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Preface

These are the lecture notes of an introductory course on differential geometry that I
gave in 2013. It introduces the mathematical concepts necessary to describe and ana-
lyze curved spaces of arbitrary dimension. Important concepts are manifolds, vector
fields, semi-Riemannian metrics, curvature, geodesics, Jacobi fields and much more.
The focus is on Riemannian geometry but, as we move along, we also treat more gen-
eral semi-Riemannian geometry such as Lorentzian geometry which is central for ap-
plications in General Relativity. We also make a connection to classical geometry when
we apply differential geometry to derive the laws of trigonometry on spaces of constant
curvature. One fundamental result of Riemannian geometry that we show towards the
end of the course is the Bonnet-Myers theorem. It roughly states that the larger the
curvature of a space, the smaller the space itself must be.
The lecture course did not require prior attendance of a course on elementary differ-
ential geometry treating curves and surfaces but such a course would certainly help to
develop the right intuition.
It is my pleasure to thank all those who helped to improve the manuscript by sugges-
tions, corrections or by work on the LATEX code. My particular thanks go to Andrea
Röser who wrote the first version in German language and created many pictures in
wonderful quality, to Volker Branding who translated the manuscript into English and
to Ramona Ziese who improved the layout.

Potsdam, August 2013

Christian Bär
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1 Manifolds

1.1 Topological manifolds

Reminder. Let M be a set. A system of sets O ⊂ P(M) is called a topology on M , if

1. ∅, M ∈ O.

2. If Ui ∈ O, i ∈ I , then also
⋃

i∈I
Ui ∈ O.

3. If U1, U2 ∈ O, then also U1 ∩ U2 ∈ O.

The pair (M,O) is called a topological space. By abuse of language, one often speaks
about the topological space M rather than (M,O).

A subset U ⊂ M is called open in M if U ∈ O. A subset A ⊂ M is called closed if
M \ A ∈ O.

If both (M,OM ) and (N,ON ) are topological spaces, a map f : M → N is called con-

tinuous, if
f−1(V ) ∈ OM for all V ∈ ON .

In other words, preimages of open sets have to be open. A bijective continuous map
f : M → N , whose inverse f−1 is also continuous, is called a homeomorphism. Two
topological spaces M and N are called homeomorphic, if there exists a homeomor-
phism between them.

Definition 1.1.2. Let M be a topological space with topology O. Then M is called an
n-dimensional topological manifold, if the following holds:

1. M is Hausdorff, that is, for all p, q ∈ M with p 6= q there exist open sets U, V ⊂
M with p ∈ U , q ∈ V and U ∩ V = ∅.

b
b

p
q

M

U
V
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1 Manifolds

2. The topology ofM has a countable basis, that is, there exists a countable subset
B ⊂ O, such that for every U ∈ O there are Bi ∈ B, i ∈ I with

U =
⋃

i∈I
Bi.

3. M is locally homeomorphic to R
n, that is, for all p ∈ M exists an open subset

U ⊂M with p ∈ U , an open subset V ⊂ R
n and a homeomorphism x : U → V .

b p

M

U
≈
x V ⊂ R

n

Remark 1.1.3. The first two conditions in the definition are more of a technical nature
and are sometimes neglected. The important fact is that a topological manifold is locally
homeomorphic to R

n. Loosely speaking manifolds look locally like Euclidean space. If
the topology on M is induced by a metric, then the first condition is satisfied automat-
ically. If M is given as a subset of RN with the subset topology, then both conditions 1
and 2 are satisfied automatically.

Example 1.1.4. (1) Euclidean space M = R
n itself is an n-dimensional topological ma-

nifold:

(i), (ii) Obvious.

(iii) Holds true with U =M , V = R
n and x = id.

(2) Let M ⊂ R
n be an open subset. Then M is an n-dimensional topological manifold.

(i), (ii) Obvious.

(iii) Holds true with U =M , V =M and x = id.

(3) The standard sphere M = Sn = { y ∈ R
n+1 : ‖y‖ = 1 } is an n-dimensional topo-

logical manifold.

(i), (ii) Obvious, since Sn is a subset of Rn+1.

2



1.1 Topological manifolds

(iii) We construct two homeomorphisms with the help of the stereographic projec-
tion.

We define U1 := Sn \ {SP} with
SP := (−1, 0, . . . , 0) ∈ R

n+1 and set
V1 := R

n. Furthermore, we define

x : U1 −→ V1,

y = (y0, y1, . . . , yn
︸ ︷︷ ︸

=:ŷ

) 7−→ x(y) =
2

1 + y0
· ŷ.

b

b

b

b

SP

NP

y

x(y)

The map x is continuous and bijective. The inverse map y is given by

y : V1 −→ U1,

x 7−→ y(x) =
1

4 + ‖x‖2 (4− ‖x‖2, 4x),

and is also continuous. Hence, x is an homeomorphism.

Analogously, we define the homeomorphism, which omits the north pole:
Let now U2 := Sn \ {NP} with NP := (1, 0, . . . , 0) ∈ R

n+1 and V2 := R
n.

Then

x̃ : U2 −→ V2,

y 7−→ x̃(y) = x̃(y0, y1, . . . , yn
︸ ︷︷ ︸

=:ŷ

) =
2

1− y0
· ŷ.

We have seen that the sphere Sn is an n-dimensional topological manifold.

(4) All n-dimensional submanifolds of RN in the sense of Analysis 3 are n-dimensional
topological manifolds.

(5) Non-Example. We consider M := { (y1, y2, y3) ∈ R
3 | (y1)2 = (y2)2 + (y3)2 }, the

double cone.

Since M ⊂ R
3, both (i) and (ii) are

satisfied.

ButM is not a 2-dimensional manifold. If
it were, then there would exist an open
subsetU ⊂M with 0 ∈ U , an open subset
V ⊂ R

2 and a homeomorphism x : U →
V with x(0) = 0.

b b

b

b
b

b

q1

q2

0

M x(q1)

x(q2)

x(0)

V

c≈
x

3



1 Manifolds

W. l. o. g. assume V = Br(x(0)) with r > 0. Choose q1, q2 ∈ U with q11 > 0 and
q12 < 0. Furthermore, choose a continuous path c : [0, 1] → V with

c(0) = x(q1), c(1) = x(q2) and c(t) 6= x(0) for all t ∈ [0, 1].

Define the continuous path c̃ := x−1 ◦ c : [0, 1] → U . Then

c̃(0) = q1, c̃(1) = q2,

that is, we have c̃1(0) > 0 while c̃1(1) < 0. Applying the mean value theorem we
find, that there exists a t ∈ (0, 1) with c̃1(t) = 0. Then c̃(t) = (0, 0, 0) and conse-
quently c(t) = x(c̃(t)) = x(0), which contradicts the choice of c. Hence, M is not a
2-dimensional topological manifold.

Definition 1.1.5. If M is an n-dimensional topological manifold, the homeomor-
phisms x : U → V are called charts (or local coordinate systems) of M .

M

U
≈
x V ⊂ R

n

After choosing a local coordinate system x : U → V every point p ∈ U is uniquely
characterized by its coordinates (x1(p), . . . , xn(p)).

In a 0-dimensional manifold M every point p ∈M has an open neighborhood U , which
is homeomorphic to R0 = {0}. Consequently {p} = U is an open subset of M for all
p ∈ M , that is, M carries the discrete topology. Since there exists a countable basis for
the topology onM and the topology is discrete in addition,M has to be countable itself.

Thus we get:

Proposition 1.1.6

A topological space M is a 0-dimensional topological manifold, if and only if M is countable
and carries the discrete topology.

4



1.1 Topological manifolds

Definition 1.1.7. We call a topological manifoldM connected, if for every two points
p, q ∈M there exists a continuous map c : [0, 1] →M with c(0) = p and c(1) = q.

Given two points, there has to be a continuous curve in M which connects both. Usu-
ally, in Topology one calls this path-connected, which is in the case of manifolds equiva-
lent to being connected. We do not want to go deeper into this subject at this point.

Remark 1.1.8. Following Proposition 1.1.6 every connected 0-dimensional manifold M
is given by a single point: M = {point}.

In dimension 1 there are only a few connected manifolds:

Proposition 1.1.9

Every connected 1-dimensional topological manifold is homeomorphic to R or to S1.

A proof of this fact can be found in the appendix of [M65]. Thus, the only compact,
connected topological manifold of dimension 1 is S1.

Theorem 1.1.10

Let M and A be sets. For all α ∈ A assume that Uα ⊂M and Vα ⊂ R
n are subsets and that

xα : Uα → Vα are bijective maps. Suppose the following holds:

(i)
⋃

α∈A
Uα =M ,

(ii) xα(Uα ∩ Uβ) ⊂ R
n is open for all α, β ∈ A and

(iii) xβ ◦ xα−1 : xα(Uα ∩ Uβ) → xβ(Uα ∩ Uβ) is continuous for all α, β ∈ A.

Then M carries a unique topology for which all Uα are open sets and all xα are homeomor-
phisms.

5



1 Manifolds

MUα

Uβ

Vα

xα
Vβ

xβ

xβ ◦ xα−1

Proof. We first show uniqueness:
Let O be a topology onM containing theUα and such that the xα are homeomorphisms.
If W ∈ O, then also W ∩ Uα ∈ O and xα(W ∩ Uα) is open for all α ∈ A.
Conversely, if W ⊂M is a subset such that xα(W ∩Uα) ⊂ R

n is open for all α ∈ A, then
W ∩Uα is also open in Uα for all α. Since Uα is open in M , the set W ∩Uα is open in M .
By (i), W =

⋃

α∈A(W ∩ Uα) is also open in M . We have shown that W ∈ O if and only
if xα(W ∩ Uα) is open in R

n for all α,

O = {W ⊂M |xα(W ∩ Uα) ⊂ R
n open for all α ∈ A}.

Now we show existence:
We use the criterion for openness derived in the uniqueness part of the proof to define
the topogoly. We set:

O := {W ⊂M |xα(W ∩ Uα) ⊂ R
n open for all α ∈ A}.

Now we have to check that this O is a topology and that it has the desired properties:

(a) O is a topology because

(i) The empty set ∅ is open in M because xα(∅ ∩ Uα) = xα(∅) = ∅ is open in R
n

for all α. Observe that the case α = β in (ii) shows that Vα = xα(Uα) is open in
R
n. Now we see that M ∈ O because xα(M ∩ Uα) = xα(Uα) = Vα is open in

R
n for all α.

(ii) Assume Wi ∈ O for i ∈ I . Then
⋃

i∈I Wi ∈ O because

xα

((
⋃

i∈I
Wi

)

∩ Uα

)

= xα

(
⋃

i∈I
(Wi ∩ Uα)

)

=
⋃

i∈I
xα(Wi ∩ Uα)
︸ ︷︷ ︸

open in Rn

is open in R
n for all α ∈ A.

(iii) The conclusion W1,W2 ∈ O ⇒W1 ∩W2 ∈ O follows similarly.

6



1.1 Topological manifolds

(b) We have to show Uβ ∈ O for all β ∈ A. This is obvious because xα(Uβ ∩ Uα) ⊂ R
n

is open for all α ∈ A by assumption.

(c) The map xβ is continuous for all β ∈ A because:

Let Y ⊂ Vβ be open. Then we have for all α ∈ A:

xα(xβ
−1(Y ) ∩ Uα) = xα(xβ

−1(Y ∩ xβ(Uα ∩ Uβ)))

= (xα ◦ xβ−1)
︸ ︷︷ ︸

=(xβ◦xα
−1)−1

continuous

(Y ∩ xβ(Uα ∩ Uβ)
︸ ︷︷ ︸

open

)

︸ ︷︷ ︸
open

is open in R
n.

Thus xβ
−1(Y ) ∈ O.

(d) The map xβ
−1 is continuous because:

Let W ⊂ Uβ be open. Then W ∈ O. For all α ∈ A the set xα(W ∩ Uα) is open, in
particular for α = β

(xβ
−1)−1(W ) = xβ(W ) = xβ(W ∩ Uβ) is an open set.

Example 1.1.11 (Real-projective space). We define the real-projective space by

M = RPn := P(Rn+1) := {L ⊂ R
n+1 |L is one-dimensional vector-subspace }.

We will use Theorem 1.1.10 to equip RPn with the structure of an n-dimensional topo-
logical manifold. We set

A := {affine-linear embeddings α : Rn → R
n+1 with 0 6∈ α(Rn)}.

Since α is affine-linear there exist a B ∈ Mat(n× (n+ 1),R) and a c ∈ R
n+1 such that

α(x) = Bx+ c

for all x ∈ R
n. Since α is an embedding, B has maximal rank, rank(B) = n.

b
b

b

0

R
n

c

0

bc

R
n+1

α(Rn)

Lα

Consequently, α(Rn) is an affine-linear hyperplane. Set

Uα := {L ∈ RPn |L ∩ α(Rn) 6= ∅}.

7



1 Manifolds

For L ∈ Uα the space L ∩ α(Rn) consists of exactly one point, because otherwise we
would have L ⊂ α(Rn) and hence 0 ∈ α(Rn), a contradiction. Moreover, we have

RPn \ Uα = {L |L ⊂ B(Rn) one-dimensional subspace} (1.1)

where α(x) = Bx+ c. For α ∈ A set Vα := R
n and

xα : Uα → Vα, xα(L) := α−1(L ∩ α(Rn)).

Then xα is a bijective map and we have

xα
−1(v) = R · α(v).

In the following we check the assumptions of Theorem 1.1.10:

(i) We show:
⋃

α∈A
Uα =M .

To this end, let e0, . . . , en ∈ R
n+1 be the standard basis. For j = 1, . . . , n we define:

αj(v) := v1e0 + . . . + vjej−1 + ej + vj+1ej+1 + . . .+ vnen.

Assume there existed an

L ∈ RPn \
n⋃

j=0

Uαj
=

n⋂

j=0

(RPn \ Uαj
).

Then

L ⊂
n⋂

j=0

ej
⊥ = {0}.

b b
ej

ej
⊥

This is a contradiction, consequently
n⋃

j=0
Uαj

= RPn and hence
⋃

α∈A
Uα = RPn.

(ii) We observe that xα(Uα ∩ Uβ) is
the complement of an affine-linear
subspace in R

n. More precisely, by
(1.1), xα(Uα ∩ Uβ) = α−1(α(Rn) \
B(Rn)) where we have written
β(x) = Bx+ c. Since affine-linear
subspaces are closed, xα(Uα ∩Uβ)
is open.

α(Rn)

B(Rn)
b 0

(iii) We show that xβ ◦ xα−1 : v 7→ β−1(R ·α(v)∩ β(Rn)) is continuous for all α, β ∈ A.

8



1.1 Topological manifolds

bv

Vα

bc

bc
α(Rn)

β(Rn)

α(v)

b 0

b

xβ ◦ xα−1(v)

Vβ
β

α

Write α(v) = Bv + c and β(w) = Dw + f . Now w = xβ ◦ xα−1(v) is equivalent
to x−1

β (w) = x−1
α (v), hence to R · β(w) = R · α(v). Therefore w = xβ ◦ xα−1(v)

is equivalent to the existence of t ∈ R such that Dw + f = t · (Bv + c). For the

left-hand-side we write Dw + f = (D, f)

(
w
1

)

. Note that (D, f) is an invertible

(n+1)×(n+1)-matrix because otherwise we could write f as a linear combination
of the columns of D and hence 0 would lie in the image of β. Thus we get

(
w
1

)

= t · (D, f)−1 · (Bv + c). (1.2)

Taking the scalar product with en+1 = (0, · · · , 0, 1)⊤ yields

1 =
〈

en+1,

(
w
1

)〉

= t · 〈en+1, (D, f)
−1 · (Bv + c)〉. (1.3)

Inserting (1.3) into (1.2) gives us
(
w
1

)

= 〈en+1, (D, f)
−1 · (Bv + c)〉−1 · (D, f)−1 · (Bv + c). (1.4)

This shows that the components of w are rational functions of the components of
v. In particular, they are continuous.

By Theorem 1.1.10, RPn has exactly one topology for which the Uα are open and the
xα are homeomorphisms. We still need criteria ensuring that this topology is Haus-
dorff and has a countable basis. Once we know this, we have turned RPn into an n-
dimensional topological manifold.

Proposition 1.1.12 (First Addition to Theorem 1.1.10)

If in Theorem 1.1.10 there exists a countable subset A1 ⊂ A with
⋃

α∈A1

Uα =M

then the resulting topology has a countable basis.

9



1 Manifolds

Example 1.1.11 continued. For RPn the finite set A1 := {α0, . . . , αn} does the job. Con-
sequently, the topology of RPn has a countable basis.

Proof of Proposition 1.1.12. The topology resulting from A has all the properties of the
topology resulting from A1. Since the topology is unique, A and A1 give the same
topology on M .

Without loss of generality we may therefore assume that A1 = A is countable. Now the
topology of each Vα ⊂ R

n has a countable basis Bα. Then xα
−1(Bα) is a countable basis

of the topogoly of Uα. Finally,
⋃

α∈A xα
−1(Bα) is a countable basis of M .

Proposition 1.1.13 (Second Addition to Theorem 1.1.10)

If in Theorem 1.1.10 for any two points p, q ∈M there is an α ∈ A such that p, q ∈ Uα, then
the topology of M is Hausdorff.

Example 1.1.11 continued. For L1, L2 ∈ RPn there exists an affine-linear hypersurface

E with L1 ∩ E 6= ∅ and L2 ∩ E 6= ∅.
By Proposition 1.1.13, RPn is Haus-
dorff. Summarizing, we see that
RPn is a n-dimensional topological
manifold.

b 0

E

bc

L1

bc

L2

Proof of Proposition 1.1.13. Let p, q ∈ M with p 6= q. Choose an α ∈ A with p, q ∈ Uα.
Since R

n is Hausdorff, we can choose V1, V2 ⊂ Vα open with xα(p) ∈ V1, xα(q) ∈ V2 and
V1 ∩ V2 = ∅. Then xα

−1(V1) and xα
−1(V2) separate p and q.

M
Uα

b bp q

R
n ⊃ Vα

b bV1 V2

xα

We summarize:

10



1.2 Differentiable manifolds

Corollary 1.1.14

Let M and A be sets and let A1 ⊂ A be a countable subset. For all α ∈ A assume that
Uα ⊂ M and Vα ⊂ R

n are subsets and that xα : Uα → Vα are bijective maps. Suppose the
following holds:

(i)
⋃

α∈A1

Uα =M ;

(ii) xα(Uα ∩ Uβ) ⊂ R
n is open for all α, β ∈ A;

(iii) xβ ◦ xα−1 : xα(Uα ∩ Uβ) → xβ(Uα ∩ Uβ) is continuous for all α, β ∈ A;

(iv) for any two points p, q ∈M there is an α ∈ A such that p, q ∈ Uα.

ThenM carries a unique topology which turnsM into an n-dimensional topological manifold
such that the xα : Uα → Vα are charts.

Example 1.1.15 (Complex-projective space). In complete analogy to the real-projective
space we define complex-projective space by

CPn := P(Cn+1) := {L ⊂ C
n+1 |L is one-dimensional complex subspace }.

Like in the real case we obtain charts xα : Uα → C
n = R

2n. This turns CPn into a
2n-dimensional topological manifold.

1.2 Differentiable manifolds

For a topological manifold M , like for any topological space, it makes sense to speak
about continuous functions f :M → R. In a course on differential geometry we will
certainly need to differentiate functions. But what does differentiability of f mean?

Attempt of a definition. The function f is called differentiable at p ∈M if for some chart
x : U → V with p ∈ U the function f ◦ x−1 : V → R is differentiable in x(p).

M
U

bp
b
x(p)

Vx

R
f

f ◦ x−1

This is, in principle, a very reasonable definition. It means that f is differentiable on M
if it is differentiable on R

n when expressed in coordinates. But there is a problem with

11



1 Manifolds

this definition. If y : Ũ → Ṽ is another chart with p ∈ Ũ , then near y(p) we have

f ◦ y−1 = (f ◦ x−1)
︸ ︷︷ ︸

diff’able
at x(p)

◦ (x ◦ y−1)
︸ ︷︷ ︸

only
continuous

.

This concept of differentiability depends on the choice of chart x and this is really bad
because on a general topological manifold there are no preferred coordinate systems.
The sad truth is that there is no reasonable concept of differentiable functions on a
topological manifold.
But there is one thing we can do, we can refine the notion of a manifold. If x ◦ y−1 were
a diffeomorphism and not only a homeomorphism, then the differentiability of f ◦ x−1

would imply the differentiability of f ◦ y−1. We enforce this by making the following
definition.

Definition 1.2.1. Let M be an n-dimensional topological manifold. Two charts
x : U → V and y : Ũ → Ṽ of M are called C∞-compatible if

y ◦ x−1 : x(U ∩ Ũ) → y(U ∩ Ũ)

is a C∞-diffeomorphism.

MU

Ũ

V
x

x(U ∩ Ũ)

Ṽ

y

y(U ∩ Ũ)
y ◦ x−1

Definition 1.2.2. A set of charts xα : Uα → Vα of M , α ∈ A, is called atlas of M , if

⋃

α∈A
Uα =M.

An atlas A is called a C∞-atlas if any two charts in A are C∞-compatible.

12



1.2 Differentiable manifolds

Example 1.2.3

(1) Let M = U ⊂ R
n be open. Then A := {id : U → U} is a C∞-atlas.

(2) Let M = Sn and A := {(x : U1 → V1), (x̃ : U2 → V2)}, where U1 := Sn \ {SP},
U2 := Sn \ {NP} and V1 := V2 := R

n, compare Example 1.1.4.3. Furthermore, let

x(y) =
2

1 + y0
ŷ, where y =

(
y0, ŷ

)
∈ R

n+1,

y(x) =
1

4 + ‖x‖2
(
4− ‖x‖2, 4x

)
and

x̃(y) =
2

1− y0
ŷ.

Then we have for v ∈ x(U1 ∩ U2) = x(Sn \ {SP,NP}) = R
n \ {0}:

x̃ ◦ x−1(v) = x̃

(
4− ‖v‖2
4 + ‖v‖2 ,

4v

4 + ‖v‖2
)

=
2

1− 4− ‖v‖2
4 + ‖v‖2

4v

4 + ‖v‖2

=
8v

4 + ‖v‖2 − 4 + ‖v‖2

=
4v

‖v‖2 .

Hence x̃ ◦ x−1 is C∞ on R
n \ {0} = x(Sn \ {SP,NP}) = x(U1 ∩ U2). Similarly one

sees that x ◦ x̃−1 is smooth. This shows that x and x̃ are C∞-compatible. Hence A
is a C∞-atlas.

(3) Let M = RPn, A := {xα : Uα → R
n |xα is an affine-linear embedding R

n → R
n+1

of maximal rank and 0 6∈ α(Rn)}, compare Example 1.1.11. All changes of charts
xβ ◦ xα−1 are rational functions and hence C∞. Therefore A is a C∞-atlas.

(4) Analogously, for M = CPn as in Example 1.1.15, the resulting atlas is also a C∞-
atlas.

Remark 1.2.4. If A is a C∞-atlas of M then

Amax := {charts x of M |x is C∞-compatible with all charts in A}

also is a C∞-atlas of M . The reason is this:
If x and x̃ are two charts of M , which are C∞-compatible with all charts in A, then also x and
x̃ are C∞-compatible with each other.

Namely, for any p ∈ x(U ∩ Ũ) there exists a chart y : ˜̃U → ˜̃V in A with x−1(p) ∈ ˜̃U . Near
p we then have:

x̃ ◦ x−1 =
(
x̃ ◦ y−1

)

︸ ︷︷ ︸

C∞

◦
(
y ◦ x−1

)

︸ ︷︷ ︸

C∞

.

13



1 Manifolds

Hence x̃ ◦ x−1 is C∞ and similarly for x ◦ x̃−1.

Definition 1.2.5. An C∞-atlas Amax is called maximal (or also differentiable struc-

ture), if every chart that is C∞-compatible with all charts in Amax, is already con-
tained in Amax.

According to Remark 1.2.4, every C∞-atlas A is contained in exactly one maximal C∞-
atlas Amax.

Definition 1.2.6. A pair (M,Amax), where M is an n-dimensional topological mani-
fold and Amax a differentiable structure on M , is called an n-dimensional differen-
tiable manifold.

Definition 1.2.7. Let M and N be differentiable manifolds, let p ∈ M and let
k ∈ N ∪ {∞}.
A continuous map f :M → N is called k-times continuously differentiable (orCk)
near p, if for one (and therefore for every other) chart

(x : U → V ) ∈ Amax(M) with p ∈ U

and for one (and therefore for every other) chart

(y : Ũ → Ṽ ) ∈ Amax(N) with f(p) ∈ Ũ

there exists a neighborhood W ⊂ x(f−1(Ũ) ∩ U) of x(p), such that

y ◦ f ◦ x−1 : x
(
f−1(Ũ ) ∩ U

)
→ Ṽ

is Ck on W .

14



1.2 Differentiable manifolds

M

U
bp

f−1(Ũ) ∩ U NŨ
bf(p)

b
x(p)

V

W x(f−1(Ũ) ∩ U)

Ṽ
y ◦ f ◦ x−1

x y

f

Example 1.2.8

(1) Let M = Sn with the differentiable structure given by

A = {(x : U1 → V1), (x̃ : U2 → V2)}

as in Example 1.2.3.2. We show that

f : Sn → Sn, f(y) = −y,

is C∞ near NP . In fact, f is C∞ on all of Sn. We compute

R
n ∋ v x−1

7−→ x−1(v) =

(
4− ‖v‖2
4 + ‖v‖2 ,

4v

4 + ‖v‖2
)

f7−→
(

−4− ‖v‖2
4 + ‖v‖2 ,

−4v

4 + ‖v‖2
)

x̃7−→ − 2

1 +
4− ‖v‖2
4 + ‖v‖2

· 4v

4 + ‖v‖2 = −8v

8
= −v

Consequently, x̃ ◦ f ◦ x−1(v) = −v and in particular x̃ ◦ f ◦ x−1 is C∞ on R
n. Thus,

we may consider W = R
n.

This argument shows that f is smooth near all points except SP because SP is the
only point not contained in the chart U1. Interchanging the two charts one sees
similarly that f is also smooth near SP . Hence f is smooth on all of Sn.

(2) We consider the atlases A1 := {x = id : R → R} on M = R with differentiable
structure A1,max and A2 := {x̃ : R → R} with x̃(t) = t3 and differentiable structure
A2,max.

Now x̃ ◦ x−1(t) = t3 is C∞, but x ◦ x̃−1(t) = 3
√
t is not.

Consequently, x and x̃ are not C∞-compatible and therefore the differentiable struc-
tures are different:

A1,max 6= A2,max.

15



1 Manifolds

• Is id : (R,A1,max) → (R,A2,max) a C∞-map?

R R

R R

⇒ x̃ ◦ id ◦ x−1 is C∞ and therefore also id.

id

t7→t3
x=id x̃

• Is id : (R,A2,max) → (R,A1,max) a C∞-map?

R R

R R

⇒ x ◦ id ◦ x̃−1 is not C∞ and the same holds true for id.

id

t7→ 3√
t

x̃ x=id

Summarizing we see that id is a homeomorphism from (R,A1,max) to (R,A2,max)
which is smooth but its inverse is not.

Definition 1.2.9. Let M and N be differentiable manifolds. A homeomorphism
f :M → N is called aCk-diffeomorphism, if f and f−1 are both Ck. Instead of C∞-
diffeomorphism we simply say diffeomorphism. If there exists a diffeomorphism
f :M → N , we say that M and N are diffeomorphic.

Example 1.2.8.2 continued. Let M = (R,A1,max) with A1,max = {x = id : R → R} and
N = (R,A2,max) with A2,max = {x̃ : R → R, x̃(t) = t3}. We have seen that id : M → N
is not a diffeomorphism. But f :M → N, f(t) = 3

√
t is a diffeomorphism because

M N

R R

f

x x̃
id

Thus M and N are diffeomorphic.

Question. Is every differentiable structure on R
n diffeomorphic to the standard struc-

ture Amax, the one induced by A = {x = id : Rn → R
n}?

The answer is quite surprising. For n = 0, 1, 2, 3 and also for n ≥ 5 it is YES. But for
n = 4 it turns out to be NO. There exist uncountably many differentiable structures on
R
4 which are pairwise not diffeomorphic (so-called exotic structures). The proof of these

facts is far beyond the scope of our lecture course.

Remark 1.2.10. In 1956 John Milnor showed that there exist exotic n-dimensional
spheres for n ≥ 7. These are differentiable manifolds which are homeomorphic to
Sn but not diffeomorphic. But in every dimension there are only finitely many.
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1.3 Tangent vectors

1.3 Tangent vectors

Question. What is the derivative at a point of a differentiable map between differenti-
able manifolds?

The vague answer is: It is the linear approximation of the map at that point. But what
do we mean by the linear approximation in a point of a differentiable manifold? For this
to make sense we first need a concept of “linear approximation” of a manifold at a given
point.

Definition 1.3.1. Let M be a differentiable manifold and p ∈M .
A tangent vector on M at the point p is an equivalence class of differentiable curves
c : (−ε, ε) → M with ε > 0 and c(0) = p, where two such curves c1 : (−ε1, ε1) → M
and c2 : (−ε2, ε2) → M are called equivalent, if for a chart x : U → V with p ∈ U we
have:

d

dt
(x ◦ c1)|t=0 =

d

dt
(x ◦ c2)|t=0.

Remark 1.3.2. This definition does not depend on the choice of the chart x : U → V .
Namely, if y : Ũ → Ṽ is another chart with p ∈ Ũ then we get by the chain rule

d

dt
(y ◦ c)|t=0 =

d

dt

((
y ◦ x−1

)
◦ (x ◦ c)

)

|t=0 = D
(
y ◦ x−1

)
|x(p)

(
d

dt
(x ◦ c)|t=0

)

. (1.5)

Therefore the condition
d

dt
(x ◦ c1)|t=0 =

d

dt
(x ◦ c2)|t=0

is equivalent to the condition

d

dt
(y ◦ c1)|t=0 =

d

dt
(y ◦ c2)|t=0.

Notation 1.3.3. We denote the equivalence class of c by ċ(0).

17



1 Manifolds

Definition 1.3.4. The set

TpM := {ċ(0) | c : (−ε, ε) →M differentiable with c(0) = p}

is called tangent space of M at the point p.

Lemma 1.3.5

Let M be an n-dimensional differentiable manifold, let p ∈ M and let x : U → V be a chart
of M with p ∈ U . Then the map

dx|p : TpM → R
n, ċ(0) 7→ d

dt
(x ◦ c)|t=0,

is well defined and bijective.

Proof. Well-definedness and injectivity are clear from to the definition of the equiv-
alence relation that defines ċ(0). To show surjectivity let v ∈ R

n and set
c(t) := x−1(x(p) + tv). Choose ε > 0 so small that x(p) + tv ∈ V whenever |t| < ε.
Then we have

dx|p(ċ(0)) =
d

dt

(

x ◦ x−1
(
x(p) + tv

))

|t=0 =
d

dt

(
x(p) + tv

)
|t=0 = v.

b p
U

M V

b x(p)
v

x

This shows surjectivity and concludes the proof.
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1.3 Tangent vectors

Definition 1.3.6. We equip TpM with the unique vector space structure for which
dx|p becomes a linear isomorphism. In other words, for a, b ∈ R and
c1 : (−ε1, ε1) →M , c2 : (−ε2, ε2) →M we set:

a · ċ1(0) + b · ċ2(0) := (dx|p)−1
(

a · dx|p
(
ċ1(0)

)
+ b · dx|p

(
ċ2(0)

))

.

Lemma 1.3.7

The vector space structure on TpM does not depend on the choice of chart x : U → V .

Proof. Let y : Ũ → Ṽ be another chart with p ∈ Ũ . We have to show that the map
dy|p : TpM → R

n is also linear with respect to the vector space structure induced by x.
This holds true since by (1.5)

dy|p = D
(
y ◦ x−1

)
|x(p)

︸ ︷︷ ︸

linear

◦ dx|p
︸︷︷︸

linear

is the composition of two linear maps.

We may think of the tangent space TpM as the linear approximation toM at p. Now we
can define the differential of a differentiable map between manifolds.

Lemma 1.3.8

Let M and N be differentiable manifolds, let p ∈ M , and let f : M → N be differentiable
near p. Then the map

df |p : TpM → Tf(p)N, ċ(0) 7→ (f ◦ c)˙(0),
is well defined and linear.

M

b

pc

ċ(0)

N

bf(p)

df |p(ċ(0))

f ◦ c

f
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1 Manifolds

Proof. We choose a chart x : U → V of M with p ∈ U and a chart y : Ũ → Ṽ of N with
f(p) ∈ Ũ . We compute, using the chain rule,

dy|f(p)((f ◦ c)˙(0)) = (y ◦ f ◦ c)˙(0)

=
((
y ◦ f ◦ x−1

)
◦ (x ◦ c)

)̇

(0)

= D
(
y ◦ f ◦ x−1

)
|x(p) ·

(
(x ◦ c)˙(0)

)

= D
(
y ◦ f ◦ x−1

)
|x(p) · dx|p(ċ(0)).

Consequently, we have

df |p =
(
dy|f(p)

)−1 ◦D(y ◦ f ◦ x−1)|x(p) ◦ dx|p.

In particular, df |p is well defined (independently of the choice of c) and linear.

Definition 1.3.9. The map df |p is called the differential of f at the point p.

Remark 1.3.10. If U ⊂ M is an open subset, then the differential of the inclusion map
ι : U →֒M is the canonical isomorphism dι : TpU → TpM , given by

ċ(0) 7→ (ι ◦ c)·(0) = ċ(0).

We will identify tangent spaces via this isomorphism and simply write TpU = TpM .

Remark 1.3.11. If M is an n-dimensional R-vector
space, thenM and TpM are canonically isomorphic via

M → TpM,
v 7→ ċp,v(0),

where cp,v(t) := p+ tv.

b

b

0

p

cp,v

v

Remark 1.3.12. For a chart x : U → V the differential dx|p has two meanings which are

20



1.3 Tangent vectors

related by this canonical isomorphism. The following diagram commutes:

ċ(0) (x ◦ c)̇(0)
∈ ∈

TpU Tx(p)V = Tx(p)R
n

d
dt
(x ◦ c)|t=0 ∈ R

n

dx|p

dx|p ∼= ∼=

canonical

isomorphism

Theorem 1.3.13 (Chain Rule)

Let M , N and P be differentiable manifolds and let p ∈ M . Assume f : M → N and
g : N → P are differentiable near p and near f(p), respectively. Then the following holds:

d(g ◦ f)|p = dg|f(p) ◦ df |p.

Proof. For a curve c : (−ε, ε) →M with c(0) = p we have:

d(g ◦ f)|p(ċ(0)) =
d

dt

(
(g ◦ f) ◦ c

)
|t=0

=
d

dt

(
g ◦ (f ◦ c)

)
|t=0

= dg|f(p)
(
(f ◦ c)˙(0)

)

= dg|f(p)
(
df |p

(
ċ(0)

))
.

This proof of the chain rule was very simple. One may wonder why the proof of the
chain rule that one remembers from one’s course on calculus of several variables re-
quired a lot more work. The reason for the simplicity here is that one has already built
the chain rule into the definition of the differential of a map.

