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Preface

These are the lecture notes of an introductory course on gauge theory which I taught at
Potsdam University in 2009. The aim was to develop the mathematical underpinnings
of gauge theory such as bundle theory, characteristic classes etc. and to give applications
both in physics (electrodynamics, Yang-Mills fields) as well as in mathematics (theory
of 4-manifolds).

To keep the necessary prerequisites of the students at a minimum, there are introductory
chapters on Lie groups and on algebraic topology. Basic differential geometric notions

such as manifolds are assumed to be known.

I am very grateful to Christian Becker, who wrote a first draft of these lecture notes in
excellent quality and produced most of the pstricks-figures.

Potsdam, February 2011

Christian Bar






1 Lie groups and Lie algebras

1.1 Lie groups

Definition 1.1.1. A differentiable manifold G which is at the same time a group is
called a Lie group iff the maps

G xG— G, (91,92) = 91 - 92
GG, g—gt

are smooth.

Example 1.1.2
1. G = R" with addition is a Lie group.

2. G = GL(n;R) = {A € Mat(n x n;R) | det(A4) # 0} C Mat(n x n;R) = R" is an
open subset, since det : Mat(n x n;R) — R is continuous. The multiplication map
(A, B) — A- B is smooth, because the matrix coefficients of A - B are polynomials
in the matrix coefficients of A and B. The inversion A — A~! is smooth, because
the matrix coefficients of A~! are rational functions of the matrix coefficients of A.

3. GL(n;C) C Mat(n x n;C) = C"* = R@")*,

Theorem 1.1.3
Let G be a Lie group, let H C G be a subgroup (algebraically) and closed as a subset.
Then H C G is a submanifold and a Lie group in its own right.

Example 1.1.4
1. H=0(n):={A € GL(n;R)| At - A =1,} is called the orthogonal group.
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O(n) is a subgroup: For A, B € O(n), we have:
(AB)'-(AB) = B'A'AB = B'1,B = B'B=1,,,

hence AB € O(n). Similarly, for A € O(n), we have A= = A’  hence
1,=A-A"1=(A"H". A=t Thus A~ € O(n).

O(n) C GL(n;R) is a closed subset, because the map A — A!A is continuous, i.e.
At A =1, is a closed condition.

2. H = SL(n;R) := {A € Mat(n x n;R)| det(A) = 1} is called the special linear
group.

3. H =S0(n) := O(n) N SL(n;R) is called the special orthogonal group.
4. H=1U(n) :={A € Mat(n x n;C) | A*- A = 1} is called the unitary group. Here

A* = (A)L.
5. H = SL(n;R) := {A € Mat(n x n;C)| det(A) = 1} is called the special linear
group.

6. H =SU(n) := U(n) NSL(n; C) is called the special unitary group.

Example 1.1.5. Let G, G’ be Lie groups. Then G x G’ is a Lie group with the group
structure given as follows:

(91,91) - (92,95) = (91-92,91 " b)

(9.6)" = (s.(s)7")

Remark 1.1.6. Hilbert’s 5" problem, formulated at the International Congress of
Mathematicians in Paris 1900: In the definiton of Lie group, can one replace ”smooth”
by ”continuous”?
The answer (found around 1950’s): Yes, replacing ”smooth” by ”continuous” does not
change anything.

Definition 1.1.7. Let G,H be Lie groups. A smooth group homomorphism
p: G — H is called a homomorphism of Lie groups.

A Lie group homomorphism ¢ : G — H is called an isomorphism of Lie groups
if it is invertible and the inverse is again a Lie group homomorphism. In this case, G
and H are called zsomorphic as Lie groups.



1.1 Lie groups

Example 1.1.8. For any A € G = S0(2), A = ( ) the condition

a c
b d
atoa_(a b\ (a ¢\ _[a+b ac+bd
I=4 A_<c d> <b d>_<ac—i—bd 2+ d?

yields the equations

a4+ =1 )
c+d? =
ac+bd = 0.
Further we have the condition
1= det(A) = ad — be. (1.4)

Multiplying (L)) by ¢ and d respectively, yields

¢ = acd — be

Hence any A € SO(2) is of the form A = ( b

_ab ) with a2 + b2 = 1. Thus there is a

€ R such that < Z > = < Cf)S(P > We thus have

sin ¢

SO(2) = { ( s TP >'cp € R} .
sing  cosgp
For H = U(1), we find:

U = {(z) eGL;C) | z-2=1}
= {@[]=1
= {(¢¥)|peR}.

Now the map
50(2) U(l),( cose —sing ) o ()

sinp  cosp
is an isomorphism of Lie groups: to see that it is a group homomorphism, use the

addition theorems for sin and cos, to see that it is invertible, use Eulers formula.
Hence U(1) = SO(2). Both are diffeomorphic to the unit circle S*.
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1.2 Lie algebras

Definition 1.2.1. A vector space V together with a map [,] : V x V — V is called
a Lie algebra, iff

(i) [-,+] is bilinear.

(i) [, -] is antisymmetric, i.e. Vo,w € V: [v,w] = —[v,w].

(iii) [+, -] satisfies the Jacobi identity:

Vu,v,w €V : [[u,v],w] + [[v,w],u] + [[w,u],v] =0.

The map [+, ] is called the Lie bracket.

Example 1.2.2
1. Every vector space together with the map [-,:] = 0 is a Lie algebra. A Lie algebra
with the trivial bracket [-,-] = 0 is called abelian.

2. The space V. = Mat(n x n;K), K = R or C together with the commutator
[A,B]:=A-B— B-A is a Lie algebra. The Jacobi identity is given by a sim-
ple computation:

(4, B],C] +[[B,C], A] +[[C, A], B]
= (AB - BA)C — C(AB — BA) + (BC — CB)A — A(BC — CB)
+(CA— AC)B — B(CA — AC)
= 0.

This computation shows that the Jacobi identity is a consequence of the associa-
tivity of matrix multiplication. In general, the Jacobi identity can be thought of
as a replacement for associativity.

3. V = R3 together with the Lie bracket [-,-] = (-) x (-) defined as the vector product is
a Lie algebra. Again, the verification of the Jacobi identity is a simple computation.

4. Let M be a differentiable manifold, let V' = X(M) be the space of smooth vector
fields on M. Let [+, -] be the usual Lie bracket of vector fields. Then (V,[-,-]) is an
infinite dimensional Lie algebra.



1.2 Lie algebras

Definition 1.2.3. Let (V,[,:]) be a Lie algebra. A vector subspace W C V together
with the map [, -]|wxw is called a Lie subalgebra of V iff Vw,w' € W, [w,w'] € W.

Obviously, a Lie subalgebra is a Lie algebra in its own right.
Now the goal is to associate in a natural way to each Lie group a Lie algebra. To this
end, let G be a fixed Lie group. For a fixed g € G, we have the following maps:

Ly:G— G, Lg(h):=g-h, (left translation by g)
Ry, :G — G,Ry(h) :==h-g, (right translation by g)
ag: G — G,ag(h) = (LgoRy-1) (h)=g-h- g, (conjugation by g).

Note that conjugation is a Lie group isomorphism, whereas left and right translation are
diffeomorphisms, but they are not group homomorphisms.

Remark 1.2.4. Let M be a differentiable manifold and F' : M — M a diffeomorphism.
For a smooth vector field X on M, p € M, set

dF(X)(p) := dp-1) F (X (F~'(p))) .
Then dF(X) is again a smooth vector field on M and the following diagram commutes:

TM -2 Tar

XT TdF(X)

MM
Furthermore, V X, Y € X(M), we have

dF([X,Y]) = [dF(X),dF(Y)]. (1.5)

Definition 1.2.5. Let M = G be a Lie group. A vector field X € X(G) is called
left-invariant iff Vg € G: dLy(X) = X.

By (LA, if X,Y € X(G) are left-invariant, then

dLg ([X,Y]) = [dLy(X),dLy(Y)] = [X, Y],
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so [X, Y] is again left-invariant. Thus the vector space
g:={X € X(G) | X left-invariant }

of left-invariant smooth vector fields on G is a Lie subalgebra of X(G).

Definition 1.2.6. g is called the Lie algebra of G.

For g e G and X € g
X(9) = dLg(X)(9) = d(r,, (gn Ly (X (Lg-1(9))) = deLy(X(e)),

where e is the neutral element in G. Conversely, given Xy € TG, then X(g) := deLg(X0)
yields a left-invariant vector field X € g. We thus have a linear isomorphism 7T.G — g.
In particular, dim g (as real vector space) equals dim G (as smooth manifold).

Example 1.2.7
1. For G = GL(n;R), g = T1, GL(n; R) = Mat(n x n;R). The Lie bracket [-,:] is the
commutator, as discussed in example [.2.2] above.

2. For G = O(n),
g =:0(n) =T1,0(n) = {¢(0) | ¢: (—€,€) = O(n) smooth, c(0) = 1,,} .
We compute
c(s) €0(n) & 1,=cls)c(s)

S|, () - () = &0)" - <(0) + e(0) - &(0)
= (0)" Ly + L+ é(0) = é(0)" +¢(0).

Hence o(n) C {A € Mat(n x n;R) | A' + A = 0}. Further,

n(n—1)

dimo(n) = dimO(n) = 5

= dim {A € Mat(n x i;R) | A"+ A =0}

so that indeed
o(n) = {A € Mat(nxn;R) | A"+ A=0} .

3. Similarly, for G = SL(n;R), we have

g =:sl(n;R) = Ty, SL(n;R) = {¢(0) | ¢ : (—€,¢) — SL(n;R) smooth, ¢(0) = 1,,} .
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which yields
c(s) e SL(n;R) < 1 =detc(s)
d )
= 0= Ts s:o(det c(s)) = tr(¢(0)) .

As before, a dimensional argument yields

sl(n;R) = {A € Mat(n x n;R) | tr(A) = 0}.

4. For G = SO(n), we find
g =:s0(n) =o0(n) Nsl(n;R) =o(n),
since o(n) C sl(n;R).
5. For G = U(n), we compute:
c(s)eUn) <  1,=c(s)" - c(s)
o (els)™ - e(s)) = ¢(0)" - e(0) +¢(0) - ¢(0)
)"+ ¢(0).

Thus g =: u(n) = {4 € Mat(n x n;C) | A* = —A}.

— O:

ds
(0
6. For G = SL(n;C), we find g =: sl(n; C) = {A € Mat(n x n;C) | tr(A) = 0}.

7. For G = SU(n), we find g =: su(n) = {4 € Mat(n x n;C) | A* = —A, tr(A) = 0}.

1.3 Representations

Definition 1.3.1. A representation of a Lie group G is a Lie group homomorphism
0: G — Aut(V) for some finite dimensional K-vector space V (and K = R or C).
If K = R, then g is called a real representation, whereas if K = C, p is called a
complex representation.

Remark 1.3.2. Upon the choice of a basis V' = K" and Aut(V) = GL(n;K).
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Definition 1.3.3. A representation o is called faithful, iff it is injective.

Example 1.3.4
1. The trivial representation defined by o(g) := idy for any g € G, is faithful only
for the trivial Lie group G = {e}.

2. Let G be a Lie group and g its Lie algebra. The adjoint representation

Ad: G — Aut(g)

is defined as follows: For any g € G, we have ay(e) = g-e- g ! = e. By

differentiating o, at the neutral element e, we get a linear map
Ady:=deayg : 9 =TG- T.G=g.

We need to show that Ad is a group homomorphism, i.e. that Adg,.4, = Adg, 0Ady,.
To this end, take X € g, and let ¢ : (—€,e) — G be a smooth curve such that
¢(0) = e and ¢(0) = X. Then we compute:

Ad91'92(X) = deagl-gg(X)
LI (aggale(s))

% s=0
((ag, 0 ag,) (c(s)))

d

% s=0

= deagl (dea92 (X))
= Adg, (Ad92 (X))
= Ady, o Ady,(X).

(Here we have used the obvious property ag,.5, = g, © 0g,.) Further, we have
Ad. = idg and (Adg)~! = Ad,-1. Thus we have obtained a group homomorphism
Ad : G — Aut(g). By the definition of a Lie group we know that ay(h) depends
smoothly on g. This implies that Ad : G — Aut(g) is a smooth map.

Remark 1.3.5. If G is abelian, then a4 = idg for any g € G, so Ady = deay = idg.
Thus the adjoint representation is trivial in this case.

Example 1.3.6. G = U(1) is abelian, so Ad = id,.
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Remark 1.3.7. Let G be any of the matrix groups from example [LT.4l Conjugation in
G is the ordinary conjugation by a matrix from G. Namely, for X € glet ¢: (—¢,¢) = G
be a smooth curve with ¢(0) = e and ¢(0) = X. Then the adjoint representation is given
by:

d d

Adg(X) = —| _ ayle(s) = —=| _(9-cs)-g7) =g-X-g".

s=0

Example 1.3.8. We now compute the adjoint representation of G = SU(2). The Lie
algebra su(2) is given by

su(2) = {A € Mat(n x n;C) | A* = —A, tr(A) = 0} — { ( v )

—Z

zeC,teR},

so a natural basis of su(2) is given by —i times the so called Pauli matrices o1,09,03:
gy 0 1 g e 0 ¢ g e i 0
o)l 0 ) T o0 - )

e 0
For g = < 0 —iv > € SU(2), we get

0 1 e'? 0 0 1 e 0
Ad9<—1 0>: (0 ew>'<—1 0>'< 0 eW>
_ < e 0 ) . ( 0 e'v >
0 e —e % 0
0 edie
()
= cos(2¢p) - ( 01 (1) > + sin(2¢) - < (z) (Z) >

By similar computations, we get

Adg(‘; é) = cos(2tp)-<? é)—sin(%)-<_01 é)
a(50) = (00

With respect to the basis —io1, —ioge, —io3 of su(2), the adjoint representation of SU(2)
thus has the matrix

cos(2p) —sin(2¢) 0
Adg, = | sin(2p) cos(2¢) 0
0 0 1

Remark 1.3.9. The adjoint representation of SU(2) is not faithful, since Ad_q, = 1,,.
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Example 1.3.10. For the classical matrix groups from example[[.T.4] we have the stan-
dard representations:

1. For G = GL(n;K), take oy :=id : G — GL(n; K) = Aut (K").
2. For G = O(n), SL(n;R), SO(n), take the natural inclusion
ost : G — GL(n;R) = Aut (R").

3. Similarly, for G = U(n), SL(n;C), SU(n), take the natural inclusion
ost : G — GL(n;C) = Aut (C").

Now we consider several techniques to manufacture new representations of a fixed Lie
group G out of given ones:

Definition 1.3.11. Let o : G — Aut(V) and g; : G — Aut(V}), j = 1,2, be repre-
sentations of a fixed Lie group G.

1. The direct sum representation is defined as:

01Do2:G — Aut(V; @)
(01 ® 02) (9) (11 ®v2) = 01(9) (v1) ® 02(9g) (va) -

Thus with respect to a basis of V7 @ V5 induced from bases of V4 and V5 respec-
tively, o1 @ 02 has block diagonal form:

@om@=( 2 )

2. Similarly, the tensor product representation o1 ® g3 : G — Aut (V3 ® V3) is
defined on the homogeneous elements vy ® vs by

(01 ® 02) (9) (1 ® v2) == 1(g) (v1) ® 02(g) (v2)
and expanded linearly to all of V; ® V5.

3. The antisymmetric tensor product representation (or wedge product
representation) is defined by:

Ao:G = Aut (Akv)

(Akg) (@) (Ao hvg) = o(g)vr A... A o(g)v .

10



1.3 Representations

4. The symmetric tensor product representation is defined by:
oFo:G — Aut (@kV>

(@) () (1 ©...0u) = o(glv1©...0 o(g)vk-
5. Associated to any K-vector space V is the dual vector space V* of all linear
maps from V to the field K. So we expect associated to any representation
0 : G — Aut(V) a dual representation ¢* : G — Aut(V*). Let’s see how to
define p*: Since for g € G, the representation o(g) is a linear automorphism
of V, we might take the dual automorphism o(g)* : V* — V*, defined by

0(9)* () :== Ao p(g), as a candidate for the dual representation. Now let’s check
whether the map g — 0(¢)* is a group homomorphism G — Aut(V™*):

g1 92— 0(91-92)" = (e(g)-0(92)"

-0(g2)" in general .
To fix the problem, we define the dual representation as:

0" : G — Aut(V¥)

0*(9) = o(g7")"

Now we compute

a'))

) e(o'))

9 ) (92 )*
") - 0" (92)

so that o* : G — Aut(V™*) is indeed a group homomorphism.

0 (g1-92) = (9 ((91 92)” 1))*
= (o(s"
(92

6. Suppose that the representation g : G — Aut(V) is real. We can manufacture a
complex vector space out of V' by setting V¢ := V ®r C. The complexification
of p is the complex representation

c:G— Aut (Vg), oc :=0®idc.

In terms of matrices this means that the representation p is given by real matri-
ces. If we now consider them as complex matrices, then we have the complexi-
fication.

11
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Definition 1.3.12. Let G be a Lie group, let ¢ : G — Aut(V), 0 : G — Aut(V) be
representations. Then g and ¢ are called equivalent , iff there exists an isomorphism
T :V — V such that for every g € G the following diagram commutes:

v
g(g)l
v

T
S

<i<— <3
=
SH

T
e

Example 1.3.13. Let o : G — Aut(V) be a given representation on a K-vector space
V. The choice of a basis on V yields an isomorphism F; : V — K" and a represen-
tation o1 : G — GL(n;K) = Aut(K"). Fj is an equivalence of representations from
o to p1. Another basis of V leads to another isomorphism F5 : V — K" and an-
other (equivalent) representation g2 : G — GL(n;K) = Aut(K"™). The automorphism
T:=F50 F1_1 : K™ — K" is an equivalence of the representations ¢; and gs.

Example 1.3.14. We now construct several (complex) representations of G = U(1) out
of the standard representation gg : U(1) — GL(1;C) = C — {0}. For any integer k € Z,
we set:

ot : U(1l) = GL(1;C), z +— 2.

ok 1s a representation, since
0 (z . z') = (z . z')k = k. (z')k = o0r(2) - ok (z') .

For k = 0, we obtain the trivial representation: go(z) = z° = 1. For k = 1, we obtain
the standard representation g1 = gg;.

Note that we have a natural isomorphism C®C — C given by u®w + u-w. Under this
isomorphism, the tensor product representation g ® g; is equivalent to the representation
Ok-+1, since

(or ® ar) (2)(u ® w) = (ok(2)u) @ (a1(2)w) = (z’“v) ® (zlw> = yew.

For A € C*, we find:
(N = (ek(z)) () i=Xogp (271) = Aoz F =27 A

Thus 05 = 0_.
It turns out that every complex representation of U(1) is equivalent to the direct sum of
1-dimensional representations g;. Thus we now know that whole complex representation
theory of U(1).

12
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Example 1.3.15. We study the (complex) representations of G = SU(2). We already
know two of them, namely gy : SU(2) — GL(2;C) — the trivial representation — and
01 := 0st : SU(2) — GL(2;C) — the standard representation. For k > 2, we set:

Ok = QkQI-

Since a basis of ®FC? is constructed from a basis ej, es of C2 by e ®e1 ©®...® ey,
r0e1®...0€1,...,e30e30 ... ez, we find dimc(®FC?) = k + 1. Since the (real)
representation Adgy(g) is 3-dimensional, gy is the only of those representations, that
could be equivalent to (the complexifation of) Adgy()-

To check this, let us compute g2 on the basis e ® e1, ea ® €2, 5 © e7.

v 0 .
For g = 0 e-ie |rWe obtain on the first vector:

02(9)(e1 @ e1) = 01(9)e1 ® 01(g)er = €'Pe1 @ ePe; = e*Pe; Oey .

Similarly, for the other two basis vectors, we obtain:

02(9)(e2@ex) = e ey Oes,
02(9)(e2®e1) = e ¥ea®e¥er =exOer.
Hence, in the basis e; ® e1, e2 ® ea, ea ® e1, the element p2(g) has the matrix
; %0 0
e
e'? 0 Co;
0 0 1

In order to see that this is equivalent to the complexification of the adjoint representation
we put

- 1 0
T=11 —i 0
0 0 1

One computes

1
S
T =(1 1o
0 0 1
and A
cos(2p) —sin(2¢) 0 e 0 0
T-| sin(2¢) cos(2¢) 0 |- T7'=[ 0 e 2% 0
0 0 1 0 0 1
It can be checked that the relation
T-Ady- T = 02(9)
. v 0
holds for all g € SU(2), not just for g of the form g = 0 e-iv

Therefore T' provides an equivalence of g and the complexification of Ad.
It turns out that every complex representation of SU(2) is equivalent to a direct sum of
the representations gy.

13
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Definition 1.3.16. A representation of a Lie algebra g is a Lie algebra homomor-
phism A : g — End(V'), where V is a finite dimensional K—vector space. If K = R,
then A is called a real representation, whereas if K = C, then A is called a complex
representation.

Given representations A : g — End(V), A : § — End(V), a linear isomorphism
T :V — V is called an equivalence of X and X, iff for every X € g the following
diagram commutes:

V—s
AX) l

(A v

In this case, the representations A and \ are called equivalent.

Remark 1.3.17. Up to equivalence, a Lie algebra representation is a Lie algebra ho-
momorphism A : g — Mat(n x n; K).

Example 1.3.18

1. As for Lie groups, we have the trivial representation: for any X € g, set

AMX) :=0.

. The adjoint representation ad : g — End(g) is defined as ad(X)(Y) := [X,Y].

Since the Lie bracket is linear in the second variable, ad(X) : Y — [X, Y] is indeed
an endomorphism on g, ie., ad(X) € End(g). Since the Lie bracket is linear
in the first variable, the map X — ad(X) = [X,-] € End(g) is indeed a linear
map. It remains to check that it is also a Lie algebra homomorphism, i.e., that
ad([X,Y]) = [ad(X),ad(Y)] € End(g). We compute, using the Jacobi identity and
the antisymmetry of the Lie bracket on g:

ad([X,Y])(2) = [[X,Y] Z]
= -[v, 2], X] - [[2, X],Y]
= XY 2] -V, [X, Z]]
= ad(X)(a (Y)(Z))—ad( )(ad(X)(Z))
= (ad(X)oad(Y) —ad(Y) 0 ad(X))(Z)
= [ad(X),ad(Y )](Z)

Remark 1.3.19. If p: G — Aut(V) is a Lie group representation, then

14
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1.4 The exponential map

is a Lie algebra representation. The proof will be given later, see Corollary [LZ.I0

1.4 The exponential map

Exercise 1.4.1

Show that the maximal integral curves of left-invariant vector fields on Lie groups are
defined on all of R.

Lemma 1.4.2
Let G be a Lie group and v : R — G a smooth curve with v(0) = e. Then vy is a group

homomorphism, i.e. Vs,t € R, v(s +t) = v(s) - v(t) iff v is an integral curve to a
left-invariant vector field on G.

Proof.
=-: Suppose that Vs,t € R, we have y(s +t) = y(s) - v(¢). Then

d

_ d
J(t) = o S:OW(S +1t) = e

o (v(t) - v(s)) = dL»)7(0) .

Let X be the unique left-invariant vector field on G with X (e) = 4(0). Then

V() = dLyy X (e) = X(7(1)) -
Hence ~ is an integral curve to X.

<«: This direction is slightly more involved.

O

In the following let G be a Lie group and g its Lie algebra. For any X € g,let yx : R — G
denote the integral curve to X with vx(0) = e.

Definition 1.4.3. Themapexp : g — G, exp(X) := vx(1), is called the exponential
map of G.

15
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By the general theory of ordinary differential equations the exponential map is a smooth
map exp : g — G.

For a fixed o € R, and X € g, we set J(t) := yx(«-t). Then 7 is again a Lie group
homomorphism 4 : R — G and thus an integral curve to a left-invariant vector field on
G. Further, we have 5(0) = vx(0) = e, and 7(t) = a - ¥x(t) = a - X((t)). Since 7 is
uniquely determined as an integral curve to a left-invariant vector field on G, we find
¥ = Yax. We thus have

7x (@) = 3(1) = vax(1) = exp(aX).
Renaming « by t, we found the relation:
vx (t) = exp(tX). (1.6)

Hence the curve t — exp(tX) coincides with the integral curve vx to le left-invariant
vector field X € g. By Lemma [[L42] we have exp((s + t)X) = exp(sX) - exp(tX), so
that in particular exp(0) = e and exp(—X) = (exp(X))~!.

Lemma 1.4.4
The differential at 0 of the exponential map is the identity:

doexp =1idg: g —g.

Proof. Directly from the definition, we compute:

d
dpexp(X) = s lco exp(sX)=X.

16



1.4 The exponential map

Corollary 1.4.5
Let G be a Lie group and g its Lie algebra. There exist neighbourhoods U C g of 0 in
g and V C G of e in G such that exp |y : U — V is a diffeomorphism.

Proof. This follows from Lemma [[.4.4] and the inverse function theorem. O

Corollary 1.4.6
Letinv: G — G, g — g~ !, be the inversion map of a Lie group G. Then

deinv = —idg : g — g.

Proof. Choose open sets U,V as in Corollary [L4.5] such that the following diagram
commutes:

Differentiating the diagram at 0 € g yields

—idg
—_—

g g
idg L lidg
dpinv
g g

—_—

which proves the claim. O

17



1 Lie groups and Lie algebras

Corollary 1.4.7
For any Lie group homomorphism ¢ : G — H, the following diagram commutes:

dep
—

g
exp \L
[}

G2~

g
\L exp
H

Proof. For any X € g, the map R — H, ¢t — @(exp(tX)) is a Lie group homomorphism

and % Oap(exp(tX)) = dep(X). By Lemma [[42] ¢t — ¢(exp(t)) is an integral curve
t=

to a left-invariant vector field on H defined by dep(X) € T H. Evaluating at ¢t = 1, we

thus get

exp (dep(X)) = p(exp(X)).

Remark 1.4.8. For any Lie group G with Lie algebra h, the adjoint representations
of G and g are related as Ad, = ad. This is easily checked for the matrix groups
G C Mat(n x n;R): Here, Ady(X) =g X - g~ . We compute:

d
AL(OY) = =] Adegn (1)

%L:O(exp(tX) Y - exp(—tX))
= X Y 1,41, Y (—X)

= [X)Y]

= ad(X)(Y).

Lemma 1.4.9
If o : G — H is a Lie group homomorphism, then ¢, := dep : g — b is a Lie algebra
homomorphism.

18



1.4 The exponential map

Proof. For XY € g, we Compute
e ([X)Y]) = wu (Ad(X)(Y))

d
- P <%‘t:0Adexp(tX) (Y)>

d
= L:OQO* (Adexp(tX) (Y))

dt
= 2] (2] ementenn)
- % to% o’ (Qexp(ix) (exp(sY)))
- % t:O% szoa‘P(eXP(tX))‘P(eXp(SY))
e % tO% oo (exp(tps (X)) OXP (sp«(Y))
- % o Aexp(to. x) (9:Y)

= Ads (pu(X)) (gx(Y))
= ad (g (X)) (p«(Y))
= [pe(X), 0 (Y)] .

Hence ¢, is a Lie algebra homomorphism. O

Corollary 1.4.10
If o : G — Aut(V) is a Lie group representation, then ¢, : g — End(V) is a Lie
algebra representation.

1

)

Remark 1.4.11. If G is an abelian Lie group, then the inversion inv : G — G, g — g~
is a Lie group homomorphism, since

inv(g-h)=(g-h) t=h"t. gt =g 7! =inv(g) - inv(h).

By Corollary [[.4.6] and Lemma [[.4.9, —idy = inv, : g — g is a Lie algebra homomor-
phism, and we have:

—[X,Y] = inv, ([X,Y]) = [inv,(X), inv, (V)] = [-X, Y] = [X,Y].

!Note, that since ¢ is a Lie group homomorphism, we have

elag(g)=¢(g-9-97") =09 ¢(9) ¢9) ™" =auy (¢(5)) -

19



1 Lie groups and Lie algebras

Hence [+, -] = 0: the Lie algebra of an abelian Lie group is abelian.

