{1}} b^{l_{1}} \ldots a^{k_{n}} b^{l_{n}} \mid k_{i}, l_{i} \in \mathbb{Z}\right\}$, we have $G^{\text {abel }}=\mathbb{Z}^{2}$.

Remark 4.2.21. Since the homology groups are abelian, the Hurewicz homomorphism h vanishes on $\left[\pi_{n}(X, x), \pi_{n}(X, x)\right]$. Hence it descends to a map $h: \pi_{n}(X, x)^{\text {abel }} \rightarrow H_{n}(X ; \mathbb{Z})$ also called the Hurewicz homomorphism.

Theorem 4.2.22 (Hurewicz)

Let X be a path connected topological space, $x \in X$. Let $\pi_{k}(X, x)=\{0\}$ for $k=1, \ldots, m-1$. Then the Hurewicz homomorphism $h: \pi_{m}(X, x)^{\text {abel }} \rightarrow H_{m}(X ; \mathbb{Z})$ is an isomorphism.

Remark 4.2.23. If $m \geq 2$, then $\pi_{m}(X, x)$ is abelian, so $\pi_{m}(X, x)^{\text {abel }}$ can be replaced by $\pi_{m}(X, x)$ in Hurewicz's theorem.

Example 4.2.24. Using Hurewicz' theorem, we can determine the lower homotopy groups of spheres S^{n} from the homology groups. The spheres $S^{n}, n \geq 2$, are simply connected. From Hurewicz's theorem, we deduce

$$
\pi_{2}\left(S^{n}, N P\right) \cong H_{2}\left(S^{n} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z}, & n=2 \\ \{0\}, & \text { otherwise }\end{cases}
$$

For $n=2$, we are done with Hurewicz' theorem, but for $n \geq 3$, we can apply it once again to obtain

$$
\pi_{3}\left(S^{n}, N P\right) \cong H_{3}\left(S^{n} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z}, & n=3 \\ \{0\}, & \text { otherwise }\end{cases}
$$

Proceeding inductively in this way, we obtain for $m \leq n, n \geq 2$:

$$
\pi_{m}\left(S^{n}, N P\right) \cong H_{m}\left(S^{n} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & : m=n \\ \{0\} & 1 \leq m<n\end{cases}
$$

In Hurewicz' theorem, the vanishing of the lower homotopy groups is indeed necessary: we have already seen that $\pi_{3}\left(S^{2} ; N P\right) \cong \mathbb{Z}$, whereas $H_{3}\left(S^{2} ; \mathbb{Z}\right) \cong\{0\}$.

Remark 4.2.25. Let M and N be simply connected topological manifolds of dimension ≥ 2. Then the connected sum $M \sharp N$ is also simply connected.

4.3 Orientations and the fundamental class

Throughout this section, let R be a ring with unit.
For any $r>0$ and $x \in \mathbb{R}^{n}, n \geq 2$, the map

$$
F_{x, r}: S^{n-1} \rightarrow \dot{B}(x, r):=B(x, r) \backslash\{x\}, \quad y \mapsto x+\frac{r}{2} y
$$

is a homotopy equivalence. Hence we have an isomorphism

$$
\left(F_{x, r}\right)_{*}: H_{n-1}\left(S^{n-1} ; R\right) \rightarrow H_{n-1}(\dot{B}(x, r) ; R)
$$

For different radii $0<r_{1}<r_{2}$, the diagram

commutes up to homotopy (here $\iota_{r_{1}, r_{2}}: \dot{B}\left(x, r_{1}\right) \hookrightarrow \dot{B}\left(x, r_{2}\right)$ denotes the natural inclusion). Hence $\left(F_{x, r_{2}}\right)_{*}=\left(\iota_{r_{1}, r_{2}}\right)_{*} \circ\left(F_{x, r_{1}}\right)_{*}$.

Definition 4.3.1. Let $U, V \subset \mathbb{R}^{n}$ be open sets. A homeomorphism $\Phi: U \rightarrow V$ is called R-orientation preserving at $x \in U$, iff for every $\varrho>0$ with $B(\Phi(x), \varrho) \subset V$ and every $r>0$ with $\Phi(B(x, r)) \subset B(\Phi(x), \varrho)$, the following diagram commutes:

commutes.
The homeomorphism $\Phi: U \rightarrow V$ is called R-orientation preserving, iff it is R orientation preserving at every point $x \in U$.

Example 4.3.2. We can illustrate the definition for $n=2$ and $R=\mathbb{Z}$:

Example 4.3.3. For $R=\mathbb{Z} / 2 \mathbb{Z}$, the identity is the only automorphism of R. Therefore, the diagram above commutes always. Hence any homeomorphism is $\mathbb{Z} / 2 \mathbb{Z}$-orientation preserving.

Remark 4.3.4. To ensure that a homeomorphism $\Phi: U \rightarrow V$ is R-orientation preserving, it suffices to show the commutativity of the above diagram for one r and one ϱ. This is because for $0<\varrho_{1}<\varrho_{2}$ and $0<r_{1}<r_{2}$ as above, we obtain the following diagram:

$$
\begin{aligned}
& H_{n-1}\left(\dot{B}\left(x, r_{2}\right) ; R\right) \xrightarrow{\left(\left.\Phi\right|_{\dot{B}\left(x, r_{2}\right)}\right)_{*}} H_{n-1}\left(\dot{B}\left(\Phi(x), \varrho_{2}\right) ; R\right) \\
& \left(\iota_{\left.r_{1}, r_{2}\right) *} \uparrow \downarrow \uparrow_{\left(\iota_{\rho_{1}, \rho_{2}}\right) *}\right. \\
& H_{n-1}\left(\dot{B}\left(x, r_{1}\right) ; R\right) \xrightarrow{\left(\left.\Phi\right|_{\dot{B}\left(x, r_{1}\right)}\right) *}{ }_{\left(F_{\left.x, r_{1}\right) *}\right.}^{H_{n-1}\left(S^{n-1} ; \widehat{R)}\right.} H_{\left(F_{\Phi(x), e_{1}}\right) *}\left(\dot{B}\left(\Phi(x), \varrho_{1}\right) ; R\right)
\end{aligned}
$$

By construction, the upper square commutes for all $r_{1}, r_{2}, \varrho_{1}, \varrho_{2}$. So the lower triangle commutes iff the whole diagram commutes.

Definition 4.3.5. An atlas $\mathcal{A} \subset\left\{\right.$ homeomorphisms $\left.\Phi: M \supset U \rightarrow V \subset \mathbb{R}^{n}\right\}$ of a topological n-manifold M is called \mathbf{R}-oriented iff all the maps $\Phi \circ \Psi^{-1}$, for $\Phi, \Psi \in \mathcal{A}$ are R-orientation preserving.
A maximal R-oriented atlas of M is called an \mathbf{R}-orientation of M.

A pair (M, \mathcal{A}) consisting of a topological manifold together with an R-orientation is called an \mathbf{R}-oriented manifold. A topological manifold M is called \mathbf{R}-orientable iff M admits an R-orientation.

Remark 4.3.6. Any topological manifold is $\mathbb{Z} / 2 \mathbb{Z}$-orientable.

Remark 4.3.7. For a differentiable manifold, orientability in the differentiable sense coincides with \mathbb{Z}-orientability.

Remark 4.3.8. Let M be a topological manifold, and $x \in M$. On the set K_{x} of all charts of M sending $x \in M$ to $0 \in \mathbb{R}^{n}$, we have the equivalence relation

$$
\Phi \sim \Psi: \Leftrightarrow \Phi \circ \Psi^{-1} \text { is } R \text {-orientation preserving at } 0 \text {. }
$$

We set $\tilde{M}_{x}:=K_{x} / \sim$ and $\tilde{M}:=\bigsqcup_{x \in M} \tilde{M}_{x}$. Equipped with an appropriate topology, \tilde{M} is a covering of M, called the \mathbf{R}-orientation covering.
If M is simply connected, we know from Lemma 4.1.31 that the identity $\mathrm{id}_{M}: M \rightarrow M$ can be lifted to a continuous section $\tilde{\mathrm{id}}_{M}: M \rightarrow \tilde{M}$ of the R-orientation covering. Any such lift provides us with an R-orientation of M, since it attaches to each point $x \in M$ charts such that the corresponding chart changes are R-orientation preserving.
Hence a simply connected topological manifold M is R-orientable for any ring R.

Remark 4.3.9. Let X be a topological manifold, $n \geq 2$, and $x \in M$. Take $X_{0}:=\dot{M}:=M \backslash\{x\}$ and take X_{1} to be an open neighborhood B of x homeomorphic to a ball in \mathbb{R}^{n}. Then $X_{0} \cap X_{1} \cong \dot{B} \simeq S^{n-1}$. The Mayer-Vietoris sequence then reads:
$H_{n}(\dot{M} ; R) \oplus \underbrace{H_{n}(\{p\} ; R)}_{\cong\{0\}} \rightarrow H_{n}(M ; R) \xrightarrow{\partial} H_{n-1}(\dot{B} ; R) \rightarrow H_{n-1}(\dot{M} ; R) \oplus \underbrace{H_{n-1}(\{p\} ; R)}_{\cong\{0\}}$
It is a fact that for a compact, connected, R-oriented manifold M, the boundary homomorphism $\partial: H_{n}(M ; R) \rightarrow H_{n-1}(\dot{B} ; R)$ is an isomorphism (this is an instance of Poincaré duality).
Further, an R-orientation provides us with an isomorphism

$$
H_{n-1}(\dot{B} ; R) \cong H_{n-1}\left(S^{n-1} ; R\right) \cong R
$$

Hence we obtain a distinguished isomorphism $H_{n}(M ; R) \xlongequal{\cong} R$.

Definition 4.3.10. Let M be a compact, connected, R-oriented topological n-manifold. The (\mathbf{R})-fundamental class $[M]$ of M is the homology class $[M] \in H_{n}(M ; R)$ that is mapped to $1 \in R$ under the isomorphism just constructed.