Definition 1.3.14. Let M and N be differentiable manifolds. Let k ∈ N ∪ {∞}. A
surjective Ck-map f : M → N is called a local Ck-diffeomorphism, if for all p ∈ M
there exists an open neighborhood U of p in M and an open neighborhood V of f(p)
in N , such that

f |U : U → V

is a Ck-diffeomorphism.
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1 Manifolds

Example 1.3.15. Let f : R → S1, f(t) = eit.
Then f is not injective (in particular, not a dif-
feomorphism), but it is a local diffeomorphism:
For t0 ∈ R choose U := (t0 − π, t0 + π) and
V := S1 \ {−f(t0)}.

b

b

bc

S1

0

f(t0)

V−f(t0)

b
R

t0U

f

Remark 1.3.16. If f :M → N is a local Ck-diffeomorphism, then

df |p : TpM → Tf(p)N

is an isomorphism. In particular, we have dim(TpM) = dim(Tf(p)N) and therefore also
dimM = dimN .

Proof. W.l o.g. let f be a Ck-diffeomorphism. For a curve c : (−ε, ε) →M with c(0) = p
we have:

d(idM )|p
(
ċ(0)

)
= (idM ◦ c)˙(0) = ċ(0)

and hence
d(idM )p = idTpM .

Applying the chain rule we find:

idTpM = d(idM )|p = d
(
f−1 ◦ f

)
|p = df−1|f(p) ◦ df |p.

Analogously, we can derive df |p ◦ df−1|f(p) = idTf(p)N . Therefore we get:

df−1|f(p) = (df |p)−1.

The converse of the last statement is also true:

Theorem 1.3.17 (Inverse Function Theorem)

Let M and N be differentiable manifolds and let p ∈ M . Let f : M → N be a Ck-map,
k ≥ 1.
If df |p : TpM → Tf(p)N is an isomorphism, then there exists an open neighborhood U of p

in M and an open neighborhood Ũ of f(p) in N , such that

f |U : U → Ũ

is a Ck-diffeomorphism.

22



1.4 Directional derivatives and derivations

Proof. Choose a chart x : U1 → V1 of M with p ∈ U1 and a chart y : U2 → V2 of N with
f(p) ∈ U2.

M

U1

bpU
f−1(U2)

NU2

bf(p) Ũ

b
x(p)

V1

V x(f−1(U2) ∩ U1)

V2
b

y(f(p))

Ṽ
y ◦ f ◦ x−1|V

x y

f

On x(U1 ∩ f−1(U2)) the map y ◦ f ◦ x−1 is defined. Since df |p is invertible, we also have
that D(y ◦ f ◦ x−1)|x(p) is invertible.

The ”classical” inverse function theorem says that there exists an open neighborhood
V ⊂ x(U1 ∩ f−1(U2)) of x(p) and an open neighborhood Ṽ ⊂ V2 of y(f(p)), such that

y ◦ f ◦ x−1|V : V → Ṽ

is a Ck-diffeomorphism. With U := x−1(V ) and Ũ := y−1(Ṽ ) it follows that
f |U : U → Ũ is a Ck-diffeomorphism.

1.4 Directional derivatives and derivations

Definition 1.4.1.

LetM be a differentiable manifold, let p ∈M and and
let ċ(0) ∈ TpM . For a function f : M → R, differenti-
able near p, we call

∂ċ(0)f := df |p(ċ(0)) =
d

dt
(f ◦ c)|t=0 ∈ R

the directional derivative of f in the direction ċ(0).

M

b

c
p

ċ(0)
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1 Manifolds

Notation 1.4.2. For U ⊂M open and k ∈ N ∪ {∞}, we write

Ck(U) := {f : U → R | f is Ck}.

For α ∈ R, f ∈ Ck(U) and g ∈ Ck(Ũ ) we set

α · f ∈ Ck(U), (α · f)(q) :=α · f(q)
f + g ∈ Ck(U ∩ Ũ), (f + g)(q) := f(q) + g(q)

f · g ∈ Ck(U ∩ Ũ), (f · g)(q) := f(q) · g(q)
and

C∞

p :=
⋃

U open
p∈U

C∞(U).

Definition 1.4.3. A map ∂ : C∞
p → R is called derivation at p if the following condi-

tions are satisfied:

(i) Locality: If Ũ ⊂ U is open, p ∈ Ũ , f ∈ C∞(U), then

∂f = ∂(f |Ũ ).

(ii) Linearity: If α, β ∈ R, f, g ∈ C∞
p , then

∂(αf + βg) = α∂f + β∂g.

(iii) Leibniz Rule: For f, g ∈ C∞
p we have

∂(f · g) = ∂f · g(p) + f(p) · ∂g.

Example 1.4.4

(1) Let M = R
n and p ∈M . Then ∂ = ∂

∂xi

∣
∣
p

is a derivation.

(2) LetM be an arbitrary differentiable manifold, let p ∈M and ċ(0) ∈ TpM . Then ∂ċ(0)
is a derivation. We check (iii):

∂ċ(0)(f · g) =
d

dt

(
(f · g) ◦ c

)
|t=0
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1.4 Directional derivatives and derivations

=
d

dt

(
(f ◦ c) · (g ◦ c)

)
|t=0

=
d

dt
(f ◦ c)|t=0 · g

(
c(0)

)
+ f(c(0)) · d

dt
(g ◦ c)|t=0

= ∂ċ(0)f · g(p) + f(p) · ∂ċ(0)g.

The other two conditions are even simpler to verify.

Remark 1.4.5. The set Der(C∞

p ) of all derivations at p forms an R-vector space via

(α∂1 + β∂2)(f) = α∂1f + β∂2f.

Lemma 1.4.6

The map ∂· : TpM → Der(C∞
p ), ċ(0) 7→ ∂ċ(0), is linear.

Proof. Let x : U → V be a chart of M with p ∈ U . By the definition of the vector space
structure on TpM , we have to show that ∂̇ ◦ (dx|p)−1 is linear. Assume v ∈ R

n and put
c(t) := x−1

(
x(p) + tv

)
. We find:

(∂· ◦ (dx|p)−1(v))(f) = df |p
(
(dx|p)−1(v)

)

= df |p
(
ċ(0)

)

=
d

dt

(
f ◦ c(t))

)
|t=0

=
d

dt

(
f ◦ x−1(x(p) + tv)

)
|t=0

=
〈
grad

(
f ◦ x−1

)
|x(p), v

〉
.

This expression is linear in v.

Remark 1.4.7. Let e1, . . . , en be the standard basis of R
n. Then

(dx|p)−1(e1), . . . , (dx|p)−1(en) form a basis of TpM . We find

∂(dx|p)−1(ej)(f) =
〈
grad

(
f ◦ x−1

)
|x(p), ej

〉
=
∂(f ◦ x−1)

∂xj

∣
∣
∣
∣
x(p)

=:
∂f

∂xj

∣
∣
∣
∣
p
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1 Manifolds

M

U
(dx|p)−1(e2)

(dx|p)−1(e1)bp
e2
e1

b

x(p)

≈
x V ⊂ R

n

For every chart x we have the derivations

∂

∂x1

∣
∣
∣
∣
p

, . . . ,
∂

∂xn

∣
∣
∣
∣
p

.

Proposition 1.4.8
Let M be a differentiable manifold and let p ∈M . Then the map

∂· : TpM → Der(C∞
p ), ċ(0) 7→ ∂ċ(0),

is an isomorphism. In particular, every derivation is a directional derivative and for every
chart x : U → V with p ∈ U

∂

∂x1

∣
∣
∣
∣
p

, . . . ,
∂

∂xn

∣
∣
∣
∣
p

is a basis of Der(C∞
p ).

Proof. It suffices to show that the derivations

∂

∂x1

∣
∣
∣
∣
p

, . . . ,
∂

∂xn

∣
∣
∣
∣
p

form a basis of Der(C∞
p ). Namely, then we know that the linear map ∂· maps the basis

(dx|p)−1(e1), . . . , (dx|p)−1(en) of TpM onto the basis ∂
∂x1

∣
∣
p
, . . . , ∂

∂xn

∣
∣
p

of Der(C∞
p ) and is

hence an isomorphism.

a) Linear Independence: Let
n∑

i=1

αi ∂

∂xi

∣
∣
∣
∣
p

= 0. We have to show: α1 = . . . = αn = 0.

Choose f = xj . Then

0 =

n∑

i=1

αi ∂x
j

∂xi

∣
∣
∣
∣
p

︸ ︷︷ ︸

=δ
j
i

= αj for j = 1, . . . , n.
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1.4 Directional derivatives and derivations

b) Generating Property: Let δ ∈ Der(C∞
p ). Set αj := δ(xj) for j = 1 . . . , n. We will show

that

δ =

n∑

j=1

αj · ∂

∂xj

∣
∣
∣
∣
p

.

b1) We have

δ(1) = δ(1 · 1) (iii)
= δ(1) · 1 + 1 · δ(1) = 2δ(1)

and hence δ(1) = 0. Now let α ∈ R. Then we find

δ(α) = δ(α · 1) (ii)
= α · δ(1) = 0.

Consequently, derivations vanish on all constant functions.

b2) Let f ∈ C∞
p , more precisely f ∈ C∞(Ũ) with p ∈ Ũ open. Choose a neighbor-

hood ˜̃U of p with ˜̃U ⊂ Ũ ∩ U and x( ˜̃U) = B(x(p), r).

b p
U

M

Ũ

˜̃U

b

V

x(p)

x(U ∩ Ũ)

B(x(p),r)

x

Lemma 1.4.9 (see below) with h = f ◦ x−1 says that there exist g1, . . . , gn ∈
C∞(B(x(p), r)) such that

(
f ◦ x−1

)
(x) =

(
f ◦ x−1

)
(x(p)) +

n∑

i=1

(
xi − xi(p)

)
· gi(x) and

∂(f ◦ x−1)

∂xi
(x(p)) = gi

(
x(p)

)
.

It follows that
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1 Manifolds

δ(f)
(i)
= δ(f | ˜̃

U
)

= δ
(

f(p) +
n∑

i=1

(
xi − xi(p)

)
(gi ◦ x)

)

(ii)
(b1)
=

n∑

i=1

δ
((
xi − xi(p)

)
(gi ◦ x)

)

(iii)
=

n∑

i=1

(

δ
(
xi − xi(p)

)
· gi
(
x(p)

)
+
(
xi − xi(p)

)
|p

︸ ︷︷ ︸

=0

δ(gi ◦ x)
)

(ii)
(b1)
=

n∑

i=1

δ
(
xi
)
gi
(
x(p)

)

=

n∑

i=1

αi · ∂f
∂xi

∣
∣
∣
∣
p

.

Lemma 1.4.9

Let h ∈ C∞(B(q, r)). Then there exist g1, . . . , gn ∈ C∞(B(q, r)) with

(i) h(x) = h(q) +

n∑

i=1

(
xi − qi

)
gi(x) and

(ii)
∂h

∂xi
(q) = gi(q).

Proof. For x ∈ B(q, r) set wx : [0, 1] → R, wx(t) := h(tx+ (1− t)q). It follows that

h(x)− h(q) = wx(1) − wx(0)

=

1∫

0

ẇx(t) dt

=

1∫

0

n∑

i=1

∂h

∂xi

∣
∣
∣
∣
tx+(1−t)q

· (xi − qi) dt

=
n∑

i=1

(xi − qi)

1∫

0

∂h

∂xi

∣
∣
∣
∣
tx+(1−t)q

dt

︸ ︷︷ ︸

=: gi(x)
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1.4 Directional derivatives and derivations

With this definition of the gi, (i) holds. Moreover, (ii) follows from (i) by differentiation
at q.

At this point we have the following situation for a differentiable manifold:

(dx|p)−1(ej) ∈ TpM Der(C∞
p ) ∋ ∂

∂xi

∣
∣
p

R
n

︸︷︷︸

∋ ej

depend on
the choice of x

∂·
∼=

dx|p
∼=

∂ ◦ (dx|p)−1

∼=

From now on we identify TpM with Der(C∞
p ) via the isomorphism ∂·. For example, we

write for ξ ∈ TpM

ξ =

n∑

i=1

ξi
∂

∂xi

∣
∣
∣
∣
p

instead of ∂ξ =
n∑

i=1
ξi ∂

∂xi

∣
∣
p

and ξ =
n∑

i=1
ξi(dx|p)−1(ei) where (ξ1, . . . , ξn)⊤ = dx|p(ξ).

Question. How do the coefficients ξ1, . . . , ξn of a tangent vector change, if we replace
the chart x by another chart y?

Let ξ ∈ TpM , let x and y be charts, both containing p. We express ξ with respect to both
charts

ξ =
n∑

i=1

ξi
∂

∂xi

∣
∣
∣
∣
p

=
n∑

j=1

ηj
∂

∂yj

∣
∣
∣
∣
p

.

Now we want to compute the coefficients ξi in terms of the ηj and vice versa. Using the
Chain Rule (Theorem 1.3.13) we compute






ξ1

...
ξn




 = dx|p(ξ) = (dx|p)




(dy|p)−1






η1

...
ηn









 = D(x ◦ y−1)|y(p)






η1

...
ηn




 .

Interchanging the roles of x and y, we also get

(
η1

...
ηn

)

= D(y ◦ x−1)|x(p)
(

ξ1

...
ξn

)

. Thus

ηj =
n∑

i=1

∂(yj ◦ x−1)

∂xi

∣
∣
∣
∣
x(p)

· ξi (1.6)
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1 Manifolds

In the physics literature this transformation rule is put at the heart of the definition of a
tangent vector, then usually called a contravariant vector. For a physicist, a contravariant
vector is a vector (ξ1, . . . , ξn) associated to a chart which transforms as in (1.6) when the
chart is changed. We have now understood that this vector is the coefficient vector of
an (abstractly defined) tangent vector with respect to the basis ∂

∂x1

∣
∣
p
, . . . , ∂

∂xn

∣
∣
p

of TpM

induced by the chart x.
Let us look at the special case ξ = ∂

∂xi

∣
∣
p
, that is, (ξ1, . . . , ξn)⊤ = ei. By (1.6), we get

∂

∂xi

∣
∣
∣
∣
p

=
n∑

j=1

ηj
∂

∂yj

∣
∣
∣
∣
p

=

n∑

j=1

n∑

k=1

ξk
∂(yj ◦ x−1)

∂xk

∣
∣
∣
∣
x(p)

· ∂

∂yj

∣
∣
∣
∣
p

=

n∑

j=1

∂(yj ◦ x−1)

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂yj

∣
∣
∣
∣
p

,

hence

∂

∂xi

∣
∣
∣
∣
p

=

n∑

j=1

∂(yj ◦ x−1)

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂yj

∣
∣
∣
∣
p

(1.7)

In the physics literature it is customary to use the Einstein summation convention mean-
ing that when an index appears twice in an expression, once as an upper index and
once as a lower index, then summation over this index is understood. So (1.7) would
be written as

∂

∂xi

∣
∣
∣
∣
p

=
∂(yj ◦ x−1)

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂yj

∣
∣
∣
∣
p

or even shorter as

∂

∂xi
=
∂yj

∂xi
· ∂

∂yj
.

This makes formula (1.7) easy to memorize; we simply cancel ∂yj . In these lecture notes
we will not use the Einstein summation convention unless explicitly stated otherwise.
But when you do computations for yourself, the Einstein summation convention can
be quite convenient and is recommended as long as you are aware of it.
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1.5 Vector fields

1.5 Vector fields

1

Next we want to introduce vector fields. Vector fields are maps
which associate to each point of a manifold a tangent vector
in the corresponding tangent space. Hence the target space
is varying and depends on the point. For this reason we first
need to introduce the tangent bundle.

Definition 1.5.1. Let M be a differentiable manifold. Then we call

TM :=
⋃

p∈M
TpM

the tangent bundle of M .

We equip TM with the structure of a differentiable manifold. Denote the differentiable
structure of M by AM,max. Let π : TM → M , π(ξ) = p for ξ ∈ TpM be the “footpoint
map”. For every chart x : U → V in AM,max we construct a chart Xx : Ux → Vx of TM
as follows: We set

Ux := π−1(U) ⊂ TM,

Vx := V × R
n ⊂ R

2n and

Xx(ξ) :=
(

x
(
π(ξ)

)
, dx|π(ξ)(ξ)

)

.

Then we have Xx
−1(v,w) = (dx|x−1(v))

−1(w).

Schematic picture:

M

TM

U

Ux

V

Vx

x

Xx

By construction we have:
⋃

(x:U→V )
∈AM,max

Ux = TM.

1Source: http://www.weatheronline.co.uk
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1 Manifolds

Let x and y be charts on M . Then we have:

Xy ◦Xx
−1(v,w) = Xy

(
(dx|x−1(v))

−1(w)
)

=
(

y
(
π
(
(dx|x−1(v))

−1(w)
))
, dy|π((dx|

x−1(v))
−1(w))

(
(dx|x−1(v))

−1(w)
))

=
(

y
(
x−1(v)

)
, dy|x−1(v)

(
(dx|x−1(v))

−1(w)
))

=
((
y ◦ x−1

︸ ︷︷ ︸

C∞

)
(v),D

(
y ◦ x−1

)
|v

︸ ︷︷ ︸

C∞

·w
)

.

Hence Xy ◦ Xx
−1 is a C∞-diffeomorphism, in particular, it is a homeomorphism. By

Theorem 1.1.10, TM carries exactly one topology, for which the Xx are homeomor-
phisms.
We show: The topology of TM has a countable basis. Since the topology of M has a count-
able basis, M has a countable C∞-atlas. Then the corresponding (countably many)
charts of TM suffice to cover TM . By Proposition 1.1.12 the topology of TM has a a
countable basis.
We show: TM is Hausdorff. Let ξ, η ∈ TM with ξ 6= η. We consider two cases.
Case 1: π(ξ) 6= π(η).
Since M is Hausdorff there exists an open neighbor-
hood U1 of π(ξ) and an open neighborhood U2 of π(η)
such that U1 ∩ U2 = ∅. The sets π−1(U1) and π−1(U2)
are open neighborhoods of ξ and η with

π−1(U1) ∩ π−1(U2) = ∅.
M

TM

U1

U2

bc

bc

ξ

η

Case 2: π(ξ) = π(η).
Let x : U → V be a chart of M with π(ξ) = π(η) ∈
U . Then we have ξ, η ∈ π−1(U) = Ux. The proof of
Proposition 1.1.13 shows that we can separate ξ and
η.

M

TM

U bc

bcξ

η

We summarize: The tangent bundle TM carries a unique topology turning it into a
2n-dimensional topological manifold with atlas

ATM = {Xx : Ux → Vx | (x : U → V ) ∈ AM,max}.

Since the changes of charts Xx ◦ Xy
−1 are not only homeomorphisms but C∞-

diffeomorphisms, we find that ATM is a C∞-atlas. Hence (TM,ATM,max) becomes a
2n-dimensional differentiable manifold.

Remark 1.5.2. The footpoint map π : TM →M is expressed in the charts x : U → V of
M and Xx : Ux → Vx of TM by

x ◦ π ◦X−1
x : V ×R

n → V, (v,w) 7→ v.

In particular, π is a smooth map.
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1.5 Vector fields

Definition 1.5.3

A map ξ : M → TM is called a vector field on M ,
if for all p ∈M we have

π
(
ξ(p)

)
= p.

M
b

ξ(p)
p

Remark 1.5.4. Let x : U → V be a chart of M . A vector field ξ on U is characterized by
coefficient functions

ξ1, . . . , ξn : V → R

for which

ξ(p) =

n∑

i=1

ξi
(
x(p)

) ∂

∂xi

∣
∣
∣
∣
p

.

Since a vector field is a map from the differentiable manifold M to the differentiable
manifold TM we know what it means that the vector field is Ck. We investigate how
this can be characterized in terms of the coefficient functions. For the chart x of M we
consider the corresponding chart Xx on TM . The commutative diagram

M TM
∪ ∪

x−1(v)∈ U Ux ∋ ξ(x−1(v))

v∈ V V ×R
n ∋
(

x
(

=x−1(v)
︷ ︸︸ ︷

π
(
ξ(x−1(v))

) )
, dx|

π
(
ξ(x−1(v))

)
(
ξ(x−1(v))

))

∩ ∩ =
(
v, ξ1(v), . . . , ξn(v)

)

R
n

R
2n

ξ

ξ|U

x Xx

shows that ξ corresponds in these coordinates to the map v 7→
(
v, ξ1(v), . . . , ξn(v)

)
.

Thus ξ is Ck on U if and only if the coefficient functions ξ1, . . . , ξn are Ck on V .

Example 1.5.5. We consider M = R
2 with polar coordinates. For ϕ0 ∈ R we set U :=

R
2 \ R≥0 ·

(
cosϕ0

sinϕ0

)

, V := (0,∞) × (ϕ0, ϕ0 + 2π) and y : U → V such that

y−1(r, ϕ) := (r cosϕ, r sinϕ).

On U the vector field ξ := r
∂

∂r
is defined. Using (1.7) we express this vector field in
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1 Manifolds

terms of Cartesian coordinates, i.e., with respective to the chart x = id : R2 → R
2:

ξ = r
∂

∂r

= r

(
∂x1

∂r

∂

∂x1
+
∂x2

∂r

∂

∂x2

)

= r

(
∂(r cosϕ)

∂r

∂

∂x1
+
∂(r sinϕ)

∂r

∂

∂x2

)

= r

(

cosϕ
∂

∂x1
+ sinϕ

∂

∂x2

)

= x1
∂

∂x1
+ x2

∂

∂x2
.

In Cartesian coordinates:

ξ1(x1, x2) = x1,

ξ2(x1, x2) = x2.

In polar coordinates:

η1(r, ϕ) = r,

η2(r, ϕ) = 0.

b

Similarly, we can express the vector field
∂

∂ϕ
in Cartesian coordinates:

∂

∂ϕ
=

∂x1

∂ϕ

∂

∂x1
+
∂x2

∂ϕ

∂

∂x2

= −r sinϕ ∂

∂x1
+ r cosϕ

∂

∂x2

= −x2 ∂

∂x1
+ x1

∂

∂x2
.

b
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2 Semi-Riemannian Geometry

On topological manifolds one can consider continuous maps. In order to be able to
define differentiable maps we had to add structure to a topological manifold which
gave rise to differentiable manifolds. We were then able to define linear approxima-
tions to manifolds (tangent spaces) and and to maps (the differential). The concept of a
differentiable manifold is what one needs to do analysis.

In order to do geometry we need to enrich our manifolds once more. We want to mea-
sure lengths of and angles between tangent vectors. This requires scalar products on
the tangent spaces and leads to the concept of a Riemannian manifold.

2.1 Bilinear forms

We start by recalling some facts about bilinear forms from linear algebra.

Definition 2.1.1. Let V be an n-dimensional R-vector space. A symmetric bilinear

form is a map g : V × V → R with

(i) g(αv + βw, z) = αg(v, z) + βg(w, z) for all v,w, z ∈ V and α, β ∈ R and

(ii) g(v,w) = g(w, v) for all v,w ∈ V .

We call g non-degenerate if g(v,w) = 0 for all w ∈ V implies v = 0.

For a basis (b1, . . . , bn) of V we set

gij := g(bi, bj) ∈ R

for i, j = 1, . . . , n. Then (gij)i,j=1,...,n is a symmetric n×n-matrix. From (gij)i,j=1,...,n we
can reconstruct g: For v =

∑n
i=1 α

ibi and w =
∑n

j=1 β
jbj we have:

g(v,w) = g

( n∑

i=1

αibi,

n∑

j=1

βjbj

)

=

n∑

i,j=1

αiβjgij .
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2 Semi-Riemannian Geometry

Notation 2.1.2. Let b∗1, . . . , b
∗
n the dual basis of the dual space V ∗ = {linear maps V →

R} of b1, . . . , bn, that is b∗i (bj) = δij . Often, we write

g =

n∑

i,j=1

gij b
∗
i ⊗ b∗j .

The insertion of v,w ∈ V then means the following:

g(v,w) =

n∑

i,j=1

gij b
∗
i (v) · b∗j (w) =

n∑

i,j=1

gij α
i βj.

Transformation of principal axes. Let g be a non-degenerate symmetric bilinear form
on V . Then there exists a basis e1, . . . , en of V , such that

g(ei, ej) =

{

0 i 6= j

εi ∈ {±1} i = j
,

in other words,

(gij)i,j=1,...,n =








−1 0
. . .

−1
1

. . .
0 1







. (2.1)

Such a basis is called a generalized orthonormal basis. We the number of −1’s oc-
curring in (2.1) the index of g and denote it by Index(g). We observe that for a non-
degenerate symmetric bilinear form the following are equivalent:

(1) g is a Euclidean scalar product;

(2) g is positive definite;

(3) Index(g) = 0.

If B = (b1, . . . , bn) and B̃ = (b̃1, . . . , b̃n) are two bases of V , we define the transformation
matrix T = (tji )i,j=1,...,n by

b̃i =

n∑

j=1

tji bj .
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2.2 Semi-Riemannian metrics

Then the representing matrix of g transforms as follows:

g
(B̃)
ij = g

(
b̃i, b̃j

)

= g

( n∑

k=1

tki bk,

n∑

l=1

tli bl

)

=

n∑

k,l=1

tki t
l
j · g(bk, bl)

=
n∑

k,l=1

tki t
l
j · g(B)kl (2.2)

Let V and W be two finite-dimensional R-vector spaces. Let g be a symmetric bilinear
form on V and Φ : W → V be a linear map. Then we can pull back g via Φ to W , that
is, we can define a symmetric bilinear form Φ∗g on W by

(
Φ∗g

)
(w1, w2) := g

(
Φ(w1),Φ(w2)

)
.

Remark 2.1.3. If g is positive definite, then Φ∗g is positive semidefinite. Namely:

(Φ∗g)(w,w) = g(Φ(w),Φ(w)) ≥ 0 ∀w ∈W.

If furthermore Φ is injective, then Φ∗g is also positive definite. Namely:

(Φ∗g)(w,w) = 0 =⇒ Φ(w) = 0 =⇒ w = 0.

Definition 2.1.4. Let gV and gW be symmetric bilinear forms on V and W , respec-
tively. We call a bijective linear map Φ :W → V an isometry, if

gV
(
Φ(w1),Φ(w2)

)
= gW (w1, w2), ∀w1, w2 ∈W,

that is, if Φ∗gV = gW .

2.2 Semi-Riemannian metrics

Let M be a differentiable manifold. We consider maps g which assign to every point
p ∈M a non-degenerate symmetric bilinear form g|p on TpM . If x : U → V is a chart of
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2 Semi-Riemannian Geometry

M , we define g
(x)
ij = gij : V → R by

gij(v) := g|x−1(v)

(

∂

∂xi

∣
∣
∣
∣
x−1(v)

,
∂

∂xj

∣
∣
∣
∣
x−1(v)

)

.

Definition 2.2.1. Such a map g is called a semi-Riemannian metric onM , if the map
depends smoothly on the base point in the following sense:
For every chart x : U → V of M the gij : V → R are C∞-functions.

Remark 2.2.2. Note the similarity of the definition of smoothness of g with the charac-
terization of smoothness of vector fields in Remark 1.5.4. We express the vector field
or semi-Riemannian metric with respect to the basis ∂

∂x1 , . . . ,
∂

∂xn of the tangent space
induced by a chart and then require smoothness of the coefficient functions.

Transformation by change of charts

Let x : U → V and y : Ũ → Ṽ be two charts of M with p ∈ U ∩ Ũ . By (1.7),

∂

∂yi

∣
∣
∣
∣
p

︸ ︷︷ ︸

= b̃i

=
n∑

j=1

∂(xj ◦ y−1)

∂yi

∣
∣
∣
∣
y(p)

︸ ︷︷ ︸

= tji

· ∂

∂xj

∣
∣
∣
∣
p

︸ ︷︷ ︸

= bj

Inserting this into (2.2) yields

g
(y)
ij (y(p)) =

n∑

k,l=1

∂(xk ◦ y−1)

∂yi

∣
∣
∣
∣
y(p)

· ∂(x
l ◦ y−1)

∂yj

∣
∣
∣
∣
y(p)

· g(x)kl (x(p)).

For all v ∈ y(U ∩ Ũ)) we hence have

g
(y)
ij (v) =

n∑

k,l=1

∂(xk ◦ y−1)

∂yi

∣
∣
∣
∣
v

· ∂(x
l ◦ y−1)

∂yj

∣
∣
∣
∣
v

· g(x)kl

(
(x ◦ y−1)(v)

)
(2.3)

In the physicist’s short notation this formula reads as

g
(y)
ij =

∂xk

∂yi
∂xl

∂yj
·
(

g
(x)
kl ◦

(
x ◦ y−1

))

.
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2.2 Semi-Riemannian metrics

Consequence. The condition that g is smooth does not have to be checked for all charts,
if suffices to check it for a subatlas of Amax(M) which covers M .

Remark 2.2.4. Recall that dx|p : TpM → R
n is a linear isomorphism for any chart

x : U → V with p ∈ U . In particular, dx1|p, . . . , dxn|p ∈ (TpM)∗.

Definition 2.2.5. The dual space (TpM)∗ =: T ∗

pM is called cotangent space of M
at p.

Lemma 2.2.6
The dx1|p, . . . , dxn|p form the dual basis of

∂

∂x1

∣
∣
∣
∣
p

, . . . ,
∂

∂xn

∣
∣
∣
∣
p

.

Proof. Since dx|p
(

∂

∂xi

∣
∣
∣
∣
p

)

= ei we have dxj |p
(

∂
∂xi

∣
∣
p

)

= δji for i = 1, . . . , n.

According to Notation 2.1.2 we may also write:

g|p =

n∑

i,j=1

gij
(
x(p)

)
· dxi|p ⊗ dxj |p

In the physics literature you will find the following short version of this equation:

g = gij · dxi · dxj

If one changes the basis of a vector space by the transformation b̃i =
n∑

j=1
tji bj , then we

get

b∗i =
n∑

j=1

tij b̃
∗
j .
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Namely, denote the transformation matrix by T = (tji ). Then we find:

( n∑

j=1

tij b̃
∗
j

)

(bk) =

( n∑

j=1

tij b̃
∗
j

)( n∑

l=1

(T−1)lk b̃l

)

=

n∑

j,l=1

tij (T
−1)lk b̃

∗
j (b̃l)
︸ ︷︷ ︸

=δlj

=
n∑

j=1

tij (T
−1)jk

= δik,

hence
n∑

j=1

tij b̃
∗
j = b∗i .

For b∗1 = dx1|p, . . . , b∗n = dxn|p this means:

dxi|p =
n∑

j=1

∂(xi ◦ y−1)

∂yj

∣
∣
∣
∣
y(p)

· dyj|p

or, in the physicist’s short notation

dxi =
∂xi

∂yj
dyj

If you have forgotten the transformation formula (2.3), you can quickly deduce it in
“physics style” as follows:

g
(y)
kl · dyk · dyl = g

(x)
ij · dxi · dxj

= g
(x)
ij ·

(
∂xi

∂yk
· dyk

)

·
(
∂xj

∂yl
· dyl

)

=
∂xi

∂yk
· ∂x

j

∂yl
· g(x)ij · dyk · dyl .

Comparing the coefficients in the blue boxes yields (2.3).

Example 2.2.7. Let M ⊂ R
n be open. Let β be a non-degenerate symmetric bilinear

form on R
n. For every p ∈ M let Φp : TpM → R

n the canonical isomorphism. Set
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2.2 Semi-Riemannian metrics

g|p := Φ∗
pβ. We check the smoothness of g in Cartesian coordinate, i.e., in the chart

x = id : U =M → V =M .

g|p
(

∂

∂xi

∣
∣
∣
∣
p

,
∂

∂xj

∣
∣
∣
∣
p

)

=
(
Φ∗
pβ
)
(

∂

∂xi

∣
∣
∣
∣
p

,
∂

∂xj

∣
∣
∣
∣
p

)

= β

(

Φp

(
∂

∂xi

∣
∣
∣
∣
p

)

,Φp

(
∂

∂xj

∣
∣
∣
∣
p

))

= β

(

dx|p
(

∂

∂xi

∣
∣
∣
∣
p

)

, dx|p
(

∂

∂xj

∣
∣
∣
∣
p

))

= β(ei, ej).

Consequently, the gij are constant, hence C∞. In this manner, we can equip M with a
semi-Riemannian metric with arbitrary index.

Example 2.2.8. Let M ⊂ R
n+k be an n-dimensional submanifold. Then there exists a

canonical injective map Φp : TpM → R
n+k, defined by

ċ(0) 7→ d

dt
c|t=0

equivalence class of the derivative of
curve c : (−ε, ε) →M c : (−ε, ε) → R

n+k

Then define g|p := Φ∗
p 〈·, ·〉, where 〈x,y〉 =

∑n+k
i=1 x

iyi is the usual Euclidean scalar

product, x = (x1, . . . , xn+k)T , y = (y1, . . . , yn+k)T . Since the Euclidean scalar product
is positive definite and Φp is injective, we conclude that g|p is also positive definite
for all p ∈ M . The semi-Riemannian metric on M defined in this way is called first
fundamental form.
The charts of submanifolds correspond to local parametrizations of M , i.e. to maps
F : V →M with V ⊂ R

n open, where

x = F−1 : U = F (V ) → V

is a chart of M . In addition, we have with p = x−1(v):

gij(v) = g|p
(
∂

∂xi

∣
∣
∣
∣
p

,
∂

∂xj

∣
∣
∣
∣
p

)

=
(
Φp

∗ 〈·, ·〉
)
(
∂

∂xi

∣
∣
∣
∣
p

,
∂

∂xj

∣
∣
∣
∣
p

)

=

〈

Φp

(
∂

∂xi

∣
∣
∣
∣
p

)

,Φp

(
∂

∂xj

∣
∣
∣
∣
p

)〉

=

〈
d

dt
F (v + t · ei)|t=0,

d

dt
F (v + t · ej)|t=0

〉
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=

〈
∂F

∂xi
(v),

∂F

∂xj
(v)

〉

.

Hence gij =
〈
∂F
∂xi ,

∂F
∂xj

〉
, in particular, the gij are smooth.

Definition 2.2.9. A semi-Riemannian metric g, for which g|p is always positive de-
finite, is called Riemannian metric. A pair (M,g), consisting of a differentiable
manifold M and a (semi-)Riemannian metric g on M is called (semi-)Riemannian

manifold.
A semi-Riemannian metric g is called Lorentz metric, if g|p has always index 1. The
pair (M,g) is then called Lorentz manifold.

Example 2.2.10. The first fundamental form of a submanifold M ⊂ R
n+k is a Rieman-

nian metric. For example, for Sn ⊂ R
n+1 we call the first fundamental form the standard

metric gstd of Sn.
We express the standard metric of S2 in the coordinates given by stereographic projec-
tion from the “south pole” (−1, 0, 0). Recall from Example 1.1.4 that the inverse of this
chart map is given by

F : R2 → S2 ⊂ R
3, F (x) =

1

4 + ‖x‖2 (4− ‖x‖2, 4x).

One computes

∂F

∂x1
=

1

(4 + ‖x‖2)2 (−16x1, 4(4 − (x1)2 + (x2)2),−8x1x2),

∂F

∂x2
=

1

(4 + ‖x‖2)2 (−16x2,−8x1x2, 4(4 + (x1)2 − (x2)2)).

