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Preface

These are the lecture notes of an introductory course on differential geometry that were given

various times at the University of Potsdam. It introduces the mathematical concepts necessary to

describe and analyze curved spaces of arbitrary dimension. Important concepts are manifolds,

vector fields, semi-Riemannian metrics, curvature, geodesics, Jacobi fields and much more. The

focus is on Riemannian geometry but, as we move along, we also treat more general semi-

Riemannian geometry such as Lorentzian geometry which is central for applications in General

Relativity. We also make a connection to classical geometry when we apply differential geome-

try to derive the laws of trigonometry on spaces of constant curvature. One fundamental result of

Riemannian geometry that we show towards the end of the course is the Bonnet-Myers theorem.

It roughly states that the larger the curvature of a space, the smaller the space itself must be.

The lecture course did not require prior attendance of a course on elementary differential ge-

ometry treating curves and surfaces but such a course would certainly help to develop the right

intuition.

It is my pleasure to thank all those who helped to improve the manuscript by suggestions,

corrections or by work on the LATEX code. My particular thanks go to Andrea Röser who wrote

the first version in German language and created many pictures in wonderful quality, to Volker

Branding who translated the manuscript into English, to Ramona Ziese who improved the

layout and to Matthias Ludewig for pointing out various flaws.

Potsdam, July 2023

Christian Bär

iii





1 Manifolds

1.1 Topological manifolds

Reminder. Let M be a set. A system of sets O ⊂ P(M) is called a topology on M, if

1. /0, M ∈ O .

2. If Ui ∈ O, i ∈ I, then also
⋃

i∈I

Ui ∈ O.

3. If U1,U2 ∈ O , then also U1 ∩U2 ∈ O .

The pair (M,O) is called a topological space. By abuse of language, one often speaks about the

topological space M rather than (M,O).

A subset U ⊂ M is called open in M if U ∈ O . A subset A ⊂ M is called closed if M \A ∈ O .

If both (M,OM) and (N,ON) are topological spaces, a map f : M → N is called continuous, if

f−1(V ) ∈ OM for all V ∈ ON .

In other words, preimages of open sets have to be open. A bijective continuous map f : M → N,

whose inverse f−1 is also continuous, is called a homeomorphism. Two topological spaces M

and N are called homeomorphic, if there exists a homeomorphism between them.

Definition 1.1.2. Let M be a topological space with topology O . Then M is called an

n-dimensional topological manifold, if the following holds:

1. M is Hausdorff, that is, for all p,q ∈ M with p , q there exist open sets U,V ⊂ M with

p ∈U , q ∈V and U ∩V = /0.

b

b

p
q

M

U
V

2. The topology of M has a countable basis, that is, there exists a countable subset B ⊂O ,

such that for every U ∈ O there are Bi ∈ B, i ∈ I with

U =
⋃

i∈I

Bi.
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CHAPTER 1. MANIFOLDS

3. M is locally homeomorphic to Rn, that is, for all p ∈ M exists an open subset U ⊂ M

with p ∈U , an open subset V ⊂ Rn and a homeomorphism x : U →V .

b p

M

U

≈
x V ⊂ Rn

Remark 1.1.3. The first two conditions in the definition are more of a technical nature and are

sometimes neglected. The important fact is that a topological manifold is locally homeomorphic

to Rn. Loosely speaking manifolds look locally like Euclidean space. If the topology on M is

induced by a metric, then the first condition is satisfied automatically. If M is given as a subset

of RN with the subset topology, then both conditions 1 and 2 are satisfied automatically.

Examples 1.1.4. (1) Euclidean space M = Rn itself is an n-dimensional topological manifold:

(i), (ii) Obvious.

(iii) Holds true with U = M, V = Rn and x = id.

(2) Let M ⊂ Rn be an open subset. Then M is an n-dimensional topological manifold.

(i), (ii) Obvious.

(iii) Holds true with U = M, V = M and x = id.

(3) The standard sphere M = Sn = {y ∈ Rn+1 : ‖y‖= 1} is an n-dimensional topological mani-

fold.

(i), (ii) Obvious, since Sn is a subset of Rn+1.

2



1.1. TOPOLOGICAL MANIFOLDS

(iii) We construct two homeomorphisms with the help of the stereographic projection.

We define U1 := Sn \ {SP} with

SP := (−1,0, . . . ,0) ∈ Rn+1 and set

V1 := Rn. Furthermore, we define

x : U1 −→ V1,

y = (y0,y1, . . . ,yn

︸       ︷︷       ︸

=:ŷ

) 7−→ x(y) =
2

1+ y0
· ŷ.

b

b

b

b

SP

NP

y

x(y)

The map x is continuous and bijective. The inverse map y is given by

y : V1 −→ U1,

x 7−→ y(x) =
1

4+‖x‖2
(4−‖x‖2,4x),

and is also continuous. Hence, x is an homeomorphism.

Analogously, we define the homeomorphism, which omits the north pole: Let now

U2 := Sn \{NP} with NP := (1,0, . . . ,0) ∈ Rn+1 and V2 := Rn. Then

x̃ : U2 −→ V2,

y 7−→ x̃(y) = x̃(y0,y1, . . . ,yn

︸       ︷︷       ︸

=:ŷ

) =
2

1− y0
· ŷ.

We have seen that the sphere Sn is an n-dimensional topological manifold.

(4) All n-dimensional submanifolds of RN in the sense of Analysis 3 are n-dimensional topo-

logical manifolds.

(5) Non-Example. We consider M := {(y1,y2,y3) ∈ R3 |(y1)2 = (y2)2 + (y3)2 }, the double

cone.

Since M ⊂ R3, both (i) and (ii) are satisfied.

But M is not a 2-dimensional manifold. If it

were, then there would exist an open subset

U ⊂M with 0∈U , an open subset V ⊂R2 and

a homeomorphism x : U →V with x(0) = 0.

b b

b

b

b

b

q1

q2

0

M x(q1)

x(q2)

x(0)

V

c
≈
x

3



CHAPTER 1. MANIFOLDS

W. l. o. g. assume V = Br(x(0)) with r > 0. Choose q1,q2 ∈ U with q1
1 > 0 and q1

2 < 0.

Furthermore, choose a continuous path c : [0,1]→V with

c(0) = x(q1), c(1) = x(q2) and c(t) , x(0) for all t ∈ [0,1].

Define the continuous path c̃ := x−1 ◦ c : [0,1]→U . Then

c̃(0) = q1, c̃(1) = q2,

that is, we have c̃1(0) > 0 while c̃1(1) < 0. Applying the mean value theorem we

find, that there exists a t ∈ (0,1) with c̃1(t) = 0. Then c̃(t) = (0,0,0) and consequently

c(t) = x(c̃(t)) = x(0), which contradicts the choice of c. Hence, M is not a 2-dimensional

topological manifold.

Definition 1.1.5. If M is an n-dimensional topological manifold, the homeomorphisms x :

U →V are called charts (or local coordinate systems) of M.

M

U
≈
x V ⊂ Rn

After choosing a local coordinate system x : U →V every point p ∈U is uniquely characterized

by its coordinates (x1(p), . . . ,xn(p)).

In a 0-dimensional manifold M every point p ∈ M has an open neighborhood U , which is

homeomorphic to R0 = {0}. Consequently {p} =U is an open subset of M for all p ∈ M, that

is, M carries the discrete topology. Since there exists a countable basis for the topology on M

and the topology is discrete in addition, M has to be countable itself.

Thus we get:

Proposition 1.1.6. A topological space M is a 0-dimensional topological manifold, if and

only if M is countable and carries the discrete topology.

Definition 1.1.7. We call a topological manifold M connected, if for every two points p,q ∈
M there exists a continuous map c : [0,1]→ M with c(0) = p and c(1) = q.

4



1.1. TOPOLOGICAL MANIFOLDS

Given two points, there has to be a continuous curve in M which connects both. Usually, in

Topology one calls this path-connected, which is in the case of manifolds equivalent to being

connected. We do not want to go deeper into this subject at this point.

Remark 1.1.8. Following Proposition 1.1.6 every connected 0-dimensional manifold M is given

by a single point: M = {point}.

In dimension 1 there are only a few connected manifolds:

Proposition 1.1.9. Every connected 1-dimensional topological manifold is homeomorphic to

R or to S1.

A proof of this fact can be found in the appendix of [M65]. Thus, the only compact, connected

topological manifold of dimension 1 is S1.

Theorem 1.1.10. Let M and A be sets. For all α ∈ A assume that Uα ⊂ M and Vα ⊂ Rn are

subsets and that xα : Uα →Vα are bijective maps. Suppose the following holds:

(i)
⋃

α∈A

Uα = M,

(ii) xα(Uα ∩Uβ )⊂ Rn is open for all α ,β ∈ A and

(iii) xβ ◦ xα
−1 : xα(Uα ∩Uβ )→ xβ (Uα ∩Uβ ) is continuous for all α ,β ∈ A.

Then M carries a unique topology for which all Uα are open sets and all xα are homeomor-

phisms.

MUα

Uβ

Vα

xα
Vβ

xβ

xβ ◦ xα
−1

Proof. We first show uniqueness:

Let O be a topology on M containing the Uα and such that the xα are homeomorphisms. If

W ∈ O , then also W ∩Uα ∈ O and xα(W ∩Uα) is open for all α ∈ A.

5



CHAPTER 1. MANIFOLDS

Conversely, if W ⊂ M is a subset such that xα(W ∩Uα)⊂ Rn is open for all α ∈ A, then W ∩Uα

is also open in Uα for all α . Since Uα is open in M, the set W ∩Uα is open in M. By (i),

W =
⋃

α∈A(W ∩Uα) is also open in M. We have shown that W ∈ O if and only if xα(W ∩Uα) is

open in Rn for all α ,

O = {W ⊂ M |xα(W ∩Uα)⊂ Rn open for all α ∈ A}.

Now we show existence:

We use the criterion for openness derived in the uniqueness part of the proof to define the to-

pogoly. We set:

O := {W ⊂ M |xα(W ∩Uα)⊂ Rn open for all α ∈ A}.

Now we have to check that this O is a topology and that it has the desired properties:

(a) O is a topology because

(i) The empty set /0 is open in M because xα( /0∩Uα ) = xα( /0) = /0 is open in Rn for all α .

Observe that the case α = β in (ii) shows that Vα = xα(Uα) is open in Rn. Now we

see that M ∈ O because xα(M∩Uα) = xα(Uα) =Vα is open in Rn for all α .

