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Preface

These are the lecture notes of a course on geometric wave equations which I taught at the

University of Potsdam in the winter term 2015/2016. The course gave an introduction to linear

hyperbolic PDEs on Lorentzian manifolds. The geometric setup allows to apply the theory in

general relativity, for instance.

Some basic knowledge of differential geometry was required. This includes concepts such as

manifolds, vector bundles, connections etc. Since Lorentzian geometry is less standard than

Riemannian geometry I collected the most relevant material in the first chapter on preliminaries,

some of it without proofs. This chapter also contains an introduction to linear differential

operators and distributions on manifolds.

The second chapter is devoted to the local study of normally hyperbolic equations. These are

second-order wave equations. Local fundamental solutions are constructed and their Hadamard

expansion is derived.

In the third chapter we study global solutions meaning solutions defined on the whole manifold.

Of course, this requires the manifold to be “reasonable” which is made precise by the concept of

global hyperbolicity. We construct global fundamental solutions, Green’s operators and solutions

to the Cauchy problem for normally hyperbolic operators. Symmetric hyperbolic systems turn

out to be an important class of first-order equations for which we also derive the analytic basics.

Using them one can for instance treat Maxwell’s equations from electrodynamics. The existence

of Green-operators already says a lot about the solution theory of a differential operator. This

leads to the class of Green-hyperbolic operators which includes but is much larger than normally

hyperbolic operators and symmetric hyperbolic systems. Finally, we use an argument due to

Chernoff to show essential selfadjointness of many operators on Riemannian manifolds using

symmetric hyperbolic systems.

Originally, I had planned to also include a chapter on non-linear wave equations known as wave

maps. Unfortunately, this turned out to be unrealistic due to a lack of time.

I would like to thank all participants of the course for their active participation and the many

hints they provided. Special thanks go to Claudia Grabs for taking notes and writing the first

draft of these lecture notes. Many of the illustrations have also been created by her.

Potsdam, February 2016

Christian Bär
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1 Preliminaries

Wave equations form a class of partial differential equations which describe many physical

processes. The following table contains a collection of examples of equations which are, in

principle, tractable by methods which we will develop in this course, at least the linear ones.

topic equation describes type order

electrodynamics
Maxwell’s equations field strength linear 1st

wave equation four-potential linear 2nd

quantum field theory
Klein-Gordon-equation scalar field linear 2nd

Dirac equation wave function of electron linear 1st

general relativity
Einstein field equations gravitational field non-linear 2nd

linearized Einstein equations gravitational waves linear 2nd

elasticity theory equation of motion deformation of elastic body non-linear 2nd

differential geometry wave maps maps between manifolds non-linear 2nd

Table 1.1: example equations

We will discuss these partial differential equations in a geometric formulation to be able to apply

the results in geometric theories like electrodynamics, general relativity, and elasticity theory.

The first chapter contains a somewhat diverse summary of the background material which we

will need.

1.1 Linear differential operators on manifolds

1.1.1 Vector bundles and linear differential operators

Reminder. Let M be an n-dimensional differentiable manifold

and let π : E → M be a vector bundle. A section of E is a map

s : M → E such that π ◦ s = idM .

We define

C∞(M, E) := {smooth sections of E} . π

Ex

x

E

M

bc

|

s(x)s
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1 Preliminaries

Definition 1.1.2. Let E and F be K-vector bundles over M , where K = R or C.

A differential operator of order (at most) k is a linear mapping P : C∞(M, E) → C∞(M,F),

such that for any local coordinate system x1, . . . , xn on U ⊂ M and any local trivialization

E |U
≈−→ U ×Kp and F |U

≈−→ U ×Kq there exist smooth maps Aα : U → Mat(q × p,K) such

that

Pv |U =
∑

|α | ≤k
Aα (x)

∂ |α |v

(∂x1)α1 . . . (∂xn )αn

for all v ∈ C∞(M, E). Here α = (α1, . . . , αn) ∈ Nn and |α | = α1 + . . . + αn.

Notation 1.1.3. We define

Diff
k

(E, F) :=
{

P : C∞(M, E) → C∞(M,F) | P differential operator of order ≤ k
}

.

The vector spaces Diff
k

(E, F) form a filtration,

Diff
k+1

(E, F) ⊃Diff
k

(E, F) ⊃ · · · ⊃Diff
0
(E, F) = C∞(M,Hom(E, F)).

Example 1.1.4. Let M be a semi-Riemannian manifold, let E = M × R be the trivial real line

bundle and F = T M be the tangent bundle of M . The gradient is a differential operator of order

1 from E to F, grad ∈Diff
1
(M × R,T M ). In local coordinates, we have:

grad v =
∑

i

gi j (x)
∂v

∂xi
∂

∂x j
.

Comparing the coefficients in this formula with the coefficients Aα in Definition 1.1.2, we find:

A(0, ...,

i
↓
1, ...,0)

=

(

g1i, . . . , gni
)⊤
, A(0...,0)

= (0, . . . , 0)⊤.

Example 1.1.5. Let M be a semi-Riemannian manifold, let E = T M be the tangent bundle of

M and let F = M × R be the trivial real line bundle. The divergence is a differential operator of

order 1 from E to F, div ∈Diff
1
(T M,R). In local coordinates, we have for Y =

∑

i y
i ∂
∂x i :

div (Y ) =
∑

i

∂yi

∂xi
+

∑

i j

Γ
i
i j y

j .

The coefficients are

A(0, ...,

i
↓
1, ...,0)

= (0, . . . ,

i
↓
1, . . . , 0), A(0...,0)

=

(∑

i

Γ
i
i1, . . . ,

∑

i

Γ
i
in

)

.
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1.1 Linear differential operators on manifolds

Here Γk
i j

denote the Christoffel symbols of the semi-Riemannian metric with respect to the

coordinates x1, . . . , xn .

Example 1.1.6. Let M be a Riemannian manifold and consider E = ΛmT∗M and F =

Λ
m+1T∗M . The exterior derivative d is a differential operator of order 1 from E to F,

d ∈Diff
1
(ΛmT∗M,Λm+1T∗M ).

Example 1.1.7. Let E be an arbitrary vector bundle over M with connection ∇ and let

F = T∗M ⊗ E. Then ∇ is a differential operator of first order from E to F.

Remark 1.1.8. Let E, F,G → M be vector bundles over a smooth manifold M . If P ∈
Diff

k
(E, F) and Q ∈Diff

l
(F,G), then Q ◦ P ∈Diff

k+l
(E,G).

Example 1.1.9. Let M be a semi-Riemannian manifold and consider E = G = M × R and

F = T M . Then −div ◦ grad ∈Diff
2
(E,G). If M is Riemannian this operator is denoted by ∆

and is called the Laplace-Beltrami operator. If M is Lorentzian then this operator is denoted by

� and is called the d’Alembert operator.

1.1.2 The principal symbol

For a given differential operator P ∈Diff
k

(E, F) and a covector ξ ∈ T∗x M , we construct a linear

mapping σk (P, ξ) : Ex → Fx as follows: We choose a smooth function f : M → R such that

f (x) = 0 and df (x) = ξ. We then set for e ∈ Ex :

σk (P, ξ) · e :=
1

k!
P
(

f k ẽ
) |x, (1.1)

where ẽ ∈ C∞(M, E) is any extension of e, i.e. ẽ(x) = e. As we shall see, this definition is

independent of the choice of ẽ and f . In local coordinates and local trivializations, we compute:

σk (p, ξ) · e = 1

k!

∑

|α | ≤k
Aα (x)

∂ |α |
(

f k ẽ
)

(∂x1)α1 · · · (∂xn )αn
(x)

=

1

k!

∑

|α |=k
Aα (x)

∂ |α |
(

f k
)

(∂x1)α1 · · · (∂xn )αn
(x) · ẽ(x)

=

∑

|α |=k
Aα (x) · ξα1

1
· · · ξαn

n · e . (1.2)

The second equality holds because by assumption f (x) = 0, so that all terms vanish where f k

differentiated is less than k times. The last equality holds by a similar argument: If one of the

factors in f k is differentiated more than once, there is another factor which remains without

differentiation and hence vanishes at x.

Since the right hand side of (1.2) is independent of the choice of ẽ and f , so is the left hand side.

This shows that σk (P, ξ) is well defined by (1.1).

3



1 Preliminaries

For any ξ ∈ T∗x M , we have constructed a homomorphism σk (P, ξ) : Ex → Fx . Thus we have

σk (P, ·) ∈ Hom(π∗E, π∗F) where π : T∗M → M is the projection to the foot point.

Definition 1.1.10. Let E, F → M be vector bundles over a smooth manifold M and let

P ∈ Diff
k

(E, F). Then σk (P, ·) ∈ Hom(π∗E, π∗F) is called the principal symbol of the

operator P.

Remark 1.1.11. The principal symbol σk (P, ·) contains the coefficients of the highest order

derivatives of P ∈Diff
k

(E, F). In particular, we have

σk (P, ξ) = 0 for all ξ ∈ T∗M ⇔ Aα = 0 for all |α | = k ⇔ P ∈Diff
k−1

(E, F).

In other words: The sequence

0→Diff
k−1

(E, F) −→Diff
k

(E, F)
σk (P, ·)−−−−−−→ Hom

(

π∗E, π∗F
)

is exact.

Warning. In the literature the definition of σk (P, ξ) often contains an additional factor ik .

Convention. If k is clear from the context, we will write σ(P, ξ) instead of σk (P, ξ).

Example 1.1.13. We compute the principal symbol of the gradient, see Example 1.1.4. We fix

a covector ξ ∈ T∗x M . Since Ex = R, we have to apply σ(grad , ξ) to a real number, say 42. A

convenient extension of 42 to a smooth section to E is the constant function x 7→ 42.

Let f : M → R be a smooth function, such that f (x) = 0 and df (x) = ξ. By the definition of

σ(grad , ξ), we have1

σ(grad , ξ) · 42 = grad ( f · 42)(x)

= 42 · grad f (x)

= 42 · df (x)♯

= 42 · ξ♯ .

In short: σ(grad , ξ) = ξ♯.

Example 1.1.14. We compute the principal symbol of the divergence, see Example 1.1.5. Here

Ex = Tx M , so we have to apply σ(div , ξ) to a tangent vector Y ∈ Tx M . Let Ỹ be a smooth

1Here ξ♯ is the vector in Tx M dual to ξ ∈ T∗x M with respect to the Riemannian metric, i.e., for any Y ∈ Tx M we

have 〈ξ♯,Y 〉 = ξ (Y ).

4



1.1 Linear differential operators on manifolds

vector field such that Ỹ (x) = Y . Again let f : M → R be a smooth function such that f (x) = 0

and df (x) = ξ. Then we have

σ(div , ξ)Y = div
(

f · Ỹ )
(x)

= f (x)
︸︷︷︸

= 0

·div
(
Ỹ
)
(x) +

〈
grad f (x), Ỹ (x)

〉

=

〈

ξ♯,Y
〉

= ξ (Y ).

Thus σ(div , ξ) = ξ.

Example 1.1.15. We compute the principal symbol of the exterior derivative d, see Exam-

ple 1.1.6. Let ω ∈ ΛkT∗x M and extend ω to a smooth k-form ω̃ ∈ Ωk (M ) such that ω̃(x) = ω.

Then we have

σ(d, ξ)ω = d
(

f · ω̃)
(x)

=

(
df ∧ ω̃ + f · dω̃) ��x

= df (x) ∧ω + f (x)
︸︷︷︸

= 0

·dω̃��x
= ξ ∧ω.

Hence σ(d, ξ) = ξ ∧ ·.

Example 1.1.16. We compute the principal symbol of a connection ∇ on a vector bundle E, see

Example 1.1.7. Let e ∈ Ex and extend e to a smooth section ẽ ∈ C∞(M, E) such that ẽ(x) = e.

Then we have

σ(∇, ξ)e = ∇(

f ẽ
) ��x

=

(

df ⊗ ẽ + f · ∇ẽ
) ��x

= df (x) ⊗ e + f (x)
︸︷︷︸

= 0

·(∇ẽ
) ��x

= ξ ⊗ e.

Thus σ(∇, ξ) = ξ ⊗ ·.

Remark 1.1.17. Let E, F,G be vector bundles over a smooth manifold M , and let P ∈
Diff

k
(E, F) and Q ∈Diff

l
(F,G). Then we have

σk+l (Q ◦ P, ξ) = σl (Q, ξ) ◦ σk (P, ξ).

Example 1.1.18. We compute the principal symbol of the Laplace-Beltrami operator ∆ or

d’Alembert operator � from the principal symbols of div and grad :

σ2(−div ◦ grad , ξ) = −σ1(div ) · σ1(grad ) = −ξ (ξ♯) = −〈ξ♯, ξ♯〉 = −〈ξ, ξ〉.

5



1 Preliminaries

1.1.3 Formally adjoint and formally dual operator

In the following let M be a differentiable manifold equipped with a smooth positive volume

density dµ. The volume density is necessary for the integration of functions over M . In local

coordinates, it takes the form dµ = µdx1 · · · dxn where µ is a smooth positive function. Later

we will use the volume density induced by a Riemannian or Lorentzian metric but for now this

is irrelevant.

Moreover, let E, F → M be vector bundles whose fibers carry non-degenerate (but possibly

indefinite) inner products 〈·, ·〉E and 〈·, ·〉F , respectively. They are supposed to depend smoothly

on the base point.

Lemma 1.1.19. For any P ∈Diff
k

(E, F) there exists a unique operator Pt ∈Diff
k

(F, E)

such that ∫

M

〈Pu, v〉F dµ =

∫

M

〈

u, Ptv
〉

E dµ (1.3)

holds for all u ∈ C∞(M, E) and v ∈ C∞(M,F) with compact supports.

Definition 1.1.20. The operator Pt ∈ Diff
k

(F, E) satisfying (1.3) is called the operator

formally adjoint to P.

Proof of Lemma 1.1.19. Uniqueness:

Let x1, . . . , xn be local coordinates defined on U ⊂ M and let local trivializations of E and F

over U be fixed. Let E and F be the matrices representing the inner products of E and F with

respect to the local trivializations. They are symmetric and invertible and depend smoothly on

the footpoint in U .

Let u ∈ C∞(M, E) and v ∈ C∞(M,F) be sections with supports in U . We denote the canonical

scalar product on Km by 〈·, ·〉 and we compute:

∫

U

〈Pu, v〉F dµ =

∫

U

〈 ∑

|α | ≤k
Aα

∂ |α |u

(∂x1)α1 · · · (∂xn )αn
,F v

〉

µ dx

=

∑

|α | ≤k

∫

U

〈 ∂ |α |u

(∂x1)α1 · · · (∂xn )αn
, µ · (Aα

)⊤F v
〉

dx

integr.
by parts
=

∑

|α | ≤k
(−1) |α |

∫

U

〈

u,
∂ |α |

(∂x1)α1 · · · (∂xn )αn

(

µ · (Aα
)⊤F v

) 〉

dx

=

∫

U

〈

u,
∑

|α | ≤k
(−1) |α |

1

µ

∂ |α |
(
µ · (Aα )⊤F v

)

(∂x1)α1 · · · (∂xn )αn

〉

dµ

6



1.1 Linear differential operators on manifolds

=

∫

U

〈

u, E−1
∑

|α | ≤k
(−1) |α |

1

µ

∂ |α |
(
µ · (Aα )⊤F v

)

(∂x1)α1 · · · (∂xn )αn

〉

E
dµ.

Since this holds for all u a comparison with (1.3) yields

Ptv =
1

µ

∑

|α | ≤k
(−1) |α | E−1 ∂

|α | (µ · (Aα )⊤F v
)

(∂x1)α1 · · · (∂xn )αn
. (1.4)

This shows that Pt v is uniquely determined provided its support is contained in a coordinate

patch. Now let v ∈ C∞(M,F) be an arbitrary section with compact support. We choose an

open covering of M with local trivializations and a partition of unity subordinated to it. Then v

is a finite sum of sections of the form considered above. Since Pt is required to be linear, it is

uniquely determined by the local formula (1.4).

Existence: Let v ∈ C∞(M,F) be a smooth section with compact support. We now use for-

mula (1.4) to define Ptv if v has support in U . For general v we use a partition of unity to write

it as a sum of sections with supports contained in coordinate patches. It is tedious but straight-

forward to check that this definition is independent of the choice of coordinates, trivializations,

and partition of unity. �

Remark 1.1.21. For any P ∈ Diff
k

(E, F) we have (Pt )t = P. This is obvious from equa-

tion (1.3) and the uniqueness of the formal adjoint.

Example 1.1.22. The gradient is a first order operator grad : C∞(M ) → C∞(M,T M ), so grad t

maps vector fields to functions. By definition, for any function u ∈ C∞(M ) and any vector field

Y ∈ C∞(M,T M ), both with compact support, we have

∫

M

u grad tY dvol =

∫

M

〈grad u,Y 〉 dvol

=

∫

M

(
div (uY ) − u divY

)
dvol

= −
∫

M

u divY dvol.

In the last step we used the Gauss integration theorem. Thus grad t
= −div . By Remark 1.1.21

we also have div t
= −grad .

Remark 1.1.23. For differential operators P ∈Diff
k

(E, F) and Q ∈Diff
l
(F,G) we have

(Q ◦ P)t = Pt ◦ Qt .

7



1 Preliminaries

Definition 1.1.24. Let M be a differentiable manifold with a smooth positive volume density.

Let E be a vector bundle over M with a non-degenerate inner fiber metric. An operator

P ∈Diff
k

(E, E) is called formally selfadjoint if P = Pt .

Example 1.1.25. Let P = −div ◦ grad on a semi-Riemannian manifold. We then have

Pt
= −(div ◦ grad )t = −grad t ◦ div t

= −(−div ) ◦ (−grad ) = P.

Thus the Laplace-Beltrami operator and the d’Alembert operator are formally selfadjoint.

Lemma 1.1.26. Let M be a differentiable manifold with a smooth positive volume density dµ.

Let E and F be vector bundles over M equipped with non-degenerate inner fiber metrics. Let

P ∈Diff
k

(E, F). Then for any ξ ∈ T∗M we have

σk

(
Pt, ξ

)
= (−1)kσk (P, ξ)t . (1.5)

Proof. Since only the terms of order k contribute to the principal symbol σk (P, ·), we write

Pu =
∑

|α |=k
Aα (x)

∂ |α |u

(∂x1)α1 · · · (∂xn )αn
+ l.o.t.

where “l.o.t.” stands for “lower order terms”. By this we mean expressions involving derivatives

of u of order lower than k. By (1.4) the adjoint of P is given by

Pt v =
1

µ

∑

|α |=k
(−1) |α | E−1 ∂

|α | (µ · (Aα )⊤F v
)

(∂x1)α1 · · · (∂xn )αn
+ l.o.t.

=

1

µ

∑

|α |=k
(−1)k µ · E−1 (Aα )⊤F ∂ |α |v

(∂x1)α1 · · · (∂xn )αn
+ l.o.t.

=

∑

|α |=k
(−1)k (Aα )t

∂ |α |v

(∂x1)α1 · · · (∂xn )αn
+ l.o.t.

Here we have denoted the transpose of Aα with respect to the fiber metrics of E and F by (Aα )t

and the transpose with respect to the standard fiber metrics induced by the local trivializations

by (Aα )⊤. They are related by (Aα )t = E−1 (Aα )⊤F . Now (1.2) yields

σk

(
Pt, ξ

)
= (−1)k

∑

|α |=k
ξ
α1

1
· · · ξαn

n Aα (x)t = (−1)kσk (P, ξ)t . �

To conclude this section we present a variation of the concept of formally adjoint operators which

does not require fiber metrics. We work with dual bundles instead. Let M be a differentiable

manifold with volume density dµ. Let E and F be K-vector bundles over M .

8



1.1 Linear differential operators on manifolds

Lemma 1.1.27. For any P ∈Diff
k

(E, F) there exists a unique P∗ ∈Diff
k

(F∗, E∗) with

∫

M

η (Pu) dµ =

∫

M

(

P∗η
)

(u)dµ. (1.6)

Proof. Uniqueness:

We will reduce to what we know already about formally adjoint operators. To this extent, we

choose auxiliary metrics 〈·, ·〉E on E and 〈·, ·〉F on F. Hermitian and Riemannian metrics can

always be constructed using a partition of unity.

Let E and F be the anti-linear isomorphisms defined by

E : E → E∗, e 7→ 〈·, e〉E
F : F → F∗, f 7→ 〈·, f 〉F .

For the left hand side in ∫

M

〈Pu, v〉Fdµ =

∫

M

〈u, Ptv〉Edµ (1.7)

we get
∫

M

〈Pu, v〉Fdµ =
∫

M

(F (v)) (Pu)dµ while right hand side of (1.7) is given by

∫

M

〈u, Pt v〉Edµ =
∫

M

(E (Ptv)
)

(u)dµ. Substituting η = F v we find that (1.7) is equivalent

to ∫

M

η(Pu)dµ =

∫
(

E (PtF −1η)
)

(u)dµ .

Comparison with (1.6) leads to

P∗ = E ◦ Pt ◦ F −1 (1.8)

which proves uniqueness.

Existence: We define P∗ by (1.8). The same calculation backwards shows that the this is the

desired operator. �

Definition 1.1.28. P∗ is called the dual operator to P.

There ist no notion of selfadjointness in the context of dual operators since P and P∗ act on

different bundels. The dual operator will become important when working with distributions.

Remark 1.1.29. We can see directly from the definining equation (1.6) that we again have

(Q ◦ P)∗ = P∗ ◦ Q∗.

9



1 Preliminaries

1.1.30. Since E is of finite dimension, we can identify E with (E∗)∗ using the map

e 7→ (l 7→ l (e)) .

Show
(
P∗

)∗
= P.

1.2 Lorentzian geometry

Wave equations are closely related to Lorentzian geometry. In fact, the d’Alembert operator on

a Lorentzian manifold yields the prototype of a wave equation. In this section, we collect some

basic concepts of Lorentzian geometry.

1.2.1 Future, past, and causality

For us, a Lorentzian metric is a semi-Riemannian metric with signature (−,+, . . . ,+). In the

literature, one also finds different conventions. Especially in the physics literature signature

(+,−, . . . ,−) is often used.

Definition 1.2.1. For a finite-dimensional real vector space (V, 〈〈, 〉〉) with inner product of

signature (−,+, . . . ,+), we call v ∈ V



timelike, if 〈〈v, v〉〉 < 0

spacelike, if 〈〈v, v〉〉 > 0 or v = 0

lightlike, if 〈〈v, v〉〉 = 0 and v , 0

causal, if v is timelike or lightlike

This definition will mostly be used for tangent vectors, i.e. if V is the tangent space of a Lorentzian

manifold at some point.

10



1.2 Lorentzian geometry

b0 spacelike

lightlike

timelike

lightlike

timelike

Causality types of vectors

The set of timelike vectors in V consists of two connected components, similarly for lightlike and

causal vectors. We want to call vectors in one component future-directed, the ones in the other

component past-directed. Since there is no canonical choice of component we have to make one.

On a Lorentzian manifold this choice needs to be done at each point, i.e. on each tangent space.

This choice of connected component should depend continuously on the base point. This leads

to the concept of time-orientation which we now define formally.

Definition 1.2.2. A vector field X is called timelike, spacelike, lightlike or causal, if X (p) is

timelike, spacelike, lightlike or causal, respectively, at every point p ∈ M .

Definition 1.2.3. Two timelike vector fields X,Y are equivalent, if for every p ∈ M the vectors

X (p) and Y (p) lie in the same connected component of timelike vectors, i.e. if g(X (p),Y (p)) ≤
0.

A time orientation on a Lorentzian manifold M is an equivalence class of continuous timelike

vector fields.

Remark 1.2.4. There are Lorentzian manifolds that do not admit a time orientation.

Definition 1.2.5. A Lorentzian manifold is called time orientable, if it admits the choice of

a time-orientation. A pair (M, Z ) is called time-oriented Lorentzian manifold, if M is a

Lorentzian manifold and Z is a time orientation on M .

Remark 1.2.6. It is also possible to define a time orientation as follows: The set of connected

components of timelike vectors in the tangent spaces of a Lorentzian manifold carries a natural

11



1 Preliminaries

structure as a differentiable manifold. The footpoint map is then a twofold covering map. This

is the time-orientation covering. A time orientation is then simply a continuous section of this

covering.

In the following, by the usual abuse of notation, we also denote a time-oriented Lorentzian

manifold (M, Z ) simply by M .

Definition 1.2.7. Let (M, Z ) be a time-oriented Lorentzian manifold. A causal vector X ∈
TpM is called future-directed, if g(X (p), ξ (p)) ≤ 0 for ξ ∈ Z . The vector X is called

past-directed, if −X is future-directed.

Definition 1.2.8. A continuous piecewise C1-curve c : I → M is called timelike, lightlike,

spacelike, causal, future-directed or past-directed if ċ(t) is timelike, lightlike, spacelike, causal,

future-directed or past-directed, respectively, for all t ∈ I where ċ(t) is defined.

Definition 1.2.9. Let I ⊂ R be an open interval. A continuous curve c : I → M is called

inextendible, if no reparametrization of the curve can be extended continuously.

Example 1.2.10. The line segment in Rn parametrized by c : R → R
n, c(t) =

(arctan(t), 0, . . . , 0), is not inextendible because it can be reparametrized as c̃ : (−π
2
, π

2
) → Rn ,

c̃(t) = (t, 0, . . . , 0), which has a continuous extension.

In contrast, the line R→ Rn , parametrized by t 7→ (t, 0, . . . , 0), is inextendible.

Convention. From now on, M will always denote a time-oriented Lorentzian manifold, unless

stated otherwise.

Definition 1.2.11. For x ∈ M the set

IM
+

(x) :=
{
y ∈ M | there are future-directed timelike C1-curves from x to y

}
is called the chronological future of x in M .

Remark 1.2.12. From the physical point of view, the chronological future of an event x consists

of all events that can be influenced by x by means of signals slower than light.

12



1.2 Lorentzian geometry

Definition 1.2.13. For x ∈ M the set

JM
+

(x) := {x} ∪
{
y ∈ M | there are future-directed causal C1-curves from x to y

}
is called the causal future of a point of x in M .

Here the signals may travel with the speed of light.

Definition 1.2.14. The chronological future of a subset A ⊂ M is defined to be

IM
+

(A) :=
⋃

x∈A
IM
+

(x) .

Similarly, the causal future of A ⊂ M is

JM
+

(A) :=
⋃

x∈A
JM
+

(x) .

Remark 1.2.15. In a similar way, one defines the chronological and causal pasts of a point x or

a subset A ⊂ M . They are denoted by IM− (x), IM− (A), JM
− (x), and JM

− (A), respectively. We will

also use the notation JM (A) := JM
− (A) ∪ JM

+
(A).

A

JM
+

(A)

IM
+

(A)

JM
− (A)

IM− (A)

Causal and chronological future and past of subset A

Remark 1.2.16. The chronological and the causal futures have the following properties:

(i) IM
+

(A) is always open;

(ii) IM
+

(A) is the interior of JM
+

(A);

13



1 Preliminaries

(iii) JM
+

(A) ⊂ IM
+

(A).

Similar statements hold for the pasts.

Warning. In (iii) equality does not always hold, JM
+

(A) does not need to be closed, not even if

A is closed.

Example 1.2.18. Let A be the curve as shown in the picture below; it is closed as a subset and

asymptotic to a lightlike line in 2-dimensional Minkowski space. Its causal future JM
+

(A) is the

open half plane bounded by this lightlike line.

JM
+

(A)

x0 (time direction)

A

Causal future JM
+

(A) is open

Definition 1.2.19. A subset A ⊂ M is called past compact if A ∩ JM
− (p) is compact for all

p ∈ M . Similarly, one defines future compact subsets.

A

b
p

JM
− (p)

The subset A is past compact

14



1.2 Lorentzian geometry

Roughly speaking, past compact sets are possibly unbounded in the future, but bounded in the

past.

Lemma 1.2.20. Let M be a timeoriented Lorentzian manifold. Let A ⊂ M be a subset. If

for every x ∈ M the intersection A ∩ JM
− (x) is relatively compact in M , then A ∩ JM

− (K ) is

relatively compact for every compact subset K ⊂ M .

Similarly, if A ∩ JM
+

(x) is relatively compact for every x ∈ M , then A ∩ JM
+

(K ) is relatively

compact for every compact subset K ⊂ M .

Proof. It suffices to consider the first case. Let K ⊂ M be compact. The family of open sets

{IM− (y) | y ∈ M } is an open cover of M . Since K is compact it is covered by a finite number of

such sets, i.e. there exists a finite number of points y1, . . . , yN ∈ M such that

K ⊂ IM− (y1) ∪ · · · ∪ IM− (yN ).

We conclude

JM
− (K ) ⊂ JM

−
(

IM− (y1) ∪ · · · ∪ IM− (yN )
)

⊂ JM
− (y1) ∪ · · · ∪ JM

− (yN ).

Since each A ∩ JM
− (y j ) is relatively compact and

A ∩ JM
− (K ) ⊂

(

A ∩ JM
− (y1)

)

∩ . . . ∩
(

A ∩ JM
− (yN )

)

we have that A ∩ JM
− (K ) is relatively compact. �

Definition 1.2.21. An open subset Ω ⊂ M in a time-oriented Lorentzian manifold is called

causally compatible if

JΩ± (x) = JM
± (x) ∩ Ω

holds for all points x ∈ Ω.

An open subset in a Lorentzian manifold is a Lorentzian manifold in its own right. If Ω ⊂ M is

causally compatible, then whenever two points in Ω can be joined by a causal curve in M this

can also be done inside Ω.

p

JM
+

(p) ∩ Ω = JΩ
+

(p)

Ω

15



1 Preliminaries

Causally compatible subset

+p

JM
+

(p) ∩Ω

+p

JΩ
+

(p)

Domain which is not causally compatible

Remark 1.2.22. If Ω ⊂ M is a causally compatible domain in a time-oriented Lorentzian

manifold then

JΩ± (A) = JM
± (A) ∩ Ω

holds for arbitrary subsets A ⊂ Ω.

Remark 1.2.23. Causal compatibility defines a transitive relation: If Ω ⊂ Ω′ ⊂ Ω′′ are open

subsets, if Ω is causally compatible in Ω′, and if Ω′ is causally compatible in Ω′′, then so is Ω in

Ω
′′.

1.2.2 Convexity

Using the Riemannian exponential map we can define starshaped and convex subsets of a semi-

Riemannian manifold.

Definition 1.2.24. A domain Ω ⊂ M in a Lorentzian manifold is called (geodesically) star-

shaped with respect to a fixed point x ∈ Ω if there exists an open subset Ω′ ⊂ Tx M , starshaped

with respect to 0 in the usual sense, such that the Riemannian exponential map expx maps Ω′

diffeomorphically onto Ω.

16



1.2 Lorentzian geometry

Ω
′

Ω

M

Tx M

x

0

expx

b

b

Ω is geodesically starshaped w. r. t. x

The line segments in Ω′ emanating from 0 are mapped by the Riemannian exponential map to

segments of geodesics in Ω.

Definition 1.2.25. A domain Ω ⊂ M in a Lorentzian manifold is called (geodesically) convex

if it is geodesically starshaped with respect to all of its points.

In particular, for any two points in Ω there is a unique geodesic segment in Ω connecting the

points.

Remark 1.2.26. If Ω is starshaped with respect to x, then expx (I
TxM
± (0) ∩ Ω′) = IΩ± (x).

Definition 1.2.27. Let Ω be a starshaped with respect to x. We define the smooth positive

function µx : Ω→ R by

dvol = µx · (exp−1
x )∗ (dz) ,

where dvol is the Lorentzian volume form and dz is the standard Euclidean volume form on

TxΩ. We call µx the local density function.

In normal coordinates about x we have µx =
√

| det(gi j ) |.

Lemma 1.2.28. For each open covering of a Lorentzian manifold there exists a refinement

consisting of convex open subsets.

For a proof see e.g. [13, Chap. 5, Lemma 10].
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1 Preliminaries

1.2.3 Cauchy hypersurfaces and global hyperbolicity

Definition 1.2.29. A domain Ω is called causal if Ω is contained in a convex domain Ω′ and

if for any x, y ∈ Ω the intersection JΩ
′
+

(x) ∩ JΩ
′
− (y) is compact and contained in Ω.

Ω
b

q

b
p

Ω
′

b

b

convex, but not causal

Ω
′

r r

Ω

bq

b
p

b

b

causal

Convexity versus causality

Definition 1.2.30. A subset S of a connected time-oriented Lorentzian manifold is called

achronal if each timelike curve meets S at most once. It is called acausal if each causal curve

meets S at most once.

Every acausal subset is achronal, but the reverse implication does not hold.

Example 1.2.31. Let A be a segment of a lightlike line. Then A is achronal but not acausal.

Example 1.2.32. Let A be a segment of a spacelike line. Then A is achronal and acausal.

Definition 1.2.33. A subset S ⊂ M of a connected time-oriented Lorentzian manifold M is a

Cauchy hypersurface if each inextendible timelike curve in M meets S at exactly one point.

Example 1.2.34. Let M be the Minkowski space. Then every spacelike hyperplane is a Cauchy

hypersurface. The hypersurface shown in the picture below is also a Cauchy hypersurface.
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1.2 Lorentzian geometry

b

b b

Cauchy hypersurface with piece of the light cone

By definition, the following implications hold:

Cauchy hypersurface ⇒ achronal

⇑
acausal

No further implication holds true in general for these three notions.

Remark 1.2.35. We list some important facts about Cauchy hypersurfaces S:

(i) Every Cauchy hypersurface is a Lipschitz hypersurface, i.e. it can locally be written the

graph of a Lipschitz function.2 In particular, it is a closed topological submanifold of

codimension 1.

(ii) The subset S is closed in M .

(iii) Every inextendible causal curve meets S.

(iv) Any two Cauchy hypersurfaces in M are homeomorphic.

(v) The causal future JM
+

(S) is past compact and the causal past JM
− (S) is future compact.

Definition 1.2.36. A Lorentzian manifold is said to satisfy the causality condition if it does

not contain any closed causal curve.

Remark 1.2.37. Physicists working in General Relativity prefer to work with spacetimes that

satisfy the causality condition. The reason is that the existence of closed causal curves means

that an event can affect itself. For example, you could change your own past, kill your grandfather

before he gets to know your grandmother and thus prevent that you would ever have come to

existence...

2This shows that Cauchy hypersurfaces are surprisingly regular. By Rademacher’s theorem a Cauchy hypersurface

is very close to a differentiable hypersurface.
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1 Preliminaries

Example 1.2.38. The Minkowski space satisfies the causality condition. More generally, any

convex Lorentzian manifold satisfies the causality condition.

Every compact M does not satisfy the causality condition, because of the following Lemma:

Lemma 1.2.39. Let M be a compact time-oriented Lorentzian manifold. Then it contains a

closed causal curve.

Proof. The family
{
IM
+

(p) | p ∈ M
}

forms an open cover of M . Since M is compact, there is

a finite subcover
{
IM
+

(p1), . . . , IM
+

(pN )
}
. W.l.o.g. we can assume that IM

+
(p1) 1 I+ (pi ) for all

i = 2, . . . n; otherwise simply discard I (p1). Then p1 66∈ I+ (pi ) for all i ≥ 2 since otherwise

I+ (p1) would have to be contained in I+ (pi ), see the picture.

bpi

IM
+

(pi )
b
p1

IM
+

(p1)

IM
+

(p1) ⊂ IM
+

(pi )

Therefore p1 ∈ I+ (p1), i.e. p1 is contained in its own future. Thus there is a closed future-directed

timelike curve connecting p1 to itself. �

Now we introduce the class of Lorentzian manifolds which will be suitable for the analysis of

wave equations.

Definition 1.2.40. A time-oriented Lorentzian manifold is called globally hyperbolic if it

satisfies the causality condition and if for all p, q ∈ M the intersection JM
+

(p) ∩ JM
− (q)3is

compact.
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1.2 Lorentzian geometry

Example 1.2.41. Minkowski space is globally hyperbolic.

Example 1.2.42. Compact Lorentzian manifolds are never globally hyperbolic because the

causality condition fails by Lemma 1.2.39.

Example 1.2.43. If we remove one point from Minkowski space, the causality condition of

course still holds but compactness of the causal diamonds fails for some points p and q (namely

if p lies in the past of the “hole” and q in its future). Thus the punctured Minkowski space is not

globally hyperbolic.

Remark 1.2.44. If M is a globally hyperbolic Lorentzian manifold, then a nonempty open

subset Ω ⊂ M is itself globally hyperbolic if and only if for any p, q ∈ Ω the intersection

JΩ
+

(p) ∩ JΩ− (q) ⊂ Ω is compact. Indeed non-existence of closed causal curves in M directly

implies non-existence of such curves in Ω.

The following important structure theorem tells us that globally hyperbolic manifolds can be

characterized in several different ways.

Theorem 1.2.45 (Bernal-Sánchez). Let M be a time-oriented Lorentzian manifold. Then the

following are equivalent:

(1) M is globally hyperbolic;

(2) There exists a Cauchy hypersurface in M;

(3) The manifold M is isometric to R × S with metric −N2dt2
+ gt where N : M → R is a

smooth positive function4, gt is a Riemannian metric on S depending smoothly on t ∈ R
and all sets {t0} × S are Cauchy hypersurfaces in M .

Proof. We first modify condition (1) to

(1’): M satisfies the strong causality condition5 and the intersection JM
+

(p) ∩ JM
− (q) is compact

for all p, q ∈ M .

“(1’)⇒ (3)” has been shown by Bernal and Sánchez in [5, Thm. 1.1].

“(3)⇒ (2)” is trivial.

“(2)⇒ (1’)” is well known, see e.g. [13, Cor. 39, p. 422].

“(1’)⇔ (1)” has been shown by Bernal and Sánchez in [8, Thm. 3.2]. �

3This intersection is sometimes called causal diamond of p and q
4N is known as the lapse function.
5A Lorentzian manifold is said to satisfy the strong causality condition if there are no almost closed causal curves

in M . More precisely, for each point p ∈ M and for each open neighborhood U of p there exists an open

neighborhood V ⊂ U of p such that each causal curve in M starting and ending in V is entirely contained in U .

21



1 Preliminaries

Example 1.2.46. Let M be the Minkowski space. Then M is globally hyperbolic. Every

spacelike hyperplane is a Cauchy hypersurface. We have M = R × S with S = Rn−1, endowed

with the time-independet Euclidean metric. The lapse function is N ≡ 1.

Example 1.2.47. Let (S, ĝ) be a Riemannian manifold and I ⊂ R an interval. Let f : I → R
be a smooth positive function. The manifold M = I × S with the metric g = −dt2

+ f (t)2 · ĝ
is globally hyperbolic if and only if (S, ĝ) is complete, see [3, Lem A.5.14]. This applies in

particular if S is compact.

For example the well-known Robertson-Walker spacetimes and, in particular, the Friedman

cosmological models are of this type.

Furthermore, the deSitter spacetime is of this type, where I = R, S = Sn−1, ĝ is the canonical

metric of Sn−1 of constant sectional curvature 1, and f (t) = cosh(t).

Example 1.2.48. One can show that the Anti-deSitter spacetime is not globally hyperbolic.

Example 1.2.49. The interior and exterior Schwarzschild solutions are globally hyperbolic:

Let m > 0 be a real number. The physical interpretation of this constant is the mass of a central

celestial body or a black hole. We set

Mext = R × (2m,∞) × S2,

Mint = R × (0, 2m) × S2.

The metric is given by

g = −h(r)dt2
+

1

h(r)
dr2
+ r2gS2

with the function h(r) = 1 − 2m
r

.

For the exterior Schwarzschild spacetime we have Mext = R × S with S = (2m,∞) × S2. Here

N2
= h and gt =

1
h(r )

dr2
+ r2gS2 does not depend on t. The level sets {t = t0} × (2m,∞) × S2

are Cauchy hypersurfaces.

On the interior Schwarzschild spacetime the function h is negative. So in order to write Mint as a

product as in (3) of Theorem 1.2.45 we have to rearrage the metric. Now t is a spacelike function

and r is timelike. The sets R × {r = r0} × S2 are Cauchy hypersurfaces.

Corollary 1.2.50. On every globally hyperbolic Lorentzian manifold M there exists a smooth

function h : M → R all of whose level sets are smooth spacelike Cauchy hypersurfaces.

Proof. Define h to be the composition t ◦ Φ where Φ : M → R × S is the isometry given in

Theorem 1.2.45 and t : R × S → R is the projection onto the first factor. �
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1.2 Lorentzian geometry

Lemma 1.2.51. The gradient vector field of a function as in Corollary 1.2.50 is timelike.

Proof. We choose local coordinates x2, . . . , xn on S and complement them to coordinates x1
=

h, x2, . . . , xn on M . In these coordinates the metric takes the form

(gi j ) =

*.....,

−N2 0 · · · 0

0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗

+/////-
and therefore (gi j ) =

*.....,

−N−2 0 · · · 0

0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗

+/////-
.

We compute

grad h =
∑

i j

gi j
∂h

∂xi
∂

∂x j
=

∑

j

g1 j ∂

∂x j
= g11 ∂

∂x1
= − 1

N2

∂

∂h
.

Since

g(grad h, grad h) =
1

N4
g

(

∂

∂h
,
∂

∂h

)

︸        ︷︷        ︸
=−N 2

= − 1

N2
< 0

the gradient grad h is timelike. �

Definition 1.2.52. A function h satisfying the properties given in Corollary 1.2.50 with past-

directed gradient is called a Cauchy time-function.

The condition that grad h is past-directed can always be achieved by either reversing the time-

orientation or by replacing h by −h. Since the gradient is past-directed timelike we have for any

future-directed causal curve s 7→ c(s)

∂

∂h
(h ◦ c) = g

(

grad h, c′(s)
)

> 0.

Hence h increases along each future-directed curve.

We quote an enhanced form of Theorem 1.2.45, which will be needed in the global theory of

wave equations.

Theorem 1.2.53 (Bernal-Sánchez). Let M be a globally hyperbolic manifold and S be a

spacelike smooth Cauchy hypersurface in M . Then there exists a Cauchy time-function

h : M → R such that S = h−1({0}).

This result is also due to A. Bernal and M. Sánchez, see [7, Theorem 1.2].
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Remark 1.2.54. Any given smooth spacelike Cauchy hypersurface in a (necessarily globally

hyperbolic) Lorentzian manifold is therefore the leaf of a foliation by smooth spacelike Cauchy

hypersurfaces.

Lemma 1.2.55. Let M be a globally hyperbolic manifold. Then for every compact subset K

of M the subsets JM
+

(K ) and JM
− (K ) are closed.

For a proof see [3, Lem. A.5.1].

Proposition 1.2.56. Let M be a globally hyperbolic manifold. Let S ⊂ M be a Cauchy

hypersurface in M , let K,K ′ ⊂ M be compact subsets of M . Then we have:

(i) JM
± (K ) ∩ S is compact.

(ii) JM
± (K ) ∩ JM

∓ (S) is compact

(iii) JM
+

(K ) ∩ JM
− (K ′) is compact

For the proofs see [3, Cor. A.5.4 and Lem. A.5.7].

We illustrate these facts:

(i) JM
± (K ) ∩ S is compact

K

S

b

b

JM
− (K ) ∩ S

(ii) JM
± (K ) ∩ JM

∓ (S) is compact
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b b

K

S

JM
+

(K ) ∩ JM
− (S)

(iii) JM
+

(K ) ∩ JM
− (K ′) is compact

b

b

K

K ′JM
− (K ) ∩ JM

+
(K ′)

Notation 1.2.57. For two points p, q ∈ M , we define the relations

p < q ⇔ q ∈ IM
+

(p)

p ≤ q ⇔ q ∈ JM
+

(p).

Since timelike and causal curves can be concatenated these relations are transitive.

In Riemannian geometry the length of curves gives rise to a distance function on the manifold.

This metric is compatible with the given topology on the manifold. In Lorentzian geometry there

is no such metric but the following provides a weak replacement for it.
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Definition 1.2.58. Let c : I → M be a piecewise C1-curve on a Lorentzian manifold M . The

length L[c] is defined by

L[c] :=

∫ b

a

√

|g(ċ(t), ċ(t)) | dt.

Here we take the absolute value in order to assure positiveness under the square root. We do this

to avoid case distinctions by the causal type of c. We will really need the length only for causal

curves so we could have replaced the absolute value by a minus sign.

Definition 1.2.59. The time-separation on a Lorentzian manifold M is the function τ :

M × M → R ∪ {∞} defined by

τ(p, q) :=

{

sup{L[c] | c future directed causal curve from p to q, if p ≤ q,

0, otherwise,

for all p, q in M .

Observe that we take the supremum of all connecting causal curves whereas in Riemannian

geometry one take the infimum to define the distance function. To illustrate that this is reasonable

one can check that in Minkowski space the line segment connection two points with p ≤ q is the

longest causal curve connecting them. In fact, on convex subsets of a Lorentzian manifold or on

globally hyperbolic manifolds the supremum is always attained by a causal geodesic. This is an

analog to the Hopf-Rinow theorem for complete Riemannian manifolds.

time direction

b

b

maximal length

b

b

length = 0

Proposition 1.2.60. Let M be a timeoriented Lorentzian manifold. Let p, q, and r ∈ M . Then

1. τ(p, q) > 0 if and only if p < q.

2. The function τ is lower semi-continuous on M×M . If M is convex or globally hyperbolic,
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1.2 Lorentzian geometry

then τ is finite and continuous.

3. The function τ satisfies the inverse triangle inequality: If p ≤ q ≤ r, then

τ(p, r) ≥ τ(p, q) + τ(q, r). (1.9)

Proof. See e. g. Lemmas 16, 17, and 21 from Chapter 14 in [13] for a proof. �

1.2.4 Compactness properties

We introduce more concepts of compactness for closed subsets of globally hyperbolic manifolds

and show their interrelation. We start by characterizing past-compact sets.

Lemma 1.2.61. Let M be globally hyperbolic. For any closed subset A ⊂ M the following

are equivalent:

(i) A is past compact;

(ii) there exists a smooth spacelike Cauchy hypersurface S ⊂ M such that A ⊂ J+(S);

(iii) there exists a surjective Cauchy time function t : M → R which is bounded from below

on A.

Proof. “(ii)⇒ (i)” Let A ⊂ J+(S) be a closed subset, let x ∈ M . Then A∩J− (x) ⊂ J+(S)∩J− (x).

We know by Proposition 1.2.56 that J+(S) ∩ J−(x) is compact. Furthermore, A and J−(x) are

closed sets, hence A ∩ J−(x) is closed. This shows that A ∩ J−(x) is compact as closed subset

of a compact set for all x ∈ M . Hence A is past compact.