Now let G C GL(n;K) be a matrix group. For any X € Mat(n x n;K), we set

k=0

(Note that the series converges absolutely). Then we have e = 1,, and % OetX =X.
t=
We further compute (substituting m =k —[):

) kyk
(s+t)X . (S +t) X
€ - Z k!
k=0
>~ k k—14
t
- ZZ (/:_ l)'l'Xk
k=0 1=0 o
o0 o0 m l
t
- Y
! !
m=0 =0
— 6sX . 6tX

Thus ¢t — X is a Lie group homomorphism from R to G. By Lemma [42] it is

the integral curve to the left-invariant vector field on G defined by X € T.G. Hence
e!X = exp(tX) and eX = exp(X), i.e. for a matrix Lie group G, the exponential map
exp : g — G coincides with the usual exponential map of matrices as defined by (LT]).

Example 1.4.12. For G = SO(2), we have g = s0(2) = {<2 _09>‘9 GR}. For

A= (0 —9> € 50(2), we compute

6 0
—6* 0
2 _
© = (0 %)
AZ]{: — (_1)]{:92]4: . ]ln

0 -1
2k+1 (1 \kp2k+1
o= o (00,

Using the power series expansions of cos and sin respectively, we find:

© A2k o —1)kg2k
k) = Z %12 = cos(f)12
k=0 k=0
X A2k+1 B i (_1)k62k+1 0 —1 . 0 —1
kZ:O(Qk:—i—l)! - g:; (2k + 1) (1 o>_“n(9)<1 o>'
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1.5 Group actions

For the exponential of A we thus get:

= (.

Obviously from this expression, the exponential map exp : s0(2) — SO(2) is surjective
but not injective.

Remark 1.4.13. If G is a compact, connected Lie group, then the exponential map
exp : g — G is surjective.

1.5 Group actions

Definition 1.5.1. Let G be a Lie group, M a smooth manifold. A smooth map
GXM — M, (g,x) — g-x, is called a left action (or action in short) of G on M iff

(i) Vee M,Yg,heG: (g-h)-z=g-(h-z).
(ii) Vee M: e-x = .

Remark 1.5.2. From (i) and (ii), we conclude that for any g € G, the following holds:

r=e-x = (g-g_l)-x:g-(g_l-x):Lg(Lg_l(m))
= (97 9) w=g""(9:2) = Ly (Ly(w)) -

Hence for any g € G, the map Ly : M — M, Ly(x) := g - z, is a diffeomorphism with
inverse (Lg) ™' = L,-1.
Condition (i) yields Ly o L, = Lg.;,. Hence the map g — Lg is a group homomorphism

G — Diff(M).

Example 1.5.3
1. Any Lie group acts on any manifold M in an uninteresting manner, namely by
g - x = x. This is called the trivial action.

2. Associated to any representation ¢ : G — Aut(V) is an action of G on V by
g-v:=o0(g)(v).

3. Any Lie group acts on itself by the following natural actions G x G — G,
(g, h) — g*h:
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1 Lie groups and Lie algebras

e by the group multiplication: g % h := ¢ - h. In this case, condition (i) is
equivalent to the associativity of the group multiplication -, whereas (ii) is
the definition of the neutral element e € G.

e by conjugation: g x h := ay(h).

Definition 1.5.4. A (left) action of G on M is called effective, iff

VgeG: (VeeM:g-z=2) = g=ce)
& VgeG:(Ly=idy = g=e)
< the group homomorphism G — Diff (M) is injective .

It is called free, iff Vge G: (3zeM:g-a=2) = g=e).
It is called transitive, it Ve,y e M :dge G:g-x =y.

Remark 1.5.5. Every free action is effective (unless M = 0)).

Example 1.5.6
1. The trivial action is effective & G = {e} < The trivial action is free.

2. The action given by a representation g on V' is never transitive (unless V = {0}),
since Vg € G: o(g)-0=0.

3. For the two natural actions of a Lie group G on itself, we find:

e The action by left multiplication is free (hence also effective), since g-¢' = ¢
implies ¢ = e (by right multiplication with (¢’)~!). The action is transitive,

since for given z,y € G, the equation ¢ -2 =y is solved by g =y - 271,

e For the action by conjugation, we have:

1

VeeG:gzg =2 & VeeG:xzg=gx < g€ Z(G),

where Z(G) := {g € G|Vh € G : gh = hg} is the center of G. Thus the
action by conjugation is not effective iff Z(G) # {e}. In general, the action
is not transitive either, unless the group has only one conjugacy class.
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1.5 Group actions

Example 1.5.7. Now we consider two more concrete examples:

1. G =S0(2) acts on M = S? by rotations around the z axis, i.e.:

The action is effective: if Vo € S?: g =z, then g = 1.

1 1 0 0
The action is not free, since Vg € SO(2): g- (0] = (0] andg-[0] =10
0 0 1 1

The action is not transitive, since the circles of latitude are invariant under rotation
about the z-axis.

2. G =U(1) acts on M = §?"~1 ¢ R?" = C" by scalar multiplication on the complex
coordinates, i.e. (z,x) — z - .
The action is free, since for w # 0, z - w = w implies z = 1.

The action is not transitive, unless n = 1. In this case, the action is just left
multiplication on the Lie group U(1).

In any case, z-x =y for z,y € §?"~! C C" implies that x,y are linearly dependent
in the complex vector space C™. Thus the action is not transitive iff n > 1.

Definition 1.5.8. Let G act on M. Then for any x € M,
G-z:={g-z|geG}

is called the orbit of z under this action. G acts transitively on M, iff G- x = M.
The set
G\M ={G - x|z e M}

is called the orbit space of the action.

Example 1.5.9. For the rotation action of G = U(1) on M = S?, the orbits are the
circles of latitude, including the north and south pole. Hence the orbits are naturally
parametrised by the z-coordinate, and the orbit space is thus identified with the interval
[_1’ 1] .
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1 Lie groups and Lie algebras

Example 1.5.10. We consider the action of G = U(1) on M = S3 C C? by scalar
multiplication in more detail. Given w = (wq,ws), w' = (w],w}), they lie in the same

orbit iff {1 = g—é € CUoo =: C. So the orbit space U(1)\S? is naturally identified with
2

the Riemann sphere C.

0 U
: " . C
By stereographic projection /
> <4 4 1\2) 5
U~ ——s - (du, 4 — |u|?) .
4+ |ul? ’
Hence for u = 21 we get
2
1 4’U)1 4 w1 2 o |’U)2|2 4U}1 4 w1 2
e Vet el ) T feEeer et e
+‘w—2‘ 2 2 2 1 2 2

1
g - . 4 5y 4 2 — 2 .
4wa|? + |wy|? (4, dfunl” — fun[)

We thus found the so called Hopf map

1

Hopf: 8% =5 S? wr—s —
P Awy? + [wr 2

. (4’(01U72,4|U}2|2 — |’U)1|2) .

This map is smooth and its pre-images Hopf ~!(p) are the orbits of the U(1)-action on S
The U(1)-orbits can be visualized by mapping S® minus one point to R? via a stereo-
graphic projection just as we did for S2. Then R? becomes a disjoint union of circles
and one straight line corresponding to the orbit through the exceptional point of S3.

Three nearby Hopf circles after One regular and the excep-
stereographic projection to R3 tional Hopf circle
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1.5 Group actions

It turns out that any two of the Hopf circles in R? are linked, they form a Hopf link.

Theorem 1.5.11
Let G be a compact Lie group acting freely on a manifold M. Then G\M carries the
structure of a smooth manifold such that

(i) the map
M—-G\M, z~G-z,

18 smooth and its differential has maximal rank at each point.

(it)
dim(G\M) = dim(M) — dim(G) .

(i1i) G\M has the following universal property: for every differentiable manifold N
and every smooth map f : M — N, which is constant along the orbits of the
action there exists a unique smooth map f : G\M — N such that the following
diagram commutes:

ML N

| A

G\M

Idea of proof. For x € M, choose a small embedded disc D of maximal dimension inter-
secting G - x transversely at x. Then to any y in the disc, there corresponds an orbit
G - y near the orbit G - z through z. Check that (after possibly shrinking the disc) the
map G x D — M, (g,y) — g -y, is a diffeomorphism onto its image. This yields a local
chart of the orbit space.

The compactness of G is needed to ensure that the points in a sufficiently small disc are
in 1: 1 correspondence to the orbits and that the quotient topology is Hausdorff. ]

Example 1.5.12. We consider again the action of U(1) on S?"~! ¢ C" by complex
scalar multiplication. Since the action is free U(1)\S?"~! is a smooth manifold. Two
points w,w’ € S?"~! lie in the same orbit iff for some Z € C with |z| = 1: w' = z - w,
i.e. iff w,w’ are linearly dependent, i.e. the complex lines panned by w,w coincide:
C-w = C-w'. Hence the orbit space is identified with

cpP™!:=U(1)\S* ! = {1-dimc vector subspaces of C"} .
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1 Lie groups and Lie algebras

Definition 1.5.13. CP" ! is called the (n — 1)-dimensional complex projective
space.

Remark 1.5.14.
dimg (CP" 1) = dimg ($*"7!) — dimg (U(1)) = (2n — 1) =1 =2(n — 1).

CP™ ! is compact and connected, because it is the image of S?"~! under a continuous
map. For n =2, we have

53 Hopf 52

|

cpP'.
The map I—Tc:ljf : CP' — S? is smooth and bijective. By explicit computation, we
find that the differential of the Hopf map has maximal rank everywhere. Hence by the
commutativity of the diagram the same holds for Hopf. Thus Hopf : CP! — S? is a
diffeomorphism.

Remark 1.5.15. The sequence of natural linear embeddings C c C2c C3 C --- c C"
yields a sequence of embeddings S' € % € S% C --- € §?"~! and by taking the quotient
of the U(1) action the sequence {x} C CP! C CP? C --- C CP" L. There is a natural
inductive procedure to construct CP" from CP"~! by attaching C":

A\
pVA &

There are two types of 1-dimensional subspaces of C"t! = C" @ C: the lines contained
in the hyperplane C" (they form CP"~1) and the ones intersecting the hyperplane only
at 0. The latter ones intersect the parallel affine hyperplane C" + e, 1 at exactly one
point. Therefore they are in 1-1-correspondence with points in that affine hyperplane.
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1.5 Group actions

Hence we have decomposed CP" disjointly into two subsets, one which is naturally
identified with CP"~! and one which is naturally identified with C" + e,,1 (which we
can in turn identify with C™),

cpr=cprtucn.

Definition 1.5.16. Let G be a Lie group acting on a differentiable manifold M. For
p € M let R, : G — M be the map R,(g) := g - p. The differential of R, is a linear
map d.R, : g 2 T.G — T,M. For X € g we set X(p) := d.R,(X) and we obtain a
vector field X € X(M).

Xeg de Rt

/\

X is called the fundamental vector field associated with X € g.

Remark 1.5.17. As remarked above a Lie group action can be thought of as a (Lie)
group homomorphism G — Diff(M). Themap g > X — X € X(M) is the corresponding
Lie algebra homomorphism.

Example 1.5.18. For the action of G = SO(2) on M = S? C R3, the fundamental
vector fields are tangent to the circles of latitude:

G =S0(2)
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1 Lie groups and Lie algebras

Remark 1.5.19. For X € g, we compute:

d

— exp(tX) -
dt lt=t, t=to p(tX) - p

Lexp(tX) (p) =

OeXp(to+8)-p

S=

(exp(sX) - exp (toX) - p)

s=0

Rexp(toX)~p (exp(sX))

Saglagla gl

=

eXp(tOX)~p(X)
exp (toX) - p) .

|
P S

Hence Leyp(¢x) is the flow of the fundamental vexctor field X. In particular if X (p) = 0,
then exp(tX) -p=p for all t € R.

This observation yields an obstruction for the existence of free group actions: namely if
M is acted upon freely by a Lie group G with dim(G) > 1 (i.e. g # {0}) then M must
have smooth nowhere vanishing vector fields. In particular, x(M) = 0, e.g. M % S?".

Definition 1.5.20. A zero-dimensional Lie group is called a discrete group.

Remark 1.5.21. A discrete group is compact iff it is finite. If a compact group acts
freely on a manifold M then G\ M is again a manifold. We are now looking for a similar
criterion for discrete group actions.

Definition 1.5.22. An action of a discrete group on a differentiable manifold M is
called properly discontinuous iff

(i) Vp € M there exists a neighborhood U of p in M such that
U g-U
g UNU#D = g=e. ‘ ‘
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1.5 Group actions

(i) Vp,q € M with G-p # G - q there exist neigh-
borhoods U of p and V of ¢ in M such that

VgeG:g-UNV =0.

Theorem 1.5.23

If a discrete group G acts properly discontinuously on a manifold M then G\M carries
a unique differentiable manifold structure such that the projection map M — G\M,
p+— G- p, is smooth and a covering map (in particular a local diffeomorphism).
Furthermore, the quotient G\M has the following universal property: for any diffe-
rentiable manifold N and any smooth map f : M — N, which is constant along the
orbits of G, there is a unique smooth map f : G\M — N such that the following

diagram commutes:

M#N

e

a\M

Idea of proof. Use the open neighborhoods U as in (i) as charts for the quotient G\ M.
Then (ii) ensures that G\M is Hausdorff. O

Example 1.5.24. Let G = (Z,+) act on M =R by Z x R — R, (k,t) — k +t. This
action is properly discontinuous:
(i) is satisfied by chosing for a t € R the neighborhood U := (t — 1, + 3).
For s,t € R in different Z orbits, i.e. with t —s ¢ Z, we put € := min{|t — (s + k)| | k € Z}.
Then setting U := (s — 5,5+ 5), V := (t — §,1 + §) yields separating neighborhoods as
required for (ii) to hold.

. . . 1 cos(2mt)
The quotient Z\R is identified as follows: the map f : R — S*, f(¢) := <sin (27 t))

is smooth and constant along the Z orbits. By the universal property of the quotient,
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1 Lie groups and Lie algebras

we have another smooth surjective map f : Z\R — S1. It is then also injective. Fur-
thermore, df # 0 everywhere and thus same holds for df. Hence f : Z\R — S! is a
diffeomorphism.

Example 1.5.25. Let G = (Q,+) with the discrete topology act on M = R by
(g,t) — q + t. This map is not properly discontinous, since any two different orbits are
arbitrarily close: if x := s —t € Q, then approximating x by rationals yields points in
the orbit of s arbitrarily close to ¢. Indeed the quotient Q\R is not Hausdorff.

Definition 1.5.26. Let G be a Lie group and let M be a differentiable manifold.
A right action of G on M is a smooth map M x G — M, (z,g) — x - g, satisfying:

(i) Vee M,VYg,heG: z-(g-h)=(z-g)-h.

(ii) Ve e M: z-e=u.

Remark 1.5.27. Note that if we set g*p :=p- g, then (i) says: (g-h)*xp = hx*(g*p).
Thus if G x M — M, (g,p) — g - p, is a left action, then

MxG — M,
(p.g) — pxg:=g '-p,

defines a right action.
Conversely, if M x G — M, (p,g) — p- g is a right action, then

GxM — M,

(9,p) = g*pi=p-g '

defines a left action.
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2 Bundle theory

2.1 Fiber bundles

Definition 2.1.1. Let E, B, F' be differentiable manifolds, let 7 : £ — B be a sur-
jective smooth map. Then (F,w, B) is called a fiber bundle with typical fiber
F' iff each point x € B has an open neighborhood U C B such that there exists a
diffeomorphism v : 7= 1(U) — U x F such that the following diagram commutes:

7~ 1(U) Yy
\ pry
U

B is called the base and E is called the total space of the fiber bundle. vy is called
a local trivialization over U.

UxF

Remark 2.1.2. For any U > x € B, a local trivialization v yields a diffeomorphism
VU lr1(z) 7 1(x) := {o} x F = F. Thus the fibers E, := 7 !(x) (of the projection
map 7) of a fiber bundle are diffeomorphic to the typical fiber F' (thus the name).

Example 2.1.3
1. The trivial fiber bundle is the cartesian product (B x F,pr;, B).

2. Let (B, g) be a Riemannian manifold of dimension n. The unit sphere bundle
of (B,g) is defined as F := {X € TB||X||; = 1}. The projection map is the
restriction of the foot point projection of the tangent bundle T'B. For p € B,
mYp) = {X € T,B||X||; = 1}, so F = S""L. Local trivializations of E are
obtained from local trivializations of the tangent bundle.

Remark 2.1.4. Let F' be a smooth manifold and ¢ : F — F be a diffeomorphism.
Then Z acts properly discontinuously on R x F by (k, (t, f)) — (t + k,o"(f)). Set
E := Z\(R x F). The projection pr; onto the first factor induces a projection map
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2 Bundle theory

7:E— Z\R=S' Then (E,n, B) is a fiber bundle with typical fiber F. To construct
local trivializations, use the (global) triviality of the bundle R x F' — R together with
the proper discontinuity of the action. Geometrically, the total space E is constructed
from the trivial bundle [0,1] x F' — [0, 1] by glueing the fibers over 0,1 by the diffeo-
morphism (.

Example 2.1.5. For FF = (—-1,1), ¢ : F — F, z — —z, the construction yields the
Mobius strip.

Definition 2.1.6. Two fiber bundles (E,w, B) and (E',7’, B’) are called isomor-
phic iff there exists a diffeomorphism ¢ : E — E’ such that the following diagram
commutes:

A fiber bundle is called trivial iff it is isomorphic to the trivial fiber bundle B x
F — B. (This is equivalent to the existence of a global trivialization, i.e. a local
trivialization ¢y defined on U = B).

Definition 2.1.7. A fiber bundle (E,7, B) is with typical fiber K" (K = R or C)
is called a (real oder complex) vector (space) bundle of rank n iff each fiber
E, carries the structure of a K vector space and the local trivializations 1y can be
chosen such that Yy|-1(;) @ Bz — {z} x K® 2 K" is a linear isomorphism (i.e. the
local trivializations are linear along each fiber).

Example 2.1.8. If B is a smooth manifold, then the tangent T'B is a vector bundle,
and so are all bundles constructed from T'B by linear algebra (applied fiberwise), such
as T*B, A*T*B, ©*T*B etc.
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2.1 Fiber bundles

Definition 2.1.9 s
Let (E, 7, B) be a fiber bundle. A section is a map /\/

s: B — FE such that 7w o s = idp.

Convention: From now on sections will be assumed smooth unless specified otherwise.

Remark 2.1.10. Any vector bundle (V,x, B) has (smooth) sections, e.g. the zero sec-
tion defined by s(z) := 0, € V, for every x € B. General fiber bundles need not have
any continuous sections at all as we shall see.

Let B be a smooth manifold. The following tabular indicates how several well known
objects from geometry can be considered as sections of vector bundles over the base B:

vector bundle sections
TB vector fields
B differential 1-forms
ART* M differential k-forms

R*TB® Q' T*B | (k,1)-tensor fields

Let (E, 7, B) be a fiber bundle with typical fiber F. Let A : B — B’ be a smooth map.
We want to construct a fiber bundle over B’ with typical fiber F'. To this end, put

E ={(t),p)e BxE|X(V)=mn(p)} and
7 =pr|p: E — B.
To construct a local trivialization for (E’, 7", B') in a neighborhood of b, € B’, choose

an open neighborhood U of A(b}) in B and a local trivialization ¢y : 7= 1(U) — U x F.
Then take U’ := A"}(U) as a neighborhood of b} in B’ and compute:

(=) (©) = prpt(U)
{(b',p) ceU XxE|\ (b') = ﬂ(p)}
(W u, f) €U xUx F| (V) =
U x F.

I

uj

I
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This identification shows that £’ C B’ x FE is a smooth submanifold and that (E’, 7, B")
is a fiber bundle.

Definition 2.1.11. The fiber bundle \*(E, 7, B) := (E', 7', B) as constructed above
is called the pull-back of (E,n, B) along .

By construction, the following diagram commutes:

ME22 B

w |

B —-=B
A
Now for b € B', the fiber El/?& of the pull-back bundle is identified as follows:
wo= (b))
{(t).p) € B x E|A(V) =(p), pry (V',p) = bo}

= {(b6,p) € B"x E| X(by) = 7(p)}
= {0} x Exp)

kel
=
N

1

Thus pry identifies the fiber of the pull-back bundle at b with the fiber of E at A\(bf).

Example 2.1.12. Let F = T'B be the tangent bundle of a smooth manifold B and let
A:(—€,€) = B be asmooth curve in B. Then sections of A*T'B are vector fields along A.
The velocity field A of the curve is one particular such vector field along .

The velocity field of A is tangent to the image of A in B. More general vector fields along
curves naturally occur in Riemannian geometry e.g. as variational fields of variations of
the curve A\ (Jacobi fields for geodesic variations etc).
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2.2 Principal bundles

2.2 Principal bundles

Definition 2.2.1. A fiber bundle (P, 7, B) together with a right action of a Lie group
G on P is called a G-principal bundle iff

(i) The group action is free.

(ii) The group actions is transitive on the fibers of the bundle, i.e. for any p € P we
have p- G= Pﬂ(p).

(iii) The local trivializations ¢y : 7~ 1(U) — U x G can be chosen such that the
following diagram commute (where pg : G X G — G is thne multiplication in
the Lie group G):

7~ 1(U) XGMW_l(U)
¢UXMGl lwu
UxGxG UxGG

idyXpa

G is called the structure group of the principal bundle.

Remark 2.2.2. For afixed p € P look at the map L, : G — Py, g+ p-g. Then L, isa
smooth map by definition, moreover it is injective by (i) and surjective by (ii). The diffe-
rential d. L, has maximal rank, since for a free group action, deL, : g = T.G 3 X — X (p)
is injective by Remark [L5.T91 Moreover, for g € G, we have L, = Ly.40 L,-1, 50

dng e deLpg O dngfl 5
R v
injective bijective

since Ly—1 : G — G is a diffeomorphism. Therefore, L, : G — Py () is a diffeomorphism,
and the typical fiber of a G-principal bundle is the Lie group G.

Note that the fibers of a G-principal bundle are naturally diffeomorphic to G but they
do not carry a natural group structure!

Remark 2.2.3. As an extension of Theorem [[L5.11], we have the following statement:
If a compact group acts freely (from the right) on a manifold P, then (P,m,G\P) is
a G-principal bundle. Here 7 : P — G\P is the natural projection to the orbits,
i.e. m(p):=p-G. Properties (i) and (ii) are obviously satisfied, (iii) follows from the
sketch of proof of Theorem [[L.5. 171
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2 Bundle theory

Example 2.2.4. The Hopf fibration © : S>"~! — CP" from Example [[5.12 is a

U(1)-principal bundle.

Example 2.2.5. Let V — B be a K-vector bundle of rank n. For any b € B, the fiber
Vp is an n-dimensional K-vector space. Set P, := {(ordered) bases (by,...,b,) of Vj}.
Then G = GL(n; K) acts freely and transitively on P, from the right by:

(bl, .. ,bn) . A = <Zn: Ailbi,- . ,Zn:Ambz> s
i=1 =1

where A = (Ajj)ij=1..n- Then P :=| |5 P, together with the projection 7 : P — B
defined such that 7|p, = b is a GL(n;K)-principal bundle.

Example 2.2.6. Similarly, we can construct principal bundles for different structure
groups by considering the bundles of bases of vector bundles with further structures:
Let V' — B be a K-vector bundle of rank n with a Riemannian or Hermitian metric
resp. For b € B, set B, := {(ordered) orthonormal bases (b1,...,b,) of V;}. Then
G = O(n) resp. G = U(n) acts on P, freely and transitively. We thus obtain an O(n)-
or U(n)-principal bundle resp.

Definition 2.2.7. Let B be a smooth n-manifold and let V= T'B — B be the
tangent bundle. Then the GL(n; K)-principal bundle (P, 7, B) constructed in Example
is called the frame bundle of B. Let (B, g) be a Riemannian manifold, and let
V' — B be the tangent bundle. Then the O(n)-principal bundle from Example
is called the orthonormal frame bundle.

By considering several structures on K-vector bundles, we naturally obtain the following
G-principal bundles as bundles of (ordered) bases respecting the given structure:
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R, C any all GL(n; K)
R Riemannian orthonormal O(n)
C Hermitian orthonormal U(n)
R oriented positively oriented GL™(n;R)
R | Riemannian, oriented | orthonormal, oriented SO(n)



2.2 Principal bundles
(Here GLT (n;R) := {A € GL(n;R) | det(A) > 0}).

Remark 2.2.8. Let (P, 7, B) be a G-principal bundle. If A : B — B’ is a smooth
map, then \X*P — B’ is again a G-principal bundle. The pull-back bundle is given by
NP :={(V/,p) € B'xP|\') = m(p)} with the right action given by (¥, p)-g := (V/,p-g).

Next we want to replace the structure group G of a principal bundle: So let P — B be a
G-principal bundle and let ¢ : G — H be a Lie group homomorphism. Now G acts from
the right on P x H by (p,h)-g:= (p-g,(g71) - h) (this follows from Remark [[5.27).
The action is free, since (p,h) - g = (p,h) implies p - g = p and thus g = e, because the
action of G on P is free.

Now if G is compact, then we know from Remark 223 that P’ := (P x H)/G is a
smooth manifold. Actually, this also holds for non-compact Lie groups G. Consider the

diagram
PxH——Px,H
noprll
Ilx’
B

Since wopry is constant along the G-orbits, there is a unique map 7’ making the diagram
commutative. It is smooth by the general theory of group actions.

In fact, P’ is the total space of an H-principal bundle over B. H acts from the right
on P x H by (p,h)-h' = (p,hh'). Since this H-action commutes with the G-action, it
descends to an action on P x H/G by

[p,h]-h = [p, hh’]

This H-action on P X, G is free:

[p,h'] = [p,h] - W = [p,h] = 3g € G : (p,hh') = (p- g, 0(g~ "))

=p=pr9g

=g=ce
=hh'=¢(e ') h=nh
=h =e

Conclusion 2.2.9
(P x4, H,7', B) is an H-principal bundle.
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2 Bundle theory

We proved this for the case that H is compact but it is also true for the general case.

Definition 2.2.10. (P x, H,7n’,B) is called the H-principal bundle associated
to (P,m,B) with respect to .

If ¢ : G — H is an embedding of a subgroup, then one says that (P x, H,n’, B) is
obtained from (P, 7, B) by extension of the structure group. Conversely, given an
H-principal bundle Q — B, a G-principal bundle P — B such that its extension to an
H-principle bundle is isomorphic to ) — B is called a reduction to the structure
group G.

Example 2.2.11. An H-principal bundle can be reduced to the trivial group G = {e}

if and only if it is trivial.

Now let P = B be a G-principal bundle and let p : G — Aut(V) be a representation.
We define

Px,V:=PxV/G

where G acts as before: (p,v)-g= (p-g,p(g~!)v). The same construction now yields a
vector bundle

Px,V—B

Definition 2.2.12. P X, V is called the associated vector bundle.

Example 2.2.13. If F is a K-vector bundle, let P be its frame bundle with structure
group G = GL(n;K). If pgy is the standard representation of G on K", then we have
the following isomorphism of vector bundles:

P Xpstd Kn = E’

[(bla---,bn)a(xly"' 7‘Tn)] = Zx.]b]
7=1
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2.2 Principal bundles

This map is well-defined because

[b,z] = [b',x'] = Jg € GL(n;K) : (b',x’) = (b-g,pstd (g_l) x) = (b . g,g_lx)

= [b',x'] —»b-g-glr=b-x

Remark 2.2.14. Let E — B be a vector bundle and P its frame bundle (again,
G = GL(n;K)). Taking the k-th exterior power of the standard representation,
p = N¥pgq, we have

P x, NFK" = AFE

This works as well for tensor products, direct sums, dual representations etc.

In the following, we are going to discuss the local description of principal bundles. Let
P =5 B be a G-principal bundle and U C B an open set such that there is a local
trivialization

Yy 7 Y U) =: Ply = U x G,

that is, the following diagram commutes

P‘U&UXG

l pr1
s

U

Define a local section s : U — P|y by s(x) := 1 ~!(x, e), which is obviously smooth. By
the definition of principal fibre bundle, we have

7 H(U) x GMW’I(U)
lIﬁUXidG lwv
UxGxG UxG

idy xpa

This implies, that the local trivialization may be expressed using the section s:

Vi, g) = gt (u,eg) = vy (ue) - g =s(z) - g
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Conversely, let s : U — P|y be a smooth section. For
any p € Py, there exists a unique g(p) € G such that
p = s(m(p)) - g(p), because the group action is free and
transitive.