(ii) Assume Wi ∈ O for i ∈ I. Then
⋃

i∈I Wi ∈ O because

xα

((
⋃

i∈I

Wi

)

∩Uα

)

= xα

(
⋃

i∈I

(Wi ∩Uα)

)

=
⋃

i∈I

xα(Wi ∩Uα)
︸           ︷︷           ︸

open in Rn

is open in Rn for all α ∈ A.

(iii) The conclusion W1,W2 ∈ O ⇒W1 ∩W2 ∈ O follows similarly.

(b) We have to show Uβ ∈ O for all β ∈ A. This is obvious because xα(Uβ ∩Uα)⊂ Rn is open

for all α ∈ A by assumption.

(c) The map xβ is continuous for all β ∈ A because:

Let Y ⊂Vβ be open. Then we have for all α ∈ A:

xα(xβ
−1(Y )∩Uα) = xα(xβ

−1(Y ∩ xβ (Uα ∩Uβ )))

= (xα ◦ xβ
−1)

︸          ︷︷          ︸

=(xβ◦xα
−1)−1

continuous

(Y ∩ xβ (Uα ∩Uβ )
︸            ︷︷            ︸

open

)

︸                    ︷︷                    ︸
open

is open in Rn.

Thus xβ
−1(Y ) ∈ O .

(d) The map xβ
−1 is continuous because:

Let W ⊂Uβ be open. Then W ∈ O . For all α ∈ A the set xα(W ∩Uα) is open, in particular

for α = β

(xβ
−1)−1(W ) = xβ (W ) = xβ (W ∩Uβ ) is an open set. �

6



1.1. TOPOLOGICAL MANIFOLDS

Example 1.1.11 (Real-projective space). We define the real-projective space by

M = RPn := P(Rn+1) := {L ⊂ Rn+1 |L is one-dimensional vector-subspace }.

We will use Theorem 1.1.10 to equip RPn with the structure of an n-dimensional topological

manifold. We set

A := {affine-linear embeddings α : Rn → Rn+1 with 0 < α(Rn)}.

Since α is affine-linear there exist a B ∈ Mat(n× (n+1),R) and a c ∈ Rn+1 such that

α(x) = Bx+ c

for all x ∈ Rn. Since α is an embedding, B has maximal rank, rank(B) = n.

b
b

b

0

R
n

c

0

bc

R
n+1

α(Rn)

Lα

Consequently, α(Rn) is an affine-linear hyperplane. Set

Uα := {L ∈ RPn |L∩α(Rn) , /0}.

For L ∈Uα the space L∩α(Rn) consists of exactly one point, because otherwise we would have

L ⊂ α(Rn) and hence 0 ∈ α(Rn), a contradiction. Moreover, we have

RPn \Uα = {L |L ⊂ B(Rn) one-dimensional subspace} (1.1)

where α(x) = Bx+ c. For α ∈ A set Vα := Rn and

xα : Uα →Vα , xα(L) := α−1(L∩α(Rn)).

Then xα is a bijective map and we have

xα
−1(v) = R ·α(v).

In the following we check the assumptions of Theorem 1.1.10:

(i) We show:
⋃

α∈A

Uα = M.

To this end, let e0, . . . ,en ∈ Rn+1 be the standard basis. For j = 1, . . . ,n we define:

α j(v) := v1e0 + . . .+ v je j−1 + e j + v j+1e j+1 + . . .+ vnen.

7



CHAPTER 1. MANIFOLDS

Assume there existed an

L ∈ RPn \
n⋃

j=0

Uα j
=

n⋂

j=0

(RPn \Uα j
).

Then

L ⊂
n⋂

j=0

e j
⊥ = {0}.

b b

e j

e j
⊥

This is a contradiction, consequently
n⋃

j=0

Uα j
= RPn and hence

⋃

α∈A

Uα = RPn.

(ii) We observe that xα(Uα ∩Uβ ) is the

complement of an affine-linear sub-

space in Rn. More precisely, by (1.1),

xα(Uα ∩Uβ ) = α−1(α(Rn) \B(Rn))
where we have written β (x) = Bx+
c. Since affine-linear subspaces are

closed, xα(Uα ∩Uβ ) is open.

α(Rn)

B(Rn)
b 0

(iii) We show that xβ ◦ xα
−1 : v 7→ β−1(R ·α(v)∩β (Rn)) is continuous for all α , β ∈ A.

b

v

Vα

bc

bc

α(Rn)

β (Rn)

α(v)

b 0

b

xβ ◦ xα
−1(v)

Vβ

β

α

Write α(v) = Bv+c and β (w) = Dw+ f . Now w = xβ ◦xα
−1(v) is equivalent to x−1

β (w) =

x−1
α (v), hence to R · β (w) = R ·α(v). Therefore w = xβ ◦ xα

−1(v) is equivalent to the

existence of t ∈R such that Dw+ f = t ·(Bv+c). For the left-hand-side we write Dw+ f =

(D, f )

(
w

1

)

. Note that (D, f ) is an invertible (n+ 1)× (n+ 1)-matrix because otherwise

we could write f as a linear combination of the columns of D and hence 0 would lie in the

image of β . Thus we get
(

w

1

)

= t · (D, f )−1 · (Bv+ c). (1.2)

Taking the scalar product with en+1 = (0, · · · ,0,1)⊤ yields

1 =
〈

en+1,

(
w

1

)〉

= t · 〈en+1,(D, f )−1 · (Bv+ c)〉. (1.3)

8



1.1. TOPOLOGICAL MANIFOLDS

Inserting (1.3) into (1.2) gives us
(

w

1

)

= 〈en+1,(D, f )−1 · (Bv+ c)〉−1 · (D, f )−1 · (Bv+ c). (1.4)

This shows that the components of w are rational functions of the components of v. In

particular, they are continuous.

By Theorem 1.1.10, RPn has exactly one topology for which the Uα are open and the xα are

homeomorphisms. We still need criteria ensuring that this topology is Hausdorff and has a

countable basis. Once we know this, we have turned RPn into an n-dimensional topological

manifold.

Proposition 1.1.12 (First Addition to Theorem 1.1.10). If in Theorem 1.1.10 there exists a

countable subset A1 ⊂ A with
⋃

α∈A1

Uα = M

then the resulting topology has a countable basis.

Example 1.1.11 continued. For RPn the finite set A1 := {α0, . . . ,αn} does the job. Conse-

quently, the topology of RPn has a countable basis.

Proof of Proposition 1.1.12. The topology resulting from A has all the properties of the topology

resulting from A1. Since the topology is unique, A and A1 give the same topology on M.

Without loss of generality we may therefore assume that A1 = A is countable. Now the topology

of each Vα ⊂ Rn has a countable basis Bα . Then xα
−1(Bα) is a countable basis of the topogoly

of Uα . Finally,
⋃

α∈A xα
−1(Bα) is a countable basis of M. �

Proposition 1.1.13 (Second Addition to Theorem 1.1.10). If in Theorem 1.1.10 for any two

points p,q ∈ M there is an α ∈ A such that p,q ∈Uα , then the topology of M is Hausdorff.

Example 1.1.11 continued. For L1,L2 ∈ RPn there exists an affine-linear hypersurface

E with L1 ∩E , /0 and L2 ∩E , /0. By

Proposition 1.1.13, RPn is Hausdorff.

Summarizing, we see that RPn is a n-

dimensional topological manifold. b 0

E

bc

L1

bc

L2

Proof of Proposition 1.1.13. Let p,q ∈ M with p , q. Choose an α ∈ A with p,q ∈ Uα . Since

R
n is Hausdorff, we can choose V1,V2 ⊂Vα open with xα(p) ∈V1, xα(q) ∈V2 and V1 ∩V2 = /0.

Then xα
−1(V1) and xα

−1(V2) separate p and q.

9



CHAPTER 1. MANIFOLDS

M
Uα

b bp q

R
n ⊃Vα

b bV1 V2

xα

�

We summarize:

Corollary 1.1.14. Let M and A be sets and let A1 ⊂ A be a countable subset. For all α ∈ A

assume that Uα ⊂ M and Vα ⊂ Rn are subsets and that xα : Uα → Vα are bijective maps.

Suppose the following holds:

(i)
⋃

α∈A1

Uα = M;

(ii) xα(Uα ∩Uβ )⊂ Rn is open for all α ,β ∈ A;

(iii) xβ ◦ xα
−1 : xα(Uα ∩Uβ )→ xβ (Uα ∩Uβ ) is continuous for all α ,β ∈ A;

(iv) for any two points p,q ∈ M there is an α ∈ A such that p,q ∈Uα .

Then M carries a unique topology which turns M into an n-dimensional topological manifold

such that the xα : Uα →Vα are charts.

Example 1.1.15 (Complex-projective space). In complete analogy to the real-projective space

we define complex-projective space by

CPn := P(Cn+1) := {L ⊂ Cn+1 |L is one-dimensional complex subspace }.

Like in the real case we obtain charts xα : Uα →Cn = R2n. This turns CPn into a 2n-dimensional

topological manifold.

1.2 Differentiable manifolds

For a topological manifold M, like for any topological space, it makes sense to speak about

continuous functions f : M → R. In a course on differential geometry we will certainly need to

differentiate functions. But what does differentiability of f mean?

Attempt of a definition. The function f is called differentiable at p ∈ M if for some chart

x : U →V with p ∈U the function f ◦ x−1 : V → R is differentiable in x(p).

10



1.2. DIFFERENTIABLE MANIFOLDS

M
U

bp
b
x(p)

Vx

R

f
f ◦ x−1

This is, in principle, a very reasonable definition. It means that f is differentiable on M if it is

differentiable on Rn when expressed in coordinates. But there is a problem with this definition.

If y : Ũ → Ṽ is another chart with p ∈ Ũ , then near y(p) we have

f ◦ y−1 = ( f ◦ x−1)
︸      ︷︷      ︸

diff’able
at x(p)

◦(x◦ y−1)
︸      ︷︷      ︸

only
continuous

.

This concept of differentiability depends on the choice of chart x and this is really bad because

on a general topological manifold there are no preferred coordinate systems. The sad truth is

that there is no reasonable concept of differentiable functions on a topological manifold.

But there is one thing we can do, we can refine the notion of a manifold. If x ◦ y−1 were a

diffeomorphism and not only a homeomorphism, then the differentiability of f ◦ x−1 would

imply the differentiability of f ◦ y−1. We enforce this by making the following definition.