Remark 4.3.11. If M admits a triangulation T, then the formal sum over the simplices of T, appropriately parametrized, represents the fundamental class $[M] \in H_{n}(M ; R)$.

Definition 4.3.12. Let X be a topological space and M an R-oriented, connected, compact topological k-manifold. A class $\alpha \in H_{k}(X ; R)$ is represented by a continuous map $f: M \rightarrow X$ iff $\alpha=f_{*}([M])$.

Example 4.3.13

1. Let $X=M$. Then the identity map $f=\operatorname{id}_{M}$ represents the fundamental class $\alpha=[X]$, since $f_{*}([M])=\left(\operatorname{id}_{M}\right)_{*}([M])=[M]=[X]$.
2. Let X be path connected and $M=\{p\}$. Then any map $f:\{p\} \rightarrow X$ represents a generator of $H_{0}(X ; R) \cong R$.
3. Let $X=\mathbb{C} P^{n}$ and $M=\mathbb{C} P^{n-1}$. Let $\iota: M \hookrightarrow X$ be the inclusion of $\mathbb{C} P^{n-1}$ into $\mathbb{C} P^{n}$ as in Example 4.2.14. From the Mayer-Vietoris sequence, we know that ι induces isomorphisms $\iota_{*}: H_{2 n-2}(M) \rightarrow H_{2 n-2}(X)$. Hence ι represents a generator of $H_{2 n-2}\left(\mathbb{C} P^{n}\right)$. Similarly, by restricting to the lower dimensional complex projective spaces, the maps $\iota: \mathbb{C} P^{k} \hookrightarrow \mathbb{C} P^{n}$ represent generators of $H_{2 k}\left(\mathbb{C} P^{n}\right)$ for $k=1, \ldots, n$.
4. Let $X=S^{2} \times S^{2}$, and let $\left(p_{1}, p_{2}\right) \in X$. Then the inclusion maps

$$
\begin{array}{ll}
f_{1}: S^{2} \rightarrow X, & x \mapsto\left(x, p_{2}\right) \\
f_{2}: S^{2} \rightarrow X, & x \mapsto\left(p_{1}, x\right)
\end{array}
$$

represent the two generators of $H_{2}\left(S^{2} \times S^{2} ; R\right) \cong R^{2}$. From Example 4.2.15, we know that the inclusion map $\iota:\left(S^{2} \times S^{2}\right) \backslash\left\{-\left(p_{1}, p_{2}\right)\right\}=:\left(S^{2} \times S^{2}\right)^{.} \hookrightarrow S^{2} \times S^{2}$ induces an isomorphism $\iota_{*}: H_{2}\left(\left(S^{2} \times S^{2}\right)^{\cdot}\right) \rightarrow H_{2}\left(S^{2} \times S^{2}\right)$. To use the MayerVietoris sequence, we cover $S^{2} \times S^{2}$ by $X_{0}:=S^{2} \times\left(S^{2} \backslash\left\{-\left(p_{2}\right)\right\}\right) \simeq S^{2} \times\left\{p_{2}\right\}$ and

4 Algebraic Topology
$X_{1}:=\left(S^{2} \backslash\left\{-\left(p_{2}\right)\right\}\right) \times S^{2} \simeq\left\{p_{1}\right\} \times S^{2}$ so that $X_{0} \cap X_{1} \cong D^{2} \times D^{2} \simeq\left\{\left(p_{1}, p_{2}\right)\right\}$. The Mayer-Vietoris sequence then reads:

$$
\underbrace{H_{2}\left(\left\{\left(p_{1}, p_{2}\right)\right\}\right)}_{\cong\{0\}} \rightarrow H_{2}\left(S^{2} \times\left\{p_{2}\right\}\right) \oplus H_{2}\left(\left\{p_{1}\right\} \times S^{2}\right) \cong H_{2}\left(\left(S^{2} \times S^{2}\right)^{\cdot}\right) \rightarrow \underbrace{H_{1}\left(\left\{\left(p_{1}, p_{2}\right)\right\}\right)}_{\cong\{0\}} .
$$

The inclusion thus yields an isomorphism

$$
\begin{aligned}
H_{2}\left(S^{2} \times\left\{p_{2}\right\}\right) & \oplus H_{2}\left(\left\{p_{1}\right\} \times S^{2}\right) \longrightarrow \\
& \uparrow \\
H_{2}\left(S^{2}\right) & \oplus H_{2}\left(S^{2}\right)
\end{aligned}
$$

Hence the inclusions f_{1}, f_{2} represent the two generators of $H_{2}\left(S^{2} \times S^{2}\right)$ as claimed.
Especially, we are now able to identify the homology of $S^{2} \times S^{2}$ as:

$$
H_{k}\left(S^{2} \times S^{2} ; R\right) \cong \begin{cases}R & : k=0,4 \\ R^{2} & : k=2 \\ \{0\} & : k=1,3\end{cases}
$$

Remark 4.3.14. Let $\alpha \in H_{k}(X ; R)$ be represented by a continuous map $f: M \rightarrow X$. Let W for a compact, connected, R-oriented topological $(k+1)$-manifold with $\partial W=M$. Further assume that there exists a continuous extension $F: W \rightarrow X$ of f, i.e. $\left.F\right|_{\partial W}=f$. Then $\alpha=0 \in H_{k}(X ; R)$.

This follows from the fact (which is another instance of Poincare duality) that the inclusion $\iota: M \hookrightarrow W$ of the boundary represents $0 \in H_{k}(W ; R)$. Using this fact, we have:

$$
\alpha=f_{*}([M])=(F \circ \iota)_{*}([M])=F_{*}(\underbrace{\iota_{*}([M])}_{=0})=0 .
$$

5 4-dimensional Manifolds

5.1 The intersection form

Throughout this section, let X be a compact, oriented, simply connected, differentiable 4-manifold. Our (preliminary) goal is to find "good" representants for elements in $H_{2}(X ; \mathbb{Z})$.

Step 1: Hurewicz's theorem
Since X is simply connected, the Hurewicz homomorphism $\pi_{2}(X, x) \rightarrow H_{2}(X ; \mathbb{Z})$ is an isomorphism. Hence any $\alpha \in H_{2}(X ; Z)$ can be represented by a continuous map $f: S^{2} \rightarrow X$.

Step 2: Smoothing

Using standard mollifiers, we can deform a continuous map $f: S^{2} \rightarrow X$ into a smooth map: there exists a homotopy $F: S^{2} \times I \rightarrow X$ with $F(\cdot, 0)=f$ such that for any $t>0$, the map $f_{t}:=F(\cdot, t): S^{2} \rightarrow X$ is smooth. Hence any $\alpha \in H_{2}(X ; Z)$ can be represented by a smooth map $f: S^{2} \rightarrow X$.

Step 3: Transversality

Due to work of R . Thom, any continuous map $f: S^{2} \rightarrow X$ can be deformed into an immersion with finitely many double points $x_{i}=f\left(p_{i}\right)=f\left(q_{i}\right) \in X, i=1, \ldots, N$, (with $p_{i} \neq q_{i} \in S^{2}$ and $x_{i} \neq x_{j}$ for $i \neq j$), such that

$$
d f\left(T_{p_{i}} S^{2}\right) \oplus d f\left(T_{q_{i}} S^{2}\right)=T_{x_{i}} X
$$

i.e. f is transversal.

Step 4: Removal of double points

For a double point $x_{i} \in X, p_{i} \neq q_{i} \in S^{2}$ with $f\left(p_{i}\right)=f\left(q_{i}\right)=x_{i}$, choose a coordinate system $\Phi: U\left(x_{i}\right) \rightarrow \mathbb{R}^{4}=\mathbb{C}^{2}$ on a neighbourhood of x_{i} such that $\Phi\left(x_{i}\right)=0$, $f\left(U\left(p_{i}\right)\right)=\mathbb{R}^{2} \times\{0\}$ and $f\left(U\left(q_{i}\right)\right)=\{0\} \times \mathbb{R}^{2}$ for some small neighbourhoods $U\left(p_{i}\right)$ of p_{i} and $U\left(q_{i}\right)$ of q_{i}. Now take $S^{3} \subset \mathbb{R}^{4}=\mathbb{C}^{2}$ and connect the two Hopf circles $S_{1}^{1}:=(\mathbb{C} \times\{0\}) \cap S^{3}$ and $S_{2}^{1}:=(\{0\} \times \mathbb{C}) \cap S^{3}$ by a cylinder Z.
Now remove $f^{-1}\left(\Phi^{-1}\left(B(0,1) \subset \mathbb{R}^{4}\right)\right)$ from S^{2} and replace it by attaching a handle as depicted schematically below. Then we may extend the map $f: S^{2} \rightarrow X$ to the handle by connecting the values of f on the boundary circles of the removed discs along the colored lines in the above picture. This yields a map $\tilde{f}: S^{2} \sharp T^{2} \rightarrow X$, which coincides with f outside the modified regions.

Proceeding in this way for all the double points $x_{i}, i=1, \ldots, N$, we obtain a new map $\tilde{f}: \tilde{S} \rightarrow X$ from a surface \tilde{S} with N handles.

To show that this procedure does not change the homology class represented by f, we fill up the surface \tilde{S} to get a handle body \tilde{W} with $\partial \tilde{W}=\tilde{S}$. Removing from \tilde{W} a (sufficiently small) ball $B^{3}(0, \varrho)$, we obtain a compact 3 -manifold $W:=\tilde{W} \backslash B^{3}(0, \varrho)$ with $\partial W=S^{2} \sqcup \overline{S^{2}(\varrho)}$ (Here $\overline{S^{2}(\varrho)}$ denotes the sphere with the orientation reversed).