Define ¢y (p) := (7(p),g9(p)) € U x G. This is a local

trivialization.

Conclusion 2.2.15
There is a 1-1 correspondence

local trivializations <> local sections

Ply

In particular, a principal bundle has global sections if and only if it is trivial.

Example 2.2.16. The Hopf bundle S — S?, G = U(1) has no global section because
otherwise, it would be trivial. So in particular S% =2 $? x S'. But this would imply

{e} =2m (53) >~y (52 X Sl) oy (52) X 1 (Sl) >{e} xZ=1

Now cover B by open sets Uy, a € A, such that P|y, is trivial and we can choose sections

Sq : Uy = Ply,. We consider the intersection U, N Ug:

Forz e UoNUpg =:Upyp :

3! gap(x) € G such that sg(r) = sq(T) - gap(x)

This yields smooth maps go3 : Usg — G (so called transition functions) satisfying

the cocycle conditions:
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2.2 Principal bundles

1. gaa =€
2. Gap = gﬁ_;

3. 9ap 9By Gya = €
The first identity is trivial. By the definition of g,g and gg., we have

S8 = SadapB = S 9Ba Yaps-
This implies the second identity because the group action is free.
To prove the third equation, let x € U, N Ug N U,.
Similar to the second part, we have
Sa = S8 9Ba = Sy Gyp 9Ba = Sa Gary v 9Ba

which implies the claim since G acts freely.

If we choose a second set of local sections, S, : Uy, — P|y,, we obtain corresponding
transition functions g.g : Usg — G. We may now ask: What is the relation between

9ap and gop ?

For any = € U,, we have:
WNho(z) € G:50(x) = sa(x) ha(x)
= 53 hﬁ = gﬁ = gagaﬁ = Sa ha ?]ozﬁ = S8 9Ba ha ?]ozﬁ
= hﬁ = 9Ba ha gaﬁ

Hence, we obtain the coboundary condition:

9op = ha Gap El (2.1)
We will now discuss the construction of a principal fibre bundle out of prescribed local
data. Let B be a smooth manifold and {U,} an open covering. Let go5 : Usg — G be
smooth maps such that the cocycle conditions 1., 2., and 3. hold. We construct the total

space of the bundle a follows:
P:=||UsxG / ~

Here, the equivalence relation ~ is given by
i) x = and

= /
— e — ”) g = gaﬁ(x) g
€UaxG EUBXG
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2 Bundle theory

Since sq(x) - g and sg(z’) - ¢ are supposed to represent the same element in the re-
sulting bundle, property ii) of the preceeding definition is motivated by the following
computation:

58(x)gga(x) - g = sa(x) - g =s5 (') - g’ = sa(x) - g

The definition yields a G-principal bundle P — B. This way, one reconstructs a given
G-principle bundle P from a system of transition functions (up to isomorphism). The
cocycle conditions are needed to ensure that ~ indeed defines an equivalence relation.
If we have two systems of transition functions {gns}, {Jas} and a system of maps
{hqa : Uy — G} such that the coboundary conditions (2.I]) hold, then the corresponding
G-principal bundles P and P are isomorphic. An isomorphism is given by the map

P:=],UsxG/~ — Pi=|],UsxG/~
[z,9] = [z,hgt(2)g]

It is well-defined: If [z, g] ~ [z,¢'], that is g = gagg = hagaﬁhglg’ by using (2.1]), we
see that § = h;'g and §' = hglg’ are related by § = go3¢ and thus, [z, 9] = [z,g]".

Example 2.2.17. We are going to determine transition functions for the Hopf bundle:

Hopf: 83 cC? — S?cCxR
(4?1}1@2,4‘?1}2’2 — ]w1]2)
4lwa|? + |wn |2

(wl, UJQ) —

For (z,t) € S?, that is |2|2 + % = 1, we define

TR >
Sl(Z,t) = ((1+t)2+1> 1——|-t’1

51 is a smooth and defined on Uy := S%\ {(0, —1)}. Furthermore, s; is a section because

2
4.2 1,412 - | 2 >
i L 1+ (2z(1+1), (14+1)* —|2?)
Hopf(si(z,t)) = 2 - (I+1)2+ |22
4-12 + (f—ﬂ

(22(1+t), 142t + 12 — |2]?) (2.)
prg = (Z
142t + 12 + |2)? ’

In the last step, we used |z|2 + t?> = 1. Analogously, we define a smooth section on

Uy == S*\ {(0,1)}:
sa(z,t) == (1 + (sz/;);z)—l/z (1, f%)
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2.2 Principal bundles

z

s1(z,t) -

We calculate the transition function gi2 with respect to these sections using (1—¢)(1+t) =
4|

1
o7t

1—t2 =2l and (1 +1) = |2|*/(1 — )2
~1/2 ;
1 1+t I2|

()
(i) o ()
e i)
- (+5) ()
(o5 ) ()

= s9(z,t)

z

Hence, the transition function is given by

| i

22U = S\ {O0),0,-0) 2 V), galent) = 7 = ’Z_‘

Remark 2.2.18. Let P — B be a G-principal bundle, ¢ : G — H a Lie group homo-
morphism and P’ := P x H/G the associated H-principal bundle. Let s, : Uy — Ply,
be local sections with corresponding transition functions g, : Usg — G. Then we have
induced sections of the associated bundle:

/oz U — P ‘Ua
S (u) = [sa(u), €]
On one hand we have
Slﬁ = 5;9;5 = [8047 6] g;ﬁ = [Smg&ﬁ]
and on the other hand:
S/ﬁ = [85,6] = [Sagozﬁ,e] = [Sagaﬁgﬁa,gp(ggoll)e} = [Saa@(gaﬁ)]

Since the action of G on P is free, we conclude

G = © Gap

Thus forming the associated bundle with respect to ¢ amounts to composing the tran-
sition functions with .
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Remark 2.2.19. We can think of local sections (or equivalently, local trivializations)
as local gauges. For example, if G = R, then a local section identifies points in a fibre P,
with real numbers. If elements of fibres P, are results of measurements, then the choice
of local sections correspond to the choice of a system of units.

2.3 Connections

Definition 2.3.1. Let P — B be a G-principal bundel. A 1-form w € Q'(P, g) (i.e. a
section of T*P ® g) is called a connection 1-form iff

1. R; =Adg10w Vg€ G or equivalently, the following diagram commutes:

“p
T,P g
dRg LAdg—l
Wp-g

TpgP ——g

2. For any X € g, let X be the corresponding fundamental vector field on P. Then:

w(X(p)) = X
P,

All the vectors tangent to the fibres P, are P X
given in the form X for a suitible X € g. Thus,

the second condition determines the values of

a connection 1-form w for the vectors tangent

to the fibers.

™|
b

B

Remark 2.3.2. The two conditions 1. and 2. are compatible. On one hand, we have

w (dRy (X)) L Ady-1 (w(X(p))) 2 Ad,1 (X)
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On the other hand, we have

(p-exp(tX)g) = a

Ry (dLy(X)) = G| o

- (p- 99 'exp(tX)g) = dLypy (Ady-1(X))

0

which implies
w (dRy(X(p)) = w (dRy (dLy(X))) = w (dLpy (Ady1(X)))
w <Adgfl(X)(pg)) = Ad,-1(X)

Hence, 1. and 2. are consistent. Changing Ad,—1 to Ad, would lead to inconsistent
conditions.

Example 2.3.3 (Fundamental example). Let V' — B be a vector bundle with a
connection (i.e. covariant derivative) V. Let P —+ B be the frame bundle of V,
G =GL(n;K) and g = Mat(n x n;K). Let X € T,P be a vector tangent to P and
choose a curve t — p(t) = (p1(t),...,pn(t)) such that p(0) = X and p(0) = p. Putting
c(t) == m(p(t)), we have p;(t) € V.y. Hence p; is a section in ¢*V and its covariant
derivative along ¢ can again be expressed in terms of the basis p:

Y‘ pi(t) = 3"Ti(x) - pi(0) = (p(0) - (X)),
dt 0 i=1

Here, w(X) € Mat(n x n;K) is defined by its action on the basis p(0) of V). Since
%| Opj(t) depends only on X and not on the particular choice of the curve p(t), also
w(X) is independent of this choice.

Check of property 2: Let X € g = Mat(n x n;K) and put p(t) := p- exp(tX). Then we

have p(0) = X(p). Thus

p0)-w(X0) = | p0)=50)=p0) X = w(¥() =X

Here, we used, that p(t) is a curve in a fixed fiber of P and therefore, the covariant
derivate ist just an ordinary derivate.

Check of property 1: Let X € T,P and choose a curve p(t) such that p(0) = p and
p(0) = X. We obtain

ARy(X) = 5| Byo0) = | 00)-9)=50)-9
= p0) g @R(X) = | (bl)9) = | plt) g =p(0) - w(X) g
0 0
- g+ (AR,(X)) = w(X) g
= w (dRy(X)) = g~ 'w(X)g = Ady-1(w(X))
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Remark 2.3.4
Let P — B be a G-principal bundle with con- P
nection 1-form w. Let s : U C B — P|y be a
local section.
Then s*w € Q(U,g) is given by
sw(Y)=w(ds(Y)). f V. = TB — B and
x', ..., 2" are local coordinates of the manifold
on U, then s := (8%1’ cee a%) is a local section
of the frame bundle of T'B. ‘
7T
{ ) B

U
The usual Christoffel symbols are then given by

. . P . 9\’
Il =T/ <d8 <@>> zsw<%> € g = Mat(n x n;K)

i

Let w € QY(P;g) be a connection 1-form on P = B. For a fixed p € P, the restriction
of the linear map wy, : T, P — g to the tangent space of the fiber yields an isomorphism
wp‘TPPﬂ(p) : Tppﬂ(p) — 6

By
Setting H), := ker(w,), we have the decomposition P X
Hy @ TyPy = T,P. H,
In particular, dim(H)) = dim(P) — dim(Py ) = dim(B). pPrp)
The subspace H), is called the horizontal subspace .
" |
B b

For X € H,, we find

wpg (ARy(X)) = (Riw) (X) = Ady1 (0(X)) = 0.
=0

Hence dR,(H,) C Hp,. Since dR, is a linear isomorphism and dim(H,) = dim(H,,) =
dim(B), we conclude dRy(H)p) = Hpq.
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Example 2.3.5. The Hopf bundle S — S? has structure group G' = U(1) with the Lie
algebra g = u(1) = iR. For a fixed p € $3 C C? and X =i € u(1), the fundamental
vector is given by X (p) = % (p-et)=p-i.

t=0

We denote by (-,-) the real scalar product on C? = R* Forpe S3and Y € TpS3 C RY,
set w,(Y) :=i(Y,p-i). Then w € Q(S3;iR) and property 2. from Definition 231 holds:
Riw(Y) = wp: (dR.(Y))

= wp(z-Y)

= (z-Y,p-z-1i)

= «(Y,p-i) (z acts as isometry)

= wp(Y).
Hence Riw = w = Ad,-1 o w, since the adjoint representation is trivial. The horizontal
space is given by H, = kerw, = (p-i)*. Property 1 holds as well:

W(X) = w(p-i)
= i-(p-i,p-i)

= 1.

Local description of connections

Let P — B be a G-principal bundle. Take an open cover {U, }qes of B and choose local
sections sq : Uy = Ply,. We set Uy := Uy NUg. The transition functions are the
uniquely defined functions gas : Uss — G such that sz = s4 - gag. Let w € Q1(P,g)
be a connection 1-form and set w, = siw € Q1(U,,g). Then we have the following
transformation formula:

55(u) = sa(u) - gap(u) = sa(u) - gap (uo) - g5 (u0) - gap(u) .
Differentiating at u = wug yields:
dsgl(uy) = ARy, 5(uo) © ASalug + AL (ug)-gas(uo) © @ (9;5 (uo) - 9aﬁ> |uo -
For the locally defined 1-forms we get:

wﬁ|u0 = SEW|UO
w o dsﬁ’uo (2.2)

w o nga,B(uo) o dsa’uO 4+ wo dLSa(UO)'gaﬁ(UO) e} d <go_¢51 (UO) . ga5> ‘UO

1.,2. -
- Adg;;(uo) cwo dsa’uo +d <gaﬁl (UO) ' gaﬁ) ‘uo
= Adyi) 0 wWalu +d (955 (uo) - 9a5> Jug - (2.3)
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Example 2.3.6. The connection 1-form w € Q!(P, g) is uniquely defined by the collec-
tion of (locally defined) 1-forms (wq)acr-

By condition 2., w, determines w on U, at the points s, (u), u € U,. By condition 1., it
already determines w for all points of the corresponding fiber and hence on P|y, .

If a collection (wa)acr, Wa € Q' (Ua, @) is given such that (22) holds for all o, € I,
then this defines a unique connection 1-form w € Q'(P;g).

Example 2.3.7. Each principal bundle has connection 1-forms since one can use a
partition of unity to construct them out of locally defined 1-forms. Our next question
is: how many connection 1-forms are there on a given principal bundle?

Let w, @ be connection 1-forms on P — B. Let wq, @y € 2Y(Uy, g) be the corresponding
locally defined 1-forms associated with the local sections s,. Then

wp — (:)5 = Adg;é o (wa — (:Ja).

For any vector field X on B, we look at the local section [sq, (wa — @a)(X)] of the
associated bundle P xxq g. We observe that on U,g

s, (wg — wp) (X)] = Sagaﬁ’Adggé 0 (wa = @a) (X)| = [sa; (wa — @a) (X)] .

Hence [sq, (Wa — @a)(X)] is the restriction of a globally defined section of P xaq g.
Putting [sq, (wWa — @a)](X) = [Sas (Wa — @a)(X)] we get a globally well-defined 1-form
on B with values in P Xaq g, i.e., a section of T7*B ® (P Xaq g). Hence the differences
w — @ of any two connection 1-forms on P correspond to elements of Q' (B; P X o4 g).

Remark 2.3.8. Note that the space C(P) := {connection 1-forms on P — B} is not a
vector space, because 0 € C(P). We have thus found that C(P) is an affine space over
the vector space Q!(B; P xaqg). In particular, it is an infinite-dimensional affine space.

Remark 2.3.9. Let P 5 B be a G-principal bundle with connection 1-form w. Let
0 : G — Aut(V) be a representation of G. Let E := P x,V — B be the associated
vector bundle. We construct a covariant derivative V on F out of the connection 1-form
w as follows: For X € T, B, set

Vx [p(w), v(u)] = [p(uo) , Oxv + 0 (P*w(X)) v (uo)] -

A simple computation shows that this is well-defined. Indeed,
[p(w), v(u)] = [p(u) - g(u), 0 (g7 (u)) v(u)]
yields

[p (u0) , Oxv (ug) + 04 (p*w(X)) v (ug)]
= [p(uo) - g(uo),0x (0 (97 (u) v(u) + os ((pg)*w(X)) 0 (97" (u)) v(u)] .
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2.4 Curvature

Let P — B be a G-principal bundle with connection 1-form w. For any p € P, we
have the decomposition T,P = T, Py, ® Hp. Let 7y : T,P — H) be the horizontal

projection.

Definition 2.4.1. The 2-form Q € Q?(P,g) given by Q(X,Y) := dw(ry(X), 75 (Y))
is called the curvature form of w.

Notation: For 1, € QY(P,g) we define [, 0](X,Y) := [n(X), o(Y)] — [n(Y), p(X)].

Proposition 2.4.2 (Structure equations)
Let P — B be a G-principal bundle with connection 1-form w. Then the curvature

form Q satisfies
1
Q=dw+ §[w,w] . (2.4)

Proof. We check the formula by inserting X,Y € T,P, distinguishing the following
different cases:

(i) If X,Y are fundamental vector fields, ie. X = X’ and ¥ = Y’ for
XY € g, then QX,Y) = dw(rg(X),7g(Y)) = 0. On the other hand,
[w,w](X,Y) =2[w(X),w(Y)] =2[X’,Y'] and (using that X’ and Y’ are constant)

dw(X,Y) = Oxw(Y) - dyw(X) — w(X,Y])
= OxY — X — [X,Y]

- ey
1
= —E[w,w](X,Y). O
(ii) If X,Y are horizontal, then [w,w](X,Y) = 2w(X),w®) = 0 and

QX,)Y) =dw(rg(X),7g(Y)) = dw(X,Y).
(iii) If X is a fundamental vector field, i.e. X = X/, X’ € g and Y is horizontal, then

[, 6] (X,¥) = 2(X),(¥)] = 0
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and
do(X,v)2E o (0(v) — oy (w(X)) —w( [X,¥] ) =0
—— —_— ~——
= =0y X'=0 horizontal

=0
For the curvature form €2, we find
QX,Y) =dw(m(X),ma(Y)) =0.

N——
=0

Lemma 2.4.3
Let P — B be a G-principal bundle with connection 1-form w. Let X be a fundamental
vector field (X € g), let Y be a horizontal vector field. Then [X,Y] is horizontal.

Proof. The flow of X is given by Rexp(ex)- Using the Lie derivative, we compute:

w([X,Y]) = w(LlgY)
= Lxwl)) = (Lxw) (V)
——

=0

d .
= - % ‘tZORexp(tX)w(Y)

d
= ——| Ad - Y
dt li—o exp(tX)—1 Ow( )
=0
= 0. O
Lemma 2.4.4
For any g € G, we have:
RQ=Ad;-109Q. (2.5)
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Proof. For any tangent vectors X,Y, we have:

(R;Q) (X,)Y) = Q (ng(X), ng(Y))
= dw(mgodRy(X), 7y 0o dRy(Y))
= dw(dRyjomg(X),dRgomu(Y))
= (Rydw) (g X,7HY)
= d(R'w) (ruX,7xY)
= d(Ady-1ow) (mpX,7gY)
= Adjrdw (g X, mHY)
= AdQ(X,Y).

Here we used that dR, preserves the splitting of TP into the horizontal and vertical
part, i.e. dRgjomy = 7wy o dR,. U

Proposition 2.4.5 (Bianchi identity)
Let w be a connection 1-form on a G-principal bundle P — B and let Q) be the
curvature of w. Then dS2 vanishes on H x H x H.

Proof. Since d) = ddw + id[w,w] = 3dw,w], we need to show that 1d[w,w] vanishes
on Hx H x H. For n := [w,w] € Q%(P;g), we know that n(X,Y) = 0if X or YV is
horizontal. For horizontal vectors X7, Xo, X3 we thus have:

dn (X1,X2,X3) = 0x,n (X2, X3) — 0x,n (X1, X3) + 0x,n (X1, X2)
-n ([Xl?XQ] 7X3) +n ([X17X3] 7X2) -n ([X27X3] 7X1)
= 0. O

Remark 2.4.6. If G is abelian, then the structure equation yields 2 = dw and thus

dQ=0. (2.6)

Let us now consider the implications of the structure equation in terms of the local data
describing the bundle and connection by transition functions g,s and local 1-forms wy,.
So we cover B by {U,}aer, we choose local sections s, : U, — P|y, which define the
transition functions g, : Uag — G such that sg = s, - go3. For the connection 1-form w
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and curvature {2, we set w, = shw and €2, = 5. The structure equation in the local
data reads:

Qo = 550
. 1
= s, <dw + 5[w,w]>

1
= dsiw+ 5 [shw, shw]
1
= dw, + 5 [War, Wa - (2.7)

If G is abelian, then Q, = dw, depends linearly on w,. In general, (Z7) is a semilinear
partial differential equation of first order for wg.

Now let us compute the transformation behaviour of the local curvature forms €2,
under the transitions between the open sets from the cover {U,}qes. Differentiating
S8 = Sq " gap at ug € Uyg, we get:

dsﬁ‘w) = ngag(w)) odsq + dLsa(uo) od (gaﬁ (uo) - gaﬁ(uo)_l : gaﬁ)
= ARy, () © d5a + ALsa(ug)-gop(uo) © & (905(0) ™" - Gas) -
This yields for the transformation of the local curvature forms:
Qs = 530
= Qodsg

= Qo ngaﬁ(UO) o dsoz + Qo dLsoz(uo)-ga,g(uo) od (go_[ﬁl(u()) : gaﬁ)

/

-—
vertical

= (RZQB(UO)Q> o ds,

= Ady iy © 20 dsa

= Adg;;(uo) o Qa .
Hence if G is abelian, then Qg = Q, on U,g. Thus the (), are restrictions of a globally
defined 2-form Q € Q%(B;g), i.e., Qlu, = Qa-
In general, the transformation behaviour for the local curvature forms implies that s,
and 2, together yield well-defined global sections of the bundle P x poq g. Indeed for any
X,Y € T, B, we have:

(58, 23(X,Y)] = |sq - gag,AdgféQa(X,Y) = [Sa, 2 (X,Y)] .
Thus for fixed X, Y € X(B), [sq, Q2a(X,Y)] is the restriction of a globally defined section
of P xaqg. Hence the local 2-forms [sq, Q] defined by [sq, 2a](X,Y) = [sq, Qa(X,Y)]

are the restrictions to U, of a globally defined 2-form €2 on B with values in the bundle
P xaq g, i.e. asection of A2T*B ® (P Xaq 9)-
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Example 2.4.7. For the Hopf bundle S® — 52, we have the connection 1-form
wp(Y) :=1- (ip,Y). For the curvature, we obtain:
Q(X)Y) = dwp(X,Y)
— Oxw(Y) - dyw(X) - w ([X,Y])
= i ((iX,Y) - (1Y, X))
~——

=(X,iY)
= - ((iX,Y) - (iX, i2Y>) (i acts as isometry)
= 2i-(i1X,Y).
It is easy to see, that (), indeed vanishes on vertical vectors X = 1ip, since

Q,(ip,Y) =2i-(—p,Y) =0, because Y € T,,5° = p*.

2.5 Characteristic classes

Definition 2.5.1. A multilinear symmetric function A : g X --- x g — K is called
invariant iff for all g € G and all X4,..., X € g:

A(Ady (X1), ..., Ady (Xi) = A (Xq,..., Xp) -

Let P — B be a G-principal bundle and let A : gx---xg — K be an invariant multilinear
symmetric function of degree k. Then A induces a well-defined symmetric multilinear
map on each fiber of the bundle P X aq g

(Ipy X1] 5oy [0y Xi]) = A (X, ..., Xk) -

This is well-defined because

([pg, Adgfl (Xl)] e [pg, Adgfl (Xk)])
= A (Adg-1 (X)), Ady-1 (Xp)) = M X, .., X))

We choose a connection 1-form w on P. Let Q € Q%(B; P xaq g) be the corresponding
curvature 2-form on B. We then set A o Q € Q% (B,K), where

_ 1 . _ _
()‘OQ) (X17 s 7X2k) = H Z 81gn(a) A (Q (XU(1)7XU(2)) Y (X0(2k71)7X0(2k))) :

’ o€Ssy

We have the following two important Lemmas:
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Lemma 2.5.2

Let P 5 B be a G-principal bundle with connection 1-form w and curvature form

Qe Q?(B;Pxpqg) Let X:gx...xg— K be an invariant, symmetric multilinear
—_——

k
map. Then B
dAoQ)=0.
Py
Proof.
Let {uq}aer be an open cover of B with local sections
Sq : Uy — Ply,. For a given b € U, C B we can choose p H,.»
the local section s, such that ds,(TyB) = H,, ).
Then for any X,Y, Z € T, B, we find: Sa
d0(X,Y,Z) = d(si0)(X,Y,2)
= s,(dQ)(X.Y,7Z)
— Q) (dsa(X), dsa(Y),dse(Z)) T |
248 . B AL
Ua
Thus df2,, vanishes at b.
Now we have:
Q) (X1, Xop) = Z sign(o (Xo(1), Xo2)) -+ (X 26-1), Xo2n)))
€Sop
1
=1 Z sign(o) A (Qa (Xo1), Xo@)) -+ - Qa (Xo@r-1), Xo@n))) -
€Sk

Choosing a basis Y7,..., Yy of g and writing Q, = Zjvzl Q- Y; with Qe O%(Uqy; R),
we obtain:

AMQ) (X1, Xop)
N

:% > sign(o) Y QN (Xoq), Xow) - QU (Xor-1)s Xowm) - A Va5 V)
o€San J1yeesJi=1
N
= > (A AQE) (X, Xok) A (YY)
J1yeoJk=1
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At the point b € U, with the section s, chosen above, we thus obtain:

N
AA(Q)=d > (UWAAYE) AT, Y
Jisesdi=1

N
- ¥ {ng}/\Qg/\.../\Qé’“%—...%—Qg}/\.../\QZ{“’I/\dQé’“})\(YjI,...,ij)
JienJk=1
= 0.

Since b € B was arbitrary, this shows that dA(Q2) = 0. O

Lemma 2.5.3
Let ' be another connection with curvature 2-form € € Q?(B; P xaq g). Then
AoQ —Xo (Y is exact.

Definition 2.5.4. The k-th de Rham cohomology of M is defined as

ker (d : QF(M;K) — QF+1(M; K))
im (d : QF=1(M;K) — QF(M;K))

Hir(M;K) =

The number by, (M) := dimg(H";R) is called the k-th Betti number of M.

Note that since d o d = 0, we have
im <d QPN (MG K) — QWM;K)) C ker (d CQF(M;K) — QkH(M;K)) ,

so the quotient is well-defined.

Definition 2.5.5. c)(P) := [\ 0 Q] € H*(B;K) is called the characteristic class
of the bundle P — B associated with .
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Remark 2.5.6. Lemma[2.5.2says that Ao{) indeed represents a de Rham class. Lemma
253 in turn says that this class is independent of the choice of connection on P — B.

Remark 2.5.7. Let P = B be a G-principal bundle and let f : M — B be a smooth
map. Then the pull-back bundle f*P 22 P fits into the following commutative diagram:

pro
e

M—B

Let w be a connection 1-form on P with curvature form 2. Then priw € QY(f*P;g)
is a connection 1-form on the pull-back bundle f*P: To check property 1. from the
definition (i.e. equivariance), we compute:

R; prow = (pryo Ry)
= (Rgopry)
prj Ryw

*
w

*
w

pry Adgw
= Adg-1pryw.

As to property 2. (i.e. the evaluation on fundamental vector fields), for any X € g, we
have:

For the curvature form €' of priw, we obtain:
/ * 1 * * * 1 *
QO =d(priw) + 3 [prow, praw] = pry | dw + §[w,w] = pry<2.

Now let {U,}aer be an open cover with local sections s, : U, — P|y, for the bundle
P — B. Then setting V,, := f~}(Uy,) and s,, := pry ' 0 s, o f, we obtain an open cover
with local sections for the pull-back bundle f*P — M. The local curvature forms Q)
for f*P now read:

Q= (50)" Q' = frospo(pry!) pryQ = f"Qa.

«
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2.5 Characteristic classes
Thus pulling back the form A(Q) € Q%(B;K) along f to Q%*(M;K), we obtain:

N
PO = 0 ) QAL AQE AW, T)
J1ye-nJe=1
N . .
= ) fIALLAFQE AV, )
J1se-Jk=1
N

_ nJ1 1\ Jk
= Y (@) A A@)F A0, YR
G1yeemsdin=1
- Q).
Hence we have shown that the assignment of de Rham cohomomology classes to G-
principal bundles by means of the construction above is natural, i.e. :

H*™(M;K) 3¢\ (f*P) = f*( ex(P) ). (2.8)
——
€H?k(BK)
Remark 2.5.8. Let A: gx...xg— K be a multilinear, symmetric, invariant map and
let P, P" — B be isomorphic G-principal bundles. Then we have c)(P) = c)(P'):

If o : P — P’ is an isomorphism and w is a connection 1-form on P, then ' := p*w is a

connection 1-form on P’. Further, the corresponding curvatures are related by ' = ¢*Q.