Definition 1.2.1. Let M be an n-dimensional topological manifold. Two charts x : U →V and

y : Ũ → Ṽ of M are called C∞-compatible if

y◦ x−1 : x(U ∩Ũ)→ y(U ∩Ũ)

is a C∞-diffeomorphism.

MU

Ũ

V

x

x(U ∩Ũ)

Ṽ

y

y(U ∩Ũ)
y◦ x−1

Definition 1.2.2. A set of charts xα : Uα →Vα of M, α ∈ A, is called atlas of M, if

⋃

α∈A

Uα = M.

An atlas A is called a C∞-atlas if any two charts in A are C∞-compatible.

11
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Example 1.2.3. (1) Let M =U ⊂ Rn be open. Then A := {id : U →U} is a C∞-atlas.

(2) Let M = Sn and A := {(x :U1 →V1),(x̃ :U2 →V2)}, where U1 := Sn\{SP}, U2 := Sn\{NP}
and V1 :=V2 := Rn, compare Example 1.1.4.3. Furthermore, let

x(y) =
2

1+ y0
ŷ, where y =

(
y0, ŷ

)
∈ Rn+1,

y(x) =
1

4+‖x‖2

(
4−‖x‖2,4x

)
and

x̃(y) =
2

1− y0
ŷ.

Then we have for v ∈ x(U1 ∩U2) = x(Sn \{SP,NP}) = Rn \{0}:

x̃◦ x−1(v) = x̃

(
4−‖v‖2

4+‖v‖2
,

4v

4+‖v‖2

)

=
2

1− 4−‖v‖2

4+‖v‖2

4v

4+‖v‖2

=
8v

4+‖v‖2 −4+‖v‖2

=
4v

‖v‖2
.

Hence x̃ ◦ x−1 is C∞ on Rn \{0} = x(Sn \{SP,NP}) = x(U1 ∩U2). Similarly one sees that

x◦ x̃−1 is smooth. This shows that x and x̃ are C∞-compatible. Hence A is a C∞-atlas.

(3) Let M =RPn, A := {xα :Uα →Rn |xα is an affine-linear embedding Rn →Rn+1 of maximal

rank and 0 < α(Rn)}, compare Example 1.1.11. All changes of charts xβ ◦xα
−1 are rational

functions and hence C∞. Therefore A is a C∞-atlas.

(4) Analogously, for M = CPn as in Example 1.1.15, the resulting atlas is also a C∞-atlas.

Remark 1.2.4. If A is a C∞-atlas of M then

Amax := {charts x of M |x is C∞-compatible with all charts in A }

also is a C∞-atlas of M. The reason is this:

If x and x̃ are two charts of M, which are C∞-compatible with all charts in A , then also x and x̃

are C∞-compatible with each other.

Namely, for any p ∈ x(U ∩Ũ) there exists a chart y : ˜̃U → ˜̃V in A with x−1(p) ∈ ˜̃U . Near p we

then have:

x̃◦ x−1 =
(
x̃◦ y−1

)

︸      ︷︷      ︸

C∞

◦
(
y◦ x−1

)

︸      ︷︷      ︸

C∞

.

Hence x̃◦ x−1 is C∞ and similarly for x◦ x̃−1.

12
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Definition 1.2.5. An C∞-atlas Amax is called maximal (or also differentiable structure), if

every chart that is C∞-compatible with all charts in Amax, is already contained in Amax.

According to Remark 1.2.4, every C∞-atlas A is contained in exactly one maximal C∞-atlas

Amax.

Definition 1.2.6. A pair (M,Amax), where M is an n-dimensional topological manifold and

Amax a differentiable structure on M, is called an n-dimensional differentiable manifold.

Definition 1.2.7. Let M and N be differentiable manifolds, let p ∈ M and let k ∈N∪{∞}.

A continuous map f : M → N is called k-times continuously differentiable (or Ck) near p,

if for one (and therefore for every other) chart

(x : U →V ) ∈ Amax(M) with p ∈U

and for one (and therefore for every other) chart

(y : Ũ → Ṽ ) ∈ Amax(N) with f (p) ∈ Ũ

there exists a neighborhood W ⊂ x( f−1(Ũ)∩U) of x(p), such that

y◦ f ◦ x−1 : x
(

f−1(Ũ)∩U
)
→ Ṽ

is Ck on W .

M

U
bp

f−1(Ũ)∩U
NŨ

bf (p)

b
x(p)

V

W x( f−1(Ũ)∩U)

Ṽ
y◦ f ◦ x−1

x y

f

Example 1.2.8. (1) Let M = Sn with the differentiable structure given by

A = {(x : U1 →V1),(x̃ : U2 →V2)}

13
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as in Example 1.2.3.2. We show that

f : Sn → Sn, f (y) =−y,

is C∞ near NP. In fact, f is C∞ on all of Sn. We compute

R
n ∋ v

x−1

7−→ x−1(v) =

(
4−‖v‖2

4+‖v‖2
,

4v

4+‖v‖2

)

f7−→
(

−4−‖v‖2

4+‖v‖2
,

−4v

4+‖v‖2

)

x̃7−→ − 2

1+
4−‖v‖2

4+‖v‖2

· 4v

4+‖v‖2
=−8v

8
=−v

Consequently, x̃ ◦ f ◦ x−1(v) = −v and in particular x̃ ◦ f ◦ x−1 is C∞ on Rn. Thus, we may

consider W = Rn.

This argument shows that f is smooth near all points except SP because SP is the only point

not contained in the chart U1. Interchanging the two charts one sees similarly that f is also

smooth near SP. Hence f is smooth on all of Sn.

(2) We consider the atlases A1 := {x = id : R→ R} on M = R with differentiable structure

A1,max and A2 := {x̃ : R→ R} with x̃(t) = t3 and differentiable structure A2,max.

Now x̃◦ x−1(t) = t3 is C∞, but x◦ x̃−1(t) = 3
√

t is not.

Consequently, x and x̃ are not C∞-compatible and therefore the differentiable structures are

different:

A1,max ,A2,max.

• Is id : (R,A1,max)→ (R,A2,max) a C∞-map?

R R

R R

⇒ x̃ ◦ id◦ x−1 is C∞ and therefore also id.

id

t 7→t3

x=id x̃

• Is id : (R,A2,max)→ (R,A1,max) a C∞-map?

R R

R R

⇒ x◦ id◦ x̃−1 is not C∞ and the same holds true for id.

id

t 7→ 3√
t

x̃ x=id

Summarizing we see that id is a homeomorphism from (R,A1,max) to (R,A2,max) which is

smooth but its inverse is not.

14
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Definition 1.2.9. Let M and N be differentiable manifolds. A homeomorphism f : M → N

is called a Ck-diffeomorphism, if f and f−1 are both Ck. Instead of C∞-diffeomorphism we

simply say diffeomorphism. If there exists a diffeomorphism f : M → N, we say that M and

N are diffeomorphic.

Example 1.2.8.2 continued. Let M = (R,A1,max) with A1,max = {x = id : R → R} and

N = (R,A2,max) with A2,max = {x̃ : R→ R, x̃(t) = t3}. We have seen that id : M → N is not

a diffeomorphism. But f : M → N, f (t) = 3
√

t is a diffeomorphism because

M N

R R

f

x x̃

id

Thus M and N are diffeomorphic.

Question. Is every differentiable structure on Rn diffeomorphic to the standard structure Amax,

the one induced by A = {x = id : Rn → Rn}?

The answer is quite surprising. For n = 0,1,2,3 and also for n ≥ 5 it is YES. But for n = 4

it turns out to be NO. There exist uncountably many differentiable structures on R4 which are

pairwise not diffeomorphic (so-called exotic structures). The proof of these facts is far beyond

the scope of our lecture course.

Remark 1.2.10. In 1956 John Milnor showed that there exist exotic n-dimensional spheres for

n ≥ 7. These are differentiable manifolds which are homeomorphic to Sn but not diffeomorphic.

But in every dimension there are only finitely many.

1.3 Tangent vectors

Question. What is the derivative at a point of a differentiable map between differentiable mani-

folds?

The vague answer is: It is the linear approximation of the map at that point. But what do we

mean by the linear approximation in a point of a differentiable manifold? For this to make sense

we first need a concept of “linear approximation” of a manifold at a given point.

Definition 1.3.1. Let M be a differentiable manifold and p ∈ M.

A tangent vector on M at the point p is an equivalence class of differentiable curves c :

(−ε ,ε) → M with ε > 0 and c(0) = p, where two such curves c1 : (−ε1,ε1) → M and c2 :

(−ε2,ε2)→ M are called equivalent, if for a chart x : U →V with p ∈U we have:

d

dt
(x◦ c1)|t=0 =

d

dt
(x◦ c2)|t=0.

15
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Remark 1.3.2. This definition does not depend on the choice of the chart x : U → V . Namely,

if y : Ũ → Ṽ is another chart with p ∈ Ũ then we get by the chain rule

d

dt
(y◦ c)|t=0 =

d

dt

((
y◦ x−1

)
◦ (x◦ c)

)

|t=0 = D
(
y◦ x−1

)
|x(p)

(
d

dt
(x◦ c)|t=0

)

. (1.5)

Therefore the condition
d

dt
(x◦ c1)|t=0 =

d

dt
(x◦ c2)|t=0

is equivalent to the condition

d

dt
(y◦ c1)|t=0 =

d

dt
(y◦ c2)|t=0.

Notation 1.3.3. We denote the equivalence class of c by ċ(0).

Definition 1.3.4. The set

TpM := {ċ(0) |c : (−ε ,ε)→ M differentiable with c(0) = p}

is called tangent space of M at the point p.

Lemma 1.3.5. Let M be an n-dimensional differentiable manifold, let p∈M and let x :U →V

be a chart of M with p ∈U. Then the map

dx|p : TpM → Rn, ċ(0) 7→ d

dt
(x◦ c)|t=0,

is well defined and bijective.

Proof. Well-definedness and injectivity are clear from to the definition of the equivalence rela-

tion that defines ċ(0). To show surjectivity let v ∈ Rn and set c(t) := x−1(x(p)+ tv). Choose

ε > 0 so small that x(p)+ tv ∈V whenever |t|< ε . Then we have

dx|p(ċ(0)) =
d

dt

(

x◦ x−1
(
x(p)+ tv

))

|t=0 =
d

dt

(
x(p)+ tv

)
|t=0 = v.

b p
U

M V

b x(p)
v

x

16



1.3. TANGENT VECTORS

This shows surjectivity and concludes the proof. �

Definition 1.3.6. We equip TpM with the unique vector space structure for which dx|p
becomes a linear isomorphism. In other words, for a,b ∈ R and c1 : (−ε1,ε1)→ M,

c2 : (−ε2,ε2)→ M we set:

a · ċ1(0)+b · ċ2(0) := (dx|p)−1
(

a ·dx|p
(
ċ1(0)

)
+b ·dx|p

(
ċ2(0)

))

.