Moreover,

g11 =

〈
∂F

∂x1
,
∂F

∂x1

〉

=
16

(4 + ‖x‖2)2

and similarly for the other gij . The metric in these coordinates turns out to be

(gij) =
16

(4 + ‖x‖2)2
(
1 0
0 1

)

.
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2.2 Semi-Riemannian metrics

Example 2.2.11. LetM ⊂ R
n+1 be open. The Minkowski scalar product 〈〈·, ·〉〉 on R

n+1 has
index 1, where

〈〈x,y〉〉 = −x0y0 + x1y1 + · · ·+ xnyn

for x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn). If Φp : TpM → R
n+1 is the canonical

isomorphism, we can define a Lorentz metric on M by

gMink|p := Φp
∗ 〈〈·, ·〉〉 .

The Lorentz manifold (Rn+1, gMink) is called Minkowski space. The four-dimensional
Minkowski space is the mathematical model for spacetime in special relativity.

Example 2.2.12. We express the Euclidean metric geucl = dx1 ⊗ dx1 + dx2 ⊗ dx2 of R2 in
polar coordinates. Here x1 and x2 are the Cartesian coordinates. With x1 = r cosϕ and
x2 = r sinϕ we then find:

dx1 =
∂x1

∂r
dr +

∂x1

∂ϕ
dϕ = cosϕdr − r sinϕdϕ

dx2 =
∂x2

∂r
dr +

∂x2

∂ϕ
dϕ = sinϕdr + r cosϕdϕ.

Thus

geucl = (cosϕdr − r sinϕdϕ) ⊗ (cosϕdr − r sinϕdϕ)

+(sinϕdr + r cosϕdϕ) ⊗ (sinϕdr + r cosϕdϕ)

= cos2 ϕdr ⊗ dr − r cosϕ sinϕdr ⊗ dϕ− r sinϕ cosϕdϕ ⊗ dr + r2 sin2 ϕdϕ ⊗ dϕ

+sin2 ϕdr ⊗ dr + sin(ϕ)r cosϕdr ⊗ dϕ+ r cosϕ sinϕdϕ ⊗ dr + r2 cos2 ϕdϕ ⊗ dϕ

= dr ⊗ dr + r2 dϕ⊗ dϕ

and hence
(

gPolar
ij

)

=

(
1 0
0 r2

)

This matrix tells us:

• ∂

∂r
has length 1,

• ∂

∂ϕ
has length r,

• ∂

∂r
and

∂

∂ϕ
are orthogonal to each other

b b

∂

∂r

∂

∂ϕ

In Cartesian coordinates we have:

(

gCartes
ij

)

=

(
1 0
0 1

)

b
∂

∂x1

∂
∂x2
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Definition 2.2.13. Let (M,gM ) and (N, gN ) be semi-Riemannian manifolds. A local
diffeomorphism ϕ :M → N is called local isometry, if

dϕ|p : (TpM,gM |p) → (Tϕ(p)N, gN |ϕ(p))

for all p ∈M is a linear isometry.
If a local isometry is also injective, that is, if it is a diffeomorphism, we call it an
isometry.

Definition 2.2.14. If ϕ :M → N is a local diffeomorphism and g a semi-Riemannian
metric on N , then we call the semi-Riemannian metric ϕ∗g on M given by

(ϕ∗g)|p := (dϕ|p)∗(g|ϕ(p)),

the pullback of g. In other words, we have for ξ, η ∈ TpM :

(ϕ∗g)|p(ξ, η) = g|ϕ(p)
(
dϕ|p(ξ), dϕ|p(η)

)
.

Remark 2.2.15. The metric ϕ∗g is the unique semi-Riemannian metric on M , for which
ϕ is a local isometry.

Definition 2.2.16. Let (M,g) be a semi-Riemannian manifold. Then we call

Isom(M,g) := {ϕ :M →M isometry}

the isometry group of M .

Remark 2.2.17. The set Isom(M,g) is a group with respect to composition of maps. The
neutral element is idM .
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2.2 Semi-Riemannian metrics

Example 2.2.18. We look for the isometries of (Rn, geucl). Let

ϕ : Rn → R
n, ϕ(x) = Ax+ b,

be an affine map with A ∈ O(n) and b ∈ R
n. Such a ϕ is called a Euclidean motion. We

check that every Euclidean motion is an isometry of (Rn, geucl): Let Φp : TpM → R
n

be the canonical isomorphism; for ξ = Φ−1
p (X) ∈ TpM this means that ξ = ċ(0) where

c(t) = p+ tX. Similarly, η = Φ−1
p (Y ) = ˙̃c(0) ∈ TpM with c̃(t) = p+ tY . We compute:

ϕ∗(geucl|p)(ξ, η) = geucl|p(dϕ|p(ξ), dϕ|p(η))
= 〈Φp(dϕ|p(ξ)),Φp(dϕ|p(η))〉
= 〈Φp((ϕ ◦ c)·(0)),Φp((ϕ ◦ c̃)·(0))〉
= 〈Φp((A(p + tX) + b)·(0)),Φp((A(p + tY ) + b)·(0))〉
= 〈Φp(Ap + b+ tAX)·(0)),Φp(Ap+ b+ tAY )·(0))〉
= 〈AX,AY 〉
= 〈X,Y 〉
= 〈Φp(ξ),Φp(η)〉
= geucl(ξ, η).

Hence ϕ∗(geucl|p) = geucl showing that ϕ is a local isometry. Since ϕ is bijective, it is an
isometry. Summarizing, we have shown

{Euclidean motions} ⊂ Isom(Rn, geucl).

We will see later that the inverse conclusion also holds; the isometries of (Rn, geucl) are
precisely the Euclidean motions.

Example 2.2.19. To find isometries of Minkowski space (M,g) = (Rn+1, gMink) we de-
fine

O(n, 1) :=
{
A ∈ Mat((n + 1)× (n+ 1),R) | 〈〈Ay,Az〉〉 = 〈〈y, z〉〉 ∀ y, z ∈ R

n+1
}

=
{
A ∈ Mat((n + 1)× (n+ 1),R) |A⊤I1,n, A = I1,n

}

where

I1,n =









−1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1









.

Now affine transformations ϕ : Rn+1 → R
n+1, ϕ(x) = Ax + b with A ∈ O(n, 1) and

b ∈ R
n+1, are called Poincaré transformations. The same discussion as for Euclidean

space shows
{Poincaré transformations} ⊂ Isom(Rn+1, gMink).
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2 Semi-Riemannian Geometry

Again, we will see later that equality holds; the isometries of Minkowski space are
precisely the Poincaré transformations.

Example 2.2.20. To find isometries of the sphere (M,g) = (Sn, gstd) let A ∈ O(n + 1).
We set ϕ := A|Sn : Sn → Sn. Let Φp : TpS

n → R
n+1 be as in Example 2.2.8. Then the

diagram

TpS
n Tϕ(p)S

n

R
n+1

R
n+1

dϕ|p

Φp Φϕ(p)

A

commutes because:

ċ(0) (ϕ ◦ c)·(0) = (A ◦ c)·(0)

d

dt
c|t=0 A · d

dt
c|t=0 =

d

dt
(A · c)|t=0

Therefore

gstd(dϕ|p(ξ), dϕ|p(η)) = 〈Φϕ(p)(dϕ|p(ξ)),Φϕ(p)(dϕ|p(η))〉
= 〈AΦp(ξ), AΦp(η)〉
= 〈Φp(ξ),Φp(η)〉
= gstd(ξ, η).

This shows that ϕ is an isometry. Hence

O(n+ 1) ⊂ Isom(Sn, gstd).

Again, it will turn out that equality holds.

2.3 Differentiation of vector fields

We know how to differentiate functions on a manifold. We also know what differenti-
able vector fields are. But: How do we differentiate a vector field? What is the differen-
tial of a vector field at a point in the manifold?
First attempt. Let M be a differentiable manifold and let p ∈ M . Let ξ ∈ TpM and let η
be a differentiable vector field onM . We try to define the derivative of η in the direction
ξ.
To this extent, we choose a chart x : U → V on M with p ∈ U . We write ξ ∈ TpM as
ξ =

∑n
i=1 ξ

i ∂
∂xi

∣
∣
p

with ξi ∈ R and η =
∑n

i=j η
j ∂
∂xj where the ηj are smooth functions

near x(p).
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2.3 Differentiation of vector fields

The first idea that comes to one’s mind is to differentiate the coefficient functions ηj in
the direction ξ. This would yield the expression

n∑

i,j=1

ξi · ∂η
j

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂xj

∣
∣
∣
∣
p

for the derivative of η in direction ξ.
Problem. This “definition” depends on the choice of chart x.

Example 2.3.1. Let M = R
2. In polar coordinates (r, ϕ) we set

ξ = η =
∂

∂ϕ
.

Then the derivative of η in direction ξ equals 0 because the coefficient functions ηj are
constant. On the other hand, in Cartesian coordinates (x1, x2) we get

ξ = η = −x2 ∂

∂x1
+ x1

∂

∂x2
.

For the derivative of η in direction ξ we would then find

(

−x2 ∂

∂x1
+ x1

∂

∂x2

)

(−x2) ∂

∂x1
+

(

−x2 ∂

∂x1
+ x1

∂

∂x2

)

(x1)
∂

∂x2

= −x1 ∂

∂x1
− x2

∂

∂x2
= −r ∂

∂r
6= 0.

We see that the idea of simply differentiating the coefficient functions was to naive.
Since we do not know how to come up with a better definition we follow an axiomatic
approach similar to the concept of derivations, except that this time we differentiate
vector fields rather than functions.

Notation 2.3.2. LetM be a differentiable manifold and let k ∈ N∪{∞}. For any open
subset U ⊂M we put

Ck(U,TM) := {Ck-vector fields, defined on U}.

For p ∈M we set

Ξp :=
⋃

U⊂M open
with p∈U

C∞(U, TM).
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Now we list the properties that the derivative of vector fields should have. Differenti-
ation takes a tangent vector ξ ∈ TpM and a smooth vector field η defined near p and
gives us a tangent vector in TpM as a result. Hence it is a map TpM × Ξp → TpM .

Definition 2.3.3. Let (M,g) be a semi-Riemannian manifold and p ∈M . A map

∇ : TpM × Ξp → TpM

is called Levi-Civita connection (at p), if the following holds:

(i) Locality

For all ξ ∈ TpM , for all η ∈ C∞(U, TM) and for all Ũ ⊂ U with p ∈ Ũ we have:

∇ξη = ∇ξ(η|Ũ ).

(ii) Linearity in the first argument

For all ξ1, ξ2 ∈ TpM , for all α, β ∈ R and for all η ∈ Ξp we have:

∇αξ1+βξ2η = α∇ξ1η + β∇ξ2η.

(iii) Additivity in the second argument

For all ξ ∈ TpM and for all η1, η2 ∈ Ξp we have:

∇ξ(η1 + η2) = ∇ξη1 +∇ξη2.

(iv) Product rule I

For all f ∈ C∞
p , for all η ∈ Ξp and for all ξ ∈ TpM we have:

∇ξ(f · η) = ∂ξf · η|p + f(p) · ∇ξη.

(v) Product rule II

For all ξ ∈ TpM and for all η1, η2 ∈ Ξp we have:

∂ξg(η1, η2) = g|p(∇ξη1, η2|p) + g|p(η1|p,∇ξη2).

(vi) Torsion-freeness

For all charts x : U → V of M with p ∈ U we have:

∇ ∂

∂xi

∣

∣

∣

p

∂

∂xj
= ∇ ∂

∂xj

∣

∣

∣

p

∂

∂xi

for all i and j.
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Remark 2.3.4

(1) From (iii) and (iv) we get the R-linearity in the second argument. Let α, β ∈ R:

∇ξ(α η1 + β η2)
(iii)
= ∇ξ(α η1) +∇ξ(β η2)

(iv)
= ∂ξα

︸︷︷︸

=0

·η1|p + α∇ξ(η1) + ∂ξβ
︸︷︷︸

=0

·η2|p + β∇ξ(η2)

= α∇ξ(η1) + β∇ξ(η2).

(2) If (vi) holds in a chart x, then it also holds in every other chart y containing p.

∇ ∂

∂yi

∣

∣

∣

p

∂

∂yj
= ∇ ∂

∂yi

∣

∣

∣

p

(
n∑

k=1

∂xk

∂yj

∣
∣
∣
∣
p

∂

∂xk

)

(iii)
(iv)
=

n∑

k=1

(

∂2xk

∂yi∂yj

∣
∣
∣
∣
y(p)

· ∂

∂xk
+
∂xk

∂yj

∣
∣
∣
∣
y(p)

∇ ∂

∂yi

∣

∣

∣

p

∂

∂xk

)

(ii)
=

n∑

k=1

∂2xk

∂yi∂yj

∣
∣
∣
∣
y(p)

· ∂

∂xk
+

n∑

k,l=1

∂xk

∂yj

∣
∣
∣
∣
y(p)

· ∂x
l

∂yi

∣
∣
∣
∣
y(p)

∇ ∂

∂xl

∣

∣

∣

p

∂

∂xk

The first summand is symmetric in i and j due to Schwarz’ Theorem. Concerning
the second summand we have:

n∑

k,l=1

∂xk

∂yj

∣
∣
∣
∣
y(p)

· ∂x
l

∂yi

∣
∣
∣
∣
y(p)

∇ ∂

∂xl

∣

∣

∣

p

∂

∂xk
(vi)
=

n∑

k,l=1

∂xk

∂yj

∣
∣
∣
∣
y(p)

· ∂x
l

∂yi

∣
∣
∣
∣
y(p)

∇ ∂

∂xk

∣

∣

∣

p

∂

∂xl

change of
indices

=
n∑

l,k=1

∂xl

∂yj

∣
∣
∣
∣
y(p)

· ∂x
k

∂yi

∣
∣
∣
∣
y(p)

∇ ∂

∂xl

∣

∣

∣

p

∂

∂xk

Hence the second summand is also symmetric in i and j.

(3) In general, for non-coordinate fields ξ and η we have

∇ξη 6= ∇ηξ.

As an example we can choose ξ = ∂
∂x1 and η = f · ∂

∂x1 with ∂ξf 6= 0.

Definition 2.3.5. Let x : U → V be a chart. Write

∇ ∂

∂xi

∣

∣

∣

p

∂

∂xj
=

n∑

k=1

Γk
ij

(
x(p)

)
· ∂

∂xk

∣
∣
∣
∣
p

(2.4)

The Γk
ij are called Christoffel symbols.
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Remark 2.3.6. The Christoffel symbols determine ∇. Namely, let ξ =
∑n

i=1 ξ
i ∂
∂xi

∣
∣
p
∈

TpM and η =
∑n

j=1 η
j ∂
∂xj ∈ Ξp. Then we compute:

∇∑n
i=1 ξ

i ∂

∂xi

∣

∣

∣

p





n∑

j=1

ηj
∂

∂xj





(ii)
(iii)
=

n∑

i,j=1

ξi∇ ∂

∂xi

∣

∣

∣

p

(

ηj
∂

∂xj

)

(iv)
=

n∑

i,j=1

ξi

(

∂ηj

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂xj

∣
∣
∣
∣
p

+ ηj|x(p) · ∇ ∂

∂xi

∣

∣

∣

p

∂

∂xj

)

=
n∑

i,j=1

ξi

(

∂ηj

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂xj

∣
∣
∣
∣
p

+ ηj|x(p) ·
n∑

k=1

Γk
ij(x(p)) ·

∂

∂xk

∣
∣
∣
∣
p

)

=

n∑

i,k=1

ξi




∂ηk

∂xi

∣
∣
∣
∣
x(p)

+

n∑

j=1

ηj|x(p) · Γk
ij(x(p))




∂

∂xk

∣
∣
∣
∣
p

(2.5)

Remark 2.3.7. Torsion freeness is equivalent to the Christoffel symbols being symmet-
ric in the two lower indices:

Γk
ij = Γk

ji for all i, j, k.

Theorem 2.3.8

Let (M,g) be a semi-Riemannian manifold and let p ∈ M . Then there is exactly one Levi-
Civita connection at p.

Proof. Uniqueness: Let x : U → V be a chart of M with p ∈ U . We compute, using the
Einstein summation convention:

∂gij
∂xk

=
∂

∂xk
g

(
∂

∂xi
,
∂

∂xj

)

(v)
= g

(

∇ ∂

∂xk

∂

∂xi
,
∂

∂xj

)

+ g

(
∂

∂xi
,∇ ∂

∂xk

∂

∂xj

)

= g

(

Γl
ki

∂

∂xl
,
∂

∂xj

)

+ g

(
∂

∂xi
,Γl

kj

∂

∂xj

)

= Γl
ki · g

(
∂

∂xl
,
∂

∂xj

)

+ Γl
kj · g

(
∂

∂xi
,
∂

∂xj

)

= Γl
ki · glj + Γl

kj · gil.
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2.3 Differentiation of vector fields

Renaming the indices we get the equations:

∂gij
∂xk

= Γl
ki · glj + Γl

kj · gil (2.6)

i→i

j→k

k→j

∂gik
∂xj

= Γl
ji · glk + Γl

jk · gil (2.7)

i→k

j→j

k→i

∂gkj
∂xi

= Γl
ik · glj + Γl

ij · gkl (2.8)

Equation (2.6) − (2.7) + (2.8) together with the symmetry of the Christoffel symbols in
the lower indices yields:

∂gij
∂xk

− ∂gik
∂xj

+
∂gkj
∂xi

= 2Γl
ki · glj .

Let (gij)i,j=1,...,n be the inverse matrix of (gij)i,j=1,...,n. This matrix exists because g|p is
non-degenerate. In other words, we have:

gij · gjk = δik.

Therefore
(
∂gij
∂xk

− ∂gik
∂xj

+
∂gkj
∂xi

)

gjm = 2Γl
ki · glj · gjm = 2Γl

ki · δml = 2Γm
ki

and hence

Γm
ki =

1

2

(
∂gij
∂xk

− ∂gik
∂xj

+
∂gkj
∂xi

)

gjm .

Renaming indices (k → j,m → k, j → m) we obtain:

Γk
ij =

1

2

n∑

m=1

gmk

(
∂gim
∂xj

+
∂gjm
∂xi

− ∂gij
∂xm

)

(2.9)

Consequently, the Christoffel symbols are uniquely determined and hence ∇ is
uniquely determined by the components of the semi-Riemannian metric and its first
derivatives.
Existence: Define Γk

ij by equation (2.9) and ∇ by equation (2.5). Then conditions (i), (ii),
(iii), and (vi) of the Levi-Civita connection are obvious. For the first product (iv) rule
we have:

∇ξ(fη) = ξi
(
∂(f · ηk)
∂xi

+ f ηj Γk
ij

)
∂

∂xk

= f · ξi
(
∂ηk

∂xi
+ ηj Γk

ij

)
∂

∂xk
+ ξi

∂f

∂xi
ηk

∂

∂xk

= f · ∇ξη + ∂ξf · η
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2 Semi-Riemannian Geometry

We check the second product rule (v), using the Einstein summation convention and
occasional renaming of indices:

∂ζ g(ξ, η) − g(∇ζξ, η)− g(ξ,∇ζη)

= ζk
∂

∂xk
(
gij ξ

iηj
)
− gij ζ

k

(
∂ξi

∂xk
+ ξlΓi

lk

)

ηj − gij ξ
i ζk

(
∂ηj

∂xk
+ ηlΓj

lk

)

= ζk
gij
∂xk

ξiηj − gij ζ
kξlΓi

lkη
j − gij ξ

iζkηlΓj
lk

= ξiηjζk
( gij
∂xk

− glj Γ
l
ik − gil Γ

l
jk

)

(2.9)
= ξiηjζk

(

gij
∂xk

− 1

2
glj g

ml

︸ ︷︷ ︸

=δmj

(
∂gim
∂xk

+
∂gkm
∂xi

− ∂gik
∂xm

)

− 1

2
gil g

ml

︸ ︷︷ ︸

=δmi

(
∂gjm
∂xk

+
∂gkm
∂xj

− ∂gjk
∂xm

))

= ξiηjζk

(

gij
∂xk

− 1

2

(
∂gij
∂xk

+
∂gkj
∂xi

− ∂gik
∂xj

)

− 1

2

(
∂gji
∂xk

+
∂gki
∂xj

− ∂gjk
∂xi

))

= 0.

Remark 2.3.9. For any chart x : U → V on (M,g) the Christoffel symbols are smooth
functions

Γk
ij =

1

2

n∑

m=1

gmk ·
(
∂gim
∂xj

+
∂gjm
∂xi

− ∂gij
∂xm

)

: V → R .

Remark 2.3.10. Our naive ansatz to differentiate vector fields by simply differentiat-
ing the coefficient functions corresponds to formula (2.5) with Γk

ij = 0. The problem
was that this depends on the choice of coordinates. When we use formula (2.5) with
the correct definition (2.9) for the Christoffel symbols, then we get the uniquely deter-
mined Levi-Civita connection. In particular, this kind of differentiating vector fields is
independent of the choice of chart.
Note however, that the Levi-Civita connection depends on the semi-Riemannian met-
ric. This cannot only seen from (2.9) but also from the second product rule (v) in Defi-
nition 2.3.3 which involves the metric. There is nothing we can do about this; different
semi-Riemannian metrics will in general lead to different Levi-Civita connections.
So the situation is somewhat curious: Differentiability and the derivative of a function
are well defined on a differentiable manifold. Differentiability of a vector field is also
well defined on a differentiable manifold. But in order to define the derivative of a
vector field we need a semi-Riemannian metric.
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2.3 Differentiation of vector fields

Definition 2.3.11. Let (M,g) be a semi-Riemannian manifold and let ∇ be its Levi-
Civita connection. Let p ∈M , let ξ ∈ TpM and let η ∈ Ξp. Then

∇ξη ∈ TpM

is also called the covariant derivative of η in direction ξ.

Example 2.3.12. Let (M,g) = (R2, geucl) be the 2-dimensional Euclidean space. In
Cartesian coordinates x1, x2 the gij = δij are constant. Therefore Γk

ij = 0. In this case,
covariant differentiation is indeed given by differentiation of the coordinate functions.
For example,

∇ ∂
∂ϕ

∂

∂ϕ
= ∇−x2 ∂

∂x1
+x1 ∂

∂x2

(

−x2 ∂

∂x1
+ x1

∂

∂x2

)

=

(

−x2 ∂

∂x1
+ x1

∂

∂x2

)

(−x2) ∂

∂x1
+

(

−x2 ∂

∂x1
+ x1

∂

∂x2

)

(x1)
∂

∂x2

= −x1 ∂

∂x1
− x2

∂

∂x2
= −r ∂

∂r

In polar coordinates r, ϕ we have

(gij)(r, ϕ) =

(
1 0
0 r2

)

and (gij)(r, ϕ) =

(
1 0
0 1

r2

)

.

The Christoffel symbols with respect to polar coordinates are given by

Γ1
11 =

1

2

(
1 · (0 + 0− 0) + 0 · . . .

)
= 0.

and similarly

Γ1
11 = Γ2

11 = Γ1
12 = Γ1

21 = Γ2
22 = 0.

Moreover:

Γ2
12 = Γ2

21 =
1

2

(
1

r2

(
∂g12
∂ϕ

+
∂g22
∂r

− ∂g12
∂ϕ

)

+ 0 · . . .
)

=
1

r
and Γ1

22 = −r.

Thus

∇ ∂
∂ϕ

∂

∂ϕ
= Γ1

22

∂

∂r
+ Γ2

22

∂

∂ϕ
= −r ∂

∂r
.

Indeed, we obtained the same result for both computations, one in Cartesian and one
in polar coordinates.
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2 Semi-Riemannian Geometry

Remark 2.3.13. We defined ∇ pointwise, i.e., as a map TpM ×Ξp → TpM . We may also
consider ∇ as a map

∇ : Ξ(M)× Ξ(M) → Ξ(M),

where Ξ(M) denotes the set of all smooth vector fields defined on all ofM . Namely, we
put

(∇ξη)(p) := ∇ξ(p)η.

We know

∇ξ(α1η1 + α2η2) = α1∇ξη1 + α2∇ξη2

for α1, α2 ∈ R and

∇f1ξ1+f2ξ2η = f1∇ξ1η + f2∇ξ2η

for f1, f2 ∈ C∞(M). This means that ∇ξη is C∞(M)-linear in ξ but only R-linear in η.

Remark 2.3.14. To compute ∇ξη with ξ = ċ(0) we only need to know η along the curve
c. Namely,

∇ċ(0)





n∑

j=1

ηj
∂

∂xj



 = ∇∑n
i=1 ċ

i(0) ∂

∂xi





n∑

j=1

ηj
∂

∂xj





=

n∑

i,j=1

ċi(0)∇ ∂

∂xi

(

ηj
∂

∂xj

)

=

n∑

i,j=1

ċi(0)

(

∂ηj

∂xi
∂

∂xj
+

n∑

k=1

ηj Γk
ij

∂

∂xk

)

=

n∑

j=1

d

dt

(
ηj ◦ c

)
|t=0

∂

∂xj
+

n∑

i,j,k=1

ċi(0) ηj(c(0))Γk
ij(c(0))

∂

∂xk
.

2.4 Vector fields along maps

Definition 2.4.1. Let M and N be differentiable manifolds and ϕ : N → M a map.
Then a map ξ : N → TM is called a vector field along ϕ, if

πM ◦ ξ = ϕ.

holds. Here πM : TM →M is the “footpoint map”.
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2.4 Vector fields along maps

Example 2.4.2

(1) Vector fields along curves. LetN = I ⊂ R be an open interval and c = ϕ : N = I →M
be a curve.

N
M

ξ
c

An important special case is given by ξ(t) = ċ(t) := ċt(0) where ct(s) := c(t + s).
This is the velocity field of c.

N
M

ξ
c

(2) If N = M and ϕ = id then a vector field along id is just a vector field in the usual
sense.

(3) Let ϕ be constant, i.e., ϕ(x) = p for all x ∈ N . Then a vector field along ϕ is a map
N → TpM .

(4) Let ϕ be differentiable and let ξ be a vector field on N . Then

p 7→ dϕ|p
(
ξ(p)

)
∈ Tϕ(p)M

is a vector field along ϕ.

(5) If ξ is a vector field on M then
p 7→ ξ

(
ϕ(p)

)

is a vector field along ϕ.

Definition 2.4.3. Let N be a differentiable manifold and (M,g) a semi-Riemannian
manifold. Let ϕ : N → M be a differentiable map and η : N → TM a differentiable
vector field along ϕ. For p ∈ N and ξ ∈ TpN we define the covariant derivative

∇ξη ∈ Tϕ(p)M as follows:
Choose a chart x : U → V of M with ϕ(p) ∈ U and write

η(q) =

n∑

j=1

ηj(q) · ∂

∂xj

∣
∣
∣
∣
ϕ(q)
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2 Semi-Riemannian Geometry

with differentiable functions η1, . . . , ηn defined on ϕ−1(U). In addition, choose a
curve c : (−ε, ε) → N with ċ(0) = ξ and set

∇ξη :=

n∑

k=1




d

dt

(
ηk ◦ c

)∣
∣
t=0

+

n∑

i,j=1

ηj(p)
d

dt

(
ϕi ◦ c

)∣
∣
t=0

Γk
ij

(
x
(
ϕ(p)

))




∂

∂xk

∣
∣
∣
∣
ϕ(p)

=
n∑

k=1



∂ξη
k +

n∑

i,j=1

ηj(p) dϕ(ξ)i Γk
ij

(
x
(
ϕ(p)

))




∂

∂xk

∣
∣
∣
∣
ϕ(p)

.

Proposition 2.4.4

Let N be a differentiable manifold, (M,g) a semi-Riemannian manifold and ϕ : N → M a
differentiable map. Let η, η1, η2 be differentiable vector fields along ϕ. Let α1, α2 ∈ R and
f : N → R be a differentiable function. Furthermore, let p ∈ N and ξ, ξ1, ξ2 ∈ TpN .
Then the covariant derivative ∇ξη is defined independently of the choice of chart x and the
choice of curve c with ċ(0) = ξ and we have:

(i) If η is the form η = ζ ◦ ϕ where ζ is a differentiable vector field on M , then we have

∇ξη = ∇dϕ|p(ξ)ζ.

(ii) Locality: If η1 and η2 coincide on a neighborhood of p, then ∇ξη1 = ∇ξη2.

(iii) Linearity in the first argument:

∇α1ξ1+α2ξ2η = α1∇ξ1η + α2∇ξ2η.

(iv) Linearity in the second argument:

∇ξ(α1η1 + α2η2) = α1∇ξη1 + α2∇ξη2.

(v) Product rule I:
∇ξ(f · η) = ∂ξf · η(p) + f(p)∇ξη.

(vi) Product rule II:

∂ξg(η1, η2) = g|ϕ(p)
(
∇ξη1, η2(p)

)
+ g|ϕ(p)

(
η1(p),∇ξη2

)
.

(vii) Torsion freeness: For all charts y of N and all i, j = 1, . . . ,dim(N) we have:

∇ ∂

∂yi
dϕ

(
∂

∂yj

)

= ∇ ∂

∂yj
dϕ

(
∂

∂yi

)

.
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2.4 Vector fields along maps

Proof. The assertions follow directly from the definition and the corresponding state-
ments for the Levi-Civita connection.

Notation 2.4.5. For local coordinates y on N we write

∇η

∂yl
(p) := ∇ ∂

∂yl

∣

∣

∣

p

η =

n∑

k=1




∂ηk

∂yl

∣
∣
∣
∣
y(p)

+

n∑

i,j

∂ϕi

∂yl
(p) · ηj

(
y(p)

)
· Γk

ij

(
x
(
ϕ(p)

))




∂

∂xk
(p).

If N is one-dimensional, we also write

∇η
∂t

=:
∇η
dt
.

Remark 2.4.6. For a vector field along a curve c : I →M we have the following formula
in local coordinates on M :

∇η
dt

(t) =
n∑

k=1



η̇k(t) +
n∑

i,j

ċi(t) · ηj(t) · Γk
ij

(
x
(
c(t)
))




∂

∂xk

∣
∣
∣
∣
c(t)

.

In particular, for the velocity field we get

∇ċ
dt

(t) =

n∑

k=1



c̈k(t) +

n∑

i,j

ċi(t) · ċj(t) · Γk
ij

(
x
(
c(t)
))




∂

∂xk

∣
∣
∣
∣
c(t)

.

Example 2.4.7. Let (M,g) = (Rn, geucl) or (M,g) = (Rn, gMink). Then the gij are con-
stant in Cartesian coordinates. Consequently, the Christoffel symbols with respect to
Cartesian coordinates vanish, Γk

ij = 0.

For a C1-curve c : I → M and a C1-vector field ξ along c with ξ(t) =
∑n

j=1 ξ
j(t) ∂

∂xj |c(t)
we have:

∇
dt
ξ(t) =

n∑

j=1

ξ̇j(t)
∂

∂xj

∣
∣
∣
∣
c(t)

.

Hence, in this case, covariant differentiation just consists of differentiation of the coef-
ficient functions. Note however, that this is no longer true in other coordinate systems
such as polar coordinates.
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2 Semi-Riemannian Geometry

Example 2.4.8. In the Euclidean plane (M,g) = (R2, geucl) we consider the circle line
c(t) = (cos(t), sin(t)) and its velocity field

ξ(t) = ċ(t) = − sin(t)
∂

∂x1

∣
∣
∣
∣
c(t)

+ cos(t)
∂

∂x2

∣
∣
∣
∣
c(t)

.

In Cartesian coordinates we get by the previous example

∇
dt
ξ(t) =

∇
dt
ċ(t) = − cos(t)

∂

∂x1

∣
∣
∣
∣
c(t)

− sin(t)
∂

∂x2

∣
∣
∣
∣
c(t)

= − ∂

∂r

∣
∣
∣
∣
c(t)

.

For the fun of it, let us also carry out the calculation in polar coordinates (r, ϕ). Now

c1(t) = r(t) = 1, c2(t) = ϕ(t) = t and ξ(t) = ∂
∂ϕ

∣
∣
∣
c(t)

, i.e., ξ1(t) = 0 and ξ2(t) = 1. This

time there are no derivatives of the coefficients of ξ but we have to take the Christoffel
symbols into account. Recall from Example 2.3.12 that there are three non-vanishing
Christoffel symbols for polar coordinates,

Γ2
12 = Γ2

21 =
1

r
, Γ1

22 = −r.

Therefore we get

∇
dt
ξ(t) =

2∑

ij=1

ċi(t) ξj(t) Γ1
ij

(

r(t), ϕ(t)
) ∂

∂r

∣
∣
∣
∣
c(t)

+

2∑

ij=1

ċi(t) ξj(t) Γ2
ij

(

r(t), ϕ(t)
) ∂

∂ϕ

∣
∣
∣
∣
c(t)

= ċ2(t) ξ2(t)
(
− r(t)

) ∂

∂r

∣
∣
∣
∣
c(t)

+

(

ċ1(t) ξ2(t)
1

r(t)
+ ċ2(t) ξ1(t)

1

r(t)

)
∂

∂ϕ

∣
∣
∣
∣
c(t)

= 1 · 1 · (−1)
∂

∂r

∣
∣
∣
∣
c(t)

+ (0 · 1 · 1 + 1 · 0 · 1) ∂

∂ϕ

∣
∣
∣
∣
c(t)

= − ∂

∂r

∣
∣
∣
∣
c(t)

.

So indeed, we have obtained the same result.

2.5 Parallel transport

Definition 2.5.1. Let (M,g) be a semi-Riemannian manifold and c : I → M be a
C1-curve. A C1-vector field ξ along c is called parallel, if

∇
dt
ξ ≡ 0.
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2.5 Parallel transport

Example 2.5.2. Let (M,g) = (Rn, geucl) or (Rn, gMink). In Cartesian coordinates, a vector
field ξ(t) =

∑n
j=1 ξ

j(t) ∂
∂xj

∣
∣
c(t)

along a curve c is parallel if and only if ξ̇j(t) = 0 for all

t ∈ I , i.e., if and only if the ξj are constant.

Example 2.5.3. Let (M,g) = (R2, geucl). Recall from Example 2.3.12 that the Christoffel
symbols in polar coordinates (r, ϕ) are given by:

Γ1
11 = Γ2

11 = Γ1
12 = Γ1

21 = Γ2
22 = 0, Γ2

12 = Γ2
21 =

1

r
, Γ1

22 = −r.

Thus ξ = ξ1 ∂
∂r

+ ξ2 ∂
∂ϕ

is parallel along a curve c if and only if

0 =
∇
dt
ξ

= ξ̇1
∂

∂r
+ ξ1 ∇ċ1 ∂

∂r
+ċ2 ∂

∂ϕ

∂

∂r
+ ξ̇2

∂

∂ϕ
+ ξ2∇ċ1 ∂

∂r
+ċ2 ∂

∂ϕ

∂

∂ϕ

= ξ̇1
∂

∂r
+ ξ1

(

ċ1 · 0 + ċ2 · 1

c1
∂

∂ϕ

)

+ ξ̇2
∂

∂ϕ
+ ξ2

(

ċ1
1

c1
∂

∂ϕ
+ ċ2(−c1) ∂

∂r

)

=
(

ξ̇1 − c1 ċ2 ξ2
) ∂

∂r
+

(

ξ̇2 +
ċ2

c1
ξ1 +

ċ1

c1
ξ2
)

∂

∂ϕ
.