Given an open cover {U, }aes with local sections s, : U, — Ply,, then s, := o= o s,

define local sections for P’ on the same cover. The local curvature forms are related by

Q= (s,)°Y = sho (971" Q= 510 = Q.

a

This implies A\(Q") = A(Q2) and hence cy(P) = cx\(P').

k

Remark 2.5.9. Let A : g x ... x g — K be a multilinear, symmetric, invariant map,
k > 1. If P is a trivial G-principal bundle, then c)(P) = 0 € H?*(B;K):

By Remark 258 it suffices to prove that c)(B x G), i.e. we may replace the trivial
bundle P by the product B x G. Let ¢ € Q'(G;g) be given by ¢, = dLg-1. Then
W = pryy € QI(B x GG;g) is a connection 1-form: To show property 1., we compute:

Rgwegy = Bgprspy

(pry o Ry)* @g

(Rg 0 pry)” @y

prs R;‘Pg/

= prh (dL(y-1 0 dRy)

= prs (Ad,-10 dLg,(g/)fl)
= Adg-10prypy.1

= Adgfl (¢] w(b,g’-gfl) .
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2 Bundle theory

As to property 2., for any X € g, we have:
w (X) = (pryp) (X) = (X) = ¢.

For the curvature form of the connection w, we obtain:

1 . 1, . . 1
Q= dw+ §[w,w] = dpryp + 5 [prie, pryy] = prj (dw + 5[% w]) :

Now let X,Y € g be left-invariant vector fields on G. We then have:

dp(X,Y) = Oxp(Y) - 0yp(X) —¢([X,Y])
Ix (Y (e)) — 9y (X(e)) — [X,Y](e)
(X, Y](e)

[p(X), p(Y)] = [p(Y, p(X)]

= 2[X,Y]

[0, Pl(X,Y)

Hence dg + 1[0, ] = 0 and thus © = 0. Consequently, A(Q) = 0 and c\(B x G) = 0.

Corollary 2.5.10
Let A: g x ... x g— K be a multilinear, symmetric, invariant map, k > 1.
If cx(P) # 0 € H*(B;K), then P is not a trivial bundle.

Example 2.5.11. For G = GL(n;C) or G = U(n) and X : g — K, A(A4) := 55=tr(4),
the characteristic class c\(P) =: ¢1(P) is called the 1. Chern class of P. (The field
K can be taken K = C for G = GL(n;C) or K=R for G = U(n).)

Example 2.5.12. Let P — B be a U(1)-principal bundle over a closed surface
B (ie. B is a compact two dimensional manifold with no boundary). Then

c1(P) = [2:Q] € H34(B;R). If ¢1(P) = 0, there exists a form n € Q'(B;4R) such that
Q) = dn. Integrating over the base and using Stokes theorem, we obtain:

/Qz/dnz/nzO.
B B oB

Hence if [, Q) # 0, then the bundle cannot be trivial.
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2.6 Parallel transport

Example 2.5.13. For G = GL(n;C) or G = U(n) and A : g — K,

1

the characteristic class ¢y (P) =: ¢, (P) is called the nt? Chern class of P. (As above,
the field K can be taken K = C for G = GL(n;C) or K =R for G = U(n).)

Example 2.5.14. For G = SO(2m), we have g = s0(2m) = A?R?". Let
A:gX...xg— R be defined as
—_——

m

A(O1, .y 0m) =01 A ... Noy € APRP™,

(The map Pf: 0 — A(o,...,0) is called the Pfaffian.) The characteristic class

[(Pﬂ] —: e(P) € H*™(B;R)

2m)™ - m)

is called the Fuler class of P.

Example 2.5.15. For G = SO(2) = U(1), we have s0(2) = R and u(1) = ¢R. Since
Pf:s0(2) > R, 0+ o and tr: u(1) — iR, A— A, we have:

)= rn) = o

| =),

2.6 Parallel transport

In this section, let P — B be a G-principal bundle with a fixed connection 1-form w.

Lemma 2.6.1
For any (piecewise) smooth curve c : I — B, tg € I and any point p € Py, there
exists a unique (piecewise) smooth curve ¢ : I — P with the following three properties:

(i) c=¢om, i.e ¢is a lift of c.
(i) Yt e I: &t) € Hpy, i-e ¢ is horizontal.
#8) i) =

The curve ¢ is called the horizontal lift of ¢ with initial condition (iii).
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Proof. W.lo.g. we assume ¢ to be smooth and ¢(I) C U, with a local section
Sq : Uy = Ply,. A curve ¢ satisfies (i) iff for any ¢ € I, we have ¢(t) = sqo(c(t)) - ha(t)
for some function h, : I — G.

Then hq (t) is uniquely determined by condition (iii). We express condition (ii) in terms
of the function h,. At t = t1, we have:

—w <%L:tlsa(c 1)) - ha(t)>
—u ( Aty ot (] (P )7 1)) + B o (2] s (e) ))

=:5a(t1)

()t

€T.G=g
d . .
= EL:M (ha (t1)" - ha(t)) + Ady, (1)1 0w (30 (1))

= dLp, 1)1 (ha (tl)) + (dLp, (1)-1 © ARy (1)) (w (3a (t1)))

Applying (dLha(tl)—l)_l to both sides of the last equation, we obtain the equivalent
condition

ha (t1) = =dRp 1) (W (3a (1)) - (2.9)
This is a first order ODE for the function h,, which has, for a given initial condition, a
unique solution defined on all of I. O
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2.6 Parallel transport

Remark 2.6.2. The fact that the solution to (Z.9]) exists on all of I is not apparent
from the usual Picard-Lindelof theorem on ODEs. In case that G is a matrix group,
G C GL(n;K), then (2Z9) reads

he = —dRp, (w(84)) = —w (34) * ha-
This is a linear ODE, hence the solution exists on the whole interval I.
In the general case, one can argue as follows: Suppose the maximal solution to (2.9) exists
only up to t; where t; is smaller than the right border of I. Choose a horizontal lift ¢ of ¢
in a neighborhood of ¢;. For some 7 < t; choose g € G such that é(7) = ¢é(7) - g. Then
¢ := ¢- g is another horizontal lift of ¢ in a neighborhood of #; (compare Remark [2Z.6.515
below). It coincides with ¢ at 7, by uniqueness they coincide whereever they are both
defined. Hence ¢ extends ¢ beyond ¢; contradicting the maximality of ;.

Remark 2.6.3. Let o : G — Aut(V') be a representation and V := P x,V the associated
vector bundle. For ¢ : I — B let ¢ be a horizontal lift. Then for any fixed v € V, the
map

I =V, t— )],

is a parallel section of V along c. Indeed, covariant differention by ¢ yields:

VvV .. _ d .
—1et), 0] = [a(t), v +o. (wig (5a() ) | =0.
dt dt —_——
-0 =0
In case P is the frame bundle of a vector bundle E and g is the standard representation,

then é(t) = (bi(t),...,bn(t)) is a curve of basis vectors and ¢ is horizontal iff by, ..., b,
are parallel.

Definition 2.6.4
For a fixed curve c: [tg,t1] — B, we get a
map I'(c) : P¢y) — Pet,) by setting

L(e)(p) = é(t),

where ¢ is the horizontal lift of ¢ with ini-
tial condition ¢&(tp) = p.

['(c) is called the parallel transport
along c.
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Remark 2.6.5. The parallel transport has the following properties:

1. If ¢ is constant, then ¢ is also constant, hence I'(c) = id.

2. If ¢ = coy, where ¢ is an orientation preserving reparametrization, then ¢ := co¢p
is a horizontal lift for ¢ with the same initial condition as ¢. Hence I'(¢) = T'(¢).

3. If ¢ = coyp, where <p is an orientation reversing reparametrization, then ¢ := coy 1s
a horizontal lift for ¢/ with the initial condition & (tg) = &(t1). Hence I'(¢) = I'(c)~*
In particular, I'(c) is always a diffeomorphism.

4. For the concatenation ¢y % ¢; of piecewise smooth curves, we have
I(cgxc1) =T(c2) oT(cy).

5. If ¢ is the horizontal lift of ¢ with initial condition c¢(tg) = p, then for g € G, ¢- g
is the horizontal lift of ¢ with initial condition ¢(ty) = p - g. Hence for any g € G,
we have RjoI'(c) =T'(c) o Ry.

Remark 2.6.6. As seen above, I'(¢) does not depend on a particular parametrization of
the curve c. But in general, it does depend on c. For a closed curve ¢, we have I'(¢) # id
in general. This is related to curvature, as we shall see soon.

As we have seen, for matrix groups G C GL(n;K), the horizontal lift is the solution of
a linear first order ODE. So let us consider the following linear ODE of first order on
[0,¢]:
o(t) = —A(t)-v(t) (2.10)
v(0) = .
If all A(t) commute, i.e.t— A(t) takes Values in an abehan subalgebra of Mat(n x n;K),

then the solution of (2.10]) is given by v(t) = exp ( fo dT) -vg. Indeed, differentiating
by t, we get:

o) = 5 ( / Am) -vo

62



2.6 Parallel transport

j=1

0 (_1)j t J
= —A(t) . ( A(T)dT) )
= —A(t) - vo

For the third equation we used the fact that all A(7) commute to move A(t) in front. In
the general case, this is not possible and we have an ordering problem. This problem is
fixed as follows:

Lemma 2.6.7
Let I =[0,L] C R be a fized interval and let A : I — Mat(n x n;K) be a continuous
curve. Then the solution of the ODE ([2I0) is given by:

v(t) = jf%(1)jO/thjZde1...0/T2d71A(Tj)-A(Tj1) o A(T) g (2.11)
= lim_ (]1n - %A <NA_7 1t> ) (nn — %A <%t> ) (]1n — %A(o)) 0

(2.12)

Proof.
a) The difference quotient wsto—u(s) 0(s) + O(e) = —A(s) - v(s) + O(e) yields

(s +€) = v(s) — EA(S)e- v(s) + 0 (€2) = (1, — €A(s)) - v(s) + O (2) .
Setting s = &t and € = %, we get:
(59~ () (3) o)

Setting iteratively k=N — 1, N — 2,...,0, we get:

- (3)
() () o)
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—_—
O(x)
This proves (2.12]).
b) By a simple induction on j, we show that
t Ty T2 .
I
/de/del.../dTl = F
0 0 0
Indeed, for j = 1, the claim is obviously true. For the induction step from j —1 to
j, we have:
t Tj T2 t j—1 . .
dT‘/dT‘_l.../dle/dT‘i_] = - — =—.
/ Ty G-t G-Dt g
0 0 0 0
c) Let || - || be the operator norm on Mat(n x n;K). Then we have:
t 75 T2
/d’Tj/del .../dTlA(Tj) . A(ijl) L A(Tl) - Vo
0 0 0
t 7j T2
S /d’Tj /del e /dTl ||A(’T]) . A(’ijl) .t A(TI)H )
0 0 0 j
<lI4lILo 1y
t
< ﬁHAHCO(I)7
whence
t Tj T2 I
t— /de/d’Tj1.../(1’7’114(’7']')-/1(’7']'1)'...'A(’7’1)"U(] < _|HA||]CO(I) .
0 0 0 co(1) '

This tells us that the series in (Z.I1]) converges absolutely in the Banach space
CY(I;Mat(n x n;K)). We further need to control the C'-norm of the series:

t 7j T2
d
E/de/de1.../(1’7’114(’7']')'14(’7']'1)'...'A(’7’1)-’U()
0 0 0
t Tj—1 T
= /de—l / de_Q.../dTlA(Tj)-A(t)-A(Tj_l)-...-A(Tl)-UO
0 0 0
=1

< m : HAH]CO([) )
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whence
t Tj 2
d
E(tr%/de/de1.../d7'1A(7'j) -A(ijl) CE -A(Tl) -U0>
0 0 0 co(I)
Li—1 .
< W ' HA”JCO(I) .
Together, we have the required estimate of the C''-norm:
t Tj T2
Ht »—>/de /de_l . /dTlA(Tj) CA(Tji—1) .- A(T) -vo‘ o
0 0 0

IJ -1
Sl [ ERR— .
< <j! TG 1)!> [Allcory

Hence the series in (Z2II) converges absolutely in the Banach space
C(I;Mat(n x n;K)). This implies that the series defines a C'-function and we
may differentiate termwise.

d) Doing so, we obtain:

t Tj ]

[e=]
[e=]
[e=]

=0
— Z(—l)j%/de/de1.../d71A(Tj)'A(Tj1)'---'A(7—1)'UO
0

Tj—1 T2

0 0
Tj—1 T

de—l / de_Q.../dTlA(Tj_l)-...'A(Tl)'UO

0 0

I
|
=
[
0
=
I
o _
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Definition 2.6.8. The solution operator to the ODE (2.10)

_2(1)JOdejZde1...delA(Tj) - A(7j-1) A(m) (2.13)
(1= 2 (X))o (1= £ (30) ) (10 o)

is called the path-ordered exponential of A.

Lemma [2.6.7 says that the solution to (2.I0) is given by

v(t) = Pexp ( - /A(T)dT) - .
0

Remark 2.6.9. Let G be abelian, let ¢ : I — B be a closed curve contained in a Uy,
¢(I) C Ug, on which a section s, is defined. Assume that the curve bounds a surface S,
also contained in U,. Using Stokes’s theorem and €, = dw, we have

I(c) = exp (—/wa (1)) dt) ~ exp <—/wa> ~ exp (—/dwa> ~ exp <—S/Qa>.

I c S

This shows that in general, I'(c) # id, if © # 0.

Now let G C GL(n;K) be a (not necessarily abelian) matrix group and let P — B be
a G-principal bundle with connection 1-form w. For any by € B, let cg : [0,1] — B
be a l-parameter family of closed curves satisfying cr(0) = c¢r(1) = by and
length(cr) = O(L). W.l.o.g. assume that every cy, is parametrized proportionally to arc-
length, i.e. ||¢r|| = const = O(L). Let ¢;, bound a surface S, C B such that Sy, is
contained in the ball of radius C' - L about by (w.r.t. some metric) where C' is a fixed
constant and area(Sy) = O(L?). Then, for sufficiently small L, we have S;, C U,, where
U, C B is an open neighborhood of by with a section s, : Uy, — P|y, .
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2.6 Parallel transport

Now for an arbitrary fixed L, denoting ¢y, by ¢ and St by .S, we have:

Using Stokes’ theorem, we find for the first integral:

/1 dr wa(e(r)) (é(r)) = / o = / dwq = O (L?) .

(&
To estimate the second integral, we set

T2

dry [ ((aletm) (67)) - (o e(m)) () ) = L+ o,

0

o _

Khefe Ly =%+ [y dro [ dr1 (wa(é(2)) - wa(é(m1)) F wa(é(m1)) - wa(é(2))). Then we

2.1, = J:[ dro dT We (é(Tg)) * Wey (é(Tl)) + J:[ dro dT) We (é(TQ)) F Wa (é(Tl))

0<r <ra<1 0<m<n <1

Hence I is swallowed by the error term O(L?) in [2I5). To determine I,,, we introduce
local coordinates x!,... 2™ around by such that by has the coordinates (0,...,0) and we
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write w,, = Z;‘L:1 Wa,jdr? =: wjdz’. We compute:

1 7

//dT2 dri wa (6(72)) - wa (- c(11))
0

dro dmy Wj (0(72))éj(T2) *WE (C(Tl))ék(Tl)

dro dmy wj wk( (T ))Ck(ﬁ)

o O~ _

/

o) O(L) 0(1) O(L)

|
i

—w‘ (1) - wi(clm)) - (r
+ O/dTQdTl w] j(O)) CJ( 2) k((l)) (1)

1 m

0)-//dT2dT1 éj(TQ) -wk(c(ﬁ)) -ék(T1)+O(L3)

1 m™

- (0 //dT?dTl (r2) - (1) + O (L%) .

For the term I, we thus get:

2-I, = wi(0) wp /dedﬁ - (m) - cf(n)-c"“(rz))+O(L3)
0

<xkdx] 2 dx > +0 (L3)
<da: Adad — da! A dat) + O (L)
/dx] A dx® + O( L3

S

wj, W dzd A dz® + / ([wj, wr] = [wy, wk] (O)dej AdzF +0 (L3)

N~

S O(L)

/[ |
S

_ _/[wjawk] da? A da® + O (LP)
S
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2.7 Gauge transformations

_ —/[wa,wa] +O(L% .
S

We thus have:

I(c) = 1,— /dwa — %/[wa,wa] +0 (L%

S S

= ]ln—/QaJrO(L?’) (L\0).

S

2.7 Gauge transformations

Definition 2.7.1. Let P = B be a G-principal bundle. A diffeomorphism f : P — P
is called an automorphism of P iff

Vge G, YpeP: flp-g)=fp-g.

Aut(P) := {automorphisms of P} is called the automorphism group of P.

Remark 2.7.2
1. Aut(P) C Diff(P) is a subgroup.

2. Any f € P takes the fibers of P to fibers of P. Indeed, if p,p’ € P are in the same
fiber, then there exists a (unique) g € G such that p’ = p-g. Applying f, we find
f@)=f(-g9) = f(p)-g, thus f(p), f(p') are in the same fiber again. This implies
that there is a (unique) smooth map f : B — B making the following diagram

™

3. Aut(P) acts from the right on C(P) := {connection 1-forms on P} by pull-back:
We first check that for any w € C(P) and any f € Aut(P), the pull-back f*w is
again a connection 1-form, i.e. f*w € C(P). Indeed, for any g € G, we have:

Ry (ffw)=(foRy) w=(Ryof)w=f" (R;W) = f* (Adg-1 ow)
= Adg-10(ffw) .

commute:
f

_—

.

f
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2 Bundle theory

For any X € g, we find:

(f*w) (X(p)) = w (df (X(p)) = w (df 0 dLp(X)) = w (dL () (X)) = w (X (f(p)))
=X.
Here we have used (f o Lp)(g) = f(p- 9) = f(p) - 9 = Lyp)(9)-

Finally, the pull-back is indeed a right action, since for any f,g € Aut(P), we have
(fog)w=g"(f"w).

Definition 2.7.3. An automorphism f € Aut(P) with f = idp is called a gauge
transformation of P. The group

G(P) := {gauge transformations on P}

of gauge transformations on P is called the gauge group of P.

Remark 2.7.4. The map Aut(P) — Diff(B), f +— f, is a group homomorphism. Hence

G(P) =ker(f — f) C Aut(P) is a subgroup.

Example 2.7.5. If GG is abelian, then each smooth map g : B — G gives rise to a gauge
transformation by f(p) :=p- g(7(p)). Indeed, we have:

fo-d)=p-g 9(xp)=p-9(x®) -9 =fp) 4.

In the next to last equality, we used that G is abelian. In fact, in the abelian case, all
gauge transformations are of this form (see the general case below).

Remark 2.7.6. If G is non-abelian, this construction does not give a gauge transfor-
mation unless g : B — Z(G).

Remark 2.7.7. Let P — B be a G-principal bundle. Let us consider the associated
bundle P x, G := P x G/ ~, where « denotes the conjugation action of G' on itself,
so that [p,g] ~ [p-h,h™!-g-h]. The fibers of P x, G carry a group structure making
them isomorphic to G. Indeed, the multiplication [p, g] - [p, ¢'] := [p, g- ¢'] is well-defined,
because

[ph,hgh] - [ph,h~'g'h] = [ph,h 'gh-h " g'h] = [ph,h *gd'h] = [p,g9'] .
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2.7 Gauge transformations

If b — [p(b), g(b)] is a smooth section of P x, G, then there is a unique f € G(P) such
that f(p(b)) = p(b) - g(b): For any p’ € P, we find p' = p(b) - h, where b = 7(p) and
h € G is uniquely determined. We then have:
F ) =rf(p®)-h) = fp®) h=pb)- gb) -h=p"h"" g0b)h.
This shows that f is uniquely determined by the section b — [p(b), g(b)]. As to existence,
f@) = f(p(b)-h) :=p' -h~' - g(b) - h defines a gauge transformation.
Conversely, given a gauge transformation f € G(P), then for any p € P there exists a
unique ¢g(p) € G such that f(p) = p- g(p). For p’ = ph we find on the one hand
f@)=p0-9@)=p-h-g@)
and on the other hand
f(p') = f(ph) = f(p)h =p-g(p) - h.

Thus g(p') = h=! - g(p) - h. Therefore 7(p) +— [p, g(p)] is a well-defined smooth section
of P x4 G giving rise to the gauge transformation f.
This yields an isomorphism of groups:

{C>-sections of P x, G} = G(P).

Note that P X, G is a group bundle (with typical fiber the Lie group G) but not a
G-principal bundle. In general, this group bundle is not trivial, but it always has smooth
global sections, e.g. the map 7(p) — [p, e] which corresponds to id € G(P).

Definition 2.7.8. Let b € B be an arbitrary point in the basis of a G-principal bundle
P — B. The kernel of the group homomorphism

g(P)%DIH(Pb) 7f'_>f|Pba

given by
Go(P) :={f € G(P)|flp, =idp} .

is called the reduced gauge group.

The reduced gauge group fits into the following table of groups and homomorphisms
(where the horizontal maps are the natural inclusions):

Gy(P) g(P) Aut(P) — Diff(P)
| |
Diff (P,) Diff(B)
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2 Bundle theory

At least one reason to define the reduced gauge is the following nice property:

Proposition 2.7.9
If B is connected, then the action of the reduced gauge group Gy(P) on the space of
connections C(P) is free.

Proof. Let f € Gy(P) and w € C(P) be a connection 1-form such that f*w = w. Then
we need to show that f = idp. To this end, fix a point p € P and choose a curve
¢ :[0,1] — B such that ¢(0) = b and ¢(1) = w(p). Let ¢: [0,1] — P be the w-horizontal
lift of ¢ with initial condition ¢(1) = p. Now we put ¢ := f oé. Obviously, ¢ is a lift of c.
We show that ¢ is w-horizontal:

For any X € H, we have

w(df(X)) = ffw(X) = w(X) =0.

Thus df (X) € H ) Hence df preserves the horizontal spaces: we have df (Hy') C Hi s
and since f is a diffeomorphism, we have also dim df (H;J) = dim H = dim B, which
yields df (Hy) = H]%’(q). This implies that ¢ is horizontal, because ¢ is.

Now we have: reonr)
~ ~ € P) _
¢(0) = f(2(0)) "= &0),
~—~
eP,

which says that ¢ is a horizontal lift of ¢ with the same initial condition as ¢ and hence
coincides with ¢. We conclude that

flp) = f (1)) =eé1) =e(1) =p,
whence f = idp. O
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3 Applications to Physics

3.1 The Hodge-star operator

Let V be an n-dimensional R-vector space, equipped with a (not necessarily definite)
non-degenerate inner product (-,-). Let e1,...,e, be a generalized orthonormal basis of

V,ie.
0 i FE g
<ei7ej>: . .
€ ==x1 1=

Then there is an inner product on A*V*, naturally induced by the one on V, denoted
by the same symbol (-,-) and defined by:

(w,n) = Z € o€y w (€, e )  m (€, ., e) .
11<...<ig

Lemma 3.1.1
The definition of the inner product on A*V* above does not depend on the choice of
generalized orthonormal basis eq, ..., en,.

Proof. Let fi,..., f, be another generalized orthonormal basis of V', i.e. (f;, f;) = e;--éij,

€; = £1. We write the unique A € Aut(V) such that Ae; = f; in matrix coefficients

with respect to eq,...,e, as f; = Ae; = > " Agej. We then have:

bij - €5 = (fi, f3)
= <A€Z‘,A€j>
= 3 (Abe, Aler)
k=1
= D AF-AL(er, @)
k=1 N

=01 €k

n

_ k k

= ZAi-Aj-ek.
k=1
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3 Applications to Physics

Putting
€1 0 € 0
0 €yn 0 e,
we have € = A-e- A*, hence A* =¢- A~ . ¢, and thus

YA=e- A .. A=c¢.
N~
=1,

We thus find d;¢; = >, A% . A{ - €. Inserting this into the definition of the inner
product on A*V*, we find:

Z 6;1""'eék'w(fiu"'afik)'n(fiu---afik)

11 <...<i
=1 € -...-eik-w(f“,...,f,k)-n(fll,...,f,k)
1 e AT AT AL Al (e e;) (e e)
_k' Z'l PP Zk il PR Zk il PP Zk g1+ Cgp 77 ll""7lk
: P15
J1reees Jieol1seees I
1
=1 g €1 e € w ey ase) n(eg, . se5,)
jl?"vjk
= E €1 e € w ey ane) n(eg, . se5,)
J1<..<Jk
= (w,m). O
Remark 3.1.2. If e;,...,e, is a generalized orthonormal basis of V' and e],... e} is

the dual basis, i.e. €] (e;) = d;5, then {ef A...A efk}i1<...<ik is a generalized orthonormal
basis of A¥V* with

<e* AN...Nel el /\.../\e;‘k>:eil-...-eik.

i1 ik 11

Definition 3.1.3. Let V' be an n-dimensional R-vector space with a fixed orientation.
Let e1,...,e, be a positively oriented generalized orthonormal basis of V. Then
vol :=eJA...Nej € A"V* is called the volume form on V associated with the given
orientation.

74



3.1 The Hodge-star operator

Remark 3.1.4. The volume form defined above does not depend on the choice of ge-
neralized orthonormal basis, hence it is well-defined as an element of A"V™*:
Since A"V* is 1-dimensional, and

(A Aeh el A NE) =€ ey = (1)

the element e]A...Ae} is determined up to sign independently of the choice of generalized
orthonormal basis eq,...,e,. The orientation determines the sign.

Lemma 3.1.5
There exists a unique linear map * : AFV* — A" FV* such that Vw € AFV*,
Vn e A"FV*, we have:

wAn=(*w,n)-vol. (3.1)

Proof. For any o € A"V*, there is a unique a, € R such that ¢ = a, - vol. We may thus
formally write a, = Z;. Now for any fixed w € AFV*, the map
wAnf

ARV SR ,
vol

is linear. Since (-,-) is non-degenerate there is a unique element *w € A"~ FV* satisfying
@A — (xw,n), whence wAn = (xw,n)-vol for all n € A" *V*. The map A*V* — AP=FV*

vol
- . AN . 1
w > *w, is linear, since w — “4f is linear. O

Definition 3.1.6. The map * : A*V* — A" *V* is called the Hodge-star operator
associated with the inner product (-, ).

Remark 3.1.7. The Hodge-star operator * depends on the inner product.
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3 Applications to Physics

Proposition 3.1.8

Let V' be an oriented n-dimensional R-vector space, equipped with a non-degenerate
inner product (-,-) of index p. Then the Hodge-star operator x associated with (-,-)
has the following properties:

1. For a positively oriented generalized orthonormal basis ey, ...,e, of V and the
dual basis €7, ..., ey of V*, we have:
x(ef Ao Nef) =€, .., sign(IJ)- €l A A€, (3.2)

where (IJ) = (i1, ik J1y- -+ Jn—k) @S a permutation of (1,...,n).

2. Yw e AFV*, we have:

xxw = (=R (3.3)

3. Yw,n € A*V*, we have:
(rw, ) = (=1)7 - {w,m) - (3.4)

4. Yw,n € AFV*, we have:
wAxn=nA*w=(—1)P-(w,n)-vol. (3.5)

5. Ywe AFV*, Vi € A" *V*, we have:

wAn=(—1DFC"R) () - vol . (3.6)

Proof.
LI {ir, .. yigs diy -y dn—k} {1, ...,n}, then{e;, ... e, }N{ej, ..., €5, , } #0,s0

that ej A...Aej Aei A...Ae; = 0andthus (x(ej A... A€} ), ef A...Aef ) =0.
k J1 In—k le Zk .71 In—k
Hence x(ef, A...Aej ) =c-e; A...Ne ,where {ji,...,jn—k} is complementary
to {i1,...,it} in {1,...,n} (in other words, IJ = (i1,...,%,J1---,Jn—k) IS &
permutation of (1,...,n)). To determine the constant ¢, we compute:
sign(IJ) -vol = e A...ANej Nej A...Nej |
= <>I< (ef, Ao Nef ) e, /\.../\e;n%> - vol
= c €, ... €, , vol.
2. exercise
3. exercise
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3.1 The Hodge-star operator

4. exercise

5. We compute, using (3.3) and (3.4):

wAn =

Remark 3.1.9. Let us consider the important special case of the Hodge-star operator
% 1 A°V* — A2V* on 2-forms on a 4-dimensional euclidean vector space V, i.e. n = 4,
k=2, p=0. By 33), we have xox = (—1)24=2 = 1. By (34), * is an isometry. Hence
* has eigenvalues +1, and we have the eigenspace decomposition:

ANV =NV A2V,

where AZV* = {w € A?| xw = Fw} is the space of self-dual resp. anti-self-dual

2-forms. Choosing an orthonormal basis ey, ..., eq of V, we have:
x(e] Ney) = ezNey
x(e] Ne3) = —esNe)
x(e] Ney) = eyNes.