Outside the area where we performed the modifications of the surface, we may extend f resp. \tilde{f} to a map $F: W \rightarrow X$ simply by setting F constant along the radial lines. To extend F on the full (solid) handle, we just repeat the attaching procedure for a family of circles $S^{3}(r), r>0$. By construction, we may now extend f along the depicted coloured lines on the (solid) handle such that the nerve of the handle gets mapped under the new map $F: W \rightarrow X$ to the point x_{i}.
This way, we obtain a map $F: W \rightarrow X$ such that $\left.F\right|_{\partial W_{\tilde{f}}}=f \sqcup \tilde{f}: \overline{S^{2}} \times \tilde{S} \rightarrow X$. Thus $f \sqcup \tilde{f}$ represents $0 \in H_{2}(X ; \mathbb{Z})$, which yields that f and \tilde{f} represent the same homology class in $H_{2}(X ; \mathbb{Z})$.

Remark 5.1.1. As a consequence from the above discussion, we note that we can represent any $\alpha \in H_{2}(X ; \mathbb{Z})$ by an embedding $f: S \rightarrow X$, where S is a compact, connected, oriented surface.

Definition 5.1.2. Let X be as above, and let $S_{1}, S_{2} \subset X$ be embedded, compact, oriented surfaces with transversal (or empty) intersection. Then we set

$$
S_{1} \cdot S_{2}:=\sum_{p \in S_{1} \cap S_{2}} \varepsilon(p),
$$

where $\epsilon(p):=+1$, if the orientation of $T_{p} S_{1} \oplus T_{p} S_{2}=T_{p} X$ induced from the orientations of S_{1} and S_{2} coincides with the one on X, and $\varepsilon(p):=-1$ otherwise.
The intersection form of X is the map

$$
Q_{X}: H_{2}(X ; \mathbb{Z}) \times H_{2}(X ; \mathbb{Z}) \rightarrow \mathbb{Z}, \quad\left(\left[S_{1}\right],\left[S_{2}\right]\right) \mapsto S_{2} \cdot S_{2}
$$

Remark 5.1.3. The intersection form is well-defined, bilinear and symmetric.

Example 5.1.4. For $X=S^{2} \times S^{2}$, we have $H_{2}(X ; Z) \cong \mathbb{Z}^{2}$ with generators [$\left.S_{1}\right]$, $\left[S_{2}\right.$], where $S_{1}:=S^{2} \times\left\{p_{2}\right\}$ and $S_{2}:=\left\{p_{1}\right\} \times S^{2}$. We then have $S_{1} \cdot S_{2}=1$ for the standard orientation of S^{2} and the product orientation of X. To compute the self-intersections of [S_{1}] (and similarly of $\left[S_{2}\right]$), we need another representant of $\left[S_{1}\right]$ intersecting S_{1} transversally (this is of course not the case for S_{1} itself). Note that $\left[S_{1}\right]=\left[S_{1}^{\prime}\right]$, where $S_{1}^{\prime}:=S^{2} \times\left\{p_{2}^{\prime}\right\}$ (and similarly for S_{2}). This is because for any $p_{2}^{\prime} \in S^{2}$, we have $S_{2} \times\left\{p_{2}\right\} \sqcup \overline{S^{2} \times\left\{p_{2}^{\prime}\right\}}=\partial\left(S^{2} \times c\right)$, where $c: I \rightarrow S^{2}$ is a curve joining p_{2} and p_{2}^{\prime}. Now for $p_{2} \neq p_{2}^{\prime}$, we have $S_{1} \cap S_{1}^{\prime}=\emptyset$, so $Q_{X}\left(\left[S_{1}\right],\left[S_{1}\right]\right)=S_{1} \cdot S_{1}^{\prime}=0$ and similarly $Q_{X}\left(\left[S_{2}\right],\left[S_{2}\right]\right)=0$. Hence in the basis $\left[S_{1}\right],\left[S_{2}\right]$, the intersection form $Q_{S^{2} \times S^{2}}$ is represented by the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Example 5.1.5. For $X=\mathbb{C} P^{2}$, we have $H_{2}(X ; \mathbb{Z}) \cong \mathbb{Z}$ with generator [$\mathbb{C} P^{1}$]. To compute the self-intersection of the generator, we need two transversal representants. So let $j_{1}, j_{2}: \mathbb{C}^{2} \hookrightarrow \mathbb{C}^{3}$ be two distinct complex linear embeddings. They induce two distinct embeddings $\iota_{1}, \iota_{2}: \mathbb{C} P^{1} \hookrightarrow \mathbb{C} P^{2}$ by $\ell \mapsto j_{\nu}(\ell), \nu=0,1$. Since they are homotopic, they induce the same homology class in $H_{2}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right)$. Denoting $\mathbb{C} P_{\nu}^{1}:=\iota_{\nu}\left(\mathbb{C} P^{1}\right) \subset \mathbb{C} P^{2}$, $\nu=0,1$, we have $j_{1}\left(\mathbb{C}^{2}\right) \cap j_{2}\left(\mathbb{C}^{2}\right)=\ell_{0} \subset \mathbb{C}^{3}$ and hence $\mathbb{C} P_{1}^{1} \cap \mathbb{C} P_{2}^{1}=\left\{\ell_{0}\right\}$. This yields
$\varepsilon\left(\ell_{0}\right)=1$ with respect to the natural orientations on $\mathbb{C} P_{\nu}^{1}$ and $\mathbb{C} P^{2}$ induced by the complex structure. Hence $Q_{\mathbb{C} P^{2}}=(1)$.

Remark 5.1.6. Let X be as above and denote by \bar{X} the same manifold with the orientation reversed. Then we have $Q_{\bar{X}}=-Q_{X}$.

Remark 5.1.7. For $X=X_{1} \sharp X_{2}$, we have isomorphisms

Taking representants of homology classes completely inside the parts \dot{M}_{1} and \dot{M}_{2}, we see that the intersections of the two parts are completely independent. Hence $Q_{X}=Q_{X_{1}} \oplus Q_{X_{2}}$, which is represented by the matrix $\left(\begin{array}{cc}Q_{X_{1}} & 0 \\ 0 & Q_{X_{2}}\end{array}\right)$.

Example 5.1.8. For $X:=k \mathbb{C} P^{2} \sharp l \overline{\mathbb{C} P^{2}}:=\underbrace{\mathbb{C} P^{2} \sharp \cdots \sharp \mathbb{C} P^{2}}_{k} \sharp \underbrace{\overline{\mathbb{C} P^{2}} \sharp \cdots \sharp \overline{\mathbb{C} P^{2}}}_{l}$, we have

$$
Q_{X}=\left(\begin{array}{lll|lll}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
\hline & & & -1 & & \\
& & & \ddots & \\
& & & & & -1
\end{array}\right)
$$

where 1 occurs k times and -1 occurs l times.

Remark 5.1.9. Since X is simply connected, we have $H_{2}(X ; \mathbb{Z}) \cong \mathbb{Z}^{r}$ for some $r \in \mathbb{N}$, so we do not need to worry about torsion elements.
In general, if $Q: H \times H \rightarrow \mathbb{Z}$ is a symmetric bilinear form on a finitely generated \mathbb{Z}-module H, then for a torsion element $a \in H$ (i.e. $\exists k \in \mathbb{N}$ with $k \cdot a=0$), we have for any $b \in H$:

$$
k \cdot Q(a, b)=Q(k \cdot a, b)=Q(0, b)=0
$$

Hence $Q(a, b)=0$ for all b and Q descends to a symmetric bilinear form

$$
H / \text { Torsion } \times H / \text { Torsion } \rightarrow \mathbb{Z}
$$

Then one would consider this form on $H /$ Torsion, a free \mathbb{Z}-module of finite rank.

Definition 5.1.10. A symmetric bilinear form Q on a free \mathbb{Z}-module $H \cong \mathbb{Z}^{r}$ is called unimodular iff there exists a basis e_{1}, \ldots, e_{r} of H such that

$$
\begin{equation*}
\operatorname{det}\left(Q\left(e_{i}, e_{j}\right)\right)_{i, j=1, \ldots, r}= \pm 1 \tag{5.1}
\end{equation*}
$$

Remark 5.1.11. If Q is a unimodular, then the equation (5.1) holds for any basis of H : If f_{1}, \ldots, f_{r} is another basis, we may write $\left(f_{1}, \ldots, f_{r}\right)=\left(e_{1}, \ldots, e_{r}\right) \cdot A$ with a matrix $A \in$ $\mathrm{GL}(r ; \mathbb{Z})$. Then $1=\operatorname{det}\left(A \cdot A^{-1}\right)=\underbrace{\operatorname{det}(A)}_{\in \mathbb{Z}} \cdot \underbrace{\operatorname{det}\left(A^{-1}\right)}_{\in \mathbb{Z}}$, hence $\operatorname{det}(A)=\operatorname{det}\left(A^{-1}\right)= \pm 1$. Then we have $Q\left(e_{i}, e_{j}\right)_{i, j}=A^{t} \cdot Q\left(f_{k}, f_{l}\right)_{f, k} \cdot A$, so

$$
\operatorname{det}\left(Q\left(e_{i}, e_{j}\right)_{i, j}\right)=\underbrace{\operatorname{det} A^{2}}_{=1} \cdot \operatorname{det}\left(Q\left(f_{k}, f_{l}\right)_{f, k}\right)
$$

Remark 5.1.12. For X as above, the intersection form Q_{X} is unimodular (this is yet another instance of Poincaré duality).

Definition 5.1.13. The rank of a symmetric bilinear form Q on a free \mathbb{Z}-module H is defined as the dimension of H and is denoted by $\operatorname{rk}(Q)$.
Over \mathbb{R} or \mathbb{Q}, the form Q can be diagonalized, and the signature of Q is defined as

$$
\operatorname{sign}(Q):=\# \text { positive eigenvalues of } \mathrm{Q}-\# \text { negative eigenvalues of } \mathrm{Q}
$$

The signature of a 4-manifold X as above is defined as the signature of its intersection form: $\operatorname{sign}(X):=\operatorname{sign}\left(Q_{X}\right)$.
A symmetric bilinear form Q on a free \mathbb{Z}-module H is called positive/negative definite iff $Q(a, a) \gtrless 0$ for all $a \in H$, and indefinite otherwise.
We say that Q has even parity (or the parity of Q is even) iff $\forall a \in H: Q(a, a) \in 2 \mathbb{Z}$, and that Q has odd parity (or the parity of Q is odd) otherwise.