This is equivalent to:

ξ̇1 − c1 ċ2 ξ2 = 0, ξ̇2 +
ċ2

c1
ξ1 +

ċ1

c1
ξ2 = 0,

that is (
ξ̇1

ξ̇2

)

=

(
0 c1ċ2

− ċ2

c1
− ċ1

c1

)(
ξ1

ξ2

)

.

This is a system of linear first order ordinary differential equations for (ξ1, ξ2).

Proposition 2.5.4

Let (M,g) be a semi-Riemannian manifold
and c : I →M be a C1-curve and t0 ∈ I .
For any ξ0 ∈ Tc(t0)M there exists exactly one
parallel vector field ξ along cwith ξ(t0) = ξ0.

b c

ξ0

c(t0)
ξ

M
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2 Semi-Riemannian Geometry

Proof. Case 1: Let c(I) be contained in one chart and let x : U → V be such a chart.
Then the condition ∇

dt
ξ = 0 is equivalent to

ξ̇k = −
n∑

i,j=1

(
Γk
ij ◦ x ◦ c

)
ċi · ξj ,

which is a system of linear ordinary equations of first order. Hence there exists a unique
solution with initial condition

(
ξ1(t0), . . . , ξ

n(t0)
)
= (ξ10 , . . . , ξ

n
0 ).

Since the system is linear, the solution is defined on all of I .

Case 2: Suppose c(I) is not contained in one chart.
Existence: The interval I can be open, closed or half-open. We restrict ourselves to open
intervals, the other cases being slightly simpler. Write I = (a, b) where −∞ ≤ a < b ≤
∞. Choose a < ai < t0 < bi < bwith ai → a and bi → bmonotonically. Then c([ai, bi]) is
compact and can be covered by finitely many charts x1 : U1 → V1, . . . , xN : UN → VN .
W.l.o.g. we assume that Ui ∩ c([a1, b1]) is connected.

Ui

c

Not something like this!

bc

bc

bc
bc

c(a1)

c(b1)
c(t0)

c(t1)

ξ0

W.l.o.g. let c(t0) ∈ U1, otherwise renumber the charts. We solve the equation
∇
dt
ξ = 0

as in Case 1 with ξ(t0) = ξ0 in U1.
If the solution is not defined on the whole of [a1, b1], we choose t1 ∈ (a1, b1) with
c(t1) ∈ U1 ∩ U2. Then we solve the equation in the chart x2 with the initial condition
ξ(t1), given by the previous solution.
Due to uniqueness in Case 1 both parallel vector fields coincide onU1∩U2. After finitely
many steps we get a parallel vector field which is defined on [a1, b1].
The same holds true for the next compact subinterval [a2, b2] and we obtain a parallel
vector field on [a2, b2] which extends the one on [a1, b1]. By induction, we then find a
parallel vector field on every [ai, bi] extending the one on the smaller interval[ai−1, bi−1].

Since
⋃N

i=1[ai, bi] = (a, b) we obtain a parallel vector field ξ on (a, b) with ξ(t0) = ξ0.

Uniqueness: Let ξ and ξ̃ be two parallel vector fields along c with ξ(t0) = ξ̃(t0) = ξ0.
Write I = Igood ⊔ Ibad where

Igood =
{
t ∈ I | ξ(t) = ξ̃(t)

}

Ibad =
{
t ∈ I | ξ(t) 6= ξ̃(t)

}
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2.5 Parallel transport

Since ξ and ξ̃ are continuous, Igood is closed in I . For t1 ∈ Igood choose a chart x : U → V

which contains c(t1). By uniqueness in Case 1 we then have ξ(t) = ξ̃(t) for all t ∈ I with
c(t) ∈ U . Therefore a neighborhood of t1 is contained in Igood. Hence Igood is open in I .
We have seen that Igood is open and closed in I . It is also non-empty because t0 ∈ Igood.

Since I is connected, we have I = Igood and therefore ξ(t) = ξ̃(t) for all t ∈ I .

Definition 2.5.5. Let M be a semi-Riemannian manifold and let c : I → M be a
C1-curve. Let t0, t1 ∈ I . The map

Pc,t0,t1 : Tc(t0)M → Tc(t1)M,

ξ0 7→ ξ(t1),

is called parallel transport along c. Here ξ(t) is the parallel vector field along c with
ξ(t0) = ξ0.

Proposition 2.5.6

Let M , c, t0, and t1 as in Definition 2.5.5 and let t2 ∈ I . Then we have:

(a) Pc,t0,t1 : (Tc(t0)M,g|c(t0)) → (Tc(t1)M,g|c(t1)) is a linear isometry;

(b) Pc,t0,t2 = Pc,t1,t2 ◦ Pc,t0,t1 .

Proof. (a) Let ξ0, η0 ∈ Tc(t0)M . Let ξ, η the corresponding parallel vector fields along c.
Then

d

dt
g(ξ, η) = g

( ∇
dt
ξ

︸︷︷︸

=0

, η

)

+ g

(

ξ,
∇
dt
η

︸︷︷︸

=0

)

= 0.

Therefore g(ξ, η) is constant, hence

g
(
Pc,t0,t1(ξ0), Pc,t0,t1(η0)

)
= g

(
ξ(t1), η(t1)

)

= g
(
ξ(t0), η(t0)

)

= g(ξ0, η0).

This proves that parallel transport is a linear isometry.
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2 Semi-Riemannian Geometry

(b) is obvious.

Remark 2.5.7. For ξ0 ∈ Tc(t0)M the parallel vector field ξ with ξ(t0) = ξ0 is given by

ξ(t) = Pc,t0,t1(ξ0).

We can reconstruct the Levi-Civita connection ∇ from parallel transport:

Proposition 2.5.8

Let (M,g) be a semi-Riemannian manifold, let c : I → M be a C1-curve, and let t0 ∈ I .
Then for every C1-vector field ξ along c we get:

∇
dt
ξ

∣
∣
∣
∣
t0

= lim
t→t0

Pc,t,t0

(
ξ(t)

)
− ξ(t0)

t− t0
.

Proof. Let e1(t0), . . . , en(t0) be a basis of Tc(t0)M . Let e1(t), . . . , en(t) be the correspond-
ing parallel vector fields along c.
By Proposition 2.5.6 (a), we know that e1(t), . . . , en(t) form a basis of Tc(t)M for every
t ∈ I . Write ξ(t) =

∑n
j=1 ξ

j(t)ej(t). Then

Pc,t,t0(ξ(t))− ξ(t0)

t− t0
=

∑n
j=1 ξ

j(t)

=ej(t0)
︷ ︸︸ ︷

Pc,t,t0(ej(t))−
∑n

j=1 ξ
j(t0)ej(t0)

t− t0

=

n∑

j=1

ξj(t)− ξj(t0)

t− t0
ej(t0)

t→t0−→
n∑

j=1

ξ̇j(t0)ej(t0).

On the other hand, we have

∇
dt
ξ|t0 =

∇
dt

( n∑

j=1

ξjej

)∣
∣
∣
∣
t=0

=
n∑

j=1

(

ξ̇j(t0)ej(t0) + ξj(t0)
∇
dt
ej |t0

︸ ︷︷ ︸

=0

)
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=

n∑

j=1

ξ̇j(t0)ej(t0).

We have the following scheme of geometric structures:

semi-Riemannian
metric

covariant
derivative ∇

parallel
transport P

Remark 2.5.9. If ψ :M → M̃ is a local isometry and if c : I →M is aC1-curve, consider
the image curve c̃ := ψ ◦ c. Then we have for every C1-vector field ξ along c:

ξ parallel along c ⇐⇒ ξ̃ := dψ ◦ ξ parallel along c̃.

In particular, the following diagram commutes:

Tc(t0)M Tc(t1)M

Tc̃(t0)M̃ Tc̃(t1)M̃

Pc,t0,t1

dψ|c(t0) dψ|c(t1)
Pc̃,t0,t1

Remark 2.5.10. In general, parallel transport depends on the curve joining two given
points. This means, in general we have Pc,t0,t1 6= Pĉ,s0,s1 if c and ĉ are two curves in M
with c(t0) = ĉ(s0) and c(t1) = ĉ(s1). In this respect, Euclidean space is not typical.

Example 2.5.11. Curve dependence of the parallel transport on (M,g) = (S2, gstd) is
illustrated at: http://www.math.uiuc.edu/ ˜ jms/java/dragsphere/

2.6 Geodesics

Definition 2.6.1. Let (M,g) be a semi-Riemannian manifold and c : [a, b] →M a C1-
curve. Then we call

E[c] :=
1

2

b∫

a

g
(
ċ(t), ċ(t)

)
dt

the energy of c.
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Remark 2.6.2. If (M,g) is Riemannian, then g(ċ, ċ) ≥ 0 and therefore E[c] ≥ 0 (and
equal to 0 if and only if c is constant).

Question. Are there curves with minimal energy joining two given endpoints? More
generally, are there curves with “stationary energy”?

Definition 2.6.3. Let M be a differentiable manifold and c : [a, b] → M a smooth
curve. A variation of c is a smooth map

c : (−ε, ε) × [a, b] →M

with c(0, t) = c(t) for all t ∈ [a, b]. If c(s, a) = c(a) and c(s, b) = c(b) for all s ∈ (−ε, ε)
then we call c(s, t) a variation with fixed endpoints.

b

b

c

c(t)

c(s, t)

M

b

b c

M

ξ

The vector field ξ(t) :=
∂c

∂s
(0, t) is called the variational vector field.

Remark 2.6.4. The variational vector field ξ of a variation with fixed endpoints satisfies

ξ(a) = 0 and ξ(b) = 0.

Theorem 2.6.5 (First variation of the energy)

Let (M,g) be a semi-Riemannian manifold, let c : [a, b] → M be a smooth curve and let
c : (−ε, ε)× [a, b] →M be a variation of this curve. Let ξ be the variational vector field.
Write cs(t) = c(s, t). Then

d

ds
E[cs]

∣
∣
s=0

= −
b∫

a

g

(

ξ(t),
∇
dt
ċ(t)

)

dt+ g
(
ξ(b), ċ(b)

)
− g
(
ξ(a), ċ(a)

)
.
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Proof. We compute:

d

ds
E[cs]

∣
∣
s=0

=
1

2

d

ds

∣
∣
∣
∣
s=0

b∫

a

g
(
ċs(t), ċs(t)

)
dt

=
1

2

b∫

a

∂

∂s

∣
∣
∣
∣
s=0

g

(
∂c

∂t
(s, t),

∂c

∂t
(s, t)

)

dt

=
1

2

b∫

a

[

g

(∇
∂s

∂c

∂t
(0, t),

∂c

∂t
(0, t)

)

+ g

(
∂c

∂t
(0, t),

∇
∂s

∂c

∂t
(0, t)

)]

dt

=

b∫

a

g

(∇
∂s

∂c

∂t
(0, t),

∂c

∂t
(0, t)

)

dt

(∗)
=

b∫

a

g

(∇
∂t

∂c

∂s
(0, t),

∂c

∂t
(0, t)

)

dt

=

b∫

a

g

(∇
dt
ξ(t), ċ(t)

)

dt

=

b∫

a

[
d

dt
g(ξ(t), ċ(t))− g

(

ξ(t),
∇
dt
ċ(t)

)]

dt

= g
(
ξ(b), ċ(b)

)
− g
(
ξ(a), ċ(a)

)
−

b∫

a

g

(

ξ(t),
∇
dt
ċ(t)

)

dt.

Equality (∗) holds because of torsion-freeness of the Levi-Civita connection.

Corollary 2.6.6
If the variation has fixed endpoints then

d

ds
E[cs]

∣
∣
s=0

= −
b∫

a

g

(

ξ(t),
∇
dt
ċ(t)

)

dt.
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Lemma 2.6.7

Let c : [a, b] →M be a smooth curve and ξ a smooth vector field along c. Then there exists a
variation c of c with variational vector field ξ. If ξ(a) = 0 and ξ(b) = 0, then we can choose
the variation with fixed endpoints.

Proof. a) We first consider the case that supp(ξ) is contained in a chart x : U → V , i.e.,
c(t) ∈ U whenever ξ(t) 6= 0.

Mc

U

ξ

R
n ⊃ V

(c1, . . . , cn)

x

We write ξ(t) =
n∑

j=1

ξj(t)
∂

∂xj

∣
∣
∣
∣
c(t)

and we set

c(s, t) :=

{

x−1
((
c1(t), . . . , cn(t)

)
+ s
(
ξ1(t), . . . , ξn(t)

))

, c(t) ∈ U

c(t), c(t) 6∈ U

Then we have for the corresponding variational vector field:
(
∂c

∂s
(0, t)

)j

= dxj
(
∂c

∂s
(0, t)

)

=
∂(xj ◦ c)

∂s
(0, t)

=
∂
(
cj(t) + sξj(t)

)

∂s

∣
∣
∣
∣
∣
s=0

= ξj(t).

Hence the variation c has the variational vector field ξ. Moreover, if ξ vanishes at the
endpoints, then c has fixed endpoints.
b) In the general case, cover the compact set c([a, b]) with finitely many charts and
construct the variation piecewise.

Remark 2.6.8. Later, when we have the Riemannian exponential map at our disposal,
we will be able to directly write down a suitable variation without usage of charts.
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2.6 Geodesics

Notation 2.6.9. Let M be a differentiable manifold and p, q ∈M . Then we set

Ωp,q(M) :=
{

smooth curves c : [a, b] →M with c(a) = p and c(b) = q
}
.

Corollary 2.6.10

Let (M,g) be a semi-Riemannian manifold and c ∈ Ωp,q(M). Then the following are equiv-
alent:

(i) The curve c is a “critical point” of the energy functional, i.e.,

d

ds
E[cs]

∣
∣
s=0

= 0

for all variations cs of c with fixed endpoints;

(ii) For all t we have
∇
dt
ċ(t) = 0.

Proof. The implication “(ii)⇒(i)” is directly clear by Corollary 2.6.6. We show “(i)⇒(ii)”.

Let [a, b] be the parameter interval of c. Assume there exists a t0 ∈ (a, b) with
∇
dt
ċ(t0) 6= 0. Then there exists a ξ0 ∈ Tc(t0)M with

g

(

ξ0,
∇
dt
ċ(t0)

)

> 0

because g is non-degenerate. Let ξ̃ be the parallel vector field along c with ξ̃(t0) = ξ0.
By continuity there exists an ε > 0 such that (t0 − ε, t0 + ε) ⊂ (a, b) and

g

(

ξ̃(t),
∇
dt
ċ(t)

)

> 0

holds for all t ∈ (t0 − ε, t0 + ε). We choose a
smooth function ̺ : [a, b] → R with ̺(t) > 0 for
all t ∈ (t0 − ε, t0 + ε) and ̺(t) = 0 otherwise.

a bt0

̺
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2 Semi-Riemannian Geometry

Set ξ(t) := ̺(t) · ξ̃(t). Then we have:

g

(

ξ(t),
∇
dt
ċ(t)

)

= ̺(t) · g
(

ξ̃(t),
∇
dt
ċ(t)

){

> 0 for t ∈ (t0 − ε, t0 + ε)

= 0 otherwise
.

By Lemma 2.6.7 we can choose a variation of c with fixed endpoints and variational
vector field ξ. Then we have for this variation

d

ds
E[cs]

∣
∣
s=0

= −
b∫

a

g

(

ξ(t),
∇
dt
ċ(t)

)

dt < 0

which contradicts the assumption. Hence we have ∇
dt
ċ = 0 on (a, b) and by continuity

also on the whole of [a, b].

Definition 2.6.11. A smooth curve c with ∇
dt
ċ = 0 is called a geodesic.

Example 2.6.12. Let (M,g) = (Rn, geucl) or (Rn, gMink). In Cartesian coordinates
x1, . . . , xn we have:

∇
dt
ċ = 0 ⇐⇒ c̈1 = 0, . . . , c̈n = 0

⇐⇒ cj(t) = pj + tvj

⇐⇒ c(t) = p+ tv.

Hence geodesics are straight lines, parametrized with constant speed.

Lemma 2.6.13

For any geodesic c the quantity g
(
ċ, ċ
)

is constant.

Proof. We compute
d
dt
g
(
ċ, ċ
)
= 2 · g

(
∇
dt
ċ

︸︷︷︸

= 0

, ċ
)

= 0.
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2.6 Geodesics

Definition 2.6.14. A smooth curve c is called

• parametrized by arc-length , if g(ċ, ċ) ≡ 1,

• parametrized by proper time , if g(ċ, ċ) ≡ −1

• parametrized proportional to arc-length , if g(ċ, ċ) ≡ α > 0,

• parametrized proportional proper time , if g(ċ, ċ) ≡ −α < 0 and

• a null curve, if g(ċ, ċ) ≡ 0.

Theorem 2.6.15 (Existence and uniqueness of geodesics)

Let (M,g) be a semi-Riemannian manifold.

For any p ∈ M and ξ ∈ TpM there exists an open
interval I with 0 ∈ I and a geodesic c : I → M with
c(0) = p and ċ(0) = ξ. M

b

ξ
p c

If c : I →M and c̃ : Ĩ →M are two such geodesics with c(0) = c̃(0) and ċ(0) = ˙̃c(0), then
c and c̃ coincide on their common domain I ∩ Ĩ .

Proof. In a chart x : U → V in p we consider the equation for a geodesic

∇
dt
ċ = 0 ⇐⇒ c̈k +

n∑

i,j=1

Γk
ij

(
c1, . . . , cn

)
· ċi · ċj = 0

for k = 1, . . . , n and ck = xk ◦ c. This is a system of ordinary differential equations of
second order. By the Theorem of Picard-Lindelöf the we get the assertion.

Remark 2.6.16. The system of differential equations is non-linear. Therefore we do not
have a-priori control over the maximal domain of definition I of the geodesic.

Remark 2.6.17. If ψ :M → M̃ is a local isometry, then

c : I →M is a geodesic ⇐⇒ ψ ◦ c : I → M̃ is a geodesic.
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2 Semi-Riemannian Geometry

Example 2.6.18. Let M = (R2 \ {0}, geucl) be the Euclidean plane with the origin re-
moved and let M̃ = {(x, y, z) ∈ R

3 |x2 + y2 = z2/3, z < 0)} be a cone with the cone
tip removed and equipped with the first fundamental form g̃. Now ψ : M → M̃ ,
ψ(u, v) = 1

2
√
u2+v2

(u2 − v2, 2uv,−
√
3(u2 + v2)), can be checked to be a local isometry.

Hence ψ maps straight lines in M onto geodesics in M̃ .

bc

R
2 \ {0}

bc

ψ

Definition 2.6.19. Let ψ :M →M be a diffeomorphism. Then we call

Fix(ψ) := {p ∈M |ψ(p) = p}

the fixed point set of ψ.

Proposition 2.6.20

Let (M,g) be a semi-Riemannian manifold and ψ ∈ Isom(M,g).
Then for any p ∈ Fix(ψ) and any ξ ∈ TpM with dψ|p(ξ) = ξ the geodesic c : I →M with

c(0) = p and ċ(0) = ξ

is entirely contained in Fix(ψ), i.e., for all t ∈ I we have c(t) ∈ Fix(ψ).

Proof. Set c̃(t) := ψ ◦ c(t). Since ψ is an isometry, c̃ is also a geodesic. Furthermore, we
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have:

c̃(0) = ψ
(
c(0)

)
= ψ(p) = p = c(0) and

˙̃c(0) = dψ|c(0)
(
ċ(0)

)
= dψ|p(ξ) = ξ = ċ(0).

Applying the uniqueness part of Theorem 2.6.15 we get for all t ∈ I :

c(t) = c̃(t) = ψ
(
c(t)
)
.

This means c(t) ∈ Fix(ψ) for all t.

Example 2.6.21
We use Proposition 2.6.20 to determine the geodesics
of the sphere (Sn, gstd). Let p ∈ Sn and ξ ∈ TpS

n. Let
E ⊂ R

n+1 be the two-dimensional vector subspace
spanned by p and Φp(ξ). Let A : Rn+1 → R

n+1 be the
reflection about E. Then A ∈ O(n+ 1). Hence

ψ := A|Sn ∈ Isom(Sn, gstd).

Then Fix(A) = E and therefore Fix(ψ) = E ∩ Sn is a
great circle.

b

bc

0Sn

E

p

Φp(ξ)

Proposition 2.6.20 implies that c(t) ∈ E ∩ Sn for all t. Since geodesics on a Rie-
mannian manifold are parametrized proportional to arc-length we seek an arc-length
parametrization of this great circle:

c(t) = p · cos(αt) + Φp(ξ)

||Φp(ξ)||
· sin(αt).

We have to satisfy the initial conditions:

c(0) = p is satisfied.

d

dt
c(0) =

Φp(ξ)

||Φp(ξ)||
· α and therefore α = ||Φp(ξ)|| = ||ξ|| .

Then we get d
dt
c(0) = Φp(ξ), i.e., ċ(0) = ξ. Thus the geodesic c with initial conditions

c(0) = p and ċ(0) = ξ is given by

c(t) = p · cos
(
||ξ|| t

)
+

Φp(ξ)

||ξ|| · sin
(
||ξ|| t

)
.

Remark 2.6.22. Let (M,g) be a semi-Riemannian manifold and p ∈M . For ξ ∈ TpM let
cξ be the geodesic with

cξ(0) = p and ċξ(0) = ξ.
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For α ∈ R set c̃(t) := cξ(αt). Then

∇
dt

˙̃c(t) =
∇
dt

(
α · ċξ(αt)

)
= α2

(∇
dt
ċξ

)

(αt) = 0.

Hence c̃ is also a geodesic. Since its initial conditions are

c̃(0) = cξ(0) = p,

˙̃c(0) = α · ċξ(0) = αξ,

we conclude c̃ = cαξ . In particular, cξ(α) = cαξ(1).

Definition 2.6.23. Let M be a semi-Riemannian manifold and p ∈ M . For ξ ∈ TpM
set

expp(ξ) := cξ(1)

if the maximal domain of the geodesic cξ contains 1. Furthermore, set

Dp := {ξ ∈ TpM | 1 is contained in the maximal domain of cξ}.

Then we call expp : Dp →M the Riemannian exponential map (at the point p).

Remark 2.6.24

(1) By Remark 2.6.22 we know expp(t · ξ) = ctξ(1) = cξ(t). Thus t 7→ expp(tξ) is the
geodesic with initial values p and ξ.

(2) For any p ∈M we have expp(0) = p because c0 is the constant curve c0(t) = p.

(3) Let ξ ∈ Dp. Then cξ is defined on [0, 1]. Let
0 ≤ α ≤ 1. From cαξ(t) = cξ(αt) we see that
cαξ is defined on

[
0, 1

α

]
⊃ [0, 1]. Therefore

αξ ∈ Dp. This shows that Dp is star-shaped
with respect to 0 ∈ TpM . TpM

b 0

Dp

(4) Set D :=
⋃

p∈M Dp ⊂ TM and exp : D → M , exp(ξ) := expπ(ξ)(ξ). The theory of
ordinary differential equations implies that D is open and that exp is a smooth map
(smooth dependence of solutions of the initial values). In particular, Dp = D∩ TpM
is open in TpM .

72



2.6 Geodesics

Example 2.6.25

(1) Let (M,g) = (Rn, geucl) or (Rn, gMink). Then we have:

expp(ξ) = p+ 1 · Φp(ξ) = p+Φp(ξ).

Here Dp = TpR
n.

(2) Let (M,g) = (R2 \ {0}, geucl). Then

Dp = TpM \
{
− t · Φp

−1(p) | t ≥ 1
}
.

R
2

b

bc0
p

ξ

(3) Let (M,g) = (Sn, gstd). Then we have Dp =
TpM and

expp(ξ) = p · cos (||ξ||) + Φp(ξ)

||ξ|| · sin (||ξ||).

bb

Dp

ξ

p

TpM

M

Lemma 2.6.26

The differential of the map expp : Dp →M at 0 is given by the canonical isomorphism

d expp |0 = Φ0 : T0Dp = T0TpM → TpM.

Proof. Let ξ ∈ TpM . Then we have:

d expp
∣
∣
0

(
Φ0

−1(ξ)
)
= d expp

∣
∣
0

(
d

dt
(tξ)

∣
∣
t=0

)

=
d

dt
expp(tξ)

∣
∣
t=0

= ξ.

In the literature Lemma 2.6.26 is sometimes formulated slightly imprecisely as follows

idTpM = d expp
∣
∣
0
: TpM → TpM.

Corollary 2.6.27

For p ∈M there exists an open neighborhood Vp ⊂ Dp ⊂ TpM of 0, such that

expp |Vp : Vp → expp(Vp) =: Up
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is a diffeomorphism.

Proof. By Lemma 2.6.26 d expp |0 is invertible. The inverse function theorem yields the
claim.

Remark 2.6.28. In general, expp : Dp → expp(Dp) ⊂M is not a diffeomorphism because
expp is not injective in general. Moreover, d expp |ξ is not necessarily invertible for ξ 6= 0.

Example 2.6.29. Let (M,g) = (Sn, gstd). For p ∈ Sn we have Dp = TpM and

expp(ξ) = p · cos
(
||ξ||
)
+

Φp(ξ)

||ξ|| · sin
(
||ξ||
)
.

In particular, for any ξ ∈ TpM with ||ξ|| = π
we have

expp(ξ) = p · cos(π) = −p.

b
b

b−p

p TpS
n

Sn

{ξ ∈ TpM | ||ξ|| = π}

For ξ ∈ TpM with ||ξ|| = π the differential d expp |ξ has the (n− 1)-dimensional kernel

{η ∈ TξTpS
n |Φξ(η) ⊥ ξ}.

Now we construct coordinates which are well adapted to the geometry and to this end
we choose a generalized orthonormal basis E1, . . . , En of TpM regarding g|p, that is

g|p(Ei, Ej) = εi δij , εi ∈ {±1}.

We get a linear isomorphism A : Rn → TpM , (α1, . . . , αn) 7→
n∑

i=1
αiEi.

TpM ⊃Vp Up ⊂M

R
n⊃ Vp

expp

≈
∼= A

≈

We put Vp := A−1(Vp). Then expp ◦A : Vp → Up is a diffeomorphism. Set
x := (expp ◦A)−1. Then x : Up → Vp is a chart.

74



2.6 Geodesics

Definition 2.6.30. The coordinates we just defined are called Riemannian normal

coordinates around the point p.

In which sense are these coordinates well adapted to the geometry?

Proposition 2.6.31

Let (M,g) be a semi-Riemannian manifold and p ∈ M . Let gij : Vp → R be the metric

coefficients and Γk
ij : Vp → R be the Christoffel symbols in Riemannian normal coordinates

around p. Then we have:

x(p) = 0, gij(0) = εi δij , Γk
ij(0) = 0.

Proof. a) Clearly, we have x(p) = A−1
(
expp

−1(p)
)
= A−1(0) = 0.

b) Let e1, . . . , en be the standard basis of Rn. Then

gij(0) = g|p
(
dx−1|0(ei), dx−1|p(ej)

)

= g|p
(
d(expp ◦A)|0(ei), d(expp ◦A)|0(ei)

)

= g|p
(
d expp |0(Ei), d expp |0(Ej)

)

L. 2.6.26
= g|p(Ei, Ej)

= εi δij

c) Let v = (v1, . . . , vn) ∈ R
n. Then c(t) = x−1(tv) = expp(tAv) is a geodesic with

c(0) = p and ċ(0) = Av. In Riemannian normal coordinates the equation for a
geodesic is in this case

0 = c̈k(t) +

n∑

i,j=1

Γk
ij

(
c1(t), . . . , cn(t)

)
· ċi(t) · ċj(t).

Here ck(t) = xk(c(t)) = tvk, ċk(t) = vk and c̈k(t) = 0. For t = 0 we get

0 = 0 +

n∑

i,j=1

Γk
ij(0, . . . , 0) · vi · vj .
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2 Semi-Riemannian Geometry

For each k we define a bilinear form βk on R
n by βk(y, z) :=

∑n
i,j=1 Γ

k
i,j(0) y

i zj .
These bilinear forms are symmetric because:

βk(z, y) =
n∑

i,j=1

Γk
ij(0) z

i yj=
n∑

j,i=1

Γk
ji(0) z

j yi=
n∑

i,j=1

Γk
ij(0) y

i zj = βk(y, z).

Exchanging
indices

∇ free of
torsion

Since we know that βk(v, v) = 0 for all v ∈ R
n, polarization yields βk(y, z) = 0 for

all y, z ∈ R
n. This means Γk

ij(0) = 0 for all i, j, k.

b

b

M

TpM

0

p Geodesic
in M
through p

straight lines in R
n through 0

Example 2.6.32. Let (M,g) = (Rn, geucl) or (Rn, gMink) and p ∈M . Choose

A = Φp = canonical isomorphism R
n → TpR

n.

Then we have expp(Av) = p + v, thus Riemannian normal coordinates around p are
given by

x : Rn → R
n, x(q) = q − p.

Up to translation by −p, Riemannian normal coordinates coincide with Cartesian coor-
dinates.

Corollary 2.6.33
In Riemannian normal coordinates we have for the Taylor expansion of gij : Vp → R

around 0:
gij(x) = εi δij +O(||x||2).
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2.6 Geodesics

Proof. Expanding gij into a Taylor series at 0 yields

gij(x) = gij(0) +
n∑

k=1

∂gij
∂xk

(0) · xk +O
(
||x||2

)
.

In the proof of Theorem 2.3.8 we found

∂gij
∂xk

(0) =
n∑

l=1

(

Γl
ki(0) glj(0) + Γl

kj(0) gil(0)
)

which is zero in our situation because the Christoffel symbols vanish at 0.
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3 Curvature

We now come to one of the central concepts of differential geometry, that of curvature.
We will see that there are various inequivalent notions of curvature. We start with the
most basic one.

3.1 The Riemannian curvature tensor

Definition 3.1.1. Let (M,g) be a semi-Riemannian manifold and p ∈M .
Let ξ ∈ TpM and η, ζ ∈ Ξp(M). Then we have ∇ηζ ∈ Ξp(M) and

∇2
ξ,ηζ := ∇ξ∇ηζ −∇∇ξηζ ∈ TpM

is called the second covariant derivative of ζ in the direction ξ and η.

Lemma 3.1.2

The second covariant derivative ∇2
ξ,ηζ depends on η only via η|p, i.e., if η, η̃ ∈ Ξp(M) with

η|p = η̃|p then
∇2

ξ,ηζ = ∇2
ξ,η̃ζ.

Proof. We choose Riemannian normal coordinates x around p. In these coordinates we
write (using the Einstein summation convention) the vector fields locally as:

ξ = ξi
∂

∂xi

∣
∣
∣
∣
p

, η = ηj
∂

∂xj
, ζ = ζk

∂

∂xk
.

Since the Christoffel symbols vanish at 0 we get

∇ξη = ∇
ξi ∂

∂xi

∣

∣

∣

p

(

ηj
∂

∂xj

)

= ξi
∂ηj

∂xi
(0)

∂

∂xj

∣
∣
∣
∣
p
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3 Curvature

and therefore

∇∇ξηζ = ξi
∂ηj

∂xi
(0)∇ ∂

∂xj

∣

∣

∣

p

(

ζk
∂

∂xk

)

= ξi
∂ηj

∂xi
(0)

∂ζk

∂xj
(0)

∂

∂xk

∣
∣
∣
∣
p

. (3.1)

Moreover,

∇ηζ = ∇ηj ∂

∂xj

(

ζk
∂

∂xk

)

= ηj
(
∂ζk

∂xj
∂

∂xk
+ ζk Γm

jk

∂

∂xm

)

and hence (again using that the Christoffel symbols vanish)

∇ξ∇ηζ = ∇
ξi ∂

∂xi

∣

∣

∣

p

(

ηj
∂ζk

∂xj
∂

∂xk
+ ηjζkΓm

jk

∂

∂xm

)

= ξi
∂ηj

∂xi
(0)

∂ζk

∂xj
(0)

∂

∂xk

∣
∣
∣
∣
p

+ ξiηj(0)
∂2ζk

∂xj∂xi
(0)

∂

∂xk

∣
∣
∣
∣
p

+ ξiηj(0)ζk
∂Γm

jk

∂xi
(0)

∂

∂xm

∣
∣
∣
∣
p

.

(3.2)

Subtracting (3.1) from (3.2) we see that the terms containing a derivative of the ηj cancel
and we are left with

∇2
ξ,ηζ =

[

ξiηj(0)
∂2ζk

∂xi∂xj
(0) + ξiηj(0)ζm(0)

∂Γk
im

∂xi
(0)

]
∂

∂xk

∣
∣
∣
∣
p

. (3.3)

This expression depends on η only via the ηj(0) which are the coefficients of η|p.

Consequence. The express ∇2
ξ,ηζ is well defined for ξ, η ∈ TpM and ζ ∈ Ξp.

Lemma 3.1.4

For ξ, η ∈ TpM and ζ ∈ Ξp(M)

R(ξ, η)ζ := ∇2
ξ,ηζ −∇2

η,ξζ

depends only on ζ via ζ|p. Thus R(ξ, η)ζ ∈ TpM is well defined for ξ, η, ζ ∈ TpM .

Proof. Again we choose Riemann normal coordinates around p and recall (3.3):

∇2
ξ,ηζ = ξi(0)ηj(0)

(

∂2ζk

∂xi∂xj
(0) + ζm(0)

∂Γk
jm

∂xi
(0)

)

∂

∂xk

∣
∣
∣
∣
p

.
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3.1 The Riemannian curvature tensor

Relabeling summation indices and using the Schwarz theorem we get

R(ξ, η)ζ

=
(

ξi(0)ηj(0) − ξj(0)ηi(0)
)
(

∂2ζk

∂xi∂xj
(0) + ζm(0)

∂Γk
jm

∂xi
(0)

)

∂

∂xk

∣
∣
∣
∣
p

= ξi(0)ηj(0)

(

∂2ζk

∂xi∂xj
(0)− ∂2ζk

∂xj∂xi
(0) + ζm(0)

∂Γk
jm

∂xi
(0)− ζm(0)

∂Γk
im

∂xj
(0)

)

∂

∂xk

∣
∣
∣
∣
p

= ξi(0)ηj(0)ζm(0)

(

∂Γk
jm

∂xi
(0)− ∂Γk

im

∂xj
(0)

)

∂

∂xk

∣
∣
∣
∣
p

.

Definition 3.1.5. The map

R : TpM × TpM × TpM → TpM

(ξ, η, ζ) 7→ R(ξ, η)ζ

is called the Riemann curvature tensor at the point p.

Representation in local coordinates.

Let x : U → V be a chart on M . Then R is determined on U by smooth functions
Rl

kij : V → R, defined by

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
=

n∑

l=1

Rl
kij

∂

∂xl
. (3.4)

As we have already seen, we have in Riemann normal coordinates:

Rl
kij(0) =

∂Γl
jk

∂xi
(0) − ∂Γl

ik

∂xj
(0)

Remark 3.1.6. One can check (not difficult but tedious) that we have in arbitrary coor-
dinates

Rl
kij =

∂Γl
jk

∂xi
− ∂Γl

ik

∂xj
+

n∑

m=1

(Γm
kjΓ

l
mi − Γm

kiΓ
l
mj)

In particular, if the curvature tensorR : TpM × TpM × TpM → TpM does not vanish at
the point p, then there does not exist a chart containing p for which Γk

ij ≡ 0.
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3 Curvature

Proposition 3.1.7 (Symmetries of the curvature tensor)

Let (M,g) be a semi-Riemannian manifold, p ∈M and ξ, η, ζ, ν ∈ TpM . Then we have:

(1) R : TpM × TpM × TpM → TpM is trilinear;

(2) R(ξ, η)ζ = −R(η, ξ)ζ ;

(3) g|p(R(ξ, η)ζ, ν) = −g|p(R(ξ, η)ν, ζ);

(4) First Bianchi-identity:

R(ξ, η)ζ +R(η, ζ)ξ +R(ζ, ξ)η = 0:

(5) g|p(R(ξ, η)ζ, ν) = g|p(R(ζ, ν)ξ, η).