Lemma 1.3.7. The vector space structure on TpM does not depend on the choice of chart

x : U →V .

Proof. Let y : Ũ → Ṽ be another chart with p ∈ Ũ . We have to show that the map

dy|p : TpM → Rn is also linear with respect to the vector space structure induced by x. This

holds true since by (1.5)

dy|p = D
(
y◦ x−1

)
|x(p)

︸               ︷︷               ︸

linear

◦dx|p
︸︷︷︸

linear

is the composition of two linear maps. �

We may think of the tangent space TpM as the linear approximation to M at p. Now we can

define the differential of a differentiable map between manifolds.

Lemma 1.3.8. Let M and N be differentiable manifolds, let p ∈ M, and let f : M → N be

differentiable near p. Then the map

d f |p : TpM → Tf (p)N, ċ(0) 7→ ( f ◦ c)˙(0),

is well defined and linear.

M

b

pc

ċ(0)

N

bf (p)

d f |p(ċ(0))

f ◦ c

f

Proof. We choose a chart x : U →V of M with p ∈U and a chart y : Ũ → Ṽ of N with f (p) ∈ Ũ .

17
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We compute, using the chain rule,

dy| f (p)(( f ◦ c)˙(0)) = (y◦ f ◦ c)˙(0)

=
((

y◦ f ◦ x−1
)
◦ (x◦ c)

)̇

(0)

= D
(
y◦ f ◦ x−1

)
|x(p) ·

(
(x◦ c)˙(0)

)

= D
(
y◦ f ◦ x−1

)
|x(p) ·dx|p(ċ(0)).

Consequently, we have

d f |p =
(
dy| f (p)

)−1 ◦D(y◦ f ◦ x−1)|x(p) ◦dx|p.

In particular, d f |p is well defined (independently of the choice of c) and linear. �

Definition 1.3.9. The map d f |p is called the differential of f at the point p.

Remark 1.3.10. If U ⊂M is an open subset, then the differential of the inclusion map ι :U ֒→M

is the canonical isomorphism dι : TpU → TpM, given by

ċ(0) 7→ (ι ◦ c)·(0) = ċ(0).

We will identify tangent spaces via this isomorphism and simply write TpU = TpM.

Remark 1.3.11. If M is an n-dimensional R-vector space,

then M and TpM are canonically isomorphic via

M → TpM,
v 7→ ċp,v(0),

where cp,v(t) := p+ tv.

b

b

0

p

cp,v

v

Remark 1.3.12. For a chart x : U →V the differential dx|p has two meanings which are related

by this canonical isomorphism. The following diagram commutes:

ċ(0) (x◦ c)˙(0)
∈ ∈

TpU Tx(p)V = Tx(p)R
n

d
dt
(x◦ c)|t=0 ∈ Rn

dx|p

dx|p � �

canonical

isomorphism

18
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Theorem 1.3.13 (Chain Rule). Let M, N and P be differentiable manifolds and let p ∈ M.

Assume f : M → N and g : N → P are differentiable near p and near f (p), respectively. Then

the following holds:

d(g◦ f )|p = dg| f (p) ◦d f |p.

Proof. For a curve c : (−ε ,ε)→ M with c(0) = p we have:

d(g◦ f )|p(ċ(0)) =
d

dt

(
(g◦ f )◦ c

)
|t=0

=
d

dt

(
g◦ ( f ◦ c)

)
|t=0

= dg| f (p)

(
( f ◦ c)˙(0)

)

= dg| f (p)

(
d f |p

(
ċ(0)

))
. �

This proof of the chain rule was very simple. One may wonder why the proof of the chain rule

that one remembers from one’s course on calculus of several variables required a lot more work.

The reason for the simplicity here is that one has already built the chain rule into the definition

of the differential of a map.

Definition 1.3.14. Let M and N be differentiable manifolds. Let k ∈ N∪{∞}. A surjective

Ck-map f : M → N is called a local Ck-diffeomorphism, if for all p ∈ M there exists an open

neighborhood U of p in M and an open neighborhood V of f (p) in N, such that

f |U : U →V

is a Ck-diffeomorphism.

Example 1.3.15. Let f :R→ S1, f (t) = eit . Then f

is not injective (in particular, not a diffeomorphism),

but it is a local diffeomorphism:

For t0 ∈ R choose U := (t0−π, t0+π) and V := S1 \
{− f (t0)}.

b

b

bc

S1

0

f (t0)

V− f (t0)

b

R

t0U

f

Remark 1.3.16. If f : M → N is a local Ck-diffeomorphism, then

d f |p : TpM → Tf (p)N

is an isomorphism. In particular, we have dim(TpM) = dim(Tf (p)N) and therefore also dimM =
dimN.
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Proof. W.l o.g. let f be a Ck-diffeomorphism. For a curve c : (−ε ,ε)→ M with c(0) = p we

have:

d(idM)|p
(
ċ(0)

)
= (idM ◦ c)˙(0) = ċ(0)

and hence

d(idM)p = idTpM.

Applying the chain rule we find:

idTpM = d(idM)|p = d
(

f−1 ◦ f
)
|p = d f−1| f (p) ◦d f |p.

Analogously, we can derive d f |p ◦d f−1| f (p) = idTf (p)N . Therefore we get:

d f−1| f (p) = (d f |p)−1. �

The converse of the last statement is also true:

Theorem 1.3.17 (Inverse Function Theorem). Let M and N be differentiable manifolds and

let p ∈ M. Let f : M → N be a Ck-map, k ≥ 1.

If d f |p : TpM → Tf (p)N is an isomorphism, then there exists an open neighborhood U of p in

M and an open neighborhood Ũ of f (p) in N, such that

f |U : U → Ũ

is a Ck-diffeomorphism.

Proof. Choose a chart x : U1 →V1 of M with p∈U1 and a chart y : U2 →V2 of N with f (p)∈U2.

M

U1

bpU
f−1(U2)

NU2

bf (p) Ũ

b
x(p)

V1

V x( f−1(U2)∩U1)

V2

b

y( f (p))

Ṽ
y◦ f ◦ x−1|V

x y

f

On x(U1 ∩ f−1(U2)) the map y ◦ f ◦ x−1 is defined. Since d f |p is invertible, we also have that

D(y◦ f ◦ x−1)|x(p) is invertible.

The ”classical” inverse function theorem says that there exists an open neighborhood

V ⊂ x(U1 ∩ f−1(U2)) of x(p) and an open neighborhood Ṽ ⊂V2 of y( f (p)), such that

y◦ f ◦ x−1|V : V → Ṽ
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is a Ck-diffeomorphism. With U := x−1(V ) and Ũ := y−1(Ṽ ) it follows that f |U : U → Ũ is a

Ck-diffeomorphism. �

1.4 Directional derivatives and derivations

Definition 1.4.1.

Let M be a differentiable manifold, let p ∈ M and and let

ċ(0) ∈ TpM. For a function f : M → R, differentiable near

p, we call

∂ċ(0) f := d f |p(ċ(0)) =
d

dt
( f ◦ c)|t=0 ∈ R

the directional derivative of f in the direction ċ(0).

M

b

c

p
ċ(0)

Notation 1.4.2. For U ⊂ M open and k ∈N∪{∞}, we write

Ck(U) := { f : U → R | f is Ck}.

For α ∈ R, f ∈Ck(U) and g ∈Ck(Ũ) we set

α · f ∈ Ck(U), (α · f )(q) :=α · f (q)
f +g∈ Ck(U ∩Ũ), ( f +g)(q) := f (q)+g(q)

f ·g∈ Ck(U ∩Ũ), ( f ·g)(q) := f (q) ·g(q)

and

C∞
p :=

⋃

U open
p∈U

C∞(U).

Definition 1.4.3. A map ∂ : C∞
p → R is called derivation at p if the following conditions are

satisfied:

(i) Locality: If Ũ ⊂U is open, p ∈ Ũ , f ∈C∞(U), then

∂ f = ∂ ( f |Ũ).

(ii) Linearity: If α ,β ∈ R, f ,g ∈C∞
p , then

∂ (α f +βg) = α∂ f +β∂g.
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(iii) Leibniz Rule: For f ,g ∈C∞
p we have

∂ ( f ·g) = ∂ f ·g(p)+ f (p) ·∂g.

Example 1.4.4. (1) Let M = Rn and p ∈ M. Then ∂ = ∂
∂xi

∣
∣
∣

p
is a derivation.

(2) Let M be an arbitrary differentiable manifold, let p ∈ M and ċ(0) ∈ TpM. Then ∂ċ(0) is a

derivation. We check (iii):

∂ċ(0)( f ·g) =
d

dt

(
( f ·g)◦ c

)
|t=0

=
d

dt

(
( f ◦ c) · (g◦ c)

)
|t=0

=
d

dt
( f ◦ c)|t=0 ·g

(
c(0)

)
+ f (c(0)) · d

dt
(g◦ c)|t=0

= ∂ċ(0) f ·g(p)+ f (p) ·∂ċ(0)g.

The other two conditions are even simpler to verify.

Remark 1.4.5. The set Der(C∞
p ) of all derivations at p forms an R-vector space via

(α∂1 +β∂2)( f ) = α∂1 f +β∂2 f .

Lemma 1.4.6. The map ∂· : TpM → Der(C∞
p ), ċ(0) 7→ ∂ċ(0), is linear.

Proof. Let x : U →V be a chart of M with p ∈U . By the definition of the vector space structure

on TpM, we have to show that ∂̇ ◦ (dx|p)−1 is linear. Assume v ∈ Rn and put c(t) := x−1
(
x(p)+

tv
)
. We find:

(∂· ◦ (dx|p)−1(v))( f ) = d f |p
(
(dx|p)−1(v)

)

= d f |p
(
ċ(0)

)

=
d

dt

(
f ◦ c(t))

)
|t=0

=
d

dt

(
f ◦ x−1(x(p)+ tv)

)
|t=0

=
〈
grad

(
f ◦ x−1

)
|x(p),v

〉
.