“(i)⇒ (ii)” Let A be past compact. Then J+(A) is also past compact (and, in particular, closed).

Moreover, M ′ := M \ J+(A) is an open subset of M with the property J−(M ′) = M ′. Hence M ′

is globally hyperbolic itself (exercise). Let S be a smooth spacelike Cauchy hypersurface in M ′.
Since A ⊂ J+(A) ⊂ J+(S) it remains to show that S is also a Cauchy hypersurface in M .

Let c be an inextendible w.l.o.g. future-directed timelike curve in M . Once c has entered J+(A)

it remains in J+(A). Since J+(A) is past compact and c is inextendible, c must also meet M ′.
Thus c is the concatenation of an inextendible future-directed timelike curve c1 in M ′ and a

(possibly empty) curve c2 in J+(A). Since c1 meets S exactly once, so does c. This shows that S

is a Cauchy hypersurface in M as well.

“(iii)⇒ (ii)” Choose T < inf (t(A)). Then S := t−1(T ) is a smooth spacelike Cauchy hypersurface

such that A ⊂ J+(S).

“(ii)⇒ (iii)” Let S be a smooth spacelike Cauchy hypersurface in M such that A ⊂ J+(S). By

Theorem 1.2.53 there exists a Cauchy time function t : M → R such that S = t−1({0}) W.l.o.g. we
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can assume that t is surjective (otherwise compose with orientation-preserving diffeomorphism).

Since A ⊂ J+(S) we have that t ≥ 0 on A. �

Reversing future and past, we see that a closed subset A ⊂ M is future compact if and only if

A ⊂ J−(S) for some Cauchy hypersurface S ⊂ M . This in turn is equivalent to the existence of

a surjective Cauchy time function t : M → R which is bounded from above on A.

Remark 1.2.62. The proof of “(ii) ⇒ (i)” did not use that the Cauchy hypersurface is smooth

and spacelike. Therefore dropping the conditions “smooth and spacelike” in (ii) would yield

another equivalent characterization of past-compact sets.

Lemma 1.2.63. Let M be globally hyperbolic. For any past-compact subset A ⊂ M there

exists a past-compact subset A′ ⊂ M such that A is contained in the interior of A′.

Proof. Let A ⊂ M be past compact. Choose a Cauchy hypersurface S ⊂ M such that A ⊂ J+(S).

Choose a second Cauchy hypersurface S′ ⊂ I−(S). Then A′ := J+(S′) does the job. �

Analogous statements hold for future-compact sets and for temporally-compact sets as defined

here:

Definition 1.2.64. Let M be globally hyperbolic. We call a subset A ⊂ M

(a) strictly past compact if it is closed and there is a compact subset K ⊂ M such that

A ⊂ J+(K ).

(b) strictly future compact if it is closed and there is a compact subset K ⊂ M such that

A ⊂ J−(K ).

(c) spatially compact if A is closed and there exists a compact subset K ⊂ M with A ⊂ J (K ).

(d) temporally compact if A is past compact and future compact.
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K

A
K

A

(a) strictly past compact (b) strictly future compact

K

A

S2

S1

A

(c) spatially compact (d) temporally compact

Remark 1.2.65. By Lemma 1.2.61 for past and future-compact sets, A is temporally compact if

and only if A ⊂ J+(S1) ∩ J−(S2) for some Cauchy hypersurfaces S1, S2 ⊂ M .

We have the following analog to Lemma 1.2.61:

Lemma 1.2.66. Let M be globally hyperbolic. For any closed subset A ⊂ M the following

holds:

(i) A is strictly past compact if and only if there exists a smooth spacelike Cauchy hypersur-

face S ⊂ M and a compact subset KS ⊂ S such that A ⊂ J+(KS );

(ii) A is strictly future compact if and only if there exists a smooth spacelike Cauchy hyper-

surface S ⊂ M and a compact subset KS ⊂ S such that A ⊂ J−(KS );

(iii) A is spatially compact if and only if for all smooth spacelike Cauchy hypersurfaces S ⊂ M

there exists a compact subset KS ⊂ S such that A ⊂ J (KS ).

Proof. (i) “⇐” is trivial: if A ⊂ J+(KS ), then A is strictly past compact by definition.

(i) “⇒” Let A be strictly past compact and let K ⊂ M be a compact subset such that A ⊂ J+(K ).

Then choose a smooth spacelike Cauchy hypersurface S ⊂ M such that K ⊂ J+(S) and put
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KS := S ∩ J−(K ). Then KS is compact by Proposotion 1.2.56 and

A ⊂ J+(K ) ⊂ J+(J+(S) ∩ J−(K )) = J+(S ∩ J−(K )) = J+(KS ).

(ii) The proof is analogous done by reversing future and past.

(iii) “⇐” is trivial. If A is spatially compact and S ⊂ M a Cauchy hypersurface, then KS :=

S ∩ J (K ) does the job.

(iii) “⇒” Let A be spatially compact and K a compact set such that A ⊂ K . Let S ⊂ M be a

smooth spacelike Cauchy hypersurface. Then S ∩ J (K ) is compact by Proposition 1.2.56. Since

K ⊂ J (KS ) we have J (K ) ⊂ J (KS ). Hence since A ⊂ J (K ) we found A ⊂ J (KS ).

We have the following diagram of implications of possible properties of a closed subset of a

globally hyperbolic manifold M:

spatially compact

strictly past compact

.6❞❞❞❞❞❞❞ ❞❞❞❞❞❞❞

��

strictly future compact

hp ❩❩❩❩❩❩❩
❩❩❩❩❩❩❩

��
compact

hp ❩❩❩❩❩❩❩❩❩❩
❩❩❩❩❩❩❩❩❩❩

.6❞❞❞❞❞❞❞❞❞❞
❞❞❞❞❞❞❞❞❞❞

��
past compact future compact

temporally compact

hp ❩❩❩❩❩❩❩❩❩
❩❩❩❩❩❩❩❩❩

.6❞❞❞❞❞❞❞❞❞ ❞❞❞❞❞❞❞❞❞

None of the reverse implications in the diagram holds in general.

Remark 1.2.67. The terminology “spatially compact” is justified by the following observation:

Let A ⊂ M be spatially compact and let S ⊂ M be a Cauchy hypersurface. Then A∩S ⊂ J (K )∩S

which is compact by Proposition 1.2.56. Hence A ∩ S is compact for any Cauchy hypersurface.

In a special case the diagram simplifies considerably, namely if M itself is spatially compact.

Recall that since all Cauchy hypersurfaces are homeomorphic they are all compact or all non-

compact.

Lemma 1.2.68. The globally hyperbolic manifold M is spatially compact if and only if it has

compact Cauchy hypersurfaces.

Proof. If the Cauchy hypersurfaces are compact, let S be one of them. Then M = J (S), hence

M is spatially compact.

Conversely, if M is spatially compact, then Remark 1.2.67 with A = M shows that the Cauchy

hypersurfaces are compact. �
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Lemma 1.2.69. Let M be globally hyperbolic and spatially compact. Let A ⊂ M be closed.

Then the following are equivalent:

(i) A is strictly past compact;

(ii) A is past compact;

(iii) some Cauchy time function t : M → R attains its minimum on A;

(iv) all Cauchy time functions t : M → R attain their minima on A.

Proof. “(iv)⇒(iii)” is clear.

“(iii)⇒(ii)” Let t : M → R be a Cauchy time function which attains its minimum on A. By

composing with an orientation-preserving diffeomorphism t(M ) → R, we may w.l.o.g. assume

that t is surjective. Now Lemma 1.2.61 shows that A is past compact.

“(ii)⇒(i)” Let A be past compact. Then Lemma 1.2.61 shows that A ⊂ J+(S) for a Cauchy

hypersurface S ⊂ M . From Lemma 1.2.68 we know that S is compact and therefore A is strictly

past compact by Lemma 1.2.66 with KS = S.

“(i)⇒(iv)” Let A ⊂ J+(K ) for some compact subset K ⊂ M and let t be a Cauchy time function.

Choose T larger than the infimum of t on A. Since A ∩ J−(t−1(T )) is contained in the compact

set J+(K ) ∩ t−1((−∞,T]) = J+(K ) ∩ J−(t−1(T )), the function t attains its minimum t0 on this

set. On the rest of A, the values of t are even larger than T , hence t0 is the minimum of t on all

of A.

Remark 1.2.70. If M is spatially compact, then every closed subset of A ⊂ M is spatially

compact. Moreover, if A is temporally compact then any Cauchy time function t : M → R attains

its maximum s+ and its minimum s− by Lemma 1.2.69. Thus A ⊂ t−1([s−, s+]) ≈ S × [s−, s+]
where S = t−1(s−) is a Cauchy hypersurface. Since S is compact, so is A.

Summarizing, the diagram of implications for closed subsets simplifies as follows for spatially

compact M:

strictly past compact
KS

��

compactks +3
KS

��

strictly future compact
KS

��
past compact temporally compactks +3 future compact

We will need the following duality result:

Lemma 1.2.71. Let M be globally hyperbolic and let A ⊂ M be closed. Then the following

holds:
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(i) A is past compact if and only if A ∩ B is compact for all strictly future compact sets B;

(ii) A is future compact if and only if A ∩ B is compact for all strictly past compact sets B;

(iii) A is temporally compact if and only if A∩ B is compact for all spatially compact sets B;

(iv) A is strictly past compact if and only if A ∩ B is compact for all future compact sets B;

(v) A is strictly future compact if and only if A ∩ B is compact for all past compact sets B;

(vi) A is spatially compact if and only if A∩ B is compact for all temporally compact sets B.

Proof. (i) “⇐
If A∩ B is compact for every strictly future compact B, then, in particular, A∩ J−(x) is compact

for every x ∈ M . Hence A is past compact.

(i) “⇒”

Let A be past compact and B be strictly future compact. Let S ⊂ M be some Cauchy hypersurface

with A ⊂ J+(S) and K ⊂ M be some compact subset with B ⊂ J−(K ). Then A ∩ B ⊂
J+(S) ∩ J−(K ), hence A ∩ B is contained in a compact set, hence compact itself.

(ii)

The proof is analogous.

(iii) “⇐”

If A ∩ B is compact for every spatially compact B, then, in particular, A ∩ J+(x) and A ∩ J−(x)

are compact for every x ∈ M . Hence A is temporally compact.

(iii) “⇒”

Let A be temporally compact and B be spatially compact. We choose a compact K ⊂ M

with B ⊂ J (K ). By (i), A ∩ J−(K ) is compact and by (ii), A ∩ J+(K ) is compact. Thus

A ∩ B ⊂ A ∩ J (K ) = (A ∩ J+(K )) ∪ (A ∩ J−(K )) is compact.

(iv) “⇒”

By (ii) the intersection of a strictly past compact set and a future compact set is compact.

(iv) “⇐”

Now assume A is not strictly past compact. We have to find a future compact set B such that

A ∩ B is noncompact. Let K1 ⊂ K2 ⊂ K3 ⊂ · · · ⊂ M be an exhaustion by compact subsets. We

choose the exhaustion such that every compact subset of M is contained in K j for sufficiently

large j. Since A is not strictly past compact there exists x j ∈ A \ J+(K j ) for every j. The set

B := {x1, x2, x3, . . .} is not compact because otherwise, for sufficiently large j, we would have

B ⊂ K j ⊂ J+(K j ) contradicting the choice of the xi . But B is future compact. Namely, let

x ∈ M . Then x ∈ K j for j large and therefore B∩ J+ (x) ⊂ B∩ J+ (K j ) ⊂ {x1, . . . , x j−1} is finite,

hence compact. Now A ∩ B = B is not compact which is what we wanted to show.

(v)

The proof is analogous.

(vi) “⇒”
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We know already by (iii) that the intersection of a temporally compact and a spatially compact

set is always compact.

(vi) “⇐”

If A is not spatially compact, then the same construction as in the proof of (iv) with J+(K j )

replaced by J (K j ) yields a noncompact set B ⊂ A which is temporally compact. This concludes

the proof. �

1.2.5 Gauss’ divergence theorem

We continue our collection of facts in Lorentzian Geometry by stating Gauss’ divergence theorem.

We turn our attention to the signs arising in the Lorentzian case.

Theorem 1.2.72 (Gauss’ divergence theorem). Let M be a Lorentzian manifold and letΩ ⊂
M be a domain with piecewise C1-boundary. We assume that the induced metric on the regular

part of the boundary of Ω is non-degenerate, i. e., it is either Riemannian or Lorentzian on

each connected component. Let n denote the exterior normal field along the regular part of

the boundary ∂regΩ, normalized to ǫn := g (n, n) = ±1.

Then for every C1-vector field X on M with supp(X ) ∩Ω compact we have

∫

Ω

div(X )dvol =

∫

∂regΩ

ǫng (X, n) dA.

Remark 1.2.73. The singular part of ∂Ω forms a null set. Thus we may as well integrate over

all of ∂Ω in the right hand side of this formula. The function ǫn is locally constant with value

−1 on the Riemannian part of ∂regΩ and value +1 on the Lorentzian part.

Ω

ǫn = −1

ǫn = 1 time

The divergence theorem can easily be derived from the Stokes’ theorem which does not involve

any metric. One replaces the vector field by a dual (n − 1)-form and expresses the divergence by

means of the exterior derivative.
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Now we come back to the local density function µx . For the local calculation of solutions of

wave equations we need to know some derivatives of µx .

Lemma 1.2.74. Let Ω ⊂ M be geodesically starshaped with respect to x ∈ Ω. Then the

function µx defined in (1.2.27) satisfies

µx (x) = 1, dµx |x = 0, Hess(µx ) |x = −
1

3
ricx, (�µx )(x) =

1

3
scal(x),

where Hess denotes the Hessian,6 ricx the Ricci curvature considered as a bilinear form on

TxΩ and scal is the scalar curvature.

For a proof see [3, Lem. 1.3.17] .

Corollary 1.2.75. Let Ω ⊂ M be geodesically starshaped with respect to x ∈ Ω. For the

function µx we have

(�µ−1/2
x )(x) = −1

6
scal(x).

Proof. For C2-functions f : M → R and F : R → R a straightforward computation yields the

useful equation

�(F ◦ f ) = −(F ′′ ◦ f )〈df , df 〉 + (F ′ ◦ f )� f .

Using this with f = µx and F (t) = t−1/2 and Lemma 1.2.74 we compute

(�µ−1/2
x )(x) = 0 − 1

2
· µ−

3
2

x |x · �µx |x = −
1

6
scal(x). �

We continue our preparations with another function that we are going to need in connection to

Riesz-Distributions.

Definition 1.2.76. Let Ω ⊂ M be open and geodesically starshaped with respect to x ∈ Ω.

We put

Γx := γ ◦ exp−1
x : Ω→ R

where γ : Tx M → R is defined by γ(X ) = −g(X, X ).

6For a C2-function f the Hessian at x is the symmetric bilinear form Hess( f ) |x : Tx M × Tx M →
R, Hess( f ) |x (X,Y ) := g

(∇Xgrad f ,Y
)

. The d’Alembert operator can be written by � f := −tr(Hess( f ))
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Lemma 1.2.77. Let Ω ⊂ M be open and geodesically starshaped with respect to x ∈ Ω. Let

n = dim(M ). Then the following holds on Ω:

1. g
(
grad Γx, grad Γx

)
= −4Γx;

2. On IΩ
+

(x) (or on IΩ− (x)) the gradient grad Γx is a past-directed (or future-directed, respec-

tively) timelike vector field;

3. �Γx = 2n − g
(
grad Γx, grad (log(µx ))

)
.

The general proof can be found in [3, Lem. 1.3.19]. We do it here in the case that M is the

Minkowski space. Since M and Tx M are canonically isometric via the exponential map there

is no essential difference between γ and Γ and we regard γ as a function on M . In standard

coordinates (x1, . . . , xn ) we have

g = −(dx1)2
+ (dx2)2

+ . . . + (dxn )2,

and

γ = (x1)2 − (x2)2 − . . . − (xn )2.

Moreover, note that

(gi j ) =

*.....,

−1

1
. . .

1

+/////-

−1

=

*.....,

−1

1
. . .

1

+/////-
.

The gradient of γ turns out to be

grad γ =
∑

i

gi j (x)
∂γ

∂xi
∂

∂x j

= g11 · 2x1 ∂

∂x1
− g22 · 2x2 ∂

∂x2
− . . . − 2gnn · ∂

∂xn

= −2
∑

i

xi
∂

∂xi
.

This implies the first assertion:

g(grad γ, grad γ) = g
(

− 2
∑

i

xi
∂

∂xi
,−2

∑

i

xi
∂

∂xi

)

= 4
(

−(x1)2
+ (x2)2

+ . . . + (xn )2
)

= −4γ .

Since γ > 0 on I±(0) equation (i) shows that grad γ is timelike there. Since grad γ is a negative

multiple of the position vector field it is past-directed on I+ (0) and future-directed on I− (0).
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time direction

IΩ
+

(x)

IΩ− (x)

b b

b

red: xi ∂
∂x i

blue: grad γ

This proves the second statement. Finally, we verify the third assertion:

�γ = − *,−
∂2

(
∂x1

)2
+

∂2

(
∂x2

)2
+ . . . +

∂2

(∂xn )2
+-
(

(x1)2 − (x2)2 − . . . − (xn )2
)

= 2 + 2 + . . . + 2

= 2n .

Since µx is constant the term −g (

grad Γx, grad (log(µx ))
)

vanishes which concludes the proof.

Remark 1.2.78. One can check that there is a connection between τ and Γ, namely ifΩ is convex

and τ is the time-separation function of Ω, then

τ(p, q) =

{ √

Γp (q), if p < q,

0, otherwise.

So τ(p, q) is actually the length of the geodesic segment connecting p and q. The supremum is

attained and the geodesic segement is the longest causal curve.

1.3 Distributions

Wave equations will allow for very irregular solutions. There are no such nice features as elliptic

regularity theory for wave equations. Due to this fact we need distributions. They have the

advantage that, while possibly being very irregular, they can be differentiated arbitrarily often.

Roughly speaking, while functions can be evaluated at a point, distributions only have “smeared”

values. For this reason they are functionals on test functions. We imagine a test function as
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having its support very close to the point. From the point of view of physics, this is a very

reasonable concept because measuring instruments are never able to measure a quantity exactly

at a given point.

1.3.1 Distributions on manifolds

Let M be a differentiable manifold with volume density dµ. Let E → M be a K-vector bundle

with K = R or C.

Notation 1.3.1. We denote the space of compactly supported smooth sections of E by

D(M, E) := C∞c (M, E).

The elements of D(M, E) are referred to as test sections in E.

Definition 1.3.2. Let k ∈ N be a positive number and K ⊂ M be a compact subset. Let ∇
denote connections on E and T∗M and 〈·, ·〉 positive definite fiberwise scalar products on E

and T∗M . For u ∈ D(M, E) we define the Ck-seminorm by

‖u‖k,∇,〈·, ·〉,K := max
j=0, ...,k

max
x∈K

‖∇ ju(x)‖.

Remark 1.3.3. Note that ∇ ju ∈ C∞(M,T∗M ⊗ · · · ⊗ T∗M
︸                 ︷︷                 ︸

j factors

⊗E). For ‖∇ ju(x)‖ to be defined we

need metrics on E and T∗M . They induce metrics on all bundles T∗M ⊗ · · · ⊗ T∗M ⊗ E.

The seminorm ‖ · ‖k,∇,〈·, ·〉,K is not a norm in general because in case supp u∩K = ∅ the seminorm

‖u‖k,∇,〈·, ·〉,K vanishes although u need not be the zero section on all of M .

Different choices of the metrics and the connections yield equivalent seminorms for fixed k and

K . For this reason we will usually drop the metric and the connection in the notation and simply

write ‖ · ‖Ck (K ) instead of ‖ · ‖k,∇,〈·, ·〉,K .

We define a notion of convergence of test sections.

Definition 1.3.4. Let ϕ, ϕn ∈ D(M, E). We say that the sequence (ϕn)n converges to ϕ in

D(M, E) if the following two conditions hold:

1. There is a compact set K ⊂ M such that the supports of ϕ and all ϕn are contained in K ,

i. e., supp (ϕ), supp (ϕn) ⊂ K for all n.
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2. The sequence (ϕn)n converges to ϕ in all Ck-norms over K , i. e., for each k ∈ N0

‖ϕ − ϕn ‖Ck (K )

n→∞−−−−→ 0.

Remark 1.3.5. The first condition means that the sequence (ϕn )n cannot converge to zero by its

supports escapting to infinity.

. . . ϕn ϕn+1 . . .

We fix a finite-dimensional K-vector space W . Recall thatK = R orK = C depending on whether

E is real or complex.

Definition 1.3.6. A K-linear map T : D(M, E∗) → W is called a distribution in E with

values in W if it is sequentially continuous, i.e., for all convergent sequences ϕn → ϕ in

D(M, E∗) one has T[ϕn] → T[ϕ]. We write D ′(M, E,W ) for the space of all W -valued

distributions in E. In the case W = K write D ′(M, E).

Note that since W is finite-dimensional all norms on W yield the same topology on W . Hence

there is no need to specify a norm on W for Definition 1.3.6 to make sense.

Lemma 1.3.7. For T ∈ D ′(M, E,W ) and K ⊂ M compact there is a nonnegative integer

k ∈ N0 and a constant C > 0 such that for all ϕ ∈ D(M, E∗) with supp(ϕ) ⊂ K we have

|T[ϕ]| ≤ C · ‖ϕ‖Ck (K ) . (1.10)

38



1.3 Distributions

The smallest k for which inequality (1.10) holds is called the order of F over K .

Proof. Assume (1.10) does not hold for any pair of C and k. Then for every positive integer k

we can find a ϕk ∈ D(M, E∗) with supp(ϕk ) ⊂ K and |T[ϕk ]| > k · ‖ϕk ‖Ck . We define sections

ψk := 1
|F[ϕk ] | ϕk . Obviously, these ψk satisfy supp(ψk ) ⊂ K and

‖ψk ‖Ck (K ) =
1

|F[ϕk ] | ‖ϕk ‖Ck (K ) ≤ 1
k
.

Hence for j ≥ k

‖ψ j ‖Ck (K ) ≤ ‖ψ j ‖C j (K ) ≤ 1
j
.

Therefore the sequence (ψ j )k converges to 0 in D(M, E∗). Since T is a distribution we get

T[ψ j ] → F[0] = 0 for j → ∞. On the other hand, |F[ψ j ]| =
���� 1
|F[ϕ j ] |F[ϕ j ]

���� = 1 for all j, which

yields a contradiction. �

Lemma 1.3.7 states that the restriction of any distribution to a (relatively) compact set is of finite

order. We say that a distribution F is of order k if k is the smallest integer such that for each

compact subset K ⊂ M there exists a constant C so that

|F[ϕ]| ≤ C · ‖ϕ‖Ck (K )

for all ϕ ∈ D(M, E∗) with supp(ϕ) ⊂ K . Such a distribution extends uniquely to a continuous

linear map on Ck
c (M, E∗), the space of Ck-sections in E∗ with compact support.

Here, convergence in Ck
c (M, E∗) is defined similarly to that of test sections. We say that ϕn

converge to ϕ in Ck
c (M, E∗) if the supports of the ϕn and ϕ are contained in a common compact

subset K ⊂ M and ‖ϕ − ϕn ‖Ck (K ) → 0 as n → ∞.

Next we give two important examples of distributions.

Example 1.3.8. Pick a bundle E → M and a point x ∈ M . The delta-distribution δx is an

E∗x -valued distribution in E.

For ϕ ∈ D(M, E∗) it is defined by

δx [ϕ] = ϕ(x).

The distribution δx is of order 0, since we have |δx (ϕ) | = |ϕ(x) | ≤ ‖ϕ‖C0 (K ) for all test functions

with support in K .

Example 1.3.9. Let f ∈ L1
loc(M, E) be a locally integrable section in E. We set for any

ϕ ∈ D(M, E∗)

Tf [ϕ] :=

∫

M

ϕ(x)( f (x))dµ(x).

Again, as a distribution, Tf is of order 0, since |Tf [ϕ]| ≤
∫

K
‖ϕ‖C0 (K ) | f (x) |dµ ≤ Cf (K ) ·

‖ϕ‖C0 (K ) .

One usually writes f [ϕ] instead of Tf [ϕ] and interpretes f itself as a K-valued distribution in E.
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Notation 1.3.10. Let E → M and F → N be K-vector bundles. Then E ⊠ F denotes the

vector bundle over M × N whose fiber over (x, y) ∈ M × N is given by Ex ⊗ Fy .

Lemma 1.3.11. Let M and N be differentiable manifolds equipped with smooth volume den-

sities. Let E → M and F → N be vector bundles. Let K ⊂ N be compact and let

ϕ ∈ Ck (M × N, E ⊠ F∗) be such that supp(ϕ) ⊂ M × K . Let m ≤ k and let T ∈ D ′(N, F) be

a distribution of order m. Then the following statements hold:

1. The map

f : M → E,

x 7→ (idEx
⊗T )

[
ϕ(x, ·)] =: T[ϕ(x, ·)],

defines a Ck−m-section in E.

2. The support of f is contained in the projection of supp(ϕ) to the first factor, i. e., supp( f ) ⊂
{x ∈ M | ∃ y ∈ K such that (x, y) ∈ supp(ϕ)}.

3. If P is a linear differential operator of order ≤ k − m acting on sections in E, then

P f = T[Pxϕ(x, ·)].

In other words, derivatives up to order k−m in directions tangent to M may be interchanged

with T .

For a proof see [3, Lem. 1.1.6].

Next we will see how differential operators act on distributional sections. Let P ∈Diff
k

(E, F)

be a linear differential operator. Then P extends uniquely to a continuous linear operator

P : D ′(M, E,W ) → D ′(M,F,W ) by

(PT )[ϕ] := T[P∗ϕ]

where ϕ ∈ D(M, F∗).
For this definition to be correct, we have to check:

• that P∗(ϕ) is again a test section with compact support. This is clear because a differential

operator never enlarges the support of a section.

• that PT is again a distribution, i.e., it is sequentially continuous and linear. Since T and

P∗ are sequentially continuous and linear so is their composition. Therefore PT is again a

distribution.
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1.3.12. Let f ∈ C∞(M, E) be a section and denote the associated distribution byTf ∈ D ′(M, E).

Show that for any linear differential operator P ∈Diff (E, F) the following holds:

PTf = TP f .

This means that applying P in the classical sense is the same thing as applying it in the distribu-

tional sense.

Definition 1.3.13. We equip the space D ′(M, E,W ) of distributions in E with the weak

topology. This means that Tn → T in D ′(M, E,W ) if and only if Tn[ϕ] → T[ϕ] for all

ϕ ∈ D(M, E∗).

Remark 1.3.14. Linear differential operators P are always continuous with respect to the weak

topology. Namely, if Tn → T , then we have for every ϕ ∈ D(M, E∗)

PTn[ϕ] = Tn[P∗ϕ]→ T[P∗ϕ] = PT[ϕ].

Hence

PTn → PT .

Definition 1.3.15. The support of a distribution T ∈ D ′(M, E,W ) is defined as the set

supp(T ) := {x ∈ M | ∀ neighborhood U of x ∃ ϕ ∈ D(M, E∗) with

supp(ϕ) ⊂ U and T[ϕ] , 0}.

It follows from the definition that the support of T is a closed subset of M . In case T = Tf with

f ∈ L1
loc we have that supp(Tf ) = ess − supp( f ). Thus the concept of support for distributions

generalizes the usual support of sections.

Remark 1.3.16. If for ϕ ∈ D(M, E∗) and T ∈ D ′(M, E,W ) the supports of ϕ and T are

disjoint, then T[ϕ] = 0. Namely, for each x ∈ supp(ϕ) there is a neighborhood U of x such that

T[ψ] = 0 whenever supp(ψ) ⊂ U . Cover the compact set supp(ϕ) by finitely many such open

sets U1, . . . ,Uk . Using a partition of unity one can write ϕ = ψ1 + · · ·+ψk with ψ j ∈ D(M, E∗)
and supp(ψ j ) ⊂ Uj . Then

T[ϕ] = T[ψ1 + · · · + ψk ] = T[ψ1] + · · · + T[ψk ] = 0.

Warning. Iit is not sufficient to assume that ϕ vanishes on supp(T ) in order to ensure T[ϕ] = 0.
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Example 1.3.18. Let M = R and E be the trivial K-line bundle. Let T ∈ D ′(R,K) be given by

T[ϕ] = ϕ′(0). Then supp(T ) = {0} but T[ϕ] = ϕ′(0) may well be nonzero while ϕ(0) = 0. For

instance, if ϕ(t) = t near 0, then ϕ does the job.

If a distribution has compact support then we can evaluate it even on “test sections” with non-

compact support. More generally, let T ∈ D ′(M, E,W ) and ϕ ∈ C∞(M, E∗) with supp(T ) ∩
supp(ϕ) compact. Pick a function σ ∈ D(M,R) that is constant 1 on a neighborhood of

supp(T ) ∩ supp(ϕ). Then we define the evalution T[ϕ] by

T[ϕ] := T[σϕ].

This definition is independent of the choice of σ since for another choice σ′ we have

T[σϕ] − T[σ′ϕ] = T[(σ − σ′)ϕ] = 0

because supp((σ − σ′)ϕ) and supp(T ) are disjoint.

Definition 1.3.19. LetT ∈ D ′(M, E,W ) and letΩ ⊂ M be an open subset. For ϕ ∈ D(Ω, E∗).
The extension of ϕ by 0 yields a test section extMϕ ∈ D(M, E∗). This defines an embedding

D(Ω, E∗) ⊂ D(M, E∗). We define the restriction of T to Ω by

(T |Ω)[ϕ] := T[extMϕ].

Definition 1.3.20. The singular support sing supp(T ) of a distribution T ∈ D ′(M, E,W ) is

the set of points which do not have a neighborhood restricted to which T coincides with a

smooth section, i.e.

sing supp(T ) := {x ∈ M | ∀ neighborhood Ω of x the restriction T |Ω does not coincide

with a smooth section}.

By definition, the singular support is also a closed subset, just as for the support. Moreover, we

clearly have sing supp (T ) ⊂ supp (T ).

Example 1.3.21. For the delta-distribution δx we have supp (δx ) = sing supp(δx ) = {x}.

Lemma 1.3.22. Let Tn,T ∈ C0(M, E) and suppose Tn → T locally uniformly. Consider Tn

and T as distributions.

Then Tn → T in D ′(M, E). In particular, for every linear differential operator P we have

PTn → PT in the sense of distributions.
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Proof. Let ϕ ∈ D(M, E∗). Put K := supp (ϕ). We compute

lim
n→∞

Tn[ϕ] = lim
n→∞

∫

M

ϕ(x) (Tn (x)) dµ(x)

= lim
n→∞

∫

K

ϕ(x) (Tn (x)) dµ(x)

=

∫

K

lim
n→∞

ϕ(x) (Tn (x)) dµ(x)

=

∫

K

ϕ(x)

(

lim
n→∞

Tn (x)

)

dµ(x)

=

∫

K

ϕ(x) (T (x)) dµ(x)

= T[ϕ].

which implies Tn → T in D ′(M, E).

The limit may be interchanged with the integral by Lebesgue’s dominated convergence theorem.�

The following situation will arise frequently. Let E, F, and G be K-vector bundles over M . Let

ϕ ∈ Ck (M, E ⊗ F) and ψ ∈ Ck (M,F∗ ⊗ G). We define ϕ · ψ ∈ Ck (M, E ⊗ G) by means of the

natural pairing F ⊗ F∗ → K. The pairing is given by evaluation of the second factor on the first

and yields a vector bundle homomorphism E ⊗ F ⊗ F∗ ⊗ G → E ⊗ G. Then ϕ · ψ is the the

contraction F ⊗ F∗ → K applied to ϕ ⊗ ψ.7

Lemma 1.3.23. For all Ck-sections ϕ in E ⊗ F and ψ in F∗ ⊗ G and all K ⊂ M compact we

have

‖ϕ · ψ‖Ck (K ) ≤ 2k · ‖ϕ‖Ck (K ) · ‖ψ‖Ck (K ) .

Proof. We use induction on k.

The case k = 0 follows from the Cauchy-Schwarz inequality as follows: For fixed x ∈ M

we choose an orthonormal frame f1, . . . , fr for Fx . Let f ∗
1
, . . . , f ∗r be the dual frame for

F∗x . We write ϕ(x) =
∑r

i=1 ei (x) ⊗ f i (x) and similarly ψ(x) =
∑r

i=1 f ∗
i

(x) ⊗ gi (x). Then

ϕ(x) · ψ(x) =
∑r

i=1 ei (x) ⊗ gi (x) and we see, using the Cauchy-Schwarz inequality twice:

|ϕ · ψ |2 = |
r∑

i=1

ei ⊗ gi |2

=

r∑

i, j=1

〈ei ⊗ gi, e j ⊗ gj 〉

7If one identifies E ⊗ F with Hom(E∗, F) and F∗ ⊗ G with Hom(F,G), then ϕ · ψ corresponds to the composition

of ψ and ϕ.
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=

r∑

i, j=1

〈ei, e j 〉〈gi, gj 〉

≤

√√√ r∑

i, j=1

〈ei, e j 〉2 ·

√√√ r∑

i, j=1

〈gi, gj 〉2

≤

√√√ r∑

i, j=1

|ei |2 |e j |2 ·

√√√ r∑

i, j=1

|gi |2 |gj |2

=

√√√ r∑

i=1

|ei |2
r∑

j=1

|e j |2 ·

√√√ r∑

i=1

|gi |2
r∑

j=1

|gj |2

=

r∑

i=1

|ei |2 ·
r∑

i=1

|gi |2

= |ϕ|2 · |ψ |2.

Now we perform the induction step.

‖∇k+1(ϕ · ψ)‖C0 (K ) ≤ ‖∇(ϕ · ψ)‖Ck (K )

= ‖(∇ϕ) · ψ + ϕ · ∇ψ‖Ck (K )

≤ ‖(∇ϕ) · ψ‖Ck (K ) + ‖ϕ · ∇ψ‖Ck (K )

≤ 2k · ‖∇ϕ‖Ck (K ) · ‖ψ‖Ck (K ) + 2k · ‖ϕ‖Ck (K ) · ‖∇ψ‖Ck (K )

≤ 2k · ‖ϕ‖Ck+1(K ) · ‖ψ‖Ck+1 (K ) + 2k · ‖ϕ‖Ck+1(K ) · ‖ψ‖Ck+1 (K )

= 2k+1 · ‖ϕ‖Ck+1(K ) · ‖ψ‖Ck+1 (K ) .

Thus

‖ϕ · ψ‖Ck+1 (K ) = max{‖ϕ · ψ‖Ck (K ), ‖∇k+1(ϕ · ψ)‖C0 (K )}
≤ max{2k · ‖ϕ‖Ck (K ) · ‖ψ‖Ck (K ), 2

k+1 · ‖ϕ‖Ck+1(K ) · ‖ψ‖Ck+1 (K )}
= 2k+1 · ‖ϕ‖Ck+1(K ) · ‖ψ‖Ck+1 (K ) . �

This lemma allows us to estimate the Ck-norm of products of sections in terms of the Ck-norms

of the factors. The next lemma allows us to deal with compositions of functions. We recursively

define the following constants:

α(k, 0) := 1,

α(k, j) := 0

for j > k and for j < 0 and

α(k + 1, j) := max{α(k, j), 2k · α(k, j − 1)} (1.11)

if 1 ≤ j ≤ k. The precise values of the α(k, j) are not important. The definition is made in such

a way that the following lemma holds.
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Lemma 1.3.24. Let Γ be a real valued Ck -function on a Lorentzian manifold M and let

σ : R → R be a Ck -function. Then for all K ⊂ M compact, k ∈ N0 and I ⊂ R such that

Γ(K ) ⊂ I we have

‖σ ◦ Γ‖Ck (K ) ≤ ‖σ‖Ck (I ) · max
j=0, ...,k

α(k, j)‖Γ‖ j
Ck (K )

.

Proof. Again, we perform an induction on k. The case k = 0 is obvious. By Lemma 1.3.23

‖∇k+1(σ ◦ Γ)‖C0 (K ) = ‖∇k [(σ′ ◦ Γ) · ∇Γ]‖C0 (K )

≤ ‖(σ′ ◦ Γ) · ∇Γ‖Ck (K )

≤ 2k · ‖σ′ ◦ Γ‖Ck (K ) · ‖∇Γ‖Ck (K )

≤ 2k · ‖σ′ ◦ Γ‖Ck (K ) · ‖Γ‖Ck+1(K )

≤ 2k · ‖σ′‖Ck (I ) · max
j=0, ...,k

α(k, j)‖Γ‖ j
Ck+1(K )

· ‖Γ‖Ck+1(K )

≤ 2k · ‖σ‖Ck+1 (I ) · max
j=0, ...,k

α(k, j)‖Γ‖ j+1

Ck+1(K )

= 2k · ‖σ‖Ck+1 (I ) · max
j=1, ...,k+1

α(k, j − 1)‖Γ‖ j
Ck+1(K )

.

Hence

‖σ ◦ Γ‖Ck+1(K ) = max{‖σ ◦ Γ‖Ck (K ), ‖∇k+1(σ ◦ Γ)‖C0 (K )}
≤ max{‖σ‖Ck (I ) · max

j=0, ...,k
α(k, j)‖Γ‖ j

Ck (K )
,

2k · ‖σ‖Ck+1(I ) · max
j=1, ...,k+1

α(k, j − 1)‖Γ‖ j
Ck+1(K )

}

≤ ‖σ‖Ck+1 (I ) · max
j=0, ...,k+1

max{α(k, j), 2kα(k, j − 1)}‖Γ‖ j
Ck+1 (K )

= ‖σ‖Ck+1 (I ) · max
j=0, ...,k+1

α(k + 1, j)‖Γ‖ j
Ck+1(K )

. �

1.3.2 Riesz distributions on Minkowski space

In this subsection we construct the basic building blocks for solutions of the d’Alembert equation

on Minkowski space. Let V be an n-dimensional R-vector space, let 〈·, ·〉 be an inner product of

index 1 on V . Hence (V, 〈·, ·〉) is isometric to Minkowski space. Endow V with a time orientation

such that I+ (0) and I− (0) are defined. Let γ : V → R be the function γ(X ) := −〈X, X〉 qw in

1.2.76.
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Definition 1.3.25. For any complex number α with ℜ(α) > n let R+(α) and R−(α) be the

complex-valued continuous functions on V defined by

R±(α)(X ) :=

{

C (α, n)γ(X )
α−n

2 , if X ∈ J±(0),

0, otherwise,

where C (α, n) := 21−απ
2−n

2

( α
2
−1)!( α−n

2
)!

and z 7→ (z − 1)! is the Gamma function.

Remark 1.3.26. Note that the functions R±(α) are continuous because γ vanishes on the bound-

ary of J±(0) and the exponent α−n
2

is assumed to have positive real part. Indeed, if we increase

the real part of the exponent then the function vanishes to higher order along the boundary and

hence becomes more regular. Concretely, forℜ(α) > n + k we have R±(α) ∈ Ck (V,C).

Lemma 1.3.27. For all α ∈ C withℜ(α) > n we have

(1) γ · R±(α) = α(α − n + 2)R±(α + 2);

(2) (grad γ) · R±(α) = 2α grad R±(α + 2);

(3) �R±(α + 2) = R±(α).

Moreover, the map α 7→ R±(α) extends uniquely to all of C as a holomorphic family of distri-

butions. This means that for each test function ϕ the function α 7→ R±(α)[ϕ] is holomorphic.

Proof. Identity (1) follows from

C (α, n)

C (α + 2, n)
=

2(1−α) (α+2
2
− 1)! (α+2−n

2
)!

2(1−α−2) (α
2
− 1)! (α−n

2
)!
= α (α − n + 2).

To show (2) we choose a Lorentzian orthonormal basis e1, . . . , en of V and we denote differenti-

ation in direction ei by ∂i . We fix a test function ϕ and integrate by parts:

∂iγ · R±(α)[ϕ] = C (α, n)

∫

J± (0)

γ(X )
α−n

2 ∂iγ(X )ϕ(X ) dX

=

2C (α, n)

α + 2 − n

∫

J± (0)

∂i (γ(X )
α−n+2

2 )ϕ(X ) dX

= −2αC (α + 2, n)

∫

J± (0)

γ(X )
α−n+2

2 ∂iϕ(X ) dX

= −2αR±(α + 2)[∂iϕ]

= 2α∂iR±(α + 2)[ϕ],
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which proves (2). Furthermore, it follows from (2) that

∂2
i R±(α + 2) = ∂i

(

1

2α
∂iγ · R±(α)

)

=

1

2α

(

∂2
i γ · R±(α) + ∂iγ ·

(

1

2(α − 2)
∂iγ · R±(α − 2)

))

=

1

2α
∂2
i γ · R±(α) +

1

4α(α − 2)
(∂iγ)2 (α − 2)(α − n)

γ
· R±(α)

=

(

1

2α
∂2
i γ +

α − n

4α
· (∂iγ)2

γ

)

· R±(α),

so that

� R±(α + 2) =

(

n

α
+

α − n

4α
· 4γ

γ

)

R±(α)

= R±(α).

To show the final assertion we first note that for fixed ϕ ∈ D(V,C) the map {ℜ(α) > n} → C,

α 7→ R±(α)[ϕ], is holomorphic. Forℜ(α) > n − 2 we set

R̃±(α) := � R±(α + 2). (1.12)

This defines a distribution on V . The map α 7→ R̃±(α) is then holomorphic on {α ∈ C | ℜ(α) >

n − 2}. By (3) we have R̃±(α) = R±(α) forℜ(α) > n, so that α 7→ R̃±(α) extends α 7→ R±(α)

holomorphically to {α ∈ C | ℜ(α) > n − 2}.

C

nn − 2

ℜ(α) > n

Proceeding inductively, we obtain a holomorphic extension of α 7→ R±(α) to all of C, which is

necessarily unique. �

Lemma 1.3.27 defines R±(α) for all α ∈ C, not as functions but as distributions.

47



1 Preliminaries

Definition 1.3.28. We call R+(α) the advanced Riesz distribution and R−(α) the retarded

Riesz distribution on V for α ∈ C.

We next want to collect more important facts on Riesz distributions. As preparation, we first

identify the set of all α ∈ C that lead to vanishing C (α, n).

Remark 1.3.29. We defined R±(α)(X ) = C (α, n)γ(X )
α−n

2 where C (α, n) := 21−απ
2−n

2

( α
2
−1)!( α−n

2
)!

and

z 7→ (z − 1)! is the Gamma function. The Gamma function has no zeros but simple poles at the

non-positive integers. For the two factors of the denominator of C (α, n) we have:

• (α
2
− 1)! has a pole iff α ∈ {0,−2,−4, . . .}

• (α−n
2

)! has a iff α ∈ {n − 2, n − 4, . . .}
Observe that there is a difference between even and odd dimensional V . In odd dimension, the

sets are disjoint and all negative numbers lead to vanishing C (α, n). In even dimension, the two

sets overlap and C (α, n) has zeros with double multiplicity.

To complete our preparations, we derive a more explicit formula for the Riesz distributions

evaluated on test functions of a particular form.

Introduce linear coordinates x1, . . . , xn on V such that γ(x) = −(x1)2
+ (x2)2

+ · · · + (xn )2 and

such that the x1-axis is future directed. Let f ∈ D(R,C) and choose ψ ∈ D(Rn−1,C) such that

ϕ ∈ D(Rn,C) defined by

ϕ(x) := f (x1)ψ(x2, . . . , xn ) (1.13)

satisfies ϕ(x) = f (x1) on J+(0).

x2, . . . , xn

x1

| |

ψ ≡ 1

supp( f )

Lemma 1.3.30. For such test functions and ifℜ(α) ≥ 1 then

R+(α)[ϕ] =
1

(α − 1)!

∞∫

0

rα−1 f (r)dr. (1.14)

48



1.3 Distributions

Proof. First we note that it suffices to show the formula for ℜ(α) > n. Namely, since both

sides of the equation are holomorphic in α for ℜ(α) > 1 the identity theorem for holomorphic

functions will then imply that equation (1.14) holds for all α withℜ(α) > 1. By continuity, we

then also get it for all α withℜ(α) = 1.

Let therefore ℜ(α) > n. We abbreviate x̂ = (x2, . . . , xn ). We compute

R+(α)[ϕ] = C (α, n)

∫

J+ (0)

ϕ(X )γ(X )
α−n

2 dX

= C (α, n)

∫ ∞

0

∫

{ | x̂ | ≤x1 }
ϕ(x1, x̂)((x1)2 − | x̂ |2)

α−n
2 dx̂ dx1

= C (α, n)

∫ ∞

0

f (x1)

∫

{ | x̂ | ≤x1 }
((x1)2 − | x̂ |2)

α−n
2 dx̂ dx1

= C (α, n)

∫ ∞

0

f (x1)

∫ x1

0

∫

Sn−2

((x1)2 − ̺2)
α−n

2 ̺n−2dω d̺ dx1,

where Sn−2 is the (n − 2)-dimensional round sphere and dω its standard volume element.

b0

x1

x1 · Dn−1

Renaming x1 we get

R+(α)[ϕ] = vol(Sn−2) C (α, n)

∫ ∞

0

f (r)

∫ r

0

(r2 − ̺2)
α−n

2 ̺n−2d̺ dr.

Using
∫ r

0
(r2 − ̺2)

α−n
2 ̺n−2d̺ = 1

2
rα−1 ( α−n2 )!( n−3

2 )!

( α−1
2

)!
we obtain

R+(α)[ϕ] =
vol(Sn−2)

2
C (α, n)

∫ ∞

0

f (r)rα−1
(α−n

2
)!( n−3

2
)!

(α−1
2

)!
dr

=

1

2

2π(n−1)/2

( n−1
2
− 1)!

· 21−απ1−n/2

(α/2 − 1)!(α−n
2

)!
·

(α−n
2

)!( n−3
2

)!

(α−1
2

)!
·
∫ ∞

0

f (r)rα−1dr

=

√
π · 21−α

(α/2 − 1)!(α−1
2

)!
·
∫ ∞

0

f (r)rα−1dr.
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Legendre’s duplication formula (see [12, p. 218])
(
α

2
− 1

)

!

(

α + 1

2
− 1

)

! = 21−α√π (α − 1)! (1.15)

yields the claim. �

Now we are ready to state and prove the following collection of important facts on Riesz

distributions:

Proposition 1.3.31. The following holds for all α ∈ C:

1. γ · R±(α) = α(α − n + 2) R±(α + 2),

2. (grad γ)R±(α) = 2αgrad (R±(α + 2)),

3. �R±(α + 2) = R±(α),

4. For every α ∈ C \ ({0,−2,−4, . . .} ∪ {n − 2, n − 4, . . .}), we have

supp (R±(α)) = J±(0) and sing supp (R±(α)) ⊂ ∂J±(0).