Proof.

(1) is obvious because ∇2
ξ,ηζ is already R-linear in ξ, η and ζ .

(2) is also clear by definition.

(3) We choose Riemannian normal coordinates around p and consider the special case

ξ =
∂

∂xi

∣
∣
∣
∣
p

, η =
∂

∂xj

∣
∣
∣
∣
p

, ζ =
∂

∂xk

∣
∣
∣
∣
p

, ν =
∂

∂xl

∣
∣
∣
∣
p

.

Then we find

g|p
(

R(ξ, η)ζ, ν
)

= g|p
(

R

(

∂

∂xi

∣
∣
∣
∣
p

,
∂

∂xj

∣
∣
∣
∣
p

)

∂

∂xk

∣
∣
∣
∣
p

,
∂

∂xl

∣
∣
∣
∣
p

)

= g|p
(

n∑

m=1

Rm
kij(0)

∂

∂xm

∣
∣
∣
∣
p

,
∂

∂xl

∣
∣
∣
∣
p

)

=

n∑

m=1

Rm
kij(0) · g|p

(

∂

∂xm

∣
∣
∣
∣
p

,
∂

∂xl

∣
∣
∣
∣
p

)

=

n∑

m=1

gml(0) · Rm
kij(0).

From the proof of Theorem 2.3.8 we recall

∂gij
∂xk

=

n∑

m=1

(gmjΓ
m
ki + gmiΓ

m
kj)
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3.1 The Riemannian curvature tensor

and thus, in Riemannian normal coordinates,

∂2gij
∂xk∂xl

(0) =
n∑

m=1

(

gmj(0)
∂Γm

ki

∂xl
(0) + gmi(0)

∂Γm
kj

∂xl
(0)

)

.

Thus

0 =
∂2gij
∂xk∂xl

(0)− ∂2gij
∂xl∂xk

(0)

=
n∑

m=1

(

gmj(0)
∂Γm

ki

∂xl
(0) + gmi(0)

∂Γm
kj

∂xl
(0)− gmj(0)

∂Γm
li

∂xk
(0) − gmi(0)

∂Γm
lj

∂xk
(0)

)

=

n∑

m=1

(

gmj(0)R
m
ilk(0) + gmi(0)R

m
jlk(0)

)

Renaming the indices via l 7→ i, k 7→ j, i 7→ k, j 7→ l leads to

0 =

n∑

m=1

(

gml(0)R
m
kij(0) + gmk(0)R

m
lij(0)

)

and therefore
n∑

m=1

gml(0)R
m
kij(0) = −

n∑

m=1

gmk(0)R
m
lij(0).

This proves the assertion for coordinate fields ξ, η, ζ, ν of Riemannian normal coor-
dinates.

By multilinearity the assertion follows for general ξ, η, ζ and ν.

(4) The first Bianchi-identity is equivalent to

Rl
kij +Rl

ijk +Rl
jki = 0.

We check this in Riemann normal coordinates:

Rl
kij(0) +Rl

ijk(0) +Rl
jki(0)

=
∂Γl

jk

∂xi
(0)− ∂Γl

ik

∂xj
(0)+

∂Γl
ki

∂xj
(0)− ∂Γl

ji

∂xk
(0)+

∂Γl
ij

∂xk
(0)−

∂Γl
kj

∂xi
(0)

= 0.
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3 Curvature

(5) Proof by an explicit calculation:

0
(4)
= g|p(R(η, ζ)ξ, ν)+g|p(R(ζ, ξ)η, ν)+ g|p(R(ξ, η)ζ, ν)
+g|p(R(ζ, ξ)ν, η)+g|p(R(ξ, ν)ζ, η)+ g|p(R(ν, ζ)ξ, η)
+g|p(R(ξ, ν)η, ζ)+g|p(R(ν, η)ξ, ζ)+ g|p(R(η, ξ)ν, ζ)
+g|p(R(ν, η)ζ, ξ)+g|p(R(η, ζ)ν, ξ)+ g|p(R(ζ, ν)η, ξ)

(2),(3)
= 2g|p(R(ξ, η)ζ, ν) + 2g|p(R(ζ, ν)η, ξ)

= 2(g|p(R(ξ, η)ζ, ν) − g|p(R(ζ, ν)ξ, η)) .

Example 3.1.8. Let (M,g) = (Rn, geucl) or (Rn, gMink). In Cartesian coordinates we have
Γk
ij = 0. Thus we get Rl

kij = 0 for all i, j, k, l and therefore R ≡ 0.

Definition 3.1.9. A semi-Riemannian manifold with R ≡ 0 is called flat.

Warning. In the literature there are two different sign conventions for R: For example,
our R is the negative of the curvature tensor as defined in [ON83].

Lemma 3.1.11

Let (M,g) and (M̃, g̃) be semi-Riemannian manifolds and ψ :M → M̃ a local isometry. Let

p ∈M . Then the curvature tensors R of M at p and R̃ of M̃ at ψ(p) are related by:

dψ|p
(
R(ξ, η)ζ

)
= R̃

(
dψ|p(ξ), dψ|p(η)

)
dψ|p(ζ)

for all ξ, η, ζ ∈ TpM .

Proof. Let x : U → V be a chart on M with p ∈ U . By making U smaller if necessary we
can assume that ψ : U → Ũ := ψ(U) is a diffeomorphism. Then x̃ := x ◦ ψ−1 : Ũ → V
is a chart on M̃ .
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3.1 The Riemannian curvature tensor

Since ψ is a local isometry, it follows that gij = g̃ij : V → R, where the gij are the
components of g w.r.t. x and the g̃ij are the components of g̃ w.r.t. x̃. Therefore the
Christoffel symbols coincide, Γk

ij = Γ̃k
ij , hence so do the components of the curvature

tensors,Rl
kij = R̃l

kij . From (3.4) we conclude

dψ

(

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk

)

=

n∑

l=1

Rl
kijdψ

( ∂

∂xl

)

=

n∑

l=1

Rl
kij

∂

∂x̃l

=

n∑

l=1

R̃l
kij

∂

∂x̃l

= R̃

(
∂

∂x̃i
,
∂

∂x̃j

)
∂

∂x̃k

= R̃

(

dψ
( ∂

∂xi

)

, dψ
( ∂

∂xj

))

dψ
( ∂

∂xk

)

.

This proves the lemma for the coordinate basis tangent vectors ∂
∂xi . By trilinearity of R

it follows for all tangent vectors.

Alternatively one can define the curvature tensor as a multilinear mapR : TpM×TpM×
TpM × TpM → R by

R(ξ, η, ζ, ν) = g
(
R(ξ, η)ζ, ν

)
.

In this version, R is known as the Riemannian (4, 0)-curvature tensor. In local coordinates
x : U → V around p, we define Rijkl : V → R by

Rijkl(x(p)) := R

(

∂

∂xi

∣
∣
∣
∣
p

,
∂

∂xj

∣
∣
∣
∣
p

,
∂

∂xk

∣
∣
∣
∣
p

,
∂

∂xl

∣
∣
∣
∣
p

)

.

Then we have

Rijkl

Prop.
3.1.7(5)
= Rklij

= g

(

R

(
∂

∂xk
,
∂

∂xl

)
∂

∂xi
,
∂

∂xj

)

= g

(
n∑

m=1

Rm
ikl

∂

∂xm
,
∂

∂xj

)

=

n∑

m=1

Rm
ikl g

(
∂

∂xm
,
∂

∂xj

)

=

n∑

m=1

gmjR
m
ikl.
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3 Curvature

Hence we have

Rijkl =
n∑

m=1

gmjR
m
ikl

We have lowered the upper index. On the other hand we have

Rl
kij =

n∑

m=1

δlmR
m
kij =

n∑

a,m=1

galgmaR
m
kij,

hence

Rl
kij =

n∑

a=1

galRkaij

In this case we have raised the index.

Proposition 3.1.12

Let (M,g) be a semi-Riemannian manifold. In Riemannian normal coordinates we have:

gij(x) = εi δij +
1

3

n∑

k,l=1

Rikjl(0)x
kxl +O

(
||x||3

)
.

Proof. We already know that gij (x) = εi δij + O (||x||2) by Corollary 2.6.33. In the fol-
lowing we will use the Einstein summation convention and the following abbreviations

f,k :=
∂f

∂xk
and f,kℓ =

∂2f

∂xk∂xℓ

for the first and the second partial derivatives. In the proof of Theorem 2.3.8 we have
seen that

gij,k = Γm
ki gmj + Γm

kj gmi .

We differentiate this equation with respect to xℓ , evaluate at 0 and use that the Christof-
fel symbols vanish at 0:

gij,kℓ (0) = Γm
ki,ℓ (0) · gmj (0) + Γm

kj,ℓ (0) gmi (0) . (3.5)

Claim:
Γk
ij,ℓ (0) + Γk

ℓi,j (0) + Γk
jℓ,i (0) = 0 . (3.6)
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3.1 The Riemannian curvature tensor

Proof of the claim: In normal coordinates the straight lines t 7→ t · x give geodesics. The
equation for geodesics then looks like:

0 = Γk
ij (t · x)xixj .

We differentiate this with respect to t and evaluate at t = 0:

0 =
d

dt

∣
∣
∣
∣
t=0

Γk
ij (tx)x

ixj = Γk
ij,ℓ (0)x

ℓxixj .

Thus we have for every k a polynomial of third degree in x, namely
P k (x) := Γk

ij,ℓ (0)x
ixjxℓ , which vanished identically. Thus for every monomial

xαxβxγ the sum of coefficients Γk
ij,ℓ (0) with xixjxℓ = xαxβxγ has to vanish. The

six permutations of the three lower indices yield

Γk
ij,ℓ (0) + Γk

ℓi,j (0) + Γk
jℓ,i (0) + Γk

ji,ℓ (0) + Γk
iℓ,j (0) + Γk

ℓj,i (0) = 0.

The symmetry of the Christoffel symbols in their two lower indices implies the claim.✓
From Rℓ

kij (0) = Γℓ
jk,i (0) − Γℓ

ik,j (0) we conclude:

Rkℓij (0) =
(
Γm
jk,i (0)− Γm

ik,j (0)
)
gmℓ (0)

(3.6)
= −

(
Γm
ij,k (0) + Γm

ki,j (0) + Γm
ik,j (0)

)
gmℓ (0)

= −
(
Γm
ij,k (0) + 2Γm

ki,j (0)
)
gmℓ (0) . (3.7)

Thus we have:

2Rikjℓ (0)x
kxℓ

Prop. 3.1.7
= (−Rkijℓ (0)−Rℓjik (0)) x

kxℓ

(3.7)
=

(
Γm
jℓ,k (0) + 2Γm

kj,ℓ (0)
)
gmi (0)x

kxℓ

+
(
Γm
ik,ℓ (0) + 2Γm

ℓi,k (0)
)
gmj (0)x

kxℓ

(∗)
=

(
Γm
jℓ,k (0) + 2Γm

kj,ℓ (0)
)
gmi (0)x

kxℓ

+
(
Γm
iℓ,k (0) + 2Γm

ki,ℓ (0)
)
gmj (0)x

ℓxk

(3.5)
=

(
gij,ℓk (0) + 2gij,kℓ (0)

)
· xkxℓ

= 3gij,kℓ (0) · xkxℓ .

At equality (∗) we renamed the summation parameter k to ℓ and vice versa. Thus we
get for the second term in the Taylor expansion

1

2
gij,kℓ (0)x

kxℓ =
1

3
Rikjℓ (0) · xkxℓ .
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3 Curvature

3.2 Sectional curvature

The Riemannian curvature tensor contains the full curvature information of a Rieman-
nian manifold but for many applications other curvature entities are more suitable. We
will introduce the sectional curvature, Ricci curvature and scalar curvature in this and
the following sections.
We start with some linear algebra. Let V be a finite dimensional real vector space with
a non-degenerate symmetric bilinear form 〈·, ·〉. Later we will apply this to V = TpM
and 〈·, ·〉 = g|p(·, ·).

Definition 3.2.1. A subvector space U ⊂ V is called non-degenerate, if
〈·, ·〉 |U×U : U × U → R is a non-degenerate bilinear form on U . We define:

Gk

(
V, 〈·, ·〉

)
:=
{
k-dimensional, non-degenerate subvector spaces of V

}
.

Note that every subvector space is non-degenerate if 〈·, ·〉 is definite. We set

Q : V × V → R, Q(ξ, η) := 〈ξ, ξ〉 〈η, η〉 − 〈ξ, η〉2 .

Lemma 3.2.2

For two-dimensional subvector spaces E ⊂ V the following assertions are equivalent:

(i) E ∈ G2(V, 〈·, ·〉);

(ii) there exists a basis ξ, η of E with Q(ξ, η) 6= 0;

(iii) for all basis ξ, η of E we have Q(ξ, η) 6= 0.

Proof. With respect to any basis ξ, η of E, the bilinear form 〈·, ·〉 |E×E is represented by
the matrix

Aξ,η :=

(
〈ξ, ξ〉 〈η, ξ〉
〈ξ, η〉 〈η, η〉

)

.

Then we have Q(ξ, η) = detAξ,η which proves the lemma.
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3.2 Sectional curvature

Remark 3.2.3

(a) If 〈·, ·〉 is positive definite, then

√

Q(ξ, η) = area of the parallelogram spanned by ξ and η.

(b) The two-dimensional subvector spaceE ⊂ V is degenerate if and only if there exists
a basis ξ, η of E with 〈ξ, ξ〉 = 〈ξ, η〉 = 0. Namely,

“⇐”: Q(ξ, η) = 〈ξ, ξ〉
︸ ︷︷ ︸

=0

〈η, η〉 − 〈ξ, η〉
︸ ︷︷ ︸

=0

2 = 0.

“⇒”: Let E be degenerate, i.e., 〈·, ·〉 |E×E is degenerate. Then there exists a
ξ ∈ E \ {0} with 〈ξ, ζ〉 = 0 for all ζ ∈ E. Now complete ξ by some η to
a basis of E. ✓

Example 3.2.4

Let V = R
3 with the Minkowski product

〈〈ξ, η〉〉 = −ξ0η0 + ξ1η1 + ξ2η2.

Consider the lightcone

C := {ξ ∈ R
3 \ {0} | 〈〈ξ, ξ〉〉 = 0}.

Then the plane E ⊂ R
3 is degenerate if and only if

E = TpC for some p ∈ C.

b

x0

x1, x2

C

Namely, assume c : (−ε, ε) → C is a smooth curve with c(0) = p and ċ(0) = ξ. Then we
have:

〈〈c(t), c(t)〉〉 = 0 ∀ t ∈ (−ε, ε)

⇒ 0 =
d

dt

∣
∣
∣
∣
t=0

〈〈c(t), c(t)〉〉 = 2 〈〈ċ(0), c(0)〉〉 = 2 〈〈ξ, p〉〉

⇒ TpC ⊂ p⊥, where both are two-dimensional subvector spaces of R3

⇒ TpC = p⊥

⇒ for ξ = p and any η ∈ TpC which is not a multiple of ξ we obtain a basis of TpC
with 〈〈ξ, ξ〉〉 = 〈〈ξ, η〉〉 = 0

⇒ TpC is degenerate.

Conversely, if E is degenerate, then we choose a basis ξ, η of E such that 〈〈ξ, ξ〉〉 =
〈〈ξ, η〉〉 = 0. We put p := ξ. Clearly p ∈ C. Now we have E ⊂ p⊥ = TpC. Since both E
and TpC are two-dimensional we conclude E = TpC. ✓
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b

p

p⊥

b b

degenerate non-degenerate non-degenerate
(indefinite) (definite)

Lemma 3.2.5

Let V be a finite-dimensional real vector space with non-degenerate symmetric bilinear
form 〈·, ·〉. Let R : V × V × V × V → R be multilinear with

R(ξ, η, ζ, ν) = −R(η, ξ, ζ, ν) = −R(ξ, η, ν, ζ)

for all ξ, η, ζ, ν ∈ V . Then for E ∈ G2(V, 〈·, ·〉) and any basis ξ, η of E the expression

K(E) :=
R(ξ, η, η, ξ)

Q(ξ, η)

does not depend on the choice of the basis ξ, η of E, but only on E itself.

Proof. Let µ, ν be another basis of E with µ = aξ + bη and ν = cξ + dη. Then we have:

R(µ, ν, ν, µ) = R(aξ + bη, cξ + dη, cξ + dη, aξ + bη)

= adcb ·R(ξ, η, ξ, η) + adda ·R(ξ, η, η, ξ) + bccb ·R(η, ξ, ξ, η)

+ bcda ·R(η, ξ, η, ξ)

=
(
− abcd+ a2d2 + b2c2 − abcd

)
·R(ξ, η, η, ξ)

= (ad− bc)2 ·R(ξ, η, η, ξ) (3.8)

The map R1 : V × V × V × V → R, defined by

R1(ξ, η, ζ, ν) := 〈ξ, ν〉 〈η, ζ〉 − 〈ξ, ζ〉 〈η, ν〉
has all the symmetries of the curvature tensor as in Proposition 3.1.7. Hence we get

R1(µ, ν, ν, µ)
︸ ︷︷ ︸

= Q(µ, ν)

= (ad− bc)2 R1(ξ, η, η, ξ)
︸ ︷︷ ︸

= Q(ξ, η)

. (3.9)
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3.2 Sectional curvature

Dividing (3.8) by (3.9) proves the lemma.

Set G2(M,g) :=
⋃

p∈M
G2(TpM,g|p).

Definition 3.2.6. The function K : G2(M,g) → R, defined by

K(E) :=
R(ξ, η, η, ξ)

Q(ξ, η)
,

where ξ, η is a basis of E, is called sectional curvature of (M,g). Here R is the Rie-
mannian (4, 0)-curvature tensor.

Remark 3.2.7. The sectional curvature is only defined for manifolds of dimension at
least 2. If dim(M) = 1, then R(ξ, η, ζ, ν) = 0 for all ξ, η, ζ, ν ∈ TpM due to the skew-
symmetry in ξ and η.

Definition 3.2.8. If (M,g) is a two-dimensional semi-Riemannian manifold, then we
call

K :M → R, K(p) := K(TpM)

the Gauß curvature of M .

Remark 3.2.9. The sectional curvature determines the curvature tensor, as can be seen
by

6R(ξ, η, ζ, ν) = K(ξ + ν, η + ζ)Q(ξ + ν, η + ζ)−K(η + ν, ξ + ζ)Q(η + ν, ξ + ζ)

−K(ξ, η + ζ)Q(ξ, η + ζ)−K(η, ξ + ν)Q(η, ξ + ν)

−K(ζ, ξ + ν)Q(ζ, ξ + ν)−K(ν, η + ζ)Q((ν, η + ζ)

+K(ξ, η + ν)Q(ξ, η + ν) +K(η, ζ + ξ)Q(η, ζ + ξ)

+K(ζ, η + ν)Q(ζ, η + ν) +K(ν, ξ + ζ)Q(ν, ξ + ζ)

+K(ξ, ζ)Q(ξ, ζ) +K(η, ν)Q(η, ν) −K(ξ, ν)Q(ξ, ν)−K(η, ζ)Q(η, ζ)
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3 Curvature

for all ξ, η, ζ, ν ∈ TpM , for which the corresponding sectional curvatures are
defined. The set of quadruples (ξ, η, ζ, ν), that satisfies this, is open and
dense in TpM × TpM × TpM × TpM . By continuity this determines R on all of
TpM × TpM × TpM × TpM .

Special case: If K(E) only depends on p but not on the particular plane E ⊂ TpM (satis-
fied automatically if dim(M) = 2, but not in general if dim(M) ≥ 3), then:

R(ξ, η, ζ, ν) = K(p)
(
〈η, ζ〉 〈ξ, ν〉 − 〈ξ, ζ〉 〈η, ν〉

)
.

Moreover, we always have: K = 0 ⇔ R = 0.

3.3 Ricci- and scalar curvature

The Riemann curvature tensor and sectional curvature can be computed from one an-
other. They contain the same amount of information. Both are rather complicated ob-
jects. In this section we introduce two simplified curvature concepts which however
contain less information than the full curvature tensor.
Let (M,g) be a semi-Riemannian manifold and p ∈ M . The Riemann curvature tensor
at the point p ∈M is a multilinear map

R : TpM × TpM × TpM → TpM.

For fixed ξ, η ∈ TpM we get a linear map

R(ξ, ·)η : TpM → TpM, ζ 7→ R(ξ, ζ)η.

Definition 3.3.1. The map ric : TpM × TpM → R,

ric(ξ, η) := −tr(R(ξ, ·)η) = tr(R(·, ξ)η)

is called the Ricci curvature at the point p.

Remark 3.3.2. Let V be a n-dimensional R-vector space with non-degenerate symmet-
ric bilinear form g and E1, . . . , En be a generalized orthonormal basis of (V, g), that is
g(Ei, Ej) = εiδi,j with εi = ±1. Then for every endomorphism A : V → V we have

tr(A) =

n∑

i=1

εi · g(A(Ei), Ei). (3.10)
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3.3 Ricci- and scalar curvature

Why? If we define ωi : V → R by ωi(ξ) := εi · g(ξ,Ei) then ω1, . . . , ωn is the dual basis
of V ∗ to E1, . . . , En. Hence

tr(A) =

n∑

i=1

ωi(A(Ei)) =

n∑

i=1

εi · g(A(Ei), Ei).

The local description of Ricci curvature is similar to that of the semi-Riemannian metric
itself: For any chart x : U → V of M we define the functions

ricij : V → R, ricij(x(p)) := ric

(
∂

∂xi

∣
∣
∣
∣
p

,
∂

∂xj

∣
∣
∣
∣
p

)

.

Lemma 3.3.3 (Properties of the Ricci curvature)

(i) The map ric is bilinear and symmetric on TpM .

(ii) For any generalized orthonormal basis E1, . . . , En of (TpM,g|p) we have:

ric(ξ, η) =
n∑

i=1

εi · g(R(ξ,Ei)Ei, η).

(iii) We have: ricij =
n∑

k=1

Rk
ikj .

Proof. (i) Bilinearity of ric follows directly from trilinearity of R. We show symmetry
of ric:

ric(η, ξ) =

n∑

i=1

εi · g
(
R(η,Ei)Ei, ξ

)

Prop.
3.1.7(5)
=

n∑

i=1

εi · g
(
R(Ei, ξ)η,Ei

)

Prop.
3.1.7

(2),(3)
=

n∑

i=1

εi · g
(
R(ξ,Ei)Ei, η

)

= ric(ξ, η).

(ii) is clear from (3.10).
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3 Curvature

(iii) We fix i and j and we have ricij = ric
(

∂
∂xi ,

∂
∂xj

)
= tr

(
ζ 7→ −R

(
∂
∂xi , ζ

)
∂

∂xj

)
. W.r.t.

the basis ∂
∂x1 , . . . ,

∂
∂xn the endomorphism ζ 7→ −R

(
∂
∂xi , ζ

)
∂

∂xj has the matrix rep-
resentation

(−Rl
jik)kl = (Rl

jki)kl.

Thus we get that ricij =
∑n

k=1R
k
jki and because of (i) we have ricij = ricji, which

yields the assertion.

We defined Ricci curvature using the Riemann curvature tensor. Since the curvature
tensor and sectional curvature contain the same information, Ricci curvature should
also be computable in terms of sectional curvature. Indeed, Ricci curvature can can be
computed by averaging the sectional curvature of certain planes.

Lemma 3.3.4
Let (M,g) be a semi-Riemannian manifold and p ∈ M . If ξ ∈ TpM with g(ξ, ξ) 6= 0 and if

E2, . . . , En is a generalized orthonormal basis of ξ⊥, then

ric(ξ, ξ) = g(ξ, ξ) ·
n∑

j=2

K(span{ξ,Ej})
︸ ︷︷ ︸

This is essentially the
mean value of K on all
planes containing ξ.

E2

E3

ξ

Proof. W.l.o.g. let g(ξ, ξ) = ±1. Write ξ =: E1. Then E1, . . . , En forms a generalized
orthonormal basis of TpM . Therefore

ric(ξ, ξ) =
n∑

i=1

g(Ei, Ei) · g
(
R(ξ,Ei)Ei, ξ

)

=
n∑

i=2

g(Ei, Ei) · g
(
R(ξ,Ei)Ei, ξ

)

=

n∑

i=2

g(Ei, Ei) ·K
(
span{ξ,Ei}

)
·
(
g(ξ, ξ)g(Ei, Ei)− g(ξ,Ei)

︸ ︷︷ ︸

= 0

2)

= g(ξ, ξ) ·
n∑

i=2

K
(
span{ξ,Ei}

)
.
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3.3 Ricci- and scalar curvature

Remark 3.3.5. Lemma 3.3.4 expresses ric(ξ, ξ) in terms of sectional curvatures provided
g(ξ, ξ) 6= 0. Since g is non-degenerate the set of vectors ξ ∈ TpM with g(ξ, ξ) 6= 0 is
dense in TpM . By continuity, ric(ξ, ξ) is determined for all ξ ∈ TpM . By polarization,
this determines the values of ric(ξ, η) for all ξ, η ∈ TpM via

ric(ξ, η) = 1
2

(
ric(ξ+η, ξ+η) − ric(ξ, ξ)− ric(η, η)

)
.

Remark 3.3.6. Both maps ric : TpM × TpM → R and g : TpM × TpM → R are bilinear
and symmetric. The second map g is in addition non-degenerate. Thus there exists a
unique endomorphism Ric : TpM → TpM such that

ric(ξ, η) = g
(
Ric(ξ), η

)

for all ξ, η ∈ TpM .

In local coordinates: For any chart x : U → V we get functions Ricji : V → R by:

Ric

(

∂

∂xi

∣
∣
∣
∣
p

)

=

n∑

j=1

Ricji (x(p))
∂

∂xj

∣
∣
∣
∣
p

We compute:

ricij = ric

(
∂

∂xi
,
∂

∂xj

)

= g

(

Ric

(
∂

∂xi

)

,
∂

∂xj

)

= g

(
n∑

k=1

Ricki
∂

∂xk
,
∂

∂xj

)

=
n∑

k=1

Ricki · g
(

∂

∂xk
,
∂

∂xj

)

.

We have shown:

ricij =

n∑

k=1

Ricki · gkj

The functions ricij are obtained from the functions Ricki by lowering the upper index.
Similarly, the Ricki can be obtained from the ricij by raising one index.
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Definition 3.3.7. The map scal :M → R defined by

scal(p) := tr(Ric|p)

is called the scalar curvature of M .

Lemma 3.3.8

(i) In local coordinates we have

scal(p) =
n∑

i=1

Ricii
(
x(p)

)
=

n∑

i,j=1

ricij
(
x(p)

)
· gij

(
x(p)

)
.

(ii) For a generalized orthonormal basis E1, . . . , En of TpM we have

scal(p) =
n∑

i=1

εi · ric(Ei, Ei).

Proof. Clear.

Remark 3.3.9. Let us consider the special case when dim(M) = 2. Let K be the Gauß
curvature, i.e., K(p) = K(TpM). Then the curvature tensor is given by

R(ξ, η, ζ, ν) = K(p)
(
g(η, ζ)g(ξ, ν) − g(ξ, ζ)g(η, ν)

)
.

Thus we get for the Ricci curvature

ric(ξ, η) =
2∑

i=1

εi ·R(ξ,Ei, Ei, η)

= K(p)

2∑

i=1

εi
(
g(Ei, Ei)g(ξ, η) − g(ξ,Ei)g(Ei, η)

)

= K(p)
(
2g(ξ, η) − g(ξ, η)

)

= K(p) · g(ξ, η).
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This shows
ric = K · g

and
scal = 2K.

In the case of surfaces the Riemann curvature tensor, sectional curvature (Gauß curva-
ture), Ricci curvature and scalar curvature all determine each other. In higher dimen-
sions this is no longer so.

Remark 3.3.10. The following table shows how the different notions of curvature de-
pend on each other:

dimM 2 3 ≥ 4

R

K
m m m

ric
m m ⇓

scal
m ⇓ ⇓

Remark 3.3.11. In the physics literature the following notation in local coordinates is
often used:

• for R and R ones writes: Rl
ijk and Rijkl (as here),

• for Ric and ric one write: ricij = Rij and Ricji = Rj
i ,

• for scal one write: scal = R.

3.4 Jacobi fields

In order to better understand the behavior of geodesics we will linearize the geodesic
equations. This leads to the Jacobi fields and relates geodesics and curvature.

Definition 3.4.1. Let M be a semi-Riemannian manifold. A variation of curves
c : (−ε, ε) × I →M is called a geodesic variation if for every s ∈ (−ε, ε) the curve

t 7→ cs(t) := c(s, t)

is a geodesic.
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Let ξ(t) :=
∂

∂s
c(0, t) be the corresponding variational vector field. Then we have:

(∇
dt

)2

ξ(t) =
∇
∂t

∇
∂t

∂

∂s
c(s, t)|s=0

=
∇
∂t

∇
∂s

∂

∂t
c(s, t)|s=0

=
∇
∂s

∇
∂t

∂

∂t
c(s, t)

︸ ︷︷ ︸

|s=0 +R

(
∂c

∂t
(0, t),

∂c

∂s
(0, t)

)
∂c

∂t
(0, t)

≡0 since cs geodesic

= R(ċ0(t), ξ(t))ċ0(t)

Definition 3.4.2. The equation for vector fields ξ along a geodesic c0

(∇
dt

)2

ξ = R(ċ0, ξ)ċ0

is called the Jacobi equation. Its solutions are called Jacobi fields.

The above computation shows that the variational vector field of a geodesic variation
is a Jacobi field.

Proposition 3.4.3

Let M be a n-dimensional semi-Riemannian manifold, c : I →M a geodesic and t0 ∈ I .
For all ξ, η ∈ Tc(t0)M there exists a unique Jacobi field J along c with

J(t0) = ξ and
∇
dt
J(t0) = η.

The set of Jacobi fields along c forms a 2n-dimensional vector space.

Proof. Let E1(t0), . . . , En(t0) be a basis of Tc(t0)M . By parallel transport along c we
obtain a basis E1(t), . . . , En(t) of Tc(t)M for all t ∈ I . Write J(t) =

∑n
j=1 v

j(t)Ej(t).
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Then
(∇
dt

)2
J(t) =

∑n
j=1 v̈

j(t)Ej(t) and

R(ċ(t), J(t))ċ(t) =

n∑

j=1

vj(t)R(ċ(t), Ej(t))ċ(t).

Write R(ċ(t), Ej(t))ċ(t) =
∑n

k=1 a
k
j (t)Ek(t). Then J is a Jacobi field if and only if

n∑

k=1

v̈kEk =

n∑

j,k=1

akj v
jEk,

hence if and only if

v̈k =

n∑

j=1

akj v
j for all k = 1, . . . , n

This is a linear system of ordinary differential equations of second order. Thus solutions
exist (on all of I) and are uniquely determined by the initial data vk(t0) and v̇k(t0), i.e.,
by J(t0) and ∇

dt
J(t0).

The linearity of the Jacobi equation implies that its solution space forms a vector space.
The map {Jacobi fields} → Tc(t0)M ⊕ Tc(t0)M , J 7→ (J(t0),

∇
dt
J(t0)) is a vector space

isomorphism. In particular, the dimension of the space of Jacobi fields along c equals
2n.

Example 3.4.4. If M is flat then the equation for Jacobi fields is simply given by

(∇
dt

)2

J ≡ 0.

Hence
{Jacobi fields} =

{
ξ(t) + t η(t) | ξ, η parallel

}
.

Example 3.4.5. Let c be a geodesic in an arbitrary semi-Riemannian manifold. Then the
vector field J(t) := (a+ bt)ċ(t) is a Jacobi field for any a, b ∈ R. Namely, we have:

(∇
dt

)2

J(t) = 0, and R(ċ, J)ċ = (a+ bt)R(ċ, ċ)ċ = 0.

Such a J is the variational vector field of the geodesic variation

c(s, t) = c(t+ s(a+ bt)) = c
(
(1 + sb)t+ sa

)
.

This is a variation of c which is obtained by simply reparametrizing the geodesic. It
contains no geometric information. Therefore such a Jacobi field is uninteresting. Thus
there is a two-dimensional space of uninteresting Jacobi fields.
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Remark 3.4.6. If a Jacobi field J : I → TM satisfies:

J(t0) ⊥ ċ(t0) and
∇
dt
J(t0) ⊥ ċ(t0) for a t0 ∈ I,

then we have

J(t) ⊥ ċ(t) and
∇
dt
J(t) ⊥ ċ(t) for all t ∈ I.

Namely,

d

dt

〈∇
dt
J, ċ

〉

=

〈(∇
dt

)2

J, ċ

〉

+

〈∇
dt
J,

∇
dt
ċ

︸︷︷︸

=0

〉

= 〈R(ċ, J)ċ, ċ〉 = 0

implies
〈∇
dt
J, ċ
〉
≡ 0 and from

d

dt
〈J, ċ〉 =

〈∇
dt
J, ċ

〉

≡ 0

we see that 〈J, ċ〉 ≡ 0.

Consequence. Let c be non light-like. In this case we have Tc(t)M = Rċ(t)⊕ ċ(t)⊥. Then

{Jacobi fields along c} = R · ċ⊕ R · t ċ
︸ ︷︷ ︸

uninteresting
Jacobi fields

⊕{Jacobi fields J along c |J ⊥ ċ, ∇
dt
J ⊥ ċ}

︸ ︷︷ ︸

interesting Jacobi fields

.

Remark 3.4.8. For light-like geodesics c this is not true because ċ ⊥ ċ.

Example 3.4.9

Let (M,g) = (R2, gMink), let c be a light-like geodesic and
let ξ be a light-like parallel vector field along c which is
linearly independent of ċ.
Since ξ is parallel and R = 0, the vector field ξ is also a
Jacobi field and we have:

C

c

ξ

{Jacobi field along c} = R · ċ⊕R(tċ)
︸ ︷︷ ︸

⊕R ξ ⊕ R(tξ)

=
{

Jacobi field J along c |J ⊥ ċ, ∇
dt
J ⊥ ċ

}
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3.4 Jacobi fields

Definition 3.4.10. For κ ∈ R the generalized sine and cosine function sκ, cκ : R → R

are defined by

sκ(r) :=







1√
κ
sin(

√
κ · r), κ > 0

r, κ = 0
1√
|κ|

sinh(
√

|κ| · r), κ < 0

and cκ(r) :=







cos(
√
κ · r), κ > 0

1, κ = 0

cosh(
√

|κ| · r), κ < 0

respectively.

It is easy to check that

κ s2κ + c
2
κ = 1,

s
′
κ = cκ and sκ(0) = 0,

c
′
κ = −κ sκ and cκ(0) = 1.