This expression is linear in v. �
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Remark 1.4.7. Let e1, . . . ,en be the standard basis of Rn. Then (dx|p)−1(e1), . . . ,(dx|p)−1(en)
form a basis of TpM. We find

∂(dx|p)−1(e j)( f ) =
〈
grad

(
f ◦ x−1

)
|x(p),e j

〉
=

∂ ( f ◦ x−1)

∂x j

∣
∣
∣
∣
x(p)

=:
∂ f

∂x j

∣
∣
∣
∣

p

M

U
(dx|p)−1(e2)

(dx|p)−1(e1)bp

e2

e1
b

x(p)

≈
x V ⊂ Rn

For every chart x we have the derivations

∂

∂x1

∣
∣
∣
∣

p

, . . . ,
∂

∂xn

∣
∣
∣
∣

p

.

Proposition 1.4.8. Let M be a differentiable manifold and let p ∈ M. Then the map

∂· : TpM → Der(C∞
p ), ċ(0) 7→ ∂ċ(0),

is an isomorphism. In particular, every derivation is a directional derivative and for every

chart x : U →V with p ∈U
∂

∂x1

∣
∣
∣
∣

p

, . . . ,
∂

∂xn

∣
∣
∣
∣

p

is a basis of Der(C∞
p ).

Proof. It suffices to show that the derivations

∂

∂x1

∣
∣
∣
∣

p

, . . . ,
∂

∂xn

∣
∣
∣
∣

p

form a basis of Der(C∞
p ). Namely, then we know that the linear map ∂· maps the basis

(dx|p)−1(e1), . . . ,(dx|p)−1(en) of TpM onto the basis ∂
∂x1

∣
∣
∣

p
, . . . , ∂

∂xn

∣
∣
∣

p
of Der(C∞

p ) and is hence

an isomorphism.

a) Linear Independence: Let
n

∑
i=1

α i ∂

∂xi

∣
∣
∣
∣

p

= 0. We have to show: α1 = . . . = αn = 0. Choose
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f = x j. Then

0 =
n

∑
i=1

α i ∂x j

∂xi

∣
∣
∣
∣

p
︸   ︷︷   ︸

=δ
j

i

= α j for j = 1, . . . ,n.

b) Generating Property: Let δ ∈ Der(C∞
p ). Set α j := δ (x j) for j = 1 . . . ,n. We will show that

δ =
n

∑
j=1

α j · ∂

∂x j

∣
∣
∣
∣

p

.

b1) We have

δ (1) = δ (1 ·1) (iii)
= δ (1) ·1+1 ·δ (1) = 2δ (1)

and hence δ (1) = 0. Now let α ∈ R. Then we find

δ (α) = δ (α ·1) (ii)
= α ·δ (1) = 0.

Consequently, derivations vanish on all constant functions.

b2) Let f ∈C∞
p , more precisely f ∈C∞(Ũ) with p ∈ Ũ open. Choose a neighborhood ˜̃U of

p with ˜̃U ⊂ Ũ ∩U and x( ˜̃U) = B(x(p),r).

b p
U

M

Ũ

˜̃U

b

V

x(p)

x(U ∩Ũ)

B(x(p),r)

x

Lemma 1.4.9 (see below) with h = f ◦ x−1 says that there exist g1, . . . ,gn ∈
C∞(B(x(p),r)) such that

(
f ◦ x−1

)
(x) =

(
f ◦ x−1

)
(x(p))+

n

∑
i=1

(
xi − xi(p)

)
·gi(x) and

∂ ( f ◦ x−1)

∂xi
(x(p)) = gi

(
x(p)

)
.

It follows that
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δ ( f )
(i)
= δ ( f | ˜̃U

)

= δ
(

f (p)+
n

∑
i=1

(
xi − xi(p)

)
(gi ◦ x)

)

(ii)
(b1)
=

n

∑
i=1

δ
((

xi − xi(p)
)
(gi ◦ x)

)

(iii)
=

n

∑
i=1

(

δ
(
xi − xi(p)

)
·gi

(
x(p)

)
+
(
xi − xi(p)

)
|p

︸             ︷︷             ︸

=0

δ (gi ◦ x)
)

(ii)
(b1)
=

n

∑
i=1

δ
(
xi
)
gi

(
x(p)

)

=
n

∑
i=1

α i · ∂ f

∂xi

∣
∣
∣
∣

p

. �

Lemma 1.4.9. Let h ∈C∞(B(q,r)). Then there exist g1, . . . ,gn ∈C∞(B(q,r)) with

(i) h(x) = h(q)+
n

∑
i=1

(
xi −qi

)
gi(x) and

(ii)
∂h

∂xi
(q) = gi(q).

Proof. For x ∈ B(q,r) set wx : [0,1]→ R, wx(t) := h(tx+(1− t)q). It follows that

h(x)−h(q) = wx(1)−wx(0)

=

1∫

0

ẇx(t)dt

=

1∫

0

n

∑
i=1

∂h

∂xi

∣
∣
∣
∣
tx+(1−t)q

· (xi −qi)dt

=
n

∑
i=1

(xi −qi)

1∫

0

∂h

∂xi

∣
∣
∣
∣
tx+(1−t)q

dt

︸                   ︷︷                   ︸

=: gi(x)

With this definition of the gi, (i) holds. Moreover, (ii) follows from (i) by differentiation at q. �
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At this point we have the following situation for a differentiable manifold:

(dx|p)−1(e j) ∈ TpM Der(C∞
p ) ∋ ∂

∂xi

∣
∣
∣

p

R
n

︸︷︷︸

∋ e j

depend on
the choice of x

∂·
�

dx|p
�

∂ ◦ (dx|p)−1

�

From now on we identify TpM with Der(C∞
p ) via the isomorphism ∂·. For example, we write for

ξ ∈ TpM

ξ =
n

∑
i=1

ξ i ∂

∂xi

∣
∣
∣
∣

p

instead of ∂ξ =
n

∑
i=1

ξ i ∂
∂xi

∣
∣
∣

p
and ξ =

n

∑
i=1

ξ i(dx|p)−1(ei) where (ξ 1, . . . ,ξ n)⊤ = dx|p(ξ ).
Question. How do the coefficients ξ 1, . . . ,ξ n of a tangent vector change, if we replace the chart

x by another chart y?

Let ξ ∈ TpM, let x and y be charts, both containing p. We express ξ with respect to both charts

ξ =
n

∑
i=1

ξ i ∂

∂xi

∣
∣
∣
∣

p

=
n

∑
j=1

η j ∂

∂y j

∣
∣
∣
∣

p

.

Now we want to compute the coefficients ξ i in terms of the η j and vice versa. Using the Chain

Rule (Theorem 1.3.13) we compute






ξ 1

...
ξ n




= dx|p(ξ ) = (dx|p)




(dy|p)−1






η1

...
ηn









= D(x◦ y−1)|y(p)






η1

...
ηn




 .

Interchanging the roles of x and y, we also get

(
η1

...
ηn

)

= D(y◦ x−1)|x(p)

(
ξ 1

...
ξ n

)

. Thus

η j =
n

∑
i=1

∂ (y j ◦ x−1)

∂xi

∣
∣
∣
∣
x(p)

·ξ i (1.6)

In the physics literature this transformation rule is put at the heart of the definition of a tangent

vector, then usually called a contravariant vector. For a physicist, a contravariant vector is a vec-

tor (ξ 1, . . . ,ξ n) associated to a chart which transforms as in (1.6) when the chart is changed. We

have now understood that this vector is the coefficient vector of an (abstractly defined) tangent

vector with respect to the basis ∂
∂x1

∣
∣
∣

p
, . . . , ∂

∂xn

∣
∣
∣

p
of TpM induced by the chart x.
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1.4. DIRECTIONAL DERIVATIVES AND DERIVATIONS

Let us look at the special case ξ = ∂
∂xi

∣
∣
∣

p
, that is, (ξ 1, . . . ,ξ n)⊤ = ei. By (1.6), we get

∂

∂xi

∣
∣
∣
∣

p

=
n

∑
j=1

η j ∂

∂y j

∣
∣
∣
∣

p

=
n

∑
j=1

n

∑
k=1

ξ k ∂ (y j ◦ x−1)

∂xk

∣
∣
∣
∣
x(p)

· ∂

∂y j

∣
∣
∣
∣

p

=
n

∑
j=1

∂ (y j ◦ x−1)

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂y j

∣
∣
∣
∣

p

,

hence

∂

∂xi

∣
∣
∣
∣

p

=
n

∑
j=1

∂ (y j ◦ x−1)

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂y j

∣
∣
∣
∣

p

(1.7)

In the physics literature it is customary to use the Einstein summation convention meaning that

when an index appears twice in an expression, once as an upper index and once as a lower index,

then summation over this index is understood. So (1.7) would be written as

∂

∂xi

∣
∣
∣
∣

p

=
∂ (y j ◦ x−1)

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂y j

∣
∣
∣
∣

p

or even shorter as

∂

∂xi
=

∂y j

∂xi
· ∂

∂y j
.

This makes formula (1.7) easy to memorize; we simply cancel ∂y j. In these lecture notes we

will not use the Einstein summation convention unless explicitly stated otherwise. But when

you do computations for yourself, the Einstein summation convention can be quite convenient

and is recommended as long as you are aware of it.
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1.5 Vector fields

1

Next we want to introduce vector fields. Vector fields are maps which

associate to each point of a manifold a tangent vector in the corre-

sponding tangent space. Hence the target space is varying and de-

pends on the point. For this reason we first need to introduce the

tangent bundle.

Definition 1.5.1. Let M be a differentiable manifold. Then we call

T M :=
⋃

p∈M

TpM

the tangent bundle of M.

We equip T M with the structure of a differentiable manifold. Denote the differentiable structure

of M by AM,max. Let π : T M → M, π(ξ ) = p for ξ ∈ TpM be the “footpoint map”. For every

chart x : U →V in AM,max we construct a chart Xx : Ux → Vx of T M as follows: We set

Ux := π−1(U)⊂ T M,

Vx :=V ×Rn ⊂ R2n and

Xx(ξ ) :=
(

x
(
π(ξ )

)
,dx|π(ξ )(ξ )

)

.

Then we have Xx
−1(v,w) = (dx|x−1(v))

−1(w).

Schematic picture:

M

T M

U

Ux

V

Vx

x

Xx

By construction we have:
⋃

(x:U→V)
∈AM,max

Ux = T M.