5. For every α ∈ {0,−2,−4, . . .} ∪ {n − 2, n − 4, . . .}, we have

supp (R±(α)) = sing supp (R±(α)) ⊂ ∂J±(0).

6. For n ≥ 3 and α = n − 2, n − 4, . . . , 1 or 2 respectively, we have

supp (R±(α)) = sing supp (R±(α)) = ∂J±(0).

7. R±(0) = δ0.

8. Forℜ(α) > 0 the order of R±(α) is bounded from above by n + 1.

9. If α ∈ R, then R±(α) is real, i. e., R±(α)[ϕ] ∈ R for all ϕ ∈ D(V,R).

Proof. Assertions (1), (2), and (3) hold for ℜ(α) > n by Lemma 1.3.27. Since, after insertion

of a fixed ϕ ∈ D(V,C), all expressions in these equations are holomorphic in α they hold for all

α.

Proof of (4). Let ϕ ∈ D(V,C) with supp(ϕ) ∩ J±(0) = ∅. Since supp(R±(α)) ⊂ J±(0) for

ℜ(α) > n, it follows for those α that

R±(α)[ϕ] = 0,

and then for all α by holomorphicity. Therefore supp(R±(α)) ⊂ J±(0) for all α.

On the other hand, if X ∈ I±(0), then γ(X ) > 0 and the map α 7→ C (α, n)γ(X )
α−n

2 is well

defined and holomorphic on all of C. Again by holomorphicity, we have for ϕ ∈ D(V,C) with

supp(ϕ) ⊂ I± (0)

R±(α)[ϕ] =

∫

supp(ϕ)

C (α, n)γ(X )
α−n

2 ϕ(X )dX
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1.3 Distributions

for all α ∈ C. Thus R±(α) coincides on I± (0) with the smooth function C (α, n)γ(·) α−n
2

and therefore sing supp(R±(α)) ⊂ C±(0). By Remark 1.3.29 the map α 7→ C (α, n) vanishes

only on {0,−2,−4, . . .} ∪ {n − 2, n − 4, . . .}, so we have I± (0) ⊂ supp(R±(α)) for every α ∈
C \ ({0,−2,−4, . . .} ∪ {n − 2, n − 4, . . .}). Thus supp(R±(α)) = J±(0). This proves (4).

Proof of (5). For α ∈ {0,−2,−4, . . .} ∪ {n − 2, n − 4, . . .} we have C (α, n) = 0 and therefore

R±(α) |I± (0) ≡ 0, so supp(R±(α)) ⊂ ∂J±(0). Since sing supp(R±(α)) ⊂ supp(R±(α)) is clear,

it remains to show supp(R±(α)) ⊂ sing supp(R±(α)). Let X < sing supp(R±(α)), X ∈ ∂J±(0).

Then there exits a neighboorhood U of X with R±(α) |U is smooth.

b X

U

Since U \ ∂J±(0) is dense in U continuity implies R±(α) |U ≡ 0. Thus X < supp(R±(α)). This

proves (5).

To show (6) recall first from (5) that we know already

sing supp(R±(α)) = supp(R±(α)) ⊂ ∂J±(0)

for α = n − 2, n − 4, . . . , 2 or 1 respectively. Note also that the distribution R±(α) is invariant

under timeorientation-preserving Lorentz transformations, that is, for any such transformation A

of V we have

R±(α)[ϕ ◦ A] = R±(α)[ϕ]

for every test function ϕ. Hence supp(R±(α)) as well as sing supp(R±(α)) are also invariant

under the group of those transformations. Under the action of this group the orbit decomposition

of ∂J±(0) is given by

∂J±(0) = {0} ∪ (∂J±(0) \ {0}).8
So supp(R±(α)) is made up of orbits. Thus supp(R±(α)) = sing supp(R±(α)) coincides either

with ∅, {0}, ∂J±(0) or a union of these components. Since the support is closed we have the

possibilities that supp(R±(α)) = sing supp(R±(α)) is ∅, {0} or ∂J+(0).

8To see that (∂J±(0) \ {0}) is one orbit, look at Lorentz boosts and space rotations.
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We now consider test functions ϕ as in (1.13). We showed that for such ϕ

R+(α)[ϕ] =

∫ ∞

0

rα−1 f (r)dr , 0

for suitable f ∈ D(R,C). Simply choose f nonnegative everywhere and positive somewhere in

R
+. This concludes the proof of (6).

Proof of (7). Fix a compact subset K ⊂ V . Let σK ∈ D(V,R) be a compactly supported

function such that σK |K ≡ 1. For any ϕ ∈ D(V,C) with supp(ϕ) ⊂ K write

ϕ(x) = ϕ(0) +

n∑

j=1

x jϕ j (x)

with suitable smooth functions ϕ j , see Exercise 1.3.32 below. Then

R±(0)[ϕ] = R±(0)[σKϕ]

= R±(0)[ϕ(0)σK +

n∑

j=1

x jσKϕ j]

= ϕ(0) R±(0)[σK ]
︸       ︷︷       ︸
=:cK

+

n∑

j=1

(x j R±(0))
︸      ︷︷      ︸
=0 by (2)

[σK ϕ j]

= cKϕ(0).

The constant cK actually does not depend on K because for K ′ ⊃ K and supp(ϕ) ⊂ K (⊂ K ′),

cK ′ϕ(0) = R+(0)[ϕ] = cKϕ(0),

so that cK = cK ′ =: c. It remains to show c = 1.

We again look at test functions ϕ as in (1.13) and compute, using (3),

c · ϕ(0) = R+(0)[ϕ]

= (�R+(2))[ϕ]

= R+(2)[�ϕ]

=

∫ ∞

0

r f ′′(r)dr

= −
∫ ∞

0

f ′(r)dr

= f (0)

= ϕ(0).

This concludes the proof of (7).

Proof of (8). By its definition, the distribution R±(α) is a continuous function if ℜ(α) > n,

therefore it is of order 0. Since � is a differential operator of order 2, the order of �R±(α) is at

most that of R±(α) plus 2. It then follows from (3) that:

52



1.3 Distributions

• If n is even: for every α with ℜ(α) > 0 we have ℜ(α) + n = ℜ(α) + 2 · n
2
> n, so that the

order of R±(α) is not greater than n (and so n + 1).

• If n is odd: for every α withℜ(α) > 0 we have ℜ(α) + n + 1 = ℜ(α) + 2 · n+1
2

> n, so that

the order of R±(α) is not greater than n + 1.

This concludes the proof of (8).

Assertion (9) is clear by definition whenever α > n. For general α ∈ R choose k ∈ N so large

that α + 2k > n. Using (3) we get for any ϕ ∈ D(V,R)

R±(α)[ϕ] = �
k R±(α + 2k)[ϕ] = R±(α + 2k)[�kϕ] ∈ R

because �kϕ ∈ D(V,R) as well. �

1.3.32. Let ϕ : Rn → R be a Ck-function, k ≥ 1.

a) Show that there exist Ck−1-functions ϕ1, . . . , ϕn : Rn → R such that

ϕ(x) = ϕ(0) +

n∑

j=1

x j · ϕ j (x)

for all x ∈ Rn.

b) Show that the ϕ j need not have compact support even if ϕ does.

Shortly after the definition of distributions, we saw that a distribution extends uniquely to a

continuous linear map on the space of Ck -sections in E with compact support, if the order is not

too high. For the Riesz distributions, in Proposition 1.3.31 (8) we found an upper bound for the

order. This leads us to a slight generalization of Lemma 1.3.27 that we will need later on.

Corollary 1.3.33. For ϕ ∈ Dk (V,C) the map α 7→ R±(α)[ϕ] defines a holomorphic function

on {α ∈ C | ℜ(α) > n − 2[ k
2
]}.

Proof. Let φ ∈ Dk (V,C). On {ℜ(α) > n}, by the definition of R±(α) the map α 7→ R±(α)[ϕ] =

C (α, n)
∫

J±
γ

α−n
2 ϕdX is clearly holomorphic . With (3) of Proposition 1.3.31 we have R± (α)[ϕ] =

�R±(α + 2)[ϕ] = R±(α + 2)[�ϕ], so R±(α)[ϕ] is holomorphic forℜ(α) > n − 2 in case k ≥ 2.

We iterate this argument [ k
2
]-times (to stay in the case of (8) of Proposition 1.3.31) and we get

the holomorphic extension to the set {ℜ(α) > n − 2[ k
2
]}. �

Remark 1.3.34. Combining (3) and (7) of Proposition 1.3.31 we find �R±(2) = R±(0) =

δ0. We say that R±(2) are fundamental solutions for the d’Alembert operator on Minkowski

space, a concept we will study in detail. Using fundamental solutions, it is easy to solve the

inhomogeneous equation �u = f arbitrary right side f by convolution.
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There are qualitative differences in the properties of the solutions depending on the parity of the

dimension:

If n ≥ 4 is even, we have supp (R±(2)) = ∂J±(0). Interprete the right hand side of �R±(2) = δ0

as point source at 0 of a signal that propagates with constant speed. Inside the future light

cone the solution is zero, the wave propagates strictly on the cone. An observer with timelike

world line would note the signal for just one moment as he crosses ∂J±(0). This is known as

the Huygens property. It is familiar to us from light and sound waves propagating in 3 space

dimensions (hence n = 4 spacetime dimensions).

If n ≥ 3 is odd then supp (R±(2)) = J±(0) and the Huygens property does not hold. In this case,

the signal of a point source propagates also inside the light cone. For an observer, the wave is

noticable not only at a single moment but still after the signal has arrived. An example of such

waves are waves on 2-dimensional surfaces like water waves.

1.3.3 Riesz distributions on a domain

Riesz distributions have been defined on all spaces isometric to Minkowski space. They are

therefore defined on the tangent spaces at all points of a Lorentzian manifold. We now show

how to construct Riesz distributions defined in small open subsets of the Lorentzian manifold

itself. The passage from the tangent space to the manifold will be provided by the Riemannian

exponential map.

Let Ω be a domain in a timeoriented n-dimensional Lorentzian manifold, n ≥ 2. Suppose Ω

is geodesically starshaped with respect to some point x ∈ Ω. In particular, the Riemannian

exponential function expx restricts to a diffeomorphism Ω′ → Ω where Ω′ is an open subset of

Tx M , starshaped with respect to 0. Let µx : Ω → R be defined as in (1.2.27). We define for

every test function ϕ ∈ D(Ω,C),

RΩ± (α, x)[ϕ] := R±(α)[(µxϕ) ◦ expx].

Note that supp((µxϕ) ◦ expx ) is contained in Ω′. Extending the function (µxϕ) ◦ expx by zero

we can regard it as a test function on TxΩ and thus apply R±(α) to it.

Definition 1.3.35. We call RΩ
+

(α, x) the advanced Riesz distribution and RΩ− (α, x) the re-

tarded Riesz distribution on Ω at x for α ∈ C.

The relevant properties of the Riesz distributions are collected in the following proposition.

Proposition 1.3.36. The following holds for all α ∈ C and all x ∈ Ω:

1. Ifℜ(α) > n, then RΩ± (α, x) is the continuous function

RΩ± (α, x) =


C (α, n) Γ
α−n

2
x on JΩ± (x),

0 elsewhere.
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1.3 Distributions

2. For every fixed test function ϕ the map α 7→ RΩ± (α, x)[ϕ] is holomorphic on C.

3. Γx · RΩ± (α, x) = α(α − n + 2) RΩ± (α + 2, x)

4. grad (Γx ) · RΩ± (α, x) = 2αgrad RΩ± (α + 2, x)

5. If α , 0, then �RΩ± (α + 2, x) =
(
�Γx−2n

2α + 1
)

RΩ± (α, x)

6. RΩ± (0, x) = δx

7. For every α ∈ C \ ({0,−2,−4, . . .} ∪ {n − 2, n − 4, . . .}) we have

supp
(

RΩ± (α, x)
)

= JΩ± (x) and sing supp
(

RΩ± (α, x)
)

⊂ CΩ± (x).

8. For every α ∈ {0,−2,−4, . . .} ∪ {n − 2, n − 4, . . .} we have

supp
(

RΩ± (α, x)
)

= sing supp
(

RΩ± (α, x)
)

⊂ CΩ± (x).

9. For n ≥ 3 and α = n − 2, n − 4, . . . , 1 or 2, respectively, we have

supp
(

RΩ± (α, x)
)

= sing supp
(

RΩ± (α, x)
)

= CΩ± (x).

10. Forℜ(α) > 0 we have ord(RΩ± (α, x)) ≤ n + 1. Moreover, there exists a neighborhood U

of x and a constant C > 0 such that

|RΩ± (α, x′)[ϕ]| ≤ C · ‖ϕ‖Cn+1(Ω)

for all ϕ ∈ D(Ω,C) and all x′ ∈ U .

11. If U ⊂ Ω is an open neighborhood of x such thatΩ is geodesically starshaped with respect

to all x′ ∈ U and if V ∈ D(U × Ω,C), then the function U → C, x′ 7→ RΩ± (α, x′)[y 7→
V (x′, y)], is smooth.

12. If U ⊂ Ω is an open neighborhood of x such thatΩ is geodesically starshaped with respect

to all x′ ∈ U , if ℜ(α) > 0, and if V ∈ Dn+1+k (U × Ω,C), then the function U → C,

x′ 7→ RΩ± (α, x′)[y 7→ V (x′, y)], is Ck .

13. For every ϕ ∈ Dk (Ω,C) the map α 7→ RΩ± (α, x)[ϕ] is a holomorphic function on {α ∈
C | ℜ(α) > n − 2[ k

2
]}.

14. If α ∈ R, then RΩ± (α, x) is real, i. e., RΩ± (α, x)[φ] ∈ R for all φ ∈ D(Ω,R).

Proof. Proof of (1). Letℜ(α) > n and ϕ ∈ D(Ω,C). Then

RΩ± (α, x)[ϕ] = RΩ± (α, x)[(µx · ϕ) ◦ expx ]
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= C (α, n)

∫

J± (0)

γ
α−n

2 (µx · ϕ) ◦ expx dX

= C (α, n)

∫

JΩ± (x)

Γ

α−n
2

x · ϕ dV.

Proof of (2). This follows directly from the definition of RΩ
+

(α, x) and from Lemma 1.3.27.

Proof of (3). By (1) this obviously holds forℜ(α) > n since C (α, n) = α(α− n+ 2)C (α+ 2, n).

By analyticity of α 7→ RΩ
+

(α, x) it must hold for all α.

Proof of (4). Consider α withℜ(α) > n. By (1) the function RΩ± (α + 2, x) is then C1. On JΩ± (x)

we compute

2αgrad RΩ± (α + 2, x) = 2αC (α + 2, n)grad

(

Γ

α+2−n
2

x

)

= 2αC (α + 2, n)
α + 2 − n

2
︸                          ︷︷                          ︸

C (α,n)

Γ

α−n
2

x grad Γx

= RΩ± (α, x)grad Γx .

For arbitrary α ∈ C assertion (4) follows from analyticity of α 7→ RΩ± (α, x).

Proof of (5). Let α ∈ C with ℜ(α) > n + 2. Since RΩ± (α + 2, x) is then C2, we can compute

�RΩ± (α + 2, x) classically. This will show that (5) holds for all α withℜ(α) > n+ 2. Analyticity

then implies (5) for all α.

�RΩ± (α + 2, x) = −div
(

grad RΩ± (α + 2, x)
)

(4)
= − 1

2α
div

(

RΩ± (α, x) · grad (Γx )
)

=

1

2α
�Γx · RΩ± (α, x) − 1

2α
〈grad Γx, grad RΩ± (α, x)〉

(4)
=

1

2α
�Γx · RΩ± (α, x) − 1

2α · 2(α − 2)
〈grad Γx, grad Γx · RΩ± (α − 2, x)〉

Lemma 1.2.77.1
=

1

2α
�Γx · RΩ± (α, x) +

1

α(α − 2)
Γx · RΩ± (α − 2, x)

(3)
=

1

2α
�Γx · RΩ± (α, x) +

(α − 2)(α − n)

α(α − 2)
RΩ± (α, x)

=

(

�Γx − 2n

2α
+ 1

)

RΩ± (α, x).

Proof of (6). Let ϕ be a test function on Ω. Then by Proposition 1.3.31 (7)

RΩ± (0, x)[ϕ] = R±(0)[(µxϕ) ◦ expx]

= δ0[(µxϕ) ◦ expx]

= ((µxϕ) ◦ expx )(0)

= µx (x)ϕ(x)

= ϕ(x)

= δx [ϕ].
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The assertions (7), (8) and (9) follow directly from the corresponding properties of the Riesz

distributions on Minkowski space. Namely, expx is a diffeomorphism and therefore maps

(singular) supports to (singular) supports. Moreover, µx is a smooth positive function and hence

does not affect the (singular) supports.

Proof of (11). Let A(x, x′) : TxΩ→ Tx′Ω be a timeorientation preserving linear isometry. Then

RΩ± (α, x′)[V (x′, ·)] = RΩ± (α, x)[V (x′, ·) ◦ A(x, x′)]

= R±(α)[(µx′ · V (x′, ·)) ◦ expx′ ◦A(x, x′)]

where R±(α) is, as before, the Riesz distribution on TxΩ. Hence if we choose A(x, x′) to depend

smoothly on x′, then (µx′ · V (x′, y)) ◦ expx′ ◦A(x, x′) is smooth in x′ and y and the assertion

follows from Lemma 1.3.11.

Proof of (10). Since ord(R±(α)) ≤ n+1 by Proposition 1.3.31 (8) we have ord(RΩ± (α, x)) ≤ n+1

as well. We now have to show that the constant C may be chosen locally uniformly in x. We

choose A(x, x′) as in the proof of (11) and consider the case V = ϕ independent of x′. We find

���RΩ± (α, x′)[ϕ]
��� = ���RΩ± (α)[(µx′ · ϕ) ◦ expx′ ◦A(x, x′)]���
≤ C (µx′ · ϕ) ◦ expx′ ◦A(x, x′)]Cn+1

≤ C ′ ‖ϕ‖Cn+1

where C ′ contains derivatives of µ, exp and A up to order n + 1.

Proof of (12). By (10) we can apply RΩ± (α, x′) to V (x′, ·). Now the same argument as for (11)

shows that the assertion follows from Lemma 1.3.11.

Assertion (13) is a consequence of Corollary 1.3.33. Furthermore, (14) follows from Proposi-

tion 1.3.31.9 because µx is real as well. �

Advanced and retarded Riesz distributions are related as follows.

Lemma 1.3.37. Let Ω be a convex timeoriented Lorentzian manifold. Let α ∈ C. Then for all

u ∈ D(Ω ×Ω,C) we have

∫

Ω

RΩ
+

(α, x)
[
y 7→ u(x, y)

]
dV(x) =

∫

Ω

RΩ− (α, y)
[
x 7→ u(x, y)

]
dV(y).

Proof. The convexity condition for Ω ensures that the Riesz distributions RΩ± (α, x) are defined

for all x ∈ Ω. By Proposition 1.3.36.11 the integrands are smooth.
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Since u has compact support con-

tained in Ω × Ω the integrand

RΩ
+

(α, x)
[

y 7→ u(x, y)
]

(as a function

of x) has compact support contained

in Ω. Namely, its support is contained

in the projection π1(suppu), which is

compact as continuous image of a com-

pact set. Here π1 : Ω × Ω → Ω is the

projection to the first factor. x

y

Ω

Ω

supp ϕ
π1

A similar statement holds for the integrand of the right hand side. Hence the integrals exist. By

Proposition 1.3.36.13 they are holomorphic in α. Thus it suffices to show the equation for α with

ℜ(α) > n.

For such an α ∈ C the Riesz distributions R+(α, x) and R−(α, y) are continuous functions.

From the explicit formula (1) in Proposition 1.3.36 we see

R+(α, x)(y) = R−(α, y)(x)

for all x, y ∈ Ω. We just have to check that Γx (y) = Γy (x).

This can be seen as follows:

We set X := exp−1
y (x) and Y := exp−1

x (y). By Def-

inition 1.2.76 we then have Γx (y) = −g |x (Y,Y ) and

Γy (x) = −g |y (X, X ). The definition of the exponen-

tial map then tells us that X is minus the vector Y

obtained by parallel transport from TxΩ to TyΩ along

the unique geodesic connecting x and y. It follows

that g |x (Y,Y ) = g |y (X, X ) and hence Γx (y) = Γy (x).

b

b

x

y
Y

X

By Fubini’s theorem we then get

∫

Ω

RΩ
+

(α, x)
[
y 7→ u(x, y)

]
dV(x) =

∫

Ω

(∫

Ω

RΩ
+

(α, x)(y) u(x, y) dV(y)

)

dV(x)

=

∫

Ω

(∫

Ω

RΩ− (α, y)(x) u(x, y) dV(x)

)

dV(y)

=

∫

Ω

RΩ− (α, y)
[

x 7→ u(x, y)
]

dV(y)

which concludes the proof. �

As a technical tool we will also need a version of Lemma 1.3.37 for certain nonsmooth sections.
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Lemma 1.3.38. Let Ω be a causal domain in a timeoriented Lorentzian manifold of dimen-

sion n. Let ℜ(α) > 0 and let k ≥ n + 1. Let K1, K2 be compact subsets of Ω and let

u ∈ Ck (Ω ×Ω,C) so that supp(u) ⊂ JΩ
+

(K1) × JΩ− (K2). Then

∫

Ω

RΩ
+

(α, x)
[

y 7→ u(x, y)
]

dV(x) =

∫

Ω

RΩ− (α, y)
[

x 7→ u(x, y)
]

dV(y).

Proof. For fixed x, the support of the function y 7→ u(x, y) is contained in JΩ− (K2). Since Ω

is causal, it follows from Lemma 1.2.20 (with A = J+(x)) that the subset JΩ− (K2) ∩ JΩ
+

(x) is

relatively compact in Ω. So we have that supp(u(x, ·))∩ supp(RΩ
+

(α, x)) is closed and contained

in a relatively compact set and therefore compact. By Proposition 1.3.36.10 one can then apply

RΩ
+

(α, x) to the Ck-function y 7→ u(x, y).

Furthermore, the support of the continuous function x 7→ RΩ
+

(α, x)
[
y 7→ u(x, y)

]
is contained

in JΩ
+

(K1) ∩ JΩ− (supp(y 7→ u(x, y))) ⊂ JΩ
+

(K1) ∩ JΩ− (JΩ− (K2)) = JΩ
+

(K1) ∩ JΩ
+

(K2), which is

relatively compact in Ω, again by Lemma 1.2.20 (with A = JΩ− (K2)).

Hence the function x 7→ RΩ
+

(α, x)
[
y 7→ u(x, y)

]
has compact support inΩ, so that the left-hand-

side makes sense. Analogously the right-hand-side is well defined.

Our considerations also show that the integrals depend only on the values of u on
(

JΩ
+

(K1) ∩ JΩ− (K2)
)

×
(

JΩ
+

(K1) ∩ JΩ− (K2)
)

which is a relatively compact set. Applying a cut-off

function argument we may assume without loss of generality that u has compact support. Propo-

sition 1.3.36.13 says that the integrals depend holomorphically on α on the domain {ℜ(α) > 0}.
Therefore it suffices to show the equality for α with sufficiently large real part, which can be done

exactly as in the proof of Lemma 1.3.37. �

1.4 Sobolev spaces

Let N be a compact manifold without boundary of dim N = n. Let µ be a positive volume

density. Moreover, let E → N be a Riemannian or Hermitian vector bundle. The L2-norm for

u ∈ C∞(N, E) is

‖u‖20 =
∫

N

|u(x) |2 dµ(x)

where the norm |u(x) | is induced by the metrics on the fibers of E.

For a metric connection ∇ on E, define ∆ := ∇∗∇ + id ∈ Diff
2
(E, E). This elliptic operator

is formally selfadjoint by construction, moreover it is essentially selfadjoint. Hence we can use

spectral calculus to define any function of this operator.

Definition 1.4.1. The Sobolev norm for u ∈ C∞(N, E) and k ∈ R is given by

‖u‖2k =
∆ k

2 u
0
.
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1 Preliminaries

Remark 1.4.2. Here ∆
k
2 is defined by spectral calculus. In case k ∈ 2N this definition coincides

with the usual definition as composition and therefore yields a differential operator of order k in

that case.

Definition 1.4.3. The Sobolev space Hk (N, E) for k ∈ R is the completion of C∞(N, E) with

respect to ‖‖k .

We collect some properties of Sobolev spaces. First we see that for growing k the spaces get

smaller.

Proposition 1.4.4. For k < l there is a continuous embedding

H l (N, E) →֒ Hk (N, E).

Proof. For k < l we calculate ‖u‖k = ∆ k
2 u

0
=

∆ k−l
2 ∆

l
2 u

0
≤ ∆ l

2 u
0
= ‖u‖l . Note here that

the operator norm of ∆
k−l

2 is bounded by 1 because the function λ 7→ λ
k−l

2 is bounded by 1 on

[1,∞) and hence on the spectrum of ∆. �

The refined version of this is the Rellich-Kondrachov theorem.

Theorem 1.4.5 (Rellich-Kondrachov theorem). For k < l the embedding H l (N, E) →֒
Hk (N, E) is compact.

Remark 1.4.6. If the embedding is compact then any bounded sequence in H l (N, E) has a

subsequence that converges in Hk (N, E). Note that the Rellich-Kondrachov embedding theorem

is not in general true for non-compact manifolds.

Sobolev sections can be considered as distributional sections, Hk (N, E) ⊂ D ′(N, E), via

u
[

ϕ
]

:= (∆−
k
2 u)[∆

k
2 ϕ] =

∫

N

(

∆
k
2 ϕ(x)

) (

∆
− k

2 u(x)

)

dµ(x)

for ϕ ∈ C∞c (N, E∗). Note here that ∆−
k
2 u ∈ L2(M, E) so that we already know how to consider

it as a distribution.

Every distributional section turns out to be of a certain Sobolev regularity. Namely, we have:
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Proposition 1.4.7. The union of all Sobolev spaces equals the space of distributional sec-

tions,i.e. ⋃

k ∈R
Hk (N, E) = D ′(N, E).

Concerning the relation between the Ck-norms and the Sobolev norms, we first note that

Ck (N, E) ⊂ Hk (N, E) for k ∈ N because the Sobolev norm ‖ · ‖k can obviously be esti-

mated by ‖ · ‖Ck . In the converse direction we need more Sobolev regularity to control classical

Ck-regularity.

Theorem 1.4.8 (Sobolev embedding theorem). There is a continuous embedding

Hk (N, E) →֒ Cl (N, E)

for k > l + n
2
.

In particular, this implies

Proposition 1.4.9. The intersection of all Sobolev spaces equals the space of all smooth

sections, i.e. ⋂

k ∈R
Hk (N, E) = C∞(N, E).

Finally we note:

Proposition 1.4.10. Any P ∈ Diff
l
(E, F) extends to a bounded linear map Hk (N, E) →

Hk−l (N, F).

Remark 1.4.11. For fixed k ∈ R different choices of the volume density µ, the metric on E and

the connection ∇ on E give rise to equivalent ‖·‖k -norms. Hence the Sobolev spaces Hk (N, E)

are defined as topological vector spaces independently of those choices.

1.5 Miscellanea

Grönwall’s lemma is often very useful as it turns an implicit estimate into an explicit one.
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1 Preliminaries

Lemma 1.5.1 (Grönwall’s inequality). Let α, β, h : [t0, t1] → [0,∞) be continuous and let

α be monotonically increasing. If

h(t) ≤ α(t) +

∫ t

t0

β(s)h(s)ds

holds for all t ∈ [t0, t1] then so does

h(t) ≤ α(t) · exp

(∫ t

t0

β(s)ds

)

.

Proof. We only need to prove the implication for t = t1. Let ε > 0. Then

h(t) ≤ α(t) + ε +

∫ t

t0

β(s)h(s)ds . (1.16)

By assumption on h(t) and since α is monotonically increasing, we find for the time derivative

of the right hand side of (1.16):

d

dt

(

α(t1) + ε +

∫ t

t0

β(s)h(s)ds

)

= β(t)h(t)

≤ β(t)

(

α(t) + ε +

∫ t

t0

β(s)h(s)ds

)

≤ β(t)

(

α(t1) + ε +

∫ t

t0

β(s)h(s)ds

)

.

Division by the strictly positive term α(t1) + ε +
∫ t

t0
β(s)h(s)ds yields for the logarithmic

derivative

d

dt
log

(

α(t1) + ε +

∫ t

t0

β(s)h(s)ds

)

≤ β(t).

Integrating over [t0, t1] we get

log

(

α(t1) + ε +

∫ t1

t0

β(s)h(s)ds

)

− log (α(t1) + ε) ≤
∫ t1

t0

β(s)ds.

Putting log (α(t1) + ε) on the other side and exponentiating we find

α(t1) + ε +

∫ t1

t0

β(s)h(s) ≤ (α(t1) + ε) · exp

(∫ t1

t0

β(s)ds

)

.
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Hence by (1.16) for t = t1 we find that h(t1) can be estimated

h(t1) ≤ α(t1) + ε +

∫ t1

t0

β(s)h(s)

≤ (α(t1) + ε) · exp

(∫ t1

t0

β(s)ds

)

.

Letting ε → 0 then yields

h(t1) ≤ α(t1) · exp

(∫ t1

t0

β(s)ds

)

. �

Theorem 1.5.2 (Arzelà-Ascoli theorem). Let X,Y be metric spaces and let X be compact.

We equip C (X,Y ) with the metric d(u, v) = maxx∈X dY (u(x), v(x)), i.e. with the topology of

uniform convergence. Let F ⊂ C (X,Y ). Then the following two statements are equivalent:

(i) F ⊂ C (X,Y ) is relatively compact.

(ii) For all x ∈ X the set { f (x) | f ∈ F} ⊂ Y is relatively compact and the family of maps

F is equicontinuous.

1.6 Exercises

1.6.1. Let M be a manifold and let E and F be K-vector bundles over M , where K = R or C.

Let P ∈Diff
1
(E, F). Show that for any u ∈ C∞(M, E) and any smooth function f : M → K

one has the “Leibnitz rule”

P( f u) = σ1(P, df )u + f Pu.

1.6.2. Let M be a manifold and let E, F and G be K-vector bundles over M , where K = R or C.

Let P ∈Diff
k

(E, F) and Q ∈Diff ℓ (F,G). Show that for any ξ ∈ T∗M

σk+ℓ (Q ◦ P, ξ) = σℓ (Q, ξ) ◦ σk (P, ξ).

1.6.3. Let a, b, c : R→ C be smooth functions and let P = a(x) d2

dx2 + b(x) d
dx
+ c(x). Here the

underlying manifold is M = R and E = F = M × C is the trivial complex line bundle with the

usual Hermitian metric. Compute Pt .

1.6.4. Let M = R/Z = S1 and let E = F = M × C be the trivial complex line bundle with the

usual Hermitian metric. We consider functions on M as periodic functions on R.

Let a, b : M → C be smooth and let a(x) , 0 for all x. Let P = a(x) d
dx
+ b(x).
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a) Show that dim(ker(P)) ∈ {0, 1}.

b) Show by example that both cases in a) occur.

c) Show that dim(ker(P)) = dim(ker(Pt )).

1.6.5. Let M be a Lorentzian manifold and A ⊂ M a subset. The Cauchy development D(A) of

A is the set of those points p in M for which all inextendible causal curves through p intersect A.

a) Show that the Cauchy development satisfies:

D(D(A)) = D(A).

b) Give an example where A is a closed subset of M but D(A) is not.

1.6.6. Two Lorentz metrics g and ḡ on an manifold M are called conformally equivalent if there

is a smooth positive function f : M → R such that ḡ = f 2g.

Show that in this case (M, g) is globally hyperbolic if and only if (M, ḡ) is.

1.6.7. We fix m > 0 and define the function ϕ : R→ R, ϕ(r) = (r − 2m) exp
(

r
2m
− 1

)

.

a) Show that ϕ is a diffeomorphism from (0,∞) onto (−2me−1,∞).

b) We consider M = {(u, v) ∈ R | uv > −2me−1} and the function r : M → R+, r = ϕ−1(uv).

The manifold M together with the metric g = 8m2

r
exp

(

1 − r
2m

)

(du⊗ dv+ dv ⊗ du) is called

the Kruskal plane. It is closely related to the Schwarzschild solution.

Indicate the two possible time-orientations in a drawing.

c) Find a smooth spacelike Cauchy hypersurface in the Kruskal plane.

1.6.8. Let M be a time-oriented Lorentzian manifold. Show that future-compact subsets of M

are closed.

1.6.9. Let M be a manifold equipped with a volume density and two vector bundles E, F → M .

Let P ∈Diff
k

(E, F) and f ∈ Ck (M, E).

Show that the application of P to f in the classical sense coincides with the application in the

distributional sense.

1.6.10. Give an example of a distribution on R which does not have finite order.

1.6.11. For ε > 0 we define the function uε ∈ L1
loc

(R,R) by

uε (t) =


1
t
, if |t | ≥ ε,

0, otherwise.
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a) Show that the limit

lim
εց0

uε

exists inD ′(R,R) but not in L1
loc

(R,R). This limit is called the principal value of 1
t

and often

denoted by PV( 1
t
).

b) Prove (log( | · |))′ = PV( 1
t
).

1.6.12. On Rn , n ≥ 2, we define the funtion r (x) = ‖x‖ where ‖ · ‖ denotes the Euclidean norm.

We put for x ∈ Rn \ {0} and constants cn

E :=


1
2π log(r), if n = 2,

cnr2−n, if n ≥ 3.

Moreover, we set E(0) := 0.

a) Show that E is locally integrable on Rn and hence defines a distribution.

b) Show that for suitable choice of cn the equation ∆E = δ0 holds in the distributional sense.

1.6.13. Let ϕ : Rn → R be a Ck-function, k ≥ 1.

a) Show that there exist Ck−1-functions ϕ1, . . . , ϕn : Rn → R such that

ϕ(x) = ϕ(0) +

n∑

j=1

x j · ϕ j (x)

for all x ∈ Rn.

b) Show that the ϕ j need not have compact support even if ϕ does.

1.6.14. Determine the support and the singular support of R±(α) for α ∈ {0,−2,−4, . . .}.

1.6.15. Show that the Riesz distributions R±(α) on Minkowski space are tempered distributions

(see e.g. [14, p. 134] for a definition).

Hint: Show it first forℜ(α) sufficiently large and observe that holomorphicity of α 7→ R±(α)[ϕ]

and R±(α + 2)[�ϕ] = R±(α)[ϕ] still hold true for test functions ϕ of Schwartz class.

1.6.16. Let M be the 1+1-dimensional Minkowski space. Check if A ⊂ M is compact, spatially

compact, future compact, strictly future compact, (strictly) past compact, or temporally compact

(no detailed proofs required) where

a) A = {(t, x) | −1 ≤ t ≤ 1};

b) A = {(t, x) | −1 ≤ x ≤ 1};
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c) A = J+(0);

d) A = M \ I+ (0);

e) A = {(t, x) | t ≥ 0};

f) A = {(t, x) | t ≥ − |x |
2
}.

1.6.17. Let M be a globally hyperbolic Lorentzian manifold. Let M ′ ⊂ M be an open subset

with J−(M ′) = M ′. Show that M ′ is itself globally hyperbolic.
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2 Linear wave equations - local theory

We now start to investigate the theory of linear wave equations. In particular, we will construct

fundamental solutions. We first do this in small domains of the manifold - this is what we mean

by the local theory.

2.1 Normally hyperbolic operators

We start by defining the type of differential operators which give rise to wave equations.

Definition 2.1.1. Let M be a Lorentzian manifold and let E → M be a real or complex vector

bundle. A linear differential operator P ∈ Diff
2
(E, E) is called normally hyperbolic if its

principal symbol is given by the metric,

σ2(P, ξ) = −〈ξ, ξ〉

for all ξ ∈ T∗M .

Remark 2.1.2. In other words, if we choose local coordinates x1, . . . , xn on M and a local

trivialization of E, then a normally hyperbolic operator P is given by

P = −
n∑

i, j=1

gi j (x)
∂2

∂xi∂x j
+

n∑

j=1

Aj (x)
∂

∂x j
+ B1(x)

where Aj and B1 are matrix-valued coefficients depending smoothly on x and (gi j )i j is the

inverse matrix of (gi j )i j with gi j = 〈 ∂
∂x i ,

∂
∂x j 〉.

Remark 2.1.3. On a Riemannian manifold this type of operator would be called a Laplace-type

operator which would be an elliptic operator.

Example 2.1.4. Let E be the trivial line bundle so that sections in E are just functions. The

d’Alembert operator P = � is normally hyperbolic, see Example 1.1.18. Adding terms of order

zero yields two more examples which are of physical relevance:

For m > 0 the operator P = � + m2 is normally hyperbolic; it is called the Klein-Gordon

operator with mass m. The operator P = � + m2
+ ξscal for some constant ξ is normally

hyperbolic; it is called a covariant Klein-Gordon operator.
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Example 2.1.5. Let E be a vector bundle and let ∇ be a connection on E. This connection

together with the Levi-Civita connection on T∗M induces a connection on T∗M ⊗ E, again

denoted ∇. We define the connection-d’Alembert operator �∇ by the following commutative

diagram:

C∞(M, E)
∇ //

�
∇

��

C∞(M,T∗M ⊗ E)

∇
��

C∞(M, E) C∞(M,T∗M ⊗ T∗M ⊗ E)
−tr⊗idEoo

where tr : T∗M ⊗ T∗M → R denotes the metric trace, tr(ξ ⊗ η) = 〈ξ, η〉.
We compute the principal symbol

σ
�
∇ (ξ)s = σ0(−(tr ⊗ idE, ξ) ◦ σ1(∇, ξ) ◦ σ1(∇, ξ)(s)

= −(tr ⊗ idE )(ξ ⊗ ξ ⊗ s)

= −〈ξ, ξ〉 s.

Hence �∇ is normally hyperbolic.

Example 2.1.6. Let E = ΛkT∗M be the bundle of k-forms. Exterior differentiation d :

C∞(M,ΛkT∗M ) → C∞(M,Λk+1T∗M ) increases the degree by one while the codifferential

δ : C∞(M,ΛkT∗M ) → C∞(M,Λk−1T∗M ) decreases the degree by one, see [6, p. 34] for details.

While d is independent of the metric, the codifferential δ does depend on the Lorentzian metric.

The operator P = dδ + δd is normally hyperbolic.

The following lemma says that each normally hyperbolic operator is a connection-d’Alembert

operator up to a term of order zero.

Lemma 2.1.7. Let P :∈ Diff
2
(E, E) be a normally hyperbolic operator on a Lorentzian

manifold M . Then there exists a unique connection ∇ on E and a unique endomorphism field

B ∈ C∞(M,End(E, E)) such that

P = �∇ + B.

Proof. First we prove uniqueness of such a connection. Let ∇ be an arbitrary connection on E.

For any section s ∈ C∞(M, E) and any function f ∈ C∞(M ) we get

�
∇( f · s) = −(tr ⊗ idE ) (∇ (∇ ( f · s)))

= −(tr ⊗ idE ) (∇ (df ⊗ s + f · ∇s))

= −(tr ⊗ idE ) (∇df ⊗ s + 2df ⊗ ∇s + f · ∇∇s)

= (� f ) · s − 2∇grad f s + f · (�∇s). (2.1)
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Now suppose that∇ satisfies the condition in Lemma 2.1.7. Then B = P−�∇ is an endomorphism

field and we obtain

f ·
(

P(s) − �∇s
)

= P( f · s) − �∇( f · s).

By (2.1) this yields

∇grad f s = 1
2
{ f · P(s) − P( f · s) + (� f ) · s} . (2.2)

At a given point x ∈ M every tangent vector X ∈ Tx M can be written in the form X = grad x f

for some suitably chosen function f . Thus (2.2) shows that ∇ is determined by P and � (which

is determined by the Lorentzian metric). Since ∇ and hence �∇ is determined by P and the

Lorentzian metric, so is B.

To show existence one could use (2.2) to define a connection ∇ as in the statement. We follow an

alternative path. Let ∇′ be some connection on E. Since P and �∇
′
are both normally hyperbolic

operators acting on sections in E, the difference P − �∇′ is a differential operator of first order

and can therefore be written in the form

P − �∇′ = A′ ◦ ∇′ + B ′,

for some A′ ∈ C∞(M,Hom(T∗M ⊗ E, E)) and B ′ ∈ C∞(M,Hom(E, E)). Set for every vector

field X on M and section s in E

∇X s := ∇′X s − 1

2
A′(X♭ ⊗ s).

This defines a new connection ∇ on E.

Let e1, . . . , en be a local Lorentz orthonormal basis of T M , i.e. 〈ei, e j 〉 = εiδi j . We assume it

to be ∇-synchronous at a given point p ∈ M , i.e. we have ∇X e j |p = 0.

Then we compute at p

�
∇′s + A′ ◦ ∇′s =

n∑

j=1

ε j
{
− ∇′e j

∇′e j
s + A′(e♭j ⊗ ∇′e j

s)
}

=

n∑

j=1

ε j
{
− (∇e j

+

1

2
A′(e♭j ⊗ ·))(∇e j

s +
1

2
A′(e♭j ⊗ s))

+ A′(e♭j ⊗ ∇e j
s) +

1

2
A′(e♭j ⊗ A′(e♭j ⊗ s))

}

=

n∑

j=1

ε j
{
− ∇e j

∇e j
s − 1

2
∇e j

(A′(e♭j ⊗ s))

+

1

2
A′(e♭j ⊗ ∇e j

s) +
1

4
A′(e♭j ⊗ A′(e♭j ⊗ s))

}

= �
∇s +

1

4

n∑

j=1

ε j
{

A′(e♭j ⊗ A′(e♭j ⊗ s)) − 2(∇e j
A′)(e♭j ⊗ s)

}
︸                                                              ︷︷                                                              ︸

=:Qs

,
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where ∇ in ∇e j
A′ stands for the induced connection on Hom(T∗M ⊗ E, E).

We observe that Q(s) = �∇
′
s + A′ ◦ ∇′s − �∇s is of order zero. Hence

P = �∇
′
+ A′ ◦ ∇′ + B ′ = �∇s +Q(s) + B ′(s)

is the desired expression with B = Q + B ′. �

Definition 2.1.8. The connection in Lemma 2.1.7 will be called the P-compatible connection.

We shall henceforth always work with the P-compatible connection.

We restate (2.2) as a lemma.

Lemma 2.1.9. Let P = �∇ + B be normally hyperbolic. For f ∈ C∞(M ) and s ∈ C∞(M, E)

one gets

P( f · s) = f · P(s) − 2∇grad f s + � f · s.
�

2.2 Fundamental solutions

Our next aim is to construct fundamental solutions in small domains of a Lorentzian manifold.

Definition 2.2.1. Let M be a timeoriented Lorentzian manifold, let E → M be a vector bundle

and let P ∈Diff
2
(E, E) be normally hyperbolic. Let x ∈ M . A fundamental solution of P

at x is a distribution F ∈ D ′(M, E, E∗x ) such that

PF = δx .

A fundamental solution F at x is called


an advanced fundamental solution if supp(F (x)) ⊂ JΩ

+
(x)

a retarded fundamental solution if supp(F (x)) ⊂ JΩ− (x)

Example 2.2.2. Let M be the Minkowski space. Then R+(2) is an advanced fundamental

solution and R−(2) is a retarded fundamental solution of P = � at x = 0.

In the following we will construct local fundamental solutions for an arbitrary normally hyperbolic

operator. The construction consists of three steps.
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2.2.1 Formal fundamental solutions

First we write down a formal series in Riesz distributions with unknown coefficients. We then

find recursive relations for these Hadamard coefficients known as transport equations. The

transport equations are singular ordinary differential equations of first order along geodesics. We

will see that they can be solved uniquely without the need to specify initial values. There is no

reason why the formal solution constructed in this way should be convergent.

Let Ω be geodesically starshaped with respect to some fixed point x ∈ Ω so that the Riesz

distributions RΩ± (α, x) are defined. Let E → Ω be a real or complex vector bundle and let P be

a normally hyperbolic operator acting on C∞(Ω, E).

We make the following formal ansatz:

R±(x) :=

∞∑

k=0

V k
x RΩ± (2 + 2k, x)

where V k
x ∈ C∞(Ω, E ⊗ E∗x ) are smooth sections yet to be found.

For ϕ ∈ D(Ω, E∗) the function V k
x · ϕ is an E∗x -valued test function and we have (V k

x · RΩ± (2 +

2k, x))[ϕ] = RΩ± (2+2k, x)[V k
x ·ϕ] ∈ E∗x . Hence each summand V k

x ·RΩ± (2+2k, x) is a distribution

in D ′(Ω, E, E∗x ).

We want R±(x) to be a fundamental solution, i.e. we want

PR±(x) = δx .

Here the application of P to the formal series R±(x) is to be understood termwise. By Proposi-

tion 1.3.31.6 δx = RΩ± (0, x), so

PR±(x) =

∞∑

k=0

P(V k
x RΩ± (2 + 2k, x)) = RΩ± (0, x).

This leads us to conditions on the V k
x . Using Lemma 2.1.9 and properties (4) and (5) in

Proposition 1.3.31 we compute

RΩ± (0, x) =

∞∑

k=0

P(V k
x RΩ± (2 + 2k, x))

=

∞∑

k=0

{V k
x · �RΩ± (2 + 2k, x) − 2∇grad RΩ± (2+2k, x)V

k
x + PV k

x · RΩ± (2 + 2k, x)}

= V 0
x · �RΩ± (2, x) − 2∇grad RΩ± (2, x)V

0
x

+

∞∑

k=1

{
V k
x ·

( 1
2
�Γx−n

2k
+ 1

)

RΩ± (2k, x) − 2
4k
∇grad Γx RΩ± (2k, x)V

k
x

+PV k−1
x · RΩ± (2k, x)

}
= V 0

x · �RΩ± (2, x) − 2∇grad RΩ± (2, x)V
0
x (2.3)

+

∞∑

k=1

1
2k

{ (
1
2
�Γx − n + 2k

)

V k
x − ∇grad ΓxV k

x + 2k PV k−1
x

}
RΩ± (2k, x). (2.4)
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2 Linear wave equations - local theory

Comparing the coefficients of RΩ± (2k, x) we get the conditions

2∇grad RΩ± (2, x)V
0
x − �RΩ± (2, x) · V 0

x + RΩ± (0, x) = 0 for k = 0 and (2.5)

∇grad ΓxV k
x −

(
1
2
�Γx − n + 2k

)

V k
x = 2k PV k−1

x for k ≥ 1. (2.6)

We take a look at what condition (2.6) would mean for k = 0. We multiply this equation by

RΩ± (α, x) and get

∇grad Γx RΩ± (α, x)V
0
x −

(
1
2
�Γx − n

)

V 0
x · RΩ± (α, x) = 0.