Example 3.4.11. Let (M,g) be a Riemannian manifold with constant sectional curvature
K ≡ κ. Let c be a geodesic, parametrized by arc-length. Let ξ be a parallel vector field
along c with ξ ⊥ ċ. Set

J(t) :=
(
a sκ(t) + b cκ(t)

)
ξ(t) with a, b ∈ R.

Then

(∇
dt

)2

J = (a s̈κ + b c̈κ)ξ = −κ(a sκ + b cκ)ξ = −κJ.

For the curvature tensor we here have R(ξ, η)ζ = κ(〈η, ζ〉 ξ − 〈ξ, ζ〉 η). Thus

R(ċ, J)ċ = (a sκ + b cκ) · κ
(
〈ξ, ċ〉
︸ ︷︷ ︸

=0

ċ− 〈ċ, ċ〉
︸ ︷︷ ︸

=1

ξ
)
= −κ

(
a sκ + b cκ

)
ξ = −κJ.

Hence J is a Jacobi field and

{

Jacobi fields along c |J ⊥ ċ,
∇
dt
J ⊥ ċ

}

=
{
(a sκ + b cκ) ξ | a, b ∈ R, ξ parallel along c, ξ ⊥ ċ

}
.
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3 Curvature

b b b b

Jκ > 0

b

κ = 0
J

b

κ < 0

J

Proposition 3.4.12

Let M be a semi-Riemannian manifold and c : [a, b] → M a geodesic. Let ξ be a smooth
vector field along c. Then

ξ is a Jacobi field ⇐⇒ ξ is the variational field of a geodesic variation.

Proof. The implication “⇐” is already known. We show “⇒”.

Let ξ be a Jacobi field along c. Choose a t0 ∈ [a, b]
and choose a smooth curve γ : (−ε, ε) → M with
γ(0) = c(t0) and γ̇(0) = ξ(t0). Let η1 be the
parallel vector field along γ with η1(0) = ċ(t0).
Let η2 be the parallel vector field along γ with
η2(0) =

∇
dt
ξ(t0).

b

γ η1

c(t0)

ξ(t0)

ξ

c

Set η(s) := η1(s) + sη2(s) and

c(s, t) := expγ(s)
(
(t− t0)η(s)

)
.

Since the domain of definition of exp is open,
c(s, t) is defined for |s| sufficiently small and for
all t ∈ [a, b]. Then we have

γ

η

c
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3.4 Jacobi fields

c(0, t) = expγ(0)
(
(t− t0)η(0)

)
= expc(t0)

(
(t− t0)ċ(t0)

)
= c(t)

Hence c(s, t) is a geodesic variation of c(t). Let J(t) := ∂c
∂s
(0, t) be the corresponding

variational field. Then J is a Jacobi field. We show:

ξ(t0) = J(t0) and
∇
dt
ξ(t0) =

∇
dt
J(t0).

Then we get ξ = J because Jacobi fields are uniquely determined by their initial data
and hence ξ is the variational field of the geodesic variation c(s, t).
We calculate

J(t0) =
∂c

∂s
(0, t0) =

d

ds

∣
∣
∣
∣
s=0

expγ(s)(0) =
d

ds

∣
∣
∣
∣
s=0

γ(s) = γ̇(0) = ξ(t0)

and

∇
dt
J(t0) =

∇
∂t

∂c

∂s
(0, t0) =

∇
∂s

∂c

∂t
(0, t0) =

∇
ds
η(0) = η2(0) =

∇
dt
ξ(t0).

We are now able to generalize Lemma 2.6.26 and can identify the differential of the
exponential at arbitrary points in its domain.

Proposition 3.4.13

Let M be a semi-Riemannian manifold, p ∈ M and ξ ∈ TpM . We assume that the geodesic
γ(t) := expp(tξ) is defined on [0, 1], i.e., ξ lies in the domain of expp.

For η ∈ TpM(∼= TtξTpM) let J be the Jacobi field along γ with J(0) = 0 and ∇
dt
J(0) = η.

Then we have for all t ∈ (0, 1]:

d expp |tξ(η) =
J(t)

t
.

Proof. Consider the geodesic variation

c(s, t) := expp
(
t(ξ + sη)

)
.

Let ζ := ∂c
∂s
|s=0 be the corresponding variational Jacobi field. Then we have

ζ(0) =
∂c

∂s
(0, 0) =

d

ds
expp |s=0(0) = 0 = J(0)

and
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3 Curvature

b

b

expp

M
p

0

TpM

ξ

ξ
η

∇
dt
ζ(0) =

∇
dt

∂c

∂s
(0, 0) =

∇
∂s

∂c

∂t
(0, 0) =

∇
ds

(ξ + sη)|s=0 = η =
∇
dt
J(0)

Hence ζ = J . Now we compute for fixed t ∈ (0, 1]:

d expp |tξ(η) =
∂

∂s
expp(tξ + s η)|s=0 =

∂

∂s
expp

(

t
(

ξ +
s

t
η
))∣
∣
∣
s=0

=
1

t
ζ(t) =

1

t
J(t).

Corollary 3.4.14

Let M be a semi-Riemannian manifold, let p ∈M and let ξ be in the domain of expp. Then

ker(d expp |ξ) ∼=
{

Jacobi field along γ(t) = expp(tξ) |J(0) = 0, J(1) = 0
}
.

Definition 3.4.15. Let M be a semi-Riemannian manifold and γ : I →M a geodesic.
Then t1, t2 ∈ I , t1 6= t2 are called conjugated points along γ, if there exists a non-
trivial Jacobi field J along γ with J(t1) = 0 and J(t2) = 0.

Consequence. d expp |ξ is non-invertible if and only if 0 and 1 are conjugated points
along γ(t) = expp(tξ).
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3.4 Jacobi fields

Example 3.4.17. Let M be a Riemannian manifold with constant sectional curvature
K ≡ κ.

Case 1: κ ≤ 0 . Every Jacobi field has at most one zero.

⇒ There are no conjugated points.

⇒ d expp |ξ is invertible for all ξ ∈ Dp.

⇒ The map expp : Dp →M is a local diffeomorphism.

Case 2: κ > 0 .

For a geodesic parametrized by arc-length, the
conjugate points belonging to t0 are the points
t0 +m π√

κ
for m ∈ Z \ {0}. Considering the case

m = 1 we have

expp
(
{ξ ∈ TpSn | ||ξ|| = π}

)
= {−p}.

For ||ξ|| = π we obtain

ker d expp |ξ = ξ⊥.

b

b

ξ′
ξ

ker d expp |ξ

Sn

p

−p

TpS
n

Proposition 3.4.18

Let M be a semi-Riemannian manifold and let c : [t0, t1] → M be a geodesic. Let t0 and t1
be not conjugated with each other along c.
Then for ξ ∈ Tc(t0)M and η ∈ Tc(t1)M there exists exactly one Jacobi field J along c with
J(t0) = ξ and J(t1) = η.

bb b

c(t0)

ξ

c(t1)

η

J
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3 Curvature

Proof. The linear map

2n-dimensional
︷ ︸︸ ︷

{Jacobi field along c} →
(n+ n)-dimensional
︷ ︸︸ ︷

Tc(t0)M ⊕ Tc(t1)M,

J 7→
(
J(t0), J(t1)

)
,

is injective since t0 and t1 are not conjugated to each other along c. For dimensional
reasons, this map is an isomorphism.

Proposition 3.4.18 means that in the non-conjugate case we can also characterize Jacobi
fields by the boundary values J(t0) and J(t1) instead of the initial values J(t0) and
∇
dt
J(t0). In the conjugate case this is certainly wrong.

Example 3.4.19. Let c be a geodesic emanating
from p ∈ Sn which is parametrized by arc-length.
The set of η ∈ T−pS

n for which exists a Jacobi field
J along c with J(0) = 0 and J(π) = η is given by

{η = α · ċ(π) |α ∈ R}.

c

p = c(t0)

−p = c(t1)b

b
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4 Submanifolds

4.1 Submanifold of differentiable manifolds

Definition 4.1.1. Let M be an m-dimensional differentiable manifold. A subset
N ⊂M is called an n-dimensional submanifold if for every p ∈ N there exists a
chart x : U → V of M with p ∈ U such that

x(N ∩ U) = V ∩ (Rn × {0}).

b
b

U
x V ⊂ Rn

R
n
×

{0
}

{0} ×R
m−n

M

N

p
x(p)

Such a chart is called submanifold chart of N . The number m−n is called codimen-

sion of N in M .

Example 4.1.2

(1) Codimension n = 0: A subset N ⊂ M is a submanifold of codimension 0 if and
only if N is open subset of M .

(2) Dimension n = 0: A subset N ⊂ M is a submanifold of dimension 0 if and only if
N is a discrete subset of M .

(3) Affine subspaces: Let N ⊂ M = R
m be an affine subspace, i.e., N is of the form

N = N ′+p, whereN ′ ⊂ R
m is an n-dimensional vector subspace and p ∈ R

m fixed.
Choose A ∈ GL(m) with AN ′ = R

n × {0}. Then x : U = R
m → V = R

m, given by

x(q) := A(q − p),

is a submanifold chart.
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4 Submanifolds

(4) Graphs: Let M1 and M2 be differentiable manifolds and let f : M1 → M2 be a
smooth map. Set M =M1 ×M2 and

N = Γf =
{
(ξ, η) ∈M1 ×M2 | η = f(ξ)

}
.

b

M1

M2

U1

U2

U1 × U2 p
b

V1 × V2

Γx2◦f◦x1
−1

b

x1 × x2
Ψ

Choose charts xi : Ui → Vi of Mi with p ∈ U1 × U2. W.l.o.g. let f(U1) ⊂ U2. For
w ∈ V1 and z ∈ V2 set

ψ(w, z) :=
(
w, z −

(
x2 ◦ f ◦ x1−1

)
(w)
)
.

Then x := ψ ◦ (x1 × x2) is a submanifold chart, defined on U1 × U2.

Theorem 4.1.3

Let M be an m-dimensional differentiable manifold. Let N ⊂ M be a subset. Then the
following assertions are equivalent:

(i) N is an n-dimensional submanifold.

(ii) For every p ∈ N there exists an open neighborhood U of p and smooth functions
f1, . . . , fm−n : U → R such that

(a) N ∩ U = {q ∈ U | f1(q) = . . . = fm−n(q) = 0};

(b) The differentials df1|p, . . . , dfm−n|p ∈ T ∗
pM are linearly independent.

(iii) For every p ∈ N there exists an open neighborhood U of p, an (m − n)-dimensional
differentiable manifold R and a smooth map f : U → R with

(a) N ∩ U = f−1(q) where q = f(p);

(b) df |p : TpM → TqR has maximal rank.

Proof. “(i)⇒(ii)”: Let p ∈ N and let x : U → V be a submanifold chart forN with p ∈ U .
W.l.o.g. let
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4.1 Submanifold of differentiable manifolds

(1) x(p) = 0 ∈ R
m (otherwise compose x with a suitable translation);

(2) V = V1 × V2 where V1 ⊂ R
n and V2 ⊂ R

m−n (otherwise make U smaller).

Now fj : U → R, fj := xn+j , do the job (j = 1, . . . ,m− n).

“(ii)⇒(iii)” is obvious. Simply set R := R
m−n and f := (f1, . . . , fm−n).

“(iii)⇒(i)”:

b

U

M

N

p

b

V

ϕ(p)

b

R

q
Ũ

bṼ
ϕ̃(q)

f

ϕ

ϕ̃ ◦ f ◦ ϕ−1

ϕ̃

Choose a chart ϕ : U → V of M around p and a chart ϕ̃ : Ũ → Ṽ of R around q := f(p).
W.l.o.g. we assume that f(U) ⊂ Ũ . Since ϕ and ϕ̃ are diffeomorphisms, we have

rankD(ϕ̃ ◦ f ◦ ϕ−1)|ϕ(p) = rank df |p = m− n.

The implicit function theorem yields: One can shrink V and U to smaller neighbor-
hoods of q and p, respectively, such that V = V1 × V2 and one can find a smooth map
g : V1 → V2 such that

(ϕ̃ ◦ f ◦ ϕ−1)−1(ϕ̃(q)) = (f ◦ ϕ−1)−1(q) = Γg.

If we compose ϕ with a submanifold chart for graphs as in the Example 4.1.2 (4) then
we get a submanifold chart for N in M around p.

Definition 4.1.4. Let M and R be differentiable manifolds and let f : M → R be
smooth. A point p ∈ M is called a regular point of f if df |p has maximal rank.
Otherwise p is called a critical point of f .
A point q ∈ R is called a regular value of f if all p ∈ f−1(q) are regular points.
Otherwise q is called a critical value of f .
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4 Submanifolds

Example 4.1.5. Let M = R = R and f(t) = t2. We
have

df |t(ξ) = f ′(t) · ξ.

Hence t is a critical point of f if and only if f ′(t) =
0. In this example t = 0 is the only critical point
and f(0) = 0 is the only critical value.

b b
M

R

0

regular points Punkte

regular values

critical
point critical

value

Example 4.1.6. Let M = R = R and
f(t) = t2(t− 1). Here f has the critical
points t = 0 and t = 2

3 . The critical values
are f(0) = 0 and f(23) = − 4

27 .

b b b
b

0
2
3M

R

Example 4.1.7. Let M = R = R and
f(t) = 0. In this case all t ∈ R are critical
points but 0 is the only critical value.

b
M

R

The examples indicate that there may be many critical points but there are always only
few critical values. This is true in general:

Theorem 4.1.8 (Sard)

Let M and R be differentiable manifolds and let f : M → R be smooth. Then the set of
critical values of f is a null set in R. In other words, for every chart x : U → V of R the set
x(U ∩ {critical values of f}) ⊂ V is a null set (in the sense of Lebesgue measure theory).

For a proof see [M65, Chapter 3].

Corollary 4.1.9

If f :M → R is smooth and if q ∈ R is a regular value of f , then N = f−1(q) is empty or a
submanifold of M with codim(N) = dim(R).
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4.1 Submanifold of differentiable manifolds

Proof. This follows directly from Criterion (iii) in Theorem 4.1.3.

Example 4.1.10. Let M = R
n+1 and R = R. Let f : Rn+1 → R be given by f(x) =

||x||2 = (x0)2 + . . .+ (xn)2. Then Sn = f−1(1) and for any x ∈ R
n+1 we have

Df |x = (2x0, . . . , 2xn).

⇒ rank(Df |x) =
{

1, x 6= 0
0, x = 0

⇒ For all x ∈ f−1(1) we have rank(Df |x) = 1.

⇒ 1 is a regular value of f .

4.1.9⇒ Sn ⊂ R
n+1 is a submanifold of codimension 1.

Remark 4.1.11. In this example all q ∈ R \ {0} are regular values. We have

f−1(q) =

{
Sn(

√
q), q > 0

∅ , q < 0

For the critical value q = 0 we have that f−1(0) = {0} is also (by coincidence) a subma-
nifold, but of the wrong codimension n+ 1. In general, the preimage of a critical value
is not a submanifold.

Remark 4.1.12. Sometimes the set f−1(q) is a submanifold with codimension dimR
even if q is a critical value.

Example 4.1.13. Let g : Rn+1 → R, g(x) = (||x||2 − 1)2. Then 0 is critical value of g but
Sn = g−1(0) is a submanifold of codimension 1.

Remark 4.1.14. Submanifolds of differentiable manifolds are themselves differentiable
manifolds. Namely:
Let N ⊂ M be a submanifold and p ∈ N and x : U → V a submanifold chart with
x = (x1, . . . , xn, xn+1, . . . , xm), then

(x1, . . . , xn) : U ∩N → V ∩ R
n

is a chart ofN . The set of charts ofN obtained in this manner by restricting submanifold
charts to N is a C∞-atlas for N .
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4 Submanifolds

Theorem 4.1.15

Let N ⊂ M be a submanifold. Let ι : N →֒ M be the inclusion map, ι(p) = p. Then we
have:

(i) ι is smooth and dι|p : TpN → TpM is injective.

(ii) If f :M → P is smooth then f |N : N → P is also smooth.

(iii) If g : Q→M is smooth with g(Q) ⊂ N then g : Q→ N is also smooth.

Proof. (i) Let x = (x1, . . . , xm) be a submanifold chart of N in M and x̃ = (x1, . . . , xn)
the corresponding chart of N . The following diagram commutes:

N ⊃ U ∩N U ⊂M

V ∩R
n V

ι

x̃ x

ξ 7→(ξ,0)

Obviously, ξ 7→ (ξ, 0) is smooth. Since this map is linear, it coincides with its
differential, such that the differential is in particular injective.

(ii) The function f |N = f ◦ ι is the composition of two smooth maps and therefore
again smooth.

(iii) Let q ∈ Q and x = (x1, . . . , xm) be a submanifold chart of M around g(q). Since
g is smooth the functions gi := xi ◦ g are also smooth. From g(Q) ⊂ N we see
that (g1, . . . , gm) = (g1, . . . , gn, 0, . . . , 0). Now (g1, . . . , gn) is smooth and thus also
g : Q→ N .

Remark 4.1.16. One identifies TpN with dι|p(TpN) and thinks of it as a vector subspace
of TpM .

b

N

p
TpN

TpM

M
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4.2 Semi-Riemannian submanifolds

Remark 4.1.17. If M = R
m, i.e., N ⊂ R

m, then one often considers TpN as a vector

subspace of Rm via TpN ⊂ TpR
m

∼=−→
canon.
isom.

R
m.

Example 4.1.18. For N = Sn ⊂ R
n+1 we have TpS

n = p⊥.

4.2 Semi-Riemannian submanifolds

Definition 4.2.1. Let (M̄ , ḡ) be a semi-Riemannian manifold. A submanifoldM ⊂ M̄
is called a semi-Riemannian submanifold, if for all p ∈M

(ḡ|p)
∣
∣
TpM×TpM

=: g|p

is non-degenerate.

Example 4.2.2. If (M̄ , ḡ) is Riemannian, then every submanifold is a semi-Riemannian
submanifold.

Example 4.2.3. Let (M̄, ḡ) = (R2, gMink) be 2-dimensional Minkowski space, i.e.,
gMink = −dx0 ⊗ dx0 + dx1 ⊗ dx1. Then

N1 = {(x0, 0) |x0 ∈ R} is semi-Riemannian (with negative-definite metric).

N2 = {(0, x1) |x1 ∈ R} is semi-Riemannian (with positive-definite metric).

N3 = {(t, t) | t ∈ R} is not semi-Riemannian, since the restriction of gMink on TpN3

vanishes.

N4 = S1 has 4 points at which the restriction of gMink degenerates.

b

N1

N2

N3

x0

x1

M̄

b

bb

b b

+

+
−

−
M̄

N4
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Definition 4.2.4. Let M ⊂ M̄ be a semi-Riemannian submanifold. Then we call

NpM := TpM
⊥ =

{
ξ ∈ TpM̄ | ḡ|p(ξ, η) = 0 ∀ η ∈ TpM

}

the normal space of M at the point p.

b

M

p
TpM

NpM

TpM̄

M̄

Remark 4.2.5. We have TpM̄ = TpM ⊕NpM since

(1) dimNpM ≥ dimTpM̄ − dimTpM .

(2) If there existed a ξ ∈ TpM ∩ NpM with ξ 6= 0, then we would have ξ ∈ TpM with
ḡ|P (ξ, η) = 0 for all η ∈ TpM . Then (ḡ|p)|TpM×TpM would be degenerate, which is a
contradiction.

Let M ⊂ M̄ be a semi-Riemannian submanifold and p ∈M . Let

tan :TpM̄ → TpM,

nor :TpM̄ → NpM,

be the orthogonal projections. BothM and also M̄ have, when seen as semi-Riemannian
manifolds in their own rights, a Levi-Civita connection ∇ and ∇̄, respectively. Now we
want to investigate, how we can determine ∇ directly from ∇̄.

(M̄, ḡ) ∇̄ Levi-Civita connection

(M,g) ∇ Levi-Civita connection

?

Here g|p := (ḡ|p)TpM×TpM .
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4.2 Semi-Riemannian submanifolds

Let p ∈ M , ξ ∈ TpM and η ∈ C∞(U, TM), where
U ⊂ M is an open neighborhood of p. Choose a
smooth extension η̄ of η to an open neighborhood
Ū of p in M̄ . Then ∇̄ξ η̄ ∈ TpM̄ does not depend
on the choice of continuation η̄.
Namely: the tanget vector ξ ∈ TpM is of the form
ξ = ċ(0) with a curve c : (−ε, ε) → M . Hence ∇̄ξ η̄
depends on η̄ only along c, that is, only on η.

M̄

M U

η

Ū
η̄

We can also write:

∇̄ξη := ∇̄ξη̄.

Example 4.2.6

Let M̄ = (R2, geucl) and M = S1. Set
η(x1, x2) = (−x2, x1). For c : R → S1 with c(t) =
(cos(t), sin(t)) we have

ċ(t) = η(c(t)).

Then we get:

∇̄η η =
∇̄
dt
ċ = c̈ =

(
− cos(t),− sin(t)

)

which is not tangent to S1.

b

η

∇̄ηη

We set ∇ξη := tan(∇̄ξη).

Theorem 4.2.7

Let (M̄ , ḡ) be a semi-Riemannian manifold and M ⊂ M̄ a semi-Riemannian submanifold
with induced semi-Riemannian metric g. Let ∇̄ be the Levi-Civita connection of (M̄, ḡ).
Then

∇ξη = tan
(
∇̄ξη

)

is the Levi-Civita connection of (M,g).
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4 Submanifolds

Proof. We check that ∇ satisfies the axioms of the Levi-Civita connection for (M,g). By
the uniqueness statement in Theorem 2.3.8, ∇ must then be the Levi-Civita connection
of (M,g).

(i) Locality is clear because ∇̄ is local.

(ii) Linearity in ξ is clear because tan is linear and ∇̄ is linear in ξ.

(iii) Linearity in η is clear by a similar argument.

(iv) Product rule I: Let f ∈ C∞(U) and η ∈ C∞(U, TM), where U ⊂ M is an open
neighborhood of p and ξ ∈ TpM . Let η̄ and f̄ be smooth extensions of η and f to
an open neighborhood Ū of p in M̄ . Then

∇ξ(f · η) = tan
(
∇̄ξ

(
f̄ · η̄

))

= tan
(
∂ξ f̄ · η̄|p + f̄(p) · ∇̄ξη̄

)

= tan
(
∂ξf · η̄|p + f(p) · ∇̄ξη̄

)

= ∂ξf · tan
(
η̄|p
)
+ f(p) · tan

(
∇̄ξη̄

)

= ∂ξf · η|p + f(p)∇ξη.

(v) Product rule II: Let ξ ∈ TpM and η1, η2 ∈ C∞(U, TM). Choose smooth extensions
η̄1, η̄2 ∈ C∞(Ū , T M̄). Then

∂ξg(η1, η2) = ∂ξ ḡ
(
η̄1, η̄2

)

= ḡ|p
(
∇̄ξη̄1, η̄2|p

︸︷︷︸

)
+ ḡ|p

(
η̄1|p, ∇̄ξ η̄2

)

=η2|p, in particular tangent to M

= g|p
(
tan

(
∇̄ξ η̄1

)
, η2|p

)
+ g|p

(
η1|p, tan

(
∇̄ξη̄2

))

= g|p
(
∇ξη1, η2|p

)
+ g|p

(
η1|p,∇ξη2

)
.

(vi) Freeness of torsion: Let x1, . . . , xm, xm+1, . . . , xm̄ be submanifold coordinates on M̄ .
Here x1, . . . , xm are coordinates on M . For 1 ≤ i, j ≤ m:

∇ ∂

∂xi

∣

∣

∣

p

∂

∂xj
= tan

(

∇̄ ∂

∂xi

∣

∣

∣

p

∂

∂xj

)

= tan

(

∇̄ ∂

∂xj

∣

∣

∣

p

∂

∂xi

)

= ∇ ∂

∂xj

∣

∣

∣

p

∂

∂xi
.

Example 4.2.8. Let M = S1 ⊂ M̄ = R
2 with ḡ = geucl. Set η(c(t)) = ċ(t) where

c(t) = (cos(t), sin(t)). Then

∇ηη = tan
(

∇̄ηη
∣
∣
p

)

= tan(−p) = 0.

Hence c is a geodesic in S1 (but not in R
2).
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4.2 Semi-Riemannian submanifolds

Lemma 4.2.9

Let ξ ∈ TpM and η ∈ C∞(U, TM), where U ⊂ M is an open neighborhood of p. Then
nor(∇̄ξη) ∈ NpM only depends η via η|p.

Proof. Let x1, . . . , xm, xm+1, . . . , xm̄ be submanifold coordinates on M̄ around p. Let
Γk
ij : U → R be the Christoffel symbols of ∇, 1 ≤ i, j, k ≤ m, and Γ̄k

ij : U → R be the

Christoffel symbols of ∇̄, 1 ≤ i, j, k ≤ m̄. On U we write η =
∑m

j=1 η
j ∂
∂xj and we define

on Ū :

η̄j(x1, . . . , xm̄) :=

{

ηj(x1, . . . , xm) for j = 1, . . . ,m

0 for j = m+ 1, . . . , m̄
.

Set η̄ :=
∑m̄

j=1 η̄
j ∂
∂xj . Furthermore, write ξ =

∑m
i=1 ξ

i ∂
∂xi

∣
∣
p
. Then we have:

nor(∇̄ξη) = nor(∇̄ξ η̄)

= ∇̄ξ η̄ −∇ξη

=
m∑

i=1

ξi
m̄∑

k=1




∂η̄k

∂xi

∣
∣
∣
∣
x(p)

+
m̄∑

j=1

Γ̄k
ij |x(p) · η̄j |x(p)




∂

∂xk

∣
∣
∣
∣
p

−
m∑

i=1

ξi
m∑

k=1




∂ηk

∂xi

∣
∣
∣
∣
x(p)

+

m∑

j=1

Γk
ij|x(p) · ηj |x(p)




∂

∂xk

∣
∣
∣
∣
p

=

m∑

i=1

ξi
m∑

j=1

ηj |x(p)
(

m̄∑

k=1

Γ̄k
ij|x(p)

∂

∂xk

∣
∣
∣
∣
p

−
m∑

k=1

Γk
ij|x(p)

∂

∂xk

∣
∣
∣
∣
p

)

.

This only depends on ηj |x(p), i.e., only on η|p.

Definition 4.2.10. The map II : TpM × TpM → NpM , given by

II(ξ, η) = nor
(
∇̄ξη

)
,

is called the second fundamental form of M in M̄ (at the point p ∈M ).
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Lemma 4.2.11

The second fundamental form II is bilinear and symmetric.

Proof. In the previous proof we have shown that

II(ξ, η) =

m∑

i,j=1

(
m̄∑

k=1

Γ̄k
ij

∂

∂xk

∣
∣
∣
∣
p

−
m∑

k=1

Γk
ij

∂

∂xk

∣
∣
∣
∣
p

)

ξiηj .

Clearly, II is bilinear. By the symmetry of the Christoffel symbols in the lower indices,
II is also symmetric.

Example 4.2.12. Let M = S1 ⊂ M̄ = R
2 and η as in Example 4.2.8. The second funda-

mental form is then given by II(η, η) = −p.

Conclusion. The equation
∇̄ξη = ∇ξη + II(ξ, η|p)

is the splitting of ∇̄ξη into its tangential and normal parts.

Notation 4.2.13. For better readability we will from now on write 〈ξ, η〉 instead of
g(ξ, η) or ḡ(ξ, η).

Since one can compute the Levi-Civita connection ∇ of the submanifold M from the
Levi-Civita connection ∇̄ of M̄ , one should also be able to compute the curvature tensor
R of M from that of M̄ . Indeed this is possible.

Theorem 4.2.14 (Gauß Formula)
Let M ⊂ M̄ be a semi-Riemannian submanifold and p ∈ M . Let ξ, η, ζ, ν ∈ TpM . Then we
have

〈R(ζ, ν)ξ, η〉 =
〈
R̄(ζ, ν)ξ, η

〉
+ 〈II(ν, ξ), II(ζ, η)〉 − 〈II(ζ, ξ), II(ν, η)〉 .
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4.2 Semi-Riemannian submanifolds

Proof. Let x1, . . . , xm be coordinates of M around p coming from a submanifold chart
x1, . . . , xm, xm+1, . . . , xm̄. By multilinearity, it suffices to show the assertion for ξ =
∂
∂xi

∣
∣
p
, η = ∂

∂xj

∣
∣
p
, ζ = ∂

∂xk

∣
∣
p

and ν = ∂
∂xl

∣
∣
p
. We have

〈
R̄(ζ, ν)ξ, η

〉
=

〈

∇̄ζ∇̄ ∂

∂xl

∂

∂xi
− ∇̄∇̄ ∂

∂xk
|p

∂

∂xl

∂

∂xi
− ∇̄ν∇̄ ∂

∂xk

∂

∂xi
+ ∇̄∇̄ ∂

∂xl
|p

∂

∂xk

∂

∂xi
, η

〉

torsion freeness =

〈

∇̄ζ∇̄ ∂

∂xl

∂

∂xi
− ∇̄ν∇̄ ∂

∂xk

∂

∂xi
, η

〉

=

〈

∇̄ζ∇ ∂

∂xl

∂

∂xi
+ ∇̄ζII

(
∂

∂xl
,
∂

∂xi

)

− ∇̄ν∇ ∂

∂xk

∂

∂xi
− ∇̄νII

(
∂

∂xk
,
∂

∂xi

)

, η

〉

=

〈

∇ζ∇ ∂

∂xl

∂

∂xi
−∇ν∇ ∂

∂xk

∂

∂xi
, η

〉

+ ∂ζ

≡0
︷ ︸︸ ︷
〈

II

(
∂

∂xl
,
∂

∂xi

)

,
∂

∂xj

〉

−
〈

II

(
∂

∂xl
,
∂

∂xi

)

, ∇̄ζ
∂

∂xj

〉

− ∂ν

≡0
︷ ︸︸ ︷
〈

II

(
∂

∂xk
,
∂

∂xi

)

,
∂

∂xj

〉

+

〈

II

(
∂

∂xk
,
∂

∂xi

)

, ∇̄ν
∂

∂xj

〉

= 〈R(ζ, ν)ξ, η〉 + 〈II(ζ, ξ), II(ν, η)〉 − 〈II(ν, ξ), II(ζ, η)〉 .

Corollary 4.2.15

If E ⊂ TpM is a non-degenerate plane with basis ξ, η, then we have

K(E) = K̄(E) +
〈II(ξ, ξ), II(η, η)〉 − 〈II(ξ, η), II(ξ, η)〉

〈ξ, ξ〉 〈η, η〉 − 〈ξ, η〉2
.

Proof. This follows directly from the definition of sectional curvature and the Gauß
formula.

Lemma 4.2.16

Let M ⊂ M̄ be a semi-Riemannian submanifold. Let ϕ : M̄ → N̄ be a local isometry. Set
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ϕ(M) =: N . For ξ, η ∈ TpM we have

IIN
(
dϕ|p(ξ), dϕ|p(η)

)
= dϕ|p

(
IIM (ξ, η)

)
.

Proof. Local isometries preserve ∇ and ∇̄. Since II is the difference of ∇ and ∇̄ we get
the assertion.

4.3 Totally geodesic submanifolds

Let M ⊂ M̄ be a semi-Riemannian submanifold and c : I → M a smooth curve. Let ξ
be a smooth vector field at M along c. Then the splitting in tangential and normal parts
of the covariant derivative is given by

∇̄
dt
ξ =

∇
dt
ξ + II(ξ, ċ).

In particular, we have for ξ = ċ

∇̄
dt
ċ =

∇
dt
ċ+ II(ċ, ċ).

Therefore the curve c is a geodesic in M if and only if

∇̄
dt
ċ = II(ċ, ċ), i.e., if

∇̄
dt
ċ(t) ∈ Nc(t)M for all t ∈ I.

Example 4.3.1. Let M = Sn ⊂ M̄ = R
n+1 with Euclidean metric. Let c : I → Sn be a

great circle,

c(t) = cos(t) · p+ sin(t) · ξ.

with p ∈ Sn, ξ ∈ TpS
n ⊂ R

n+1 and ‖ξ‖ = 1. From this we get

∇̄
dt
ċ(t) = c̈(t) = − cos(t) · p− sin(t) · ξ = −c(t) ∈ Nc(t)S

n.

Hence c is a geodesic in Sn.
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4.3 Totally geodesic submanifolds

Definition 4.3.2. A semi-Riemannian submanifold is called totallygeodesic if II ≡ 0.

Theorem 4.3.3

For a semi-Riemannian submanifold M ⊂ M̄ the following statements are equivalent:

(i) M ist totally geodesic.

(ii) Every geodesic in M is also a geodesic in M̄ .

(iii) For any p ∈ M and ξ ∈ TpM there exists an ε > 0 such that the M̄ -geodesic
c : (−ε, ε) → M̄ with c(0) = p and ċ(0) = ξ lies in M , i.e., c(t) ∈ M for all
t ∈ (−ε, ε).

(iv) Let c : I → M be a smooth curve. Then the parallel transport along c w.r.t. M and
w.r.t. M̄ coincide (for tangent vectors of M ).

Proof. “(ii)⇒(iii)”: Let p ∈ M and ξ ∈ TpM . Let c be the M̄ -geodesic with c(0) = p and
ċ(0) = ξ. Let c̃ be the M -geodesic with c̃(0) = p and ˙̃c(0) = ξ. By (ii), c̃ is also geodesic
in M̄ . Since we have c̃(0) = c(0) and ˙̃c(0) = ċ(0), the two M̄ -geodesics must coincide,
c = c̃ on (−ε, ε) for a ε > 0. In particular, c lies in M .
“(iii)⇒(i)”: Let p ∈ M and ξ ∈ TpM . Let cξ be the M̄ -geodesic with cξ(0) = p and
ċξ(0) = ξ. By (iii), cξ lies in M for t ∈ (−ε, ε) with suitable ε > 0. On (−ε, ε) we get:

0 =
∇̄
dt
ċξ =

∇
dt
ċξ

︸︷︷︸
tangential

+II(ċξ, ċξ)
︸ ︷︷ ︸

normal

In particular, we have

II
(
ċξ(t), ċξ(t)

)
= 0 for all t ∈ (−ε, ε).

For t = 0 this means that II(ξ, ξ) = 0. Since ξ is arbitrary, polarization yields II ≡ 0.

“(i)⇒(iv)”: We have ∇
dt
ξ = ∇̄

dt
ξ. Hence ξ is parallel in M if and only if ξ is parallel in M̄ .

“(iv)⇒(ii)”: Let c be a geodesic in M .

⇒ ċ is parallel in M .

(iv)⇒ ċ is parallel in M̄ .

121



4 Submanifolds

⇒ c ist geodesic in M̄ .

Example 4.3.4. LetM ⊂ M̄ = R
n be an affine subspace where Rn is equipped with geucl

or gMink. Criterion (iii) shows that M ⊂ R
n is totally geodesic.

Example 4.3.5. Let M̄ be an arbitrary semi-Riemannian manifold.

(1) All 0-dimensional submanifolds are totally geodesic.

(2) Every submanifold of codimension 0, i.e., every open subset of M̄ , is totally
geodesic.