1Source: http://www.weatheronline.co.uk
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Let x and y be charts on M. Then we have:

Xy ◦Xx
−1(v,w) = Xy

(
(dx|x−1(v))

−1(w)
)

=
(

y
(
π
(
(dx|x−1(v))

−1(w)
))
,dy|π((dx|

x−1 (v)
)−1(w))

(
(dx|x−1(v))

−1(w)
))

=
(

y
(
x−1(v)

)
,dy|x−1(v)

(
(dx|x−1(v))

−1(w)
))

=
((

y◦ x−1

︸   ︷︷   ︸

C∞

)
(v),D

(
y◦ x−1

)
|v

︸           ︷︷           ︸

C∞

·w
)

.

Hence Xy ◦ Xx
−1 is a C∞-diffeomorphism, in particular, it is a homeomorphism. By Theo-

rem 1.1.10, T M carries exactly one topology, for which the Xx are homeomorphisms.

We show: The topology of T M has a countable basis. Since the topology of M has a countable

basis, M has a countable C∞-atlas. Then the corresponding (countably many) charts of T M

suffice to cover T M. By Proposition 1.1.12 the topology of T M has a a countable basis.

We show: T M is Hausdorff. Let ξ ,η ∈ T M with ξ , η . We consider two cases.
Case 1: π(ξ ) , π(η).
Since M is Hausdorff there exists an open neighborhood

U1 of π(ξ ) and an open neighborhood U2 of π(η) such

that U1 ∩U2 = /0. The sets π−1(U1) and π−1(U2) are open

neighborhoods of ξ and η with

π−1(U1)∩π−1(U2) = /0.

M

T M

U1

U2

bc

bc

ξ

η

Case 2: π(ξ ) = π(η).
Let x : U → V be a chart of M with π(ξ ) = π(η) ∈ U .

Then we have ξ ,η ∈ π−1(U) = Ux. The proof of Proposi-

tion 1.1.13 shows that we can separate ξ and η . M

T M

U bc

bc
ξ

η

We summarize: The tangent bundle T M carries a unique topology turning it into a 2n-

dimensional topological manifold with atlas

ATM = {Xx : Ux → Vx |(x : U →V ) ∈ AM,max}.

Since the changes of charts Xx ◦Xy
−1 are not only homeomorphisms but C∞-diffeomorphisms,

we find that ATM is a C∞-atlas. Hence (T M,ATM,max) becomes a 2n-dimensional differentiable

manifold.

Remark 1.5.2. The footpoint map π : T M → M is expressed in the charts x : U →V of M and

Xx : Ux → Vx of T M by

x◦π ◦X−1
x : V ×Rn →V, (v,w) 7→ v.

In particular, π is a smooth map.
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Definition 1.5.3. A map ξ : M → T M is called a vector field on M, if for every p ∈ M we

have

π
(
ξ (p)

)
= p.

M

b

ξ (p)
p

Remark 1.5.4. Let x : U → V be a chart of M. A vector field ξ on U is characterized by

coefficient functions

ξ 1, . . . ,ξ n : V → R

for which

ξ (p) =
n

∑
i=1

ξ i
(
x(p)

) ∂

∂xi

∣
∣
∣
∣

p

.

Since a vector field is a map from the differentiable manifold M to the differentiable manifold

T M we know what it means that the vector field is Ck. We investigate how this can be charac-

terized in terms of the coefficient functions. For the chart x of M we consider the corresponding

chart Xx on T M. The commutative diagram

M T M

∪ ∪
x−1(v)∈ U Ux ∋ξ (x−1(v))

v∈ V V ×Rn∋
(

x
(

=x−1(v)
︷             ︸︸             ︷

π
(
ξ (x−1(v))

))
,dx|

π
(

ξ (x−1(v))
)
(
ξ (x−1(v))

))

∩ ∩ =
(
v,ξ 1(v), . . . ,ξ n(v)

)

R
n

R
2n

ξ

ξ |U

x Xx

shows that ξ corresponds in these coordinates to the map v 7→
(
v,ξ 1(v), . . . ,ξ n(v)

)
. Thus ξ is

Ck on U if and only if the coefficient functions ξ 1, . . . ,ξ n are Ck on V .

Example 1.5.5. We consider M = R2 with polar coordinates. For ϕ0 ∈R we set U := R2 \R≥0 ·(
cos ϕ0

sinϕ0

)

, V := (0,∞)× (ϕ0,ϕ0 +2π) and y : U →V such that

y−1(r,ϕ) := (r cos ϕ ,r sinϕ).
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On U the vector field ξ := r
∂

∂ r
is defined. Using (1.7) we express this vector field in terms of

Cartesian coordinates, i.e., with respective to the chart x = id : R2 → R2:

ξ = r
∂

∂ r

= r

(
∂x1

∂ r

∂

∂x1
+

∂x2

∂ r

∂

∂x2

)

= r

(
∂ (r cos ϕ)

∂ r

∂

∂x1
+

∂ (r sin ϕ)

∂ r

∂

∂x2

)

= r

(

cosϕ
∂

∂x1
+ sinϕ

∂

∂x2

)

= x1 ∂

∂x1
+ x2 ∂

∂x2
.

In Cartesian coordinates:

ξ 1(x1,x2) = x1,

ξ 2(x1,x2) = x2.

In polar coordinates:

η1(r,ϕ) = r,

η2(r,ϕ) = 0.

b

Similarly, we can express the vector field
∂

∂ϕ
in

Cartesian coordinates:

∂

∂ϕ
=

∂x1

∂ϕ

∂

∂x1
+

∂x2

∂ϕ

∂

∂x2

= −r sinϕ
∂

∂x1
+ r cosϕ

∂

∂x2

= −x2 ∂

∂x1
+ x1 ∂

∂x2
.

b
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2 Semi-Riemannian Geometry

On topological manifolds one can consider continuous maps. In order to be able to define diffe-

rentiable maps we had to add structure to a topological manifold which gave rise to differentiable

manifolds. We were then able to define linear approximations to manifolds (tangent spaces) and

and to maps (the differential). The concept of a differentiable manifold is what one needs to do

analysis.

In order to do geometry we need to enrich our manifolds once more. We want to measure lengths

of and angles between tangent vectors. This requires scalar products on the tangent spaces and

leads to the concept of a Riemannian manifold.

2.1 Bilinear forms

We start by recalling some facts about bilinear forms from linear algebra.

Definition 2.1.1. Let V be an n-dimensional R-vector space. A symmetric bilinear form is

a map g : V ×V → R with

(i) g(αv+βw,z) = αg(v,z)+βg(w,z) for all v,w,z ∈V and α ,β ∈ R and

(ii) g(v,w) = g(w,v) for all v,w ∈V .

We call g non-degenerate if g(v,w) = 0 for all w ∈V implies v = 0.

For a basis (b1, . . . ,bn) of V we set

gi j := g(bi,b j) ∈ R

for i, j = 1, . . . ,n. Then (gi j)i, j=1,...,n is a symmetric n× n-matrix. From (gi j)i, j=1,...,n we can

reconstruct g: For v = ∑n
i=1 α ibi and w = ∑n

j=1 β jb j we have:

g(v,w) = g

(
n

∑
i=1

α ibi,
n

∑
j=1

β jb j

)

=
n

∑
i, j=1

α iβ jgi j.

Notation 2.1.2. Let b∗1, . . . ,b
∗
n the dual basis of the dual space V ∗ = {linear maps V → R} of

b1, . . . ,bn, that is b∗i (b j) = δi j. Often, we write
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g =
n

∑
i, j=1

gi j b∗i ⊗b∗j .

The insertion of v,w ∈V then means the following:

g(v,w) =
n

∑
i, j=1

gi j b∗i (v) ·b∗j(w) =
n

∑
i, j=1

gi j α i β j.

Transformation of principal axes. Let g be a non-degenerate symmetric bilinear form on V .

Then there exists a basis e1, . . . ,en of V , such that

g(ei,e j) =

{

0 i , j

εi ∈ {±1} i = j
,

in other words,

(gi j)i, j=1,...,n =








−1 0
.. .

−1
1
.. .

0 1







. (2.1)

Such a basis is called a generalized orthonormal basis. We the number of −1’s occurring in

(2.1) the index of g and denote it by Index(g). We observe that for a non-degenerate symmetric

bilinear form the following are equivalent:

(1) g is a Euclidean scalar product;

(2) g is positive definite;

(3) Index(g) = 0.

If B = (b1, . . . ,bn) and B̃ = (b̃1, . . . , b̃n) are two bases of V , we define the transformation matrix

T = (t j
i )i, j=1,...,n by

b̃i =
n

∑
j=1

t
j
i b j.

Then the representing matrix of g transforms as follows:

g
(B̃)
i j = g

(
b̃i, b̃ j

)

= g

(
n

∑
k=1

tk
i bk,

n

∑
l=1

t l
i bl

)

=
n

∑
k,l=1

tk
i t l

j ·g(bk,bl)

=
n

∑
k,l=1

tk
i t l

j ·g
(B)
kl (2.2)
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Let V and W be two finite-dimensional R-vector spaces. Let g be a symmetric bilinear form on

V and Φ : W →V be a linear map. Then we can pull back g via Φ to W , that is, we can define a

symmetric bilinear form Φ∗g on W by

(
Φ∗g

)
(w1,w2) := g

(
Φ(w1),Φ(w2)

)
.

Remark 2.1.3. If g is positive definite, then Φ∗g is positive semidefinite. Namely:

(Φ∗g)(w,w) = g(Φ(w),Φ(w)) ≥ 0 ∀w ∈W.

If furthermore Φ is injective, then Φ∗g is also positive definite. Namely:

(Φ∗g)(w,w) = 0 =⇒ Φ(w) = 0 =⇒ w = 0.

Definition 2.1.4. Let gV and gW be symmetric bilinear forms on V and W , respectively. We

call a bijective linear map Φ : W →V an isometry, if

gV

(
Φ(w1),Φ(w2)

)
= gW (w1,w2), ∀w1,w2 ∈W,

that is, if Φ∗gV = gW .

2.2 Semi-Riemannian metrics

Let M be a differentiable manifold. We consider maps g which assign to every point p ∈ M a

non-degenerate symmetric bilinear form g|p on TpM. If x : U → V is a chart of M, we define

g
(x)
i j = gi j : V → R by

gi j(v) := g|x−1(v)

(

∂

∂xi

∣
∣
∣
∣
x−1(v)

,
∂

∂x j

∣
∣
∣
∣
x−1(v)

)

.

Definition 2.2.1. Such a map g is called a semi-Riemannian metric on M, if the map depends

smoothly on the base point in the following sense:

For every chart x : U →V of M the gi j : V → R are C∞-functions.