By Proposition 1.3.36.4 and 5 we obtain

∇2αgrad RΩ± (α+2, x)V
0
x −

(

α�RΩ± (α + 2, x) − αRΩ± (α, x)
)

V 0
x = 0.

Division by α and the limit α → 0 yield

2∇grad RΩ± (2, x)V
0
x −

(

�RΩ± (2, x) − RΩ± (0, x)
)

V 0
x = 0.

Therefore we recover condition (2.5) if and only if V 0
x (x) = idEx

.

To get formal fundamental solutions R±(x) for P we hence need V k
x ∈ C∞(Ω, E ⊗ E∗x ) satisfying

∇grad ΓxV k
x −

(
1
2
�Γx − n + 2k

)

V k
x = 2k PV k−1

x (2.7)

for all k ≥ 0 with “initial condition” V 0
x (x) = idEx

. In particular, we have the same conditions

on V k
x for R+(x) and for R−(x). Equations (2.7) are known as transport equations.

Definition 2.2.3. Let Ω be timeoriented and geodesically starshaped with respect to x ∈ Ω.

Sections V k
x ∈ C∞(Ω, E ⊗ E∗x ) are called Hadamard coefficients for P at x if they satisfy the

transport equations (2.7) for all k ≥ 0 and V 0
x (x) = idEx

.

The transport equations (2.7) will allow us to solve for the Hadamard coefficients recursively.

First one solves for V 0
x where the right hand side in (2.7) vanishes. Then we proceed inductively,

given V k−1
x we solve for V k

x .

We observe that the transport equations are linear first order ordinary differential equations along

the integral curves of grad Γx . These integral curves are precisely the geodesics emanating from

x. Naively, one might now think that there is a unique solution for V k
x given some freely chosen

initial value at x. The problem is that the transport equations are singular at x because grad Γx
vanishes there. This is why the standard Picard-Lindelöf theorem does not apply. Therefore we

have to analyze the transport equations in more detail.

For y ∈ Ω we denote the ∇-parallel translation along the (unique) geodesic from x to y by

Π
x
y : Ex → Ey .

We have Π x
x = idEx

and (Π x
y )−1

= Π
y
x .
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2.2 Fundamental solutions

We define the map Φ : Ω × [0, 1] → Ω, Φ(y, s) :=

expx (s · exp−1
x (y)). Note that it is well defined and

smooth since Ω is geodesically starshaped with

respect to x.

b

b

b

b

Ω
′

Ω

M

Tx M

x y

0

s· exp−1
x (y)

expx

Proposition 2.2.4. Let Ω be timeoriented and geodesically starshaped with respect to x ∈ Ω.

Let P be a normally hyperbolic operator acting on C∞(Ω, E). Then there exist unique

Hadamard coefficients V k
x for P at x. They are given by

V 0
x (y) = µ−1/2

x (y)Π x
y (2.8)

and for k ≥ 1

V k
x (y) = −k µ−1/2

x (y) Πx
y

∫ 1

0

µ1/2
x (Φ(y, s))sk−1

Π
Φ(y,s)
x ((PV k−1

x )Φ(y, s)) ds. (2.9)

Proof. a) Uniqueness.

We put ρ :=
√
|Γx |. We then have Γx (y) =

−ερ2(y) where ε = −1 on IΩ± (x) and ε = +1

on Ω \
(

JΩ
+

(x) ∪ JΩ− (x)
)

. We will derive the for-

mulas for V k
x on Ω \

(

∂JΩ
+

(x) ∪ ∂JΩ− (x)
)

. This is

the region where ρ is smooth. By continuity, the

formulas will then hold on all of Ω.

b x

ΩIΩ
+

(x)

IΩ− (x)

∂JΩ
+

(x) ∪ ∂JΩ− (x)

Using the identities

1
2
�Γx − n = − 1

2
∂grad Γx log µx = −∂grad Γx log(µ1/2

x )

from Lemma 1.2.77.3 and

∂grad Γx (log ρk ) =
k

2
∂grad Γx log ρ2
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2 Linear wave equations - local theory

=

k

2
∂grad Γx log(−εΓx )

=

k

2

〈grad Γx, grad (−εΓx )〉
−εΓx

= −2k

from Lemma 1.2.77.1 we find that the transport equation (2.7) is equivalent to

∇grad Γx

(

µ1/2
x · ρk · V k

x

)

= µ1/2
x · ρk∇grad ΓxV k

x + µ
1/2
x · ρk∂grad Γx log(µ1/2

x · ρk )V k
x

= µ1/2
x · ρk

(

∇grad ΓxV k
x −

(
1
2
�Γx − n + 2k

)

V k
x

)

(2.7)
= µ1/2

x · ρk · 2k · PV k−1
x . (2.10)

Now we want to reparametrize the geodesics starting at x such that Γx is the velocity vector field.

Let y ∈ Ω and η ∈ TxΩ such that expx (η) = y. Set c(t) := expx (e2t · η) which yields a

reparametrization of the geodesic β with β(s) = expx (s · η).

By Lemma 1.2.77 (1)

〈ċ(t), ċ(t)〉 = 〈2e2t β̇(e2t ), 2e2t β̇(e2t )〉
= 4e4t 〈 β̇(e2t ), β̇(e2t )〉
= −4 Γx (c(t))

= 〈grad Γx, grad Γx〉.

But we know that grad Γx and ċ(t) are parallel and point in the opposite directions. Therefore

ċ(t) = −grad Γx .

For k = 0 we now see, that (2.10) says −∇ċ (t ) (µ
1/2
x V 0

x ) = 0. Hence µ
1/2
x V 0

x is ∇-parallel along c.

This is independent of the parametrization of c, hence
(

µ1/2
x V 0

x

)

(y) = Π
x
y

(

µ1/2
x V 0

x

)

(x)

= Π
x
y idEx

= Π
x
y .

This shows (2.8).

Next we determine V k
x for k ≥ 1. Let y ∈ Ω \

(

∂JΩ
+

(x) ∪ ∂JΩ− (x)
)

be a point not on the light

cone of x. Equation (2.10) says

− ∇
dt

(

µ1/2
x · ρk · V k

x

)

= µ1/2
x · ρk · 2k · PV k−1

x .

The relation between parallel transport and covariant derivative yields

− d

dt

(

Π
c (t )
x

(

µ1/2
x · ρk · V k

x

)

(c(t))
)

= Π
c (t )
x

(

µ1/2
x · ρk · 2k · PV k−1

x

)

(c(t))dt.

By the fundamental theorem of calculus and now have

− Πy
x

(

µ1/2
x · ρk · V k

x

)

(y) =

0∫

−∞

Π
c (t )
x

(

µ1/2
x · ρk · 2k · PV k−1

x

)

(c(t))dt. (2.11)
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2.2 Fundamental solutions

Note that the boundary term at t = −∞ vanishes because ρk (x) = 0. We compute

ρk (c(t)) = |Γx (c(t)) |k/2

= |γ(e2tη) |k/2

= |e4tγ(η) |k/2

= e2kt |γ(η) |k/2.

Since y <
(

∂JΩ
+

(x) ∪ ∂JΩ− (x)
)

we can divide (2.11) by |γ(η) |k/2 , 0 . This yields

−Πy
x

(

µ1/2
x · ek ·0 · V k

x

)

(y) = 2k

0∫

−∞

Π
c (t )
x

(

µ1/2
x · e2kt · PV k−1

x

)

(c(t))dt

= 2k

1∫

0

Π
Φ(y,s)
x

(

µ1/2
x · sk · PV k−1

x

)

(Φ(y, s))
1

2s
ds

= k

1∫

0

µ1/2
x (Φ(y, s)) · sk−1 · ΠΦ(y,s)

x PV k−1
x (Φ(y, s))ds

where we used the substitution s = e2t and the fact that the point c(t) on the geodesic connecting

x and y equals Φ(y, s). This yields (2.9).

b) Existence. To show existence we use formulas (2.8) and (2.9) as definitions. We observe that

this defines smooth sections V k
x ∈ C∞(Ω, E⊗E∗x ). For all k ≥ 0 we have to check Equation (2.10)

from which (2.7) follows as we have already seen. Doing the calculations as in a) in reverse order

shows this. �

We have found formal fundamental solutions R±(x) for P at fixed x ∈ Ω.

Now we let x vary. Let U ⊂ Ω be an open subset such that Ω is geodesically starshaped with

respect to every x ∈ U . This ensures that the Riesz distributions RΩ± (α, x) are defined for all

x ∈ U . We write Vk (x, y) := V k
x (y) for the Hadamard coefficients at x. Thus Vk (x, y) ∈

E∗x ⊗ Ey = Hom(Ex, Ey ). The explicit formulas (2.8) and (2.9) show that the Hadamard

coefficients Vk also depend smoothly on x, i. e.,

Vk ∈ C∞(U ×Ω, E∗ ⊠ E).

We have formal fundamental solutions for P at all x ∈ U:

R±(x) =

∞∑

k=0

Vk (x, ·) RΩ± (2 + 2k, x).

The formulas for the Hadamard coefficients become particularly simple along the diagonal, i. e.,

for x = y. We have for any normally hyperbolic operator P

V0(x, x) = µx (x)−1/2
Π

x
x = idEx

.

75



2 Linear wave equations - local theory

For k ≥ 1 we get

Vk (x, x) = −k µ−1/2
x (x)

︸    ︷︷    ︸
=1

·1 · Πx
x

︸︷︷︸

=id

∫ 1

0

sk−1
Π

x
x

︸︷︷︸

=id

(P(2)Vk−1)(x, x)µ−1/2
x (x)ds

= −(P(2)Vk−1)(x, x)

where P(2) denotes the action of P on the second variable of Vk−1. Note that this does not give us

a recursive formula to calculate Vk (x, x) from Vk−1(x, x). In order to do this, one needs to know

the Hadamard coefficients for x and y independently.

We compute V1(x, x) for P = �∇ + B. By (2.9) and Lemma 2.1.9 we have

V1(x, x) = −(P(2)V0)(x, x)

= −P(µ−1/2
x Π

x
• )(x)

= −µ−1/2
x (x) · P(Πx

• )(x) + 2∇grad µx (x)
︸       ︷︷       ︸

=0

Π
x
• (x) − (�µ−1/2

x )(x) · idEx

= −(�∇ + B)(Πx
• )(x) − (�µ−1/2

x )(x) · idEx

= −B |x − (�µ−1/2
x )(x) · idEx

.

From Corollary 1.2.75 we conclude

V1(x, x) =
scal(x)

6
idEx

−B |x .

2.2.2 Approximate fundamental solutions

We want to make the series convergent by introducing certain cut-off functions. Since there are

error terms produced by the cut-off functions the result is convergent but no longer solves the

wave equation. We call it an approximate fundamental solution.

Assume that Ω′ ⊂ M is a geodesically convex open subset. We then have the Hadamard

coefficients Vj ∈ C∞(Ω′ ×Ω′, E∗ ⊠ E) and for all x ∈ Ω′ the formal fundamental solutions

R±(x) =

∞∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x).

Fix an integer N ≥ n
2

where n is the dimension of the manifold M . Then for all j ≥ N

the distribution RΩ
′
± (2 + 2 j, x) is a continuous function on Ω′. Hence we can split the formal

fundamental solutions

R±(x) =

N−1∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x) +

∞∑

j=N

Vj (x, ·) RΩ
′
± (2 + 2 j, x)

where
∑N−1

j=0 Vj (x, ·) RΩ
′
± (2 + 2 j, x) is a well-defined E∗x -valued distribution in E over Ω′ and

∑∞
j=N Vj (x, ·) RΩ

′
± (2 + 2 j, x) is a formal sum of continuous sections, Vj (x, ·) RΩ

′
± (2 + 2 j, x) ∈

C0(Ω′, E∗x ⊗ E) for j ≥ N .
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2.2 Fundamental solutions

Using suitable cut-offs we will now replace the infinite formal part of the series by a convergent

series. We need the following elementary lemma.

Lemma 2.2.5. Let σ : R→ R be a smooth function vanishing outside [−1, 1], such that σ ≡ 1

on [− 1
2
, 1

2
] and 0 ≤ σ ≤ 1 everywhere. For every l ∈ N and every β ≥ l + 1 there exists a

constant c(l, β) such that for all 0 < ε ≤ 1 we have


dl

dtl
(σ(t/ε)tβ )

C0 (R)

≤ ε · c(l, β) · ‖σ‖C l (R) .

− 1
2

1
2−1 1

σ

Proof. The generalized Leibniz rule yields

 dl

dtl
(σ(t/ε)tβ )

C0 (R)

≤
l∑

m=0

(

l

m

) 
1

εm
σ(m) (t/ε) · β(β − 1) · · · (β − l + m + 1)tβ−l+m

C0 (R)

=

l∑

m=0

(

l

m

)

· β(β − 1) · · · (β − l + m + 1)εβ−l (t/ε)β−l+mσ(m) (t/ε)
C0 (R)

.

Now σ(m) (t/ε) vanishes for |t |/ε ≥ 1 and thus ‖(t/ε)β−m+lσ(m) (t/ε)‖C0 (R) ≤ ‖σ(m) ‖C0 (R) .

Moreover, β − l ≥ 1, hence εβ−l ≤ ε. Therefore


dl

dtl
(σ(t/ε)tβ )

C0 (R)

≤ ε
l∑

m=0

(

l

m

)

· β(β − 1) · · · (β − l + m + 1)
σ(m)C0 (R)

≤ ε c(l, β) ‖σ‖C l (R) . �

We define Γ ∈ C∞(Ω′ × Ω′,R) by Γ(x, y) := Γx (y). Note that Γ(x, y) = 0 if and only if the

geodesic joining x and y in Ω′ is lightlike.

We now shrink Ω′ slightly and replace it by a relatively compact open subset Ω ⊂⊂ Ω′. This

will ensure that the Hadamard coefficients are bounded on Ω.
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2 Linear wave equations - local theory

Lemma 2.2.6. LetΩ ⊂⊂ Ω′ be a relatively compact open subset. Then there exists a sequence

of ε j ∈ (0, 1], j ≥ N , such that for each k ≥ 0 the series

(x, y) 7→
∞∑

j=N+k

σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y)

=

{ ∑∞
j=N+k

C (2 + 2 j, n)σ(Γ(x, y)/ε j )Vj (x, y) Γ(x, y) j+1−n/2 if y ∈ JΩ
′
± (x)

0 otherwise

converges in Ck (Ω ×Ω, E∗ ⊠ E). In particular, the series

(x, y) 7→
∞∑

j=N

σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y)

defines a continuous section over Ω ×Ω and a smooth section over (Ω ×Ω) \ Γ−1(0).

Proof. For j ≥ N ≥ n
2

the exponent in Γ(x, y) j+1−n/2 is positive. Therefore the piecewise

definition of the j-th summand yields a continuous section over Ω′.
The factor σ(Γ(x, y)/ε j ) vanishes whenever Γ(x, y) ≥ ε j . Hence for j ≥ N ≥ n

2
and 0 < ε j ≤ 1

(x, y) 7→ σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y)

C0 (Ω×Ω)

≤ C (2 + 2 j, n) ‖Vj ‖C0 (Ω×Ω)
ε
j+1−n/2
j

≤ C (2 + 2 j, n) ‖Vj ‖C0 (Ω×Ω)
ε j .

Hence if we choose ε j ∈ (0, 1] such that

C (2 + 2 j, n) ‖Vj ‖C0 (Ω×Ω)
ε j < 2− j,

then the series converges absolutely in the C0-norm and therefore defines a continuous section.

For k ≥ 0 and j ≥ N + k ≥ n
2
+ k the function Γ j+1− n

2 vanishes to (k + 1)-st order along Γ−1(0).

Thus the j-th summand in the series is of regularity Ck . Writing σ j (t) := σ(t/ε j )t
j+1−n/2 we

know from Lemma 2.2.5 that

‖σ j ‖Ck (R) ≤ ε j · c1(k, j, n) · ‖σ‖Ck (R)

where here and henceforth c1, c2, . . . denote certain universal positive constants whose precise

values are of no importance.
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2.2 Fundamental solutions

Using Lemmas 1.3.23 and 1.3.24 we obtain

(x, y) 7→ σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y)

Ck (Ω×Ω)

≤ C (2 + 2 j, n)‖(σ j ◦ Γ) · Vj ‖Ck (Ω×Ω)

≤ c2(k, j, n) · ‖σ j ◦ Γ‖Ck (Ω×Ω)
· ‖Vj ‖Ck (Ω×Ω)

≤ c3(k, j, n) · ‖σ j ‖Ck (R) · max
ℓ=0, ...,k

‖Γ‖ℓ
Ck (Ω×Ω)

· ‖Vj ‖Ck (Ω×Ω)

≤ c4(k, j, n) · ε j · ‖σ‖Ck (R) · max
ℓ=0, ...,k

‖Γ‖ℓ
Ck (Ω×Ω)

· ‖Vj ‖Ck (Ω×Ω)
.

Hence if we add the (finitely many) conditions on ε j that

c4(k, j, n) · ε j · ‖Vj ‖Ck (Ω×Ω)
≤ 2− j

for all k ≤ j − N , then we have for fixed k

(x, y) 7→ σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y)

Ck (Ω×Ω)

≤ 2− j · ‖σ‖Ck (R) · max
ℓ=0, ...,k

‖Γ‖ℓ
Ck (Ω×Ω)

for all j ≥ N + k. Thus the series

(x, y) 7→
∞∑

j=N+k

σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y)

converges absolutely in Ck (Ω × Ω, E∗ ⊠ E). All summands σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 +

2 j, x)(y) are smooth on Ω ×Ω \ Γ−1(0), thus

(x, y) 7→
∞∑

j=N

σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y)

=

N+k−1∑

j=N

σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y)

+

∞∑

j=N+k

σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y)

is Ck for all k, hence smooth on (Ω ×Ω) \ Γ−1(0). �

Define distributions R̃+(x) and R̃−(x) by

R̃±(x) :=

N−1∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x) +

∞∑

j=N

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x).

The factor σ(Γ(x, ·)/ε j ) in the infinite part does not vanish for Γ(x, ·) < ε j . So the support of

each summand in this series is given by points y close to the light cone.
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time direction

b
x

supp(σ(
Γ(x, ·)
ε j

))

By Lemma 2.2.6 and the properties of Riesz distributions we know that

supp(R̃±(x)) ⊂ JΩ
′
± (x) and (2.12)

sing supp(R̃±(x)) ⊂ ∂JΩ
′
± (x). (2.13)

Moreover, ord(R̃±(x)) ≤ n + 1 because the infinite part of the series is continuous and hence of

order 0 and for the finite part we have that in every summand α is positive.

Lemma 2.2.7. The ε j in Lemma 2.2.6 can be chosen such that in addition to the assertion in

Lemma 2.2.6 we have on Ω

P(2)R̃±(x) = δx + K±(x, ·) (2.14)

with smooth K± ∈ C∞(Ω ×Ω, E∗ ⊠ E).

Proof. We apply P to the finite sum and the infinite sum separately. From properties (2.5) and

(2.6) of the Hadamard coefficients we know

P(2)
*.,
N−1∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x)

+/- = δx + (P(2)VN−1(x, ·))RΩ
′
± (2N, x). (2.15)

Moreover, by Lemma 1.3.22, we may interchange P with the infinite sum and we get

P(2)
*.,
∞∑

j=N

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x)

+/-
=

∞∑

j=N

P(2)

(

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x)

)

=

∞∑

j=N

(

�(2) (σ(Γ(x, ·)/ε j ))Vj (x, ·)RΩ
′
± (2 + 2 j, x) − 2∇(2)

grad (2)σ (Γ(x, ·)/ε j )
(Vj (x, ·)RΩ

′
± (2 + 2 j, x))
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+σ(Γ(x, ·)/ε j )P(2) (Vj (x, ·)RΩ
′
± (2 + 2 j, x))

)

Here and in the following �(2) , grad (2) , and ∇(2) indicate that the operators are applied with

respect to the y-variable just as for P(2) . Abbreviating

Σ1 :=

∞∑

j=N

�(2) (σ(Γ(x, ·)/ε j ))Vj (x, ·)RΩ
′
± (2 + 2 j, x) and

Σ2 := −2

∞∑

j=N

∇(2)

grad (2)σ (Γ(x, ·)/ε j )
(Vj (x, ·)RΩ

′
± (2 + 2 j, x))

we have

P(2)
*.,
∞∑

j=N

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x)

+/-
= Σ1 + Σ2 +

∞∑

j=N

σ(Γ(x, ·)/ε j )P(2) (Vj (x, ·)RΩ
′
± (2 + 2 j, x))

= Σ1 + Σ2 +

∞∑

j=N

σ(Γ(x, ·)/ε j )
(

(P(2)Vj (x, ·))RΩ
′
± (2 + 2 j, x) − 2∇(2)

grad (2)R
Ω′
± (2+2 j, x)

Vj (x, ·)

+Vj (x, ·)�(2) RΩ
′
± (2 + 2 j, x)

)

.

Properties (2.5) and (2.6) of the Hadamard coefficients tell us

Vj (x, ·)�(2) RΩ
′
± (2 + 2 j, x) − 2∇(2)

grad (2)R
Ω′
± (2+2 j, x)

Vj (x, ·) = −P(2) (Vj−1(x, ·)RΩ
′
± (2 + 2 j, x))

and hence

P(2)
*.,
∞∑

j=N

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x)

+/-
= Σ1 + Σ2 +

∞∑

j=N

σ(Γ(x, ·)/ε j )
(

(P(2)Vj (x, ·))RΩ
′
± (2 + 2 j, x) − P(2)Vj−1RΩ

′
± (2 j, x)

)

= Σ1 + Σ2 − σ(Γ(x, ·)/εN )P(2)VN−1RΩ
′
± (2N, x)

+

∞∑

j=N

(

σ(Γ(x, ·)/ε j ) − σ(Γ(x, ·)/ε j+1)
)

(P(2)Vj (x, ·))RΩ
′
± (2 + 2 j, x).

Putting Σ3 :=
∑∞

j=N

(

σ(Γ(x, ·)/ε j ) − σ(Γ(x, ·)/ε j+1)
)

(P(2)Vj (x, ·))RΩ
′
± (2 + 2 j, x) and combin-

ing with (2.15) yields

P(2)R̃±(x) − δx = (1 − σ(Γ(x, ·)/εN−1))P(2)VN−1(x, ·)RΩ
′
± (2N, x) + Σ1 + Σ2 + Σ3

=: K±(x, ·) . (2.16)
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It remains to show that K+ and K− are smooth. Since

P(2)VN−1(x, y)RΩ
′
± (2N, x)(y) =

{

C (2N, n) P(2)VN−1(x, y) Γ(x, y)N−n/2, if y ∈ JΩ
′
± (x)

0, otherwise

is smooth on (Ω′ × Ω′) \ Γ−1(0) and since 1 − σ(Γ(x, ·)/ε j ) vanishes on a neighborhood of

Γ
−1(0) we have that

(x, y) 7→ (1 − σ(Γ(x, y)/ε j )) · P(2)VN−1(x, y)RΩ
′
± (2N, x)(y)

is smooth. Similarly, the individual terms in the three infinite sums are smooth sections because

σ(Γ/ε j )−σ(Γ/ε j+1), grad (2) (σ ◦ Γε j
), and �(2) (σ ◦ Γε j

) all vanish on a neighborhood of Γ−1(0).

It remains to be shown that the three series in (2.16) converge in all Ck-norms.

We start with Σ2. Let Sj := {(x, y) ∈ Ω′ ×Ω′ | ε j

2
≤ |Γ(x, y) | ≤ ε j }.

time direction

JΩ
′
+

(x)

JΩ
′
− (x)

b
x

Sj

Section of Sj for fixed x

Since grad (2) (σ ◦ Γε j
) vanishes outside the “strips” Sj , there exist constants c1(k, n), c2(k, n) and

c3(k, n, j) such that

∇
(2)

grad (2) (σ◦ Γε j
)

(

Vj (·, ·) RΩ
′
± (2 + 2 j, ·)

)
Ck (Ω×Ω)

=

∇
(2)

grad (2) (σ◦ Γε j
)

(

Vj (·, ·) RΩ
′
± (2 + 2 j, ·)

)
Ck (Ω×Ω∩S j )

≤ c1(k, n) · σ ◦ Γε j

Ck+1 (Ω×Ω∩S j )
· Vj (·, ·) RΩ

′
± (2 + 2 j, ·)Ck+1 (Ω×Ω∩S j )

≤ c2(k, n) · ‖σ‖Ck+1 (R) · max
ℓ=0, ...,k+1

‖ Γε j
‖ℓ
Ck+1 (Ω×Ω∩S j )

·‖Vj ‖Ck+1 (Ω×Ω∩S j )
· ‖RΩ′± (2 + 2 j, ·)‖

Ck+1(Ω×Ω∩S j )
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≤ c2(k, n) · 1

εk+1
j

· ‖σ‖Ck+1 (R) · max
ℓ=0, ...,k+1

‖Γ‖ℓ
Ck+1(Ω×Ω)

·‖Vj ‖Ck+1 (Ω×Ω)
· ‖RΩ′± (2 + 2 j, ·)‖

Ck+1(Ω×Ω∩S j )

≤ c3(k, n, j) · 1

εk+1
j

· ‖σ‖Ck+1 (R) · max
ℓ=0, ...,k+1

‖Γ‖ℓ
Ck+1(Ω×Ω)

·‖Vj ‖Ck+1 (Ω×Ω)
· ‖Γ1+ j−n/2‖

Ck+1 (Ω×Ω∩S j )
.

By Lemma 1.3.24 we have

‖Γ1+ j−n/2‖
Ck+1 (Ω×Ω∩S j )

≤ c4(k) · ‖t 7→ t1+ j−n/2‖Ck+1 ([ε j /2,ε j ])
· max
ℓ=0, ...,k+1

‖Γ‖ℓ
Ck+1(Ω×Ω∩S j )

≤ c5(k, j, n) · ε j−n/2−k
j

· max
ℓ=0, ...,k+1

‖Γ‖ℓ
Ck+1(Ω×Ω∩S j )

.

Thus

∇
(2)

grad (2) (σ◦ Γε j
)

(

Vj (·, ·) RΩ
′
± (2 + 2 j, ·)

)
Ck (Ω×Ω)

≤ c6(k, j, n) · ‖σ‖Ck+1 (R) ·
(

max
ℓ=0, ...,k+1

‖Γ‖ℓ
Ck+1(Ω×Ω)

)2

· ‖Vj ‖Ck+1 (Ω×Ω)
· ε j−2k−n/2−1

j

≤ c6(k, j, n) · ‖σ‖Ck+1 (R) · max
ℓ=0, ...,k+1

‖Γ‖2ℓ
Ck+1(Ω×Ω)

· ‖Vj ‖Ck+1 (Ω×Ω)
· ε j

if j ≥ 2k + n/2 + 2. Hence if we require the (finitely many) conditions

c6(k, j, n) · ‖Vj ‖Ck+1 (Ω×Ω)
· ε j ≤ 2− j

on ε j for all k ≤ j/2 − n/4 − 1, then almost all j-th terms of the series Σ2 are bounded in the

Ck-norm by 2− j · ‖σ‖Ck+1 (R) · maxℓ=0, ...,k+1 ‖Γ‖2ℓ
Ck+1(Ω×Ω)

. Thus Σ2 converges in the Ck -norm

for any k and defines a smooth section in E∗ ⊠ E over Ω ×Ω.

The series Σ1 is treated similarly. To examine Σ3 we observe that for j ≥ k + n
2


(

(σ ◦ Γε j
) − (σ ◦ Γ

ε j+1
)

)

· (P(2)Vj ) · RΩ
′
± (2 + 2 j, ·)

Ck (Ω×Ω)

≤ c7( j, n) · 
(

(σ ◦ Γε j
) − (σ ◦ Γ

ε j+1
)

)

· (P(2)Vj ) · Γ1+ j−n/2Ck (Ω×Ω)

≤ c8(k, j, n) · 
(

(σ ◦ Γε j
) − (σ ◦ Γ

ε j+1
)

)

· Γk+1Ck (Ω×Ω)

· P(2)Vj
Ck (Ω×Ω)

· Γ j−k−n/2Ck (Ω×Ω)

≤ c8(k, j, n) ·
((σ ◦ Γε j

) · Γk+1Ck (Ω×Ω)
+

(σ ◦ Γ

ε j+1
) · Γk+1Ck (Ω×Ω)

)

· P(2)Vj
Ck (Ω×Ω)

· Γ j−k−n/2Ck (Ω×Ω)
. (2.17)

83



2 Linear wave equations - local theory

Putting σ j (t) := σ(t/ε j ) · tk+1 we have (σ ◦ Γε j
) · Γk+1

= σ j ◦ Γ. Hence by Lemmas 1.3.24 and

2.2.5 (σ ◦ Γε j
) · Γk+1Ck (Ω×Ω)

=
σ j ◦ ΓCk (Ω×Ω)

≤ c9(k, n) · σ j
Ck (R)

· max
ℓ=0, ...,k

‖Γ‖ℓ
Ck (Ω×Ω)

≤ c10(k, n) · ε j · ‖σ‖Ck (R) · max
ℓ=0, ...,k

‖Γ‖ℓ
Ck (Ω×Ω)

.

Plugging this into (2.17) yields


(

(σ ◦ Γε j
) − (σ ◦ Γ

ε j+1
)

)

· (P(2)Vj ) · RΩ
′
± (2 + 2 j, ·)

Ck (Ω×Ω)

≤ c11(k, j, n) · (ε j + ε j+1) · ‖σ‖Ck (R) · max
ℓ=0, ...,k

‖Γ‖ℓ
Ck (Ω×Ω)

· P(2)Vj
Ck (Ω×Ω)

· Γ j−k−n/2Ck (Ω×Ω)
.

Hence if we add the conditions on ε j that

c11(k, j, n) · ε j · P(2)Vj
Ck (Ω×Ω)

· Γ j−k−n/2Ck (Ω×Ω)
≤ 2− j−1

for all k ≤ j − n
2

and

c11(k, j − 1, n) · ε j · P(2)Vj−1
Ck (Ω×Ω)

· Γ j−1−k−n/2Ck (Ω×Ω)
≤ 2− j−2

for all k ≤ j − 1 − n
2
, then we have that almost all j-th terms in Σ3 are bounded in the Ck -norm

by 2− j · ‖σ‖Ck (R) · maxℓ=0, ...,k ‖Γ‖ℓ
Ck (Ω×Ω)

. Thus Σ3 defines a smooth section as well. �

Lemma 2.2.8. The ε j in Lemmas 2.2.6 and 2.2.7 can be chosen such that in addition there is

a constant C > 0 so that

|R̃±(x)[ϕ]| ≤ C · ‖ϕ‖Cn+1(Ω)

for all x ∈ Ω and all ϕ ∈ D(Ω, E∗). In particular, R̃ (x) is of order at most n + 1. Moreover,

for every fixed ϕ ∈ D(Ω, E∗), the map x 7→ R̃±(x)[ϕ] is a smooth section in E∗,

R̃±(·)[ϕ] ∈ C∞(Ω, E∗).

We know already that for each x ∈ Ω the distribution R̃ (x) is of order at most n + 1. The point

of the lemma is that the constant C in the estimate |R̃±(x)[ϕ]| ≤ C · ‖ϕ‖Cn+1(Ω) can be chosen

independently of x.

Proof. Recall the definition of R̃±(x),

R̃±(x) =

N−1∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x) +

∞∑

j=N

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x).
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By Proposition 1.3.36 (10) there are constants Cj > 0 such that |RΩ′± (2 + 2 j, x)[ϕ]| ≤ Cj ·
‖ϕ‖Cn+1(Ω) for all ϕ and all x ∈ Ω. Thus there is a constant C ′ > 0 such that

�������
N−1∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x)[ϕ]

������� ≤ C ′ · ‖ϕ‖Cn+1(Ω)

for all ϕ and all x ∈ Ω. The remainder term
∑∞

j=N σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y) =:

f (x, y) is a continuous section, hence

�������
∞∑

j=N

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x)[ϕ]

������� ≤ ‖ f ‖
C0 (Ω×Ω)

· vol(Ω) · ‖ϕ‖C0 (Ω)

≤ ‖ f ‖
C0 (Ω×Ω)

· vol(Ω) · ‖ϕ‖Cn+1(Ω)

for all ϕ and all x ∈ Ω. Therefore C := C ′ + ‖ f ‖
C0 (Ω×Ω)

· vol(Ω) does the job.

To see smoothness in x we fix k ≥ 0 and we write

R̃±(x)[ϕ] =

N−1∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x)[ϕ] +

N+k−1∑

j=N

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x)[ϕ]

+

∞∑

j=N+k

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x)[ϕ].

By Proposition 1.3.36 (11) the summands Vj (x, ·) RΩ
′
± (2 + 2 j, x)[ϕ] and

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x)[ϕ] depend smoothly on x. By Lemma 2.2.6 the re-

mainder
∑∞

j=N+k
σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ

′
± (2 + 2 j, x)[ϕ] is Ck . Thus x 7→ R̃±(x)[ϕ] is Ck for

every k, hence smooth. �

Definition 2.2.9. If M is a timeoriented Lorentzian manifold, then we call a subset S ⊂ M×M

future-stretched with respect to M if y ∈ JM
+

(x) whenever (x, y) ∈ S. Analogously, we define

past-stretched subsets.

We summarize the results obtained so far.

Proposition 2.2.10. Let M be an n-dimensional timeoriented Lorentzian manifold and let P

be a normally hyperbolic operator acting on sections in a vector bundle E over M . LetΩ′ ⊂ M

be a convex open subset. Fix an integer N ≥ n
2

and fix a smooth function σ : R→ R satisfying

σ ≡ 1 outside [−1, 1], σ ≡ 0 on [− 1
2
, 1

2
], and 0 ≤ σ ≤ 1 everywhere.

Then for every relatively compact open subset Ω ⊂⊂ Ω′ there exists a sequence ε j > 0, j ≥ N ,
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2 Linear wave equations - local theory

such that for every x ∈ Ω

R̃±(x) =

N−1∑

j=0

Vj (x, ·) RΩ± (2 + 2 j, x) +

∞∑

j=N

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ± (2 + 2 j, x)

defines a distribution on Ω satisfying

1. supp(R̃±(x)) ⊂ JΩ± (x),

2. sing supp(R̃±(x)) ⊂ CΩ± (x),

3. P(2)R̃±(x) = δx + K±(x, ·) with smooth K± ∈ C∞(Ω ×Ω, E∗ ⊠ E),

4. supp(K+) is future-stretched and supp(K−) is past-stretched with respect to Ω′,

5. R̃±(x)[ϕ] depends smoothly on x for every fixed ϕ ∈ D(Ω, E∗),

6. there is a constant C > 0 such that |R̃±(x)[ϕ]| ≤ C · ‖ϕ‖Cn+1(Ω) for all x ∈ Ω and all

ϕ ∈ D(Ω, E∗).

Proof. The only thing that remains to be shown is the statement (4). Recall from (2.16) that in

the notation of the proof of Lemma 2.2.7

K± (x, y) = (1 − σ(Γ(x, y)/εN−1)) · P(2)VN−1(x, y) · RΩ′± (2N, x)(y) + Σ1 + Σ2 + Σ3.

The first term as well as all summands in the three infinite series Σ1, Σ2, and Σ3 contain a

factor RΩ
′
± (2 j, x)(y) for some j ≥ N . Hence if K+(x, y) , 0, then y ∈ supp(RΩ± (2 j, x)) ⊂

JΩ
+

(x). In other words, {(x, y) ∈ Ω × Ω | K+(x, y) , 0} is future-stretched with respect

to Ω′. Since Ω′ is geodesically convex causal futures are closed. Hence supp(K+) =

{(x, y) ∈ Ω ×Ω | K+ (x, y) , 0} is future-stretched with respect to Ω′ as well. In the same way

one sees that supp(K−) is past-stretched. �

Definition 2.2.11. If the ε j are chosen as in Proposition 2.2.10, then we call

R̃±(x) =

N−1∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x) +

∞∑

j=N

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x)

an approximate advanced or retarded fundamental solution, respectively.

2.2.3 True fundamental solutions

Thirdly, we turn the approximate fundamental solution into a true one using certain integral

operators.
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We fix approximate fundamental solutions R̃±(x), i.e. we fix a sequence {ε j } j=N,N+1, ... . For any

smaller open subset Ω1 ⊂ Ω these same ε j will still yield approximate fundamental solutions.

We use the corresponding K± as an integral kernel to define an integral operator. Set for

u ∈ C0(Ω, E∗) and x ∈ Ω

(K±u)(x) :=

∫

Ω

K± (x, y)u(y) dV(y). (2.18)

Since K± is C∞ so is K±u, i. e., K±u ∈ C∞(Ω, E∗).

Lemma 2.2.12. Let Ω ⊂⊂ Ω′ be so small that

vol(Ω) · ‖K±‖C0 (Ω×Ω)
< 1. (2.19)

Then the following holds:

(a) The map

id+K± : Ck (Ω, E∗) → Ck (Ω, E∗)

is an isomorphism with bounded inverse for all k = 0, 1, 2, . . . and the inverse is given by

the series

(id+K±)−1
=

∞∑

j=0

(−K±) j

which converges in all Ck-operator norms.

(b) The operator (id+K+)−1 ◦ K+ has a smooth integral kernel with future-stretched support

(with respect to Ω). The operator (id+K−)−1 ◦ K− has a smooth integral kernel with

past-stretched support (with respect to Ω).

Proof. (a) The operator K± is bounded as an operator C0(Ω, E∗) → Ck (Ω, E∗). Thus id+K±
defines a bounded operator Ck (Ω, E∗) → Ck (Ω, E∗) for all k. Now

‖K±u‖
C0 (Ω)

≤ vol(Ω) · ‖K±‖C0 (Ω×Ω)
· ‖u‖

C0 (Ω)

= (1 − η) · ‖u‖
C0 (Ω)

where η := 1 − vol(Ω) · ‖K±‖C0 (Ω×Ω)
> 0. Hence the C0-operator norm of K± is less than 1 so

that the Neumann series
∑∞

j=0(−K±) j converges in the C0-operator norm and gives the inverse

of id+K± on C0(Ω, E∗).
Next we replace the Ck -norm ‖ · ‖

Ck (Ω)
on Ck (Ω, E∗) as defined in (1.3.2) by the equivalent

norm

9u9
Ck (Ω)

:= ‖u‖
C0 (Ω)

+

η

2vol(Ω)‖K±‖Ck (Ω×Ω)
+ 1
‖u‖

Ck (Ω)
.
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2 Linear wave equations - local theory

Then

9K±u9
Ck (Ω)

= ‖K±u‖
C0 (Ω)

+

η

2vol(Ω)‖K±‖Ck (Ω×Ω)
+ 1
‖K±u‖

Ck (Ω)

≤ (1 − η) · ‖u‖
C0 (Ω)

+

η

2vol(Ω)‖K±‖Ck (Ω×Ω)
+ 1

vol(Ω)‖K±‖Ck (Ω×Ω)
‖u‖

C0 (Ω)

≤ (1 − η
2

)‖u‖
C0 (Ω)

≤ (1 − η
2

) 9 u 9
Ck (Ω)

.

This shows that with respect to 9 · 9
Ck (Ω)

the Ck -operator norm of K± is less than 1. Thus the

Neumann series
∑∞

j=0(−K±) j converges in all Ck -operator norms and id+K± is an isomorphism

with bounded inverse on all Ck (Ω, E∗).

(b) The operator (id+K+)−1 ◦K+ = −
∞∑

j=1
(−K+) j has integral kernel

∞∑

j=1
(−1) j K

( j)
+

(x, y), where

K
( j)
± (x, y) :=

∫

Ω

· · ·
∫

Ω

K±(x, z1)K±(z1, z2) · · ·K± (z j−1, y) dV(z1) · · · dV(z j−1).

By Proposition 2.2.10.4 the integral can be non-vanishing only if z1 ∈ J±(x), z2 ∈ J±(z1), . . . , y ∈
J±(z j−1) and hence y ∈ J±(x). Thus supp(K

( j)
± ) ⊂

{
(x, y) ∈ Ω ×Ω | y ∈ JΩ± (x)

}
and

‖K ( j)
± ‖Ck (Ω×Ω)

≤ ‖K±‖2
Ck (Ω×Ω)

· vol(Ω) j−1 · ‖K±‖ j−2

C0 (Ω×Ω)

≤ (1 − η) j−2 · vol(Ω) · ‖K±‖2
Ck (Ω×Ω)

.

Hence the series ∞∑

j=1

(−1) j−1K
( j)
±

converges absolutely in all Ck (Ω × Ω, E∗ ⊠ E). Since this series yields the integral kernel of

(id+K±)−1 ◦ K± it is smooth and its support is contained in
{
(x, y) ∈ Ω ×Ω | y ∈ JΩ± (x)

}
. �

Corollary 2.2.13. Let Ω ⊂⊂ Ω′ be as in Lemma 2.2.12. Then for each u ∈ C0(Ω, E)

supp((id+K±)−1u) ⊂ JΩ∓ (supp(u)).

Proof. From u = (id+K±)u − K±u it follows that

(id+K±)−1u = u − (id+K±)−1K±u.
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2.2 Fundamental solutions

So (id+K±)−1u(x) , 0 implies u(x) , 0 or (id+K±)−1K±u(x) , 0. Let S± be the inte-

gral kernel of (id+K±)−1K±, which has future-stretched resp. past streched support. Then

(id+K±)−1K±u(x) =
∫

S±(x, y)u(y)dy. The integrand vanishes at y unless y ∈ supp(u) and

y ∈ J±(x). Since the integral is non-zero we have supp(u)∩J± (x) , ∅. Hence x ∈ J∓(supp(u)).�

The integral operator K± now allows to construct true fundamental solutions. Fix ϕ ∈ D(Ω, E∗).
Then x 7→ R̃±(x)[ϕ] defines a smooth section in E∗ over Ω. Hence

FΩ± (·)[ϕ] := (id+K±)−1(R̃±(·)[ϕ]) (2.20)

defines a smooth section in E∗.

Lemma 2.2.14. For each x ∈ Ω the map D(Ω, E∗) 7→ E∗x , ϕ 7→ FΩ
+

(x)[ϕ], is an advanced

fundamental solution at x on Ω and ϕ 7→ FΩ− (x)[ϕ] is a retarded fundamental solution at x on

Ω.

Proof. We first check that ϕ 7→ FΩ± (x)[ϕ] defines a distribution for any fixed x ∈ Ω. Let

ϕm → ϕ in D(Ω, E∗). Then ϕm → ϕ in Cn+1(Ω, E∗) and by the last point of Proposition 2.2.10

R̃±(·)[ϕm]→ R̃±(·)[ϕ] in C0(Ω, E∗). Since (id+K±)−1 is bounded on C0 we have FΩ± (·)[ϕm]→
FΩ± (·)[ϕ] in C0. In particular, FΩ± (x)[ϕm]→ FΩ± (x)[ϕ].

Next we check that FΩ± (x) are fundamental solutions. We compute

P(2) F
Ω

± (·)[ϕ] = FΩ± (·)[P∗ϕ]

= (id+K±)−1(R̃±(·)[P∗ϕ])

= (id+K±)−1(P(2)R̃±(·)[ϕ])

(2.14)
= (id+K±)−1(ϕ +K±ϕ)

= ϕ.

Thus for fixed x ∈ Ω,

PFΩ± (x)[ϕ] = ϕ(x) = δx [ϕ].

Finally, we want to show that supp(FΩ± (x)) ⊂ JΩ± (x).

We have

supp
(

FΩ± (·)[ϕ]
)

= supp
(

(id+K±)−1(R̃±(·)[ϕ])
)

⊂ JΩ∓
(

supp
(

R̃±(·)[ϕ]
))

⊂ JΩ∓
(
J∓(supp(ϕ)

)

= JΩ∓ (supp(ϕ)).

So for any ϕ ∈ D(Ω, E∗) such that supp(ϕ) ∩ JΩ± (x) = ∅ we find that FΩ± [ϕ] = 0. �

89



2 Linear wave equations - local theory

We summarize the results.

Proposition 2.2.15. Let M be a timeoriented Lorentzian manifold. Let P be a normally

hyperbolic operator acting on sections in a vector bundle E over M . Let Ω ⊂⊂ M be a

relatively compact causal domain. Suppose that Ω is sufficiently small in the sense that (2.19)

holds.

Then for each x ∈ Ω

1. the distributions FΩ
+

(x) and FΩ− (x) defined in (2.20) are fundamental solutions for P at x

over Ω,

2. supp(FΩ± (x)) ⊂ JΩ± (x),

3. for each ϕ ∈ D(Ω, E∗) the maps x′ 7→ FΩ± (x′)[ϕ] are smooth sections in E∗ over Ω. �

Corollary 2.2.16. Let M be a timeoriented Lorentzian manifold. Let P be a normally hyper-

bolic operator acting on sections in a vector bundle E over M .

Then each point in M possesses an arbitrarily small causal neighborhood Ω such that for each

x ∈ Ω there exist fundamental solutions FΩ± (x) for P over Ω at x. They satisfy

1. supp(FΩ± (x)) ⊂ JΩ± (x),

2. for each ϕ ∈ D(Ω, E∗) the maps x 7→ FΩ± (x)[ϕ] are smooth sections in E∗. �

2.2.4 The formal fundamental solution is asymptotic

Finally, we show that the formal fundamental solution constructed in Section 2.2.1 is asymptotic

to the true fundamental solution. This implies that the singularity structure of the fundamental

solution is completely determined by the Hadamard coefficients which are in turn determined by

the geometry of the manifold and the coefficients of the operator.

Let M be a timeoriented Lorentzian manifold. Let P be a normally hyperbolic operator acting

on sections in a vector bundle E over M . Let Ω′ ⊂ M be a convex domain and let Ω ⊂ Ω′ be a

relatively compact causal domain withΩ ⊂ Ω′. We assume thatΩ is so small that Corollary 2.2.16

applies. Using Riesz distributions and Hadamard coefficients we have constructed the formal

fundamental solutions at x ∈ Ω

R±(x) =

∞∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x),
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2.2 Fundamental solutions

the approximate fundamental solutions

R̃±(x) =

N−1∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x) +

∞∑

j=N

σ(Γ(x, ·)/ε j )Vj (x, ·) RΩ
′
± (2 + 2 j, x),

where N ≥ n
2

is fixed, and the true fundamental solutions FΩ± (x),

FΩ± (·)[ϕ] = (id+K±)−1(R̃±(·)[ϕ]).