Remark 5.1.14. A symmetric bilinear form Q on a free \mathbb{Z}-module $H \cong \mathbb{Z}^{r}$ has even parity iff for any basis of H, all diagonal elements in the matrix representation of H are even. Indeed, if Q has even parity and e_{1}, \ldots, e_{r} is a basis of H, then $Q\left(e_{i}, e_{i}\right) \in 2 \mathbb{Z}$.

5 4-dimensional Manifolds

Conversely, let $\left(Q_{i j}\right)_{i, j=1, \ldots, r}=\left(Q\left(e_{i}, e_{j}\right)\right)_{i, j=1, \ldots, r}$ be the matrix representation of Q with $Q_{i i} \in 2 \mathbb{Z}$. Then for any $H \ni a=\sum_{i=1}^{r} a_{i} \cdot e_{i}, a_{i} \in \mathbb{Z}$, we find, using the symmetry of Q :

$$
\begin{aligned}
Q(a, a) & =\left(\begin{array}{lll}
a_{1} & \ldots & a_{r}
\end{array}\right) \cdot\left(Q_{i j}\right) \cdot\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{r}
\end{array}\right) \\
& =\sum_{i, j=1}^{\sum_{i j}^{r} Q_{i j} a_{i} a_{j}} \\
& =2 \underbrace{2 \sum_{i<j} Q_{i j} a_{i} a_{j}}_{\in 2 \mathbb{Z}}+\sum_{i=1}^{r} \underbrace{Q_{i i}}_{\in 2 \mathbb{Z}} a_{i}^{2} \\
& \in 2 \mathbb{Z} .
\end{aligned}
$$

Example 5.1.15

1. The intersection form $Q_{S^{2} \times S^{2}}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ has even parity, is indefinite and has signature 0.
2. The intersection form $Q_{\mathbb{C} P^{2}}=(1)$ has odd parity, is positive definite and has signature 1.
3. The intersection form $Q_{\mathbb{C} P^{2} \sharp \overline{\mathbb{C}} P^{2}}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ has odd parity, is indefinite and has signature 0 .
Note that over \mathbb{Q} or \mathbb{R} the matrices $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ are equivalent, but over \mathbb{Z}, they are not, since they have different parity.

Remark 5.1.16. Let Q_{1}, Q_{2} be symmetric bilinear forms on a free \mathbb{Z}-module H. Then we have:

1. The form $Q_{1} \oplus Q_{2}$ is unimodular iff Q_{1} and Q_{2} are unimodular.
2. For the signature, we have: $\operatorname{sign}\left(Q_{1} \oplus Q_{2}\right)=\operatorname{sign}\left(Q_{1}\right)+\operatorname{sign}\left(Q_{2}\right)$. Hence for 4 -manifolds X_{1} and X_{2} as above, we have:

$$
\begin{equation*}
\operatorname{sign}\left(X_{1} \sharp X_{2}\right)=\operatorname{sign}\left(X_{1}\right)+\operatorname{sign}\left(X_{2}\right) . \tag{5.2}
\end{equation*}
$$

3. The form $Q_{1} \oplus Q_{2}$ is positive (resp. negative) definite iff both Q_{1} and Q_{2} are positive (resp. negative) definite.

Example 5.1.17. Here is another important example: The symmetric bilinear form E_{8} on \mathbb{Z}^{8}, represented by the matrix

$$
\left(\begin{array}{llll|llll}
2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{5.3}\\
1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

has even parity, is positive definite and $\operatorname{sign}\left(E_{8}\right)=8$.

Example 5.1.18. On the complex projective space $\mathbb{C} P^{n}$, represented as the base space of the $\mathrm{U}(1)$-principal bundle $S^{2 n+1} \rightarrow \mathbb{C} P^{n}=\mathrm{U}(1) \backslash S^{2 n+1}$ with the $\mathrm{U}(1)$-action given by scalar multiplication in \mathbb{C}^{n+1}, we introduce the so called homogeneous coordinates: the equivalence class of $\left(z_{0}, \ldots, z_{n}\right) \in S^{2 n+1}$ in $\mathbb{C} P^{n}$ is denoted by $\left[z_{0}: \ldots: z_{n}\right]$.
The K3 surface (or Kummer surface) is the complex surface

$$
K 3:=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C} P^{3} \mid z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0\right\} .
$$

Since the defining equation is homogeneous, it is compatible with the equivalence relation $z \sim z^{\prime}: \Leftrightarrow z=\lambda \cdot z^{\prime}, \lambda \in \mathrm{U}(1)$. Hence $K 3$ is a well-defined compact complex hypersurface in $\mathbb{C} P^{3}$. The Lefschetz hyperplane theorem from algebraic geometry tells us that the inclusion $\iota: K 3 \hookrightarrow \mathbb{C} P^{3}$ induces isomorphisms $\iota_{\sharp}: \pi_{k}(K 3, p) \rightarrow \pi_{k}\left(\mathbb{C} P^{3}, p\right)=\{0\}$ for $k=0,1$. Thus $K 3$ is simply connected. One can show:

$$
Q_{K 3}=\left(-E_{8}\right) \oplus\left(-E_{8}\right) \oplus\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \oplus\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \oplus\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Hence $Q_{K 3}$ is indefinite, has even parity and $\operatorname{sign}(K 3)=-16$.

Remark 5.1.19. Let X be a simply connected, compact, oriented differentiable 4manifold. Then Q_{X} has even parity iff X has a Sspin structure. In this case, one can define spinors and the Dirac operator on X.

Theorem 5.1.20 (Rochlin)

Let X be a simply connected, compact, oriented differentiable 4-manifold and suppose that Q_{X} has even parity. Then we have:

$$
\operatorname{sign}(X) \in 16 \cdot \mathbb{Z}
$$

Sketch of proof. Let D be the Dirac operator on the spinor bundle of X, $D=\left(\begin{array}{cc}0 & D^{-} \\ D^{+} & 0\end{array}\right)$. The Atiyah-Singer index theorem tells us that

$$
\operatorname{ind}\left(D^{+}\right):=\operatorname{dim}\left(\operatorname{ker} D^{+}\right)-\operatorname{dim}\left(\operatorname{ker} D^{-}\right)=\frac{1}{8} \operatorname{sign}(X)
$$

hence $\operatorname{sign}(X) \in 8 \mathbb{Z}$.
In dimension 4 the spinor bundle has a quaternionic structure J, i.e. a \mathbb{C}-antilinear automorphism satisfying $J^{2}=-\mathrm{id}$. The Dirac operator D commutes with J so that both $\operatorname{ker} D^{+}$and $\operatorname{ker} D^{-}$are vector spaces with a quaternionic structure and therefore even-dimensional. Hence

$$
\operatorname{ind}\left(D^{+}\right)=\underbrace{\operatorname{dim}\left(\operatorname{ker} D^{+}\right)}_{\in 2 \mathbb{N}}-\underbrace{\operatorname{dim}\left(\operatorname{ker} D^{-}\right)}_{\in 2 \mathbb{N}} \in 2 \mathbb{Z}
$$

so that $\operatorname{sign}(X)=8 \cdot \operatorname{ind}\left(D^{+}\right) \in 16 \mathbb{Z}$.

Example 5.1.21. Summarizing, we have the following list of examples:

X	$\operatorname{sign}(X)$	Parity
S^{4}	0	even
$S^{2} \times S^{2}$	0	even
$\mathbb{C} P^{2}$	1	odd
$k \mathbb{C} P^{2} \sharp l \overline{\mathbb{C} P^{2}}$	$k-l$	odd
$K 3$	-16	even

5.2 Classification results

Throughout this section, let X be a simply connected, compact, oriented topological 4-manifold, and let Q be a symmetric bilinear form on a \mathbb{Z}-module H of finite rank.

Remark 5.2.1. The intersection form Q_{X} of a simply connected, compact, oriented (topological) 4-manifold can be defined in purely homological terms, without using a differentiable structure (this is another use of Poincaré duality). Further, the intersection form is homotopy invariant, i.e. if $X_{1} \simeq X_{2}$, then $Q_{X_{1}} \cong Q_{X_{2}}$. That the converse also holds true, is a rather deep result from topology:

Theorem 5.2.2 (Whitehead)

Let X_{1}, X_{2} be simply connected, compact, oriented topological 4-manifolds. Then $X_{1} \simeq X_{2}$ iff $Q_{X_{1}} \cong Q_{X_{2}}$.

Theorem 5.2.3 (Freedman, 1982)

For any unimodular symmetric bilinear form Q on a \mathbb{Z}-module H of finite rank, there exists a simply connected, compact, oriented topological 4-manifold X such that $Q_{X} \cong Q$.
Further, if Q has even parity, then X is uniquely determined up to homeomorphism by Q. If Q has odd parity, then there are up to homeomorphism exactly two simply connected, compact, oriented topological 4-manifolds X with $Q_{X} \cong Q$.