Hence

efAestesNel € ALV,
efnesTesnel € ALV*,
efnel ey Ney € ALV*.

These elements are easily seen to be linearly independent: indeed, they are pairwise

orthogonal. We thus have dimA2V* > 3. In fact, dim A?V* = (;) = 6, so that

dim A2 V* = 3, and the elements given above form bases of A3 V*.

Remark 3.1.10. A reversal of orientation turns the volume form into its negative. By
(31, the same holds for the Hodge-star operator. In the special situation above, the
subspaces AZV* are interchanged upon reversal of orientation.
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Remark 3.1.11. If W is another R-vector space with inner product (-,-), then V@ W
carries a natural inner product characterized by

<v & w,v' ® w'> = <v,v'> . <w,w'> .
This induces a natural Hodge-star operator on W-valued forms by

ARV QW S ARV W, s(wew) = (xw) Q.

3.2 Electrodynamics

Throughout this section, let M be an oriented Lorentzian 4-manifold. This manifold is
the mathematical model for spacetime in general relativity. For example, the spacetime
of special relativity is Minkowski space.

Furthermore, let P — M be a U(1)-principal bundle. For any w € C(P) let Q be its
curvature form. The 2-form s*() for some local section s does not depend on the choice
of s. This yields a well-defined 2-form Q € Q2(M;iR). We write Q = iF, F € Q?(M;R).
The Bianchi identity (2.6]) tells us that dF = 0.

Now we introduce local coordinates (¢,z,y,z) on M such that (%, %) < 0 and
<a%, %>, <a%, 8%>’ <%, %> > (0. With respect to these coordinates, we write

F=FE,deNdt+EydyNdt+E,dzNdt+ Bydy Ndz+ Bydz Ndx + B, dx ANdy.

Now we compute dF' in these coordinates:

OE,
Jy

E. E, B, B,
9 dm/\dz/\dt—i—a dy/\dz/\dt—i—(9 clt/\cly/\cl,'<r+—a dx Ndy N\dz
ox oy ot ox

0B, 0B 0B 0
—=dt Ndz ANd —ZLdyAndzNd Zdt Ndx A d
+ En Ndz ANdx + oy yNdz ANdx + ot Ndzx N dy + B

0B, 0B, 0B, OE, O0E, 0B,
_<6x + By + az>-dx/\dy/\dz+<— ay + By + 5 >-dt/\dy/\dz

0E, OE. 0B, 0E, 0E, OB,
<8z ~ o o >'deMdy+<_ ay " ox T 0t>'deMdy'

E E E
dy/\dx/\dt+8 xdz/\da:/\dt%—&dx/\dy/\dt%—hdz/\dy/\dt

b = 0z ox 0z

+

z

dz Ndx A dy

To abbreviate this, we introduce the time dependent vector fields B:= (Bz, By, B;) and
E = (Ey, Ey, E,). In terms of classical electrodynamics, E is the electric field and B
is the magnetic field. Note that the definition of these vector fields depends on the
choice of coordinate system. Then we have:

dF =0 < divB =0 (Gauf’ law) (3.7)
0B ;
and N +rotE =0 (Faraday’s law) . (3.8)
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3.2 Electrodynamics

Hence the first two of the classical Maxwell equations for the electric field E and the mag-
netic field B have shown up as special instances of the Bianchi identity for a connection
on a U(1)-principal bundle. To derive the two remaining (non-homogeneous) Maxwell
equations, we need to introduce an appropriate action functional for the connection w.

Let J € Q3(M;R) and pick a ”back-ground” connection (or reference connection)
wo € C(P). Then for any connection w € C(P), we have that s*(w — wp) for some
local section s is independent of the choice of s and yields a well-defined 1-form
iA = iA(w,wy) € QY(M;iR). We then have dA = F — Fy. With these data, we in-
troduce the Lagrangian

1
L:C(P)— QYM;iR), L(w):= SEARE+ANT.
We say that w is critical for L iff

d
Yopen U @ M,¥n € QY(M;R),supp(n) C U : E‘t—o/ﬁ(wt’") =0,
U

where w;, € C(P) is such that A(wgy,,wo) = A(w,wo) + tn. For the corresponding
curvature, we obtain:

F(win) = F(w) = d(A(wry,w0) = A(w,wo)) =t -dn,

hence F'(wiy,) = F(w) +t-dn. To compute the Euler-Lagrange equations for the La-
grangian £, we write £ = L1 + Lo with £1(w) := 3F A*F and Lo(w) = AA J. Now we
compute:

0 1 d
il —-. = Fat- Fat.
57|, L1 Wen) = 5 = | (F A tedn) Ax(E A+t dn)
1
:5-(d77/\*F+F/\*d77)
= dn A xF,

hence

d
%Lo/ﬁl(”t’”) = /dn/\*F
U

d(nA«F)+nANd(xF)

I
12 S

St eS/n/\d(*F)
U
supp{n) U /nAd(*F) )
M
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Similarly, for Lo, we compute:

d d
a\to/@ @en) = a\to/“”"ﬂ N
U

Hence
w € C(P) is critical for £
& Vne QY(M;R),supp(n) € M : /nA(d*F—i—J):O
M
& dxF+J=0.

We observe that the Lagrangian £ depends on the choice of the background connec-
tion wy but the Euler-Lagrange equation d * F' + J = 0 does not. This is because
replacing wg by some other background connection wq yields for the Lagrangians

L(w) — L(w) = A (Qg,wo) A J.
Hence, after integration, the Lagrangians differ only by a constant.

In the local coordinates as above, we write:
J=o-de NdyNdz —jp-dt Ndy Ndz — jy -dt Ndz Ndx — 3, -dt Ndx Ndy.

As for E and B above, we write the coefficients as a time dependent vector field
J = (Jz» Jy, J=)- In terms of classical electrodynamics, o is the electric charge density
and j is the electric current density.

Now for Minkowski space with the standard coordinates (¢, x,y, z), we compute:

*dt Ndxr = dy Adz *dy N dz = —dt N\ dx
*dt ANdy = dz N\ dx xdz N dx = —dt N dy
*dt ANdz = dx N dy xdx ANdy = —dt Ndz.

Hence for *F, we obtain:

*F' = —FE,dyNdz— Eydz Ndr — E,dx N\dy
+B,dx ANdt + Bydy ANdt — B, dz N\ dt,
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3.2 Electrodynamics

and for d x F', we obtain by a computation similar to the one for dF' above:

. Y5
d(xF) = <—divE)-dx/\dy/\dz—|—(rotB—%) ~dt Ndy N dz
. OE . OE
+ rotB—a— ~dt Ndz Ndx + rotB—a— ~dt Ndz Ady .
ot ot
Yy z

Hence on Minkowski space with the standard coordinates, we have:

w critical for £ < dxF)+J =0
& divE = o (Coulomb’s law) (3.9)
< OE - X
and rotB — o = (Ampére’s law) . (3.10)

From the equation d(xF) + J = 0, we deduce 0 = d(d(xF') + J) = dJ. In standard
coordinates on Minkowski space, we thus have

9o | 9je  Ojy | 0J.
0=dJ = -+ =+ == ~dt Ndx Ndy Nd
<6t+8x+8y+32 pAGy Az
0 -
& 8_§ +divy =0. (continuity equation) (3.11)

To illustrate this equation, let B C R? be compact with smooth boundary. Then we
have:

o = [ w

[to,t1]x B
Stokes / J
A([to,t1]x B)
t1
= /Q(tl) dedydz — /Q(to) dx dydz +//<j,1/> dvolyp dt .
B B to OB

charge of B at time t; charge of B at time tg flux through 0B

(Here v denotes the exterior normal of 9B). Hence the continuity equation yields the
conservation of charge.

How do we feel the electromagnetic field F'?7 A test particle (of mass 1 and charge 1) is

described by its worldline, meaning a timelike smooth curve ¢ : I — M, (¢, ) < 0. In
standard coordinates on Minkowski space we write

o(r) = (t(r),2(7),y(7), 2(7)) = (t(7),&(r)) and '(r) = (t'(7).¢'(7)) .
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The condition for ¢ to be timelike reads (¢, c/) = —(#')? 4 |¢/|> < 0. For the observed
velocity

L, dé _d¢ dr ¢’

L T
we thus have the condition |]? < 1, i.e. the observed velocity of the test particle is less
than the speed of light. The force imposed on the test particle in the electromagnetic
field is iven by the curvature F', so by Newton’s law, we have the following equation of

motion

v :
Ec/ +F(d,-)"=0. (3.12)

Remark 3.2.1. For any timelike smooth curve ¢ satisfying (3.12)), we have:

% <c’, c'> =2 <%c’, c'> =2 <F (c', -)ti ,c’> =2F (c',c’) =0,

i.e. ¢ is parametrized proportionally to eigentime.

Remark 3.2.2. Note that since (3.12)) is a linear ODE of second order, for any p € M
and any X € T, M, there exists a unique maximal solution ¢ to (B12)) satisfying c(to) = p
and d(tg) = X.

W.lo.g. we will henceforth assume ¢ to be parametrized by eigentime, so that
(d,d)y = —(t)?+|¢"|> = —1. This can of course always be achieved by an appropriate
rescaling. We will henceforth also assume that ¢ > 0, which can be achieved by replacing
T by —T.

Recall that the mass m of a test particle with rest mass mg varies with the velocity of
the particle as

0 mo -t/

ol -l

t

mo m
m = =
=12
J1— a0 \/1_

Now let us compute the equation of motion in the standard coordinates on Minkowski
space. For the left hand side of ([3.12]), we have:

. / dr c’
muv=—mg-t -—=mg-—C =1Mm - C :m0-7.

dt dt t/ dt Ot

1For any 1 € Ty M, the vector n* € T, M is defined as the dual to 1 with respect to the (non-degenerate)
inner product, i.e. for any Y € T, M, we have: n(Y) = (n*,Y).
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3.2 Electrodynamics

For the right hand side we have:

g (2 Oy 2
F(d)" = F<t o o Ty T e

= <—t'-(Emd:n—l—Eydy—l—Ezdz)—l—:c'- (Emdt—Bydz—l—Bzdy)
+y - (Eydt—i—Bxdz—Bzdm) + 2 (Ezdt—Bgcdy—i—Byduv)>ti
= (¢ Ey+y -Ey+7 E)-d*+(~t' E,—y - B, +7 By -da
+(-t'-Ey+12 B, -2 B,) -dy* + (' -E.—2'-By+y - By,) - d*

0 L.
- _ *’E>-— (—t’-E B *’).
<c, 3t+ + X C

Hence (B.12)) is equivalent to the equations:

t// + <5/,E’ o
and 7" —t - E+Bx¢d =
Now note that 0 = -4(c,c/) = —2t't" + 2(¢",é") yields t' = (#,¢"). Hence the first

equation follows from the second by scalar multiplication with . We thus found:

v =/ . R
—d+F(d ) =0 & S -E+Bxv=
d

& —(m-0)=E+7xB. (Lorentz force law) (3.13)

Let £ be the Lagrangian for classical electrodynamics as defined above. So far, we only
considered variations of £ with respect to the connection w on the U(1)-principal bundle
P — M. We derived the two inhomogeneous Maxwell equations as the Euler-Lagrange
equations for this variation. But the Lagrangian £ := %F AxF + AN J also depends on
the chosen Riemannian metric, since the Hodge-star operator does.

In general relativity, the metric is to be considered as a dynamical variable, so we should
also study variations of the metric in £ and compute the Euler-Lagrange equations
thereof. So we take another look at the Lagrangian £, varying the metric this time (and
fixing the connection w). First of all, we have:

1 1
Li(w,g) = §F/\>ng = §<F,F>g -volg ,

so we should first compute the derivatives of the two factors separately. To this end, let
g(t) be a smooth 1-parameter family of Riemannian metrics on M such that g(0) = g
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3 Applications to Physics

and %‘ g(t) = h € ®2T*M. Computing in local coordinates, we find

— - (). .0 3
dt‘t:o det g;;(t) - dx” A ... ANdx

= —% (— detgij)_l/2 - det (gi5) - tr((gij . hjk)Z) cdx® AL A da?

dt ‘t:OVOlg ® =

1 -
= 5(—detgij)1/z-g” “hji-dx® AL A da?

1
= §trg(h) - volg .

For the curvature term, we ﬁndﬁ

d
“ . 5 5
dt t:0<F, F>g(t) = dt‘t o <ZF gdz® A dx Z LsdxY A da >

7<d g(t)

il
dt lt=0 g(t)

Fap Fp] (676 670) — 6 (0) - 471(1))

= - FopFys - ( “hiigg Bo _ gov P hij g0

Fop - Fys <d:c°‘ A dz®, dz? A dm6>

N S RSN i

9% hig ¢ 7+ 9% 97 iy 1)

- 1 < — FiRiy — FYRG 4 ORI 4 F‘”FJ(;) - hyj
= FYFish.

Collecting the terms, we find:

d 1 1
Z Liw,g®) = 5 (FUFshy+ (FF)y - 5 - trg(h)
G| ease) = 3 (F*Flshy+ (R0, 5 -rg(n)
1 .
= —5 -T”hij -VOlg7
where T% := —F%Fis — L. (F, ), g¥. The (2,0)-tensor field T := T%-2 5 ® (%J

called the energy mome'ntum tensor (field) of w (or of F).

To see at which point the energy momentum tensor becomes important, we briefly recall
that general relativity deals with yet another action functional of the metric, given by
the geometric Lagrangian or the FEinstein-Hilbert action:

1
Leeom(9) := —3° scalg - volg .
One computes that for a smooth curve g(t) as above with ¢’(0) = h, we have:
% Oscalg(t) = —ricgj hij +div(X) for some vector field X (which is of no further interest
t=

2Here we use the formula: (det A(t))~ _- 2 det A( )) = tr(A(t)"* - %A(t)). -
3Here we use: 0 = gtg“c(t) gry(t) = g* gkj + g* - g1, which implies ¢ = —g% - g;1, - g"*.
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3.2 Electrodynamics

for us, since the divergence term vanishes upon integration anyway). If h € ®27*M has
compact support, then we get for the corresponding action functional:

d 1 i 1.
a‘to/ﬁgeom(g(t)) = —5 . / <—I'1Cg-7 hZ_] —|— 5 . g J hz] . SCalg) . Volg
M

M
UV
-/(rlc’gj—i-g”-scalg> - hyj - volg .

M

DN |

Putting the two action principles together, we find:

g is critical for Lgeom(9) + L1(w, g) + La(w) (3.14)

S g
& VYhe@T*M, supp(h) € M : / (riczj -3 - g" - scaly — T”) - hyj - vol,
M

1
& ricg — 3 scaly-g =T (Einstein field equations) (3.15)

(Here T' := Tj;dz’ ® dx? is the (0,2)-tensor field associated to the (2,0)-tensor field
defined above.)

Next we want to express the energy momentum tensor 71" in terms of the electric field E
and the magnetic field B. On Minkowski space with the standard coordinates we find:

3
(F,F) = =Y FywFu+ Y, FirFa
k=1 1<i<k<3
= — <EE> + <§, §>
= —|E] +|B]
700 _ ROk O % <|§{2 | *{2) g%
= |8+ - (1B~ |E)
= = (‘EP + |B|2> (energy density)
701 _  pOkpl L <|§|2 _ ‘E|2) 01
B g
= FE3Bs — E3By
= <E X E)
1
and similarly 7% = <E X E)Z
7% = <E X E) .
3
The vector field (T, 702 T9) = E x B =: § is called the Poynting vector. Finally,
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3 Applications to Physics

for 1 <4,5 <3, we find:
3
g o | - - g
T FZOFJQ—F;F“CF]k_i' (‘B‘2_|E‘2> .glJ
_ —EiEj —BJ‘BZ' . Z#]
e B - By (B - B ¢ i

— _EE;— BB+ % : ({Ef + {E\Q) -g”

= —O'ij .

The (2,0)-tensor field
o=EoB+Bei-J (B +|E) ¢

is called the Mazwell stress tensor. (Note that the g on the right is the inverse
metric.)

Now we exploit some geometrical properties of the electromagnetic Lagrangian (resp. the
associated action functional) to derive further physical properties of the energy momen-
tum tensor.

Conformal invariance

Let V' be an oriented n-dimensional R-vector space with inner product g = (-,-). We
discuss how the Hodge-star operator * changes, if we rescale the metric g to ¢/ = X2 - g
by a positive factor A > 0:

Ifey, ..., ey is a generalized orthonormal basis of V' for g, then €} := 1 - e1,... €}, := Y€,
is a generalized orthonormal basis of V for ¢’. If e},..., e} is the basis of V* dual to
€1,...,6n, then (e7) = X-ef,...,(ef) := X el is the basis of V* dual to €,... €.

Correspondingly, (ef ) A ... A (e} ) = Arer A LA e;, 1 <ip <..<ip<mn,isa
generalized orthonormal basis for the inner product on A*V* induced by ¢’. Hence this
product itself is given as (-,-) = A72¥. (...}, In particular, we have for the volume forms
induced from the two inner products:

voly = A" - voly .
For any w € A*V*, n € A" *V* we then have:

(w,*n) -voly = wAnD
= (w, *'77>/ - voly/
= A2k, (w,*'n) - A" - volg

A2k {(w,'n) - volg

whence ¥ = A2~ .« In particular, if 2k = n, then %' = x.
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3.2 Electrodynamics

In electrodynamics, we have n = 4, kK = 2, hence the electrodynamical Lagrangian
L is conformally invariant, meaning that for ¢ = X\ - g, g € C°(M), A > 0, we
have L(w,¢') = L(w,g). So let us compute the effect of the conformal invariance on
the energy momentum tensor. To this end, we take the family g(¢) := (1 +1¢) - g of
conformally equivalent metrics, so that g(0) = g, §(0) = g. We then have:

d
0:-—(5 :
dt lt=0 Hw:9)
= 2| Liw.g)
T dtleo Y
1
= =3 -T - ¢(0) - volg
1
1
= —§trg(T) -volg ,
which yields try(7) = 0. Hence by conformal invariance of the electrodynamic La-

grangian, the energy momentum tensor is trace free.

Diffeomorphism invariance

For any diffeomorphism ¢ € Diff(M) with supp(¢) C U € M, we have the pull-back
diagram:

oP-2op

|,

M—2 M

So let us compute the effect of a diffeomorphism ¢ € Diff (M) and its induced bundle
isomorphism @ : ¢* P — P on the action functional for the electrodynamics Lagrangian:

1
/[,1 (P*w,p*g) = 5-/@*17/\*@*990*}7
U

(P F, 0" F) ey - 9 vOlg

(F,F),0¢-p*voly

(F,F), - volg
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3 Applications to Physics

Hence the action functional given by the electrodynamic Lagrangian £ is invariant under
(compactly supported) diffeomorphisms of the basis M. Note that in contrast to the
pointwise conformal invariance, this diffeomorphism invariance is not a pointwise invari-
ance of the Lagrangian density itself, but only of the corresponding action functional.

Now let us compute the effect of diffeomorphism invariance on the energy momentum
tensor. To this end, let X € X(M) be a smooth vector field with compact support
and let ¢ be its flow. Then we study the family ¢, := ¢jg. We first claim that

h = dt vig = Lxg =2V X, where V¥™X is the symmetrization of the covariant

derlvatlve, to be defined in the following justification of the claim:

(Lxg)(Y,Z) = Lx(g(Y,2)) —9g(LxY,Z)—g(Y,LxZ)
= Oxg(V,2) —g([X,Y], Z) — g(Y,[X, Z])
= g(VXY,Z)+g(YVXZ) (ny—VyX,Z)—g(KVXZ—VzX)
= 9(VyX,Z)+g(Y,VzX)

—: 2(VITX)(Y, Z).

Putting the above family g, of metrics into the action functional, we may now compute
the effect of diffeomorphism invariance. (Note that to compute the derivative with re-
spect to t of ®jw, we need to identify the forms ®jw for different ¢, which by construction
live on the different bundles ¢; P. This is most easily done via the local sections s, ; of
;i P given by s := &, L0 54 0 ¢4, where s, is any local section of P.) For the variation
of the electrodynamic Lagrangian £ along the family (®}w, ¢} g), we thus find:

d
0 = — L
dt tO/ 1(w7g)
U
- dt t=0 1 tW, P g
d
= Tl Ly ( twg—i— Elwcptg
1
= 77/\d>x<F—§- T -h-volg,
U U
where 7 is the following 1-form{]
. = . * (b*
" dt ‘tzoso"t 1%

Tl 52
= Lx (spw)

“Here we use the so called Cartan’s magic formula: for any a € Q%(M), X € X(M), we have Lxa =
d(txa) + tx(da). Here tx denotes the insertion of X in the first slot of a form, i.e. 1x8 = 8(X,...).
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3.2 Electrodynamics

Catan—, d (shw) +d(shw(X))
7.f

= i -(xF+df).

We thus have as a consequence of the diffeomorphism invariance:

/T-Vsme-Volg = /(LXF—i—df)/\d*F
M M

= /LXF/\d*F—i—d(f-d*F)
M

Stokes / (tx F,xd x F) - volg .
M
To see what this equations means for the energy momentum tensor 7', we define the
divergence of T' (and similarly of any (2, 0)-tensor) as:

n

div(T) = 3 (Ve T) (€. -) € X(M),

i=1
where eq, ..., e, is a generalized orthonormal basis of TM. The vector field div(T") does
not depend on the choice of orthonormal basis.
With this definition, we find [,, T - V¥™X . vol, = — [, (div(T), X) - vol, by Stokes
theorem, and hence:

VX eX(M),supp(X) € M : —/(div(T),X) - volg :/(LXF, xd x F') - vol,
M M
& VXeTM: —(div(T),X) = (xF,«d*F) (3.16)

If w is critical for £, thus d « F' = J, then —(div(T), X) = (tx F,*J). So in Minkowski
space with standard coordinates, we find for X = % in the left hand side of (3.10)):

—<div(T),%> = (=div(7))°

= -9,
3
_ QTOO_ 9 io
ot pat ozt
1 0/ = -
= —§'§<|E\2+|B|2) —div(S)

For X = % we find in the right hand side of (3.16]):

3 3
<L%F,*J> - <21—E$idxl,gdt—;jz¢dxl> - <E;>
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3 Applications to Physics

Finally, the diffeomorphism invariance of the action functional associated with the elec-
tromagnetic Lagrangian £ results in the equation:

1 Lo
3 5 (‘E| + ‘B| > + div(S‘) = — <E,j> . (Poynting’s theorem)  (3.17)
In case j = 0, we can (similarly to what we did for the Contlnu1ty equation) use Stokes

theorem to get an interpretation of the Poynting vector S. Solet B C R3 be compact
with smooth boundary. Then we have:

1 3
0 = / 5 5 (B[ +|B[") +div(8)
t07t1
Stok 1 - .
ghes / +|B] >(t1)—§./<‘E{2+{B{2> (to)

B ) B )
energy f;‘g time t; energy f;‘g time tg
t1

- / / <§ ;7> (t) dvolyp dt .
to OB

/

energy ﬂux?hrough 0B

(Here v denotes the exterior normal of 9B). This yields an interpretation of the Poynting
vector S as the current density of the energy of the electromagnetic field F'.

Gauge invariance

For w € C(P) and ¢ € G(P), we have: L1(p*w,g) = L1(w,g). Indeed, since G = U(1) is
abelian, for w’ := p*w we have ' = Q, hence F' = F and

1 1
L1 (w/ag) = §F//\*F/: §F/\*F:£1(wag)
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3.3 Yang-Mills fields

3.3 Yang-Mills fields

Let M be a smooth manifold and let £ — M be a smooth K-vector bundle (K = R, C)
with covariant derivative V. Recall that differential forms n € Q¥(M; E) with values in
E are just smooth sections of the vector bundle A¥T*M ® E.

Definition 3.3.1. The exterior derivative dv : QF(M; E) — QF*1(M; E) associated
with V is defined by:

k
d% (Ko, X) = YDV, (n (Koo Kir o Xi))
i=0
+Z(_1)Z+Jn([X17X]]aX07 aX'a a)/(;a an)
1<j

Remark 3.3.2. This exterior derivative does not satisfy d¥ od¥ = 0 in general! Indeed,
on Q%(M; E) =T'(E), we find:

(dv odVo)(X,Y)

Vx(d@Vo(Y)) = Vy(dVo(X)) —dve([X,Y])
= Vx(VYO') — Vy(VXO') — V[X,Y}O'
R(X,Y) o,

where R is the curvature tensor of the covariant derivative V. Indeed, d¥ o dY = 0 iff
the curvature R = 0.

Remark 3.3.3. Let E carry a Riemannian resp. Hermitean metric (-,-). For n €
QF(M; E) and p € QY(M;E), we can build w A € Q**Y(M;E ® E) by writing in
local coordinates:

n = Z Nit,eorsiyy @ dz™ A ... A dx'*

11<...<i

Ho= Z Mt & dat VANPIAN dadt

J1<..<g
nAp = Z Nityorsiy @ Moijp,oojy @ dz™ Ao o AdzR Adz A L AN da .

1< <ig
J1<---<J;
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3 Applications to Physics

Using the metric in E, we can also build a real resp. complex valued k£ + [ form out of n
and p by setting:

mAp) = Z v oosines Bt dz™ A A dZ A dadt A LA datt

i1 <...<ip
J1<..-<Ji

If V is a metric connection with respect to (-, -), then we have:

dln A py = (dVn A p)+ (=) (n A dY ).

Now let M be a Riemannian 4-manifold and let P — M be an SU(N)-principal bundle,
N > 2. On the Lie algebra su(N), we have an Ad-invariant positiv definite symmetric
bilinear form defined by (A, B) — —tr(A - B). Bilinearity and symmetry are fairly
obvious. Let us check that the expression is real valued, i.e. for any A, B € su(N), we
have —tr(A - B) € R:

—tr(A-B) = —tr(A-B)
= —tr(A-B)
— —u((4-B))
= —tr(B'- AY
= —tr(B*- A%)
— —u((-B) (~4))
= —tr(B-A)
—tr(A- B).

To see that (A, B) — —tr(A - B) is positive definite, we compute:

N
—tr(A - A) ZA’ Al = ZA’AZ—Z|A§|220

i,j=1 i,j=1 i,j=1
and obviously, —tr(A-A) =0 iff A=0.
Finally, A : (A, B) — —tr(A - B) is Ad-invariant, since for matrix groups, the adjoint
representation Ad is given by conjugation, and we have:
A(AdgA,AdygB) = —tr(g-A-g'-g-B-g7")

= (g A-B-g )
~tr(A-B-g~' - g)
—tr(A- B)

= MA,B).
By the Ad-invariance, the inner product A on g = su(N) gives a well-defined Riemannian
metric A on the adjoint bundle P xaq g by:

A([p, Al [p, B]) := (A, B) = —tr(A - B).
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3.3 Yang-Mills fields

As explained in Remark 2:3.9] any connection 1-form w € C(P) yields a covariant deriva-
tive V¥ on the vector bundle P X aq g by:

V&Is, 4] == [s,0xs + ad(s*w(X)) - A].

In fact, V¥ is a metric connection with respect to the Riemannian metric A. On the one
hand, we have:

Ox\([s, A],[s,B]) = —0xtr(A-B) = —tr((0xA) - B+ A-0x(B)).
On the other hand, we find:

A(Vikls, Al [s, B]) + A([s, Al, Vk [s, B])
A([s,0x A+ ad(s*w(X)) - A, [s, B]) + A\([s, A], [s,0x B+ ad(s*w(Y)) - B])
—tr((0xA) - B+ [s"w(X),A] - B) —tr(A- (0xB) + A - [s"w(Y), B])
— Ox(—tr(A- B)) — tr([s"w(X), A] - B+ A-[s*w, B])

=tr([s*w(X),A-B])=0

- aX)‘([S’ A]’ [S’B]) .