Remark 2.2.2. Note the similarity of the definition of smoothness of g with the characterization

of smoothness of vector fields in Remark 1.5.4. We express the vector field or semi-Riemannian

metric with respect to the basis ∂
∂x1 , . . . ,

∂
∂xn of the tangent space induced by a chart and then

require smoothness of the coefficient functions.
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Transformation by change of charts

Let x : U →V and y : Ũ → Ṽ be two charts of M with p ∈U ∩Ũ . By (1.7),

∂

∂yi

∣
∣
∣
∣

p
︸  ︷︷  ︸

= b̃i

=
n

∑
j=1

∂ (x j ◦ y−1)

∂yi

∣
∣
∣
∣
y(p)

︸                ︷︷                ︸

= t
j
i

· ∂

∂x j

∣
∣
∣
∣

p
︸   ︷︷   ︸

= b j

Inserting this into (2.2) yields

g
(y)
i j (y(p)) =

n

∑
k,l=1

∂ (xk ◦ y−1)

∂yi

∣
∣
∣
∣
y(p)

· ∂ (xl ◦ y−1)

∂y j

∣
∣
∣
∣
y(p)

·g(x)kl (x(p)).

For all v ∈ y(U ∩Ũ)) we hence have

g
(y)
i j (v) =

n

∑
k,l=1

∂ (xk ◦ y−1)

∂yi

∣
∣
∣
∣
v

· ∂ (xl ◦ y−1)

∂y j

∣
∣
∣
∣
v

·g(x)kl

(
(x◦ y−1)(v)

)
(2.3)

In the physicist’s short notation this formula reads as

g
(y)
i j =

∂xk

∂yi

∂xl

∂y j
·
(

g
(x)
kl ◦

(
x◦ y−1

))

.

Consequence. The condition that g is smooth does not have to be checked for all charts, if

suffices to check it for a subatlas of Amax(M) which covers M.

Remark 2.2.4. Recall that dx|p : TpM → Rn is a linear isomorphism for any chart x : U →V

with p ∈U . In particular, dx1|p, . . . ,dxn|p ∈ (TpM)∗.

Definition 2.2.5. The dual space (TpM)∗ =: T ∗
p M is called cotangent space of M at p.

Lemma 2.2.6. The dx1|p, . . . ,dxn|p form the dual basis of
∂

∂x1

∣
∣
∣
∣

p

, . . . ,
∂

∂xn

∣
∣
∣
∣

p

.

Proof. Since dx|p
(

∂

∂xi

∣
∣
∣
∣

p

)

= ei we have dx j|p
(

∂
∂xi

∣
∣
∣

p

)

= δ j
i for i = 1, . . . ,n. �

According to Notation 2.1.2 we may also write:

g|p =
n

∑
i, j=1

gi j

(
x(p)

)
·dxi|p ⊗dx j|p
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In the physics literature you will find the following short version of this equation:

g = gi j ·dxi ·dx j

If one changes the basis of a vector space by the transformation b̃i =
n

∑
j=1

t
j
i b j, then we get

b∗i =
n

∑
j=1

t i
j b̃∗j .

Namely, denote the transformation matrix by T = (t
j
i ). Then we find:

(
n

∑
j=1

t i
j b̃∗j

)

(bk) =

(
n

∑
j=1

t i
j b̃∗j

)(
n

∑
l=1

(T−1)l
k b̃l

)

=
n

∑
j,l=1

t i
j (T

−1)l
k b̃∗j(b̃l)
︸   ︷︷   ︸

=δ l
j

=
n

∑
j=1

t i
j (T

−1) j
k

= δ i
k,

hence
n

∑
j=1

t i
j b̃∗j = b∗i .

For b∗1 = dx1|p, . . . ,b∗n = dxn|p this means:

dxi|p =
n

∑
j=1

∂ (xi ◦ y−1)

∂y j

∣
∣
∣
∣
y(p)

·dy j|p

or, in the physicist’s short notation

dxi =
∂xi

∂y j
dy j

If you have forgotten the transformation formula (2.3), you can quickly deduce it in “physics
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style” as follows:

g
(y)
kl ·dyk ·dyl = g

(x)
i j ·dxi ·dx j

= g
(x)
i j ·
(

∂xi

∂yk
·dyk

)

·
(

∂x j

∂yl
·dyl

)

=
∂xi

∂yk
· ∂x j

∂yl
·g(x)i j ·dyk ·dyl .

Comparing the coefficients in the blue boxes yields (2.3).

Example 2.2.7. Let M ⊂ Rn be open. Let β be a non-degenerate symmetric bilinear form on

R
n. For every p ∈ M let Φp : TpM → Rn the canonical isomorphism. Set g|p := Φ∗

pβ . We check

the smoothness of g in Cartesian coordinate, i.e., in the chart x = id : U = M →V = M.

g|p
(

∂

∂xi

∣
∣
∣
∣

p

,
∂

∂x j

∣
∣
∣
∣

p

)

=
(
Φ∗

pβ
)
(

∂

∂xi

∣
∣
∣
∣

p

,
∂

∂x j

∣
∣
∣
∣

p

)

= β

(

Φp

(
∂

∂xi

∣
∣
∣
∣

p

)

,Φp

(
∂

∂x j

∣
∣
∣
∣

p

))

= β

(

dx|p
(

∂

∂xi

∣
∣
∣
∣

p

)

,dx|p
(

∂

∂x j

∣
∣
∣
∣

p

))

= β (ei,e j).

Consequently, the gi j are constant, hence C∞. In this manner, we can equip M with a semi-

Riemannian metric with arbitrary index.

Example 2.2.8. Let M ⊂ Rn+k be an n-dimensional submanifold. Then there exists a canonical

injective map Φp : TpM → Rn+k, defined by

ċ(0) 7→ d

dt
c|t=0

equivalence class of the derivative of

curve c : (−ε ,ε)→ M c : (−ε ,ε)→ Rn+k

Then define g|p := Φ∗
p 〈·, ·〉, where 〈x,y〉 = ∑n+k

i=1 xiyi is the usual Euclidean scalar product, x =

(x1, . . . ,xn+k)T , y = (y1, . . . ,yn+k)T . Since the Euclidean scalar product is positive definite and

Φp is injective, we conclude that g|p is also positive definite for all p∈M. The semi-Riemannian

metric on M defined in this way is called first fundamental form.

The charts of submanifolds correspond to local parametrizations of M, i.e. to maps F : V → M

with V ⊂ Rn open, where

x = F−1 : U = F(V )→V
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is a chart of M. In addition, we have with p = x−1(v):

gi j(v) = g|p
(

∂

∂xi

∣
∣
∣
∣

p

,
∂

∂x j

∣
∣
∣
∣

p

)

=
(
Φp

∗ 〈·, ·〉
)
(

∂

∂xi

∣
∣
∣
∣

p

,
∂

∂x j

∣
∣
∣
∣

p

)

=

〈

Φp

(
∂

∂xi

∣
∣
∣
∣

p

)

,Φp

(
∂

∂x j

∣
∣
∣
∣

p

)〉

=

〈
d

dt
F(v+ t · ei)|t=0,

d

dt
F(v+ t · e j)|t=0

〉

=

〈
∂F

∂xi
(v),

∂F

∂x j
(v)

〉

.

Hence gi j =
〈

∂F
∂xi ,

∂F
∂x j

〉

, in particular, the gi j are smooth.

Definition 2.2.9. A semi-Riemannian metric g, for which g|p is always positive definite, is

called Riemannian metric. A pair (M,g), consisting of a differentiable manifold M and a

(semi-)Riemannian metric g on M is called (semi-)Riemannian manifold.

A semi-Riemannian metric g is called Lorentzian metric, if g|p has always index 1. The pair

(M,g) is then called Lorentzian manifold.

Example 2.2.10. The first fundamental form of a submanifold M ⊂ Rn+k is a Riemannian met-

ric. For example, for Sn ⊂ Rn+1 we call the first fundamental form the standard metric gstd of

Sn.

We express the standard metric of S2 in the coordinates given by stereographic projection from

the “south pole” (−1,0,0). Recall from Example 1.1.4 that the inverse of this chart map is given

by

F : R2 → S2 ⊂ R3, F(x) =
1

4+‖x‖2
(4−‖x‖2,4x).

One computes

∂F

∂x1
=

1

(4+‖x‖2)2
(−16x1,4(4− (x1)2 +(x2)2),−8x1x2),

∂F

∂x2
=

1

(4+‖x‖2)2
(−16x2,−8x1x2,4(4+(x1)2 − (x2)2)).

Moreover,

g11 =

〈
∂F

∂x1
,

∂F

∂x1

〉

=
16

(4+‖x‖2)2

and similarly for the other gi j. The metric in these coordinates turns out to be

(gi j) =
16

(4+‖x‖2)2

(
1 0

0 1

)

.
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Example 2.2.11. Let M ⊂ Rn+1 be open. The Minkowski scalar product 〈〈·, ·〉〉 on Rn+1 has

index 1, where

〈〈x,y〉〉=−x0y0 + x1y1 + · · ·+ xnyn

for x=(x0,x1, . . . ,xn) and y=(y0,y1, . . . ,yn). If Φp : TpM →Rn+1 is the canonical isomorphism,

we can define a Lorentzian metric on M by

gMink|p := Φp
∗ 〈〈·, ·〉〉 .

The Lorentzian manifold (Rn+1,gMink) is called Minkowski space. The four-dimensional

Minkowski space is the mathematical model for spacetime in special relativity.

Example 2.2.12. We express the Euclidean metric geucl = dx1 ⊗dx1 +dx2 ⊗dx2 of R2 in polar

coordinates. Here x1 and x2 are the Cartesian coordinates. With x1 = r cos ϕ and x2 = r sin ϕ we

then find:

dx1 =
∂x1

∂ r
dr+

∂x1

∂ϕ
dϕ = cos ϕ dr− r sinϕ dϕ

dx2 =
∂x2

∂ r
dr+

∂x2

∂ϕ
dϕ = sin ϕ dr+ r cosϕ dϕ .