The purpose of this section is to show that, in a suitable sense, the formal fundamental solution

is an asymptotic expansion of the true fundamental solution. For k ≥ 0 we define the truncated

formal fundamental solution

RN+k
± (x) :=

N−1+k∑

j=0

Vj (x, ·) RΩ
′
± (2 + 2 j, x).

Hence we cut the formal fundamental solution at the (N + k)-th term. The truncated formal

fundamental solution is a well-defined distribution on Ω′, RN+k
± (x) ∈ D ′(Ω′, E, E∗x ). We will

show that the true fundamental solution coincides with the truncated formal fundamental solution

up to an error term which is very regular along the light cone. The larger k is, the more regular

is the error term.

Proposition 2.2.17. For every k ∈ N and every x ∈ Ω the difference of distributions FΩ± (x) −
RN+k
± (x) is a Ck -section in E. In fact,

(x, y) 7→
(

FΩ± (x) − RN+k
± (x)

)

(y)

is of regularity Ck on Ω ×Ω.

Proof. We write

(

FΩ± (x) − RN+k
± (x)

)

(y) =
(

FΩ± (x) − R̃±(x)
)

(y) +
(

R̃±(x) − RN+k
± (x)

)

(y)

and we show that
(

R̃±(x) − RN+k
± (x)

)

(y) and
(

FΩ± (x) − R̃±(x)
)

(y) are both Ck in (x, y). Now

(

R̃±(x) − RN+k
± (x)

)

(y) =

N+k−1∑

j=N

(

σ(Γ(x, y)/ε j ) − 1
)

Vj (x, y) RΩ
′
± (2 + 2 j, x)(y)

+

∞∑

j=N+k

σ(Γ(x, y)/ε j )Vj (x, y) RΩ
′
± (2 + 2 j, x)(y).

From Lemma 2.2.6 we know that the infinite part (x, y) 7→
∑∞

j=N+k
σ(Γ(x, y)/ε j )Vj (x, y) RΩ

′
± (2 + 2 j, x)(y) is Ck . The finite part (x, y) 7→
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2 Linear wave equations - local theory

∑N+k−1
j=N

(

σ(Γ(x, y)/ε j ) − 1
)

Vj (x, y) RΩ
′
± (2+2 j, x)(y) is actually smooth since σ(Γ/ε j )−1 van-

ishes on a neighborhood of Γ−1(0) which is precisely the locus where (x, y) 7→ RΩ
′
± (2+2 j, x)(y)

is nonsmooth. Furthermore,

FΩ± (·)[ϕ] − R̃±(·)[ϕ] =
(

(id+K±)−1 − id
)

(R̃±(·)[ϕ])

= −
(

(id+K±)−1 ◦ K±
)

(R̃±(·)[ϕ]).

By Lemma 2.2.12 the operator −
(

(id+K±)−1 ◦ K±
)

has a smooth integral kernel L±(x, y) whose

support is future or past-stretched respectively. Hence

FΩ± (x)[ϕ] − R̃±(x)[ϕ]

=

∫

Ω

L±(x, y)R̃±(y)[ϕ] dV(y)

=

N−1∑

j=0

∫

Ω

L±(x, y)Vj (y, ·) RΩ
′
± (2 + 2 j, y)[ϕ] dV(y)

+

N+k−1∑

j=N

∫

Ω

L±(x, y)σ(Γ(y, ·)/ε j )Vj (y, ·) RΩ
′
± (2 + 2 j, y)[ϕ] dV(y)

+

∫

Ω×Ω
L±(x, y) f (y, z)ϕ(z) dV(z) dV(y)

where f (y, z) =
∑∞

j=N+k
σ(Γ(y, z)/ε j )Vj (y, z) RΩ

′
± (2 + 2 j, y)(z) is Ck by Lemma 2.2.6. Thus

(x, z) 7→
∫

Ω
L±(x, y) f (y, z) dV(y) is a Ck -section. Write Ṽj (y, z) := Vj (y, z) if j ≤ N − 1 and

Ṽj (y, z) := σ(Γ(y, z)/ε j )Vj (y, z) if j ≥ N . It follows from Lemma 1.3.38

∫

Ω

L±(x, y)Ṽj (y, ·) RΩ
′
± (2 + 2 j, y)[ϕ] dV(y)

=

∫

Ω

RΩ
′
± (2 + 2 j, y)[z 7→ L±(x, y)Ṽj (y, z)ϕ(z)] dV(y)

=

∫

Ω

RΩ
′
∓ (2 + 2 j, z)[y 7→ L±(x, y)Ṽj (y, z)ϕ(z)] dV(z)

=

∫

Ω

RΩ
′
∓ (2 + 2 j, z)[y 7→ L±(x, y)Ṽj (y, z)]ϕ(z) dV(z)

=

∫

Ω

W j (x, z)ϕ(z) dV(z)

where W j (x, z) = RΩ
′
∓ (2 + 2 j, z)[y 7→ L±(x, y)Ṽj (y, z)] is smooth in (x, z) by Proposi-

tion 1.3.36 (11). Hence

(

FΩ± (x) − R̃±(x)
)

(z) =

N+k−1∑

j=0

W j (x, z) +

∫

Ω

L±(x, y) f (y, z) dV(y)

is Ck in (x, z). �
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2.2 Fundamental solutions

The following theorem tells us that the formal fundamental solutions are asymptotic expansions

of the true fundamental solutions near the light cone.

Theorem 2.2.18. Let M be a timeoriented Lorentzian manifold. Let P be a normally hyper-

bolic operator acting on sections in a vector bundle E. Let Ω ⊂ M be a relatively compact

causal domain and let x ∈ Ω. Let FΩ± denote the fundamental solutions of P at x and RN+k
± (x)

the truncated formal fundamental solutions.

Then for each k ∈ N there exists a constant Ck such that

(FΩ± (x) − RN+k
± (x)

)

(y)
 ≤ Ck · |Γ(x, y) |k

for all (x, y) ∈ Ω ×Ω.

Here ‖ · ‖ denotes an auxiliary norm on E∗ ⊠ E. The proof requires some preparation.

Lemma 2.2.19. Let M be a smooth manifold. Let H1,H2 ⊂ M be two smooth hypersurfaces

globally defined by the equations ϕ1 = 0 and ϕ2 = 0 respectively, where ϕ1, ϕ2 : M → R are

smooth functions on M satisfying dxϕi , 0 for every x ∈ Hi , i = 1, 2. We assume that H1 and

H2 intersect transversally.

Let f : M → R be a Ck-function on M , k ∈ N. Let k1, k2 ∈ N such that k1 + k2 ≤ k. We

assume that f vanishes to order ki along Hi , i. e., in local coordinates
∂ |α | f
∂xα (x) = 0 for every

x ∈ Hi and every multi-index α with |α | ≤ ki − 1.

Then there exists a continuous function F : M → R such that

f = ϕ
k1

1
ϕ
k2

2
F .

Proof of Lemma 2.2.19.. We first prove the existence of a Ck−k1-function F1 : M → R such that

f = ϕ
k1

1
F1.

This is equivalent to saying that the function f /ϕ
k1

1
being well-defined and Ck on M \H1 extends

to a Ck−k1 -function F1 on M . Since it suffices to prove this locally, we introduce local coordinates

x1, . . . , xn so that ϕ1(x) = x1. Hence in this local chart H1 = {x1
= 0}.

Since f (0, x2, . . . , xn ) =
∂ j f

∂(x1 ) j
(0, x2, . . . , xn ) = 0 for any (x2, . . . , xn ) and j ≤ k1 − 1 we obtain

from the Taylor expansion of f in the x1-direction to the order k1 − 1 with integral remainder

term

f (x1, x2, . . . , xn ) =

∫ x1

0

(x1 − t)k1−1

(k1 − 1)!

∂k1 f

∂(x1)k1
(t, x2, . . . , xn )dt.
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2 Linear wave equations - local theory

In particular, for x1
, 0

f (x1, x2, . . . , xn ) = (x1)k1−1

∫ x1

0

1

(k1 − 1)!

(

x1 − t

x1

)k1−1
∂k1 f

∂(x1)k1
(t, x2, . . . , xn )dt

=

(x1)k1−1

(k1 − 1)!

∫ 1

0

(1 − u)k1−1x1 ∂k1 f

∂(x1)k1
(x1u, x2, . . . , xn )du

=

(x1)k1

(k1 − 1)!

∫ 1

0

(1 − u)k1−1 ∂k1 f

∂(x1)k1
(x1u, x2, . . . , xn )du.

Now F1(x1, . . . , xn ) := 1
(k1−1)!

∫ 1

0
(1 − u)k1−1 ∂k1 f

∂(x1 )k1
(x1u, x2, . . . , xn )du yields a Ck−k1-function

because
∂k1 f

∂(x1)k1
is Ck−k1 . Moreover, we have

f = (x1)k1 · F1 = ϕ
k1 · F1.

On M \ H1 we have F1 = f /ϕ
k1

1
and so F1 vanishes to the order k2 on H2 \ H1 because f

does. Since H1 and H2 intersect transversally the subset H2 \ H1 is dense in H2. Therefore the

function F1 vanishes to the order k2 on all of H2. Applying the considerations above to F1 yields

a Ck−k1−k2 -function F : M → R such that F1 = ϕ
k2

2
· F. This concludes the proof. �

Lemma 2.2.20. Let f : Rn → R a C3k+1-function. We equip Rn with its standard Minkowski

product 〈·, ·〉 and we assume that f vanishes on all spacelike vectors.

Then there exists a continuous function h : Rn → R such that

f = h · γk

where γ(x) = −〈x, x〉.

Proof of Lemma 2.2.20. The problem here is that the hypersurface {γ = 0} is the light cone

which contains 0 as a singular point so that Lemma 2.2.19 does not apply directly. We will get

around this difficulty by resolving the singularity.

Let π : M := R× Sn−1 → Rn be the map defined by π(t, x) := tx. It is smooth on M = R× Sn−1

and outside π−1({0}) = {0} × Sn−1 it is a two-fold covering of Rn \ {0}.
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2.2 Fundamental solutions

b

0

The function f̂ := f ◦ π : M → R is C3k+1 since f is.

Consider the functions γ̂ : M → R, γ̂(t, x) := γ(x), and π1 : M → R, π1(t, x) := t. These

functions are smooth and have only regular points on M . For γ̂ this follows from dxγ , 0 for

every x ∈ Sn−1. Therefore Ĉ(0) := γ̂−1({0}) and {0} × Sn−1
= π−1

1
({0}) are smooth embedded

hypersurfaces. Since the differentials of γ̂ and of π1 are linearly independent the hypersurfaces

intersect transversally. Furthermore, one obviously has π(Ĉ(0)) = C (0) and π({0}×Sn−1) = {0}.
Since f is C3k+1 and vanishes on all spacelike vectors f vanishes to the order 3k + 2 along C (0)

(and in particular at 0). Hence f̂ vanishes to the order 3k + 2 along Ĉ(0) and along {0} × Sn−1.

Applying Lemma 2.2.19 to f̂ , ϕ1 := π1 and ϕ2 := γ̂, with k1 := 2k + 1 and k2 := k, yields a

continuous function F̂ : R × Sn−1 → R such that

f̂ = π2k+1
1 · γ̂ k · F̂ . (2.21)

For y ∈ Rn we set

h(y) :=

‖y‖ · F̂ (‖y‖, y

‖y ‖ ) if y , 0

0 if y = 0,

where ‖ · ‖ is the standard Euclidean norm on Rn . The function h is obviously continuous on

R
n . It remains to show f = γk · h. For y ∈ Rn \ {0} we have

f (y) = f

(

‖y‖ · y

‖y‖

)

= f̂

(

‖y‖, y

‖y‖

)

(2.21)
= ‖y‖2k+1 · γ

(

y

‖y‖

)k

· F̂
(

‖y‖, y

‖y‖

)

= ‖y‖2k · γ
(

y

‖y‖

)k

· h(y)

= γ(y)k · h(y).

For y = 0 the equation f (y) = γ(y)k · h(y) holds trivially. �
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2 Linear wave equations - local theory

Proof of Theorem 2.2.18. Repeatedly using Proposition 1.3.36 (3) we find constants C ′
j
such that

(

FΩ± (x) − RN+k
± (x)

)

(y)

=

(

FΩ± (x) − RN+3k+1
± (x)

)

(y) +

N+3k∑

j=N+k

Vj (x, y) · RΩ′± (2 + 2 j, x)(y)

=

(

FΩ± (x) − RN+3k+1
± (x)

)

(y) +

N+3k∑

j=N+k

Vj (x, y) · C ′j · Γ(x, y)k · RΩ′± (2 + 2( j − k), x)(y).

Now h j (x, y) := C ′
j
· Vj (x, y) · RΩ

′
± (2 + 2( j − k), x)(y) is continuous since 2 + 2( j − k) ≥

2 + 2N ≥ 2 + n > n. By Proposition 2.2.17 the section (x, y) 7→
(

FΩ± (x) − RN+3k+1
± (x)

)

(y) is

of regularity C3k+1. Moreover, we know supp(FΩ± (x) − RN+3k+1
± (x)) ⊂ JΩ± (x). Hence we may

apply Lemma 2.2.20 in normal coordinates and we obtain a continuous section h such that

(

FΩ± (x) − RN+3k+1
± (x)

)

(y) = Γ(x, y)k · h(x, y).

This shows

(

FΩ± (x) − RN+k
± (x)

)

(y) =
*.,h(x, y) +

N+3k∑

j=N+k

h j (x, y)
+/- Γ(x, y)k .

Now Ck := ‖h +∑N+3k
j=N+k

h j ‖C0 (Ω×Ω)
does the job. �

2.3 Solving the inhomogeneous equation on small domains

We want to solve the inhomogeneous equation Pu = v for given v with small support.

Let Ω ⊂ M satisfy the hypotheses of Lemma 2.2.12. In particular, Ω is relatively compact,

causal, and has “small volume”. Such domains will be referred to as RCCSV (for “Relatively

Compact Causal with Small Volume”). Note that each point in a Lorentzian manifold possesses

RCCSV-neighborhoods.

Let FΩ± (x) be the corresponding fundamental solutions for P at x ∈ Ω over Ω. Recall that for

ϕ ∈ D(Ω, E∗) the maps x 7→ FΩ± (x)[ϕ] are smooth sections in E∗. Using the natural pairing

E∗x ⊗ Ex → K, ℓ ⊗ e 7→ ℓ · e, we obtain a smooth K-valued function x 7→ FΩ± (x)[ϕ] · v(x) with

compact support.

We put

u±[ϕ] :=

∫

Ω

FΩ± (x)[ϕ] · v(x) dV(x). (2.22)

Lemma 2.3.1. The u± defined in (2.22) are distributions satisfying

Pu± = v
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and

supp(u±) ⊂ JΩ± (supp(v)).

Proof. (a) We show that u± are distributions. Let ϕ ∈ D(Ω, E∗). By Lemma 2.2.8 and (2.20):

|u±[ϕ]| ≤ vol(Ω) · max
x∈Ω
|F±(x)[ϕ]| · ‖v‖C0 ≤ C ′ · ‖ϕ‖Cn+1(Ω) .

This proves that u± depend continuously on ϕ with respect to the Cn+1-norm and hence also with

respect to the topology of D(Ω, E∗).
(b) We show Pu± = v. Let ϕ ∈ D(Ω, E∗). We compute

Pu±[ϕ] = u±[P
∗ϕ]

=

∫

Ω

FΩ± (x)[P∗ϕ] · v(x) dV(x)

=

∫

Ω

P(2) F
Ω

± (x)
︸      ︷︷      ︸
=δx

[ϕ] · v(x) dV(x)

=

∫

Ω

ϕ(x) · v(x) dV(x)

= v[ϕ].

(c) It remains to show the assertions about the supports of u±. Let ϕ ∈ D(Ω, E∗) and assume

supp(ϕ)∩JΩ± (supp(v)) = ∅. In case of J+ this means that there is no future-directed curve starting

in supp(v) and ending in supp(ϕ). In other words, there is no past-directed curve starting in

supp(ϕ) and ending in supp(v). Hence supp(v)∩ JΩ∓ (supp(ϕ)) = ∅. Since JΩ∓ (supp(ϕ)) contains

the support of x 7→ FΩ± (x)[ϕ] we have supp(v) ∩ supp(FΩ± (·)[ϕ]) = ∅. Hence the integrand in

(2.22) vanishes identically and therefore u±[ϕ] = 0. This proves supp(u±) ⊂ JΩ± (supp(v)). �

Next we show that the distributions u+ and u− are actually smooth sections. For this, we need

the following lemma.

Lemma 2.3.2. Let Ω ⊂ M be an RCCSV-domain. Let K ⊂ Ω be a compact subset. Let V ∈
C∞(Ω×Ω, E∗⊠E). LetΦ ∈ Cn+1(Ω, E∗) andΨ ∈ Cn+1(Ω, E) be such that supp(Φ) ⊂ JΩ∓ (K )

and supp(Ψ) ⊂ JΩ± (K ).

Then for all j ≥ 0

∫

Ω

(

V (x, ·)RΩ
′
± (2 + 2 j, x)

)

[Φ] ·Ψ(x) dV(x) =

∫

Ω

Φ(y) ·
(

V (·, y)RΩ
′
∓ (2 + 2 j, y)

)

[Ψ] dV(y).
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2 Linear wave equations - local theory

Ω

K

supp(Ψ)

supp(Φ)

Proof. SinceΩ is a causal domain and therefore globally hyperbolic, we know that JΩ± (x)∩JΩ∓ (K )

is compact, see Proposition 1.2.56.

b x

Ω

K

supp(Ψ)

supp(Φ)

JΩ± (x) ∩ JΩ∓ (K )

Hence supp(RΩ
′
± (2 + 2 j, x)) ∩ supp(Φ) ⊂ JΩ± (x) ∩ JΩ∓ (K ) is compact. Since the distribution

RΩ
′
± (2+2 j, x) is of order ≤ n+1 we may apply V (x, ·)RΩ

′
± (2+2 j, x) toΦ. By Proposition 1.3.36.12

the section x 7→ V (x, ·)RΩ
′
± (2+ 2 j, x)[Φ] is continuous. Hence the left hand side is well defined.

Similarly, the integral on the right hand side is well-defined. By Lemma 1.3.37
∫

Ω

(

V (x, ·)RΩ
′
± (2 + 2 j, x)

)

[Φ] · Ψ(x) dV(x)

=

∫

Ω

RΩ
′
± (2 + 2 j, x)[y 7→ V (x, y)∗Φ(y)] · Ψ(x) dV(x)

=

∫

Ω

RΩ
′
± (2 + 2 j, x)[y 7→ Φ(y)V (x, y)Ψ(x)] dV(x)

=

∫

Ω

RΩ
′
∓ (2 + 2 j, y)[x 7→ Φ(y)V (x, y)Ψ(x)] dV(y)

=

∫

Ω

Φ(y) ·
(

V (·, y)RΩ∓ (2 + 2 j, y)[Ψ]
)

dV(y). �
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2.3 Solving the inhomogeneous equation on small domains

Lemma 2.3.3. Let Ω ⊂ M be an RCCSV-domain.

Then the distributions u± defined in (2.22) are smooth sections in E, i. e., u± ∈ C∞(Ω, E).

Proof. Let ϕ ∈ D(Ω, E∗). Put K := supp(ϕ) ∪ supp(v). Let L± ∈ C∞(Ω × Ω, E∗ ⊠ E) be the

smooth integral kernel of (id+K±)−1 ◦ K±. We recall from (2.20)

FΩ± (·)[ϕ] = (id+K±)−1(R̃±(·)[ϕ]) = R̃±(·)[ϕ] − (id+K±)−1K±(R̃±(·)[ϕ]).

Therefore

u±[ϕ] =

∫

Ω

FΩ± (x)[ϕ] · v(x) dV(x)

=

∫

Ω

R̃±(x)[ϕ] · v(x) dV(x) −
∫

Ω

∫

Ω

L±(y, x) · R̃±(x)[ϕ] · v(y) dV(x) dV(y)

=

∫

Ω

R̃±(x)[ϕ] · w(x) dV(x)

=

∞∑

j=0

∫

Ω

Ṽj (x, ·)RΩ
′
± (2 + 2 j, x)[ϕ] · w(x) dV(x)

where we again wrote Ṽj (y, z) = Vj (y, z) if j ≤ N − 1 and Ṽj (y, z) = σ(Γ(y, z)/ε j )Vj (y, z) if

j ≥ N and w(x) := v(x) −
∫

Ω
v(y) · L±(y, x) dV(y) ∈ Ex . Note that w ∈ C∞(Ω, E).

By Lemma 2.2.12, supp(L±) ⊂ {(y, x) ∈ Ω × Ω | x ∈ JΩ± (y)}. Hence supp(w) ⊂ JΩ± (supp(v)).

We may therefore apply Lemma 2.3.2 with Φ = ϕ and Ψ = w.

For the j-th summand we then find

∫

Ω

Ṽj (x, ·)RΩ
′
± (2 + 2 j, x)[ϕ] · w(x) dV(x) =

∫

Ω

ϕ(y)Ṽj (·, y)RΩ
′
∓ (2 + 2 j, y)[w] dV(y)

Summation over j yields

u±[ϕ] =

∫

Ω

R̃±(x)[ϕ] · w(x) dV(x)

=

∞∑

j=0

∫

Ω

ϕ(y)Ṽj (·, y)RΩ
′
∓ (2 + 2 j, y)[w] dV(y).

Thus

u±(y) =

∞∑

j=0

(

Ṽj (·, y)RΩ
′
∓ (2 + 2 j, y)

)

[w].

Proposition 1.3.36.11 shows that all summands are smooth in y. By the choice of the ε j the

series converges in all Ck -norms. Hence u± is smooth. �

We summarize
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2 Linear wave equations - local theory

Theorem 2.3.4. Let M be a timeoriented Lorentzian manifold. Let P be a normally hyperbolic

operator acting on sections in a vector bundle E over M . Let Ω ⊂ M be an RCCSV-domain.

Then for each v ∈ D(Ω, E) there exist u± ∈ C∞(Ω, E) satisfying

1.
∫

Ω
φ(x) · u±(x) dV =

∫

Ω
FΩ± (x)[ϕ] · v(x) dV for each φ ∈ D(Ω, E∗),

2. Pu± = v,

3. supp(u±) ⊂ JΩ± (supp(v)). �

2.4 The Cauchy problem

Next we prove existence of solutions to the Cauchy problem on small domains. Let Ω ⊂ M be

an RCCSV-domain. Since causal domains are contained in convex domains by definition and

convex domains are contractible, the vector bundle E is trivial over any RCCSV-domain Ω.

Proposition 2.4.1. Let M be a timeoriented Lorentzian manifold and let S ⊂ M be a spacelike

smooth hypersurface. Let P be a normally hyperbolic operator acting on sections in a vector

bundle E over M . Let n be the future directed timelike unit normal field along S and let ∇ be

the P-compatible connection.

Then for each RCCSV-domain Ω ⊂ M such that S ∩ Ω is a (spacelike) Cauchy hypersurface

in Ω, the following holds:

For every u0, u1 ∈ D(S∩Ω, E) and for every f ∈ D(Ω, E) there exists a solution u ∈ C∞(Ω, E)

of the Cauchy problem 
Pu = f on Ω,

u = u0 along S ∩Ω,
∇nu = u1 along S ∩Ω.

Moreover, supp(u) ⊂ JM (K ) where K = supp(u0) ∪ supp(u1) ∪ supp( f ).

Proof. Since causal domains are globally hyperbolic we may apply Theorem 1.2.53 and find an

isometry Ω = R× (S∩Ω) where the metric takes the form −N2dt2
+ gt . Here N is smooth, each

{t} × (S ∩Ω) is a smooth spacelike Cauchy hypersurface in Ω, and (S ∩Ω) = t−1(0). Note that

the future-directed unit normal vector field n along {t} × (S ∩ Ω) is given by n = − 1
N

grad t.

We trivialize the bundle E over Ω and identify sections in E with Kr -valued functions where r

is the rank of E.

Assume for a moment that u were a solution to the Cauchy problem of the form

u(t, x) =

∞∑

j=0

t j ũ j (x)
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2.4 The Cauchy problem

where x ∈ S ∩Ω. On S ∩Ω we have that ũ0 = u0, ũ1 = −Nu1. Write P = 1
N 2

∂2

∂t 2 + Y where Y is

a differential operator containing t-derivatives only up to order 1. Equation

f = Pu =

(

1

N2

∂2

∂t2
+ Y

)

u =
1

N2

∞∑

j=2

j ( j − 1)t j−2ũ j + Yu (2.23)

evaluated at t = 0 gives

2N−2(0, x)ũ2(x) = −Y (ũ0 + tũ1)(0, x) + f (0, x)

for every x ∈ S∩Ω. Thus ũ2 is determined by ũ0, ũ1, and f |S . Differentiating (2.23) with respect

to ∂
∂t and repeating the procedure shows that each ũ j is recursively determined by ũ0, . . . , ũ j−1

and the normal derivatives of f along S.

Now we drop the assumption that we have a t-power series u solving the problem but we define the

ũ j , j ≥ 2, by these recursive relations. In general, the so constructed series will be nonconvergent

and we will now use a cut-off function σ as before to make it convergent.

Let σ : R → R be a smooth function such that σ |[−1/2,1/2] ≡ 1 and σ ≡ 0 outside [−1, 1]. We

claim that we can find a sequence of ε j ∈ (0, 1) such that

û(t, x) :=

∞∑

j=0

σ(t/ε j )t
j ũ j (x) (2.24)

defines a smooth section that can be differentiated termwise.

By Lemma 1.3.23 we have for j > k

‖(t, x) 7→ σ(t/ε j )t
j ũ j (x)‖Ck (Ω) ≤ c(k) · t 7→ σ(t/ε j )t

jCk (R)
· ‖ũ j ‖Ck (S) .

Here and in the following c(k), c′(k, j), and c′′(k, j) denote universal constants depending only

on k and j. By Lemma 2.2.5 we have for l ≤ k and 0 < ε j ≤ 1


dl

dtl
(σ(t/ε j )t

j )
C0 (R)

≤ ε j c′(l, j) ‖σ‖C l (R),

thus, taking the maximum

‖(t, x) 7→ σ(t/ε j )t
j ũ j (x)‖Ck (Ω) ≤ ε j c′′(k, j) ‖σ‖Ck (R) ‖ũ j ‖Ck (S) .

Now we choose 0 < ε j ≤ 1 so that ε j c′′(k, j) ‖σ‖Ck (R) ‖ũ j ‖Ck (S) ≤ 2− j for all k < j. This

can be done since here we have only finitely many conditions on each ε j . Then the series (2.24)

defining û converges absolutely in the Ck-norm for all k. Hence û is a smooth section with

compact support and can be differentiated termwise.

From the construction we have that supp(ũ j ) ⊂ supp(ũ0) ∪ supp(ũ1) ∪ (supp( f ) ∩ S) for all j.

Since supp(ũ0) ∪ supp(ũ1) ∪ (supp( f ) ∩ S) ⊂ S ∩ K , we see that supp(û) ⊂ R × (S ∩ K ).

Applying P to û will no longer give f because of errors introduced by the cut-off-function σ.

We have to correct this in the following.
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2 Linear wave equations - local theory

First we see that û still fulfills the initial conditions. This is because σ ≡ 1 on a neighborhood of

{t = 0}, hence at t = 0 the cut-off is irrelevant.

By the choice of the ũ j the section Pû − f vanishes to infinite order along S. Therefore

w(t, x) :=

{

(Pû − f )(t, x), on {t ≥ 0} = J+(S ∩ Ω),

0, on {t < 0},

defines a smooth section. Moreover, supp(w) ⊂ (S∩K ) × [0, 1] and hence has compact support.

By Theorem 2.3.4 we can solve the equation Pũ = w with a smooth section ũ and supp(ũ) ⊂
JΩ
+

(supp(w)) ⊂ JΩ
+

(S ∩ Ω) ∩ JΩ
+

(K ). Now u+ := û − ũ is a smooth section such that Pu+ =

Pû − Pũ = w + f − w = f on JΩ
+

(S ∩ Ω).

Since ũ = 0 on IΩ− (S) the section u+ coincides with û to infinite order along S. In particular,

u+ |S = ũ|S = u0 and ∇nu+ = ∇nũ = u1. Moreover, supp(u+) ⊂ supp(û) ∪ supp(ũ) ⊂ JM (K ).

Thus u+ has all the required properties on JM
+

(S).

Similarly, one constructs u− on JM
− (S). Since both u+ and u− coincide to infinite order with û

along S we obtain the smooth solution u with supp(u) ⊂ JΩ(K ) by setting

u(t, x) :=

{

u+(t, x), if t ≥ 0,

u−(t, x), if t ≤ 0.
�

2.5 Exercises

2.5.1. Let M be a Lorentzian manifold and E → M a vector bundle with a fiberwise inner

product 〈·, ·〉. Let P be a normally hyperbolic operator acting on sections of E. Write P = �∇+B

for the P-compatible connection ∇.

Show that P is formally selfadjoint if and only if ∇ is metric w.r.t. 〈·, ·〉 and B is pointwise

selfadjoint.

2.5.2. Let X be a smooth vector field and V a smooth function on a Lorentzian manifold. We

consider the normally hyperbolic operator P = � + ∂X + V acting on functions.

Determine the P-compatible connection ∇ and the potential B in P = �∇ + B.

2.5.3. Compute the Hadamard coefficients of the Klein-Gordon operator P = � + m2, m ≥ 0,

on Minkowski space.

2.5.4. Let (X, h) be a Riemannian manifold and equip M = R × X with the Lorentzian metric

g = −dt2
+ h where t denotes the standard coordinate in R.

a) Show that if x1, . . . , xn−1 are normal coordinates around x̂ on X , then t, x1, . . . , xn−1 are

normal coordinates around (0, x̂) on M .

b) What is the relation between the volume distortion functions µ x̂ on X and µ(0, x̂) on M?
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2.5 Exercises

2.5.5. In addition to the notation in Exercise 2.5.4, let E be a vector bundle over X . The bundle

pulled back to M via the projection M → X is also denoted by E.

a) Show that a differential operator L ∈ Diff
2
(E, E) on X is of Laplace type if and only if

P := ∂2

∂t 2 + L is normally hyperbolic on M .

b) Show that the Hadamard coefficients of P are parallel along the curves c(t) = (t, x̂) where

x̂ ∈ X is constant.

2.5.6. Show that the distributions ( ∂
∂x1 )k R±(2) on Minkowski space have order k − 2 at least,

k = 2, 3, . . ..

2.5.7. Define the derivative of the Riesz distributions with respect to α by

∂R±
∂α

(α0)[ϕ] :=
∂

∂α

���α=α0

(
R±(α)[ϕ]

)
.

a) Show that u = γ · ( ∂R+∂α (0) − ∂R−
∂α (0)

)
is a nontrivial solution of �u = 0 on n-dimensional

Minkowski space, provided n ≥ 3.

b) What if n = 2?

2.5.8. Show that the formal fundamental solution

R± =
∞∑

j=0

(−1) jm2 j R±(2 + 2 j)

of the Klein-Gordon operator P = �+m2 on Minkowski space M (cf. Exercise 2.5.3) converges

in D ′(M ) and hence defines a true fundamental solution at x = 0.

Hint: Show that for sufficiently large N the series
∑∞

j=N (−1) jm2 j R±(2+2 j) converges uniformly

on compact subsets of M .

2.5.9. Show that the ε j in Lemma 2.2.7 can be chosen such that the sum

Σ1 =

∞∑

j=N

�(2) (σ(Γ/ε j )) Vj RΩ
′
± (2 + 2 j, ·)

converges absolutely in Ck (Ω ×Ω, E∗ ⊠ E) for all k ∈ N.

2.5.10. Show that every C2-solution u of �u = 0 on the 2-dimensional Minkowski space is

uniquely determined by u0 and u1 where u0(x) = u(0, x) and u1(x) = ∂u
∂t (0, x).

Hint: Observe � =
( ∂
∂t +

∂
∂x

) ( ∂
∂t − ∂

∂x

)

.

2.5.11. Consider the situation in Proposition 2.4.1 except that ∇ is an arbitrary connection on

the vector bundle on which P acts.
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2 Linear wave equations - local theory

a) Show that Proposition 2.4.1 still holds.

b) Show that if uniqueness of u holds for the P-compatible connection then it also holds for ∇.

2.5.12. Let u0, u1, and f be as in Proposition 2.4.1 and let u be the solution of the Cauchy

problem constructed in the proof. The statement on the support of u can be improved to

supp(u) ⊂ JΩ
(
supp(u0)∪ supp(u1)

) ∪ JΩ
+

(
supp( f )∩ JΩ

+
(S∩Ω)

) ∪ JΩ−
(
supp( f )∩ JΩ− (S∩Ω)

)
.

a) Illustrate by example or drawing that this improves the statement in Proposition 2.4.1.

b) Explain how the proof of Proposition 2.4.1 needs to be refined in order to yield this version

of the support estimate.
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3 Linear wave equations - global theory

Our aim in the next chapter is to study fundamental solutions, solutions to inhomogeneous

equations and the Cauchy problem on arbitrary globally hyperbolic manifolds.

3.1 Uniqueness of the fundamental solution

To motivate the line of the argument in the following we first give an incorrect proof of the

following false statement:

Let P be a normally hyperbolic operator on a Lorentzian manifold M . Then every solution of

Pu = 0 is trivial, i.e., u = 0.

Incorrect proof. Let x ∈ M . We choose an RCCSV-neighboorhood Ω of x and we want to show

u[φ] = 0 for all test sections φ ∈ C∞c (Ω, E∗). By Theorem 2.3.4 we can solve P∗ψ = φ in Ω.

Now we compute

u[φ] = u[P∗ψ]
(∗)
= Pu

︸︷︷︸

=0

[ψ] = 0.

Hence u = 0 on Ω and since x was arbitrary u = 0 on M . �

We know that the statement we just “proved” is false. For instance, constant functions u ≡ c

satisfy �u = 0 without being trivial. Where did the proof fail?

The problem is that equation (∗) is not justified because ψ does not have compact support and

hence is not a test section. Nevertheless, the argument can be rectified under suitable assumptions

on supp(u). We show uniqueness of solutions to the wave equation with future or past-compact

support.

Theorem 3.1.1. Let M be a globally hyperbolic Lorentzian manifold. Let P be a normally

hyperbolic operator acting on sections of a vector bundle E over M .

Then any distribution u ∈ D ′(M, E) with past or future compact support solving the equation

Pu = 0 must vanish identically on M ,

u ≡ 0.

Proof. Without loss of generality let A := supp(u) be future compact. We will show that A is

empty. Assume the contrary and consider some x ∈ A. Then the set B := JM
+

(x)∩ A is compact.

By Proposition 1.2.60 the map y 7→ τ(x, y) is finite and continuous on a globally hyperbolic

manifold. Therefore y 7→ τ(x, y) attains its maximum on B at some point z ∈ B.
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3 Linear wave equations - global theory

b
b

b

B

A

x

On a globally hyperbolic manifold the relation “≤” is closed. Moreover, the implication “u ≤ v

and v ≤ u ⇒ u = v” holds because there are no causal loops. The relation “≤” now turns B into

a partially ordered set.

We check that Zorn’s lemma can be applied to (B,≤). Let B ′ be a totally ordered subset of B.

Choose1 a countable dense subset B ′′ ⊂ B ′. Then B ′′ is totally ordered as well and can be written

as B ′′ = {ζ1, ζ2, ζ3, . . .}. Let zi be the largest element in {ζ1 . . . , ζi }. This yields a monotonically

increasing sequence (zi )i which eventually becomes at least as large as any given ζ ∈ B ′′.
By compactness of B a subsequence of (zi )i converges to some z′ ∈ B as i → ∞. Since the

relation “≤” is closed one easily sees that z′ is an upper bound for B ′′. Since B ′′ ⊂ B ′ is dense

and “≤” is closed, z′ is also an upper bound for B ′. Hence Zorn’s lemma applies and yields

a maximal element z0 ∈ B. Replacing z by z0 we may therefore assume that τ(y, ·) attains its

maximum at z and that A ∩ JM
+

(z) = {z}.

b

b

z

B

A

x

We fix an RCCSV-neighborhood Ω ⊂ M of z. Let pi be a sequence of points such that pi → z.

Claim: For i sufficiently large we have JM
+

(pi ) ∩ A ⊂ Ω.

Suppose the contrary. Then there is for each i a point qi ∈ JM
+

(pi ) ∩ A such that qi < Ω. Since

qi ∈ JM
+

(x) ∩ A for all i and JM
+

(x) ∩ A is compact we have, after passing to a subsequence,

that qi → q ∈ JM
+

(x) ∩ A. From qi ≥ pi , qi → q, pi → z, and the fact that “≤” is closed we

1Every (infinite) subset of a manifold has a countable dense subset. This follows from existence of a countable basis

of the topology.
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3.1 Uniqueness of the fundamental solution

conclude q ≥ z. Thus q ∈ JM
+

(z) ∩ A, hence q = z. On the other hand, q < Ω since all qi < Ω,

a contradiction. X

b

b

b

b

b

b
b
pi

Ω
z

A

For pi ∈ IM− (z) with JM
+

(pi ) ∩ A ⊂ Ω we put Ω̃ := Ω ∩ IM
+

(pi ) and note that Ω̃ is an open

neighborhood of z.

bb

b

b

b

b

b
b
pi

Ω
z

A

Ω̃

We choose a cut-off function η ∈ D(Ω,R) such that η |JM
+

(pi )∩A ≡ 1.

Now we consider some arbitrary ϕ ∈ D(Ω̃, E∗). We will show that u[ϕ] = 0. This then proves

that u|
Ω̃
= 0, in particular, z < A = supp(u), the desired contradiction.

By the choice ofΩwe can solve the inhomogeneous equation P∗ψ = ϕ onΩwith ψ ∈ C∞(Ω, E∗)
and supp(ψ) ⊂ JΩ

+
(supp(ϕ)) ⊂ JM

+
(pi ) ∩ Ω. Then supp(u) ∩ supp(ψ) ⊂ A ∩ JM

+
(pi ) ∩ Ω =

A ∩ JM
+

(pi ). Hence η |supp(u)∩supp(ψ) = 1. Thus

u[ϕ] = u[P∗ψ] = u[P∗(ηψ)] = (Pu)[ηψ] = 0. �

Corollary 3.1.2. Let M be a globally hyperbolic Lorentzian manifold. Let P be a normally

hyperbolic operator acting on sections in a vector bundle E over M .
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3 Linear wave equations - global theory

Then for every x ∈ M there exists at most one advanced and at most one retarded fundamental

solution for P at x.

Proof. Let F1 and F2 be two advanced fundamental solutions at x. Then u = F1 − F2 is

a solution for Pu = 0. Since F1 and F2 are advanced solutions we know that supp(u) ⊂
supp(F1) ∪ supp(F2) ⊂ J+(x). On a globally hyperbolic manifold J+(x) is past compact. Then

Theorem 3.1.1 shows that u = 0 and hence F1 = F2. �

3.2 The Cauchy problem

We start by identifying the divergence term that appears when one compares the operator P with

its formal adjoint P.

Lemma 3.2.1. Let E be a vector bundle over the timeoriented Lorentzian manifold M . Let

P be a normally hyperbolic operator acting on sections in E. Let ∇ be the P-compatible

connection on E.

Then for every ψ ∈ C∞(M, E∗) and v ∈ C∞(M, E),

ψ · (Pv) − (P∗ψ) · v = div (W ),

where the vector field W ∈ C∞(M,T M ⊗R K) is characterized by

〈W, X〉 = (∇Xψ) · v − ψ · (∇Xv)

for all X ∈ C∞(M,T M ).

Proof. The Levi-Civita connection on T M and the P-compatible connection ∇ on E induce

connections on T∗M ⊗ E and on T∗M ⊗ E∗ which we also denote by ∇ for simplicity. We define

a linear differential operator L : C∞(M,T∗M ⊗ E∗) → C∞(M, E∗) of first order by

Ls := −
n∑

j=1

ǫ j (∇e j
s)(e j )

where e1, . . . , en is a local Lorentz orthonormal frame ofT M and ǫ j = 〈e j, e j 〉. It is easily checked

that this definition does not depend on the choice of orthonormal frame. Write e∗
1
, . . . , e∗n for the

dual frame of T∗M . The metric 〈·, ·〉 on T M and the natural pairing E∗ ⊗ E → K, ψ ⊗ v 7→ ψ · v,

induce a pairing (T∗M ⊗ E∗) ⊗ (T∗M ⊗ E) → K which we again denote by 〈·, ·〉. For all

ψ ∈ C∞(M, E∗) and s ∈ C∞(M,T∗M ⊗ E) we obtain

〈∇ψ, s〉 =
n∑

j,k=1

〈e∗j ⊗ ∇e j
ψ , e∗k ⊗ s(ek )〉
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3.2 The Cauchy problem

=

n∑

j,k=1

〈e∗j , e∗k 〉 · (∇e j
ψ) · s(ek )

=

n∑

j=1

ε j (∇e j
ψ) · s(e j )

=

n∑

j=1

ε j
(

∂e j
(ψ · s(e j )) − ψ · (∇e j

s)(e j ) − ψ · s(∇e j
e j )

)

= ψ · (Ls) +

n∑

j=1

ε j
(

∂e j
(ψ · s(e j )) − ψ · s(∇e j

e j )
)

. (3.1)

Let V1 be the unique K-valued vector field characterized by 〈V1, X〉 = ψ · s(X ) for every

X ∈ C∞(M,T M ). Then

div (V1) =

n∑

j=1

ǫ j 〈∇e j
V1 , e j 〉

=

n∑

j=1

ǫ j
(

∂e j
〈V1 , e j 〉 − 〈V1 , ∇e j

e j 〉
)

=

n∑

j=1

ǫ j
(

∂e j
(ψ · s(e j )) − ψ · s(∇e j

e j )
)

.

Plugging this into (3.1) yields

〈∇ψ, s〉 = ψ · Ls + div (V1).

In particular, if v ∈ C∞(M, E) we get for s := ∇v ∈ C∞(M,T∗M ⊗ E)

〈∇ψ,∇v〉 = ψ · L∇v + div (V1) = ψ · �∇v + div (V1),

hence

ψ · �∇v = 〈∇ψ,∇v〉 − div (V1) (3.2)

where 〈V1, X〉 = ψ · ∇X v for all X ∈ C∞(M,T M ). Similarly, by interchanging the role of ψ and

v we obtain

(�∇ψ) · v = 〈∇ψ,∇v〉 − div (V2)

where V2 is the vector field characterized by 〈V2, X〉 = (∇Xψ) · v for all X ∈ C∞(M,T M ). Thus

comparing leads to

ψ · �∇v − (�∇ψ) · v = div (W ) (3.3)

where W = V2 −V1. Since ∇ is the P-compatible connection on E we have P = �∇ + B for some

B ∈ C∞(M,End(E)), see Lemma 2.1.7. Thus

ψ · Pv = ψ · �∇v + ψ · Bv = (�∇ψ) · v + div (W ) + (B∗ψ) · v.

If ψ or v has compact support, then we can integrate ψ · Pv and the divergence term vanishes:
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3 Linear wave equations - global theory

∫

M

ψ · Pv dV =

∫

M

(

(�∇ψ) · v + (B∗ψ) · v
)

dV.

Therefore �∇ + B∗ = P∗ and ψ · Pv − P∗ψ · v = div (W ) as claimed. �

This now yields a local formula allowing us to control a solution of Pu = 0 in terms of its Cauchy

data.

Lemma 3.2.2. Let E be a vector bundle over a timeoriented Lorentzian manifold M and let

P be a normally hyperbolic operator acting on sections in E. Let ∇ be the P-compatible

connection on E. Let Ω ⊂ M be an RCCSV-domain. Let S be a smooth spacelike Cauchy

hypersurface in Ω. Denote by n the future directed (timelike) unit normal vector field along

S. For every x ∈ Ω let FΩ± (x) be the fundamental solution for P∗ at x with support in JΩ± (x)

constructed in Proposition 2.2.15. Define FΩ[ϕ] := FΩ
+

(·)[ϕ] − FΩ− (·)[ϕ] ∈ C∞(Ω, E∗).
For every smooth solution u ∈ C∞(Ω, E) of Pu = 0 on Ω

u[ϕ] =

∫

S

(

(∇n (FΩ[ϕ])) · u0 − (FΩ[ϕ]) · u1

)

dA,

where u0 := u |S and u1 := ∇nu.

Proof. Fix ϕ ∈ D(Ω, E∗). We consider the distribution ψ defined by ψ[w] :=
∫

Ω
ϕ(x) ·

FΩ
+

(x)[w] dV for every w ∈ D(Ω, E). By Theorem 2.3.4 we know that ψ ∈ C∞(Ω, E∗), has its

support contained in JΩ
+

(supp(ϕ)) and satisfies P∗ψ = ϕ.

Let W be the vector field from Lemma 3.2.1 with u instead of v.

Ω

S

supp(φ)
n

JΩ
+

(supp(φ)) ∩ JΩ− (S)

Since by Proposition 1.2.56 the subset JΩ
+

(supp(ϕ)) ∩ JΩ− (S) of Ω is compact, Theorem 1.2.72

applies to D := IΩ− (S) and the vector field W :

∫

D

(
(P∗ψ) · u − ψ · (Pu)

)
dV = −

∫

D

div (W ) dV

= − 〈n, n〉
︸︷︷︸

=−1

∫

∂D
〈W, n〉dA

110



3.2 The Cauchy problem

=

∫

∂S

〈W, n〉dA

=

∫

S

((∇nψ) · u − ψ · (∇nu)) dA.

On the other hand,

∫

D

(
(P∗ψ) · u − ψ · (Pu)

)
dV =

∫

IΩ− (S)

(( P∗ψ
︸︷︷︸

=ϕ

) · u − ψ · ( Pu
︸︷︷︸

=0

)) dV =

∫

IΩ− (S)

ϕ · u dV.