Sketch of existence proof.
a) For a diffeomorphism $f: \bar{D}^{2} \times S^{1} \rightarrow f\left(\bar{D}^{2} \times S^{1}\right) \subset S^{3}$, the self linking number is defined as:

$$
\operatorname{lk}(f, f):=\operatorname{lk}(f(0, \cdot), f(1, \cdot)) .
$$

For two such maps f_{1}, f_{2} with disjoint images, the linking number is defined as:

$$
\operatorname{lk}\left(f_{1}, f_{2}\right):=\operatorname{lk}\left(f_{1}(0, \cdot), f_{2}(0, \cdot)\right)
$$

For r such maps f_{1}, \ldots, f_{r} with pairwise disjoint images, the linking matrix is the matrix $\left(\operatorname{lk}\left(f_{i}, f_{j}\right)\right)_{i, j=1, \ldots, r}$.
b) Now for a given Q, choose $f_{1}, \ldots, f_{r}: \bar{D}^{2} \times S^{1} \rightarrow S^{3}$ as in a) with pairwise disjoint images and linking matrix Q. Then we start the construction of X with the closed 4-ball \bar{B}^{4} with $\partial \bar{B}^{4}=S^{3}$. We may glue r copies of $\bar{D}^{2} \times \bar{D}^{2}$ along the boundary component $\bar{D}^{2} \times S^{1}$ to \bar{B}^{4} by the diffeomorphisms

$$
f_{i}: \bar{D}^{2} \times \partial\left(\bar{D}^{2}\right) \rightarrow f_{i}\left(\bar{D}^{2} \times S^{1}\right) \subset S^{3}=\partial\left(\bar{B}^{4}\right)
$$

to get a new compact 4-manifold X_{1} with boundary.
c) By a careful study of ∂X_{1}, one can find a contractible 4-manifold X_{2} with $\partial X_{2} \cong \partial X_{1}$. Then we may glue X_{1} and X_{2} along their boundary to get the simply connected, compact, oriented 4-manifold $X:=X_{1} \cup_{\partial X_{i}} X_{2}$. Since X_{2} is contractible, the topology of X is determined by the topology of X_{1}, and one may check that indeed $Q_{X} \cong Q$.

Example 5.2.4. To illustrate the dependence of the 4-manifolds X thus constructed, we consider two different knots with self linking number 1. The above construction thus realizes $X=(1)$:

Taking the unknot, one obtains the expected 4-manifold $X=\mathbb{C} P^{2}$.

Taking the trefoil knot yields a topological 4-manifold $X=: * \mathbb{C} P^{2}$, called fake $\mathbb{C} P^{2}$.

Remark 5.2.5. Let $M_{E_{8}}$ be the simply connected compact 4-manifold with intersection form $Q=E_{8}$. Then $\operatorname{sign}\left(M_{E_{8}}\right)=8$. If $M_{E_{8}}$ were a differentiable 4-manifold, this would contradict Rochlin's theorem 5.1.20. Hence $M_{E_{8}}$ is a simply connected, compact, topological 4-manifold which cannot carry a differentiable structure.

Remark 5.2.6. Such a phenomen cannot happen in dimensions lower than 4: for $k \leq 3$, any topological k-manifold carries a differentiable structure which is unique up to diffeomorphism.

Theorem 5.2.7 (Serre)

Let Q_{1}, Q_{2} be indefinite, unimodular symmetric bilinear forms on free \mathbb{Z}-modules of finite rank. Then we have:

$$
\begin{aligned}
Q_{1} \cong Q_{2} \Leftrightarrow & \operatorname{rk}\left(Q_{1}\right)=\operatorname{rk}\left(Q_{2}\right) \\
& \operatorname{sign}\left(Q_{1}\right)=\operatorname{sign}\left(Q_{2}\right) \\
& Q_{1} \text { and } Q_{2} \text { have the same parity } .
\end{aligned}
$$

The isomorphism types of forms Q of odd parity are represented by the matrices

$$
A_{k, l}^{\text {odd }}:=\left(\begin{array}{ccc|ccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
\hline & & & -1 & & \\
& & & \ddots & \\
& & & & & -1
\end{array}\right)
$$

where $k, l \geq 1$. For these forms, we have $\operatorname{rk}\left(Q_{k, l}\right)=k+l$ and $\operatorname{sign}\left(Q_{k, l}\right)=k-l$. The isomorphism types of forms Q of even parity are represented by

$$
A_{ \pm k, l}^{\mathrm{even}}:= \pm k E_{8}+l\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

What about definite intersection forms? So far, the classification is unknown. We will see in a minute, what's the problem in showing this: there are huge numbers of them!

Lemma 5.2.8

Let Q be a unimodular, symmetric bilinear form on a free \mathbb{Z}-module of finite rank. Then there exists an element $w \in H$ such that for any $x \in H$, we have:

$$
Q(x, x) \equiv Q(w, x) \quad(\bmod 2) .
$$

Proof. Since Q is unimodular, for any linear map $f: H \rightarrow \mathbb{Z}$, there exists a unique $y \in H$ such that

$$
\forall x \in H: f(x)=Q(y, x) .
$$

Indeed, writing f, x and Q with respect to a basis of H, we obtain the equation

$$
\left(f_{1}, \ldots, f_{r}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{r}
\end{array}\right)=\left(y_{1}, \ldots, y_{r}\right) \cdot\left(\left(Q_{i, j}\right)_{i, j=1, \ldots, r}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{r}
\end{array}\right)
$$

The form Q is unimodular, so $\operatorname{det}(Q)= \pm 1$, thus the matrix $\left(Q_{i, j}\right)_{i, j=1, \ldots, r}$ is invertible and we can solve for y.
Now let $\bar{H}:=H / 2 \mathbb{Z}$. Then Q induces a symmetric bilinear form $\bar{Q}: \bar{H} \times \bar{H} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$, and we still have: for any linear map $\bar{f}: \bar{H} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$, there exists a unique $y_{\bar{f}} \in \bar{H}$ such that for any $\xi \in \bar{H}$, we have:

$$
\bar{f}(\xi)=\bar{Q}\left(y_{\bar{f}}, \xi\right)
$$

Now we take $\bar{f}: \bar{H} \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \bar{f}(\xi):=\bar{Q}(\xi, \xi)$. Although \bar{f} is quadratic, it is linear, since it takes values in $\mathbb{Z} / 2 \mathbb{Z}$:

$$
\bar{f}(\xi+\eta)=\bar{Q}(\xi+\eta, \xi+\eta)=\bar{Q}(\xi, \xi)+\underbrace{2 \bar{Q}(\xi, \eta)}_{=0 \in \mathbb{Z} / 2 \mathbb{Z}}+\bar{Q}(\eta, \eta)=\bar{f}(\xi)+\bar{f}(\eta) .
$$

Hence there is a unique $y_{\bar{f}} \in \bar{H}$ such that for any $\xi \in \bar{H}$, we have $\bar{Q}\left(y_{\bar{f}}, \xi\right)=\bar{Q}(\xi, \xi)$. Taking $w \in H$ with $\bar{w}=y_{\bar{f}} \in \bar{H}$, we are done.

Definition 5.2.9. An element $w \in H$ as in Lemma 5.2 .8 is called a characteristic element for Q.
In case $H=H_{2}(X ; \mathbb{Z})$ for a simply connected, compact, oriented topological 4-manifold X, a surface $S \subset X$ representing a characteristic element for Q_{X} is called a characteristic surface.

Lemma 5.2.10 (van der Blij)

Let Q be a unimodular, symmetric bilinear form on a free \mathbb{Z}-module H of finite rank, and let $w \in H$ be a characteristic element. Then $\operatorname{sign}(Q) \equiv Q(w, w)(\bmod 8)$.

Remark 5.2.11. If Q has even parity, then $w=0$ is a characteristic element. Hence by Lemma 5.2.10, we have $\operatorname{sign}(Q) \equiv 0(\bmod 8)$. Compared to Rochlin's theorem 5.1.20,
this statement is weaker in that it only shows divisibility by 8 . But it also applies to topological instead of only differentiable manifolds X.
For a positive definite form rank and signature coincide. Thus if Q is positive definite and of even parity, then the rank of Q must be divisible by 8 .

Remark 5.2.12. To estimate the difficulty in classifying definite symmetric bilinear forms Q, we set

$$
\begin{gathered}
\mathcal{Q}_{8 k}:=\{\text { isomorphism classes of unimodular positive definite bilinear forms } \\
\quad \text { of even parity and rank } 8 k\} .
\end{gathered}
$$

From number theory, we have the Minkowski-Siegel mass formula:

$$
\sum_{Q \in \mathcal{Q}_{8 k}} \frac{1}{\# \operatorname{Aut}(Q)}=2^{1-8 k} \cdot \frac{B_{2 k}}{(4 k)!} \cdot \prod_{j=1}^{4 k-1} B_{j},
$$

where B_{j} is the $\mathrm{j}^{\text {th }}$ Bernoulli number defined by:

$$
\frac{x}{e^{x}-1}=1-\frac{x}{2}-\sum_{j=1}^{\infty}(-1)^{j} \cdot \frac{B_{j}}{(2 j)!} \cdot x^{2 j}
$$

Corollary 5.2.13

Since $\# \operatorname{Aut}(Q) \geq 1$ for any Q, we obtain from the Minkowski-Segal formula the following lower bound on the number of isomorphism types of rank $8 k$ unimodular, positive definite symmetric bilinear forms:

$$
\# \mathcal{Q}_{8 k} \geq \underbrace{2^{1-8 k} \cdot \frac{B_{2 k}}{(4 k)!} \cdot \prod_{j=1}^{4 k-1} B_{j}}_{=: a_{8 k}}
$$

Just to indicate the difficulty, we list the first few values of the lower bound:

k	$\# \mathcal{Q}_{8 k}$	$a_{8 k}$	classification
1	1	$10^{-9} \cdot 1,43 \ldots$	E_{8}
2	2	$10^{-18} \cdot 2,48 \ldots$	$E_{8} \oplus E_{8}, \Gamma_{16}$
3	24	$10^{-15} \cdot 7,93 \ldots$	Niemeyer, 1968
4	unknown	$10^{7} \cdot 4,03 \ldots$	unknown
5	unknown	$10^{51} \cdot 4,39 \ldots$	unknown

5.3 Donaldson's theorem

Theorem 5.3.1 (Donaldson, 1983)
Let X be a simply connected, compact, oriented differentiable 4-manifold with positive definite intersection form Q_{X}. Then, over \mathbb{Z},

$$
Q_{X} \cong\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & \ddots & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Corollary 5.3.2

The topological 4-manifold X with $Q_{X} \cong E_{8} \oplus E_{8}$ does not admit a differentiable structure.