In the abelian case, the Bianchi identity implies that for any connection w on P, the
curvature 2-form € on the base M is closed. What does the Bianchi identity tell us
in the nonabelian case? To answer this question, let w € C(P) be a connection 1-
form and let Q € Q(M; P xaq g) be its curvature 2-form on M. For any x € M, let
XY, Z € T, M be tangent vectors, and extend them to vector fields around x € M such
that [X,Y], = [X, Z], = [Y, Z], = 0. Further let s : U — P|y be a local section around
x with ds; (T, M) = Hy). Then we have:

(@°Q)_(X,Y,Z) = (dV°Q)(X,Y,2)
= VLY, Z) - VeQX, Z) + VeQ(X,Y)
= Vs (7)Y 2)] - Vs, (SQ)(X, 2)] + Vs, (') (X, V)]
= [5,0x(s"w)(Y,Z) + ad(s*w(X))s"QY, Z)]
—[s,0y (s*w)(X, Z) + ad(s*w(Y))s" QU X, Z)]
+[s,0z(s*w)(X,Y) + ad(s*w(Z))s*"Q(X,Y)]
= [5,ds"QUX,Y,Z)| + [s,ad(w(ds(X))) - Q(ds(Y),ds(2))]
—
—[s,ad(w(ds(Y"))) - Q(ds(X),ds(Z))]
——
+[s,ad(w(ds(2))) - Q(ds(X),ds(Y))]

————
=0

= [s,dQds(X),ds(Y),ds(Z))]

4
==
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Hence the Bianchi identity 4.5 is equivalent to the statement d“Q) = 0. Note that
this is a nonlinear equation in w! With respect to local sections s, : U, — P|y,, this
equation reads d€Q), + [wq, Q] = 0.

Definition 3.3.4. The Yang-Mills Lagrangian L)\ is given as:

Lym :C(P) = QYM;R), w— % AQA Q).

Remark 3.3.5. By Remark[3.3.3], the real valued 4-form A(QA*Q) is build from a scalar
product on the adjoint bundle P X a4 g. By the definition of the Hodge-star operator,
we can likewise write this form as A(Q A xQ) = (Q, Q) - vol, where (-, ) denotes the scalar
product on A2T* M ® (P x pqg) induced from the Riemannian metric on M and the metric
Aon P xaqg. Stated this way, the action functional for the Yang-Mills Lagrangian is
given by the L?-norm square of the curvature 2-form, hence [, Lym(w) = % 123, >0
for any w € C(P).

Remark 3.3.6. The Yang-Mills Lagrangian is gauge invariant, i.e. for any w € C(P),
¢ € G(P), we have Lyn(p*w) = Lym(w). Indeed, for ' := ¢*w and X,Y € TM, we
find:

Y(XY) = [5,9(ds(X),ds(Y))]

[

= [Sa( *Q)( s(X),ds(Y))]
[~ os, () QX,Y)] where s’ :=pos
[s'

s, A 105’(5/) ( )] .
Here g : P — G is the section of the group bundle P x, SU(N) associated with ¢ as

explained in Remark 277 i.e. ¢(p) = p- g(p). We thus have Q' = Ad,-1Q, hence by
the Ad-invariance of the inner product: A(Q2' A *Q') = A(Q A xQ).

Definition 3.3.7. A connection 1-form w € C(P) is called Yang-Mills connection
iff w is critical for the action functional associated with the Lagrangian Ly.
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3.3 Yang-Mills fields

To understand what it means for a connection 1-form to be critical in this sense, let us
compute the Euler-Lagrange equations for this action functional. To this end, let w; =
w + tn be a variation of connection 1-forms, i.e. w,w; € C(P), hence n € Q4 4(P;su(N))
is an Ad-invariant 1-form on P. Then we find for the curvatures

1
Q = dwt+§[wtawt]

= dw + tdn+ %[w,w] + %t([w,n] + [n,w]) + O(t?)

Q + t(dn + [w,m]) + O(?),

whence ; = Q +t-d“qj + O(t?). For any 7 € QY(M;su(N)), supp(n) € M, we thus
have:

d d _ _

— = ——— Q Q

dt‘tO/EYM(wt) dt‘to/tr( 0 A #h)
U

U

tr(Q A *d?f + di A %Q)

N |

Il

|
N =
Q‘\

tr(d“n A Q)

d(tr(q7 A *Q)) + tr(g A d¥ x Q) (V¥ metric)

St():kes B

tr(n A d¥ x Q).

I
S - Sy

We thus found:

w is critical for Ly

& Ve QP xaag)supp(n) € M [ (A ) =0
M

& dYx0=0.

"Here we use that for 1-forms w,n, the bracket [w,n] is symmetric in w,n. Indeed, by definition, we
have for any X,Y:

[w777](X7 Y) = [W(X)777(Y)] - [W(Y)777(X)] = _[W(Y)7W(X)] + [W(X)M(Y)] = [777 w](X7 Y) .
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3 Applications to Physics

Corollary 3.3.8
If the curvature form Q of a connection w € C(P) is (anti-)selfdual, then w is a
Yang-Mills connection.

Proof. In this case d* * Q) = £d“) = 0 by the Bianchi identity. O

Definition 3.3.9. A connection 1-form w with self-dual curvature form € €
Q2(M; P x aq g) is called instanton.

Definition 3.3.10. Let P — M be a GL(n;R)-principal bundle. The 1. Pontrjagin
class pi(P) of P is the de Rham cohomology class

pu(P) = {8—; (#r(@) A (@) — (@A Q))] € Hi (M),

where 0 € Q%(M; P x pq9) is the curvature 2-form on M of any connection w € C(P).
The first Pontrjagin class pi(E) of a real vector bundle E — M is the de Rham
cohomology class p;(P), where P is the frame bundle of P.

Here, the term tr(Q A ) is to be understood in the sense of Remark B.3.3

Remark 3.3.11. The first Pontrjagin class of a real vector bundle has the following
properties, similar to those of the first Chern class for complex vector bundles:

1. p1(F) is independent of the choice of connection w € C(P) on the frame bundle
of E.

2. If the vector bundle F is trivial, then p;(E) = 0.

3. For a smooth map ¢ : N — M and a real vector bundle £ — M, we have
pL(¢"E) = ¢"p1(E).
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3.3 Yang-Mills fields

Remark 3.3.12. On an oriented connected compact 4-manifold M, the integration of
differential forms yields an isomorphism

Using this isomorphism, one often identifies cohomology classes in Hjp (M) with their
evaluation by integration over M. So we will not distinguish in notation between the
first Pontrjagin class pi(FE) of a real vector bundle F — M over a compact, oriented
4-manifold and the real number given by integrating over M a form n € Q*(M) repre-
senting p1(E).

By B35 we know that the action functional for the Yang-Mills Lagrangian is nonnega-
tive. The following Theorem gives a sharp lower bound in terms of the first Pontrjagin
class of the adjoint bundle:

Theorem 3.3.13
Let P — M be an SU(N)-principal bundle on a compact, oriented 4-manifold M.
Then we have for any w € C(P):

/EYM(w) Z 2—]7\1? . pl(P X Ad g) . (3.18)
M

Furthermore, we have:

1. If p1(P xaq 9) <0, then P has no selfdual connections. For any w € C(P), we
have [,; Lym(w) > —% -p1(P X aq 8) with equality iff w is anti-selfdual.

2. If p1(P xaq9) =0, then w € C(P) is (anti-)selfdual iff Q =0, i.e. iff w is flat.

3. If p1(P xaq9) > 0, then P has no anti-selfdual connections. For any w € C(P),
we have [, Lym(w) > % -p1(P Xaq 8) with equality iff w is selfdual.

Proof. By definition, p1(Pxaq9) = # Joy (tr(@)Atr(®) —tr(®AP)), where @ is the cur-
vature of any connection ¢ on the frame bundle of P x 5qg. Given a connection w € C(P),
we obtain a connection ¢ on the frame bundle of P X aq g via the covariant derivative
on P xaq g induced from w (see Example 2333 and Remark Z3.9). The curvature ® of
this particular connection ¢ is related to the curvature  of w as ® = ad o Q.

Now recall that the scalar product A\(A, B) := —tr(A - B) on g = su(N) is Ad-invariant,
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3 Applications to Physics

hence for any g € SU(IV), we have:
A(Adg(A),Adg(B)) — \A, B).

Inserting a curve ¢t — g(t) := exp(tX), X € g = su(N), and differentiating with respect
to t, we obtain:

A(ad(X)(4), B) + (4, ad(X)(B)) =0,

Hence ad(X) is skew symmetric with respect to A and hence trace free as endomorphism
on g. Applying this to the first Pontrjagin class, we observe:

tr(‘i) = tr(ad o Q) =0.

Next we claim that the map X : (A, B) — —tr(ad(A) o ad(B)) defines another positive
definite, Ad-invariant scalar product on the Lie algebra g = su(N). (The bilinear form
(A,B) — tr(ad(A) o ad(B)) is the so called Killing form of g. It can be defined for
any Lie group G, and it is negative definite iff G is semisimple.) It follows from an
elementary fact in representation theory, that the two bilinear forms X, X’ are related by
a constant. For g = su(N), we have: 2N - A = .

With these observations, we obtain for the first Pontrjagin class of the adjoint bundle:

1 T = - —
p1(P xad8) = @‘/(tr(@)/\tr(@)—tr(é/\q)))
M
_ # (tr(ad 0 ©) Atr(ado ) — tr(ad o 2 Aad 0 ©))
M
— —8—711_2/tr(ad09/\ad09>
M
- 2% [u@ng
M
= g—i\g/)\(ﬂ,*@) vol

Now we use the fact, that the L?-norm square (with respect to the scalar product on
A2T*M ® (P xaq g) induced from the Riemannian metric on M and the metric A on
P xaq g) of Q F () is nonnegative, to obtain:

0 < (QF+0,QFxQ),,

b= [2llz: + [+ 2l 7 2(2,+0) 1o
= Q(HQH F (Q,*Q)Lg) (* is an isometry)

— oo [ L) 7 2 (P xaa8)
= YM (W :FQN y4! Ad 9
M
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3.3 Yang-Mills fields

This yields the estimate ([3.I8]). We also see from this computation, that equality holds
iff Q=4x%Q.

Now, if pi(P xaq9) <0, then [, Lyn(w) > —% -p1(P xaq g) > 0. But if w was a
connection with Q = €2, then we would have [, Lym(w) = % p1(Pxaq9) < 0. Hence
such a connection cannot exist. With a similar argument for the case p1(P xaq g) > 0,
we have proved the assertions 1. and 3.

As to assertion 2., let w be a connection with () = £{. We then have:

_ R 8
2 [ Lxute) = [0} = £(240) o = 250 (P xaaw).
M

Hence if p1(P xaq g) = 0, then *Q = £Q iff Q = 0. O
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4 Algebraic Topology

4.1 Homotopy theory

Definition 4.1.1. Let X,Y be topological spaces, and let
C(X,Y):={f: X — Y continuous}.

Then fy, f1 € C(X,Y) are called homotopic, if there exists an f € C(X x I,Y),
I =[0,1], satisfying f(-,0) = fo and f(-,1) = fi. In this case, we write fy ~ f1. The
map f is called a homotopy from fy to fi.

Example 4.1.2. Let X =Y = R” and take Vz € X: fy(z) := z, fi(x) := 0. Then
fo= fiby f(z,t) =t a

Remark 4.1.3. The relation ~ is an equivalence relation on C(X,Y):

x For any fo € C(X,Y), we have fy ~ fy by the constant homotopy f(z,t) := fo(x).
This shows reflexivity.

% As to symmetry, let f be a homotopy from fo to fi. Then f(z,t) := f(x,1 —t) is
a homotopy from fi to fo.

* As to transitivity, let f be a homotopy from fy to f1, and let f be a homotopy
from fi to fo. Then

[ f2t) © o telo,4]
f(x’t)'_{f(x,zt—l) : te[%,Ql

defines a homotopy from fjy to fa.

Example 4.1.4. As in Example [£.1.2] above, take X =Y = R™. Then any two maps
fyg € C(X,Y) are homotopic: as in Example [.1.2] one sees f ~ 0, g ~ 0, where 0 is the
constant map x — 0. By symmetry and transitivity, this implies f ~ g.
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4 Algebraic Topology

Definition 4.1.5. Topological spaces X, Y are called homotopy equivalent iff there
exist f € C(X,Y), g € C(Y, X) such that fog~idy and go f ~idy. In this case, f
and g are called homotopy equivalences and f, g are homotopy iverses of each
other. We denote homotopy equivalence by X ~ Y.

Remark 4.1.6. Homotopy equivalence is an equivalence relation on the class of all
topological spaces.

Definition 4.1.7. A topological space X with X ~ {x} is called contractible.

Example 4.1.8. R" is contractible: Take f : {0} — R", 0 — 0 and g : R” — {0},
z — 0. Then fog=0=~idgn and go f =idjp. Hence f and g are homotopy inverses
of each other.

Remark 4.1.9. A homeomorphism f : X — Y is a homotopy equivalence, but ho-
motopic spaces X, Y are in general not homeomorphic, as the previous example has
shown.

Example 4.1.10. Let X = S" Y =R""! — {0}, and let f: S" — R"*! — {0}, z > ,
and g : R"™ — {0} — 8", y ﬁ Then go f =idgn and fog = g >~ idgn+1_{o by
G(y,t):=(1—-t+ @)y

Definition 4.1.11. Let fy, f1 € C(X,Y) and A C X. Then fy, fi are called homo-
topic relative A iff there is a homotopy f € C(X x [,Y) from fy to fi satisfying:

Vae A, Vtel: f(a,t) = fo(a).

In this case we write fo ~ fi rel. A.
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Remark 4.1.12. As above one easily sees that the relation ~ rel. A is an equivalence
relation on C(X,Y).

Definition 4.1.13. Let X be a topological space and z € X, n € Nj.
(X, ) :={f €C(S",X) | f(NP) =z} / ~rel. {NP}

is called the n'® homotopy group of (X,z). Here NP € S™ is a fixed point (which
we call north pole).

Remark 4.1.14. For n = 0, we have S = {NP, SP} so that
{fec(s® X)| f(NP) =z} =X

by 2/ — (f : NP+ z,SP + 2’). Further, we have f ~ f’ rel. NP iff there exists a
continuous curve g € C(I, X) satisfying g(0) = f(SP), g(1) = f'(SP). Hence we have
mo(X, ) AL {path components of X}.

Remark 4.1.15. 7y(X,x) carries no canonical group structure.
In contrast, for n > 1, m,(X,z) is a group. To define the group structure we first
introduce a different model for the homotopy groups m, (X, z). Namely, let

be the n-dimensional standard cube, and let ¥ : I — S™ be a fixed continuous map
such that 9|, : I" — §" — {NP} is a homeomorphism and (8I") = {N P}.

Then for any f € C(S™, X) with f(NP) = z, we have f o1 € C(I", X) satisfying
(f o) (OI™) = {x}. Conversely, for any g € C(I", X) satisfying ¢g(0I") = {z}, we find
fecC(S™, X) with f(NP) = x such that g = f o . This gives 1 : 1-correspondences:

{feC(S"X) | f(NP)=a} <5 {geC",X)|g(OI") = {z}}
~ rel. {NP} &L ~rel. 917

hence T (X, x) A {geC(I",X)|g(0I")={x}}/ ~rel. OI™.

With this new model for the homotopy groups, we can easily define the multiplication in
(X, x), n > 1, by the concatenation of maps g1, g2 : I" — X, ¢1(9I") = g2(0I™) = {x}.
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4 Algebraic Topology

We write schematically, the coloured lines indicating the
parts mapped to {z}: a | g

g1 * g2

More explicitly, we have:

g1(2t1,t2,...,ty) : i ef0,4]
gg(?tl—l,tg,...,tn) : tle[ ,1]
This induces a map 7, (X, x) X 1, (X, ) = 7, (X, z) by ([91], [92]) — [91] *[g2] := [91 * g2].

This map induces a group structure on the homotopy groups m,(X,z). The neutral
element is represented by the constant map I" — {x} C X.

(g1 % 92)(t1, ... tn) = {

D=

Proposition 4.1.16
For n > 2, the homotopy groups m,(X,z) are abelian.

Proof. We give the proof by schematically performing the following chain of homotopies
from g1 * g2 to g2 * g1 (here again, the coloured parts are those which are mapped to the
base point {x}):

91 92 ~ 92 ~ ~ ~

Remark 4.1.17. In general, 71 (X, z) is not abelian.
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4.1 Homotopy theory

Definition 4.1.18. 7;(X, x) is also called the fundamental group of (X, z).

If mo(X, ) = {z}, i.e. X is path connected, then X is called simply connected iff
71(X, z) = {e} for any and hence all x € X. This means, that any continuous loop in
X starting and ending at x can be deformed continuously to the constant map in x.

Lemma 4.1.19
Let fo, f1 € C(X,Y), let go, g1 € C(Y,Z), and let A C X, B C Y with f;(A) C B,
1=0,1. If fo = f1 rel. A and gy = g1 rel. B, then ggo fo = g1 0 f1 rel. A.

Proof. exercise. O

Corollary 4.1.20
If [fol = [fi] € (X, ), and g € C(X,Y), then for y = g(x), we have

lg0 fo] = [go fi] € mn(Y,y).
Thus, any continuous map g : X — Y induces a group homomorphism

gﬁ:ﬂ'n(Xam) — m(Y,g(z))
[f] = lgofl

Corollary 4.1.21
Let go, g1 € C(X,Y) with gy ~ g1 rel. {x}. Then we have

(QO)jj = (gl)ﬁ (X, ) = T (Y g(w)).
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Remark 4.1.22. Let X,Y,Z be topological spaces, * € X, y € Y, z € Z and
fecC(X)Y), g € C(Y,Z) with f(z) = vy, g(y) = z. Then it follows directly from
the definition that (go f); = gy o fy. It is also clear that (idx )y = id,(x.2)-

Remark 4.1.23. Let (X,z) ~ (Y,y), i.e. there exist f € C(X,Y), g € C(Y,X) with
f(z) =y and ¢g(y) = z such that fog ~ idy rel.{y} and go f ~ idx rel.{z}. For the
induced homomorphisms on homotopy groups, we find:

frogs = (fog)y = (idy); =idr,(vy)

and similarly gy o fy = id,, (x ). Hence f; and gy are both group isomorphisms, inverse
to each other.

In particular, homotopy equivalent spaces have isomorphic homotopy groups. Con-
tractible spaces thus have trivial homotopy groups.

Example 4.1.24. For X = S', one can show that the map
Z—m (S11), ke [zl—mk},

is an isomorphism. Hence 7(S',1) = Z, in particular, S' is not simply connected. By
Example I T.I0, we then also have that R? — {0} ~ S! is not contractible.

Example 4.1.25. For n > 2, we have that S” is
simply connected.

Remark 4.1.26. In general, we have: m;(S™) = {e}
if i < n and m,(S™) = Z. The higher homotopy
groups m,,(S™), m > n are not known in general.

Definition 4.1.27. A fiber bundle with discrete fiber is called a covering.

Example 4.1.28. The map exp : R — S, ¢t — 2™ is a covering; actually, it is a
Z-principal bundle, where the action is defined as (¢, k) — ¢ + k.
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n

——
Similarly the map exp : R” — 7" = S§! x ... x S!, given by

(t1y. .. tn) — (e%itl, .. ,€2ﬂit”) )

is a Z™-principal bundle.

Example 4.1.29. If X is a connected differentiable manifold, then there exists a cov-
ering X — X such that X is simply connected. The covering X — X is unique up to
isomorphism, and is called the universal covering.

Example 4.1.30. The map S' — S', 2z — 2*, is a (k-fold) covering; actually, it is a
Zj-principal bundle.

Lemma 4.1.31 (Lifting Lemma)
Let p : Y — Y be a covering, § € Y, y = p(y) € Y. Let X be a path connected
topological space, x € X, and let f : X —'Y be a continuous map with f(x)=1y.

A lift of f through y is a conlinuous map f: X = Y wih
f(z) =g satisfyingpo f = f.

=

I\
~
F< b

Such a lift exists iff fy(m1(X,x)) C py(m1(Y,7)). X

Proof. If f is such a lift, then we have for any [¢] € 71 (X, z):

Sl =1fod=lpofoc] =m( [Foc] ) em(m (V.9)),

em(Y,79)

whence fi(m(X,z)) C pﬁ(m(f/,gj)).
The other direction is slightly more involved. O
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Corollary 4.1.32 )
If X is simply connected, then any f € C(X,Y) can be lifted to any coveringY — Y.

Example 4.1.33. Using the covering exp : R — S, we can easily determine the
higher homotopy groups of S': Namely, since for n > 2, we have 7,(S,1) = {1},
any u € C(S™,S1), u(NP) = 1, can be lifted to @ : S® — R, 4(NP) = 0. We then have:

[u] = [exp oti] = expy ([4]) = 0 € m,(R,0) = {0},

since R is contractible. Thus the higher homotopy groups of S* are all trivial.

Definition 4.1.34. A sequence of groups and homomorphisms

ooo —p Gz’—l—l fi—+>1 Gz & Gz‘—l fi—_>1 Gi_Q = ooo

is called exact iff Vi: ker(f;) = im(fit1)-

Let p : E — B be a fiber bundle, let ey € E, by = p(eg). Let F := E,, = p~'(bo) be
the fiber of p containing ey. Denote the inclusion of that fiber into the total space E by
t: F < E. Then p o is the constant map to by, whence

0= (pov)y=pgou:m, (F,eq) = m (B, bo) -
In particular, we have im(t4) C ker py.

We now construct the so called boundary homomorphism (or connecting homomor-
phism) 0 : m, (B, by) = mn—1(F, eo):

We start with a map u € C(I", B) representing a homotopy class [u] € m,(B,bo),
ie. u(0I™) = {bp}. Any red line in I"™ as in the picture gets mapped under u to a
closed curve in B, starting and ending in by (we parametrize these lines starting at the
right endpoint in J"~!). Now we lift these closed curves in (B,bg) to curves in (E,ep)
(meaning that the lifted curve starts in ey € Ej, and ends in some point in Eyp). We
may choose the family of lifted curves to depend continuously on the initial points in
I"=1 x {1} of the red lines in I™.
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R

By this lifting procedure, we obtain a map @ € C(I", FE) such that poa = u and
a(J" 1) = {eo}. Now we put d[u] := [i|m-1410y] € C(I""!, E). By construction, we
have (01" 1) = {eg}, since a1~ c Jn—L.

This construction yields the following relation between the homotopy groups of the fiber,
the total space and the base of a fiber bundle:

Theorem 4.1.35
The sequence

cee 2) 7Tn(F, 60) g 7Tn(E, 60) ﬂ Wn(B,b()) 2) ﬂ'n_l(F, 60) ﬂ) s ﬂ 7['1(B,b0) (4.1)

1S exact.

Example 4.1.36. Let us consider the trivial bundle ¥ = B x F. Then in addition to
the bundle projection p : £ — B, we have another projection p : £ — F, and po:. = idp.
We thus find for the induced maps on homotopy groups:

pgoy=(po L)ﬁ = (idF)ﬁ = idr, (Feo) s
which implies that ¢4 is injective and py is surjective. Hence the connecting homomor-

phisms 0 : 7, (B,by) — m,—1(F,eg) need to be trivial, and the long exact sequence [4.]]
degenerates to a series of short exact sequences: for any n > 1, we have:

0 = 7 (Fe0) = mn (B, (bo, €0)) 23 7, (B, bo) — 0.
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4 Algebraic Topology

Now the map py x Py : mn(E, (bo, o)) — mn(B,bo) % m,(F, eg) is surjective, since py and
Py are. It is also injective: take x € m,(E, (bo,e0)) with ps(z) = 0 and py(x) = 0. By
exactness, © = (y) for some y € m,(F, eg). But we also have

0= py(x) = Py(es(y)) = (P o )y(y) = (idp)s(y) = idr,(pre) (W) = ¥,
so that x = ¢4(y) = 14(0) = 0 as well.
Consequently, 7,(B x F, (b, €)) = mn(B,by) x mn(F, €g).

Example 4.1.37. For the Hopf bundle H : 83 — S?, we find:
75 (SY) B 7y (57) By (52) By (1)
={0} ={0}

Hence Hy : m3(5%) — m3(5?) is an isomorphism. Since m3(S%) = Z, we find 73(5?) = Z.
Furthermore, since 73(S%) is generated by [idgs], we have that 73(S?) is generated by
Hy([idgs]) = [H oidgs] = [H]. The Hopf map H : S* — S? thus represents a generator
of m3(S5?).

4.2 Homology theory

Definition 4.2.1. A sequence of homomorphisms of abelian groups

frt1

v = Apq AT A 75 A,

is called a complex (of abelian groups) iff Vk: im(fx) C ker(fr—_1).

Definition 4.2.2. The k"' homology of a complex (A,, f,) is the abelian group

defined by:
ker (fr : Ax = Ap_1)

im (fk+1 2 Ak+1 — Ak)

Hk (A07 f') =

Remark 4.2.3. The k' homology group of a complex (A, f,) measures the failure
(at the k' spot) of (A, f.) to be exact. In particular, (A, f.) is exact iff Vk:
H*(A,, fo) = 0.
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Definition 4.2.4. For any n € Ny, the set

n
Ap = {(tO""’tn) e R | ti Zo’zti N 1}

=0

is called the n'* standard simplex.

R2 R3

(0,0,1)' A

<o,1>[ N 2
A0 (0,1,0)
—+—— R _ _—
0 1 (1,0)
/(170,0)

For a topological space X, a singular n-simplex in X is a map o € C(A,,, X).
For any n € Ny and k € {0,...,n}, the k" side of JA,, is the map

LZ A1 — An,(to,... 7tn—1) — (to,...,tk,ho,tk,... 7tn—1) o

Example 4.2.5.
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Definition 4.2.6. Let R be a commutative ring with unit. Typical relevant examples
are R =7,7/kZ,Q,R,C. Then we set

Cpn(X;R) := {formal (finite) linear combinations with coefficients in R

of singular n-simplices in X'}

= {ZakUk | o € R, 0%, EC(An,X)}

k
= free R-module generated by C (A, X) .

Elements in C,(X; R) are called singular n-chains in X. We define a so called
boundary operator 0, : C,(X; R) — C,—1(X; R) by setting

n

On(0) = (1o of,

k=0

on n-simplices and extending linearly to C,(X; R).

This operator 0 satisfies o0 = 0 : Cp,(X; R) — Cp,_2(X; R). Hence we obtain a complex
of free R-modules

(R xR & Cn(xXR) &

Definition 4.2.7. Moreover we set

Zn(X;R) = ker(0:Cnh(X;R) - Cp_1(X;R)) and
B,(X;R) = im(0:Ch1(X;R) = Cph(X;R)).

Elements in Z,(X; R) are called (singular) n-cycles in X, elements of B, (X;R)
are called (singular) n-boundaries in X.

The n'* homology of the singular chain complex (Cos(X; R), ) is called the n'"' sin-
gular homology of X (with coefficients in R ), and is denoted by:

ker (0 : Cp(X;R) — Cr—1(X; R))
im (0 : Cp41(X; R) — Cr(X;5R))

H,(X;R) =
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Let X, Y be topological spaces and f € C(X,Y’). For

f (Z Oéjaj) =Y a;j(foa;),

we find d o f, = f. o d. This implies that f.(Z,(X;R)) C Z,(Y;R) and
f«(Bn(X;R)) C Bp(Y;R). Hence f, descends to a map on homology, defined as
fe[2]) = [fe(2)]-

Remark 4.2.8. Singular homology has the following properties:

1. Functoriality: For f € C(X,Y) and g € C(Y,Z), we have (go f)« = g« © fi, and

2. Homotopy invariance: For f,g € C(X,Y) with f ~ g, we have f, = g..

n=2~0

3. Coefficients: H,({p}; R) = {ﬁ)} . > 1
oonz

4. Mayer-Vietoris sequence: For a topological space X and open subsets Xg, X7 C X
with Xo U X7 = X, we have the inclusions 7 : X, — X and ¥ : XoNX; — X,,
v =0,1. There exists a natural connecting homomorphism

On: Hy(X;R) — Hp—1 (X0 ﬂXl;R)

such that the following sequence is exact (for simplicity, we drop the coefficient
ring R in the notation):

i
i1
Ty 9

0 1
S Ha(XoN X1) L Hoy(Xo) @ Ho(X0) Y27 go(X) S Hy (Xo N X) = -

Proof. Assertion 1. follows directly from the definitions. To show assertion 3., we observe
that for any n € N, there exists precisely one n-simplex in X = {p}, namely the constant
map A,, — {p}. Hence C,(X; R) = R for any n and

oy, = Z(—l)k op oLy = (Z(—l)k> On—1-
—————

k=0

=0On—1

The singular chain complex thus reads:

(0}« RERE.ERERE
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Hence for n > 1, we have:
ker(1: R — R)

B ker(0: R — R)
im(0: R — R) {0}

Hon(X3 R) = m(l: RS R) {0}.

and Hgn_l(X;R) =

Finally for n = 0, we have:

_ker(1:R—{0})

H i R) = =R
o({p}: ) im(0: R — R)
To prove assertions 2. and 4. requires some more work (to be done in a lecture course
on algebraic topology). U

Remark 4.2.9. Assertions 1. and 2. imply that if X ~ Y, then for any n € N, we have:
Ho(X;R) = Ho(Y; R).