Thus ∫

IΩ− (S)

ϕ · u dV =

∫

S

((∇nψ) · u − ψ · (∇nu)) dA. (3.4)

Similarly, using D = IΩ
+

(S) and ψ′[w] :=
∫

Ω
ϕ(x) · FΩ− (x)[w] dV for any w ∈ D(Ω, E) one gets

∫

IΩ
+

(S)

ϕ · u dV =

∫

S

(
ψ′ · (∇nu) − (∇nψ′) · u

)
dA. (3.5)

The different sign is caused by the fact that n is the interior unit normal to IΩ
+

(S). Adding (3.4)

and (3.5) we get

∫

Ω

ϕ · u dV =

∫

S

(

(∇n (ψ − ψ′)) · u − (ψ − ψ′) · (∇nu)
)

dA

which is the desired result. �

Corollary 3.2.3. Let Ω, u, u0, and u1 be as in Lemma 3.2.2. Then

supp(u) ⊂ JΩ(K )

where K = supp(u0) ∪ supp(u1).

Proof. Let ϕ ∈ D(Ω, E∗) with supp(ϕ) ∩ JΩ(K ) = ∅. We will show that u[ϕ] = 0. Since

supp(ϕ)∩JΩ(K ) = ∅ implies JΩ(suppϕ)∩K = ∅ and supp(FΩ[ϕ])∩K ⊂ JΩ(suppϕ)∩K we find

that supp(FΩ[ϕ]) ∩ K = ∅. By Lemma 3.2.2 u[ϕ] =
∫

S

(

(∇n (FΩ[ϕ])) · u0 − (FΩ[ϕ]) · u1

)

dA.

But the support of the integrand of the right hand side is given exactly by the empty set

supp(FΩ[ϕ]) ∩ K . Hence u[ϕ] = 0. �

These local considerations already suffice to establish uniqueness of solutions to the Cauchy

problem on general globally hyperbolic manifolds.
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3 Linear wave equations - global theory

Corollary 3.2.4. Let E be a vector bundle over a globally hyperbolic Lorentzian manifold M .

Let ∇ be a connection on E and let P = �∇ + B be a normally hyperbolic operator acting on

sections in E. Let S be a smooth spacelike Cauchy hypersurface in M , and let n be the future

directed (timelike) unit normal vector field along S.

If u ∈ C∞(M, E) solves 
Pu = 0 on M,

u = 0 along S,

∇nu = 0 along S,

then u = 0 on M .

Proof. By Theorem 1.2.53 there is a Cauchy time function t : M → R and a foliation of M by

spacelike smooth Cauchy hypersurfaces such that S = t−1(0). Extend n smoothly to all of M

such that n |St
is the unit future directed (timelike) normal vector field on St for every t ∈ R. Let

p ∈ M . We show that u(p) = 0.

Without loss of generality let t(p) > 0 and let p be in the chronological future of S. Set

t0 := sup
{
τ ∈ [0, t(p)]

��� u vanishes on JM
− (p) ∩ {0 ≤ t ≤ τ}

}
.

St (p) = {t = t(p)}

JM
− (p)

b
p

St0 = {t = t0}

S0 = {t = 0}
u ≡ 0

We will show that t0 = t(p) which implies in particular u(p) = 0.

The initial data on St0 ∩ JM
− (p) vanishes, i.e. for u0 := u |St0

and u1 := (∇nu) |St0
, we have that

u0 = 0 and u1 = 0 on St0 ∩ JM
− (p) because u ≡ 0 on JM

− (p) ∩ {0 ≤ t ≤ t0}.
For each x ∈ JM

− (p) ∩ St0 we may choose an RCCSV-neighborhood Ω of x such that St0 ∩ Ω is

a Cauchy hypersurface of Ω.

By Proposition 1.2.56 the intersection St0 ∩ JM
− (p) is compact. Hence it can be covered by

finitely many open subsets Ωi , 1 ≤ i ≤ N , satisfying these conditions.
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3.2 The Cauchy problem

JM
− (p)

b
p

Ω j

St (p) = {t = t(p)}

St0 = {t = t0}

S0 = {t = 0}

By assumption u |Ω j
is a solution for the Cauchy problem Pu = 0 with certain initial data on

Ω j ∩ St0 . We know, that the initial data can be nonvanishing only outside St0 ∩ JM
− (p). Hence

Corollary 3.2.3 implies supp(u |Ω j
) ∩ JM

− (p) ⊂ JΩ j (supp(u) ∩ S ∩ Ω j ) ∩ JM
− (p) = ∅.

JM
− (p)

St0

Ω j

JM
− (p) ∩ J

Ω j

+
(St0 ∩Ω j )

This implies that u vanishes identically on (Ω1 ∪ · · · ∪ ΩN ) ∩ JM
− (p).

Since (Ω1 ∪ · · · ∪ ΩN ) ∩ JM
− (p) is an open neighborhood of the compact set St0 ∩ JM

− (p) in

JM
− (p) there exists an ε > 0 such that St ∩ JM

− (p) ⊂ Ω1 ∪ · · · ∪ ΩN for every t ∈ [t0, t0 + ε).

JM
− (p)

b
p

Ωi

St (p) = {t = t(p)}

St0 = {t = t0}

St, t ∈ [t0, t0 + ε)

Hence u vanishes on St ∩ JM
− (p) for all t ∈ [t0, t0 + ε). This is a contradiction to the maximality

of t0 unless t0 = t(p). �
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3 Linear wave equations - global theory

In order to show existence of solutions to the Cauchy problem on globally hyperbolic manifolds

we need some preparation. Let M be globally hyperbolic. We consider a Cauchy time function

t : M → R. W.l.o.g. let t be surjective so that M = R×S and the metric is of the form−N2dt2
+gt .

In particular, M is foliated by the smooth spacelike Cauchy hypersurfaces {t0} × S =: St0 where

t0 ∈ R.

Let p ∈ M . For any r > 0 we denote by Br (p) the open ball of radius r about p in the Riemannian

manifold St (p) with respect to the Riemannian metric gt (p) on St (p), i.e.

Br (p) := {q ∈ St (p) | distgt (p) (p, q) < r} .

Then Br (p) is open as a subset of St (p) but not as a subset of M .

Recall from the exercises that D(A) denotes the Cauchy development2of a subset A of M .

We define the function ρ : M → (0,∞] by

ρ(p) := sup{r > 0 | D(Br (p)) is an RCCSV domain}.

D(Br (p))

b
b St (p)b

p

Br (p)

Lemma 3.2.5. The function ρ is lower semi-continuous on M .

Proof. First note that ρ is well defined since every point has a RCCSV-neighborhood. Let ǫ > 0.

Let p ∈ M and r > 0 be such that ρ(p) > r and r > ρ(p) − ǫ
2
. We want to show ρ(p′) > r − ǫ

for all p′ in a neighborhood of p.

For any point p′ ∈ D(Br (p)) consider

λ(p′) := sup{r ′ > 0 | Br ′ (p′) ⊂ D(Br (p))}.

Claim: There exists a neighborhood V of p such that for every p′ ∈ V one has λ(p′) > r − ǫ .

2The Cauchy development of a subset S of a timeoriented Lorentzian manifold M is the set D(S) of points of M

through which every inextendible causal curve in M meets S.
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3.2 The Cauchy problem

b
p

D(Br (p))

V

b

p′

D(Br ′ (p′))

Let us assume the claim for a moment. Let p′ ∈ V . Pick r ′ with r − ǫ < r ′ < λ(p′).
Hence Br ′ (p′) ⊂ D(Br (p)). It follows from the definition of the Cauchy development that

D(Br ′ (p′)) ⊂ D(Br (p)). Since D(Br (p)) is RCCSV the subset D(Br ′ (p′)) is RCCSV as well.

Thus ρ(p′) ≥ r ′ > r − ǫ ≥ ρ(p) − 3
2
ǫ . This then concludes the proof.

It remains to show the claim. Assume the claim is false. Then there is a sequence (pi )i of

points in M converging to p such that λ(pi ) ≤ r − ǫ for all i. Hence for r0 := r − ǫ/2 we have

Br0
(pi ) 1 D(Br (p)). Choose xi ∈ Br0

(pi ) \ D(Br (p)).

The closed set Br (p) is contained in the compact set D(Br (p)) and therefore compact itself.

Thus [−1, 1]× Br (p) is compact. For i sufficiently large Br0
(pi ) ⊂ [−1, 1]× Br (p) and therefore

xi ∈ [−1, 1] × Br (p). We pass to a convergent subsequence xi → x. Since pi → p and

xi ∈ Br0
(pi ) we have x ∈ Br0

(p). Hence x ∈ Br (p). Since D(Br (p)) is an open neighborhood

of x we must have xi ∈ D(Br (p)) for sufficiently large i. This contradicts the choice of the xi .�

For every r > 0 and q ∈ M = R × S consider

θr (q) := sup{η > 0 | JM (Br/2(q)) ∩ ([t0 − η, t0 + η] × S) ⊂ D(Br (q))}.
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3 Linear wave equations - global theory

B r
2

(q)

D(Br (q))

{t0} × S

{t0 + η} × S

{t0 − η} × S

JM (B r
2

(q)) ∩ ([t0 − η, t0 + η] × S)

b

q

Remark 3.2.6. There exist η > 0 with JM (Br/2(q))∩ ([t0 − η, t0 + η]× S) ⊂ D(Br (q)). Hence

θr (q) > 0.

One can see this as follows. If no such η existed, then there would be points xi ∈ JM (Br/2(q))∩
([t0 − 1

i
, t0 +

1
i
] × S) but xi < D(Br (q)), i ∈ N. All xi lie in the compact set JM (Br/2(q)) ∩

([t0 − 1, t0 + 1] × S). Hence we may pass to a convergent subsequence xi → x. Then x ∈
JM (Br/2(q)) ∩ ({t0} × S) = Br/2(q). Since D(Br (q)) is an open neighborhood of Br/2(q) we

must have xi ∈ D(Br (q0)) for sufficiently large i in contradiction to the choice of the xi .

Lemma 3.2.7. The function θr : M → (0,∞] is lower semi-continuous.

Proof. Fix q ∈ M . Let ǫ > 0. We need to find a neighborhood U of q such that for all q′ ∈ U

we have θr (q′) ≥ θr (q) − ǫ .
Put η := θr (q) and choose let t0 = t(q). Assume no such neighborhood U exists. Then

there is a sequence (qi )i in M such that qi → q and θr (qi ) < η − ǫ for all i. We know

that JM (Br/2(qi )) ∩ ([ti − η + ǫ, ti + η − ǫ] × S) 1 D(Br (qi )). Hence we can choose xi ∈
JM (Br/2(qi )) ∩ ([ti − η + ǫ, ti + η − ǫ] × S) but xi < D(Br (qi )).

But this implies that xi → x with x ∈ JM (Br/2(q))∩([ti − η + ǫ, ti + η − ǫ] × S) and t(x) = t(q)

for reasons of continuity. We obtain x ∈ B r
2

(q) ⊂ D(B 3r
2

(q)). Since xi < D(Br (qi )) we get

that xi < D(B 3r
2

(q)) for all i > 0. But contradicts x ∈ B r
2

(q) ⊂ D(B 3r
2

(q)).

We are now ready to reach a first global existence result. We first globalize in the spatial direction.

Lemma 3.2.8. For each compact subset K ⊂ M there exists δ > 0 such that for each t ∈ R
and any u0, u1 ∈ D(St , E) with supp(u j ) ⊂ K , j = 1, 2, there is a smooth solution u of

Pu = 0 defined on (t − δ, t + δ) × S satisfying u|St
= u0 and ∇nu|St

= u1. Moreover,
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3.2 The Cauchy problem

supp(u) ⊂ JM (K ∩ St ).

St−δ

St

St+δ

K

Proof. By Lemma 3.2.5 the function ρ admits a minimum on the compact set K . Hence there is

a constant r0 > 0 such that ρ(q) > 2r0 for all q ∈ K . Likewise, by Lemma 3.2.7 the function θ2r0

admits a minimum on the compact set K . Therefore we can choose δ > 0 such that θ2r0
(q) > δ

for all q ∈ K .

Now fix t ∈ R. Cover the compact set St ∩ K by finitely many balls Br0
(q1), . . . , Br0

(qN ),

qj ∈ St ∩ K .

Let u0, u1 ∈ D(St, E) with supp(u j ) ⊂ K . Using a partition of unity write u0 = u0,1 + . . . + u0,N

with supp(u0, j ) ⊂ Br0
(qj ) and similarly u1 = u1,1 + . . . + u1,N . The set D(B2r0

(qj )) is RCCSV.

By Proposition 2.4.1 we can find a solution w j of Pw j = 0 on D(B2r0
(qj )) with w j |St

= u0, j and

∇nw j |St
= u1, j . Moreover, supp(w j ) ⊂ JM (Br0

(qj )). From JM (Br0
(qj )) ∩ (t − δ, t + δ) × S ⊂

D(B2r0
(qj )) we see that w j is defined on JM (Br0

(qj )) ∩ (t − δ, t + δ) × S.

Extend w j smoothly by zero to all of (t − δ, t + δ) × S. Now u := w1 + . . . + wN is a solution

defined on (t − δ, t + δ) × S as required. �

Now we are ready for the main theorem of this section.

Theorem 3.2.9. Let M be a globally hyperbolic Lorentzian manifold and let S ⊂ M be a

spacelike Cauchy hypersurface. Let n be the future directed timelike unit normal field along

S. Let E be a vector bundle over M and let P be a normally hyperbolic operator acting on

sections in E.

Then for each u0, u1 ∈ D(S, E) and for each f ∈ D(M, E) there exists a unique u ∈ C∞(M, E)

satisfying 
Pu = f on M,

u = u0 along S,

∇nu = u1 along S,

Moreover, supp(u) ⊂ JM (K ) where K = supp(u0) ∪ supp(u1) ∪ supp( f ).
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3 Linear wave equations - global theory

Proof. Uniqueness of the solution follows directly from Corollary 3.2.4.

The existence proof is done in two steps. First we use the local result for RCCSV-domains to

obtain a solution on a spacelike strip (−ε, ε)× S. In the second step we use Lemma 3.2.8 to show

that this solution can be extended in time direction to all times t.

Step 1: We may w.l.o.g. assume that K ⊂ Ω where Ω is an RCCSV domain: Namely, let

u0, u1 ∈ D(S, E) and f ∈ D(M, E). Using a partition of unity ( χ j ) j=1, ...,m we can write

u0 = u0,1 + . . . + u0,m , u1 = u1,1 + . . . + u1,m and f = f1 + . . . + fm where u0, j = χ ju0,

u1, j = χ ju1, and f j = χ j f . We may assume that each χ j (and hence each ui, j and f j )

have support in an RCCSV-domain Ω j . If we can solve the Cauchy problem on M for the

data (u0, j, u1, j, f j ), then we can add these solutions to obtain one for u0, u1, and f . Hence

we can without loss of generality assume that there is an Ω as in Proposition 2.4.1 such that

K := supp(u0) ∪ supp(u1) ∪ supp( f ) ⊂ Ω.

By Theorem 1.2.53 the spacetime M is isometric to R × S with a Lorentzian metric of the form

−N2dt2
+ gt where S corresponds to {0} × S, and each St := {t} × S is a spacelike Cauchy

hypersurface in M . Let u be the solution on Ω as asserted by Proposition 2.4.1. In particular,

supp(u) ⊂ JM (K ). By choosing the partition of unity ( χ j ) j appropriately we can assume that K

is so small that there exists an ε > 0 such that ((−ε, ε) × S) ∩ JM (K ) ⊂ Ω and K ⊂ (−ε, ε) × S.

K

JM
+

(K )

JM
− (K )

Ω

{0} × S

{ε} × S

{−ε} × S

Hence we can extend u by 0 to a smooth solution on all of (−ε, ε) × S.

Step 2: Let ui be an extension of u to a smooth solution on (−ε,Ti ) × S with support contained

in JM (K ). First we see that if we have two extensions u1 and u2 for T1 < T2, then the restriction

of u2 to (−ε,T1) × S must coincide with u1. This follows by uniqueness since both solve Pui = f

on (−ε,T1) × S and have the same initial data for a t < T1 Note here that Corollary 3.2.4 applies

because (−ǫ,T1) × S is a globally hyperbolic manifold in its own right.

Now let T+ be the supremum of all T for which u can be extended to a smooth solution on

(−ε,T ) × S with support contained in JM (K ). If we show T+ = ∞ we obtain a solution on

(−ε,∞) × S. Similarly considering the corresponding infimum T− then yields a solution on all

of M = R × S.

Assume that T+ < +∞. Put K̂ := ([−ǫ,T+] × S) ∩ JM (K ). By Proposition 1.2.56 K̂ is compact.

118



3.2 The Cauchy problem

Apply Lemma 3.2.8 to K̂ and get δ > 0 such that for each t ∈ R there is a smooth solution w of

Pw = 0 defined on (t − δ, t + δ) × S satisfying w |St
= u|St

and ∇nw |St
= ∇nu|St

. Fix t < T+
such that T+ − t < δ and still K ⊂ (−ǫ, t) × S.

K

Ω

{0} × S

{ε} × S{t} × S
{t − η} × S

{−ε} × S

{T+} × S
{t + δ} × S

On (t − η, t + δ) × S the section f vanishes with η > 0 small enough.

Thusw coincides with u on (t−η, t)×S. Here again, Corollary 3.2.4 applies because (t−η, t+δ)×S

is a globally hyperbolic manifold in its own right. Hence w extends the solution u smoothly to

(−ε, t + δ) × S. The support of this extension is still contained in JM (K ) because

supp
(
w |[t, t+δ)×S

) ⊂ JM
+

(
supp(u|St

) ∪ supp(∇nu|St
)
) ⊂ JM

+
(K̂∩St ) ⊂ JM

+
(JM
+

(K )) = JM
+

(K ).

Since T+ < t + δ this contradicts the maximality of T+. Therefore T+ = +∞. Similarly, one sees

T− = −∞ which concludes the proof. �

Next we see that the solution to the Cauchy problem depends continuously on the data.

Theorem 3.2.10. Let M be a globally hyperbolic Lorentzian manifold and let S ⊂ M be a

spacelike Cauchy hypersurface. Let n be the future directed timelike unit normal field along S.

Let E be vector bundle over M and let P be a normally hyperbolic operator acting on sections

in E.
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Then the map Φ : D(M, E) ⊕ D(S, E) ⊕ D(S, E) → C∞(M, E) sending ( f , u0, u1) to the

unique solution u of the Cauchy problem Pu = f , u|S = u|0, ∇nu = u1 is linear continuous.

Proof. First we look at the opposite direction and see that the map

P : C∞(M, E) → C∞(M, E) ⊕ C∞(S, E) ⊕ C∞(S, E),

u 7→ (Pu, u|S,∇nu),

is obviously linear and continuous. We want to use the open mapping theorem but for this we

need a linear bijection between Fréchet spaces. To obtain this we first fix a compact subset

K ⊂ M and set

DK (M, E) := { f ∈ D(M, E) | supp( f ) ⊂ K },
DK (S, E) := {v ∈ D(S, E) | supp(v) ⊂ K ∩ S}, and

VK := P−1 (DK (M, E) ⊕ DK (S, E) ⊕ DK (S, E)).

Since DK (M, E) ⊂ C∞(M, E) and DK (S, E) ⊂ C∞(S, E) are closed subsets they are Fréchet

spaces and therefore DK (M, E) ⊕ DK (S, E) ⊕ DK (S, E) is a Fréchet space as well. Hence

VK is a Fréchet space as the preimage under the continuous map P. Thus P : VK →
DK (M, E) ⊕ DK (S, E) ⊕ DK (S, E) is a linear, continuous and bijective map between Fréchet

spaces. By the open mapping theorem [14, Thm. V.6, p. 132] the inverse mapping P−1 :

DK (M, E) ⊕ DK (S, E) ⊕ DK (S, E) → VK ⊂ C∞(M, E) is continuous as well.

Now let ( f j, u0, j, u1, j ) → ( f , u0, u1) in D(M, E) ⊕ D(S, E) ⊕ D(S, E). Then we can choose

a compact subset K ⊂ M such that ( f j, u0, j, u1, j ) → ( f , u0, u1) in DK (M, E) ⊕ DK (S, E) ⊕
DK (S, E) (up to finitely many members of the sequence). Hence we see

Φ( f j, u0, j, u1, j ) = P−1 ( f j, u0, j, u1, j ) → P−1 ( f , u0, u1) = Φ( f , u0, u1)

which yields the continuity of Φ. �

3.3 Fundamental solutions

Using the knowledge about the Cauchy problem which we obtained in the previous section it is

now not hard to find global fundamental solutions on a globally hyperbolic manifold.

Theorem 3.3.1. Let M be a globally hyperbolic Lorentzian manifold. Let P be a normally

hyperbolic operator acting on sections in a vector bundle E over M .

Then for every x ∈ M there is exactly one fundamental solution F+(x) for P at x with past

compact support and exactly one fundamental solution F−(x) for P at x with future compact

support. They satisfy

1. supp(F±(x)) ⊂ JM
± (x),
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3.3 Fundamental solutions

2. for each ϕ ∈ D(M, E∗) the maps x 7→ F±(x)[ϕ] are smooth sections in E∗ satisfying

the differential equation P∗(F±(·)[ϕ]) = ϕ.

Proof. Uniqueness of the fundamental solutions is a consequence of Corollary 3.1.2. To show

existence fix a foliation of M by spacelike Cauchy hypersurfaces St , t ∈ R as in Theorem 1.2.45.

Let n be the future directed unit normal field along the leaves St . Let ϕ ∈ D(M, E∗). Choose t

so large that supp(ϕ) ⊂ IM− (St ). By Theorem 3.2.9 there exists a unique χϕ ∈ C∞(M, E∗) such

that P∗ χϕ = ϕ and χϕ |St
= (∇n χϕ ) |St

= 0. By Theorem 3.2.10 χϕ depends continuously on ϕ.

We check that χϕ does not depend on the choice

of t. Let t < t ′ be such that supp(ϕ) ⊂
IM− (St ) ⊂ IM− (St ′). Let χϕ and χ′ϕ be the

corresponding solutions. Choose t− < t so

that still supp(ϕ) ⊂ IM− (St− ). The open sub-

set M̂ :=
⋃

τ>t− Sτ ⊂ M is a globally hyperbolic

Lorentzian manifold itself. Now χ′ϕ satisfies

P∗ χ′ϕ = 0 on M̂ with vanishing Cauchy data

on St ′. By Corollary 3.2.4 χ′ϕ = 0 on M̂. In

particular, χ′ϕ has vanishing Cauchy data on St
as well. Thus χϕ − χ′ϕ has vanishing Cauchy

data on St and solves P∗( χϕ − χ′ϕ ) = 0 on all

of M . Again by Corollary 3.2.4 we conclude

χϕ − χ′ϕ = 0 on M .

St ′

St
St−

supp(ϕ)

M̂

Fix x ∈ M . We define F+(x) as the composition

D(M, E∗) → C∞(M, E∗) → E∗x,

ϕ 7→ χϕ 7→ χϕ (x).

We already noted that χϕ depends continuously on ϕ. The evaluation map C∞(M, E) → Ex is

continuous too, hence the map D(M, E∗) → E∗x , ϕ 7→ χϕ (x), is also continuous. Thus F+(x)

defines a distribution. By definition P∗(F+(·)[ϕ]) = P∗ χϕ = ϕ.

Now P∗ χP∗ϕ = P∗ϕ, hence P∗( χP∗ϕ − ϕ) = 0. Since both χP∗ϕ and ϕ vanish along St we

conclude from Corollary 3.2.4 χP∗ϕ = ϕ. Thus

(PF+(x))[ϕ] = F+(x)[P∗ϕ] = χP∗ϕ (x) = ϕ(x) = δx[ϕ].

Hence F+(x) is a fundamental solution of P at x.

It remains to show supp(F+(x)) ⊂ JM
+

(x). Let y ∈ M \ JM
+

(x). We have to construct a

neighborhood of y such that for each test section ϕ ∈ D(M, E∗) whose support is contained in
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3 Linear wave equations - global theory

this neighborhood we have F+(x)[ϕ] = χϕ (x) = 0. Since M is globally hyperbolic JM
+

(x) is

closed and therefore JM
+

(x)∩ JM
− (y′) = ∅ for all y′ sufficiently close to y. We choose y′ ∈ IM

+
(y)

and y′′ ∈ IM− (y) so close that JM
+

(x) ∩ JM
− (y′) = ∅ and

(

JM
+

(y′′) ∩⋃

t ≤t ′ St
)

∩ JM
+

(x) = ∅
where t ′ ∈ R is such that y′ ∈ St ′.

St ′

by

b
y′

JM
− (y′)

b

y′′

JM
+

(y′′) ∩ (∪t≤t′St )

b

x

JM
+

(x)

b

Now K := JM
− (y′) ∩ JM

+
(y′′) is a compact neighborhood of y. Let ϕ ∈ D(M, E∗) be such

that supp(ϕ) ⊂ K . By Theorem 3.2.9 supp( χϕ ) ⊂ JM
+

(K ) ∪ JM
− (K ) ⊂ JM

+
(y′′) ∪ JM

− (y′).
By the independence of χϕ of the choice of t > t ′ we have that χϕ vanishes on

⋃

t>t ′ St .

Hence supp( χϕ ) ⊂
(

JM
+

(y′′) ∩⋃

t ≤t ′ St
)

∪ JM
− (y′) and is therefore disjoint from JM

+
(x). Thus

F+(x)[ϕ] = χϕ (x) = 0 as required. �

3.4 Green’s operators

Now we want to find “solution operators” for a given normally hyperbolic operator P. More

precisely, we want to find operators which are inverses of P when restricted to suitable spaces of

sections. We will see that existence of such operators is basically equivalent to the existence of

fundamental solutions.

Definition 3.4.1. Let M be a timeoriented connected Lorentzian manifold. Let P be a normally

hyperbolic operator acting on sections in a vector bundle E over M . A linear map G+ :

D(M, E) → C∞(M, E) satisfying

(i) P ◦ G+ = idD (M,E) ,
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3.4 Green’s operators

(ii) G+ ◦ P |D (M,E) = idD (M,E) ,

(iii) supp(G+ϕ) ⊂ JM
+

(supp(ϕ)) for all ϕ ∈ D(M, E),

is called an advanced Green’s operator for P. Similarly, a linear map G− : D(M, E) →
C∞(M, E) satisfying (i), (ii), and

(iii’) supp(G−ϕ) ⊂ JM
− (supp(ϕ)) for all ϕ ∈ D(M, E)

instead of (iii) is called a retarded Green’s operator for P.

Fundamental solutions and Green’s operators are closely related.

Proposition 3.4.2. Let M be a timeoriented connected Lorentzian manifold. Let P be a

normally hyperbolic operator acting on sections in a vector bundle E over M .

If F±(x) is a family of advanced or retarded fundamental solutions for the adjoint operator

P∗ and if F±(x) depend smoothly on x in the sense that x 7→ F±(x)[ϕ] is smooth for each test

section ϕ and satisfies the differential equation P(F±(·)[ϕ]) = ϕ, then

(G±ϕ)(x) := F∓(x)[ϕ] (3.6)

defines advanced or retarded Green’s operators for P respectively. Conversely, given Green’s

operators G± for P, then (3.6) defines fundamental solutions for P∗ depending smoothly on x

and satisfying P(F±(·)[ϕ]) = ϕ for each test section ϕ.

Proof. Let F±(x) be a family of advanced and retarded fundamental solutions for the adjoint

operator P∗ respectively. Let F±(x) depend smoothly on x and suppose the differential equation

P(F±(·)[ϕ]) = ϕ holds. By definition we have

P(G±ϕ) = P(F∓(·)[ϕ]) = ϕ

thus showing (i). Assertion (ii) follows from the fact that the F±(x) are fundamental solutions,

G±(Pϕ)(x) = F∓(x)[Pϕ] = P∗F∓(x)[ϕ] = δx [ϕ] = ϕ(x).

To show (iii) let x ∈ M such that (G+ϕ)(x) , 0. Since supp(F−(x)) ⊂ JM
− (x) the support of

ϕ must hit JM
− (x). Hence x ∈ JM

+
(supp(ϕ)) and therefore supp(G+ϕ) ⊂ JM

+
(supp(ϕ)). The

argument for G− is analogous.

The converse is similar. �

Theorem 3.3.1 immediately yields
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3 Linear wave equations - global theory

Corollary 3.4.3. Let M be a globally hyperbolic Lorentzian manifold. Let P be a normally

hyperbolic operator acting on sections in a vector bundle E over M .

Then there exist unique advanced and retarded Green’s operators G± : D(M, E) → C∞(M, E)

for P. �

Lemma 3.4.4. Let M be a globally hyperbolic Lorentzian manifold. Let P be a normally

hyperbolic operator acting on sections in a vector bundle E over M . Let G± be the Green’s

operators for P and G∗± the Green’s operators for the adjoint operator P∗. Then

∫

M

(G∗±ϕ) · ψ dV =

∫

M

ϕ · (G∓ψ) dV (3.7)

holds for all ϕ ∈ D(M, E∗) and ψ ∈ D(M, E).

Proof. For the Green’s operators we have PG± = idD (M,E) and P∗G∗± = idD (M,E∗ ) and hence

∫

M

(G∗±ϕ) · ψ dV =

∫

M

(G∗±ϕ) · (PG∓ψ) dV

=

∫

M

(P∗G∗±ϕ) · (G∓ψ) dV

=

∫

M

ϕ · (G∓ψ) dV.

Notice that supp(G±φ) ∩ supp(G∓ψ) ⊂ JM
± (supp(φ)) ∩ JM

∓ (supp(ψ)) is compact in a globally

hyperbolic manifold so that the partial integration in the second equation is justified. �

3.5 Support systems

In the following, let M always be globally hyperbolic and E → M be a K-vector bundle with

K = R or C.

For a closed subset A ⊂ M denote by C∞
A

(M, E) the space of all smooth sections f of E with

supp f ⊂ A. Then C∞
A

(M, E) is a closed subspace of C∞(M, E). Moreover, if A1 ⊂ A2 then

C∞
A1

(M, E) is a closed subspace of C∞
A2

(M, E).

We denote by CM the set of all closed subsets of M .

Definition 3.5.1. A subset A ⊂ CM is called a support system on M if the following holds:

(i) For any A, A′ ∈ A we have A ∪ A′ ∈ A;

(ii) For any A ∈ A there is an A′ ∈ A such that A is contained in the interior of A′;
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3.5 Support systems

(iii) If A ∈ A and A′ ⊂ A is a closed subset, then A′ ∈ A.

The first condition implies that A is a directed system with respect to inclusion. The third

condition is harmless; ifA satisfies (i) and (ii), then adding all closed subsets of the members of

A to A will give a support system.

Given a support system on M we define

C∞A (M, E) :=
⋃

A∈A
C∞A (M, E).

Due to (i) C∞A (M, E) is a subspace of C∞(M, E). The topology on C∞A (M, E) is induced by its

open convex subsets where a convex subset O ⊂ C∞A (M, E) is open by definition if and only if

O∩C∞
A

(M, E) is open for all A ∈ A. Note that C∞A (M, E) is not a closed subspace of C∞(M, E)

in general.

Definition 3.5.2. We call a support system essentially countable if there is a sequence

A1, A2, A3, . . . ∈ A such that each Aj ⊂ Aj+1 and for any A ∈ A there exists a j with

A ⊂ Aj . Such a sequence A1 ⊂ A2 ⊂ A3 ⊂ · · · is called a basic chain of A.

Lemma 3.5.3. Let A be an essentially countable support system on M . If V ⊂ C∞A (M, E) is

a bounded subset3then there exists an A ∈ A such that V ⊂ C∞
A

(M, E). In particular, for any

convergent sequence f j ∈ C∞A (M, E) there exists an A ∈ A such that f j ∈ C∞
A

(M, E) for all

j.

This shows that a sequence ( f j ) converges in C∞A (M, E) if and only if there exists an A ∈ A
such that f j ∈ C∞

A
(M, E) for all j and ( f j ) converges in C∞

A
(M, E).

Proof of Lemma 3.5.3. Consider a basic chain A1 ⊂ A2 ⊂ A3 ⊂ . . .. Let V ⊂ C∞A (M, E) be a

subset not contained in any C∞
A j

(M, E). We have to show that V is not bounded. Pick points

x j ∈ M \ Aj and sections f j ∈ V with f j (x j ) , 0. Define the convex set

W :=

{

f ∈ C∞A (M, E)
���� | f (x j ) | <

| f j (x j ) |
j

for all j

}

.

Each A ∈ A contains only finitely many x j . Thus W ∩ C∞
A

(M, E) = { f ∈ C∞
A

(M, E) |
‖ f ‖{x j },0 < | f j (x j ) |/ j} is open in C∞

A
(M, E). Therefore W is an open neighborhood of 0 in

C∞A (M, E).

For any T > 0 we have T · W = { f ∈ C∞A (M, E) | | f (x j ) | < T
j
| f j (x j ) | for all j} and hence

f j < TW for j > T . Thus V is not contained in any TW and is therefore not bounded. �

3A subset V is bounded if for any open neighborhood U of 0 there exists a T > 0 such that V ⊂ T ·U
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3 Linear wave equations - global theory

Example 3.5.4. The system A = CM of all closed subsets is an essentially countable support

system on M . A basic chain is given by the constant sequence M ⊂ M ⊂ M ⊂ · · · . Clearly,

C∞CM (M, E) = C∞(M, E).

Example 3.5.5. LetA = c where c is the set of all compact subsets of M . A basic chain can be

constructed as follows: Provide M with a complete Riemannian metric γ. Fix a point x ∈ M .

Now let Aj be the closed ball centered at x with radius j with respect to γ.

Then C∞c (M, E) is the space of compactly supported smooth sections.

Example 3.5.6. Let A = sc be the set of all spatially compact subsets of M . If K1 ⊂ K2 ⊂
K3 ⊂ · · · is a basic chain of c, then J (K1) ⊂ J (K2) ⊂ J (K3) ⊂ · · · is a basic chain of sc. Hence

sc is essentially countable.

Now C∞sc (M, E) is the space of smooth sections with spatially compact support.

Example 3.5.7. Let A = spc be the set of all strictly past compact subsets of M . As in the

previous example we see that spc is essentially countable. Now C∞spc (M, E) is the space of

smooth sections with strictly past-compact support.

Similarly, one can define the space C∞
s f c

(M, E) of smooth sections with strictly future-compact

support.

Example 3.5.8. Let A = pc be the set of all past-compact subsets. If M is spatially compact

then pc = spc by 1.2.69 but in general pc is strictly larger than spc. We obtain the space

C∞pc (M, E) of smooth sections with past-compact support.

In general, the support system pc is not essentially countable. The following example was

communicated to me by Miguel Sánchez. Let M be the (1 + 1)-dimensional Minkowski space.

Let A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ M be a chain of past-compact subsets. Look at the “future-diverging”

sequence of points (n, 0) ∈ M and choose points4 pn ∈ M \ (An ∪ J−(n, 0)). By construction,

A := {p1, p2, p3, . . .} is not contained in any An but A is past compact. Namely, let x ∈ M . Then

there exists an n such that x ∈ J−(n, 0). Now J−(x) ∩ A ⊂ J−(n, 0) ∩ A is finite and hence

compact. Thus no chain in pc captures all elements of pc, so pc is not essentially countable.

Example 3.5.9. A similar discussion as in the previous example yields the space C∞
f c

(M, E) of

smooth sections with future-compact support and the space C∞t c (M, E) of smooth sections with

temporally-compact support. Both support systems are not essentially countable in general. But

again, if M is spatially compact, they are because then f c = s f c and tc = c by 1.2.70.

IfA ⊂ A ′, then C∞A (M, E) ⊂ C∞A′ (M, E) and the inclusion map is continuous. Hence we obtain

the following diagram of continuously embedded spaces:

4 Note that M \ I−(n, 0) is not past compact so that An ∪ J−(n, 0) cannot be all of M .
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C∞spc (M, E)
� � //
w�

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚

C∞pc (M, E)
t�

''❖❖
❖❖

❖❖
❖❖

❖❖

C∞c (M, E)

* 


77♦♦♦♦♦♦♦♦♦♦

t�

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

� � // C∞t c (M, E)

' �
❥❥❥❥❥❥❥

55❦❦❦❦❦❦

w�
❚❚

❚❚
❚❚

))❙❙
❙❙

❙❙
❙

C∞sc (M, E)
� � // C∞(M, E)

C∞
s f c

(M, E)
� � //

( �

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦
C∞
f c

(M, E)

* 


77♦♦♦♦♦♦♦♦♦♦♦

Remark 3.5.10. Concerning the continuity of the maps, let X be a locally convex topological

vector space. Then a linear map f : C∞A (M, E) → X is continuous if and only if the maps

f |C∞
A

(M,E) are continuous for all A ∈ A.

Namely, f is continuous if and only if f −1(O) is open in C∞A (M, E) for all open convex

neighborhoods O at 0 in X . But this is equivalent to the fact that for all O the set f −1(O) ∩
C∞
A

(M, E) is open in C∞
A

(M, E) for all A ∈ A. This just means that f |C∞
A

(M,E) is continuous for

all A ∈ A.

In particular, choosing f = id shows that the embedding C∞
A

(M, E) →֒ C∞A (M, E) is continuous

for every A ∈ A.

Moreover, all embeddings in the diagram have dense image. Namely, we have

Lemma 3.5.11. Let A be a support system on M such that c ⊂ A, i.e., each compact set is

contained inA. Then C∞c (M, E) is a dense subspace of C∞A (M, E).

Proof. Let f ∈ C∞A (M, E) and let O be a convex open neighborhood of f in C∞A (M, E). Let

A ∈ A with f ∈ C∞
A

(M, E). Since O ∩ C∞
A

(M, E) is open in C∞
A

(M, E) there exists an ǫ > 0

and a seminorm ‖ · ‖K,m such that

{g ∈ C∞A (M, E) | ‖ f − g‖K,m < ǫ } ⊂ O ∩ C∞A (M, E).

Pick a cutoff function χ ∈ C∞c (M,R) with χ ≡ 1 on K . Then for g := χ · f ∈ C∞c (M, E) we

find that ‖ f − g‖K,m = ‖ χ · f − f ‖K,m = 0. Thus g ∈ O ∩ C∞
A

(M, E). �

Definition 3.5.12. Two support systemsA and B be on M are said to be in duality if for any

C ∈ CM :

(i) C ∈ A if and only if C ∩ B is compact for all B ∈ B;

(ii) C ∈ B if and only if C ∩ A is compact for all A ∈ A.
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Example 3.5.13. Here are some examples of support systems A and B in duality. The last

column contains a justification of this fact.

A B why?

CM c obvious

pc s f c Lemma 1.2.71 (i) and (v)

f c spc Lemma 1.2.71 (ii) and (iv)

tc sc Lemma 1.2.71 (iii) and (vi)

Support systems in duality

Now we turn to distributional sections with support in a support system.

Lemma 3.5.14. Let A and B be two support systems on M in duality. Then a distributional

section f ∈ D ′(M, E) has support contained in A if and only if f extends to a continuous

linear functional on C∞B (M, E∗).

Proof. a) Suppose first that supp f ∈ A. Let B ∈ B. Since supp f ∩ B is compact there is a

cutoff function χ ∈ C∞c (M,R) with χ ≡ 1 on a neighborhood of supp f ∩ B. We extend f to a

linear functional FB on C∞
B

(M, E∗) by

FB[φ] := f [χφ].

This extension is independent of the choice of χ because for another choice χ′, f and χφ− χ′φ
have disjoint supports. If φ j → 0 in C∞

B
(M, E∗), then χφ j → 0 in C∞c (M, E∗) and hence

FB[φ j ] = f [χφ j ]→ 0. Thus FB is continuous.

Doing this for every B ∈ B we obtain an extension F of f to a linear functional on C∞B (M, E∗)
with FB being the restriction of F to C∞

B
(M, E∗). Continuity of F holds because each FB is

continuous.

b) Conversely, assume that f extends to a continuous linear functional F on C∞B (M, E∗). We

check that supp f ∈ A by showing that supp f ∩ B is compact for every B ∈ B.

Let B ∈ B. Choose B ′ ∈ B such that B is contained in the interior of B ′. Since the restriction

FB′ of F to C∞
B′ (M, E∗) is linear and continuous, there exists a seminorm ‖ · ‖K,m and a constant

C > 0 such that

|FB′[φ]| ≤ C · ‖φ‖K,m
for all φ ∈ C∞

B′ (M, E∗). In particular, FB′[φ] = 0 if supp(φ) and K are disjoint.

Claim: B ∩ (M \ K ) ⊂ M \ supp(F).

Namely, let x ∈ B ∩ (M \ K ). Then x lies in the interior of B ′. Hence there is an open

neighborhood U of x entirely contained in B ′. Since x < K we may assume that U and K are

disjoint. Now we know that for all φ ∈ C∞c (M, E∗) with supp(φ) ⊂ U we have F[φ] = 0. Thus

x < supp(F). ✓

The claim implies supp(F) ⊂ (M\B)∪K and hence supp(F)∩B ⊂ K . Therefore the intersection

supp(F) ∩ B is compact. �
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Notation 3.5.15. Let A ⊂ M be a closed subset and A be a support system on M . We define

D ′A (M, E) := { f ∈ D ′(M, E) | supp( f ) ⊂ A}

and

D ′A (M, E) :=
⋃

A∈A
D ′A (M, E)

For A being one of the support systems C, pc, f c, tc, sc, spc, s f c, or c we equip the spaces

D ′A (M, E) with the weak*-topology. This means that a sequence f j ∈ D ′A (M, E) converges if

and only if f j [φ] converges for every fixed φ ∈ C∞B (M, E∗), where B is the dual support system

as in the table.

Note that if A ⊂ B for two support systems A and B we obtain a continuous embedding

C∞A (M, E∗) →֒ C∞B (M, E∗).

For the dual spaces we obtain a continuous linear embedding

D ′B (M, E) ←֓ D ′A (M, E).

Now Dualizing the diagram for smooth sections, our list of support systems in duality and Lemma

3.5.14 yield the following diagram of continuous embeddings of several spaces of distributions,

characterized by different support properties:

D ′
f c

(M, E)
jJ

ww♦♦♦
♦♦
♦♦
♦♦
♦

D ′
s f c

(M, E)? _oo

gG
❥❥
❥❥
❥❥

uu❥❥❥❥
❥❥
❥

D ′(M, E) D ′sc (M, E)? _oo D ′t c (M, E)
7 W

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚

gG

uu❥❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

D ′c (M, E)? _oo
4 T

gg❖❖❖❖❖❖❖❖❖❖

jJ

ww♦♦♦
♦♦
♦♦
♦♦
♦♦

D ′pc (M, E)
4 T

gg❖❖❖❖❖❖❖❖❖❖❖

D ′spc (M, E)? _oo
7 W

❚❚❚❚❚❚❚

ii❚❚❚❚❚❚

Lemma 3.5.16. Let A be one of the support systems C, pc, f c, tc, sc, spc, s f c, or c. Then

C∞c (M, E) is a dense subspace of D ′A (M, E).

Proof. Let B be the dual support system to A as in the table. Let u ∈ D ′A (M, E). Put

A := supp(u), hence u ∈ D ′
A

(M, E). It is well known that C∞c (M, E) is dense in D ′(M, E).

Hence there is a sequence u j ∈ C∞c (M, E) with u j → u in D ′(M, E).

Choose A′ ∈ A such that A is contained in the interior of A′. Let χ ∈ C∞(M,R) be a function

such that χ ≡ 1 on A and supp χ ⊂ A′.
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Let φ ∈ C∞
B

(M, E∗) where B ∈ B. Since A′∩B is compact, the section χφ has compact support.

Therefore

( χu j )[φ] = u j [χφ]→ u[χφ] = ( χu)[φ] = u[φ].

Thus the compactly supported sections χu j converge to u in D ′A (M, E). �

3.6 Green-hyperbolic operators

We will now enlarge the class of differential operator significantly, from normally hyperbolic

operator to Green-hyperbolic operators Let E1, E2 → M be vector bundles over a globally

hyperbolic manifold. Let P : C∞(M, E1) → C∞(M, E2) be a linear differential operator.

Definition 3.6.1. An advanced Green’s operator of P is a linear map G+ : C∞c (M, E2) →
C∞(M, E1) such that

(i) G+P f = f for all f ∈ C∞c (M, E1);

(ii) PG+ f = f for all f ∈ C∞c (M, E2);

(iii) supp(G+ f ) ⊂ J+(supp f ) for all f ∈ C∞c (M, E2).

A linear map G− : C∞c (M, E2) → C∞(M, E1) is called a retarded Green’s operator of P if

(i), (ii) hold and

(iii)’ supp(G− f ) ⊂ J−(supp f ) holds for every f ∈ C∞c (M, E2).

Definition 3.6.2. The operator P is called Green hyperbolic if P and P∗ have advanced and

retarded Green’s operators.

Example 3.6.3. Normally hyperbolic operators are Green hyperbolic by Corollary 3.4.3. Note

here that the formal dual of a normally hyperbolic operator is again normally hyperbolic.

Example 3.6.4. Let E = T∗M and m > 0. Then P = δd + m2 is the Proca operator. The

Proca operator is not normally hyperbolic but it is Green hyperbolic. To see this, we look at

P̃ := dδ + δd + m2, which is a normally hyperbolic operator and hence has Green’s operators

G̃±. We set Q := m−2dδ + id and check that G± := Q ◦ G̃± are Green’s operators of P. First

note that PQ = QP = P̃. In particular QP̃ = QPQ = P̃Q, so Q commutes with P̃. Hence it also

commutes with the G̃± (Exercise). Now we calculate

G±P = QG̃±P = G̃±QP = G̃±P̃ = id
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and

PG± = PQG̃± = P̃G̃± = id.

Since the differential operator Q does not enlarge the supports, the support properties of G̃±
directly pass to G±. Hence the G± are Green’s operators of P. Similarly, one gets Green’s

operators for P∗.

Green hyperbolicity persists under restriction to suitable subregions of the manifold M .

Lemma 3.6.5. Let M be globally hyperbolic and let N ⊂ M be an open subset which is

causally compatible and globally hyperbolic. Then the restriction of P to N is again Green

hyperbolic.

Proof. We construct an advanced Green’s operator for the restriction P |N of P to N . The

construction of the retarded Green’s operator and the ones for P∗ are analogous. Denote by

ext : C∞c (N, E2 |N ) → C∞c (M, E2) the extension-by-zero operator and by res : C∞(M, E1) →
C∞(N, E1 |N ) the restriction operator. Let G+ : C∞c (M, E2) → C∞(M, E1) be the advanced

Green’s operator of P. We claim that

GN
+

:= res ◦ G+ ◦ ext : C∞c (N, E2 |N ) → C∞(N, E1 |N )

is an advanced Green’s operator of P |N . Since differential operators commute with restrictions

and extensions we easily check for f ∈ C∞c (N, Ei |N ):

P |N (GN
+

f ) = res ◦ P ◦ G+ ◦ ext f = res ◦ ext f = f

and

GN
+

(P |N f ) = res ◦ G+ ◦ ext ◦ res ◦ P ◦ ext f = res ◦ G+ ◦ P ◦ ext f = res ◦ ext f = f .