Example 5.3.3 (Exotic \mathbb{R}^{4}). Using Corollary 5.3.2, one can construct an exotic differentiable structure on \mathbb{R}^{4}, i.e. a differentiable manifold M such that M is homeomorphic but not diffeomorphic to the standard \mathbb{R}^{4}. Such a manifold is called exotic \mathbb{R}^{4} or fake \mathbb{R}^{4}.
We start with the Kummer surface $K 3$ with $Q_{K 3}=-2 E_{8} \oplus 3\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Now let $M_{E_{8}}$ be the simply connected, compact, oriented topological 4-manifold with intersection form $Q_{M_{E_{8}}} \cong E_{8}$. By Freedman's theorem 5.2.3, K3 is homeomorphic to

$$
\overline{M_{E_{8}}} \sharp \overline{M_{E_{8}}} \sharp\left(S^{2} \times S^{2}\right) \sharp\left(S^{2} \times S^{2}\right) \sharp\left(S^{2} \times S^{2}\right)=: 2 \overline{M_{E_{8}}} \sharp 3\left(S^{2} \times S^{2}\right) \text {. }
$$

Hence there exists a topologically embedded 3 -sphere $\Sigma \subset K 3$, which cuts $K 3$ into pieces X_{1}, X_{2} with common boundary Σ and $X_{1} \cong 2 \bar{M}_{E_{8}}-B^{4}$, whereas $X_{2} \cong 3\left(S^{2} \times S^{2}\right)-B^{4}$. Now we take on X_{2} the differentiable structure such that the embedding $X_{2} \hookrightarrow K 3$ is a smooth map. We need the following facts from the theory of Casson:

1. There exists a smooth embedding $j: X_{2} \hookrightarrow 3\left(S^{2} \times S^{2}\right)$. We let

$$
V:=3\left(S^{2} \times S^{2}\right) \backslash j\left(X_{2} \backslash A\right)
$$

where $A:=B^{\prime} \backslash \bar{B}^{4}$ and $B^{\prime} \supset B^{4}$ is some larger ball.

2. We then have by the Seifert-vanKampen theorem that $\pi_{1}(V)=\{0\}$ and by the Mayer-Vietoris sequence that $H_{2}(V ; \mathbb{Z})=\{0\}$. Further, V has exactly one topological end, homeomorphic to $(0, \infty) \times S^{3}$. The second fact we need is that this implies $V \approx B^{4} \approx \mathbb{R}^{4}$.

We note that $K:=3\left(S^{2} \times S^{2}\right) \backslash j\left(X_{2}\right)$ is a compact subset of V. Suppose there were a smoothly embeded 3 -sphere $S \subset V$ surrounding K.

Then the smooth embedding $X_{2} \hookrightarrow K 3$ maps Σ^{\prime} to a smoothly embedded 3 -sphere in $K 3$. Cutting $K 3$ along Σ^{\prime}, we obtain a smooth 4 -manifold Y with boundary Σ^{\prime}. Now glueing a 4 -ball \bar{B}^{4} into Y along $\partial Y=\Sigma^{\prime} \cong_{\text {diffeo }} S^{3}=\partial \bar{B}^{4}$, we obtain a smooth 4 -manifold Z without boundary.

By construction, Z is simply connected, compact and has intersection form $Q_{Z} \cong E_{8} \oplus E_{8}$. This contradicts the Corollary 5.3.2 to the theorem of Donaldson 5.3.1. Hence there exists no smoothly embedded 3 -sphere S surrounding the compact set $K \subset V \approx \mathbb{R}^{4}$. Since in \mathbb{R}^{4} with the standard differentiable structure, any compact set is contained in a large ball and hence is surrounded by a smoothly embedded 3 -sphere namely the boundary of that ball - we conclude that the $V \approx \mathbb{R}^{4}$ cannot be diffeomorphic to the standard \mathbb{R}^{4}.

Sketch of proof of Donaldson's theorem.

a) Let X be a simply connected, compact, oriented differentiable 4 -manifold with positive definte intersection form Q_{X}. Choose an $\mathrm{SU}(2)$-principal bundle $P \rightarrow X$ such that for $c_{2}(P) \in H_{\mathrm{dR}}^{4}(X ; \mathbb{R})$, we have $\int_{X} c_{2}(P)=-11^{1}$ Denote by

$$
\begin{aligned}
\mathcal{A}(P) & :=\left\{\omega \in \mathcal{C}(P) \mid \bar{\Omega} \in \Omega_{+}^{2}\left(M ; P \times_{\mathrm{Ad}} \mathfrak{s u}(2)\right\}\right. \\
& =\{\mathrm{SU}(2) \text {-instantons }\}
\end{aligned}
$$

the space of connections with self-dual curvature forms and by

$$
\mathcal{M}:=\mathcal{A}(P) / \mathcal{G}(P)
$$

the moduli space of gauge equivalence classes of $\mathrm{SU}(2)$-instantons. Analyzing the moduli space \mathcal{M}, one finds:
a) The moduli space \mathcal{M} is a 5 -dimensional manifold with finitely many singular points $p_{1}, \ldots, p_{n} \in \mathcal{M}$.
b) Any of the singular points p_{i} has a neighborhood $U_{p_{i}}$ homeomorphic to a cone on $\mathbb{C} P^{2}$.
c) For every divergent sequence $\left[\omega_{k}\right]_{k \in \mathbb{N}} \in \mathcal{M}$, there is a subsequence such that the following holds: there exists a point $x \in M$ such that for any $r>0$, we have

$$
\int_{X-B_{r}(x)}\left|\bar{\Omega}_{k}\right|^{2} \mathrm{dvol} \xrightarrow{k \rightarrow \infty} 0 .
$$

[^5]Note that since all the connections ω_{k} have self-dual curvatures $\bar{\Omega}_{k}$, we have:

$$
\begin{aligned}
& \int_{X}\left|\bar{\Omega}_{k}\right|^{2} \text { dvol }=\int_{X}\left(\left|\bar{\Omega}_{k}^{+}\right|^{2}+\left|\bar{\Omega}_{k}^{-}\right|^{2}\right) \text { dvol } \\
&=\stackrel{\bar{\Omega}_{k}=\bar{\Omega}_{k}}{=} \int_{X}\left|\bar{\Omega}_{k}^{+}\right|^{2} \text { dvol } \\
& \text { and }-8 \pi^{2} \int_{X} c_{2}(P)=\int_{X}\left(\left|\bar{\Omega}_{k}^{+}\right|^{2}-\left|\bar{\Omega}_{k}^{-}\right|^{2}\right) \text { dvol } \\
& * \bar{\Omega}_{k}=\bar{\Omega}_{k} \\
&= \int_{X}\left|\bar{\Omega}_{k}^{+}\right|^{2} \text { dvol } \\
&=\int_{X}\left|\bar{\Omega}_{k}\right|^{2} \text { dvol } \\
& \text { hence } \quad \int_{X}\left|\bar{\Omega}_{k}\right|^{2} \text { dvol }=-8 \pi^{2} \int_{X} c_{2}(P) \\
&=8 \pi^{2} .
\end{aligned}
$$

Hence the curvatures $\bar{\Omega}_{k}$ concentrate at the point x.
b) Now let $\mathcal{M}^{c}:=\mathcal{M} \sqcup X$ with the topology such that a sequence $\left[\omega_{k}\right]_{k \in \mathbb{N}}$ as above converges to the concentration point x of their curvatures.

Cutting boundaries of the singular points p_{1}, \ldots, p_{n} from \mathcal{M}^{c}, we obtain a compact 5-manifold \mathcal{M}^{\prime} with boundary

$$
\partial \mathcal{M}^{\prime}=\bar{X} \sqcup \underbrace{\mathbb{C} P^{2} \sqcup \ldots \sqcup \mathbb{C} P^{2}}_{n_{+}} \sqcup \underbrace{\overline{\mathbb{C} P^{2}} \sqcup \ldots \sqcup \overline{\mathbb{C} P^{2}}}_{n_{-}}
$$

and of course $n_{+}-n_{-}=n$ is the total number of singular points in \mathcal{M}.

5 4-dimensional Manifolds

For the signature of the boundary components, we obtain:

$$
0=\operatorname{sign}\left(\partial \mathcal{M}^{\prime}\right)=\operatorname{sign}(\bar{X})+n_{+} \operatorname{sign}\left(\mathbb{C} P^{2}\right)-n_{-} \operatorname{sign}\left(\overline{\mathbb{C} P^{2}}\right)
$$

hence $\operatorname{sign}(X)=n_{+}-n_{-}$.
c) Next we note that the intersection form Q_{X} can be realized on the de Rham cohomology $H_{\mathrm{dR}}^{2}(X ; \mathbb{Z})$ by:

$$
Q_{X}([\alpha],[\beta]):=\int_{X} \alpha \wedge \beta .
$$

Here the de Rham cohomology with integer coefficients is defined as: 2

$$
H_{\mathrm{dR}}^{2}(X ; \mathbb{Z}):=\left\{[\alpha] \in H_{\mathrm{dR}}^{2}(X ; \mathbb{R}) \mid \forall c \in Z_{2, \text { smooth }}(X ; \mathbb{Z}): \int_{c} \alpha \in \mathbb{Z}\right\}
$$

d) For any $\alpha \in H_{\mathrm{dR}}^{2}(X ; \mathbb{Z})$ with $Q_{X}(\alpha, \alpha)=1$, choose a $\mathrm{U}(1)$-principal bundle $L \rightarrow X$ with $c_{1}(L)=\alpha$. ${ }^{3}$ Now for the total Chern class of $L \oplus L^{*}$, we obtain:

$$
\begin{aligned}
\underbrace{1}_{\in H_{\mathrm{dR}}^{0}(X ; \mathbb{R})}+\underbrace{c_{1}\left(L \oplus L^{*}\right)}_{\in H_{\mathrm{dR}}^{2}(X ; \mathbb{R})}+\underbrace{c_{2}\left(L \oplus L^{*}\right)}_{\in H_{\mathrm{dR}}^{4}(X ; \mathbb{R})} & =c\left(L \oplus L^{*}\right) \\
& =c(L) \cdot c\left(L^{*}\right) \\
& =\left(1+c_{1}(L)\right) \cdot\left(1-c_{1}(L)\right) \\
& =1-c_{1}(L)^{2} \\
& =1+c_{2}(P) .
\end{aligned}
$$