Remark 4.2.10. For X = () and n € N, we have: C,(0;R) = {0} and hence
Hy,(0; R) = {0}

Remark 4.2.11. In case Xo N X3 = 0, ie. X = Xy U X, since
H,(0;R) = {0}, we obtain from the Mayer-Vietoris sequence the isomorphisms

H,(Xo; R) ® Ho(X13R) > Hy(X; R).
Remark 4.2.12. If X is path connected, then Hy(X; R) = R.

Example 4.2.13. Using the Mayer-Vietoris sequence, we inductively compute the sin-
gular homology of the spheres S™

a) For m = 0, we have S = {NP, SP}, so from Remark ZZTT] and assertion 3. of
Remark .28 we have:

0. Py — ) o R :n=0

Hn (S ’R) _Hn({NP}aR)@Hn({SP}vR) - {{0} S > 1
b) For m = 1, we take Xg = D_, X3 = D, as

depicted alongside: Then clearly Dy ~ {p} and

Dy ND_~{p,p} =5°

Since S' is path connected, we have

Ho(SY; R) =2 R.

Since Dy is contractible, we have H, (D+; R) = {0} ~ D-

for n > 1 and Hyo(D+; R) = R.
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For n > 2, the Mayer-Vietoris now reads:

= Hy (Dy;R)® Hy (D_;R) — Hy, (S') — Hyy(DyND_) — -+

=Hn({p1};R)®Hn ({p1 };R)={0} ~H,_1(S%R)={0}

So H,(SY; R) = {0} for n > 2.
For n = 1, we have:

11
Hi(Dy;R)® Hy\(D_; R) = Hi(S") = Ho(Dy N D_; R) (Q) Ho(D4; R) ® Ho(D—; R)

~{0} ~R2? ~R2
11 x
1. ~
Hence H(S"; R) = ker (1 1> = { <—x>

c¢) Similarly, for m > 2, we take Xo = Dy, X; = D_ to
be sufficiently large balls around N P resp. SP € 8™
such that XonN X; ~ §m—1

For k > 2, the Mayer-Vietoris sequence

Hy (D3 R) ® Hy (D_;R) — Hy(S™R) > Hy_y (Do N D_; R)

~{0} M, (™ 1R)
~ Hy1(DyiR) & Hyoi (D R)
~{0}

yields ismomorphisms Hy(S™;R) = Hj 1(S™ 1;R). For k = 0, we have
Hy(S™; R) = R, since S™ is path connected. For k = 1, we have:

1
Hi(Dy;R) @ Hy (D_; R) = Hy (S™; R) — Ho (S R) Q Ho(Dy;R) @ Hy (D_; R)
hd %/_/ v
=~{0} ~R ~R?

whence H;(S™; R) = {0}.
Thus, we have shown:

R? k=0
{0} : otherwise

R ck=0,m

Form > 1. Hy(S"™ R) = {{0} : otherwise

and Hy(S%;R) = {
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Example 4.2.14. For the homology of the complex projective spaces, we find:

H, (CP";R) = (4.2)

R tk=0,2,4,...2n
{0} : otherwise

For n = 1, we have CP! = S? and Hy(S%*R) = H(S*R) = R whereas
H:(S* R) = {0}.

We proceed by the induction step from n — 1 to n. To use the Mayer-Vietoris sequence,
we first define an appropriate cover of CP" as follows. By definition, CP" is the space
of all complex lines in C**!. We depict CP" as in the model from Remark

C

N[/

Now we take two concentric balls By C By C C" 4 e,41, and we set:

Xo = {EGCPH|EQBQ#®}2322{])}
X, = {EE(CPnlgﬂBl:@}’:(CPnil

Then we have XgN X7 = Bg\Bl ~ §2n=1 The Mayer-Vietoris sequence now reads:

Hi (XoNXy;R) — Hi (Xo; R) @ Hi (X1;R) — Hi, (CP™; R) — Hp_1 (XoN X1; R)

~~

2H) (520 1) >, ({p};R)®H,(CP"~L;R) M),y (520-1)

For k # 0,1,2n — 1,2n, we thus obtain isomorphisms Hy(CP™; R) = Hy(CP" ; R).
For k = 0, we have Hy(CP"; R) = R, since CP™ is path connected.

For k = 1, we have (using the induction hypothesis that (Z2]) holds for CP"~1):

1
H, (CP"'; R) — H, (CP™; R) — Hy (S'; R) Q Ho ({p}; R) ® Hy (CP";R)
N——
={o0} =R ~R2

Since the map on the right is injective, we find H;(CP™; R) = {0}.
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For k = 2n — 1, the Mayer-Vietoris sequence reads:

Hon 1({p}; R) ® Hyp_1(CP" Y R) = Hy,_1(CP™; R) — Hy,_2(S*" ' R)

/ /

={0} ={o}
whence Ha,—1(CP"; R) = {0}.

Finally, for k = 2n, the Mayer-Vietoris sequence reads:

Hy, ({p}; R) ® Hap, (CPn—l;R) —  Hsp, (CP™; R) — Hop_y (SQn—l;R)

/

—{0} =R
—  Hon—1({p}) ® Hap—1 (CP"; R)
={0}

whence Hs,(CP™;R) = R.

Example 4.2.15. Connected sums provide yet another example of the usefulness of
the Mayer-Vietoris sequence: Let M be a (topological) manifold, x € M, and put
M := M\{z}. Let X, be any ball containing = and define X; := M. Then Xy ~ {z}
and Xy N X7 ~ S"~!. The Mayer-Vietoris sequence reads:

Hy, (S" 4 R) — Hy ({}; R) ® Hy (M R) — Hy(M;R) — Hj—1 (S" " R)
For k ¢ {0,1,n — 1,n}, we thus have:
(0} — H, (M R) — Hy(M;R) — {0}

Hence, in these cases, the inclusion M < M induces isomorphisms H, k(M ;R) =
Hi(M;R).

Now let N be another (topological) manifold. Then we can build the connected sum
M$N by removing a small ball in M and N respectively and glueing the remaining parts
of M and N along the boundaries of those balls (by filling in a small neck):
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We take Xy := M, X; := N, so that Xg N X; = §* ! x (0,1) ~ S"~1. Then the
Mayer-Vieroris sequence reads:

Hy, (S"% R) — Hy <M; R) @ Hy, <N; R) — Hy, (M{N; R) — Hy,_, (S"'; R)
Again, for k ¢ {0,1,n—1,n}, we obtain isomorphisms Hy(M )@ Hi(N) = Hi,(M{N; R).

This holds especially for n =4, k = 2.

Example 4.2.16. Here is an example how homology groups are used to solve geome-
trical problems. We prove the following statement:
There exists no continuous map

f:B"H:{xGR"HHm\gl}%S”
satisfying flgn = idgn.
Namely, if there was such an f, then composing f with the inclusion ¢ : S < B"+! we

would have f ot = idgn, hence on homomology groups, (f o ¢)* = idg, (sn.z). But since
B"*1 is contractible, we have in the n'® homology:

H, (S";2) > H, (B"*;2) I3 H, (S 2)

=7 ~{0} =7

The identity of Z would thus factorize through {0}, which is impossible.

Now let us briefly discuss the relation between the homotopy and homology groups.

Definition 4.2.17. Fix a generator [¢] € H,(S";Z) = Z. Let X be a path con-
nected topological space, and let x € X. Assume [f] € m,(X,z), represented by
f € C(S™,X). Then the Hurewicz homomorphism h : m,(X,z) — H,(X;Z) is
defined by A ([f]) := f([c])-

Remark 4.2.18. By the homotopy invariance of homology, the element f,([c]) only
depends on the homotopy class of f, but not on the particular map f. So the map h is
well-defined. To show that it is indeed a group homomorphism requires some more work
(to be done in a lecture course on algebraic topology).
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Remark 4.2.19. For any group G, we denote by [G, G] the normal subgroup generated
by all elements of the form ghg~'h™!, where g, h € G. Then G*°' := G/[G,(G] is an
abelian group called the abelianization of G.

If G is abelian, then we have [G, G] = {e}, so G#°! = G.

Example 4.2.20. For G = Z * Z := {a"'b"" .. . a*nbln | k;, 1; € Z}, we have G2Pl = 72,

Remark 4.2.21. Since the homology groups are abelian, the Hurewicz homo-
morphism A vanishes on [m,(X,x), 7, (X, x)]. Hence it descends to a map
h: (X, )P — H,(X;7Z) also called the Hurewicz homomorphism.

Theorem 4.2.22 (Hurewicz)

Let X be a path connected topological space, v € X. Let mp(X,z) = {0} for
k=1,...,m—1. Then the Hurewicz homomorphism h : m,(X,z)**" — H,.(X;7Z)
is an isomorphism.

Remark 4.2.23. If m > 2, then 7,,(X, ) is abelian, so 7,,(X,z)?*® can be replaced
by 7, (X, x) in Hurewicz’s theorem.

Example 4.2.24. Using Hurewicz’ theorem, we can determine the lower homotopy
groups of spheres S™ from the homology groups. The spheres 5", n > 2, are simply
connected. From Hurewicz’s theorem, we deduce

Z, n =2

T (8", NP) = Hy (S Z) = {{0} otherwise

For n = 2, we are done with Hurewicz’ theorem, but for n > 3, we can apply it once
again to obtain
Z, n=3

m3 (S", NP) = H3 (5", Z) = {{0} otherwise

Proceeding inductively in this way, we obtain for m < n, n > 2:

Z : =
T (S, NP) = H,, (S"; 7)) = men
{0} 1<m<n
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In Hurewicz’ theorem, the vanishing of the lower homotopy groups is indeed necessary:
we have already seen that 7m3(S%; NP) = Z, whereas H3(S5%;Z) = {0}.

Remark 4.2.25. Let M and N be simply connected topological manifolds of dimen-
sion > 2. Then the connected sum MHN is also simply connected.

4.3 Orientations and the fundamental class

Throughout this section, let R be a ring with unit.
For any » > 0 and x € R", n > 2, the map
. r
Fp,:S" ' = B(a,r) := B(z,r)\{z}, yrx+ 3Y
is a homotopy equivalence. Hence we have an isomorphism

(For), : Hoo1 (S"5R) = Hy 4 <B(x,7°);R> .

For different radii 0 < ry < r9, the diagram

Fac,r * .
grt B )
B(ﬁ,?"z)

commutes up to homotopy (here ¢y, , : B(x,71) < B(x,79) denotes the natural inclu-

sion). Hence (Fyry)x = (tryro)s © (Frry)s-

Definition 4.3.1. Let U,V C R™ be open sets. A homeomorphism ® : U — V is
called R-orientation preserving at x € U, iff for every o > 0 with B(®(z),0) C V
and every r > 0 with ®(B(xz,r)) C B(®(x), ), the following diagram commutes:

Ho (B, )i R) Boent g, (B@®(), 0 R)

(Fa:,'r)* /m’

Hn_l(Sn_l; R)

commutes.

The homeomorphism ® : U — V is called R-orientation preserving, iff it is R-
orientation preserving at every point z € U.
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Example 4.3.2. We can illustrate the definition for n =2 and R = Z:

Example 4.3.3. For R = 7Z /27, the identity is the only automorphism of R. Therefore,
the diagram above commutes always. Hence any homeomorphism is Z/2Z-orientation
preserving.

Remark 4.3.4. To ensure that a homeomorphism ® : U — V is R-orientation preserv-
ing, it suffices to show the commutativity of the above diagram for one r and one o.
This is because for 0 < p; < g2 and 0 < r; < ro as above, we obtain the following
diagram:

. (Pl By
H,_ 1 (B(x,m);R) Bler)

Hyy <B(‘I)($)7 92);3)
(Lrl,rz)*T T(LPLPQ)*

H, (B(a:,rﬂ;R) Wb H, <B((I)(£C),Q1);R)

H,_1 (S"'R)

By construction, the upper square commutes for all r{, ro, 01, 02. So the lower triangle

commutes iff the whole diagram commutes.

Definition 4.3.5. An atlas A C {homeomorphisms ®: M DU — V C R"} of a
topological n-manifold M is called R-oriented iff all the maps ®o¥~! for &, U e A
are R-orientation preserving.

A maximal R-oriented atlas of M is called an R-orientation of M.
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A pair (M, A) consisting of a topological manifold together with an R-orientation is
called an R-oriented manifold. A topological manifold M is called R-orientable
iff M admits an R-orientation.

Remark 4.3.6. Any topological manifold is Z/2Z-orientable.

Remark 4.3.7. For a differentiable manifold, orientability in the differentiable sense
coincides with Z-orientability.

Remark 4.3.8. Let M be a topological manifold, and x € M. On the set K, of all
charts of M sending x € M to 0 € R", we have the equivalence relation

® ~ U&= ®o P! is R-orientation preserving at 0.

We set M, := K,/ ~ and M := Lenr M,. Equipped with an appropriate topology, M
is a covering of M, called the R-orientation covering.

If M is simply connected, we know from Lemma [L.T.3T] that the identity idy; : M — M
can be lifted to a continuous section idy; : M — M of the R-orientation covering. Any
such lift provides us with an R-orientation of M, since it attaches to each point x € M
charts such that the corresponding chart changes are R-orientation preserving.

Hence a simply connected topological manifold M is R-orientable for any ring R.

Remark 4.3.9. Let X be a topological manifold, n > 2, and z € M. Take
Xo =M = M\{z} and take X; to be an open neighborhood B of z homeomorphic
to a ball in R™. Then Xy N X; = B ~ S"~ 1. The Mayer-Vietoris sequence then reads:
H, (N R) @ Ha({p}; R) = Ha(M; R) & Hyoy (Bi R) = Hyoy (VG R) @ ot (10} R)
—_——— —_———
={0} ={0}

It is a fact that for a compact, connected, R-oriented manifold M, the boundary homo-
morphism d : H,(M;R) — H, 1(B;R) is an isomorphism (this is an instance of
Poincaré duality).

Further, an R-orientation provides us with an isomorphism

Hn_1<B; R) S H, 1 (SN R)=R.

Hence we obtain a distinguished isomorphism H,,(M; R) SR
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Definition 4.3.10. Let M be a compact, connected, R-oriented topological n-mani-
fold. The (R)-fundamental class [M] of M is the homology class [M] € H,(M;R)
that is mapped to 1 € R under the isomorphism just constructed.

Remark 4.3.11. If M admits a triangulation 7', then the formal sum over the simplices
of T, appropriately parametrized, represents the fundamental class [M] € H,,(M; R).

Definition 4.3.12. Let X be a topological space and M an R-oriented, connected,
compact topological k-manifold. A class a € H(X; R) is represented by a continu-
ous map f: M — X iff a = f.([M]).

Example 4.3.13
1. Let X = M. Then the identity map f = idjs represents the fundamental class

a = [X], since fu([M]) = (ida)«([M]) = [M] = [X].

2. Let X be path connected and M = {p}. Then any map f : {p} — X represents a

generator of Hyo(X; R) = R.

.Let X = CP” and M = CP"!. Let v : M — X be the inclusion of CP"~!
into CP™ as in Example 2141 From the Mayer-Vietoris sequence, we know
that ¢ induces isomorphisms ¢, : Ho,—o(M) — Ha,—2(X). Hence ¢ represents
a generator of Ha,_o(CP™). Similarly, by restricting to the lower dimensional
complex projective spaces, the maps ¢ : CP¥ «— CP™ represent generators of
Ho,(CP™) for k=1,...,n.

. Let X = 8% x 52, and let (py,p2) € X. Then the inclusion maps

fi:8P =X, we (z,p)

fo:8% = X, x = (p1,)
represent the two generators of Ho(S? x S?; R) = R2. From Example E2.15] we
know that the inclusion map ¢ : (5% x S?)\{—(p1,p2)} =: (8% x §?) — §2 x §?

induces an isomorphism ¢, : Ho((S? x S?)") — H3(S? x S§%). To use the Mayer-
Vietoris sequence, we cover S% x S? by X := 52 x (S?\{—(p2)}) ~ S? x {p2} and
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X1 = (SA\{=(p2)}) x S? ~ {p1} x 5% so that Xo N X1 = D? x D? ~ {(p1,p2)}.
The Mayer-Vietoris sequence then reads:

Hs({(p1,p2)}) — Hao(S*x{p2}) ®Ha ({p1}xS?) = Hz((SZXSQ)') — Hi({(p1,p2)}) -
=~{0} {0}

The inclusion thus yields an isomorphism
H2 (52 X {pg}) b HQ({pl} X 52) —>H2 (52 X 52)

T (f1)x,(f2)«)
115(?) & Ha(5?)

Hence the inclusions f;, fo represent the two generators of Hy(S? x S?) as claimed.

Especially, we are now able to identify the homology of S? x S? as:

R : k=0,4
Hp (S*x S*R) = R? : k=2
{0} k=13

Remark 4.3.14. Let a € Hi(X; R) be represented by a continuous map f : M — X.
Let W for a compact, connected, R-oriented topological (k+ 1)-manifold with OW = M.
Further assume that there exists a continuous extension F': W — X of f, i.e. Flaw = f.
Then a =0 € Hi(X; R).

M F

/—\

This follows from the fact (which is another instance of Poincaré duality) that the in-
clusion ¢ : M < W of the boundary represents 0 € Hy(W;R). Using this fact, we
have:

a= f([M]) = (Fou).([M]) = F.(u:([M])) =0.
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5.1 The intersection form

Throughout this section, let X be a compact, oriented, simply connected, differentiable
4-manifold. Our (preliminary) goal is to find ”good” representants for elements in

Hy(X:7).

Step 1: Hurewicz’s theorem
Since X is simply connected, the Hurewicz homomorphism 7o(X,z) — Ha(X;7Z) is
an isomorphism. Hence any o € Ho(X;Z) can be represented by a continuous map

f:58% = X.

Step 2: Smoothing

Using standard mollifiers, we can deform a continuous map f : 2 — X into a smooth
map: there exists a homotopy F : S? x I — X with F(-,0) = f such that for any ¢ > 0,
the map f; := F(-,t) : S — X is smooth. Hence any o € Ho(X;Z) can be represented
by a smooth map f: 5% — X.

Step 3: Transversality

Due to work of R. Thom, any continuous map f : S> — X can be deformed into an
immersion with finitely many double points z; = f(p;) = f(¢:) € X, i =1,...,N,
(with p; # ¢; € S and x; # x; for i # j), such that

df (T,,5%) @ df (1,,5%) = Tp,, X,

i.e. f is transversal.

125



5 4-dimensional Manifolds

Step4: Remowal of double points

For a double point z; € X, p; # ¢ € S? with f(p;) = f(¢;) = ;, choose a coordi-
nate system ® : U(z;) — R* = C? on a neighbourhood of z; such that ®(x;) = 0,
fU(p;) =R? x {0} and f(U(q:)) = {0} x R? for some small neighbourhoods U (p;)
of p; and U(g;) of ¢;. Now take S3 ¢ R* = C? and connect the two Hopf circles
Sti:=(C x {0})N S3 and Si := ({0} x C)N S? by a cylinder Z.

Now remove f~1(®71(B(0,1) C R*)) from S? and replace it by attaching a handle as
depicted schematically below. Then we may extend the map f : S? — X to the handle
by connecting the values of f on the boundary circles of the removed discs along the
colored lines in the above picture. This yields a map f : S24T? — X, which coincides
with f outside the modified regions.

f
—

52472

Proceeding in this way for all the double points z;, i = 1,..., N, we obtain a new map
f:9 — X from a surface S with N handles.

To show that this procedure does not change the homology
class represented by f, we fill up the surface S to get
a handle body W with &W = S. Removing from W
a (sufficiently small) ball B3(0,0), we obtain a compact
3-manifold W := W\B?3(0, ¢) with OW = S21152 (o) (Here
S52(p) denotes the sphere with the orientation reversed).

Outside the area where we performed the modifications of the surface, we may extend
f resp. ftoamap F: W — X simply by setting F constant along the radial lines.
To extend F on the full (solid) handle, we just repeat the attaching procedure for a
family of circles S3(r), » > 0. By construction, we may now extend f along the depicted
coloured lines on the (solid) handle such that the nerve of the handle gets mapped under
the new map F': W — X to the point x;.

This way, we obtain a map F : W — X such that Flay = f U f:52%x8 — X. Thus
fu f represents 0 € Ho(X;7Z), which yields that f and f represent the same homology
class in Ho(X;Z).
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Remark 5.1.1. As a consequence from the above discussion, we note that we can repre-
sent any « € Hy(X;Z) by an embedding f : S — X, where S is a compact, connected,
oriented surface.

Definition 5.1.2. Let X be as above, and let S1,59 C X be embedded, compact,
oriented surfaces with transversal (or empty) intersection. Then we set

S1- 8 = Z e(p),

PpES1NSy

where €(p) := +1, if the orientation of 7,51 @ 1,52 = T, X induced from the orienta-
tions of S; and Ss coincides with the one on X, and (p) := —1 otherwise.
The intersection form of X is the map

QleQ(X;Z)XHQ(X;Z)—)Z, ([51]7[52])'—)52’52.

Remark 5.1.3. The intersection form is well-defined, bilinear and symmetric.

Example 5.1.4. For X = S? x S2, we have Hy(X; Z) = Z? with generators [S1], [Sa],
where Sy := 5% x {p2} and Sy := {p1} x S%. We then have S; - Sy = 1 for the standard
orientation of S? and the product orientation of X. To compute the self-intersections
of [S1] (and similarly of [S2]), we need another representant of [S;] intersecting S;
transversally (this is of course not the case for S itself). Note that [S1] = [S]], where
Sy = 5% x {p,} (and similarly for S;). This is because for any p, € S2, we have
Sy x {pa} U S% x {ph} = 9(S? x ¢), where ¢ : I — S? is a curve joining py and p.
Now for ps # ph, we have S1 N S] = 0, so Qx([S1],[S1]) = S1-S] = 0 and simi-
larly Qx([S2],[S2]) = 0. Hence in the basis [S1], [S2], the intersection form (g2, g2 is

represented by the matrix <(1) (1)>

Example 5.1.5. For X = CP? we have Ho(X;Z) = 7 with generator [CP!]. To
compute the self-intersection of the generator, we need two transversal representants. So
let j1,jo : C? < C3? be two distinct complex linear embeddings. They induce two distinct
embeddings ¢1,t5 : CP! < CP? by £+ j, (), v = 0,1. Since they are homotopic, they
induce the same homology class in Ho(CP?;Z). Denoting CP} := 1,(CP') c CP?,
v = 0,1, we have j;(C?) N j2(C?) = £y C C? and hence CPl N CP;y = {{o}. This yields
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£(fp) = 1 with respect to the natural orientations on CP! and CP? induced by the
complex structure. Hence Qcpz = (1).

Remark 5.1.6. Let X be as above and denote by X the same manifold with the ori-
entation reversed. Then we have Qg = —Qx.

Remark 5.1.7. For X = X 14X, we have isomorphisms

Hy(X1;Z) & Hy(X2; Z
HQ(Xl;Z) @HQ )(27 H2 X; Z)

Taking representants of homology classes completely inside the parts M; and Mo,
we see that the intersections of the two parts are completely independent. Hence

QRx = Qx, & Qx,, which is represented by the matrix (Qé(l QO )
Xo

Example 5.1.8. For X := kCP24ICP? := CP%.-- ﬁCPQJﬁCPQﬁ -+ - fCP2, we have

k l

where 1 occurs k times and —1 occurs [ times.

Remark 5.1.9. Since X is simply connected, we have Ho(X;7Z) = Z" for some r € N,
so we do not need to worry about torsion elements.
In general, if Q : H x H — 7Z is a symmetric bilinear form on a finitely generated
Z-module H, then for a torsion element a € H (i.e. 3k € N with k- a = 0), we have for
any b € H:

k-Q(a,b) =Q(k-a,b) =Q(0,b) =0

Hence Q(a,b) = 0 for all b and @ descends to a symmetric bilinear form
H /Torsion x H/Torsion — Z.

Then one would consider this form on H/Torsion, a free Z-module of finite rank.
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5.1 The intersection form

Definition 5.1.10. A symmetric bilinear form @ on a free Z-module H = 7 is called
unimodular iff there exists a basis eq,...,e, of H such that

det (Q(ei, €5)) — £ (5.1)

7:7]':17---77"

Remark 5.1.11. If @ is a unimodular, then the equation (5.]) holds for any basis of H:

If f1,..., fr is another basis, we may write (f1,..., fr) = (e1,...,e,)-A with a matrix A €

CGL(r;Z). Then 1 = det(A - A™') = det(A)-det(A™'), hence det(A) = det(A~1) = +1.
S—— —

EZ €7
Then we have Q(e;,€;)i; = AL Q( fr, i)k - A, so

det (Q(es, e5)i;) = det A2 -det (Q(f, f1) 1.1 -
=1

Remark 5.1.12. For X as above, the intersection form @) x is unimodular (this is yet
another instance of Poincaré duality).

Definition 5.1.13. The rank of a symmetric bilinear form @Q on a free Z-module H
is defined as the dimension of H and is denoted by rk(Q).
Over R or Q, the form @ can be diagonalized, and the signature of () is defined as

sign(Q) := # positive eigenvalues of ) — # negative eigenvalues of Q.

The signature of a 4-manifold X as above is defined as the signature of its intersection
form: sign(X) := sign(Qx).

A symmetric bilinear form @) on a free Z-module H is called positive/negative
definite iff Q(a,a) = 0 for all a« € H, and indefinite otherwise.

We say that ) has even parity (or the parity of Q is even) it Va € H: Q(a,a) € 27Z,
and that @ has odd parity (or the parity of Q) is odd) otherwise.

Remark 5.1.14. A symmetric bilinear form @ on a free Z-module H = Z" has even
parity iff for any basis of H, all diagonal elements in the matrix representation of H are
even. Indeed, if () has even parity and ey, ..., e, is a basis of H, then Q(e;,e;) € 2Z.
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5 4-dimensional Manifolds

Conversely, let (Qij)i j=1,..r = (Q(€i,€;))ij=1,.. be the matrix representation of Q with
Qi; € 2Z. Then for any H > a =Y, _, a; - €;, a; € Z, we find, using the symmetry of Q:

ai
Qla,a) = (a1 ... a) (Qij)-
ar
T
= Y Qijaa,
i,j=1
T
= 2) Qiaiaj+ Y Qi a;
1<J i=1 €27
—_——
€27
e 27Z.
Example 5.1.15 0 1
1. The intersection form QQg24 g2 = < 1 O> has even parity, is indefinite and has

signature 0.

2. The intersection form Qcpz = (1) has odd parity, is positive definite and has
signature 1.

10 ) has odd parity, is indefinite and has

3. The intersection form Q. P24TP? = <0 O

signature 0.

Note that over @Q or R the matrices <(1) (1)> and <1

0 _ 1> are equivalent, but over 7Z,

they are not, since they have different parity.