This shows (i) and (ii) in Definition 3.6.1. As to (iii) we see

supp(GN
+

f ) = supp(res ◦ G+ ◦ ext f ) = supp(G+ ◦ ext f ) ∩ N

⊂ JM
+

(supp(ext f )) ∩ N = JM
+

(supp f ) ∩ N = JN
+

(supp f ).

In the last equality we used that N is causally compatible. �

Definition 3.6.6. Let G± be advanced and retarded Green’s operators of P. Then

G := G+ − G− : C∞c (M, E2) → C∞(M, E1)

is called the causal propagator.
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From the support properties for the advanced and retarded Green’s operators ((iii) and (iii)’ in

Definition 3.6.1), namely

supp(G+ f ) ⊂ J+(supp f )

supp(G− f ) ⊂ J−(supp f )

for all f ∈ C∞c (M, E2) we see that the Green’s operators of P give rise to linear maps

G+ : C∞c (M, E2) → C∞spc (M, E1),

G− : C∞c (M, E2) → C∞s f c (M, E1),

G : C∞c (M, E2) → C∞sc (M, E1).

This motivates the following extensions:

Theorem 3.6.7. There are unique linear extensions

G+ : C∞pc (M, E2) → C∞pc (M, E1) and G− : C∞f c (M, E2) → C∞f c (M, E1)

of G+ and G− respectively, such that

(i) G+P f = f for all f ∈ C∞pc (M, E1);

(ii) PG+ f = f for all f ∈ C∞pc (M, E2);

(iii) supp(G+ f ) ⊂ J+(supp f ) for all f ∈ C∞pc (M, E2);

and similarly for G−.

Proof. We only consider G+, the proof for G− being analogous.

a) Let f ∈ C∞pc (M .E). Given x ∈ M we define (G+ f )(x) as follows: Since J−(x) ∩ supp f

is compact we can choose a cutoff function χ ∈ C∞c (M,R) with χ ≡ 1 on a neighborhood of

J−(x) ∩ supp f . Now we put

(G+ f )(x) := (G+( χ f ))(x). (3.8)

b) The definition in (3.8) is independent of the choice of χ. Namely, let χ′ be another such

cutoff function. It suffices to show x < supp(G+(( χ − χ′) f )). If x ∈ supp(G+(( χ − χ′) f )) ⊂
J+(supp(( χ − χ′) f )) then there would be a causal curve from supp(( χ − χ′) f ) to x. Hence

supp(( χ − χ′) f ) ∩ J−(x) would be nonempty. On the other hand,

supp(( χ − χ′) f ) ∩ J−(x) = supp( χ − χ′) ∩ supp f ∩ J−(x)

⊂ supp( χ − χ′) ∩ { χ ≡ χ′ ≡ 1}
= ∅,

a contradiction.
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c) The section G+ f is smooth. Namely, a cutoff function χ for x ∈ M also works for all x′ ∈ J−(x)

simply because J−(x′) ⊂ J−(x). In particular, on the open set I− (x) we have G+ f = G+( χ f )

for a fixed χ. Hence G+ f is smooth on I− (x). Since any point in M is contained in I− (x) for

some x, G+ f is smooth on M .

d) The operator G+ is linear. The only issue here is additivity. Let f1, f2 ∈ C∞pc (M, E2). Then

supp( f1)∩ J−(x) and supp( f2)∩ J−(x) are both compact and we may choose the cutoff function

χ such that χ ≡ 1 on neighborhoods of both supp( f1) ∩ J−(x) and supp( f2) ∩ J−(x). Then

χ ≡ 1 on a neighborhood of supp( f1 + f2) ∩ J−(x) and we get

(G+( f1 + f2))(x) = (G+( χ f1 + χ f2))(x)

= (G+( χ f1)(x) + (G+( χ f2))(x)

= (G+ f1)(x) + (G+ f2))(x).

e) For G+, properties (i), (ii) and (iii) hold: Let x ∈ M and χ a cutoff function which is identically

≡ 1 on a neighborhood of supp f ∩ J− (x). In particular, we may choose χ ≡ 1 on a neighborhood

of x. Then

(PG+ f )(x) = (PG+( χ f ))(x) = ( χ f )(x) = f (x).

This shows (ii). Moreover,

(G+P f )(x) = (G+( χ · P f ))(x)

= (G+P( χ f ))(x) + (G+([χ, P] f ))(x)

= f (x) + (G+([χ, P] f ))(x).

In order to prove (i) we have to show x < supp(G+([χ, P] f )). The coefficients of the differential

operator [χ, P] vanish where χ ≡ 1, hence in particular on supp f ∩ J−(x). Now we find

supp(G+([χ, P] f )) ⊂ J+(supp([χ, P] f ))

⊂ J+(supp f \ J−(x))

⊂ J+(supp f ) \ {x}

and therefore x < supp(G+([χ, P] f )).

As to (iii) we see for f ∈ C∞pc (M, E2)

supp(G+ f ) ⊂
⋃

χ

supp(G+( χ f )) ⊂
⋃

χ

J+(supp( χ f )) ⊂ J+(supp f ).

Here the union is taken over all χ ∈ C∞c (M,R).

f) Since the causal future of a past-compact set is again past compact, (iii) shows that G+ maps

sections with past-compact support to sections with past-compact support.

g) Now (i) and (ii) show that P considered as an operator C∞pc (M, E1) → C∞pc (M, E2) is bijective

and that G+ is its inverse, i.e.

G+ =
(

P |C∞pc (M,E1 ) : C∞pc (M, E1) → C∞pc (M, E2)
)−1

.

In particular, G+ is uniquely determined. �
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Corollary 3.6.8. There are no nontrivial solutions f ∈ C∞(M, E1) of the differential equation

P f = 0 with past-compact or future-compact support. For any g ∈ C∞pc (M, E2) or g ∈
C∞
f c

(M, E2) there exists a unique f ∈ C∞(M, E1) solving P f = g and such that supp( f ) ⊂
J+(supp(g)) or supp( f ) ⊂ J−(supp(g)), respectively.

Since the causal future of a strictly past-compact set is again strictly past compact we can restrict

G+ to smooth sections with strictly past-compact support and we get

Corollary 3.6.9. There are unique linear extensions

G̃+ : C∞spc (M, E2) → C∞spc (M, E1) and G̃− : C∞s f c (M, E2) → C∞s f c (M, E1)

of G+ and G− respectively, such that

(i) G̃+P f = f for all f ∈ C∞spc (M, E1);

(ii) PG̃+ f = f for all f ∈ C∞spc (M, E2);

(iii) supp(G̃+ f ) ⊂ J+(supp f ) for all f ∈ C∞spc (M, E2);

and similarly for G̃−.

Corollary 3.6.10. The Green’s operators G± : C∞c (M, E2) → C∞(M, E1) of a Green-

hyperbolic operator P are unique.

Proof. The advanced Green’s operator G+ is a restriction of the operator G+ which is uniquely

determined by P (as the inverse of P : C∞pc (M, E) → C∞pc (M, E)). In other words, we obtain the

advanced Green’s operator G+ of P by composing the following maps

C∞c (M, E2) →֒ C∞pc (M, E2)
P−1

−−−→ C∞pc (M, E1) →֒ C∞(M, E1).

Similar arguments show uniqueness of G−. �

Corollary 3.6.11. Let P1 : C∞(M, E1) → C∞(M, E2) and P2 : C∞(M, E2) → C∞(M, E3) be

Green hyperbolic. Then P2 ◦ P1 : C∞(M, E1) → C∞(M, E3) is Green hyperbolic.

Proof. Denote the Green’s operators of Pi by Gi
±. We obtain an advanced Green’s operator of
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P2 ◦ P1 by composing the following maps:

C∞c (M, E3) →֒ C∞pc (M, E3)
G

2

+−−→ C∞pc (M, E2)
G

1

+−−→ C∞pc (M, E2) →֒ C∞(M, E1)

and similarly for the retarded Green’s operator and the dual operator. �

There is a very useful partial inverse to Corollary 3.6.11.

Corollary 3.6.12. Let P : C∞(M, E) → C∞(M, E) be a differential operator such that P2 is

Green hyperbolic. Then P itself is Green hyperbolic.

Proof. Theorem 3.6.7 applied to P2 tells us that P2 maps C∞pc (M, E) bijectively onto itself.

Hence P itself also maps C∞pc (M, E) bijectively onto itself. Let G+ denote the composition

C∞c (M, E) →֒ C∞pc (M, E)
P−1

−−−→ C∞pc (M, E) →֒ C∞(M, E). Then G+ obviously satisfies (i) and

(ii) in Definition 3.6.1.

As to (iii), let f ∈ C∞c (M, E). Put A := J+(supp f ) ∈ pc. Again by Theorem 3.6.7, P2 maps

C∞
A

(M, E) bijectively onto itself. Hence so does P which implies that G+ maps C∞
A

(M, E)

bijectively onto itself. In particular, supp(G+ f ) ⊂ A = J+(supp f ).

The arguments for G− and for P∗ are analogous. �

Definition 3.6.13. A differential operator P ∈Diff
1
(E, E) of first order is said to be of Dirac

type if P2 is normally hyperbolic.

Remark 3.6.14. Since normally hyperbolic operators are Green hyperbolic, Corollary 3.6.12

tells us that Dirac-type operators are Green hyperbolic too.

The direct sum of two Green-hyperbolic operators is again Green hyperbolic.

Lemma 3.6.15. Let P : C∞(M, E1) → C∞(M, E2) and Q : C∞(M, E ′
1
) → C∞(M, E ′

2
) be

Green hyperbolic. Then the operator

(

P 0

0 Q

)

: C∞(M, E1 ⊕ E ′1) → C∞(M, E2 ⊕ E ′2)

is also Green hyperbolic.
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Proof. If G± and G′± are the Green’s operators for P and Q respectively, then

(

G± 0

0 G′±

)

yields

Green’s operators for

(

P 0

0 Q

)

. �

Remark 3.6.16. The simple construction in Lemma 3.6.15 shows that Green hyperbolicity

cannot be read off the principal sympbol of the operator. For instance, P could be a normally

hyperbolic operator and Q a Dirac-type operator. Then the total Green-hyperbolic operator in

Lemma 3.6.15 is of second order and the principal symbol does not see Q and therefore cannot

recognize Q as a Green hyperbolic operator.

For similar reasons, it is not clear how to characterize Green hyperbolicity in terms of well-

posedness of a Cauchy problem in general.

Now we get the following variation of Corollary 3.6.12 for operators acting on sections of two

different bundles:

Corollary 3.6.17. Let P : C∞(M, E1) → C∞(M, E2) be a differential operator and let E1

and E2 carry nondegenerate (but possibly indefinite) fiber metrics. Let Pt : C∞(M, E2) →
C∞(M, E1) be the formally adjoint operator.

If PtP and PPt are Green hyperbolic, then P and Pt are Green hyperbolic too.

Proof. Consider the operator P : C∞(M, E1 ⊕ E2) → C∞(M, E1 ⊕ E2) defined by

P =
(

0 Pt

P 0

)

.

Since PtP and PPt are Green hyperbolic so is

P2
=

(

PtP 0

0 PPt

)

.

By Corollary 3.6.12, P is Green hyperbolic. Let

G± =
(

G11
± G21

±
G12
± G22

±

)

be the Green’s operators of P. Then one easily sees that G21
± are Green’s operators for P and G12

±
for Pt . �

Example 3.6.18. Consider the classical Dirac operator acting on sections of the spinor bundle

E = ΣM (see [4] for details). If M is even dimensional, then the spinor bundle splits into
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“chirality subbundles” ΣM = Σ+M ⊕ Σ−M . Then the Dirac operator interchanges these bundles

and is given by
(

0 Dt

D 0

)

.

with operators D : C∞(M,Σ+M ) → C∞(M,Σ−M ) and Dt : C∞(M,Σ−M ) → C∞(M,Σ+M ).

By Corollary 3.6.17, they are Green hyperbolic too.

Corollary 3.6.19. The Green’s operators G± : C∞c (M, E2) → C∞(M, E1) as well as the

extensions

G̃+ : C∞spc (M, E2) → C∞spc (M, E1), G̃− : C∞s f c (M, E2) → C∞s f c (M, E1),

G+ : C∞pc (M, E2) → C∞pc (M, E1), G− : C∞f c (M, E2) → C∞f c (M, E1)

are continuous.

Proof. a) G+ is continuous:

The operator G+ : C∞pc (M, E2) → C∞pc (M, E1) is the inverse of P when considered as an operator

C∞pc (M, E1) → C∞pc (M, E2). If A ∈ pc, then also J+(A) ∈ pc. Now G+ maps sections with

support in J+(A) to sections with support in J+(J+(A)) = J+(A). Hence P yields a bijective

linear operator C∞
J+ (A)

(M, E1) → C∞
J+ (A)

(M, E2) with inverse given by the restriction of G+ to

C∞
J+ (A)

(M, E2). By the open mapping theorem for Fréchet spaces G+ is continuous as a map

C∞
J+ (A)

(M, E2) → C∞
J+ (A)

(M, E1). But now the operator G+ as a map C∞
A

(M, E2) → C∞pc (M, E1)

is given by the following composition of continuous maps:

C∞A (M, E2) →֒ C∞J+ (A) (M, E2)

G+ |C∞
J+(A)

(M,E2)

−−−−−−−−−−−−−−→ C∞J+ (A) (M, E1) →֒ C∞pc (M, E1)

where we have the continuous embeddings C∞
A

(M, E2) ⊂ C∞
J+ (A)

(M, E2) and C∞
J+ (A)

(M, E1) ⊂
C∞pc (M, E1). Hence G+ as a map C∞

A
(M, E2) → C∞pc (M, E1) is continuous. Since this holds for

any A ∈ pc, we conclude that G+ : C∞pc (M, E2) → C∞pc (M, E1) is continuous.

b) A similar argument shows that G̃+ : C∞spc (M, E2) → C∞spc (M, E1) is continuous.

c) G+ is continuous:

Using the continuous embeddings C∞c (M, E2) ⊂ C∞spc (M, E2) and C∞spc (M, E1) ⊂ C∞(M, E1)

we see that the Green’s operator G+ is given by the following composition:

C∞c (M, E2) →֒ C∞pc (M, E2)
G+−−→ C∞pc (M, E1) →֒ C∞(M, E1)

d) The same reasoning proves the claim for G−, G̃−, and G−. �

Next we show that the Green’s operators of the dual operator are essentially the duals of the

Green’s operators. The roles of “advanced” and “retarded” get interchanged.
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Lemma 3.6.20. Let P : C∞(M, E1) → C∞(M, E2) be Green hyperbolic. Denote the Green’s

operators of P by G± and the ones of P∗ by G∗±. Then

∫

M

〈G̃∗−ϕ, f 〉 dV =

∫

M

〈ϕ,G+ f 〉 dV

holds for all ϕ ∈ C∞
s f c

(M, E∗
1
) and f ∈ C∞pc (M, E2). Similarly,

∫

M

〈G̃∗
+
ϕ, f 〉 dV =

∫

M

〈ϕ,G− f 〉 dV

holds for all ϕ ∈ C∞spc (M, E∗
1
) and f ∈ C∞

f c
(M, E2).

Proof. By (ii) in Theorem 3.6.7 we have

∫

M

〈G̃∗−ϕ, f 〉 dV =

∫

M

〈G̃∗−ϕ, P(G+ f )〉 dV

=

∫

M

〈P∗(G̃∗−ϕ),G+ f 〉 dV

=

∫

M

〈ϕ,G+ f 〉 dV.

The integration by parts is justified because the intersection supp(G̃∗−ϕ)∩supp(G+ f ) of a strictly

future-compact set and a past-compact set is compact. The second assertion is analogous. �

The fact that a Green-hyperbolic operator P is an isomorphism on smooth sections with past-

compact support can be expressed by saying that

{0} → C∞pc (M, E1)
P−→ C∞pc (M, E2) → {0}

is an exact sequence. Similarly ,

{0} → C∞f c (M, E1)
P−→ C∞f c (M, E2) → {0} ,

{0} → C∞spc (M, E1)
P−→ C∞spc (M, E2) → {0} ,

{0} → C∞s f c (M, E1)
P−→ C∞s f c (M, E2) → {0}

are exact. The corresponding statement for the support systems c and sc is more complicated

and is given by the following theorem.
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Theorem 3.6.21. Let G be the causal propagator of the Green-hyperbolic operator P :

C∞(M, E1) → C∞(M, E2). Then

{0} → C∞c (M, E1)
P−→ C∞c (M, E2)

G−→ C∞sc (M, E1)
P−→ C∞sc (M, E2) → {0} (3.9)

is an exact sequence.

Proof. a) Exactness at C∞c (M, E1):

We know from Theorem 3.6.7 (i) and (ii) that P considered as an operator C∞pc (M, E1) →
C∞pc (M, E2) is bijective. Since C∞c (M, E1) ⊂ C∞pc (M, E1) we conclude that P is injective on this

smaller space too.

b) Exactness at C∞c (M, E2):

Since G± ◦ P = id |C∞c we see that G ◦ P = 0 on C∞c (M, E1). Hence we conclude that

im(P |C∞c (M,E1 ) ) ⊂ ker(G |C∞c (M,E2 )). Conversely, let f ∈ ker(G |C∞c (M,E2 ) ). We define u :=

G− f = G+ f ∈ C∞(M, E1). Since f has compact support we see that u = G+ f ∈ C∞spc and

u = G− f ∈ C∞
s f c

. Hence u has strictly past and strictly future compact support. This means that

u has compact support 5. Therefore Pu = PG+ f = f which implies that f ∈ im(P |C∞c (M,E1 )).

This shows ker(G |C∞c (M,E2 ) ) ⊂ im(P |C∞c (M,E1 ) .

c) Exactness at C∞sc (M, E1):

First we see that im(G |C∞c (M,E2 )) ⊂ ker(P |C∞sc (M,E1 )) since

P ◦ G = P ◦ G+ − P ◦ G− = id− id = 0.

Conversely, let f ∈ ker(P |C∞sc (M,E1 )). Let t : M → R be a Cauchy time function. Let t0 and

ǫ > 0 be such that [t0 − ǫ, t0 + ǫ] ⊂ t(M ). Choose a function χ ∈ C∞(R) with χ ≡ 1 on

(−∞, t0 − ǫ ) and χ ≡ 0 on (t0 + ǫ,∞).

t0 − ε t0 + εt0

χ

Then supp( χ ◦ t) ∈ f c and supp((1 − χ) ◦ t) ∈ pc. Set

f1 := ( χ ◦ t) · f ∈ C∞s f c (M, E1)

and

f2 := ((1 − χ) ◦ t) · f ∈ C∞spc (M, E1).

5To see this let supp(u) ⊂ J+(K1) and supp(u) ⊂ J−(K2). Then supp(u) ⊂ J+(K1 ∪ K2) ∩ J−(K1 ∪ K2) which is

a compact set.
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Then f = f1+ f2 and 0 = P f = P f1+P f2, hence P f1 = −P f2. The support of u := P f1 = −P f2

is both strictly future compact and strictly past compact, hence compact, u ∈ C∞c (M, E2).

Moreover,

Gu = G+P f1 − G−P f1 = G+P f1 + G−P f2 = f1 + f2 = f .

d) Exactness at C∞sc (M, E2):

We have to show that P is surjective on C∞sc (M, E2). Let f be in C∞sc (M, E2). Again, decompose

f as f = f1 + f2 with f1 ∈ C∞
s f c

(M, E2) and f2 ∈ C∞spc (M, E2). Set u := G− f1 + G+ f2 ∈
C∞sc (M, E1). Then

Pu = PG− f1 + PG+ f2 = f1 + f2 = f . �

We extend any differential operator P : C∞(M, E1) → C∞(M, E2) as usual to distributional

sections by taking the dual map of P∗ : C∞c (M, E∗
2
) → C∞c (M, E∗

1
) thus giving rise to a continuous

linear map P : D ′(M, E1) → D ′(M, E2).

Lemma 3.6.22. The Green’s operators G+ : C∞pc (M, E2) → C∞pc (M, E1) and G− :

C∞
f c

(M, E2) → C∞
f c

(M, E1) extend uniquely to continuous linear operators

Ĝ+ : D ′pc (M, E2) → D ′pc (M, E1) and Ĝ− : D ′f c (M, E2) → D ′f c (M, E1),

respectively. Moreover

(i) Ĝ+P f = f holds for all f ∈ D ′pc (M, E1);

(ii) PĜ+ f = f holds for all f ∈ D ′pc (M, E2);

(iii) supp(Ĝ+ f ) ⊂ J+(supp f ) holds for all f ∈ D ′pc (M, E2);

and similiarly for Ĝ−.

Proof. Recall from Lemma 3.5.14 and Example 3.5.13 that D ′pc (M, Ei ) can be identified with

the dual space of C∞
s f c

(M, E∗
i
). Let G∗− be the retarded Green’s operator of P∗. We extend to G̃∗− :

C∞
s f c

(M, E∗
1
) → C∞

s f c
(M, E∗

2
). Now let Ĝ+ be the dual map of G̃∗−, namely for u ∈ D ′pc (M, E2)

and ϕ ∈ C∞
s f c

(M, E1) set

(Ĝ+u)[ϕ] := u[G̃∗−ϕ].

This defines a continuous linear map D ′pc (M, E2) → D ′pc (M, E1). By Lemma 3.6.20, Ĝ+ is

an extension of G+. The extension is unique because C∞c (M, E2) is dense in D ′pc (M, E2) by

Lemma 3.5.16.

Dualizing (i) and (ii) for P∗ and G∗− in Corollary 3.6.9 we get (i) and (ii) as asserted. As to (iii)

let f ∈ D ′pc (M, E2) and let ϕ ∈ C∞c (M, E∗
2
) be a test section such that J+(supp f )∩supp(ϕ) = ∅.

140
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Then supp f ∩ J−(supp(ϕ)) = ∅ and therefore

(Ĝ+ f )[ϕ] = f [G
∗
−ϕ] = 0.

Thus supp(Ĝ+ f ) ⊂ J+(supp f ). �

Summarizing Theorem 3.6.7, Corollary 3.6.9 and Lemma 3.6.22 we get the following diagram

of continuous extensions of the Green’s operator G+ of P:

C∞c (M, E2)
� � //

G+

((
C∞spc (M, E2)

G̃+ //
_�

��

C∞spc (M, E1)
_�

��

� � // C∞(M, E1)

C∞c (M, E2)
� � //

_�

��

C∞pc (M, E2)
G+ //

_�

��

C∞pc (M, E1)
� � //

_�

��

C∞(M, E1)
_�

��
D ′c (M, E2)

� � // D ′pc (M, E2)
Ĝ+ // D ′pc (M, E1)

� � // D ′(M, E1)

Using the restriction of Ĝ+ to an operatorD ′c (M, E2) → D ′spc (M, E1) →֒ D ′sc (M, E1) and Ĝ− :

D ′c (M, E2) → D ′sc (M, E1) we obtain an extension of the causal propagator G : C∞c (M, E2) →
C∞sc (M, E1) to distributions:

Ĝ := Ĝ+ − Ĝ− : D ′c (M, E2) → D ′sc (M, E1).

Now we get the analog to Theorem 3.6.21 with essentially the same proof.

Theorem 3.6.23. The sequence

{0} → D ′c (M, E1)
P−→ D ′c (M, E2)

Ĝ−→ D ′sc (M, E1)
P−→ D ′sc (M, E2) → {0} (3.10)

is exact.

3.7 Symmetric hyperbolic systems

Now we consider an important class of operators of first order on Lorentzian manifolds, the

symmetric hyperbolic systems. Let M be a timeoriented Lorentzian manifold. Let E → M

be a real or complex vector bundle with a (possibly indefinite) nondegenerate sesquilinear fiber

metric 〈·, ·〉.
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3 Linear wave equations - global theory

Definition 3.7.1. A linear differential operator P : C∞(M, E) → C∞(M, E) of first order is

called a symmetric hyperbolic system over M if the following holds for every x ∈ M:

(i) The principal symbol σ(P, ξ) : Ex → Ex is symmetric or Hermitian with respect to 〈·, ·〉
for every ξ ∈ T∗x M;

(ii) For every future-directed timelike covector τ ∈ T∗x M , the bilinear form 〈σ(P, τ)·, ·〉 on

Ex is positive definite.

The first condition relates the principal symbol of P to the fiber metric on E, the second relates

it to the Lorentzian metric on M . The Lorentzian metric enters only via its conformal class

because this suffices to specify the causal types of (co)vectors.

Example 3.7.2. Let M = Rn+1 and denote generic elements of M by x = (x0, x1, . . . , xn ). We

provide M with the Minkowski metric g = −(dx0)2
+ (dx1)2

+ . . . + (dxn )2. The coordinate

function t = x0/c : M → R is a Cauchy time function; here c is a positive constant to be thought

of as the speed of light.

Let E be the trivial real or complex vector bundle of rank N over M and let 〈·, ·〉 denote the

standard Euclidean scalar product on the fibers of E, canonically identified withKN whereK = R

or K = C. Any linear differential operator P : C∞(M, E) → C∞(M, E) of first order is of the

form

P = A0(x)
∂

∂t
+

n∑

j=1

Aj (x)
∂

∂x j
+ B(x)

where the coefficients Aj and B are N × N-matrices depending smoothly on x. Condition (i)

in Definition 3.7.1 means that all matrices Aj (x) are symmetric if K = R and Hermitian if

K = C. Condition (ii) with τ = dt means that A0(x) is in addition positive definite. Thus P is a

symmetric hyperbolic system in the usual PDE sense, see e.g. [1, Def. 2.11]. But (ii) says more

than that; it means that A0(x) dominates A1(x), . . . , An (x) in the following sense: The covector

τ = dt +
∑n

j=1 α jdx j is timelike if and only if
∑n

j=1 α
2
j
< c−2. Thus the matrix

σ(P, τ) = A0(x) +

n∑

j=1

α j Aj (x)

must be positive definite whenever
∑n

j=1 α
2
j
< c−2.

Example 3.7.3. Let N be an 3-dimensional oriented Riemannian manifold. Then the Maxwell

equations are given by

∂E

∂t
− rot B = J,

∂B

∂t
+ rot E= 0,

div E = ,̺ div B = 0,
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3.7 Symmetric hyperbolic systems

where E, B and J are time-dependend vector fields on N and ̺ is a function on R × N =: M .

Here J and ̺ are usually given and E and B are to be solved for.

We organize two of the four Maxwell equations into a differential operator P acting on sections

in the vector bundle π∗(T N ⊕ T N ) equipped with the Riemannian metric induced by N . Here

π : M → N is the projection onto the second factor. We put

P

(

E

B

)

=

(
∂
∂t −rot

rot ∂
∂t

) (

E

B

)

.

First we calculate the principal symbol to check Condition (i) in Definition 3.7.1. For the timelike

covector dt we find

σ(P, dt) =

*.........,

1 0 0

0 1 0

0 0 1

0

0

1 0 0

0 1 0

0 0 1

+/////////-
.

For ξ ∈ T∗N we first recall that for any first-order differential operator P the principal symbol is

characterized by

P( f · E) = f · PE + σ(P, df )E.

In case of P = rot we hence have

f · rot E + σ(rot, df )E = rot( f · E) = f · rot E + grad f × E

which leads to

σ(rot, ξ) = ξ♯ × .
For ξ ∈ T∗pN we choose a positively oriented orthonormal basis e1, e2, e3 of TpN such that

ξ♯ = x · e1. Then the linear map ξ♯ × · is given by the matrix
*..,
0 0 0

0 0 −x

0 x 0

+//-
. Therefore for a

spacelike covector ξ ∈ T∗N the principal symbol is given by

*.........,

0

0 0 0

0 0 x

0 −x 0

0 0 0

0 0 −x

0 x 0

0

+/////////-
.

Thus the principal symbol is symmetric both for the covector dt and for all covectors perpendicular

to dt. Linear combinations of such covectors yield all covectors on M , hence the principal symbol

is symmetric for any covector.

Next we want to determine in which cases σ(P, dt + ξ) is positive definite in order to check

Condition (ii). We compute
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〈

*.........,

u1

u2

u3

u4

u5

u6

+/////////-
,

*.........,

1 0 0 0 0 0

0 1 0 0 0 x

0 0 1 0 −x 0

0 0 0 1 0 0

0 0 −x 0 1 0

0 x 0 0 0 1

+/////////-

*.........,

u1

u2

u3

u4

u5

u6

+/////////-

〉

=

〈

*.........,

u1

u2

u3

u4

u5

u6

+/////////-
,

*.........,

u1

u2 + xu6

u3 − xu5

u4

u5 − xu3

u6 + xu2

+/////////-

〉

= u2
1 + u2

2 + u2
3 + u2

4 + u2
5 + u2

6 + 2xu2u6 − 2xu3u5

≥ |u|2 − |x |
(

u2
2 + u2

6

)

− |x |
(

u2
3 + u2

5

)

≥ (1 − |x |) |u|2 .

Thus the principal symbol σ(P, dt + ξ) is positive definite for |ξ | = |x | < 1. In the standard

Lorentzian metric 〈·, ·〉 = −dt2
+ gN on M this means that

〈dt + ξ, dt + ξ〉 = −1 + x2 < 0,

i.e., that the covector dt + ξ is timelike. Hence the principal symbol is positive definite for

future-directed timelike covectors dt + ξ as required by Condition (ii).

We conclude that the two Maxwell equations which involve a time derivate form a symmetric

hyperbolic system.

The following energy estimate will be crucial for controlling the support of solutions to symmetric

hyperbolic systems. It will establish finiteness of the propagation speed and the uniqueness of

solutions to the Cauchy problem.

Let M be globally hyperbolic and let t : M → R be a Cauchy time function. Then the Lorentzian

metric on M is given by g = −N2dt2
+ gt where each gs is the induced Riemannian metric on

Σs := t−1(s). We define Σxs := J−(x) ∩ Σs for x ∈ M .

J−(x)

bx

Σs
Σ
x
s

The scalar product 〈·, ·〉0 := N〈σ(P, dt)·, ·〉 is positive definite. Let dAs be the volume density

of Σs . We denote the norm corresponding to 〈·, ·〉0 by | · |0.
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3.7 Symmetric hyperbolic systems

Theorem 3.7.4 (Energy estimate). Let M be globally hyperbolic, let P be a symmetric hy-

perbolic system over M and let t : M → R be a Cauchy time function. For each x ∈ M and

each t0 ∈ t(M ) there exists a constant C > 0 such that

∫

Σ
x
t1

|u|20 dAt1 ≤
[
C

∫ t1

t0

∫

Σ
x
s

|Pu|20 dAs ds +

∫

Σ
x
t0

|u|20 dAt0

]
eC (t1−t0)

holds for each u ∈ C∞(M, E) and for all t1 ≥ t0.

Before we prove the energy estimate, we deduce that a “wave” governed by a symmetric hyperbolic

system can propagate with the speed of light at most. As a consequence we obtain uniqueness

for the Cauchy problem.

Corollary 3.7.5 (Finite propagation speed). Let M be globally hyperbolic, let Σ ⊂ M be a

smooth spacelike Cauchy hypersurface and let P be a symmetric hyperbolic system over M .

Let u ∈ C∞(M, E) and put u0 := u|Σ and f := Pu. Then

supp(u) ∩ J±(Σ) ⊂ J±((supp f ∩ J±(Σ)) ∪ supp u0). (3.11)

In particular,

supp(u) ⊂ J (supp f ∪ supp(u0)).

Σ

J+(Σ)

supp(u0)
supp f

Proof. We choose the Cauchy time function such that Σ = t−1(0). Let x ∈ J+(Σ). Assume

x ∈ M \ J+((supp f ∩ J+(Σ)) ∪ supp(u0)). This means that there is no future-directed causal

curve starting in supp f ∪ supp u0, entirely contained in J+(Σ), which terminates at x. In other

words, there is no past-directed causal curve starting at x, entirely contained in J+(Σ), which

terminates in supp f ∪ supp u0. Hence J−(x) ∩ J+(Σ) does not intersect supp f ∪ supp(u0). By

Theorem 3.7.4, u vanishes on J−(x) ∩ J+(Σ), in particular u(x) = 0. This proves (3.11) for J+.

The case x ∈ J−(Σ) can be reduced to the previous case by time reversal. For the support of u

we deduce

supp u ⊂ J+((supp f ∩ J+(Σ)) ∪ supp u0) ∪ J−((supp f ∩ J−(Σ)) ∪ supp u0)
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⊂ J+(supp f ∪ supp u0) ∪ J−(supp f ∪ supp u0)

= J (supp f ∪ supp u0). �

Corollary 3.7.6 (Uniqueness for the Cauchy problem). Let M be globally hyperbolic, let

Σ ⊂ M be a smooth spacelike Cauchy hypersurface and let P be a symmetric hyperbolic

system over M . Given f ∈ C∞(M, E) and u0 ∈ C∞(Σ, E) there is at most one solution

u ∈ C∞(M, E) to the Cauchy problem


Pu = f ,

u|Σ = u0.
(3.12)

Proof. By linearity, we only need to consider the case f = 0 and u0 = 0. In this case, Corollary

3.7.5 shows supp u ⊂ J (∅) = ∅, hence u = 0. �

Proof of Theorem 3.7.4. Denote the dimension of M by n + 1. Without loss of generality, we

assume that M is oriented; if M is nonorientable replace the (n + 1)- and n-forms occurring

below by densities or, alternatively, work on the orientation covering of M .

Let vol be the volume form of M . We define the n-form ω on M by

ω :=

n∑

j=0

ℜ(〈σ(P, b∗j )u, u〉) bj y vol.

Here b0, . . . , bn denotes a local tangent frame, b∗
0
, . . . , b∗n the dual basis, and y denotes the

insertion of a tangent vector into the first slot of a form. It is easily checked that ω does not

depend on the choice of b0, . . . , bn . For the sake of brevity, we write

f := Pu. (3.13)

We choose a metric connection ∇ on E. The symbol ∇ will also be used for the Levi-Civita con-

nection on T M . Since the first-order operator
∑n

j=0 σ(P, b∗
j
)∇b j

has the same principal symbol

as P, it differs from P only by a zero-order term. Thus there exists B ∈ C∞(M,Hom(E, E)) such

that

P =

n∑

j=0

σ(P, b∗j )∇b j
− B. (3.14)

To simplify the computation of the exterior differential of ω, we assume that the local tangent

frame is synchronous at the point under consideration, i.e., ∇bj = 0 at the (fixed but arbitrary)
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3.7 Symmetric hyperbolic systems

point. In particular, the Lie brackets [bj, bk ] vanish at that point. Then we get at that point

dω(b0, . . . , bn ) =

n∑

k=0

(−1)k∂bk
(ω(b0, . . . , b̂k, . . . , bn ))

=

n∑

k=0

(−1)k∂bk

( n∑

j=0

ℜ(〈σ(P, b∗j )u, u〉) vol(bj, b0, . . . , b̂k, . . . , bn )

)

= ℜ
n∑

j=0

∂b j
(〈σ(P, b∗j )u, u〉) vol(b0, . . . , bn )

and thus

dω = ℜ
n∑

j=0

∂b j
(〈σ(P, b∗j )u, u〉) vol.

We put B̃ :=
∑n

j=0 ∇b j
σ(P, b∗

j
) ∈ C∞(M,Hom(E, E)). Using the symmetry of the principal

symbol, (3.13), and (3.14) we get

n∑

j=0

∂b j
(〈σ(P, b∗j )u, u〉) = 〈B̃u, u〉 +

n∑

j=0

[〈σ(P, b∗j )∇b j
u, u〉 + 〈σ(P, b∗j )u,∇b j

u〉]

= 〈B̃u, u〉 + 〈(P + B)u,u〉 + 〈u, (P + B)u〉
= 〈(B̃ + B)u,u〉 + 〈u, Bu〉 + 〈 f , u〉 + 〈u, f 〉

and hence

dω = ℜ(〈(B̃ + 2B)u, u〉 + 2〈 f , u〉) vol.

Thus we have for any compact K ⊂ M
∫

K

dω =

∫

K

ℜ(〈(B̃ + 2B)u, u〉 + 2〈 f , u〉) vol

≤
∫

K

(C1 |u|20 + C2 | f |0 |u|0) vol

≤ C3

∫

K

( |u|20 + | f |20) vol

with constants C1, C2, C3 depending on P and K but not on u and f . We apply this to

K = J−(x) ∩ t−1([t0, t1]) where [t0, t1] is a compact subinterval of the image of t.

J−(x)

b
x

Σt1

Σt0

K
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By the Fubini theorem,

∫

K

dω ≤ C4

∫ t1

t0

∫

Σ
x
s

( |u|20 + | f |20) dAs ds . (3.15)

The boundary ∂J−(x) is a Lipschitz hypersurface (see [13, pp. 413–415]). The Stokes’ theorem

for manifolds with Lipschitz boundary [10, p. 209] yields

∫

K

dω =

∫

∂K

ω =

∫

Σ
x
t1

ω −
∫

Σ
x
t0

ω +

∫

Y

ω (3.16)

where Y = (∂J−(x)) ∩ t−1([t0, t1]). Choosing b0 =
√
βdt and b1, . . . , bn tangent to Σs , we see

that ∫

Σ
x
s

ω =

∫

Σ
x
s

〈σP (
√

βdt)u, u〉 dAs =

∫

Σ
x
s

|u|20 dAs . (3.17)

The boundary ∂J−(x) is ruled by the past-directed lightlike geodesics emanating from x. Thus

at each differentiable point y ∈ ∂J−(x) the tangent space Ty∂J−(x) contains a lightlike vector

but no timelike vectors. We choose a positively oriented generalized orthonormal tangent basis

b0, b1, . . . , bn of Ty M in such a way that b0 is future-directed timelike and b0 + b1, b2, . . . , bn is

a oriented basis of Ty∂J−(x). Then

ω(b0 + b1, b2, . . . , bn ) =

n∑

j=0

ℜ(〈σP (b∗j )u, u〉) vol(bj, b0 + b1, b2, . . . , bn )

= ℜ〈σP (b∗0)u, u〉 − ℜ〈σP (b∗1)u, u〉
= ℜ〈σP (b∗0 − b∗1)u, u〉.

Since 〈σP (τ)·, ·〉 is positive definite for each future-directed timelike covector, it is, by continuity,

still positive semidefinite for each future-directed causal covector. Now b∗
0
− b∗

1
is future-directed

lightlike. Therefore

ω(b0 + b1, b2, . . . , bn ) = 〈σP (b∗0 − b∗1)u, u〉 ≥ 0.

This implies
∫

Y

ω ≥ 0. (3.18)

Combining (3.15), (3.16), (3.17), and (3.18) we find

∫

Σ
x
t1

|u|20 dAt1 −
∫

Σ
x
t0

|u|20 dAt0 ≤ C4

∫ t1

t0

∫

Σ
x
s

( |u|20 + | f |20) dAs ds .

In other words, the function h(s) =
∫

Σ
x
s
|u|2

0
dAs satisfies the integral inequality

h(t1) ≤ α(t1) + C4

∫ t1

t0

h(s) ds
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for all t1 ≥ t0 where α(t1) = C4

∫ t1

t0

∫

Σ
x
s
| f |2

0
dAs ds + h(t0). Grönwall’s lemma 1.5.1 gives

h(t1) ≤ α(t1)eC4 (t1−t0)

which is the claim. �

We now want to prove existence of solutions to the Cauchy problem.

Theorem 3.7.7 (Existence for the Cauchy problem). Let M be a globally hyperbolic mani-

fold, E → M a vector bundle with non-degenerate metric, P ∈Diff
1
(E, E) a symmetric hyper-

bolic system. Let Σ ⊂ M be a smooth spacelike Cauchy hypersurface. For any u0 ∈ C∞(Σ, E)

and f ∈ C∞(M, E) there exists a unique solution u ∈ C∞(M, E) of the Cauchy problem


Pu = f ,

u|Σ = u0.
(3.19)

Proof. Corollary 3.7.6 gives uniqueness of the solution. We now prove existence.

A) We first assume that M is spatially compact, i.e., Σ is compact.

a) We fix a diffeomorphism M ≈ R × Σ such that the projection t : M ≈ R × Σ → R is a Cauchy

time function with t−1(0) = Σ. This is possible by Theorem 1.2.53.

Since P is a symmetric hyperbolic system, the principal symbol with respect to the timelike

covector dt, S := σ(P, dt) is a positive definite symmetric operator. This yields a new positive

definite metric 〈·, ·〉0 from the possibly indefinite 〈·, ·〉 on E by setting 〈·, ·〉0 = 〈S·, ·〉. We choose

a metric connection ∇ for 〈·, ·〉0 and we write

P = σ(P, dt)∇t − L = S∇t − L (3.20)

where L differentiates only in directions tangential to Σ.

We put B := L + Lt where the formal adjoint is taken with respect to the indefinite metric 〈·, ·〉.
The operator B, considered as a first-order differential operator, has vanishing principal symbol.

Namely, for ξ ∈ T∗Σ:

σ1(L + Lt, ξ) = σ1(L, ξ) − σ1(L, ξ)t

= σ1(P, ξ) − σ1(P, ξ)t

= 0.

Therefore the operator B is of order zero, i.e. B ∈Diff
0
(E, E) = C∞(M,End(E)). Using (3.20)

the inhomogeneous equation we have to solve can be written as

S∇tu = Lu + f . (3.21)
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The time-depended operator

∆ := ∆(t ) :=
(

∇|Σt
)∗ (∇|Σt

)

+ 1

on the compact Cauchy hypersurfaces Σt yields the Sobolev spaces Hk (Σt, E), c.f. Section 1.4.

Let ε > 0. We define mollifier

Jε := J
(t )
ε := exp(−ε∆(t )).

Now Jε : Hk (Σt, E) → H l (Σt, E) is bounded for any choice of k and l, since

‖Jεu‖l = ‖∆
l
2 Jεu‖0

= ‖∆ l−k
2 Jε∆

k
2 u‖0

≤ c · ‖∆ k
2 u‖0

= c · ‖u‖k .

The L2-L2-operator norm of ∆
l−k

2 Jε is bounded because the function λ 7→ λ
l−k

2 exp(−ελ)

decreases exponentially to 0 and hence is bounded on the spectrum of ∆ which is contained in

[1,∞).

In particular, the mollifier maps any Sobolev section to a smooth section, Jε : Hk (Σt, E) →
C∞(Σt, E), Jε is a smoothing operator. In case k = l the above calculation shows that the

operator norm ‖Jε ‖H k,H k ≤ 1 for all k. Since the family of functions λ 7→ exp(−ελ) converges

monotonically to λ 7→ 1 on [1,∞) as ε ց 0 the family of operators Jε converges strongly to

idH k in the space of bounded operators on Hk (Σt, E).

b) For ε > 0 we now solve

∇tu(ε)
= JεS−1L Jεu(ε)

+ S−1 f (3.22)

with u(ε) ���t=0
= u0 in the space Hk (Σt, E). This is possible since JεS−1L Jε acts as a bounded

operator on Hk (Σt, E) so that (3.22) is an ODE in the Hilbert space Hk (Σt, E).

A priori, the solution of this ODE depends on ε and k. But since the Sobolev spaces are embedded

into each other with decreasing k, the uniqueness of solution shows that they are actually all the

same and the solution does not depend on k. This already shows that the solution is smooth in

spatial directions.

Of course, the solution does depend on ε. Our aim is now to obtain a limiting function u(ε) → u

for ε → 0 and show that u solves the Cauchy problem.

c) Consider at u(ε) as a map R → Hk (Σ, E) where k ∈ N is fixed. We will derive estimates

for the growth of the u(ε) in time, and the important fact is that the bounds cj do not depend

on u, u0, f and ε. They do depend on t but in a continuous fashion (and are hence bounded on

compact subintervals).

∂t ‖u(ε) ‖22k = ∂t (∆ku(ε),∆ku(ε) )0

≤ 2ℜ(∇t∆ku(ε),∆ku(ε) )0 + c1 · ‖∆ku(ε) ‖20 . (3.23)
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Note here that in order to differentiate (u, v)0 =

∫

Σ
〈u, v〉0dΣt we also have to differentiate the

volume element dΣt . This yields
d
dt

dΣt

dΣt
dΣt a logarithmic change of the volume element which

we can estimate by a time-dependend bound c1.

We next want to exchange ∇t with ∆k . A priori, the commutator [∇t,∆k ] is a differential operator

of order 2k +1. But it turns out that it is actually of order at most 2k as can be seen by computing

the principal symbol:

σ2k+1([∇t,∆k ], ξ) = [σ1(∇t, ξ), σ2k (∆k, ξ)] = [σ1(∇t, ξ), |ξ |2k ] = 0 .

Therefore we can bound the commutator term in the ‖ · ‖2k -norm and we continue the estima-

tion (3.23).

∂t ‖u(ε) ‖22k ≤ c2 · ‖u(ε) ‖22k + 2ℜ(∆k∇tu(ε),∆ku(ε) )0

= c2 · ‖u(ε) ‖22k + 2ℜ(∆k S−1 f ,∆ku(ε) )0 + 2ℜ(∆k JεS−1L Jεu(ε),∆ku(ε) )0 (3.24)

We estimate the second summand in (3.24):

2ℜ(∆k S−1 f ,∆ku(ε) )0 ≤ ‖∆k S−1 f ‖20 + ‖∆ku(ε) ‖20
= ‖S−1 f ‖22k + ‖u(ε) ‖22k
≤ c3 · ‖ f ‖22k + ‖u(ε) ‖22k . (3.25)

For the third summand we observe that ∆k commutes with Jε and that Jε is selfadjoint. Hence

2ℜ(∆k JεS−1L Jεu(ε),∆ku(ε) )0 = 2ℜ(Jε∆
k S−1L Jεu(ε),∆ku(ε) )0

= 2ℜ(∆k S−1L Jεu(ε), Jε∆
ku(ε) )0

= 2ℜ(∆k S−1L Jεu(ε),∆k Jεu(ε) )0. (3.26)

Inserting (3.25) and (3.26) into (3.24) yields

∂t | |u(ε) | |22k ≤ c4 · | |u(ε) | |22k + c3 · ‖ f ‖22k + 2ℜ(∆k S−1L Jεu(ε),∆k Jεu(ε) )0.

Again, we find that ord[∆k, S−1L] ≤ 2k and hence

∂t | |u(ε) | |22k ≤ c4·| |u(ε) | |22k+c3·‖ f ‖22k+c5·‖Jεu(ε) ‖2k ·‖Jεu(ε) ‖2k+2ℜ(S−1L∆k Jεu(ε),∆k Jεu(ε) )0 .