[^6]Hence any such $\alpha \in H_{\mathrm{dR}}^{2}(X ; \mathbb{Z})$ yields a splitting $P \cong L \oplus L^{*}$. Any self-dual connection on L induces a so called reducible self-dual connection on P. Such connections have more symmetries than generic self-dual connections and hence result in the singular points p_{1}, \ldots, p_{n}. This establishes a $1: 1$-correspondence

$$
\{\text { singular points in } \mathcal{M}\} \stackrel{1: 1}{\longleftrightarrow}\left\{\text { pairs } \pm \alpha \in H_{\mathrm{dR}}^{2}(X ; \mathbb{Z}) \text { with } Q_{X}(\alpha, \alpha)=1\right\}
$$

d) Now any such $\alpha \in H_{\mathrm{dR}}^{2}(X ; \mathbb{Z})$ with $Q_{X}(\alpha, \alpha)=1$ yields a decomposition

$$
H_{\mathrm{dR}}^{2}(X ; \mathbb{Z}) \cong \mathbb{Z} \alpha \oplus \alpha^{\perp}, \beta \mapsto Q_{X}(\beta, \alpha) \alpha \oplus\left(\beta-Q_{X}(\beta, \alpha) \alpha\right)
$$

Now let $n(Q)$ be the function counting the singular points in the moduli space \mathcal{M} of a 4-manifold with intersection form Q, i.e.

$$
n(Q):=\frac{1}{2} \#\left\{\alpha \in H_{\mathrm{dR}}^{2}(X ; \mathbb{Z}) \mid Q(\alpha, \alpha)=1\right\}
$$

Then since $\operatorname{rk}(Q)=\operatorname{rk}\left(\left.Q\right|_{\alpha^{\perp}}\right)+1$, we have $n(Q)=n\left(\left.Q\right|_{\alpha^{\perp}}\right)+1$. By induction over $m=\operatorname{rk}(Q)$, we find

$$
n(Q) \leq \operatorname{rk}(Q)
$$

with equality iff $Q \cong\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \ldots & 0 & 1\end{array}\right)$.
Applying this inequality to the positive definite intersection form Q_{X} of the 4manifold X, we obtain:

$$
\operatorname{rk}\left(Q_{X}\right)=\operatorname{sign}\left(Q_{X}\right)=n_{+}-n_{-} \leq n_{+}+n_{-}=n\left(Q_{X}\right) \leq \operatorname{rk}\left(Q_{X}\right)
$$

Hence $n_{-}=0$ and $\operatorname{rk}\left(Q_{X}\right)=n\left(Q_{X}\right)$ so that

$$
Q_{X} \cong\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & \ddots & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

as claimed.

From the theorems of Freedman, Serre and Donaldson, we conclude that any simply connected, compact, orientable differentiable 4-manifold X is homeomorphic to either $m \mathbb{C} P^{2} \sharp n \overline{\mathbb{C} P^{2}}$ or $\pm m M_{E_{8}} \sharp n\left(S^{2} \times S^{2}\right)$ (for appropriate $m, n \in \mathbb{N}$). Note that not all topological manifolds in this list carry differentiable structures: e.g. $1 M_{E_{8}} \sharp 0\left(S^{2} \times S^{2}\right)$ does not, but $-2 M_{E_{8}} \sharp 3\left(S^{2} \times S^{2}\right)=K 3$ does. It is still an open question, which manifolds of that list precisely carry differentiable structures.
Another open problem closely related to this question is the following:

Conjecture 5.3.4 ($\frac{11}{8}$-Conjecture)

If X is a simply connected, compact, oriented, differentiable 4-manifold with intersection form Q_{X} of even parity, then we have:

$$
b_{2}(X) \geq \frac{11}{8} \cdot \operatorname{sign}(X)
$$

If the $\frac{11}{8}$-conjecture holds true, then for $X=m M_{E_{8}} \sharp n\left(S^{2} \times S^{2}\right)$, we have $b_{2}(X)=8 m+2 n$ and $\operatorname{sign}(X)=8 m$, so that

$$
8 m+2 n \geq \frac{11}{8} \cdot 8 m=11 m \Leftrightarrow 2 n \geq 3 m
$$

Now for $m=-2 k$, we obtain $n \geq-3 k$, so that for $l=n-3 k$, we find:

$$
\underbrace{M_{E_{8}} \sharp \ldots \sharp M_{E_{8}}}_{-2 k} \sharp \underbrace{S^{2} \times S^{2} \sharp \ldots \sharp S^{2} \times S^{2}}_{3 k} \sharp \underbrace{S^{2} \times S^{2} \sharp \ldots \sharp S^{2} \times S^{2}}_{l=n-3 k}=k K 3 \sharp l\left(S^{2} \times S^{2}\right) .
$$

A partial result to the above conjecture has been obtained by Furuta using SeibergWitten theory, which is a $\mathrm{U}(1)$ gauge theory (with $\mathrm{U}(1)$ gauge fields coupled to Spin ${ }^{\mathbb{C}}$ spinor fields):

Theorem 5.3.5 (Furuta)

If X is a simply connected, compact, oriented, differentiable 4-manifold with intersection form Q_{X} of even parity, then we have:

$$
b_{2}(X) \geq \frac{10}{8} \cdot \operatorname{sign}(X)+2
$$

Index

*, Hodge-star operator, 75
L_{g}, left translation by g, 5
R_{g}, right translation by g, 5
T, energy momentum tensor, 84
$[M]$, fundamental class, 123
$[\cdot, \cdot]$, Lie bracket, 4
$\mathcal{A}(P)$, selfdual connections on $P, 140$
Ad_{G}, adjoint representation, 8
$\operatorname{Aut}(P)$, automorphisms of $P, 69$
$\mathbb{C} P^{n-1}$, complex projective space, 26
$\mathcal{C}(P)$, connection 1-forms on $P, 69$
$\mathcal{C}(X, Y)$, continuous maps $X \rightarrow Y, 101$
$\mathcal{G}(P)$, gauge group of $P, 70$
$\mathcal{G}_{b}(P)$, reduced gauge group, 71
\mathcal{L}, Lagrangian, 79
$\mathcal{L}_{\mathrm{YM}}$, Yang-Mills Lagrangian, 94
$\Lambda_{ \pm}^{2} V^{*}$, (anti-)self-dual 2-forms, 77
\mathcal{M}, moduli space of selfdual connections, 140
\mathcal{M}^{c}, compactified moduli space, 141
$\mathrm{O}(n)$, orthogonal group, 1
Pf, Pfaffian, 59
$\mathrm{SL}(n ; \mathbb{C})$, special linear group, 2
$\mathrm{SL}(n ; \mathbb{R})$, special linear group, 2
$\mathrm{SO}(n)$, special orthogonal group, 2
$\mathrm{SU}(n)$, special unitary group, 2
$\mathrm{U}(n)$, unitary group, 2
$\mathfrak{X}(M)$, smooth vector fields on $M, 4$ α_{g}, left conjugation by g, 5
div, divergence, 88
\mathfrak{g}, Lie algebra of $G, 6$
inv, inversion map, 17
$\langle\mu \wedge \nu\rangle$, form in $\Omega^{*}(M ; \mathbb{R}), 92$
$\lambda^{*}(E, \pi, B)$, pull-back bundle, 34
$\nabla^{\text {sym }}$, symmetrized covariant derivative, 88
$\mathfrak{o}(n)$, Lie algebra of $\mathrm{O}(n), 6$
∂, boundary operator, 112
rk, rank, 129
σ, Maxwell stress tensor, 86
sign, signature, 129
\simeq, homotopic, 101
\simeq, homotopy equivalent, 102
$\mathfrak{s l}(n ; \mathbb{C})$, Lie algebra of $\operatorname{SL}(n ; \mathbb{C}), 7$
$\mathfrak{s l}(n ; \mathbb{R})$, Lie algebra of $\operatorname{SL}(n ; \mathbb{R}), 7$
$\mathfrak{s o}(n)$, Lie algebra of $\mathrm{SO}(n), 7$
$\mathfrak{s u}(n)$, Lie algebra of $\mathrm{SU}(n)$, 7
$\mathfrak{u}(n)$, Lie algebra of $\mathrm{U}(n), 7$
ϱ, electric charge density, 80
$\varrho_{\mathbb{C}}$, complexification of $\varrho, 11$
$\varrho_{\overrightarrow{\text { st }}}$, standard representation, 10
\vec{B}, magnetic field, 78
\vec{E}, electric field, 78
\vec{S}, Poynting vector, 85
\vec{j}, electric current density, 80
vol, volume form, 74
c_{1}, first Chern class, 58
c_{λ}, characteristic class, 55
$c_{n}, \mathrm{n}^{\text {th }}$ Chern class, 59
d^{∇}, exterior derivative on $\Omega^{*}(M ; E), 91$
$f_{0} \simeq f_{1}$ rel. $A, 102$
$p_{1}(P)$, first Pontrjagin class of $P, 96$
abelian, 4
abelianization, 119
action, 21
adjoint representation, 8
Ampère's law, 81
anti-self-dual, 77