Remark 5.1.16. Let QQ1, Q2 be symmetric bilinear forms on a free Z-module H. Then
we have:

1. The form 1 ® Q2 is unimodular iff @1 and ()2 are unimodular.

2. For the signature, we have: sign(Qi @ Q2) = sign(Q1) + sign(Q2). Hence for
4-manifolds X; and X5 as above, we have:

sign (X;16X5) = sign(X;) + sign(Xs) . (5.2)

3. The form Q1 ® Q9 is positive (resp. negative) definite iff both @1 and Q9 are
positive (resp. negative) definite.

130



5.1 The intersection form

Example 5.1.17. Here is another important example: The symmetric bilinear form FEg
on Z8, represented by the matrix

(5.3)

O O OO O N
O O OIS = N =
O O OoOlF N = O
OO HIN = OO

_— O O NNE O oo
O = N OO O OO
DO O RO O OO

0 00O

o O N OO o oo

has even parity, is positive definite and sign(FEg) =

Example 5.1.18. On the complex projective space CP", represented as the base space
of the U(1)-principal bundle §?"+! — CP™ = U(1)\S?"*! with the U(1)-action given by
scalar multiplication in C"!, we introduce the so called homogeneous coordinates:
the equivalence class of (2, ..., z,) € S in CP" is denoted by [z : ... : 2,].

The K3 surface (or Kummer surface) is the complex surface

K3::{[zozzlzz2:z3]GCP3|z§—|—z%—|—z§+z§:0}.

Since the defining equation is homogeneous, it is compatible with the equivalence relation
z~ 2 e z2=X2, A€ U(1). Hence K3 is a well-defined compact complex hypersurface
in CP3. The Lefschetz hyperplane theorem from algebraic geometry tells us that
the inclusion ¢ : K3 < CP? induces isomorphisms ¢; : m(K3,p) — m,(CP3,p) = {0}
for k = 0,1. Thus K3 is simply connected. One can show:

Qus = (—Fs) @ (~Es) & (? é) ® (‘f é) o (‘1) é) |

Hence Qi3 is indefinite, has even parity and sign(K3) = —16.

Remark 5.1.19. Let X be a simply connected, compact, oriented differentiable 4-
manifold. Then @ x has even parity iff X has a Sspin structure. In this case, one
can define spinors and the Dirac operator on X.

Theorem 5.1.20 (Rochlin)
Let X be a simply connected, compact, oriented differentiable 4-manifold and suppose
that Qx has even parity. Then we have:

sign(X) € 16 - Z.
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5 4-dimensional Manifolds

Sketch of proof. Let D be the Dirac operator on the spinor bundle of X,

D= < DO 4 DO > The Atiyah-Singer index theorem tells us that

1
ind(D") := dim(ker D) — dim(ker D7) = 3 sign(X),

hence sign(X) € 8Z.
In dimension 4 the spinor bundle has a quaternionic structure J, i.e. a C-antilinear
automorphism satisfying J? = —id. The Dirac operator D commutes with .J so that
both ker DT and ker D~ are vector spaces with a quaternionic structure and therefore
even-dimensional. Hence

ind(D") = dim(ker D) — dim(ker D7) € 27,

/

~~

€2N €2N
so that sign(X) = 8 -ind(D™) € 16Z. O

Example 5.1.21. Summarizing, we have the following list of examples:

X sign(X) | Parity
sS4 0 even
52 x §2 0 even
CP? 1 odd
kCP2*ICP2? | k—1 odd
K3 —16 even

5.2 Classification results

Throughout this section, let X be a simply connected, compact, oriented topological
4-manifold, and let @@ be a symmetric bilinear form on a Z-module H of finite rank.

Remark 5.2.1. The intersection form ()x of a simply connected, compact, oriented
(topological) 4-manifold can be defined in purely homological terms, without using a
differentiable structure (this is another use of Poincaré duality). Further, the intersection
form is homotopy invariant, i.e. if X; ~ Xs, then Qx, = Qx,. That the converse also
holds true, is a rather deep result from topology:

Theorem 5.2.2 (Whitehead)
Let X1, X5 be simply connected, compact, oriented topological 4-manifolds. Then

X1~ X iff Qx, = Qx,-
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Theorem 5.2.3 (Freedman, 1982)

For any unimodular symmetric bilinear form @ on a Z-module H of finite rank,
there exists a simply connected, compact, oriented topological 4-manifold X such that
Qx =Q.

Further, if Q has even parity, then X is uniquely determined up to homeomorphism
by Q. If Q has odd parity, then there are up to homeomorphism exactly two simply
connected, compact, oriented topological 4-manifolds X with Qx = Q.

Sketch of existence proof.

a) For a diffeomorphism f : D? x St — f(D? x S') C 83, the self linking number

is defined as:
lk(f, f) = lk(f(ov ')7 f(17 )) :

&
)

N1

AOOCOC

lk(flafl)zo f2,f2

Ik(f3, f3) =4

For two such maps f1, fo with disjoint images, the linking number is defined as:

1k(f17 f2) = 1k(f1(07 ')7 f2(07 )) :
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5 4-dimensional Manifolds

For r such maps fi,..., f, with pairwise disjoint images, the linking matrix is
the matrix (lk(fz, fj))i,jzl,...,r-
b) Now for a given @, choose fi, ..., f. : D? x St — 83 as in a) with pairwise disjoint

images and linking matrix ). Then we start the construction of X with the closed
4-ball B* with 0B* = S3. We may glue r copies of D?> x D? along the boundary
component D? x S to B* by the diffeomorphisms

fi:D?x 0 (D% — f; (D* x SY) € §° = 0 (BY)
to get a new compact 4-manifold X; with boundary.

c) By a careful study of 0X;, one can find a contractible 4-manifold Xs with
0Xs =2 0X;. Then we may glue X; and X5 along their boundary to get the
simply connected, compact, oriented 4-manifold X := X; Upx, Xo. Since Xj is
contractible, the topology of X is determined by the topology of X7, and one may
check that indeed Qx = Q. O

Example 5.2.4. To illustrate the dependence of the 4-manifolds X thus constructed,
we consider two different knots with self linking number 1. The above construction thus

realizes X = (1):
e

Taking the unknot, one obtains Taking the trefoil knot yields a topological
the expected 4-manifold X = CP2. 4-manifold X =: «CP?, called fake CP?.

Remark 5.2.5. Let Mg, be the simply connected compact 4-manifold with intersection
form Q = Eg. Then sign(Mg,) = 8. If Mg, were a differentiable 4-manifold, this
would contradict Rochlin’s theorem Hence Mg, is a simply connected, compact,
topological 4-manifold which cannot carry a differentiable structure.

Remark 5.2.6. Such a phenomen cannot happen in dimensions lower than 4: for k < 3,
any topological k-manifold carries a differentiable structure which is unique up to dif-
feomorphism.
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Theorem 5.2.7 (Serre)

Let Q1, Q2 be indefinite, unimodular symmetric bilinear forms on free Z-modules of
finite rank. Then we have:

Q1=Q2 & 1k(Q1) =rk(Q2)
sign(Q1) = sign(Q2)
Q1 and Q2 have the same parity .

The isomorphism types of forms @ of odd parity are represented by the matrices

1

sed 1
Ak7l - )

=1l

where k,l > 1. For these forms, we have rk(Qy;) = k + 1 and sign(Qr;) =k — .
The isomorphism types of forms @ of even parity are represented by

0 1
even ,__

What about definite intersection forms? So far, the classification is unknown. We will
see in a minute, what’s the problem in showing this: there are huge numbers of them!

Lemma 5.2.8

Let Q be a unimodular, symmetric bilinear form on a free Z-module of finite rank.
Then there exists an element w € H such that for any x € H, we have:

Q(z,z) = Q(w,z) (mod?2).

Proof. Since @ is unimodular, for any linear map f : H — Z, there exists a unique
y € H such that

Vee H: f(z)=Q(y,x).
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5 4-dimensional Manifolds

Indeed, writing f, z and @ with respect to a basis of H, we obtain the equation

x1 x1

(frooonf) | 2 ] =) - ((Qig)ig=1,) -

Ly Ly

The form @ is unimodular, so det(Q)) = %1, thus the matrix (Q; ;)i j=1,..r is invertible
and we can solve for y.
Now let H := H/27Z. Then @ induces a symmetric bilinear form Q : H x H — 7Z/27,
and we still have: for any linear map f : H — Z/27Z, there exists a unique Y5 € H such
that for any £ € H, we have:

&) =0Q (yp¢€)
Now we take f: H — 727, f(€) := Q(&,€).
it takes values in Z/2Z:

Although f is quadratic, it is linear, since

FE+n) =QE+nE+n) =Q(&E +2Q(&,n) +Q(n,m) = (&) + f(n).
——

—0€Z/27.

Hence there is a unique y5 € H such that for any ¢ € H, we have Q(yf,é) = Q(&9).
Taking w € H with w = yj € H, we are done. O

Definition 5.2.9. An element w € H as in Lemma [5.2.8] is called a characteristic
element for Q.

In case H = Hy(X;Z) for a simply connected, compact, oriented topological
4-manifold X, a surface S C X representing a characteristic element for QQx is called
a characteristic surface.

Lemma 5.2.10 (van der Blij)
Let Q) be a unimodular, symmetric bilinear form on a free Z-module H of finite rank,
and let w € H be a characteristic element. Then sign(Q) = Q(w,w) (mod8).

Remark 5.2.11. If @ has even parity, then w = 0 is a characteristic element. Hence
by Lemma [5.2.10], we have sign(Q) = 0 (mod 8). Compared to Rochlin’s theorem [5.1.20]
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this statement is weaker in that it only shows divisibility by 8. But it also applies to
topological instead of only differentiable manifolds X.

For a positive definite form rank and signature coincide. Thus if () is positive definite
and of even parity, then the rank of () must be divisible by 8.

Remark 5.2.12. To estimate the difficulty in classifying definite symmetric bilinear
forms @, we set

Qgr = {isomorphism classes of unimodular positive definite bilinear forms
of even parity and rank 8k }.

From number theory, we have the Minkowski-Siegel mass formula:
4k—1

1 B
E - _9l-8k 2% ”B
| Jo
055 #Aut(Q) (4k)! ol

where Bj is the i Bernoulli number defined by:

x T > . B .
ex—1:1_§_z(_1)j' I 2

j=1

Corollary 5.2.13

Since #Aut(Q) > 1 for any Q, we obtain from the Minkowski-Segal formula the
following lower bound on the number of isomorphism types of rank 8k unimodular,
positive definite symmetric bilinear forms:

4k—1
4 Qg > 2178k Bok IT 5
8k = (4k)! g
j=1
=:agk

Just to indicate the difficulty, we list the first few values of the lower bound:

k #Og}. ask classification

1 1 1079.1,43. .. Eg

2 2 10718.2,48... | Es® Eg, T'is
3 24 107 .7,93... | Niemeyer, 1968
4 | unknown | 107-4,03... unknown

5 | unknown | 10%1-4,39... unknown
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5 4-dimensional Manifolds

5.3 Donaldson’s theorem

Theorem 5.3.1 (Donaldson, 1983)
Let X be a simply connected, compact, oriented differentiable 4-manifold with positive
definite intersection form Qx. Then, over Z,

1 0 0
0
Qx =
SO
0 0 1

Corollary 5.3.2
The topological 4-manifold X with Qx = Eg @& Fg does not admit a differentiable
structure.

Example 5.3.3 (Exotic R*). Using Corollary [5.3.2 one can construct an ezotic
differentiable structure on R?, i.e. a differentiable manifold M such that M is home-
omorphic but not diffeomorphic to the standard R*. Such a manifold is called exotic
R* or fake R*.

We start with the Kummer surface K3 with Qg3 = —2E3® 3 <0 1>. Now let Mg, be

10
the simply connected, compact, oriented topological 4-manifold with intersection form
Qwmp, = Egs. By Freedman’s theorem (.23 K3 is homeomorphic to

M tMpyd (S? x %) £ (S? x S?) 4 (S? x S?) =: 2Mp, 43 (S* x §?) .

K3

2ME8 3(52><52)
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5.3 Donaldson’s theorem

Hence there exists a topologically embedded 3-sphere > C K3, which cuts K3 into pieces
X1, Xo with common boundary ¥ and X; & QMES — B*, whereas X, = 3(52 X SQ) — B%,
Now we take on X5 the differentiable structure such that the embedding Xo <— K3 is a
smooth map. We need the following facts from the theory of Casson:

1. There exists a smooth embedding j : X5 < 3(S5?% x S2). We let
Vi=3(S% x 5%)\j(X2\4),

where A := B'\B* and B’ > B* is some larger ball.

\4
———

J(X2)

2. We then have by the Seifert-vanKampen theorem that m1(V) = {0} and by the
Mayer-Vietoris sequence that Ho(V;Z) = {0}. Further, V has exactly one topo-
logical end, homeomorphic to (0,00) x S3. The second fact we need is that this
implies V ~ B* ~ R%.

We note that K := 3(5% x $?)\j(X2) is a compact subset of V. Suppose there were a
smoothly embeded 3-sphere S C V surrounding K.

53

Then the smooth embedding X < K3 maps ¥’ to a smoothly embedded 3-sphere in K 3.
Cutting K3 along X', we obtain a smooth 4-manifold Y with boundary >’. Now glueing
a 4-ball B* into Y along Y = ¥/ 2gifeo S° = OB*, we obtain a smooth 4-manifold Z
without boundary.
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5 4-dimensional Manifolds

Z/

Y

By construction, Z 1is simply connected, compact and has intersection form
Qz = FEs @ Eg. This contradicts the Corollary to the theorem of Donaldson E.3.11
Hence there exists no smoothly embedded 3-sphere S surrounding the compact set
K Cc V = R%. Since in R* with the standard differentiable structure, any compact set is
contained in a large ball and hence is surrounded by a smoothly embedded 3-sphere —
namely the boundary of that ball - we conclude that the V ~ R* cannot be diffeomorphic
to the standard R*.

Sketch of proof of Donaldson’s theorem.

a) Let X be a simply connected, compact, oriented differentiable 4-manifold with
positive definte intersection form @ x. Choose an SU(2)-principal bundle P — X
such that for co(P) € Hig(X;R), we have [y ca(P) = —1[ Denote by

AP) = {wel(P)| Qe Q% (M;P xpqsu(2)}
= {SU(2)-instantons}
the space of connections with self-dual curvature forms and by
M= A(P)/G(P)
the moduli space of gauge equivalence classes of SU(2)-instantons. Analyzing

the moduli space M, one finds:

a) The moduli space M is a 5-dimensional manifold with finitely many singular
points pi,...,pn € M.

b) Any of the singular points p; has a neighborhood U,, homeomorphic to a cone
on CP2.

c) For every divergent sequence |wg|reny € M, there is a subsequence such that
the following holds: there exists a point € M such that for any r > 0, we
have

= 12 k—oo
/ {Qk‘ dvol — 0.

X—Br(z)

IThis is possible, since SU(2)-principal bundles are classified up to isomorphism by their first Pontrjagin
class p1 and since Hir(X;R) = R. In particular, the bundle P is unique up to ismomorphism.
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5.3 Donaldson’s theorem

Note that since all the connections wy, have self-dual curvatures €, we have:

/|Qk|2dvol - /(\Qg|2+\s‘z,;|2)dvol

hence /|Qk|2dvol = —8712/02(13)

X X

Hence the curvatures ), concentrate at the point x.

b) Now let M€ := M U X with the topology such that a sequence [wi|ren as above
converges to the concentration point x of their curvatures.

Cutting boundaries of the singular points py, ..., p, from M€ we obtain a compact
5-manifold M’ with boundary

OM =X UCP?U...UCP?UCP2Ll...LUCP2

ny n_

and of course ny — n_ = n is the total number of singular points in M.
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5 4-dimensional Manifolds

For the signature of the boundary components, we obtain:
0 = sign (8./\/(') = sign (7) + n4sign ((CPQ) — n_sign <@) ,
hence sign(X) =n4y —n_.
c) Next we note that the intersection form @Qx can be realized on the de Rham

cohomology HgR(X; 7) by:

Qx (o], [8)) = /a AB.
X

Here the de Rham cohomology with integer coefficients is defined as:

H3(X;7Z) := < [a] € H3R(X;R) |V € Zasmooth(X;Z) : /a Y/
(&

d) For any a € H3;(X;Z) with Qx (o, ) = 1, choose a U(1)-principal bundle L — X
with ¢1(L) = a. IJ Now for the total Chern class of L & L*, we obtain:

1 +ca (LB L") +ce(Lp L") = e(Lp L")

/

€HJR(XR)  cp2 (XE)  eHL (XR)
= ¢(L)-e(L")
= (1+01(L)-(1—01(L))
= 1- cl(L)2
= 1+c(P).

2The set of smooth singular cycles Z3 smooth (X; Z) is the submodule of Z3(X;Z) spanned by smooth
maps o : Ay — X. Here “smooth” means that o is smooth in the interior of A2 and all deriva-
tives extend continuously to Az. One can show that the embedding of the smooth singular chains
resp. cycles as a subcomplex of the singular chain complex (Ce(X;Z),d) induces an isomorphism on
homology. Smoothness is needed here in order that the integral fc «a makes sense.

3This is possible, since U(1)-principal bundles are classified up to isomorphism by their first Chern
class c1. In particular, the bundle L is unique up to isomorphism.
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5.3 Donaldson’s theorem

Hence any such o € HC%R(X;Z) yields a splitting P = L & L*. Any self-dual
connection on L induces a so called reducible self-dual connection on P. Such
connections have more symmetries than generic self-dual connections and hence
result in the singular points p1,...,p,. This establishes a 1 : 1-correspondence

{singular points in M} LN {pairs +a € H3,(X;Z) with Qx(a,a) =1} .
Now any such « € HgR(X; Z) with Q x(a, ) =1 yields a decomposition

HgR(XﬂZ) gZ@QBOCJ_? IBI—)Q)((,B,(X)(X@ (5_QX(5704)@) .

Now let n(Q) be the function counting the singular points in the moduli space M
of a 4-manifold with intersection form @, i.e.

n(Q) 1= 54 {o € Hin(X;Z) | Qasa) = 1} .

Then since rk(Q) = rk(Q|,+) + 1, we have n(Q) = n(Q|,.) + 1. By induction over
m = rk(Q), we find

n(Q) < 1k(Q)

1 0 0

with equality iff Q) =2
-
0 0 1

Applying this inequality to the positive definite intersection form @Qx of the 4-
manifold X, we obtain:

rk(Qx) =sign(Qx) =ny —n_ <ny+n_=n(Qx) <rk(Qx).
Hence n_ =0 and rk(Qx) = n(Qx) so that

1 0 ... 0
0
Qx =
-
0 0 1
as claimed. O

From the theorems of Freedman, Serre and Donaldson, we conclude that any simply
connected, compact, orientable differentiable 4-manifold X is homeomorphic to either

mCP?*nCP? or +m Mg fin (S? x S?) (for appropriate m,n € N). Note that not all
topological manifolds in this list carry differentiable structures: e.g. 1Mp#0(S? x S?)
does not, but —2Mp, 13 (5% xS?) = K3 does. It is still an open question, which manifolds

of that list precisely carry differentiable structures.
Another open problem closely related to this question is the following:
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5 4-dimensional Manifolds

Conjecture 5.3.4 %—Conjecture)
If X is a simply connected, compact, oriented, differentiable 4-manifold with intersection
form Qx of even parity, then we have:

11
b(X) > - sign(X)

If the 4-conjecture holds true, then for X = mMp,in(S?x S?), we have by(X) = 8m+2n
and sign(X) = 8m, so that

11
8m+2n2§-8m:11m & 2n > 3m.

Now for m = —2k, we obtain n > —3k, so that for [ = n — 3k, we find:

Mpgt. . $Mpg 5% x 574, 457 x §21.5% x §%4.. 457 x §? = kK 34l(5? x S§?).

—2k 3k l=n—3k

A partial result to the above conjecture has been obtained by Furuta using Seiberg-
Witten theory, which is a U(1) gauge theory (with U(1) gauge fields coupled to Spin®
spinor fields):

Theorem 5.3.5 (Furuta)
If X is a simply connected, compact, oriented, differentiable 4-manifold with intersec-
tion form Qx of even parity, then we have:

1
ba(X) > §0 -sign(X) + 2.
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%, Hodge-star operator,

Ly, left translation by g,

R, right translation by g,

T, energy momentum tensor, [84]

[M], fundamental class, 123

[-,:], Lie bracket, [

A(P), selfdual connections on P, [[40]

Adg, adjoint representation, 8

Aut(P), automorphisms of P,

CP™ !, complex projective space,

C(P), connection 1-forms on P,

C(X,Y), continuous maps X — Y, [I01]

G(P), gauge group of P, [T

Gp(P), reduced gauge group, [T1]

L, Lagrangian, [79]

Lvywm, Yang-Mills Lagrangian,

A3 V*, (anti-)self-dual 2-forms, [T7]

M, moduli space of selfdual connections,
JE)

M€, compactified moduli space, T41]

O(n), orthogonal group, [II

Pf, Pfaffian,

L(n;C), special linear group,

SL(n;R), special linear group,

wn

wn

O(n), special orthogonal group,
SU(n), special unitary group,
U(n), unitary group,

X(M), smooth vector fields on M, [
oy, left conjugation by g,

div, divergence,

g, Lie algebra of G,

inv, inversion map, 7l

(u A vy, form in Q*(M;R),

M (E,m, B), pull-back bundle, 34]

V™ symmetrized covariant derivative,
B8

o(n), Lie algebra of O(n),

0, boundary operator,

rk, rank,

o, Maxwell stress tensor,

sign, signature,

~, homotopic, 101l

~, homotopy equivalent,

sl(n; C), Lie algebra of SL(n;C), [

sl(n;R), Lie algebra of SL(n;R), [

so(n), Lie algebra of SO(n), [

su(n), Lie algebra of SU(n), [

u(n), Lie algebra of U(n), [

o, electric charge density,

oc, complexification of o, [I]

0st, standard representation, [I0]

B, magnetic field, [78]

E, electric field, [78]

S, Poynting vector,

j, electric current density,

vol, volume form, [74]

c1, first Chern class,

¢y, characteristic class,

Cns nt! Chern class,

d¥, exterior derivative on Q*(M; E),

fo = f1rel. A,

p1(P), first Pontrjagin class of P,

abelian, (]
abelianization, [I19]
action, 21]

adjoint representation, [
Ampere’s law, BTl
anti-self-dual, [77
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Bernoulli number, [I37]
Betti number,
Bianchi identity, [51]
boundary
singular,
boundary homomorphism, [I0§]
boundary operator,

Casson theory,
center,
chain

singular,
characteristic class,
characteristic element,
characteristic surface,
Chern class

first ~,

nth ~,
coboundary condition, 4Tl
cocycle conditions, 40l

cohomology
de Rham ~,
complex, [10]

complex projective space,
homology,
complex representation, [7, T4
complexification, [T
conformal invariance
of electrodynamics Lagrangian, [R7]
conformally invariant, [87]
conjugation,
connected sum, 117
connecting homomorphism
homology, T13]
connection 1-form, 44
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conservation of charge, 1]
continuity equation, [RT
contractible,
Coulomb’s law, BT
covering,
universal ~, 107
critical
for electrodynamics action func-
tional,
for geometric and electrodynamics
action functional,
for Yang-Mills action functional,
curvature form, 49
cycle
singular,

de Rham cohomology,
density
electric charge ~, [B(]
electric current ~, R0
energy current,
diffeomorphism invariance
of electromagnetics action func-
tional,
direct sum representation, [I0l
discrete group,
double point,
dual representation, [IT]

effective,
eigentime,
Einstein field equations,
Einstein-Hilbert action, [84]
electric charge density,
electric current density,
electric field, [78]
energy current density, [90]
energy density,
energy momentum tensor, [84]
trace free, [87]
equation of motion,
equivalence
homotopy ~,
of representations, [14]



equivalent
homotopy ~,
representations, [12] [14]
Euler class,
Euler-Lagrange equations
for Lagrangian of electrodynamics,
(Yl
exact,
exact sequence
homotopy groups of fiber bundle,
LOY|
exotic R%,
x differentiable structure,
exponential
path ordered ~,
exponential map,
extension of the structure group,

faithful, @
fake CP?, [[34]
fake R?,
Faraday’s law, [[§]
fiber bundle, BT]
field
electric ~, [{8
magnetic ~, [78]
frame bundle,
orthonormal ~, [30]
free,
fundamental class, 23]
fundamental group,
fundamental vector field,

Gauly’ law, [T§

gauge group, [70l

gauge transformation, [70

group
Lie ~, [
orthogonal ~, [I]
reduced gauge ~ of P, 1
special linear ~,
special orthogonal ~,
special unitary ~,
structure ~ of P,

Index

unitary ~,
automorphism ~ of P,
discrete ~,

gauge ~ of P, [0

Hilberts 5" problem,
Hodge-star operator,
homogeneous coordinates, [[31]
homology

of a complex, I10]

singular ~,
homomorphism of Lie groups,
homotopic, I0T]

relative A,
homotopy, 10T

~ equivalence,

~ equivalent,

~ group, 103
~ inverse, [102]
Hopf

~ bundle,
~ circle,
~ fibration,
~ link,
~ map, 24]
horizontal
lift,
subspace,
Hurewicz homomorphism, [[18] [T9

indefinite,
instanton,
intersection form,
invariance

conformal ~, [87]

diffeomorphism ~, [
invariant

multilinear symmetric function, B3]
inversion map, 7l
isomorphic

fiber bundles,

Lie groups,
isomorphism of Lie groups,

Jacobi identity, 4
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K3 surface, [[31]
Killing form,
Kummer surface, [31]

Lagrangian

electrodynamics ~, [[9]
conformal invariance, [R7

geometric ~, [’
Yang-Mills ~,

law
Ampere’s ~, [R1]
Coulomb’s ~, Bl
Faraday’s ~, [(9]
Gauly’ ~, [[9
Lorentz force ~, [83]
Newton’s ~,

Lefschetz hyperplane theorem, 131

left action, 21]
left translation,
left-invariant,
lemma
van der Blij,
Lie algebra, [
abelian ~, (]
Lie algebra of G,
Lie bracket, @

Lie group, [l
Lie subalgebra,
lift, B9, [107]

horizontal ~,
linking matrix, [[34]
linking number, [[33]
local trivialization, [31]
Lorentz force law, B3]

magnetic field, [(§]
Maxwell equations,
Maxwell stress tensor,

Minkowski-Siegel mass formula, [137]

moduli space, 140l

negative definite, 129]
Newton’s law,

orbit, 23]
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orbit space, 23]
orthogonal group, [II

parallel transport,
parity,

even, (129

odd,
path-ordered exponential,
Pauli matrices,
Pfaffian,
Pontrjagin class

first ~,
positive definite,
Poynting vector,
Poynting’s theorem,
principal bundle,
properly discontinuous,
pull-back bundle, [34]

rank, [32]

real representation, [7], 4]
reduced gauge group, [T1]
reducible, 143

reduction to the structure group,

representation, [7], 141
adjoint ~, [§

antisymmetric tensor product ~, [I0

complexification, [IT]
direct sum ~, 10
dual ~, [I1]

of a Lie algebra, [14]
of a Lie group, [1
standard ~, [I0]

symmetric tensor product ~, [1]

tensor product ~, [0

trivial ~, 8 4]

wedge product ~, [0l
represented, [123]
right action,
right translation,
R-orientable,
R-orientation,
R-orientation covering,
R-orientation preserving,



R-oriented, [122]
R-oriented manifold, [22]

section, B3]
Seiberg-Witten theory, [44]
self linking number, [[33]
self-dual, [T7]
side

of a simplex, I11]
signature,
simplex

singular ~ in X, [[T1]

standard ~, [[T1]
simply connected,
singular n-boundary,
singular n-chain,
singular n-cycle,
singular n-simplex, 11
singular homology,
special linear group,
special orthogonal group,
special unitary group,
standard representations, [I0]
standard simplex, [[11]
structure equations, 49|
structure group,
symmetric tensor product representa-

tion, [I1]

tensor product representation, [I0]
theorem
Atiyah-Singer,
Freedman, 133
Hurewicz, 119
Rochlin, T37]
Serre,
Whitehead,
total space, B1]
transition functions, [0 47
transitive, 22]
transversal,
trivial
action, 21
fiber bundle,

representation, 8], [14]
typical fiber, 311

unimodular,
unit sphere bundle, B3]
unitary group,
universal covering, 107

vector bundle,
volume form, [74]

wedge product representation, [I0]

Yang-Mills connection,
Yang-Mills Lagrangian,

Index
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