Since ‖Jεu(ε) ‖2k ≤ ‖u(ε) ‖2k we find

∂t | |u(ε) | |22k ≤ c6 · | |u(ε) | |22k + c3 · ‖ f ‖22k + 2ℜ(L∆k Jεu(ε),∆k Jεu(ε) ) .

Note that the term S−1 has converted the definite scalar product (·, ·)0 into (·, ·). Moreover

2ℜ(L∆k Jεu(ε),∆k Jεu(ε) ) = (L∆k Jεu(ε),∆k Jεu(ε) )0 + (∆k Jεu(ε), L∆k Jεu(ε) )0

= ((L + Lt )∆k Jεu(ε),∆k Jεu(ε) )0

≤ c7 · ‖∆k Jεu(ε) ‖20
= c7 · ‖Jεu(ε) ‖22k
≤ c7 · ‖u(ε) ‖22k
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and hence

∂t | |u(ε) | |22k ≤ c8 · | |u(ε) | |22k + c3 · ‖ f ‖22k .
This implies

‖u(ε) |Σt ‖22k ≤ ‖u0‖22k +
∫ t

0

c3(s)‖ f ‖22kds +

∫ t

0

c8(s)‖u(ε) ‖22kds.

Grönwall’s lemma 1.5.1 with α(t) = ‖u0‖22k +
∫ t

0
c3(s)‖ f ‖2

2k
ds and β(t) = c8(t) now yields

‖u(ε) |Σt ‖k2k ≤
(

‖u0‖22k +
∫ t

0

c3(s)‖ f ‖22kds

)

· exp

∫ t

0

c8(s)ds . (3.27)

Note that this bound is independent of ε. For t < 0 one obtains an analogue estimate by

integrating over [t, 0].

d) We have seen that, for t ∈ R fixed, the set {u(ε) |Σt | ε > 0} is bounded in Hk (Σt, E). By the

Rellich-Kondrachov theorem 1.4.5 {u(ε) |Σt | ε > 0} is relatively compact in Hk−1(Σt, E) for all

k ∈ R.

Taking ‖Jε ‖H k,H k ≤ 1 into account and that S−1 is of order 0 and L is of order 1, we get the

estimate

‖∇tu(ε) ‖k ≤ ‖JεS−1L Jεu(ε) ‖k + ‖S−1 f ‖k
≤ ‖S−1L Jεu(ε) ‖k + ‖S−1 f ‖k
≤ C · ‖Jεu(ε) ‖k+1 + ‖S−1 f ‖k
≤ C · ‖u(ε) ‖k+1 + ‖S−1 f ‖k
≤ C ′

where C ′ does not depend on ε by (3.27). Thus the map t 7→ u(ε) |Σt is equicontiuous.

For fixed T > 0 and fixed k the Arzelà-Ascoli theorem (1.5.2) implies that {u(ε) | ε > 0} ⊂
C0([−T,T], Hk (Σ, E)) is relatively compact. Thus we obtain a subsequence u(ε j ) of the family

u(ε) with u(ε j ) → u for u ∈ C0([−T,T],Hk (Σ, E)), ε j ց 0. By a diagonal subsequence argument

we can w.l.o.g. assume u(ε j ) → u ∈ C0([−T,T], Hk (Σ, E)) for all k ∈ R and all T > 0. Therefore

the convergence u(ε j ) → u is locally unifom in C0(R,Hk (Σ, E)) for every k ∈ R.

We now want to show that this u is the desired solution of the Cauchy problem. First we see that

for t = 0

u(ε j ) |Σ0
= u0

and therefore

u|Σ0
= u0.

Showing that Pu = f is more complicated since we also have to control the convergence of the

time derivatives of the u(ε j ) to the time derivatives of u.

We defined the u(ε) to be solutions of the ODE (3.22). Identifying the Cauchy hypersurfaces Σt
with Σ via parallel transport along the integral curves of ∇t this ODE translates into

∂u(ε)

∂t
= JεS−1L Jεu(ε)

+ S−1 f .
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In order to get rid of the time derivatives we integrate (3.22) and we obtain

u(ε j ) |Σt − u0 =

∫ t

0

(Jε j
S−1L Jε j

u(ε j ) |Σs + S−1 f |Σs )ds (3.28)

Now we let ε j ց 0. For the left hand side of (3.28) we find u(ε j ) |Σt − u0 → u|Σt − u0. For

the right hand side of (3.28) we consider the first summand under the integral which is the one

depending on ε j . We split this summand

Jε j
S−1L Jε j

u(ε j )
= Jε j

S−1L Jε j
(u(ε j ) − u) + Jε j

S−1L Jε j
u (3.29)

and now look seperately at the k-th Sobolev norms of the two parts. For the first summand we

find

‖Jε j
S−1L Jε j

(u(ε j ) − u)‖k ≤ ‖S−1L Jε j
(u(ε j ) − u)‖k

≤ C · ‖Jε j
(u(ε j ) − u)‖k+1

≤ C · ‖(u(ε j ) − u)‖k+1 → 0 as ε j → 0.

The second summand is split again:

Jε j
S−1L Jε j

u = JεS−1L(Jεu − u) + JεS−1Lu (3.30)

We estimate the k-th Sobolev norm of the first summand of the right hand side of (3.30)

‖JεS−1L(Jεu − u)‖k ≤ ‖S−1L(Jεu − u)‖k
≤ C · ‖Jεu − u‖k+1

= C · ‖Jε∆
k+1

2 u − ∆ k+1
2 u‖0 → 0 .

For the second summand of the right hand side of (3.30) we directly see JεS−1Lu → S−1Lu.

To summarize, we found that the first summand under the integral on the right hand side of (3.28)

converges to S−1Lu locally uniformly in t.

Hence for the whole integral on the right hand side of (3.28) we found

∫ t

0

(Jε j
S−1L Jε j

u(ε j ) |Σs + S−1 f |Σs )ds →
∫ t

0

(S−1Lu + S−1 f ) |Σsds .

Therefore

u|Σt − u0 =

∫ t

0

(S−1Lu|Σs + S−1 f |Σs )ds, .

Differentiation yields
∂u

∂t
= S−1Lu + S−1 f , .

Now we drop the identification Σt → Σ and hence the ordinary differentiation ∂t turns into the

covariant derivative ∇t again. Thus we have shown

∇tu = S−1Lu + S−1 f (3.31)
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In other words, we have S∇tu = Lu + f which means Pu = f .

e) So far we know continuity in time direction and smoothness in spatial direction. Next we want

to prove smoothness in time direction. We have u ∈ C0(R,Hk (Σ, E)) for all k ∈ R. By (3.31))

we see that ∇tu ∈ C0(R,Hk−1(Σ, E)) for all k ∈ R. Thus u ∈ C1(R,Hk (Σ, E)) for all k ∈ R.

To obtain the second time derivative of u we differentiate (3.31) with respect to t. Since on

the right hand side we then have at most one time derivative we conclude ∇t∇tu ∈ C0 and

therefore u ∈ C2(R,Hk (Σ, E)). Repeating this argument we obtain u ∈ Cℓ (R,Hk (Σ, E)) for all

ℓ and k and hence u ∈ C∞(R,Hk (Σ, E)) for all k. The Sobolev embedding theorem then yields

u ∈ C∞(R,C∞(Σ, E)). This implies u ∈ C∞(M, E).

B) We now drop the assumption that M be spatially compact but we still assume that the Cauchy

data have compact support, u0 ∈ C∞c (Σ, E) and f ∈ C∞c (M, E).

Set K := supp(u0) ∪ supp( f ). Fix T > 0 and set MT := (−T,T ) × Σ ⊂ R × Σ = M . Choose T

big enough so that K ⊂ MT . Note that MT is globally hyperbolic itself. Consider the compact

set J (K ) ∩ MT and denote by Σ̂ the projection of J (K ) ∩ MT on Σ, which is compact too.

Σ̂

ΣT

Σ0 = Σ

Σ−T

J (K ) ∩ MT

K

We choose a relatively compact open set U ⊂ Σ with Σ̂ ⊂ U and smooth boundary ∂U .

Σ

∂U

Σ̂

U

Now we change the metric gt of Σ near the boundary ∂U such that it becomes a product metric
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in a neighboorhood of ∂U . We do this smoothly in t ∈ [−T,T]. We want everything to stay

untouched on Σ̂.

ΣΣ̂

Then we double this part of Σ and obtain Σ̃.

Σ̃

This yields M̃T which is now spatially compact. The supports of f and u0 are contained in

(−T,T ) × Σ̂. Therefore we may consider f and u0 as sections defined on M̃T .

By part A) of the proof we obtain a solution uT on M̃T . Finite speed of propagation (Corol-

lary 3.7.5) yields supp(uT ) ⊂ J (K ) ∩ M̃T ⊂ (−T,T ) × Σ̂. Thus we can regard uT as a solution

on MT . For T ′ > T we analogously obtain a solution uT ′ on MT ′. Since the solution is uniquely

determined by the initial conditions we find that uT ′ |MT
= uT . Hence we obtain a solution

u ∈ C∞(M, E) on M with u|MT
= uT .

C) Now we also drop the assumption that supp(u0) and supp( f ) are compact.

Let K1 ⊂ K2 ⊂ K3 ⊂ . . . ⊂ M be an exhaustion by compact subsets such that every compact

subset of M is contained in K j for sufficiently large j. We choose cutoff functions χ j ∈ C∞c (M )

with χ j ≡ 1 on K j . By B) there exists a solution of

Pu j = χ j f ,

u j |Σ = χ ju0 .

Next we want to show that this sequence of solutions converges to a solution for the general

problem.
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Fix x ∈ M W.l.o.g. we may assume x ∈ J+(Σ). Choose x0 ∈ I+ (x). Then I− (x0) is an open

neighborhood of x.

Since J−(x0) ∩ J+(Σ) is compact there exists a j0 such that J−(x0) ∩ J+(Σ) ⊂ K j for all j ≥ j0.

b

b

Σ

x

x0

J−(x0) ∩ J+(Σ)

Corollary 3.7.5 tells us that u j is uniquely determined by

χ ju0 on Σ ∩ J−(x0),

χ j f on J+(Σ) ∩ J−(x0) .

But since χ j ≡ 1 for j ≥ j0, the section u j is determined by

u0 on Σ ∩ J−(x0),

f on J+(Σ) ∩ J−(x0),

and hence independent of j for j ≥ j0.

Therefore u(x) := lim j→∞ u j (x) exists and we can do this for every point x. For x ∈ I− (x0) we

have

Pu(x) = Pu j0 (x) = χ j0 (x) f (x) = f (x)

and

u|Σ = u j0 |Σ = χ j0u0 |Σ = u0 .

Thus u is the desired solution of the Cauchy problem. �

We conclude the discussion of the Cauchy problem for symmetric hyperbolic systems by showing

stability. This means that the solutions depend continuously on the data. Note that if u0 and f

have compact supports, then the solution u of the Cauchy problem (3.12) has spatially compact

support by Corollary 3.7.6.

Proposition 3.7.8 (Stability of the Cauchy problem). Let P be a symmetric hyperbolic sys-

tem over the globally hyperbolic manifold M . Let Σ ⊂ M be a smooth spacelike Cauchy

hypersurface.
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Then the map C∞c (M, E) × C∞c (Σ, E) → C∞sc (M, E) mapping ( f , u0) to the solution u of the

Cauchy problem (3.12) is continuous.

Proof. The map P : C∞(M, E) → C∞(M, E) × C∞(Σ, E), u 7→ (Pu, u|Σ), is linear and con-

tinuous. Fix a compact subset A ⊂ M . Then C∞
A

(M, E) × C∞
A∩Σ (Σ, E) is a closed subset

of C∞(M, E) × C∞(Σ, E) and thus VA := P−1 (C∞
A

(M, E) × C∞
A∩Σ (Σ, E)) is a closed subset of

C∞(M, E). In particular, C∞
A

(M, E)×C∞
A∩Σ (Σ, E) and VA are Fréchet spaces. By Corollary 3.7.6

and Theorem 3.7.7, P maps VA bijectively onto C∞
A

(M, E) × C∞
A∩Σ (Σ, E). The open mapping

theorem for Fréchet spaces tells us that (P|VA
)−1 : C∞

A
(M, E) × C∞

A∩Σ (Σ, E) → VA is contin-

uous. Now VA ⊂ C∞(M, E) and C∞
J (A)

(M, E) ⊂ C∞(M, E) carry the relative topologies and

VA ⊂ C∞
J (A)

(M, E) by Corollary 3.7.5. Thus the embeddings VA →֒ C∞
J (A)

(M, E) →֒ C∞sc (M, E)

are continuous. Hence the solution operator for the Cauchy problem yields a continuous map

C∞
A

(M, E) ×C∞
A∩Σ (Σ, E) → C∞sc (M, E) for every compact A ⊂ M . Therefore it is continuous as

a map C∞c (M, E) × C∞c (Σ, E) → C∞sc (M, E). �

Remark 3.7.9. Corollary 3.7.6, Theorem 3.7.7 and Proposition 3.7.8 are often summarized by

saying that the Cauchy problem (3.12) is well posed.

Finally, we show that symmetric hyperbolic systems over globally hyperbolic manifolds are

Green hyperbolic.

Theorem 3.7.10. Symmetric hyperbolic systems over globally hyperbolic manifolds are Green

hyperbolic.

Proof. Let P be a symmetric hyperbolic system over the globally hyperbolic manifold M . We

construct an advanced Green’s operator G+ for P. Let u ∈ C∞c (M, E). Then K := supp(u) ⊂ M

is compact. We choose Σ to be a smooth spacelike Cauchy hypersurface such that K ⊂ I+ (Σ).

Let G+u be the solution of the Cauchy problem PG+u = u with initial condition G+u|Σ = 0.

We have to show that this definition does not depend on the particular choice of Σ.

First note that by finite speed of propagation supp(G+u)∩ I+ (Σ) ⊂ J+(supp(G+u|Σ)∪supp(u)) =

J+(∅ ∪ K ) = J+(K ) and supp(G+u) ∩ I− (Σ) ⊂ J−(∅ ∪ (supp(u) ∩ J−(Σ))) = ∅. (This already

shows condition (iii) in Definition 3.6.1 for an advanced Green’s operator.)

Now let Σ′ be another smooth spacelike Cauchy hypersurface with K ⊂ I+ (Σ′). Then J+(K ) ⊂
J+(I+(Σ′)) = I+ (Σ′) and therefore supp(G+u) ⊂ I+ (Σ′).
Hence we know that G+u|Σ′ = 0 and thus G+u is also a solution of the Cauchy problem PG+u = u

with initial condition G+u|Σ′ = 0. Hence choosing another Cauchy hypersurface gives the same

solution G+u and the definition does not depend on the particular choice of Σ.

We want to show that G+ is an advanced Green’s operator of P.

By construction P ◦ G+ = idC∞c (M,E) which is condition (ii).

157



3 Linear wave equations - global theory

It remains to check condition (i): If u = Pv for some v ∈ C∞c (M, E), then u = v is the unique

solution to the Cauchy problem Pv = u with v |Σ = 0 for a smooth spacelike Cauchy hypersurface

Σ with supp(v) ⊂ I+(Σ). Then we also have supp(u) ⊂ I+ (Σ) so that we may use this Cauchy

hypersurface in the definition of G+. Therefore v = G+u = G+Pv and for every v ∈ C∞c (M, E)

and hence G+ ◦ P = idC∞c (M,E) .

Hence G+ is an advanced Green’s operator. A retarded Green’s operator is constructed similarly

by choosing Σ such that K ⊂ I− (Σ).

Finally, −P∗ is again a symmetric hyperbolic system and therefore has Green’s operators. Thus

P∗ has Green’s operators and P is Green hyperbolic. �

Remark 3.7.11. It is possible to derive the well-posedness of the Cauchy problem for normally

hyperbolic operators from that for symmetric hyperbolic systems. To see this, let E → M be a

hermitian vector bundle and let Q ∈ Diff
2
(E, E) be normally hyperbolic. Write M = R × Σ

such that g = −N2dt2
+ gt . We choose a connection ∇ on E and write Q as

Q =
1

N2
∇t∇t − tr(∇Σ· ∇Σ· ) + ∇Σb + b0 · ∇t + c

where ∇Σ· denotes the restriction of ∇ to Σ for any fixed t, b is an End(E)-valued vector field

tangential to Σ, b0 and c are endomorphism fields.

We want to solve Qv = f with initial data prescribed at t = 0. We add two redundent equations

to obtain the system

∇t (∇Σ· v) − ∇Σ· ∇t v + ∇ΣπΣ ( ·)v + π
t (·)∇tv − R(∂t, ·)v = 0 (3.32)

1

N2
∇t∇t v − tr(∇Σ· ∇Σ· ) + ∇Σbv + b0 · ∇tv + cv = f (3.33)

∇t v − ∇t v = 0 (3.34)

where πΣ : C∞(Σ,TΣ) → C∞(Σ,TΣ) and πt : C∞(Σ,TΣ) → C∞(Σ,R) are defined by ∇X∂t =

πΣ (X )+πt (X )∂t for X ∈ TΣ. Note that while (3.32) is an equation in T∗Σ⊗ E, (3.33) and (3.34)

are equations in E.

Equation (3.32) holds for any sufficiently smooth section v: For a time dependend vector field X

tangential to Σ we see

∇t∇ΣX v − ∇ΣX∇t v − ∇[∂t ,X ]v − R(∂t, X ) = 0 .

Inserting [∂t, X ] = ∇t X − ∇X∂t (the Levi-Civita connection is torsion-free) yields

∇t∇ΣX v − ∇∇t Xv − ∇ΣX∇tv − ∇∇X∂t v − R(∂t, X ) = 0 .

For the first two summands we see ∇t∇ΣX v − ∇∇t Xv = Xy(∇t (∇Σ· v)), which is tensorial in X .

The splitting ∇X∂t = π
Σ (X ) + πt (X )∂t then yields (3.32).

We now consider the differential operator P ∈Diff 1(T∗Σ ⊗ E ⊕ E ⊕ E,T∗Σ ⊗ E ⊕ E ⊕ E) given

by
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P :=
*..,
1 0 0

0 1
N 2 0

0 0 1

+//-
∇t +

*..,
0 −1 0

−tr 0 0

0 0 0

+//-
∇Σ + *..,

πΣ (·) πt (·) −R(∂t, ·)
b b0 c

0 −1 0

+//-
.

Equations (3.32), (3.33) and (3.34) are equivalent to


*..,
1 0 0

0 1
N 2 0

0 0 1

+//-
∇t +

*..,
0 −1 0

−tr 0 0

0 0 0

+//-
∇Σ +

*..,
πΣ (·) πt (·) −R(∂t, ·)

b b0 c

0 −1 0

+//-


*..,
∇Σv
∇t v
v

+//-
=

*..,
0

f

0

+//-
.

The operator P is a symmetric hyperbolic system. To see this let ξ ∈ T∗Σ. Then σ(P, dt + ξ) =

*..,
1 0 0

0 1
N 2 0

0 0 1

+//-
+

*..,
0 −ξ⊗ 0

−ξy 0 0

0 0 0

+//-
is symmetric.

Moreover,

〈*..,
1 −ξ⊗ 0

−ξy 1
N 2 0

0 0 1

+//-
*..,

u

u0

v

+//-
,

*..,
u

u0

v

+//-
〉

=

〈*..,
u − ξ ⊗ u

−ξyu + 1
N 2 u0

v

+//-
,

*..,
u

u0

v

+//-
〉

= |u|2 − 〈ξ ⊗ u0, u〉 − 〈ξyu,u0〉 +
1

N2
|u0 |2 + |v |2

= |u|2 + |v |2 + 1

N2
|u0 |2 − 2 〈ξ ⊗ u0, u〉

≥ (1 − N |ξ |)( |u|2 + |u0 |2
N2
+ |v |2) .

The last estimate holds because 2| 〈ξ ⊗ u0, u〉 | ≤ 2N |ξ | · |u0 |
N
|u| ≤ N |ξ |( |u0 |2

N 2 + |u|2).

For 1 − N |ξ | > 0, i.e. for dt + ξ timelike, the principal symbol σ(P, dt + ξ) is positive definite.

We conclude that P is a symmetric hyperbolic system.

We saw that if v is a solution of Qv = f , then V =
*..,
∇Σv
∇t v
v

+//-
is a solution of PV = F where F =

*..,
0

f

0

+//-
.

Conversely, does a solution of PV = F also yield a solution of Qv = f ?

This cannot be true always because the space of initial data for P is too large. Indeed, we have to

impose a restriction of the initial data. Let V =
*..,

u

u0

v

+//-
be a solution of PV = F with the assumption

that at t = 0 we have u = ∇Σv.

Now PV = F is equivalent to

∇tu − ∇Σ· u0 + π
Σ (·)yu + πt (·)u0 − R(∂t, ·)v = 0, (3.35)

1

N2
∇tu0 − tr(∇Σ· u) + byu + b0u0 + cv = f , (3.36)

∇tv − u0 = 0.
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Hence we have u0 = ∇t v on M . If we can show that u = ∇Σv holds on all of M then (3.36)

implies that v solves Qv = f .

By assumption u = ∇Σv holds at t = 0. We differentiate with respect to t. By (3.35) and u0 = ∇tv
we find

∇tu + πΣ (·)yu = ∇Σu0 − πt (·)u0 + R(∂t, ·)v
= ∇Σ∇tv − πt (·)∇tv + R(∂t, ·)v
= ∇t (∇Σ· v). (3.37)

On the other hand, for any smooth vector field X tangential to Σ at all times we have

∇ΣX∇t v − πt (X )∇tv + R(∂t, X )v = ∇t∇ΣXv + ∇[X,∂t ]v − πt (X )∇tv
= ∇t∇ΣXv − ∇∇∂t X v + ∇∇X∂t v − πt (X )∇tv
= Xy(∇t∇Σ· v) + ∇Σ

πΣ (X )
v .

Combined with (3.37) this yields

∇tu + πΣ (·)yu = ∇t∇Σ· v + πΣ (·)y∇Σ· v .

Hence u − ∇Σ· v satisfies the first-order ODE

(∇t + πΣ (·)y)(u − ∇Σ· v) = 0

along the integral curves of ∂t and it vanishes at t = 0. Hence u = ∇Σ· v on all of M .

We have seen that the initial data v and u0 (the time derivative) can be prescribed arbitrarily as

initial data as expected for the Cauchy problem for a normally hyperbolic operator.

3.8 An application: essential selfadjointness on Riemannian

manifolds

A (generally unbounded) symmetric operator in a Hilbert space with dense domain is called

essentially selfadjoint if it has a unique selfadjoint extension. This is a very desirable property

because one then can apply a lot of functional analysis to this selfadjoint extension such as

spectral and functional calculus.

We will now use symmetric hyperbolic systems to deduce the selfadjointness of certain operators

on Riemannian manifolds, following ideas of P. R. Chernoff in [9]. Throughout this section let

(N, g) be a complete Riemannian manifold and E → N a hermitian vector bundle. We consider

a first-order differential operator L ∈Diff
1
(E, E) with the properties

1.) The operator L is formally skewadjoint, i.e. Lt
= −L;

2.) There exists c > 0 such that |σ(L, ξ) |op ≤ c · |ξ | holds for all ξ ∈ T∗M .
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Here |σ(L, ξ) |op denotes the operator norm of the linear mapσ(L, ξ) : Ep → Ep where ξ ∈ T∗p M .

Since L is of first order σ(L, ξ) depends linearly on ξ so that for each p ∈ N there exists cp > 0

such that |σ(L, ξ) |op ≤ cp · |ξ | holds for all ξ ∈ T∗pM . Condition 2.) says that the constant can

be chosen independently of the base point. If N is compact this is automatic.

Now we equip M = R × N with the Lorentzian metric gM = −c2dt2
+ gN . Since (N, gN ) is

complete (M, gM ) is globally hyperbolic. On M we consider the operator

P =
∂

∂t
− L ∈Diff

1
(E, E)

where E is also considered as a hermitian vector bundle on M via the pull-back along the

projection π : M → N . We check that P is a symmetric hyperbolic system:

The principal symbol of L is symmetric because σ(L, ξ)t = −σ(Lt, ξ) = σ(L, ξ). Thus for

ξ ∈ T∗N we find that σ(P, dt + ξ) = id−σ(L, ξ) is symmetric. Moreover, we see that

〈σ(P, dt + ξ)u, u〉 = |u|2 − 〈σ(L, ξ)u, u〉 .

Now

| 〈σ(L, ξ)u, u〉 | ≤ |σ(L, ξ)u| · |u| ≤ |σ(L, ξ) |op · |u|2 ≤ c · |ξ | · |u|2

and therefore

〈σ(P, dt + ξ)u, u〉 ≥ (1 − c · |ξ |) |u|2.
Hence 〈σ(P, dt + ξ)·, ·〉 is positive definite in case 1 − c |ξ | > 0. This is equivalent to 0 >

−1 + c2 |ξ |2 = c2 · gM (dt + ξ) and therefore to dt + ξ being timelike. Hence P is a symmetric

hyperbolic system.

Given u0 ∈ C∞c (N, E) there exists a unique solution u ∈ C∞sc (M, E) of Pu = 0 and u(0) = u0 by

Theorem 3.7.7. We define Vt : C∞c (N, E) → C∞c (N, E) by Vt u0 := u(t).

Lemma 3.8.1. (Vt )t ∈R is a unitary one-parameter group with

(i) d
dt

Vt u0 = L Vt u0 for all u0 ∈ C∞c (N, E);

(ii) L Vt = Vt L on C∞c (N, E).

Proof. (a) Condition (i), i.e. d
dt

Vtu0 = LVtu0, says nothing but PVtu = 0 and therefore holds by

definition.

(b) Fix s ∈ R and let ũ be a solution of Pũ = 0 and ũ(0) = Vsu0 = u(s). Now t 7→ ũ(t) and

t 7→ u(s + t) both lie in the kernel of P and have the same values u(s) at t = 0. By uniqueness

they coincide. Thus

Vt+su0 = u(s + t) = ũ(t) = VtVsu0

and therefore Vt+s = VtVs . Hence (Vt )t ∈R is a one-parameter group.
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(c) We compute

d

dt
(Vtu0,Vtu0) = (

d

dt
Vtu0,Vtu0) + (Vtu0,

d

dt
Vtu0)

= (LVtu0,Vtu0) + (Vtu0, LVtu0)

= ((L + Lt )Vtu0,Vtu0)

= 0

and hence

(Vtu0,Vtu0) = (V0u0,V0u0) = (u0, u0).

Therefore Vt is unitary.

(d) For u0 ∈ C∞c (N, E) we have that u(t) := LVtu0 is a solution of

Pu =
( d

dt
− L

)
LVtu0

= L(
d

dt
− L)Vtu0

= LPVtu0

= 0.

For t = 0 we find u(0) = LV0u0 = Lu0 and thus u(t) = Vt Lu0. We conclude LVt = Vt L on

C∞c (N, E) which is Condition (ii). �

The following functional-analytic lemma lies at the heart of the argument.

Lemma 3.8.2. Let H be a complex Hilbert space and D ⊂ H a dense subspace. Let T be a

symmetric operator in H with domain D. Let (Vt )t be a unitary one-parameter group.

Assume

(i) TD ⊂ D;

(ii) VtD ⊂ D for all t ∈ R;

(iii) T Vt = Vt T on D;

(iv) d
dt

Vt u0 = i T Vt u0 for all u0 ∈ D.

Then Tn is essentially selfadjoint in H on D for all n ∈ N.

Proof. Set A := Tn . Then A is a symmetric operator in H with domain D. We want to show

that A∗ψ = ±iψ only has the trivial solution ψ = 0.

So let A∗ψ = iψ. Fix u ∈ D and define a function f : R → R by f (t) := (Vtu, ψ). We want to

show that f ≡ 0. First we see | f (t) | ≤ | |Vtu| | · | |ψ | | = | |u| | · | |ψ | | where we have used that Vt is

unitary. Therefore f is bounded.
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Moreover, using (iv),

f (n) (t) = (
dn

dtn
Vtu, ψ)

= ((iT )nVtu, ψ)

= (inVtu, A∗ψ)

= (inVtu, iψ)

= −in+1 f (t).

The solution space for the ODE f (n)
= −in+1 f has the basis t 7→ exp(αk t) where {α1, . . . , αn} =

{α ∈ R | αn
= (−i)n+1}. We write f (t) =

∑n
k=1 ak exp(αk t) with ak ∈ C.

Since (
αk

i
)n = −i we findℜ(αk ) , 0 for all k. Since |αk | = 1 there is at most one αk′, αk , αk′,

for any αk withℜ(αk ) = ℜ(αk′), namely αk′ = αk .

Now suppose there is a k with ak , 0 andℜ(αk ) > 0. Choose k such thatℜ(αk ) maximal.

Case 1: k is unique.

On the one hand,

lim
t→∞

(exp(−αk t) f (t)) = 0

because f is bounded andℜ(αk ) > 0.

On the other hand,

lim
t→∞

(exp(−αk t) f (t)) = lim
t→∞

(

n∑

j=1

a j exp((α j − αk )t)) = ak .

Therefore ak = 0 which yields the contradiction.

Case 2: There is another αk′ with αk , αk′ and ℜ(αk ) = ℜ(αk′). Then αk′ = αk . As in the

first case we find

lim
t→∞

(exp(−αk t) f (t)) = 0.

On the other hand,

lim
t→∞

(exp(−αk t) f (t)) = lim
t→∞

(

n∑

j=1

a j (exp((α j − αk )t)))

= lim
t→∞

(ak + ak′ exp(−2ℑ(αk ) · it)), .

Choosing a sequence tm → ∞ such that exp(−2ℑαk · itm ) = 1 implies that ak + ak′ = 0.

Choosing a sequence tm → ∞ such that exp(−2ℑαk · itm ) = −1 gives that ak − ak′ = 0. Hence

ak = ak′ = 0 which yields again a contradiction.

Thus for all kwith ℜ(αk ) > 0 we have ak = 0. Similarly, by looking at the limit t → −∞ we

deduce that ak = 0 for all k withℜ(αk ) < 0. Therefore f ≡ 0.

In particular, 0 = f (0) = (V0u, ψ) = (u, ψ) for all u ∈ D. Since D is dense in H this implies

ψ = 0.

In the same way one checks that A∗ψ = −iψ has only the trivial solution. �
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Theorem 3.8.3 (Chernoff). Let N be a complete Riemannian manifold and let E → N be a

hermitian vector bundle. Let T ∈ Diff 1(E, E) be formally selfadjoint. Moreover, suppose

there is a constant c > 0 such that |σ(T, ξ) |op ≤ c · |ξ | holds for all ξ ∈ T∗N .

Then Tn is essentially selfadjoint in L2(N, E) on C∞c (N, E) for every n ∈ N.

Proof. Set L := iT , H := L2(N, E), and D := C∞c (N, E). Then Lemma 3.8.1 yields a unitary

one-parameter group Vt with

• VtD = Vt ,

• d
dt

Vtu0 = Lvtu0 for all u0 ∈ D

• VtT = −Vt iL = −iVt L = −iLVt = TVt .

Hence all assumptions in Lemma 3.8.2 are fulfilled. Lemma 3.8.2 now implies that Tn is

essentially selfadjoint for all n ∈ N. �

Example 3.8.4. Let E = ⊕dim N
p=0
Λ

pT∗N and T = d + δ. Then T is formally selfadjoint and we

have |σ(T, ξ) |op = |ξ ∧ · + ξy · |op ≤ 2|ξ |. Then Theorem 3.8.3 implies that Tn
= (d + δ)n is

essentially selfadjoint.

In particular, the Hodge-Laplacian T2
= dδ + δd = ∆ is essentially selfadjoint. Since the

Hodge-Laplacian preserves the degree of forms ∆|C∞c (N,ΛpT ∗N ) is essentially selfadjoint for any

p ∈ {0, . . . , dim(N )}.

Example 3.8.5. Let T be a formally selfadjoint operator of Dirac-type. We compute

|σ(T, ξ)tσ(T, ξ) |op = |σ(T, ξ)σ(T, ξ) |op

= |σ(T2, ξ) |op

= |ξ |2

where we used that T2 is Laplace-type. Hence

|σ(T, ξ)u|2 =
〈

σ(T, ξ)tσ(T, ξ)u, u
〉

≤ |ξ |2 · |u|2

which implies |σ(T, ξ) |op ≤ |ξ |. Theorem 3.8.3 then shows that Tn is essentially selfadjoint for

all n ∈ N.

Example 3.8.6. In the previous two examples the operator T is elliptic. Here is a non-elliptic

example. Let dim(N ) = 3 and E = T N ⊕ T N . Let T = i

(

0 − rot

rot 0

)

. Theorem 3.8.3 yields that

Tn is essentially selfadjoint for all n ∈ N.
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We have seen that formally selfadjoint Dirac-type operators are always essentially selfadjoint.

This is not true for formally selfadjoint Laplace-type operators in general. Adding a potential

going to −∞ sufficiently fast can destroy essential selfadjointness. To prevent this a lower bound

is assumed in the next theorem.

Theorem 3.8.7 (Chernoff). Let N be a complete Riemannian manifold and let E → N be a

hermitian vector bundle. Let P ∈Diff
2
(E, E) be a formally selfadjoint operator of Laplace

type. If there is an α ∈ R such that for all u ∈ C∞c (N, E)

(Pu, u) ≥ α | |u| |2

then Pn is essentially selfadjoint in L2(N, E) on C∞c (N, E) for every n ∈ N.

Proof. W.l.o.g. let α = 1, otherwise replace P by P + (1 − α) id. Let H1 be the completion of

C∞c (N, E) with respect to (u, v)1 = (Pu, v). Set H := H1 ⊕ L2(N, E) and D := C∞c (N, E) ⊕
C∞c (N, E). We consider

A =

(

0 id

−P 0

)

.

Claim: A is skewadjoint with respect to the scalar product in H .

Indeed, we have

(

A

(

u1

u2

)

,

(

v1

v2

))

H

=

((

u2

−Pu1

)

,

(

v1

v2

))

H

= (Pu2, v1) − (Pu1, v2)

and

((

u1

u2

)

, A

(

v1

v2

))

H

=

(

A

(

v1

v2

)

,

(

u1

u2

))

H

= (Pv2, u1) − (Pv1, u2)

= (u1, Pv2) − (u2, Pv1)

= (Pu1, v2) − (Pu2, v1) .

Hence ((

u1

u2

)

, A

(

v1

v2

))

H

= −
(

A

(

u1

u2

)

,

(

v1

v2

))

H

which proves skewadjointness. The equation

d

dt

(

u1

u2

)

= A

(

u1

u2

)
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is equivalent to the equations

d

dt
u1 = u2

d

dt
u2 = −Pu1,

and hence to
d2

dt2
u1 = −Pu1.

Since Q = d2

dt 2 + P is normally hyperbolic, the well-posedness of the Cauchy problem shows

existence of a one-parameter group (Vt )t that solves the equation. Since A is skew we find that

Vt is unitary. Hence the conditions in Lemma 3.8.2 are fulfilled and therefore (iA)n is essentially

selfadjoint in H on D. Now

(iA)2n
= (−1)n (A2)n = (−1)n

(

−P 0

0 −P

)n

=

(

Pn 0

0 Pn

)

.

Therefore Pn is essentially selfadjoint in L2(N, E) on C∞c (N, E). �

3.9 Exercises

3.9.1. Consider the “timelike strip” M = {(t, x) ∈ R2 | −1 < x < 1} in the 2-dimensional

Minkowski space, equipped with the Minkowski metric g = −dt2
+ dx2.

a) Show that M is a causally compatible subset of the Minkowski plane.

b) Is (M, g) globally hyperbolic?

c) Show that advanced and retarted fundamental solutions for the d’Alembert operator on M

exist but are not unique.

3.9.2. Consider the “spacelike strip” M = {(t, x) ∈ R2 | −1 < t < 1} in the 2-dimensional

Minkowski space, equipped with the Minkowski metric g = −dt2
+ dx2.

a) Show that M is a causally compatible subset of the Minkowski plane.

b) Is (M, g) globally hyperbolic?

c) Show that advanced and retarted fundamental solutions for the d’Alembert operator on M

exist and are unique.

3.9.3. For any spatially compactly supported smooth function u on the n-dimensional Minkowski

space consider the spatial Fourier transform

û(t, ξ2, . . . , ξn) =

∫

Rn−1

e
−i ∑n

j=2
x jξ j · u(t, x2, . . . , xn ) dx2 · · · dxn .
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Now let u0, u1 ∈ C∞c (Rn−1) and f ∈ C∞c (Rn). Translate the Cauchy problem for u

�u = f , u(0, x) = u0(x),
∂u

∂t
(0, x) = u1(x),

into a problem for û and conlude that the Cauchy problem has a solution.

3.9.4. Let M = {(t, x) ∈ R2 | −1 < x < 1} equipped with the Minkowski metric g = −dt2
+dx2.

Let S = {0} × (−1, 1).

Show that uniqueness fails in the Cauchy problem for the d’Alembert operator with initial values

along S.

3.9.5. Let (N .h) be a complete Riemannian manifold and let M = R × N equipped with the

metric g = −dt2
+ h. Let Q be a Laplace-type operator on N and P = ∂2

∂t 2 +Q the corresponding

normally hyperbolic operator on M . Let S = {0} × N � N and assume that u0 and u1 are

eigensections of Q for the eigenvalues λ0 and λ1, respectively. Note that the eigenvalues are real

but not necessarily non-negative.

Determine the solution u of the Cauchy problem Pu = 0, u(0, x) = u0(x), and ∂u
∂t (0, x) = u1(x).

3.9.6. (Inhomogeneous equation with distributional right-hand side)

Let M be globally hyperbolic and let F+ (x) be the advanced fundamental solutions of the normally

hyperbolic operator P acting on sections of E → M . Let v ∈ D ′′(M, E) a distributional section

of order 0 and with past-compact support. We define u by

u[ϕ] := v
[

x 7→ F+(x)[ϕ]
]

for any ϕ ∈ D ′(M, E∗).

a) Show that u is a well-defined distributional section of E and give an upper bound for the order

of u.

b) Show Pu = v.

c) Show supp(u) ⊂ J+(supp(v)).

Hint: You may use that for each compact subset K ⊂ M there exists a constant C > 0 such that

|F+(x)[ϕ]| ≤ C · ‖ϕ‖Cn+1 for all x ∈ K and ϕ ∈ D ′(M, E∗) with supp(ϕ) ⊂ K .

3.9.7. (Radiation of a charged particle)

Let M be globally hyperbolic and let E → M be a Hermitian vector bundle. Let c : [0,∞) → M

be a smooth future-directed timelike curve (the world line of the particle), parametrized by proper

time. Let q be a locally integrable section of E along c, i.e., q ∈ L1
loc([0,∞), c∗E) (the charge of

the particle, possibly changing with time). We put for each ϕ ∈ D ′(M, E∗):

v[ϕ] :=

∫ ∞

0

ϕ(c(τ)) · q(τ) dτ .
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a) Show that for any compact subset K ⊂ M there is a T > 0 such that c(τ) ∈ M \ K for all

τ ≥ T .

b) Show that v is a distributional section of order 0.

c) Show that supp(v) is contained in the closure of the trace of c and is past compact.

Hence the results of the Exercise 3.9.6 can be applied to this v. The solution u then describes the

radiation emitted by the charged particle.

3.9.8. We consider the following example for the setup in Exercise 3.9.7: let M be the 1 + 1-

dimensional Minkowski space and let P = � be the d’Alembert operator. Determine the solution

u of �u = v with past-compact support where q ≡ 1 and

a) c(τ) = (τ, 0) (source at rest);

b) c(τ) = (τ cosh(θ0), τ sinh(θ0)) (source at constant speed) where θ0 ∈ R is fixed;

c) c(τ) = (sinh(τ), cosh(τ) − 1) (accelerated source).

3.9.9. Let M = S1 × R with the metric g = −gS1 + dx2 where gS1 is the standard metric of S1

and x is the standard coordinate on R. Let θ ∈ S1 be fixed and put S = {θ} × R.

Show that the Cauchy problem for the d’Alembert operator on M with initial values along S does

not always have solutions.

3.9.10. (Cauchy data with noncompact support)

For a normally hyperbolic operator P on a globally hyperbolic manifold M with smooth spacelike

Cauchy hypersurface S we have seen that there is a unique solution to the Cauchy problem


Pu = f on M,

u = u0 on S,

∇νu = u1 on S,

where u0, u1, and f are smooth and have compact support.

Show that there is still a unique solution if we drop the compactness assumption on the supports

of u0 and u1.

Hint: Use a partition of unity on S with the property that for every x ∈ M the set J±(x) ∩ S

meets the supports of only finitely many of the cut-off functions.

3.9.11. (Cauchy problem for Dirac-type operators)

Let M be a globally hyperbolic manifold and E → M a Hermitian vector bundle. Let D ∈
Diff 1(E, E) be of Dirac type.

a) Show that the principal symbol σ1(D, ξ) is invertible unless ξ is causal.
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b) Let f ∈ C∞c (M, E) and u0 ∈ C∞c (S, E) where S ⊂ M is a smooth spacelike Cauchy hypersur-

face. Show that there is a unique solution u ∈ C∞(M, E) of the Cauchy problem


Du = f on M,

u = u0 on S.

Hint: Show uniqueness first.

3.9.12. Let M = {(t, x) ∈ R×Rn | t < 0}with Minkowski metric g = −dt2
+(dx1)2

+· · ·+(dxn )2

and standard time orientation. Is the support system pc in M essentially countable?

3.9.13. Let G+ be the advanced Green’s operator for the d’Alembert operator � on M = R × N

with the metric −dt2
+ gN . Here (N, gN ) is any complete Riemannian manifold. Show that for

any u ∈ C∞pc (M ) which depends only on t we have

(G+u)(t, y) = −
∫ t

−∞

∫ s

−∞
u(τ) dτ ds .

3.9.14. Show that the advanced Green’s operator for the d’Alembert operator � on 1 + 1-

dimensional Minkowski space is given by

(G+u)(t, x) = −1

2

∫ t

−∞

(∫ x+t−τ

x+τ−t
u(τ, ξ) dξ

)

dτ .

3.9.15. Let M be globally hyperbolic and let E → M be a vector bundle. Let P ∈Diff (E, E)

be Green hyperbolic with advanced and retarded Green’s operators G±. Let Q ∈Diff (E, E) be

another differential operator. Show that if Q commutes with P then Q also commutes with G+
and G−.
Hint: Consider G̃± = G± + [G±,Q].

3.9.16. (Electrodynamics I)

Let M be globally hyperbolic and let G+ be the advanced Green’s operator for P = dδ + δd

acting on 1-forms. Let J be a 1-form on M (the 4-current density) with past-compact support.

We assume it satisfies δJ = 0 (the continuity equation).

a) Show that A := G+J satisfies the Lorentz gauge condition δA = 0.

b) Show that F := dA (the electromagnetic field) satisfies the Maxwell equations dF = 0 and

δF = J.

3.9.17. (Electrodynamics II)

On 4-dimensional Minkowski space with the metric g = −dt2
+

∑3
k=1

(dxk )2 write J = ρdt +
∑3

k=1
jk dxk and F =

∑3
k=1

Ek dxk ∧ dt +
∑

σ Bσ (1) dxσ (2) ∧ dxσ (3) where the last sum is taken

over all even permutations σ of {1, 2, 3}.
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Express the continuity equation and the Maxwell equations in terms of the function ρ (the charge

density) and the vector fields ~J =
∑3

k=1
jk

∂
∂xk (the current density), ~E =

∑3
k=1

Ek
∂
∂xk (the

electric field), and ~B =
∑3

k=1 Bk
∂
∂xk (the magnetic field).

3.9.18. Show that the Green’s operator of � ◦ � on 1 + 1-dimensional Minkowski space has a

continuous integral kernel, compare Exercise 3 on Sheet 12.

3.9.19. Let P ∈Diff (E1, E2) be a Green-hyperbolic operator on a globally hyperbolic manifold

M . Show that the following sequence is exact:

0→ C∞t c (M; E1)
P−→ C∞t c (M; E2)

G−→ C∞(M; E1)
P−→ C∞(M; E2) → 0 .

3.9.20. (Maxwell equations)

Let N be a 3-dimensional Riemannian manifold, let J, E and B be smooth time-dependent vector

fields on N and ̺ a smooth function on M = R × N . We assume that the Maxwell equations

∂E

∂t
− rot B = J,

∂B

∂t
+ rot E = 0,

are satisfied as well as the continuity equation

div J − ∂̺
∂t
= 0 .

a) Show that if the other two Maxwell equations

div E = ,̺ div B = 0,

hold for some t = t0 then they hold for all t.

b) Let P =

(
∂
∂t −rot

rot ∂
∂t

)

be the corresponding symmetric hyperbolic system. Show that there is

no differential operator D acting on sections of π∗(T N ⊕ T N ) → M such that P ◦D or D ◦ P

is normally hyperbolic. Here, of course, π : M → N is the projection onto the N-factor.

3.9.21. Let X be a smooth vector field on a time-oriented Lorentzian manifold M .

a) What is the condition on X for the operator ∂X acting on functions to be symmetric hyperbolic?

b) Give a direct proof of finite propagation speed in this example.

3.9.22. (Euler momentum equation)

Let N be a Riemannian manifold and let u0 be a smooth time-dependent vector field on N . The

Euler momentum equation for an imcompressible fluid linearized at u0 is given by

∂v

∂t
+ ∇u0

v + ∇vu0 = 0

where v is the time-dependent vector field on N to be found.
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3.9 Exercises

a) Show that there are Lorentzian metrics on M = R × N with respect to which this equation is

symmetric hyperbolic.

b) Show that these Lorentzian metrics can be chosen to be globally hyperbolic if N is compact.

3.9.23. (Dust)

Let (M, g) be a 4-dimensional time-oriented Lorentzian manifold, let u be a smooth future-

directed timelike vector field with g(u, u) ≡ −1 (the 4-velocity of the dust) and let ̺ be a positive

smooth function on M (the mass density). The linearization of the dust equations are given by

∇vu + ∇uv = 0, ∂v ̺ + ∂uθ + ̺div v + θdiv u = 0

where the unknowns are v, a vector field with g(u, v) ≡ 0, and θ, a function. In this case, the

vector bundle for the system is E = u⊥⊕Rwhere the fibers of u⊥ are the orthogonal complements

of u and R is the trivial line bundle. The rank of E is 4 and E carries a natural positive definite

fiber metric.

a) Show that this system is not symmetric hyperbolic.

b) Show that it cannot even be made symmetric hyperbolic by changing the fiber metric of E to

any other Riemannian metric on E.

Hint: Consider the Jordan normal form of the principal symbol.
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