(3) Let M = {c(t)|t ∈ I}, where c : I → M̄ is a geodesic. If M is a semi-Riemannian
submanifold (has no self-intersection, for instance), then M is totally geodesic.

Remark 4.3.6. Most semi-Riemannian manifolds M̄ do not have totally geodesic sub-
manifolds of dimension m ∈ {2, . . . , m̄− 1}.

Theorem 4.3.7

Let M ⊂ M̄ be a semi-Riemannian submanifold. Assume that there exists an isometry
ϕ ∈ Isom(M̄), such that M is a connected component of

Fix(ϕ) = {p ∈ M̄ |ϕ(p) = p}.

Then M is totally geodesic.

Proof. We check Criterion (iii) in Theorem 4.3.3. Let p ∈M and ξ ∈ TpM . We first show
that

dϕ|p(ξ) = ξ.

Namely, let γ : J →M be a smooth curve with γ(0) = p and γ̇(0) = ξ. Then

dϕ|p(ξ) = dϕ|p(γ̇(0)) =
d

dt
(ϕ ◦ γ)
︸ ︷︷ ︸

= γ, since
M⊂Fix(ϕ)

|t=0 = γ̇(0) = ξ. ✓

By Proposition 2.6.20, c lies in Fix(ϕ). Since c(I) is connected, c remains in M .
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4.4 Hypersurfaces

Example 4.3.8. Let M̄ = Sn. Let W ⊂ R
n+1 be a

subvector space. LetA ∈ O(n+1) be the reflection
about W .

⇒ ϕ := A|Sn ∈ Isom(Sn)

⇒ Fix(ϕ) =W ∩ Sn is totally geodesic

Hence all “great subspheres” in Sn are totally
geodesic submanifolds. In particular, Sn admits
totally geodesic submanifolds of every codimen-
sion.

W

Sn

The Gauß Formula (Theorem 4.2.14) tells us that if M ⊂ M̄ is totally geodesic, then

R(ξ, η)ζ = R̄(ξ, η)ζ for all p ∈M and ξ, η, ζ ∈ TpM,
K(E) = K̄(E) for all non-degenerate planes E ⊂ TpM.

4.4 Hypersurfaces

Definition 4.4.1. A semi-Riemannian submanifold M ⊂ M̄ is called a semi-

Riemannian hypersurface if codimM = 1.
The signature of M is ε = +1 if (ḡ|p)|NpM×NpM is positive definite, and ε = −1 if
(ḡ|p)|NpM×NpM is negative definite.

Remark 4.4.2. For ε = +1 we have Index(M̄, ḡ) = Index(M,g) while for ε = −1 we get
Index(M̄, ḡ) = Index(M,g) + 1.

Notation 4.4.3. For ξ ∈ TpM we write

|ξ| :=
√

| 〈ξ, ξ〉 |.
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Caution! This does not define a norm unless 〈·, ·〉 is definite. In particular, it can occur
that |ξ| = 0 even if ξ 6= 0.

Gradient of a differentiable function

Let (M,g) be a semi-Riemannian manifold of dimension n. Let f : M → R be differen-
tiable and p ∈M . Then df |p ∈ T ∗

pM . In coordinates we have

df =
n∑

i=1

∂f

∂xi
dxi.

Since g|p is non-degenerate there exists exactly one ξ ∈ TpM such that

df |p(η) = g|p(ξ, η) for all η ∈ TpM.

Write ξ =: gradf |p. In local coordinates, write gradf =
∑n

i=1 α
i ∂
∂xi . Then we have:

∂f

∂xj
=

n∑

i=1

∂f

∂xi
dxi
(

∂

∂xj

)

= df

(
∂

∂xj

)

= g

(
n∑

i=1

αi ∂

∂xi
,
∂

∂xj

)

=

n∑

i=1

αig

(
∂

∂xi
,
∂

∂xj

)

=

n∑

i=1

αigij .

Matrix multiplication with (gij)ij yields αi =

n∑

j=1

gij
∂f

∂xj
, thus

gradf =

n∑

i,j=1

∂f

∂xj
gij

∂

∂xi

Lemma 4.4.4

Let M̄ be a semi-Riemannian manifold and f : M̄ → R smooth and c ∈ R be a regular value
of f . Then M := f−1(c) ⊂ M̄ is a semi-Riemannian hypersurface of signature ε, if

〈gradf,gradf〉 · ε > 0.

Moreover, we have ν :=
gradf |p
|gradf |p|

∈ NpM and 〈ν, ν〉 = ε.
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Proof. Since c is a regular value, M is a hypersurface. The lemma follows once we show

gradf |p ⊥ TpM.

Let ξ ∈ TpM . We choose γ : I →M with γ̇(0) = ξ and we obtain:

0 =
d

dt
f
(
γ(t)

)

︸ ︷︷ ︸

≡ c

|t=0 = df |p(ξ) = 〈gradf |p, ξ〉 .

Definition 4.4.5

Let M ⊂ M̄ be a semi-Riemannian hypersurface
and p ∈M . Let ν ∈ NpM with |ν| = 1.

The linear map Sν : TpM → TpM , characterized
by

bc

NpM

M
p

ν

〈Sν(ξ), η〉 = 〈II(ξ, η), ν〉 for all ξ, η ∈ TpM,

is called the Weingarten map.

Lemma 4.4.6

The Weingarten map Sν is self-adjoint.

Proof. This is clear because II is symmetric.

Remark 4.4.7. We have S−ν = −Sν . Without specifying the choice of ν, the Weingarten
map is only determined up to a sign.
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Lemma 4.4.8

Let M ⊂ M̄ be a semi-Riemannian hypersurface and
p ∈ M . Let U ⊂ M be an open neighborhood of p and
ν ∈ C∞(U,NM) with |ν| = 1. Then we have

Sν(ξ) = −∇̄ξν.

M

bc

p

ν

U

Proof. For all η ∈ C∞(U, TM) we have:

〈Sν(ξ), η〉 = 〈II(ξ, η), ν〉 =
〈
nor(∇̄ξη), ν

〉
=
〈
∇̄ξη, ν

〉

= ∂ξ 〈η, ν〉
︸ ︷︷ ︸

=0

−
〈
η, ∇̄ξν

〉
= −

〈
∇̄ξν, η

〉
.

Gauß formula:
Let M ⊂ M̄ be a semi-Riemannian hypersurface with signature ε. Let ξ, η, ζ ∈ TpM .
Then:

R(ξ, η)ζ = R̄(ξ, η)ζ + ε
{
〈Sν(η), ζ〉Sν(ξ)− 〈Sν(ξ), ζ〉Sν(η)

}
.

For any non-degenerate plane E ⊂ TpM we have

K(E) = K̄(E) + ε · 〈Sν(ξ), ξ〉 〈Sν(η), η〉 − 〈Sν(ξ), η〉2

〈ξ, ξ〉 〈η, η〉 − 〈ξ, η〉2

where ξ, η is a basis of E.

Pseudospheres and pseudo-hyperbolic spaces

Now consider M̄ = R
n+1 with ḡ = −∑k−1

i=0 dx
i ⊗ dxi +

∑n
i=k dx

i ⊗ dxi in Cartesian
coordinates x0, . . . , xn. Then (M̄ , ḡ) is a semi-Riemannian manifold of index k. For
k = 0 we have the Euclidean metric and for k = 1 the Minkowski metric. For general k
the representing matrix of ḡ in Cartesian coordinates is given by

(ḡij) =






−1. . .−1
0

0
1. . .

1




 .

In particular, all ḡij are constant. Hence all Christoffel symbols vanish in Cartesian
coordinates. Therefore the curvature vanishes:

R̄ ≡ 0, K̄ ≡ 0, ric ≡ 0 and scal ≡ 0.
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Now consider the function

f : Rn+1 → R, f(x0, . . . , xn) = −
k−1∑

i=0

(xi)2 +

n∑

i=k

(xi)2 =

n∑

i=0

εi(x
i)2.

For the gradient we get

gradf |x =

n∑

i,j=0

∂f

∂xi
(x) gij
︸︷︷︸

∂

∂xj
=εi δ

ij

=
n∑

i=0

εi
∂f

∂xi
(x)

∂

∂xi

= 2

n∑

i=0

εi · εi xi
∂

∂xi

= 2

n∑

i=0

xi
∂

∂xi
.

Thus gradf |x = 0 if and only if x = 0. Consequently, the only critical point of f is x = 0
and 0 = f(0) is the only critical value of f . If c 6= 0 then M := f−1(c) therefore defines
a differentiable submanifold of codimension 1. We compute:

〈gradf |x,gradf |x〉 = 4

〈
n∑

i=0

xi
∂

∂xi
,

n∑

i=0

xi
∂

∂xi

〉

= 4

n∑

i,j=0

xixjgij

= 4
n∑

j=0

εj(x
j)2

= 4f(x).

Hence for c > 0 we have that f−1(c) is a semi-Riemannian hypersurface of signature
ε = +1, for c < 0 it is a semi-Riemannian hypersurface of signature ε = −1.

Definition 4.4.9. Let r > 0. The semi-Riemannian hypersurface

Sn
k (r) := f−1(r2)

of (Rn+1, ḡ) is called the pseudo-sphere of radius r and with index k. The semi-
Riemannian hypersurface

Hn
k−1(r) := f−1(−r2),

is called the pseudo-hyperbolic space of index k − 1.
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Example 4.4.10. Let k = 0 and ḡ = geucl.
Then Sn

0 (r) = Sn(r) is the standard
sphere of radius r.

bc

r

Sn(r)

Example 4.4.11. The case k = 1 and ḡ =
gMink is also of great interest.

Hn
0 (r)

Sn
1 (r)

f−1(0)

Definition 4.4.12. The hypersurface Hn := {x ∈ Hn
0 (1) |x0 > 0} together with the

induced Riemannian metric ghyp is called the n-dimensional hyperbolic space.

Definition 4.4.13. The hypersurfaceS4
1(r) together with the induced Lorentzian met-

ric is called deSitter spacetime and H4
1 (r) is called anti-deSitter spacetime.

Remark 4.4.14. The pseudo-sphere Sn
k (r) is diffeomorphic to R

k × Sn−k while the
pseudo-hyperbolic space Hn

k (r) is diffeomorphic to Sk × R
n−k. See the exercises or

[ON83, page 111] for a proof of this fact.

We determine the curvature of these hypersurfaces. For M = f−1(c) with c 6= 0 we
recall

〈gradf |x,gradf |x〉 = 4f(x) = 4c,

hence

ν|x :=
gradf |x
√

|4c|
=

gradf |x
2r

=
1

r

n∑

i=0

xi
∂

∂xi
.
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By Lemma 4.4.8 we get

Sν = −1

r
id

Now the Gauß formula yields

R(ξ, η)ζ =
ε

r2
(〈η, ζ〉 ξ − 〈ξ, ζ〉 η) and K ≡ ε

r2

We compute

ric(ξ, η) =

n∑

i=1

εi 〈R(ξ, ei)ei, η〉

=
ε

r2

n∑

i=1

εi
〈
〈ei, ei〉
︸ ︷︷ ︸

=εi

ξ − 〈ξ, ei〉 ei, η
〉

=
ε

r2
(n 〈ξ, η〉 − 〈ξ, η〉),

thus

ric =
ε(n− 1)

r2
g and scal =

ε(n− 1)n

r2

Remark 4.4.15. For the Einstein tensor of S4
1(r) or H4

1 (r) we get

G = ric − 1

2
scal · g =

3ε

r2
g − 1

2

ε · 3 · 4
r2

g = −3
ε

r2
g.

Thus deSitter and anti-deSitter spacetime are vacuum solutions of the Einstein field
equations with cosmological constant Λ = 3

r2
and Λ = − 3

r2
, respectively.

Next we determine the geodesics of the pseudo-spheres and pseudo-hyperbolic spaces.
Let p ∈ M where M = Sn

k (r) or M = Hn
k−1(r) and let ξ ∈ TpM ⊂ TpR

n+1 ∼= R
n+1 with

ξ 6= 0. What is the geodesic c with c(0) = p and ċ(0) = ξ?

Note that p 6= 0. Then p and ξ, considered as vectors in R
n+1, are linearly independent

because ξ ∈ TpM and p ∈ NpM . Let E ⊂ R
n+1 be the plane spanned by p and ξ. If

ξ is space-like or time-like, then E is non-degenerate for ḡ. Then the reflection (w.r.t.
ḡ) about E is an isometry of (Rn+1, ḡ). The restriction of the reflection to M yields
an isometry ϕ of M , see the discussion of isometries below. Now E ∩M is the fixed
point set of ϕ, hence a 1-dimensional totally geodesic submanifold. In other words, if
we parametrize the connected component of E ∩M containing p proportionally to arc-
length or eigentime, respectively, in such a way that ċ(0) = ξ, then it is the geodesic c
we are after.
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E

M

E

M

E

M

If ξ is light-like, then E is degenerate. But now E ∩M consists of two parallel straight
lines. If we take any affine parametrization of the straight line containing p, then we get
a geodesic in (Rn+1, ḡ) which contains p and lies entirely inM . Thus it is also a geodesic
in M . When choose the affine parametrization such that c(0) = p and ċ(0) = ξ, then we
found the right geodesic also in the light-like case.

In order to determine the isometry group of pseudo-spheres and pseudo-hyperbolic
spaces we define

O(n+ 1− k, k) := {A ∈ GL(n+ 1) | 〈Ax,Ay〉 = 〈x, y〉 ∀x, y ∈ R
n+1}.

Here 〈x, y〉 = −∑k−1
j=0 x

jyj +
∑n

j=k x
jyj . We have O(n+ 1, 0) = O(n+ 1) and O(n, 1) is

the Lorentz group. For any A ∈ O(n + 1− k, k) we have

A(Sn
k (r)) = Sn

k (r) and A(Hn
k−1(r)) = Hn

k−1(r).

Since the semi-Riemannian metric ofM is obtained by restricting ḡ toM , the restriction
of isometries of (Rn+1, ḡ) to M are isometries of M . We have constructed an injective
group homomorphism

O(n+ 1− k, k) → Isom(M),

A 7→ A|M .

Next we show that this homomorphism is also surjective.

Proposition 4.4.16

Let M be a semi-Riemannian manifold, let p ∈ M and ϕ,ψ ∈ Isom(M) with ϕ(p) = ψ(p)
and dϕ|p = dψ|p.
Then ϕ and ψ coincide on the set of all points which can be joined with p by a geodesic.
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4.4 Hypersurfaces

Proof: Let c : [0, 1] → M be a geodesic with c(0) = p
and c(1) = q. Then c̃ := ϕ ◦ c and ĉ := ψ ◦ c are also
geodesics and we have c̃(0) = ϕ(p) = ψ(p) = ĉ(0)
and ˙̃c(0) = dϕ|p(ċ(0)) = dψ|p(ċ(0)) = ˙̂c(0). Therefore
c̃ = ĉ. In particular, ϕ(q) = c̃(1) = ĉ(1) = ψ(q).

b

b

b

b

M

p

q

c

ċ(0)
ϕ(p)

ϕ(q) ϕ ◦ c
dϕ|p(ċ(0))

Corollary 4.4.17

If all points of M can be joined by geodesics with p, then every isometry ϕ of M is uniquely
determined by ϕ(p) and dϕ|p.

Example 4.4.18. Let M = (Rn, geucl). We already know

{Euclidean motions} ⊂ Isom(M),

where a Euclidean motion ϕ : Rn → R
n has the form ϕ(x) = Ax+ b with A ∈ O(n) and

b ∈ R
n. We can now use Proposition 4.4.16 to show that there are no further isometries

of Euclidean space. Let ϕ ∈ Isom(M). Put b := ϕ(0) and A := dϕ|0 ∈ O(n). Then
the Euclidean motion ϕ̃(x) := Ax+ b satisfies ϕ̃(0) = b = ϕ(0) and dϕ̃|0 = A = dϕ|0.
Since any two points in Euclidean space can be joined by a straight line we can apply
Corollary 4.4.17 and conclude ϕ = ϕ̃. This proves

{Euclidean motions} = Isom(M).

Similarly one can show

Isom(Rn, gMink) = Poincaré group.

Remark 4.4.19. The assumption that the points can be joined with p by geodesics is
necessary for the statement of Corollary 4.4.17.

Example 4.4.20. Let M = {p1, p2, p3} be a 0-dimensional mani-
fold consisting of 3 points. On a 0-dimensional manifold all tan-
gent spaces are trivial so g = 0 is a Riemannian metric. All bi-
jective maps M →M are isometries. Consider the following two
maps:

ϕ1 := id, and ϕ2 :=







p1 7→ p1
p2 7→ p3
p3 7→ p2

Then ϕ1 6= ϕ2 despite ϕ1(p1) = ϕ2(p1) and dϕ1|p1 = 0 = dϕ2|p1 .

b b

b

p1 p2

p3
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Example 4.4.21. Here is a 1-dimensional example. LetM =
{(x, y) ∈ R

2 | |y| = 1} = M+ ⊔M− where M± = {(x, y) ∈
R
2 | y = ±1}. Let p = (0, 1) ∈ M . We provide M with the

Riemannian metric induced by the Euclidean metric on R
2.

Put

ϕ1 := id, and ϕ2(x, y) :=

{
(x, y) on M+

(−x, y) on M−

Both ϕ1 and ϕ2 are isometries. Now ϕ1(p) = ϕ2(p) and
dϕ1|p = dϕ2|p but ϕ1 6= ϕ2.

bM+

M−

p

Lemma 4.4.22
On M = Sn

k (r) (where 0 ≤ k ≤ n − 1), on M = Hn
k (r) (where 1 ≤ k ≤ n) and on

M = Hn(r) any two points can be joined by a geodesic.

Proof. W.l.o.g. we assume n ≥ 2. Let p, q ∈ M . Since M is connected we can choose
a continuous curve c : [0, 1] → M with c(0) = p and c(1) = q. W.l.o.g. we assume
c(t) 6∈ {p,−p} for all t ∈ (0, 1). Then p and c(t) are linearly independent for all t ∈ (0, 1)
and span a unique plane E(t).
For any t ∈ (0, 1) the intersectionM ∩E(t) consists of an ellipse or a pair of hyperbolas
or a pair of straight lines. For t → 0 the points c(t) converges to p; hence the points p
and c(t) lie on the same connected component of M ∩E(t) for sufficiently small t.
For t ∈ (0, 1) we choose X(t) ∈ R

n+1 depending continuously on t, which spans
E(t) together with p and which, w.r.t. to the Euclidean skalar product 〈·, ·〉eukl, satis-
fies X(t) ⊥ p and ||X(t)||eukl = 1. Since Sn is compact there is a sequence ti ∈ (0, 1) with
ti → 1 such that X(ti) converges. Put lim

i→∞
X(ti) =: X(1). By continuity, X(1) ⊥ p and

||X(1)||eukl = 1. Hence p and X(1) are linearly independent and span a plane E(1). By
continuity, p, q ∈M∩E(1) and they lie in the same connected component ofM∩E(1).

Theorem 4.4.23
Restriction yields isomorphisms

Isom(Sn
k (r))

∼= O(n + 1− k, k) for 0 ≤ k ≤ n− 1

Isom(Hn
k (r))

∼= O(n − k, k + 1) for 1 ≤ k ≤ n

Isom(Hn(r)) ∼= SO(n, 1) := {A ∈ O(n, 1) |A0
0 > 0}.
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Proof. Put M = Sn
k (r), M = Hn

k (r) or M = Hn(r) and G = O(n + 1 − k, k), G =
O(n − k, k + 1), or G = SO(n, 1), respectively. We need to show: Every isometry of M
is of the form

ϕ = A|M with A ∈ G.

a) We first show that G acts transitively on M . This means that for all p, q ∈ M there
exists an A ∈ G with Ap = q.

Namely: W.l.o.g. let p = r · e0 = (r, 0, . . . , 0)T . From 〈q, q〉 = ±r2 we see that b0 :=
1
r
q

satisfies 〈b0, b0〉 = ±1. We extend b0 to a generalized eigenbasis b0, b1, . . . , bn of Rn+1.
Now A := (b0, b1, . . . , bn) ∈ G and Ap = r Ae0 = rb0 = q.

b) Next we show: For any linear isometry B : Tp0M → Tp0M where p0 = re0, there exists
an A ∈ G such that ϕ = A|M satisfies ϕ(p0) = p0 and dϕ|p0 = B. Namely:

A :=







1 0 . . . 0

0
...
0

B







does the job.

c) Let now ϕ ∈ Isom(M). Put p1 := ϕ(p0) where p0 = re0. By a) there exists an A1 ∈ G
with A1p0 = p1. Hence ψ := A−1

1 |M ◦ ϕ is an isometry of M with ψ(p0) = p0.

Moreover, B := dψ|p0 : Tp0M → Tp0M is a linear isometry. By b) there is an A2 ∈ G
such that χ := A2|M satisfies dχ|p0 = B. Lemma 4.4.22 and Corollary 4.4.17 imply
χ = ψ. Thus

ϕ = A1|M ◦ ψ = A1|M ◦ χ = A1|M ◦A2|M = (A1 ◦A2)
︸ ︷︷ ︸

∈G

|M .

4.5 Trigonometry in spaces of constant curvature

We want to extend the classical trigonometry of the Euclidean plane to 2-dimensional
model spaces of constant curvature. This means that we investigate length- and angular
relations in geodesic triangles.

Notation 4.5.1. The model space M
n
κ is defined as

M
n
κ :=







Sn( 1√
κ
) if κ > 0,

R
n if κ = 0,

Hn( 1√
|κ|
) if κ < 0.
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Thus M
n
κ is an n-dimensional Riemannian manifold with the constant sectional cur-

vature κ.

Remark 4.5.2. Since for any given three points there exists a two-dimensional subma-
nifold of Mn

κ which contains these points, it suffices to consider the case n = 2.

Define the bilinear form on R
3

〈x, y〉κ := x0y0 + κ(x1y1 + x2y2).

Set M̂κ := {x ∈ R
3 | 〈x, x〉κ = 1} and put

Mκ :=

{

M̂κ if κ > 0,

{x ∈ M̂κ |x0 > 0} if κ ≤ 0.

In the case κ 6= 0, the metric 1
κ
〈·, ·〉κ on R

3 induces
a Riemannian metric on Mκ. In particular,

Mκ =

{

S2 if κ = 1,

H2 if κ = −1.

M̂0

M̂1

M̂−1

In the case κ = 0, every bilinear form on R
3 of the form λ · x0y0 + x1y1 + x2y2 induces

the same Euclidean metric on M0, independent of λ ∈ R. We choose λ = 0 and in the
case κ = 0 we make the definition:

1
κ
〈x, y〉κ := x1y1 + x2y2.

Lemma 4.5.3

For every κ ∈ R, the isometry group of Mκ contains the subgroup

Gκ :=
{
ϕ | ϕ = A|Mκ where A ∈ GL(3) with 〈Ax,Ay〉κ = 〈x, y〉κ ,

1

κ
〈Ax,Ay〉κ =

1

κ
〈x, y〉κ ∀x, y ∈ R

3 and A(Mκ) = Mκ

}
.

Remark 4.5.4. In the case κ 6= 0 the conditions 〈Ax,Ay〉κ = 〈x, y〉κ and 1
κ
〈Ax,Ay〉κ =

1
κ
〈x, y〉κ are of course equivalent and we could omit one of them. But in the case κ = 0

we need both of them.
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From 〈Ax,Ay〉κ = 〈x, y〉κ it already follows that A(M̂κ) = M̂κ. In the case κ ≤ 0, A

could possibly exchange the two connected components of M̂κ. This is ruled out by the
condition A(Mκ) = Mκ. In the case κ > 0 we could omit this condition.

Proof of the Lemma. Let A ∈ Gκ. Since ϕ = A|Mκ is the restriction of the linear map A,
we get that for p ∈ Mκ the differential dϕ(p) : TpMκ → Tϕ(p)Mκ also is the restriction of
A,

dϕ(p) = A|TpMκ .

Here, the tangent spaces of Mκ are viewed as subvector spaces of R3. Since A respects
the bilinear form 1

κ
〈·, ·〉κ, the differential dϕ(p) is a linear isometry for every p ∈ Mκ.

Thus ϕ is an isometry of Riemannian manifolds.

Remark 4.5.5. Indeed, we have Isom(Mκ) = Gκ but we will not need this fact.

For κ = 1 we have

Gκ
∼= {A ∈ GL(3) | 〈Ax,Ay〉 = 〈x, y〉 ∀x, y ∈ R

3} = O(3)

the group of orthogonal transformations. For κ = −1, Gκ is the group of time-

orientation preserving Lorentz transformations.

In case κ = 0, we have:

G0 = {A ∈ GL(3) | 〈Ax,Ay〉0 = 〈x, y〉0 , 10 〈Ax,Ay〉0 = 1
0 〈x, y〉0 ∀x, y ∈ R

3, AM0 = M0}

=






A =





1 0 0

b1

b2
B





∣
∣
∣
∣
∣
∣

b1, b2 ∈ R, B ∈ O(2)







This holds true since for any A ∈ G0,

x0y0 = (Ax)0(Ay)0 = (A0
0x

0 +A0
1x

1 +A0
2x

2)(A0
0y

0 +A0
1y

1 +A0
2y

2)

Thus 





For x = y =e0: 1= (A0
0)

2 ⇒ A0
0 = ±1

A(M0)=M0⇒ A0
0=1.

For x = y =e1: 0= (A0
1)

2 ⇒ A0
1=0.

For x = y =e2: 0= (A0
2)

2 ⇒ A0
2=0.

For x̂, ŷ ∈ R
2 we have with x = (0, x̂)⊤ and y = (0, ŷ)⊤:

〈x̂, ŷ〉
R2 = 1

0 〈x, y〉0 = 1
0 〈Ax,Ay〉0 = 1

0

〈(
0
Bx̂

)

,

(
0
Bŷ

)〉

0

= 〈Bx̂,Bŷ〉
R2 .
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Hence B ∈ O(2) and therefore

G0 ⊂
{

A =

(
1 0

b B

)∣
∣
∣
∣
b ∈ R

2,B ∈ O(2)

}

.

The other inclusion ”‘⊃”’ follows by a direct computation.

We now analyze, how G0 acts, if we identify M0 with R
2 .

R
2 → M0

(
1 0
b B

)

−→ M0 → R
2

x̂ 7→
(

1
x̂

)

7→
(

1 0
b B

)(
1
x̂

)

=

(
1

b+Bx̂

)

7→ b+Bx̂

Hence the group G0 acts like the group of Euclidean motions.

As seen in the last paragraph, the geodesics in Mκ,
viewed as a set of points, equal the sets of the form

Mκ ∩ E,

where E ⊂ R
3 is a two-dimensional subvector space.

b

b

M0

E 0

e0

Lemma 4.5.6

The geodesics parametrized by arc-length γ : R → Mκ with γ(0) = e0 are then given by

γ(r) =





cκ(r)
sκ(r) · sin(ϕ)
sκ(r) · cos(ϕ)





where ϕ ∈ R is fixed.

Proof. The curve γ stays in M̂κ because

〈γ(r), γ(r)〉κ = cκ(r)
2 + κ

(
sκ(r)

2 sin(ϕ)2 + s
2
κ cos(ϕ)

2
)
= cκ(r)

2 + κ sκ(r)
2 = 1.

Since γ(0) = e0 ∈ Mκ and γ is continuous, γ remains in Mκ. Moreover, γ lies in the plane
E, which is spanned by e0 and (0, sin(ϕ), cos(ϕ))⊤. Hence γ is contained in Mκ ∩ E. In
addition, γ is parametrized by arc-length because

1
κ
〈γ̇(r), γ̇(r)〉κ = 1

κ

〈



−κ sκ(r)
cκ(r) sin(ϕ)
cκ(r) cos(ϕ)



 ,





−κ sκ(r)
cκ(r) sin(ϕ)
cκ(r) cos(ϕ)





〉

κ
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= 1
κ

(

κ2sκ(r)
2 + κ

(
cκ(r)

2 sin(ϕ)2 + cκ(r)
2 cos(ϕ)2

))

= κ sκ(r)
2 + cκ(r)

2

= 1.

The generalized sine and cosine functions allow us to explicitly write down many
isometries in Gκ.

Example 4.5.7. Rotations about the e0-Axis are isometries,




1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)



 ∈ Gκ

for any ϕ and any κ ∈ R. Using κ s2κ + c
2
κ = 1 one easily checks that





cκ(r) −κ sκ(r) 0
sκ(r) cκ(r) 0
0 0 1



 ∈ Gκ

for all r ∈ R. In the case κ = 1 this is a rotation about the e2-axis. For κ = 0 this is
the identity, hence uninteresting. In the case κ = −1 such isometries are called Lorentz
boosts. Similarly, one sees that

Lr :=





cκ(r) 0 κ sκ(r)
0 1 0

sκ(r) 0 −cκ(r)



 ∈ Gκ.

Before using these isometries we observe that

Lre0 =





cκ(r)
0

sκ(r)





and

Lr





cκ(r)
0

sκ(r)



 =





cκ(r) 0 κsκ(r)
0 1 0

sκ(r) 0 −cκ(r)









cκ(r)
0

sκ(r)





=





cκ(r)
2 + κsκ(r)

2

0
sκ(r)cκ(r)− cκ(r)sκ(r)





=





1
0
0





= e0.

Thus Lr interchanges the points e0 and (cκ(r), 0, sκ(r))
⊤.
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Definition 4.5.8.

Let M be a Riemannian manifold. A geodesic triangle

is a 6-tupel
(A,B,C, γA, γB , γC),

where A,B,C ∈M are pairwise disjoint points, γA, γB
and γC geodesic segments with endpoints B and C , C
and A or A and B, respectively.

b

b

b

A

B

C

γA
γB

γC

The points A, B and C are the vertices, the geodesic segments γA, γB and γC are the
sides of the geodesic triangle. The angle at a vertex is defined to be the angle of the
tangent vectors of the sides at that vertex.

Let (A,B,C, γA, γB , γC) a geodesic triangle in Mκ. The sides
have the lengths a, b and c, respectively, and the angles are
denoted by α, β and γ, respectively.

b

b

b

A

B

C

a
b

c
α

β

γ

Here the length of a geodesic segment γ is defined as the length of the parameter in-
terval × the norm of γ̇, which is constant. A more general definition of the length of a
differentiable curve in a Riemannian manifold will be introduced later. Since the isom-
etry group of Mκ acts transitively, we can assume w.l.o.g. that

A = e0 =





1
0
0



 .

Applying an isometry of the form





1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)





(rotation about the e0-axis) we can rotate B in the e0-e2-plane without moving A = e0.
The formula from Lemma 4.5.6 for the geodesic γC with ϕ = 0 and r = c then tells us

B =





cκ(c)
0

sκ(c)
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Lemma 4.5.6 for the geodesic γB with ϕ = α and r = b yields

C =





cκ(b)
sκ(b) sin(α)
sκ(b) cos(α)



 .

Hence the isometryLc interchanges the pointsA and
B and we obtain a new geodesic triangle. On the one
hand one can compute LcC similarly as C itself and
one obtains

b

b

b

A = LcB

B
=
L
c
A

LcC

b
a

cβ

α

γ

LcC =





cκ(a)
sκ(a) sin(β)
sκ(a) cos(β)



 .

On the other hand

LcC =





cκ(c) 0 κsκ(c)
0 1 0

sκ(c) 0 −cκ(c)









cκ(b)
sκ(b) sin(α)
sκ(b) cos(α)





=





cκ(c)cκ(b) + κsκ(c)sκ(b) cos(α)
sκ(b) sin(α)

sκ(c)cκ(b)− cκ(c)sκ(b) cos(α)





Thus we obtain the equations:

cκ(a) = cκ(c)cκ(b) + κ sκ(c)sκ(b) cos(α) (Law of Cosines) (1)

sκ(a) sin(β) = sκ(b) sin(α)

sκ(a)

sin(α)
=

sκ(b)

sin(β)
(Law of Sines) (2)

sκ(a) cos(β) = sκ(c)cκ(b)− cκ(c)sκ(b) cos(α) (3)

Equation (3) with the roles of B and C interchanged yields

sκ(a) cos(γ) = sκ(b)cκ(c) − cκ(b)sκ(c) cos(α) (4)

Equation (3) · cos(α)− (2) · sin(α)2 · sin(β) then yields

sκ(a) cos(β) cos(α)− sκ(a) sin(β) sin(α)

= sκ(c)cκ(b) cos(α) − cκ(c)sκ(b) cos(α)
2 − sκ(b) sin(α)

2

Hence

sκ(a)(cos(α) cos(β)− sin(α) sin(β))

(4)
= sκ(b)cκ(c) − sκ(a) cos(γ)− sκ(b)cκ(c) cos(α)

2 − sκ(b) sin(α)
2

= sκ(b)cκ(c) sin(α)
2 − sκ(a) cos(γ)− sκ(b) sin(α)

2

(2)
= sκ(a)cκ(c) sin(α) sin(β)− sκ(a) cos(γ)− sκ(a) sin(α) sin(β)

139



4 Submanifolds

and thus cos(α) cos(β) = cκ(c) sin(α) sin(β)− cos(γ), hence

cos(γ) = cκ(c) sin(α) sin(β)− cos(α) cos(β) (Cosine Rule for Angles).

We have proved

Theorem 4.5.9

Let κ ∈ R. For a geodesic triangle in Mκ with the side lengths a, b, c and the angles α, β, γ
we have

(1) Law of Sines:

sκ(a)

sin(α)
=

sκ(b)

sin(β)
=

sκ(c)

sin(γ)
.

(2) Law of Cosines (Cosine Rule for Sides):

cκ(a) = cκ(b)cκ(c) + κsκ(b)sκ(c) · cos(α),
cκ(b) = cκ(a)cκ(c) + κsκ(a)sκ(c) · cos(β),
cκ(c) = cκ(a)cκ(b) + κsκ(a)sκ(b) · cos(γ).

(3) Cosine Rule for Angles:

cos(α) = cκ(a) sin(β) sin(γ)− cos(β) cos(γ),

cos(β) = cκ(b) sin(α) sin(γ)− cos(α) cos(γ),

cos(γ) = cκ(c) sin(α) sin(β)− cos(α) cos(β).

Now we analyze the sum of angles in the model space of constant curvature.

Theorem 4.5.10

Let κ ∈ R. For the sum of angles α+β+γ of a geodesic triangle in Mκ with the inner angles
0 < α, β, γ < π we have

α+ β + γ







> π, if κ> 0
= π, if κ= 0
< π, if κ< 0

140
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b

b

b

b

b

b

b

b

b

κ > 0 κ = 0 κ < 0

Proof. W.l.o.g. we assume that α ≥ β. For this proof we will use the notation “⋚” for

“<”, if κ > 0, for “=”, if κ = 0, and for “>”, if κ < 0. We have −κ ⋚ 0, for instance.

If is κ > 0, then Mκ is the sphere of radius 1√
κ

. Thus in this case the side lengths have

to be < 2π√
κ

. In the case κ ≤ 0, we do not have any bounds on the side lengths. We use

the convention 1√
κ
= ∞, if κ ≤ 0. With this convention we have in all cases

cκ ⋚ 1

in the interval (0, 2π√
κ
). Since sin is positive on (0, π) the Cosine Rule for Angles yields

cos(α) = cκ(a) sin(β) sin(γ)− cos(β) cos(γ)

⋚ sin(β) sin(γ)− cos(β) cos(γ)

= − cos(β + γ)

= cos(π − (β + γ))

= cos(β + γ − π).