Index

antisymmetric tensor product representation, 10
associated principal bundle, 38
associated vector bundle, 38
Atiyah-Singer index theorem, 132
automorphism, 69
automorphism group, 69
base, 31
Bernoulli number, 137
Betti number, 55
Bianchi identity, 51
boundary
singular, 112
boundary homomorphism, 108
boundary operator, 112
Casson theory, 139
center, 22
chain
singular, 112
characteristic class, 55
characteristic element, 136
characteristic surface, 136
Chern class
first $\sim, 58$
$\mathrm{n}^{\text {th }} \sim, 59$
coboundary condition, 41
cocycle conditions, 40
cohomology
de Rham ~,55
complex, 110
complex projective space, 26
homology, 116
complex representation, 7,14
complexification, 11
conformal invariance
of electrodynamics Lagrangian, 87
conformally invariant, 87
conjugation, 5
connected sum, 117
connecting homomorphism
homology, 113
connection 1-form, 44
conservation of charge, 81
continuity equation, 81
contractible, 102
Coulomb's law, 81
covering, 106
universal $\sim, 107$
critical
for electrodynamics action functional, 79
for geometric and electrodynamics action functional, 85
for Yang-Mills action functional, 94
curvature form, 49
cycle singular, 112
de Rham cohomology, 55
density
electric charge $\sim, 80$
electric current $\sim, 80$
energy current, 90
diffeomorphism invariance of electromagnetics action functional, 88
direct sum representation, 10
discrete group, 28
double point, 125
dual representation, 11
effective, 22
eigentime, 82
Einstein field equations, 85
Einstein-Hilbert action, 84
electric charge density, 80
electric current density, 80
electric field, 78
energy current density, 90
energy density, 85
energy momentum tensor, 84
trace free, 87
equation of motion, 82
equivalence
homotopy $\sim, 102$
of representations, 14
equivalent
homotopy $\sim, 102$
representations, 12, 14
Euler class, 59
Euler-Lagrange equations for Lagrangian of electrodynamics, 79
exact, 108
exact sequence
homotopy groups of fiber bundle, 109
exotic $\mathbb{R}^{4}, 138$
x differentiable structure, 138
exponential
path ordered $\sim, 66$
exponential map, 15
extension of the structure group, 38
faithful, 8
fake $\mathbb{C} P^{2}, 134$
fake $\mathbb{R}^{4}, 138$
Faraday's law, 78
fiber bundle, 31
field
electric $\sim, 78$
magnetic $\sim, 78$
frame bundle, 36
orthonormal $\sim, 36$
free, 22
fundamental class, 123
fundamental group, 105
fundamental vector field, 27
Gauß' law, 78
gauge group, 70
gauge transformation, 70
group
Lie $\sim, 1$
orthogonal $\sim, 1$
reduced gauge \sim of $P, 71$
special linear $\sim, 2$
special orthogonal $\sim, 2$
special unitary $\sim, 2$
structure \sim of $P, 35$
unitary $\sim, 2$
automorphism \sim of $P, 69$
discrete $\sim, 28$
gauge \sim of $P, 70$
Hilberts $5^{\text {th }}$ problem, 2
Hodge-star operator, 75
homogeneous coordinates, 131
homology
of a complex, 110
singular ~ 112
homomorphism of Lie groups, 2
homotopic, 101
relative $A, 102$
homotopy, 101
~ equivalence, 102
~ equivalent, 102
~ group, 103
~ inverse, 102
Hopf
~ bundle, 36
\sim circle, 25
~ fibration, 36
~ link, 25
~ map, 24
horizontal
lift, 59
subspace, 46
Hurewicz homomorphism, 118, 119
indefinite, 129
instanton, 96
intersection form, 127
invariance
conformal $\sim, 87$
diffeomorphism $\sim, 88$
invariant
multilinear symmetric function, 53
inversion map, 17
isomorphic
fiber bundles, 32
Lie groups, 2
isomorphism of Lie groups, 2
Jacobi identity, 4

K3 surface, 131
Killing form, 98
Kummer surface, 131
Lagrangian
electrodynamics $\sim, 79$
conformal invariance, 87
geometric $\sim, 84$
Yang-Mills ~, 94
law
Ampère's $\sim, 81$
Coulomb's $\sim, 81$
Faraday's $\sim, 79$
Gauß' ~, 79
Lorentz force $\sim, 83$
Newton's $\sim, 82$
Lefschetz hyperplane theorem, 131
left action, 21
left translation, 5
left-invariant, 5
lemma
van der Blij, 136
Lie algebra, \mathbb{Z}
abelian $\sim, 4$
Lie algebra of G, 6
Lie bracket, K 2
Lie group, 1
Lie subalgebra, 5
lift, 59, 107
horizontal $\sim, 59$
linking matrix, 134
linking number, 133
local trivialization, 31
Lorentz force law, 83
magnetic field, 78
Maxwell equations, 79
Maxwell stress tensor, 86
Minkowski-Siegel mass formula, 137
moduli space, 140
negative definite, 129
Newton's law, 82
orbit, 23
orbit space, 23
orthogonal group, 1
parallel transport, 61
parity, 129
even, 129
odd, 129
path-ordered exponential, 66
Pauli matrices, 9
Pfaffian, 59
Pontrjagin class
first $\sim, 96$
positive definite, 129
Poynting vector, 85
Poynting's theorem, 90
principal bundle, 35
properly discontinuous, 28
pull-back bundle, 34
rank, 32, 129
real representation, 7,14
reduced gauge group, 71
reducible, 143
reduction to the structure group, 38
representation, 7, 14
adjoint \sim, 8
antisymmetric tensor product $\sim, 10$
complexification, 11
direct sum $\sim, 10$
dual \sim, 11
of a Lie algebra, 14
of a Lie group, 7
standard $\sim, 10$
symmetric tensor product \sim, 11
tensor product ~ 10
trivial ~, [8, 14
wedge product $\sim, 10$
represented, 123
right action, 30
right translation, 廌
R-orientable, 122
R-orientation, 122
R-orientation covering, 122
R-orientation preserving, 120
R-oriented, 122
R-oriented manifold, 122
section, 33
Seiberg-Witten theory, 144
self linking number, 133
self-dual, 77
side
of a simplex, 111
signature, 129
simplex
singular \sim in $X, 111$
standard $\sim, 111$
simply connected, 105
singular n-boundary, 112
singular n-chain, 112
singular n-cycle, 112
singular n-simplex, 111
singular homology, 112
special linear group, 2
special orthogonal group, 2
special unitary group, 2
standard representations, 10
standard simplex, 111
structure equations, 49
structure group, 35
symmetric tensor product representation, [1]
tensor product representation, 10
theorem
Atiyah-Singer, 132
Freedman, 133
Hurewicz, 119
Rochlin, 131
Serre, 135
Whitehead, 132
total space, 31
transition functions, 40, 47
transitive, 22
transversal, 125
trivial
action, 21
fiber bundle, 32
representation, 8, 14
typical fiber, 31
unimodular, 129
unit sphere bundle, 31
unitary group, 2
universal covering, 107
vector bundle, 32
volume form, 74
wedge product representation, 10
Yang-Mills connection, 94
Yang-Mills Lagrangian, 94

[^0]: ${ }^{1}$ Note, that since φ is a Lie group homomorphism, we have

 $$
 \varphi\left(\alpha_{g}\left(g^{\prime}\right)\right)=\varphi\left(g \cdot g^{\prime} \cdot g^{-1}\right)=\varphi(g) \cdot \varphi\left(g^{\prime}\right) \cdot \varphi(g)^{-1}=\alpha_{\varphi(g)}\left(\varphi\left(g^{\prime}\right)\right) .
 $$

[^1]: ${ }^{1}$ For any $\eta \in T_{x}^{*} M$, the vector $\eta^{\sharp} \in T_{x} M$ is defined as the dual to η with respect to the (non-degenerate) inner product, i.e. for any $Y \in T_{x} M$, we have: $\eta(Y)=\left\langle\eta^{\sharp}, Y\right\rangle$.

[^2]: ${ }^{2}$ Here we use the formula: $\left.(\operatorname{det} A(t))^{-1} \cdot \frac{d}{d t} \operatorname{det} A(t)\right)=\operatorname{tr}\left(A(t)^{-1} \cdot \frac{d}{d t} A(t)\right)$.
 ${ }^{3}$ Here we use: $0=\frac{d}{d t} g^{i k}(t) \cdot g_{k j}(t)=\dot{g}^{i k} \cdot g_{k j}+g^{i k} \cdot \dot{g}_{k j}$, which implies $\dot{g}^{i l}=-g^{i j} \cdot \dot{g}_{j k} \cdot g^{k l}$.

[^3]: ${ }^{4}$ Here we use the so called Cartan's magic formula: for any $\alpha \in \Omega^{k}(M), X \in \mathfrak{X}(M)$, we have $\mathcal{L}_{X} \alpha=$ $d\left(\iota_{X} \alpha\right)+\iota_{X}(d \alpha)$. Here ι_{X} denotes the insertion of X in the first slot of a form, i.e. $\iota_{X} \beta=\beta(X, \ldots)$.

[^4]: ${ }^{5}$ Here we use that for 1 -forms ω, η, the bracket $[\omega, \eta]$ is symmetric in ω, η. Indeed, by definition, we have for any X, Y :

 $$
 [\omega, \eta](X, Y):=[\omega(X), \eta(Y)]-[\omega(Y), \eta(X)]=-[\eta(Y), \omega(X)]+[\eta(X), \omega(Y)]=[\eta, \omega](X, Y) .
 $$

[^5]: ${ }^{1}$ This is possible, since $\mathrm{SU}(2)$-principal bundles are classified up to isomorphism by their first Pontrjagin class p_{1} and since $H_{\mathrm{dR}}^{4}(X ; \mathbb{R}) \cong \mathbb{R}$. In particular, the bundle P is unique up to ismomorphism.

[^6]: ${ }^{2}$ The set of smooth singular cycles $Z_{2, \text { smooth }}(X ; \mathbb{Z})$ is the submodule of $Z_{2}(X ; \mathbb{Z})$ spanned by smooth maps $\sigma: \Delta_{2} \rightarrow X$. Here "smooth" means that σ is smooth in the interior of Δ_{2} and all derivatives extend continuously to Δ_{2}. One can show that the embedding of the smooth singular chains resp. cycles as a subcomplex of the singular chain complex $(C \bullet(X ; \mathbb{Z}), \partial)$ induces an isomorphism on homology. Smoothness is needed here in order that the integral $\int_{c} \alpha$ makes sense.
 ${ }^{3}$ This is possible, since $\mathrm{U}(1)$-principal bundles are classified up to isomorphism by their first Chern class c_{1}. In particular, the bundle L is unique up to isomorphism.