Since 0 < β, γ < π we have −π < π − (β + γ) < π.

First case: π − (β + γ) ≥ 0.
Since cos is strictly monotonically decreasing on [0, π], the relation
cos(α) ⋚ cos(π − (β + γ)) yields π − (β + γ) ⋚ α and thus π ⋚ α + β + γ. This
is what we wanted to show.

Second Case: π − (β + γ) < 0.
If κ > 0, we obtain π < β + γ < α + β + γ directly, which proves the claim. Hence, let
κ ≤ 0. Then from cos(α) ≥ cos(β + γ − π) we may deduce that α ≤ β + γ − π. Since
α ≥ β and γ < π this implies

α < α+ π − π = α,

giving a contradiction.

Remark 4.5.11. Since the inner angles are < π, we always have for the sum of angles in
a geodesic triangle α + β + γ < 3π. It is easy to see that for Mκ with κ > 0 the sum of
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angles of a geodesic triangle can take all values in (π, 3π). For Mκ with κ < 0 all values
of the interval (0, π) occur.
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5 Riemannian Geometry

From now on we concentrate on Riemannian geometry, that is, on semi-Riemannian
manifolds whose metric is positive definite and hence defines a Euclidean scalar prod-
uct on each tangent space. One special feature of the Riemannian case is that each
connected Riemannian manifold naturally becomes a metric space.

5.1 The Riemannian distance function

General Assumption. Let M be a connected Riemannian manifold and let 〈·, ·〉 denote
the Riemannian metric.

Definition 5.1.1. Let c : [a, b] → M be a continuous piecewise C1-curve. Then we
call

L[c] :=

b∫

a

||ċ(t)|| dt

the length of c.

Remark 5.1.2. The length does not depend on the parametrization of the curve.
Namely, if ϕ : [a, b] → [α, β] is a parameter transformation, then we have

L[c ◦ ϕ] =

b∫

a

∣
∣
∣
∣

∣
∣
∣
∣

d

dt
(c ◦ ϕ)(t)

∣
∣
∣
∣

∣
∣
∣
∣
dt

=

b∫

a

||ċ(ϕ(t))|| · |ϕ̇(t)| dt

Substitution
s = ϕ(t) =

β∫

α

||ċ(s)|| ds

= L[c].
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Definition 5.1.3. Let p, q ∈M . Then we call

d(p, q) = inf
{
L[c] | c : [a, b] →M piecewise C1-curve with c(a) = p, c(b) = q

}

the Riemannian distance of p and q.

Remark 5.1.4. The infimum is, in general, not a minimum. In other words, there need
not exist a shortest curve connection p and q.

Example 5.1.5

M = R
n \ {0} and p = −q. We have d(p, q) = 2 ||p||, but

every curve c from p to q has length L[c] > 2 ||p||.
bc

b

b
q

p
0

R
n

Theorem 5.1.6 (Gauß lemma)
Let p ∈ M and ξ ∈ TpM . The geodesic γ(t) =
expp(tξ) is supposed to be defined on [0, b].
Then expp is defined on an open neighborhood of
{tξ | 0 ≤ t ≤ b} ⊂ TpM and we have

(i) d expp |tξ(ξ) = γ̇(t).

(ii) For η ∈ TtξTpM ∼= TpM we have

〈
d expp |tξ(η), γ̇(t)

〉
= 〈η, ξ〉 .

In particular, d expp |tξ(η) ⊥ γ̇(t), if η ⊥ ξ.

b

b

b

b

b

b

M

TpM

p

0 tξ
ξ

ξ
η

d expp |tξ(η)
γ̇(t)

γ(t)

γ

expp

Proof. (i) We compute d expp |tξ(ξ) =
d

ds
expp(t ξ + s ξ)|s=0 =

d

ds
γ(t+ s)|s=0 = γ̇(t).

(ii) By (i) it suffices to consider the case η ⊥ ξ. Let J be the Jacobi field along γ with
J(0) = 0 and ∇

dt
J(0) = η. Proposition 3.4.13 yields

d expp |tξ(η) =
J(t)

t
for t > 0.
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5.1 The Riemannian distance function

Since both J and ∇
dt
J are perpendicular to γ̇ at t = 0, this holds for all t. We conclude

〈
d expp |tξ(η), γ̇(t)

〉
=

〈
J(t)

t
, γ̇(t)

〉

= 0 = 〈η, ξ〉 .

We now consider the diffeomorphism

Φ : TpM \ {0} −→ (0,∞) × Sn−1, x = t · y 7→ (t, y) = (‖x‖, x

‖x‖),

where Sn−1 ⊂ TpM is the unit sphere in the tangent space. There exists an r > 0, such
that expp maps B(0, r) ⊂ TpM diffeomorphically onto a neighborhood U of p in M .
Then the map

(0, r)× Sn−1 → U \ {p}, (t, y) 7→ expp(ty),

is a diffeomorphism. Now let y2, . . . , yn be local coordinates on an open set U1 ⊂ Sn−1.
Then the coordinates given by the diffeomorphism

expp(ty) 7→ (t, y2, . . . , yn),

are called geodesic polar coordinates.

b

b

Φ≈

U

B(0, r)

0 r

Sn−1

U1

M

TpM

p

0

expp

The Gauß lemma says that in such coordinates the Riemannian metric takes the form

(gij) =







1 0 · · · 0
0
...
0

∗
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Corollary 5.1.7

Let r > 0 so small that expp |B̄(0,r) is a diffeomorphism on its image. Let c : [a, b] →M be a

piecewise C1-curve with c(a) = p and c(b) 6∈ expp(B(0, r)). Then L[c] ≥ r.

Proof. Let β ∈ (a, b) be minimal such that c(β) ∈ ∂ expp(B(0, r)) = expp(S
n−1(r)). Let

α ∈ [a, β) maximal such that c(α) = p. Now it is ensured that for τ ∈ (α, β) the curve
c(τ) lies in expp(B(0, r)) \ {p}. For τ ∈ (α, β] we write

c̃(τ) := expp
−1(c(τ)) = t(τ) · y(τ)

where t(τ) := ‖c̃(τ)‖ ∈ (0, r] and y(τ) := c̃(τ)
‖c̃(τ)‖ ∈ Sn−1. Let ξ̃ be the unit vector

field on TpM \ {0} which corresponds to ξ̃(x) = x
‖x‖ under the canonical isomorphism

TxTpM ∼= TpM . Using the diffeomorphism expp we transport this vector field to the
manifold, that is, on expp(B̄(0, r)) \ {p} we set

ξ(q) := d expp

(

ξ̃
(
expp

−1(q)
))

.

The first part of the Gauß lemma implies ||ξ|| ≡ 1. Because of

d

dτ
c̃(τ) =

dt

dτ
· y(τ)
︸︷︷︸

= ξ̃(c̃(τ))

+t(τ) · dy
dτ

(τ)
︸ ︷︷ ︸

⊥ ξ̃(c̃(τ))

part (ii) of the Gauß lemma yields

〈
ξ
(
c(τ)

)
, ċ(τ)

〉
=
〈

d expp
(
ξ̃
(
c̃(τ)

))
, d expp

(
˙̃c(τ)

)〉

=
〈

ξ̃
(
c̃(τ)

)
, ˙̃c(τ)

〉

=
dt

dτ
.
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5.1 The Riemannian distance function

Thus we get

L[c] ≥ L[c|[α,β]]

=

β∫

α

||ċ(τ)|| dτ

Cauchy
Schwarz

inequality
≥

β∫

α

〈
ξ
(
c(τ)

)
, ċ(τ)

〉
dτ

=

β∫

α

dt

dτ
dτ

= t(β)− t(α)

= r − 0 = r.

b

b

ξ̃

ξ

U

B(0, r)

M

TpM

p

0

expp

Theorem 5.1.8

(M,d) is a metric space.

Proof. a) Obviously we have d(p, q) ≥ 0 and d(p, p) = 0 because the constant curve has
length 0. Now let p 6= q. We have to show d(p, q) > 0. Choose r > 0 such that expp |B(0,r)

is a diffeomorphism and q 6∈ expp(B(0, r)). Then by Corollary 5.1.7 every curve from p
to q has length r at least. Hence d(p, q) ≥ r > 0.
b) Symmetry d(p, q) = d(q, p) is clear. Simply traverse the curves in the opposite direc-
tion.
c) It remains to show the triangle inequality d(p, q) ≤ d(p, r) + d(r, q).
Let ε > 0. Choose a continuous piecewise C1-
curves c1 from p to r with L[c1] ≤ d(p, r) + ε and
c2 from r to q with L[c2] ≤ d(r, q)+ ε. Now concate-
nate c1 and c2 to a continuous piecewise C1-curve c
from p to q. Then we have b

b

b

c1
c2

r

p

q

d(p, q) ≤ L[c] = L[c1] + L[c2] ≤ d(p, r) + ε+ d(r, q) + ε.

Taking the limit εց 0 yields the assertion.
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Notation 5.1.9. For p ∈M and r > 0 set

B(p, r) := {q ∈M | d(p, q) < r},
B̄(p, r) := {q ∈M | d(p, q) ≤ r},
S(p, r) := {q ∈M | d(p, q) = r}.

Definition 5.1.10. For p ∈M

injrad(p) := sup{r | expp |B(0,r) : B(0, r) → expp
(
B(0, r)

)
is diffeomorphism}

is called the injectivity radius of M at p.

Example 5.1.11. The injectivity radius depends on p.

here injrad is large

here injrad is small

Remark 5.1.12. For 0 < r < injrad(p) we have expp(B(0, r)) = B(p, r). Namely:

“⊂”: Let q = expp(ξ) with ||ξ|| < r. Then t 7→ expp(tξ), t ∈ [0, 1], is a curve from p to q
with length ||ξ|| < r. Hence d(q, p) < r, i.e., q ∈ B(p, r).

“⊃”: Corollary 5.1.7.

Theorem 5.1.13

The metric d induces the original topology on M .
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5.1 The Riemannian distance function

Proof. For the moment we denote the open subsets w.r.t. d of M as “d-open”. We have
to show: d-open = open.
a) Claim: Every d-open set is open.
Let U ⊂M be d-open. For every p ∈ U there exists a r(p) > 0, such that B(p, r(p)) ⊂ U .
W.l.o.g. let r(p) < injrad(p). Then B(p, r(p)) = expp(B(0, r(p))

︸ ︷︷ ︸

open in TpM

) is the diffeomorphic

image of an open subset of TpM . Hence it is open itself. Therefore U =
⋃

p∈M
B
(
p, r(p)

)

is the union of open subsets of M and thus open.
b) Claim: Every open set is d-open. The proof is similar.

Corollary 5.1.14

The map d :M ×M → R is continuous.

Remark 5.1.15. If Φ ∈ Isom(M). Then we have L[Φ ◦ c] = L[c] and thus also
d
(
Φ(p),Φ(q)

)
= d(p, q).

Recall that E[c] = 1
2

b∫

a

||ċ(t)||2 dt is the energy of c.

Proposition 5.1.16

Let M be a Riemannian manifold and c : [a, b] → M be a continuous, piecewise C1-curve.
Then we have

L[c]2 ≤ 2(b− a) · E[c].

Equality holds if and only if c is parametrized proportional to arc-length.

Proof. With the Cauchy Schwarz inequality for the L2-scalar product we obtain:

L[c]2 =





b∫

a

||ċ(t)|| · 1 dt





2

≤
b∫

a

||ċ(t)||2 dt ·
b∫

a

12 dt = 2E[c] · (b− a).
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Equality holds if and only if ||ċ|| and 1 (as a function) are linearly dependent. This means
that ||ċ|| is constant, i.e., that c is parametrized proportionally to arc-length.

Corollary 5.1.17

A curve c minimizes the energy in the set of all continuous piecewise C1-curves connecting p
and q if and only if c minimizes the length and is parametrized proportionally to arc-length.

Remark 5.1.18. By Corollary 2.6.10 energy minimizing curves are geodesics.

Corollary 5.1.19

Every shortest curve from p to q is a geodesic up to parametrization. It is a geodesic if and
only if it is parametrized proportionally to arc-length.

Caution! The converse is not true. Not every geodesic is a shortest curve connecting its
endpoints.

Example 5.1.20. Great circles on Sn are geodesics connecting points to themselves. But
the only shortest curves connecting a point to itself are constant curves which have
length 0.

Definition 5.1.21. A geodesic γ : [a, b] →M with L[γ] = d
(
γ(a), γ(b)

)
is called mini-

mal.
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5.2 Completeness

5.2 Completeness

General Assumption. Throughout this section let M be a connected Riemannian ma-
nifold.

Definition 5.2.1. Let p ∈ M . Then M is called geodesically complete at p if expp is
defined on all of TpM , i.e., if all geodesics through p are defined on all of R.

Theorem 5.2.2 (Hopf-Rinow)

Let M be a connected Riemannian manifold and p ∈ M . Then the following assertions are
equivalent:

(1) M is geodesically complete at p.

(2) M ist geodesically complete at all q ∈M .

(3) The closed balls B̄(p, r) are compact for all r > 0.

(4) The closed balls B̄(q, r) are compact for all r > 0 and all q ∈M .

(5) (M,d) is complete as a metric space, i.e., all d-Cauchy sequences converge.

All of these conditions imply in addition

(6) Every point q can be joined with p by a minimal geodesic.

Remark 5.2.3. Assertion (6) is weaker than (1) through (5).

Example 5.2.4. LetM = {x ∈ R
n | ||x|| < 1} with the Euclidean

metric. Then M satisfies (6), but not (1)–(5).

bc

bc

Definition 5.2.5. If the equivalent conditions (1)–(5) in Theorem 5.2.2 hold, then one
calls M a complete Riemannian manifold.
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Corollary 5.2.6

Every compact Riemannian manifold is complete.

Proof of Corollary 5.2.6. We check condition (3) in the Hopf-Rinow theorem. Indeed,
B̄(p, r) ⊂M is a closed subset of the compact space M and thus compact itself.

Proof of Theorem 5.2.2. We will prove this theorem in five steps. The structure of the
proof is as follows:

(5) (2) (1) (6)
︸ ︷︷ ︸

(4) (3)

(a) trivial (e)

(d)

(c)

(b)

a) Let γ : (α, β) → M be a geodesic with maximal domain of definition. W.l.o.g. we
assume that γ is parametrized by arc-length.

We assume β < ∞ (the case α > −∞ is analogous). Then we have for a sequence

ti ∈ (α, β) with ti
i→∞−→ β, that

d
(
γ(ti), γ(tj)

)
≤ L[γ|[ti,tj ]] = |ti − tj |.

Hence (γ(ti))i∈N is a d-Cauchy-sequence. Since (M,d) is complete there exists a

q ∈M with γ(ti)
i→∞−→ q.

1. Claim: The limit point q does not depend on the choice of the sequence (ti)i∈N with

ti
i→∞−→ β.

Proof. If (t′i)i∈N is another such sequence with q′ = limi→∞ γ(t′i), then also (t′′i )i∈N is
such a sequence, where

t′′i :=

{
tj , i =2j
t′j , i =2j + 1

The sequence (γ(t′′i ))i∈N is a d-Cauchy-sequence with accumulation points q and q′.
We thus have q = q′. This proves the first claim. ✓

Thus we obtain a continuous continuation γ̄ : (α, β] →M of γ by

γ̄(t) =

{
γ(t), t ∈ (α, β)
q , t = β

2. Claim: The velocity field γ̇ also has a continuous extension to (α, β].
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5.2 Completeness

Proof. Let x : U → V be a chart of M around q with x(q) = 0. Choose r > 0 such that
B̄(0, r) ⊂ V . Since B̄(0, r) is compact, there exist constants C1, C2, C4 > 0 with

•
∣
∣
∣Γk

ij(y)
∣
∣
∣ ≤ C1 for all y ∈ B̄(0, r).

• ||a||max ≤ C2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

j=1
aj ∂

∂xj

(
x−1(y)

)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
g

for all a = (a1, . . . , an) ∈ R
n and y ∈ B̄(0, r).

•
∣
∣
∣
∣

∂Γk
ij

∂xl (y)

∣
∣
∣
∣
≤ C4 for all y ∈ B̄(0, r).

Choose ε > 0 small enough so that γ(t) ∈ x−1(B̄(0, r)) for t ∈ (β − ε, β). Write
γk := xk ◦ γ and ak := γ̇k. By the equations for geodesics we obtain:

ȧk = γ̈k = −
n∑

i,j=1

Γk
ij(γ

1, . . . , γn) · γ̇iγ̇j = −
n∑

i,j=1

Γk
ij(γ

1, . . . , γn) aiaj

and hence ∣
∣
∣ȧk
∣
∣
∣ ≤ n2 · C1 · ||a||2max .

This implies

∣
∣
∣
∣ȧ
∣
∣
∣
∣
max

≤ n2C1 · ||a||2max ≤ n2C1 · C2
2 ||γ̇||g2
︸ ︷︷ ︸

=1

= n2C1C2
2 =: C3.

We get

||a(ti)− a(tj)||max =

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

tj∫

ti

ȧ(t) dt

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
max

≤

∣
∣
∣
∣
∣
∣

tj∫

ti

||ȧ(t)||max dt

∣
∣
∣
∣
∣
∣

≤ C3 |ti − tj | .

Thus the a(ti) form a Cauchy sequence in R
n and hence converge to some A ∈ R

n.

As before A is independent of the special choice of the sequence (ti)i∈N with ti
i→∞−→

β. Thus we obtain a continuous extension of a by

ā(t) :=

{

a(t), t ∈ (β − ε, β)

A, t = β

Hence the velocity field γ̇ is extended continuously to t = β. This shows that the
extension γ̄ of γ is C1. ✓

Differentiation of the geodesics equations yields

äk = −
n∑

i,j=1

(
n∑

l=1

∂Γk
ij

∂xl
alaiaj + 2Γk

ij ȧ
iaj

)
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This implies

||ä||max ≤ n3C4 ||a||3max + 2n2 C1 ||ȧ||max ||a||max

≤ n3C4C2
3 + 2n2 C1C3C2

=: C5

As before we see that (ȧ(ti))i∈N forms a d-Cauchy-sequence in R
n. This shows that

the extension γ̄ is even a C2-curve. By continuity it satisfies the geodesic equation
also at t = β.

Now let γ̂ : (β − δ, β + δ) → M be the geodesic with γ̂(β) = γ̄(β) and ˙̂γ(β) = ˙̄γ(β).
Since geodesics are uniquely determined by their initial values, γ̂ and γ̄ coincide on
their common domain of definition. This yields a continuation of γ as a geodesic on
(α, β + δ). This contradicts the maximality of β and thus shows (2).

b) Let all closed balls in M be compact. Let (pi)i∈N be a Cauchy sequence in M . Since
Cauchy sequences are bounded, there exists aR > 0 such that pi ∈ B̄(p,R) for all i ∈
N. Since B̄(p,R) is compact, the Cauchy sequence (pi)i∈N has an accumulation point
q ∈ B̄(p,R). Since accumulation points of Cauchy sequences are unique, (pi)i∈N
converges to q.

c) Let all B̄(p, r) be compact for all r > 0. Let q ∈ M
and let R > 0. Set r := R+ d(p, q). Then

B̄(q,R) ⊂ B̄(p, r),

because for x ∈ B̄(q,R) we have

d(x, p) ≤ d(x, q) + d(q, p) ≤ R+ d(q, p) = r.

b

b

p

q
r

R

Hence B̄(q,R) is a closed subset of the compact set B̄(p, r) and therefore it is compact
itself.

d) Let (pi)i∈N be a sequence in B̄(p, r). We have to show that (pi)i∈N possesses a con-
vergent subsequence.

By (6) there exist minimal geodesics γi with γi(0) = p and γi(ti) = pi for suitable ti.

W.l.o.g. let γi be parametrized by to arc-length. Then ti =
L[γi] = d(p, pi) ≤ r.

The γ̇i(0) are unit vectors in TpM . Since Sn−1(1) ⊂ TpM is
compact we have, after passing to a suitable subsequence,

γ̇i(0)
i→∞−→ X ∈ Sn− 1(1) ⊂ TpM.

b

b

b b

b

b
b
b

b

b

pi

γ̇i(0)
...p

X
q

B̄(p, r)

The ti lie in the compact interval [0, r]. After passing to a subsequence again, ti
i→∞−→

T ∈ [0, r] converges too. Set q := expp(T ·X). This definition is possible because of
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(1). We now have

lim
i→∞

pi = lim
i→∞

expp
(
ti · γ̇i(0)

)
= expp

(
lim
i→∞

tiγ̇i(0)
)
= expp(TX) = q.

This proves (3).

e) Let q ∈ M . We already know, that we can find minimal geodesics from p to q, if
q ∈ B(p, injrad(p)).

Let ck be continuous piecewise C1-curves
from p to q with L[ck] = d(p, q) + εk with
εk ց 0.
We assume q 6∈ B(p, injrad(p)) because oth-
erwise we are finished. Choose 0 < r0 <
injrad(p). Then

S(p, r0) = expp
(
Sn−1(r0)

)

b

b

b
b
b
b
b b

ckqk

q̄p

B̄(p, r0)

γ

q

is compact. Let qk be the first intersection point of ck with S(p, r0). After passing to
a subsequence, qk possesses a limit q̄ ∈ S(p, r0). We have

d(p, q) ≤ d(p, qk) + d(qk, q) ≤ L[ck] ≤ d(p, q) + εk
k→∞⇒ d(p, q) ≤ d(p, q̄) + d(q̄, q) ≤ d(p, q)

⇒ d(p, q) = d(p, q̄) + d(q̄, q)

Let γ be the unique minimal geodesic that connects p with q̄. We parametrize γ by
arc-length. With (1) we can extend γ to [0, d(p, q)].

It remains to show that γ : [0, d(p, q)] →M is a minimal geodesic from p to q. Set

I :=
{
t ∈ [0, d(p, q)] | d(p, γ(t)) = t and d(p, γ(t)) + d(γ(t), q) = d(p, q)

}
.

We have seen that [0, r0] ⊂ I . Set t0 := sup(I). We have to show that t0 = d(p, q)
because then

d
(
γ(t0), q

)
= d(p, q)− d

(
γ(t0), p

)
= d(p, q) − t0 = 0,

which implies γ(t0) = q and that γ is a minimal geodesic from p to q.

We therefore assume that t0 < d(p, q) from which
we have to derive a contradiction. Set q′ := γ(t0).
Choose 0 < r1 < d(p, q)− t0 such thatB(q′, r1) is a
normal coordinate neighborhood. As above, there
exists a q̄′ ∈ ∂B(q′, r1) with

d(q′, q̄′) + d(q̄′, q) = d(q′, q).

b

b
b

b

γ(t0) = q′

q̄′
γ1

r1
p

qγ

Now let γ1 be a minimal geodesic, parametrized by arc-length, with γ1(t0) = q′ and
γ(t0 + r1) = q̄′.
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⇒ d(p, q̄′) ≤ d(p, q′) + d(q′, q̄′)
= d(p, q′) + d(q′, q)− d(q̄′, q)
= d(p, q)− d(q′, q) + d(q′, q)− d(q̄′, q)
= d(p, q)− d(q̄′, q)
≤ d(p, q̄′)

⇒ d(p, q̄′) = d(p, q′) + d(q′, q̄′)

⇒ The curve γ|[0,t0] ∪ γ1|[t0,t0+r1] is a shortest.

⇒ t0 + r1 ∈ I . This contradicts the maximality of t0. We have proved (6).

5.3 The second variation of the energy

We recall: If cs is a C2-variation of c : [a, b] →M with vari-
ational field ξ, then the first variation formula (Theorem
2.6.5) says:

d
ds
E[cs]|s=0 = −

b∫

a

〈
ξ, ∇

dt
ċ
〉
dt+ 〈ξ, ċ〉 |ba.

b

b c

ξ

cs

If cs is continuous and only piecewise C2, that is,
there exists a partition a = t0 < t1 < · · · < tN = b,
such that (s, t) 7→ cs(t) is continuous on (−ε, ε)×[a, b]
and C2 on (−ε, ε)× [ti−1, ti], then we have

b
b

b

c

c(
t i
+
1
)

c(ti)
c(ti−1)

ċ(t+i )

ċ(t−i )

d

ds
E[cs]|s=0 =

d

ds

N∑

i=1

E[cs|[ti−1,ti]]|s=0

=

N∑

i=1

(

−
∫ ti

ti−1

〈

ξ,
∇
dt
ċ

〉

dt+
〈
ξ(ti), ċ(t

−
i )
〉
−
〈
ξ(ti−1), ċ(t

+
i )
〉

)

= −
∫ b

a

〈

ξ,
∇
dt
ċ

〉

dt+
〈
ξ(b), ċ(b−)

〉
−
〈
ξ(a), ċ(a+)

〉
+

N∑

i=1

〈
ξ(ti), ċ(t

−
i )− ċ(t+i )

〉

Question: If c is a continuous and only piecewise C2-curve with d
ds
E[cs]|s=0 = 0 for all

continuous, piecewise C2-variations cs with fixed endpoints, does c then have to be a
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geodesic (and thus in particular C∞)?

Answer: Yes. Namely: First of all, consider only such varia-
tions with ξ(ti) = 0 for all i ∈ {0, . . . , N}, then it follows as
in the proof of Corollary 2.6.10 that ∇

dt
ċ ≡ 0 on every [ti−1, ti]

for i = 1, . . . , N .

⇒ The curve c is piecewise a geodesic. b

b

b

b

If ċ(t−i ) 6= ċ(t+i ) for an i ∈ {1, . . . , N − 1} then we can choose an η ∈ Tc(ti)M with

〈
η, ċ(t−i )− ċ(t+i )

〉
> 0.

Now continue η via parallel transport along c. Choose a smooth function ϕ : R → R

with ϕ(ti) = 1 and ϕ ≡ 0 on R \ (ti−1, ti+1). Set ξ(t) := ϕ(t)η(t). Then we have
ξ(a) = ξ(b) = 0 and thus

0 =
d

ds
E[cs]|s=0 =

〈
ξ(ti), ċ(t

−
i )− ċ(t+i )

〉
=
〈
η, ċ(t−i )− ċ(t+i )

〉
> 0.

This is a contradiction. We summarize:

Theorem 5.3.1

Let M be a semi-Riemannian manifold and c : [a, b] → M be a continuous, piecewise C2-
curve. Then for every continuous piecewise C2-variation cs of c with variational field ξ we
have

d

ds
E[cs]

∣
∣
∣
∣
s=0

= −
b∫

a

〈

ξ,
∇
dt
ċ

〉

dt+ 〈ξ, ċ〉
∣
∣
∣
∣

b

a

+

N−1∑

i=1

〈
ξ(ti), ċ(t

−
i )− ċ(t+i )

〉
,

where a = t0 < t1 < · · · < tN = b is a partition for which both c and cs are C2 on the
intervals [ti−1, ti], i = 1, . . . N .
The curve c is a geodesic if and only if for all such variations with fixed endpoints we have

d

ds
E[cs]

∣
∣
∣
∣
s=0

= 0.

To investigate the minima of the energy, we have to consider the second variation of
the energy.
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Theorem 5.3.2 (Second Variation of the energy)
Let M be a semi-Riemannian manifold. Let c : [a, b] → M be a geodesic. Let cs be a C3-
variation of c with variational field ξ and fixed endpoints. Then we have

d2

ds2
E[cs]

∣
∣
∣
∣
s=0

=

b∫

a

(〈∇
dt
ξ,

∇
dt
ξ

〉

− 〈R(ξ, ċ)ċ, ξ〉
)

dt.

Proof. In the proof of Theorem 2.6.5 we have already shown that

d

ds
E[cs] =

b∫

a

〈∇
∂t

∂cs
∂s

,
∂cs
∂t

〉

dt

holds for all s, not just for s = 0. Therefore

d2

ds2
E[cs]

∣
∣
∣
∣
s=0

=

b∫

a

(〈∇
∂s

∇
∂t

∂cs
∂s

∣
∣
∣
∣
s=0

, ċ

〉

+

〈∇
dt
ξ,

∇
∂s

∂cs
∂t

∣
∣
∣
∣
s=0

〉)

dt

=

b∫

a

〈∇
∂t

∇
∂s

∂cs
∂s

∣
∣
∣
∣
s=0

, ċ

〉

dt+

b∫

a

〈R(ξ, ċ)ξ, ċ〉 dt+
b∫

a

〈∇
dt
ξ,

∇
dt
ξ

〉

dt.

The assertion follows from

b∫

a

〈∇
∂t

∇
∂s

∂cs
∂s

∣
∣
∣
∣
s=0

, ċ

〉

dt =

b∫

a

(

∂

∂t

〈∇
∂s

∂cs
∂s

∣
∣
∣
∣
s=0

, ċ

〉

−
〈

∇
∂s

∂cs
∂s

∣
∣
∣
∣
s=0

,
∇
dt
ċ

︸︷︷︸

=0

〉)

dt

=

〈∇
∂s

∂cs
∂s

∣
∣
∣
∣
s=0

, ċ

〉 ∣
∣
∣
∣

b

a

= 0,

because cs is a variation with fixed endpoints.

5.4 The Bonnet-Myers theorem

Definition 5.4.1. Let M be a connected Riemannian manifold. Then we call

diam(M) := sup{d(p, q) | p, q ∈M} ∈ (0,∞]

the diameter of M .
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5.4 The Bonnet-Myers theorem

Example 5.4.2. For M = Sn equipped with the standard metric g = gstd we have
diam(Sn) = π. For M = R

n with the Euclidean metric g = geucl and for hyperbolic
space M = Hn with g = ghyp we have diam(Rn) = diam(Hn) = ∞.

Remark 5.4.3. If M is complete then

diam(M) <∞ ⇔ M is compact.

Namely:

“⇐”: M is compact ⇒M ×M is compact ⇒ d :M ×M → R is bounded and attains
its maximum C ⇒ diam(M) = C <∞.

“⇒”: If diam(M) =: R < ∞, then for arbitrary p ∈ M we have M = B̄(p,R). Hence
M is compact by the Hopf-Rinow Theorem 5.2.2.

Theorem 5.4.4 (Bonnet-Myers)
Let M be a complete connected Riemannian manifold of dimension n. Assume there exists a
κ > 0 such that

ric ≥ κ(n − 1)g.

This means that ric(ξ, ξ) ≥ κ(n − 1)g(ξ, ξ) for all ξ ∈ TM . Then M is compact and we
have:

diam(M) ≤ π√
κ
.

Example 5.4.5

(1) Let M = Sn with g = α2 · gstd where α is a positive constant. Then we have

diam(M) = απ, K ≡ 1

α2
, ric ≡ n− 1

α2
g

⇒ diam(M) =
π√
κ

and ric = κ(n − 1)g with κ =
1

α2
.

This shows that the estimate in the Bonnet-Myers theorem is optimal and cannot be
improved.

(2) Now let M = RPn with g = gstd. Since RPn is locally isometric to Sn, we have as for
the sphere ric = (n− 1)g. But diam(RPn) = π

2 . Here we find diam(M) < π√
κ

where
κ = 1.
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Proof of Theorem 5.4.4. Let p, q ∈ M with p 6= q. Set δ := d(p, q). Since M is complete,
there exists a minimal geodesic from p to q by the Hopf-Rinow theorem. W.l.o.g. let
γ : [0, δ] →M be parametrized by arc-length with γ(0) = p and γ(δ) = q.
Let e ∈ TpM with e ⊥ γ̇(0) and ||e|| = 1. Let e(t) be the vector field along γ obtained
from e by parallel transport. Set

ξ(t) := sin
(π

δ
t
)

· e(t).

Let γs(t) be a variation of γ with fixed endpoints and vari-
ational field ξ, for example

γs(t) = expc(t)(s · ξ(t)).
b

b

p

q
γe

ξ

Since γ is a minimal geodesic, we have

0 =
d

ds
E[γs]|s=0

and
0 ≤ d2

ds2
E[γs]|s=0

=

δ∫

0

(∣
∣
∣
∣

∣
∣
∣
∣

∇
dt
ξ

∣
∣
∣
∣

∣
∣
∣
∣

2

− 〈R(ξ, γ̇)γ̇, ξ〉
)

dt

=

δ∫

0

(∣
∣
∣

∣
∣
∣
π

δ
cos
(π

δ
t
)

e(t)
∣
∣
∣

∣
∣
∣

2
− sin

(π

δ
t
)2

〈R(e, γ̇)γ̇, e〉
)

dt

=

δ∫

0

(
π2

δ2
cos
(π

δ
t
)2

· 1− sin
(π

δ
t
)2
K(e, γ̇)

)

dt.

If e1, . . . , en−1 is a orthonormal basis of γ̇(0)⊥, we obtain with e = ei and summation
over i:

0 ≤
δ∫

0

(

(n− 1)
π2

δ2
cos
(π

δ
t
)2

− sin
(π

δ
t
)2

ric(γ̇, γ̇)
︸ ︷︷ ︸

≥ (n−1)κ·1

)

dt

≤ (n− 1)

δ∫

0

(
π2

δ2
cos
(π

δ
t
)2

− sin
(π

δ
t
)2

· κ
)

dt

= (n− 1) · 1
2

π2 − κδ2

δ
.

Therefore 0 ≤ π2 − κδ2 and hence δ ≤ π√
κ

. Since this holds for all choices of p and q we

conclude
diam(M) ≤ π√

κ
.
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By Remark 5.4.3, M is compact.

The theorem tells us that the larger the Ricci curvature of a Riemannian manifold, the
smaller the manifold.
Note that the following general implications hold:

K ≥ κ ⇒ ric ≥ (n − 1)κ · g ⇒ scal ≥ n(n− 1)κ. (1)

Thus the Bonnet-Myers theorem also holds if the sectional curvature is bounded from
below by a postive constant, K ≥ κ > 0. Does the Bonnet-Myers theorem also hold
under the weaker condition scal ≥ n(n− 1)κ?
The answer is “no” as we see by the following counterex-
ample. If M1 and M2 are Riemannian manifolds and if
M := M1 ×M2 carries the product metric, then

gM (ξ1 + ξ2
︸ ︷︷ ︸

, η1 + η2) = gM1(ξ1, η1) + gM2(ξ2, η2).

∈Tp1M1⊕Tp2M2

=T(p1,p2)
M

b

b

b

p1

p2

M1

M2

(p1, p2)
T(p1,p2)M

⇒ RM (ξ1 + ξ2, η1 + η2) =

(
RM1(ξ1, η1) 0

0 RM2(ξ2, η2)

)

⇒ ricM =

(
ricM1 0

0 ricM2

)

⇒ scalM = scalM1 + scalM2 .

For n ≥ 3 we obtain with M = Sn−1 × R that

scalM = (n− 1)(n − 2) + 0 = (n− 1)(n − 2),

but diam(M) = ∞. Thus the Bonnet-Myers theorem does not hold under the weaker
condition scal ≥ n(n− 1)κ if n ≥ 3.
For n = 2 on the other hand, the three conditions in (1) are equivalent.
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map, differentiable, 14
maximal atlas, 14
metric, Lorentz-, 42
metric, Riemannian, 42
metric, semi-Riemannian, 38
minimal geodesic, 150
Minkowski scalar product, 43
Minkowski space, 43
model space, 133
Modelspace of constant curvature, 133
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orthonormal basis, generalized, 36, 74

parallel transport, 61
parallel transport on the sphere, web-

site, 63
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