Thus

geucl = (cos ϕ dr− r sin ϕ dϕ)⊗ (cosϕ dr− r sinϕ dϕ)

+(sinϕ dr+ r cosϕ dϕ)⊗ (sinϕ dr+ r cos ϕ dϕ)

= cos2 ϕ dr⊗dr− r cosϕ sinϕ dr⊗dϕ − r sinϕ cosϕ dϕ ⊗dr+ r2 sin2 ϕ dϕ ⊗dϕ

+sin2 ϕ dr⊗dr+ sin(ϕ)r cos ϕ dr⊗dϕ + r cosϕ sinϕ dϕ ⊗dr+ r2 cos2 ϕ dϕ ⊗dϕ

= dr⊗dr+ r2 dϕ ⊗dϕ

and hence
(
gPolar

i j

)
=

(
1 0

0 r2

)

This matrix tells us:

•
∂

∂ r
has length 1,

•
∂

∂ϕ
has length r,

•
∂

∂ r
and

∂

∂ϕ
are orthogonal to each other

b
b

∂

∂ r

∂

∂ϕ

In Cartesian coordinates we have:

(
gCartes

i j

)
=

(
1 0

0 1

)

b

∂
∂x1

∂
∂x2
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Definition 2.2.13. Let (M,gM) and (N,gN) be semi-Riemannian manifolds. A local diffeo-

morphism ϕ : M → N is called local isometry, if

dϕ |p : (TpM,gM|p)→ (Tϕ(p)N,gN |ϕ(p))

for all p ∈ M is a linear isometry.

If a local isometry is also bijective, that is, if it is a diffeomorphism, we call it an isometry.

Definition 2.2.14. If ϕ : M → N is a local diffeomorphism and g a semi-Riemannian metric

on N, then we call the semi-Riemannian metric ϕ∗g on M given by

(ϕ∗g)|p := (dϕ |p)∗(g|ϕ(p)),

the pullback of g. In other words, we have for ξ ,η ∈ TpM:

(ϕ∗g)|p(ξ ,η) = g|ϕ(p)

(
dϕ |p(ξ ),dϕ |p(η)

)
.

Remark 2.2.15. The metric ϕ∗g is the unique semi-Riemannian metric on M, for which ϕ is a

local isometry.

Definition 2.2.16. Let (M,g) be a semi-Riemannian manifold. Then we call

Isom(M,g) := {ϕ : M → M isometry}

the isometry group of M.

Remark 2.2.17. The set Isom(M,g) is a group with respect to composition of maps. The neutral

element is idM.

Example 2.2.18. We look for the isometries of (Rn,geucl). Let

ϕ : Rn → Rn, ϕ(x) = Ax+b,

be an affine map with A ∈ O(n) and b ∈ Rn. Such a ϕ is called a Euclidean motion. We check

that every Euclidean motion is an isometry of (Rn,geucl): Let Φp : TpM → Rn be the canonical

isomorphism; for ξ = Φ−1
p (X) ∈ TpM this means that ξ = ċ(0) where c(t) = p+ tX . Similarly,

η = Φ−1
p (Y ) = ˙̃c(0) ∈ TpM with c̃(t) = p+ tY . We compute:

ϕ∗(geucl|p)(ξ ,η) = geucl|p(dϕ |p(ξ ),dϕ |p(η))

= 〈Φp(dϕ |p(ξ )),Φp(dϕ |p(η))〉

41



CHAPTER 2. SEMI-RIEMANNIAN GEOMETRY

= 〈Φp((ϕ ◦ c)·(0)),Φp((ϕ ◦ c̃)·(0))〉
= 〈Φp((A(p+ tX)+b)·(0)),Φp((A(p+ tY )+b)·(0))〉
= 〈Φp(Ap+b+ tAX)·(0)),Φp(Ap+b+ tAY)·(0))〉
= 〈AX ,AY 〉
= 〈X ,Y 〉
= 〈Φp(ξ ),Φp(η)〉
= geucl(ξ ,η).

Hence ϕ∗(geucl|p) = geucl showing that ϕ is a local isometry. Since ϕ is bijective, it is an isom-

etry. Summarizing, we have shown

{Euclidean motions} ⊂ Isom(Rn,geucl).

We will see later that the inverse conclusion also holds; the isometries of (Rn,geucl) are precisely

the Euclidean motions.

Example 2.2.19. To find isometries of Minkowski space (M,g) = (Rn+1,gMink) we define

O(n,1) :=
{

A ∈ Mat((n+1)× (n+1),R) | 〈〈Ay,Az〉〉= 〈〈y,z〉〉 ∀y,z ∈ Rn+1
}

=
{

A ∈ Mat((n+1)× (n+1),R) |A⊤I1,n,A = I1,n

}

where

I1,n =









−1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1









.

Now affine transformations ϕ : Rn+1 → Rn+1, ϕ(x) = Ax+b with A ∈ O(n,1) and b ∈ Rn+1, are

called Poincaré transformations. The same discussion as for Euclidean space shows

{Poincaré transformations} ⊂ Isom(Rn+1,gMink).

Again, we will see later that equality holds; the isometries of Minkowski space are precisely the

Poincaré transformations.

Example 2.2.20. To find isometries of the sphere (M,g) = (Sn,gstd) let A ∈ O(n+ 1). We set

ϕ := A|Sn : Sn → Sn. Let Φp : TpSn → Rn+1 be as in Example 2.2.8. Then the diagram

TpSn Tϕ(p)S
n

R
n+1

R
n+1

dϕ |p

Φp Φϕ(p)

A

42



2.3. DIFFERENTIATION OF VECTOR FIELDS

commutes because:

ċ(0) (ϕ ◦ c)·(0) = (A◦ c)·(0)

d

dt
c|t=0 A · d

dt
c|t=0 =

d

dt
(A · c)|t=0

Therefore

gstd(dϕ |p(ξ ),dϕ |p(η)) = 〈Φϕ(p)(dϕ |p(ξ )),Φϕ(p)(dϕ |p(η))〉
= 〈AΦp(ξ ),AΦp(η)〉
= 〈Φp(ξ ),Φp(η)〉
= gstd(ξ ,η).

This shows that ϕ is an isometry. Hence

O(n+1)⊂ Isom(Sn,gstd).

Again, it will turn out that equality holds.

2.3 Differentiation of vector fields

We know how to differentiate functions on a manifold. We also know what differentiable vector

fields are. But: How do we differentiate a vector field? What is the differential of a vector field

at a point in the manifold?

First attempt. Let M be a differentiable manifold and let p ∈ M. Let ξ ∈ TpM and let η be a

differentiable vector field on M. We try to define the derivative of η in the direction ξ .

To this extent, we choose a chart x : U → V on M with p ∈ U . We write ξ ∈ TpM as ξ =

∑n
i=1 ξ i ∂

∂xi

∣
∣

p
with ξ i ∈ R and η = ∑n

i= j η j ∂
∂x j where the η j are smooth functions near x(p).

The first idea that comes to one’s mind is to differentiate the coefficient functions η j in the

direction ξ . This would yield the expression

n

∑
i, j=1

ξ i · ∂η j

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂x j

∣
∣
∣
∣

p

for the derivative of η in direction ξ .

Problem. This “definition” depends on the choice of chart x.

Example 2.3.1. Let M = R2. In polar coordinates (r,ϕ) we set

ξ = η =
∂

∂ϕ
.
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Then the derivative of η in direction ξ equals 0 because the coefficient functions η j are constant.

On the other hand, in Cartesian coordinates (x1,x2) we get

ξ = η =−x2 ∂

∂x1
+ x1 ∂

∂x2
.

For the derivative of η in direction ξ we would then find
(

−x2 ∂

∂x1
+ x1 ∂

∂x2

)

(−x2)
∂

∂x1
+

(

−x2 ∂

∂x1
+ x1 ∂

∂x2

)

(x1)
∂

∂x2

= −x1 ∂

∂x1
− x2 ∂

∂x2
= −r

∂

∂ r
, 0.

We see that the idea of simply differentiating the coefficient functions was to naive. Since we do

not know how to come up with a better definition we follow an axiomatic approach similar to the

concept of derivations, except that this time we differentiate vector fields rather than functions.

Notation 2.3.2. Let M be a differentiable manifold and let k ∈ N∪{∞}. For any open subset

U ⊂ M we put

Ck(U,T M) := {Ck-vector fields, defined on U}.
For p ∈ M we set

Ξp :=
⋃

U⊂M open
with p∈U

C∞(U,T M).

Now we list the properties that the derivative of vector fields should have. Differentiation takes a

tangent vector ξ ∈ TpM and a smooth vector field η defined near p and gives us a tangent vector

in TpM as a result. Hence it is a map TpM×Ξp → TpM.

Definition 2.3.3. Let (M,g) be a semi-Riemannian manifold and p ∈ M. A map

∇ : TpM×Ξp → TpM

is called Levi-Civita connection (at p), if the following holds:

(i) Locality

For all ξ ∈ TpM, for all η ∈C∞(U,T M) and for all Ũ ⊂U with p ∈ Ũ we have:

∇ξ η = ∇ξ (η |Ũ).

(ii) Linearity in the first argument

For all ξ1,ξ2 ∈ TpM, for all α ,β ∈ R and for all η ∈ Ξp we have:

∇αξ1+βξ2
η = α∇ξ1

η +β∇ξ2
η .
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(iii) Additivity in the second argument

For all ξ ∈ TpM and for all η1,η2 ∈ Ξp we have:

∇ξ (η1 +η2) = ∇ξ η1 +∇ξ η2.

(iv) Product rule I

For all f ∈C∞
p , for all η ∈ Ξp and for all ξ ∈ TpM we have:

∇ξ ( f ·η) = ∂ξ f ·η |p + f (p) ·∇ξ η .

(v) Product rule II

For all ξ ∈ TpM and for all η1,η2 ∈ Ξp we have:

∂ξ g(η1,η2) = g|p(∇ξ η1,η2|p)+g|p(η1|p,∇ξ η2).

(vi) Torsion-freeness

For all charts x : U →V of M with p ∈U we have:

∇ ∂
∂ xi

∣
∣
∣

p

∂

∂x j
= ∇ ∂

∂ x j

∣
∣
∣

p

∂

∂xi

for all i and j.

Remark 2.3.4. (1) From (iii) and (iv) we get the R-linearity in the second argument. Let α ,β ∈
R:

∇ξ (α η1 +β η2)
(iii)
= ∇ξ (α η1)+∇ξ (β η2)

(iv)
= ∂ξ α

︸︷︷︸

=0

·η1|p +α∇ξ (η1)+∂ξ β
︸︷︷︸

=0

·η2|p +β∇ξ (η2)

= α∇ξ (η1)+β∇ξ (η2).

(2) If (vi) holds in a chart x, then it also holds in every other chart y containing p.

∇ ∂
∂ yi

∣
∣
∣

p

∂

∂y j
= ∇ ∂

∂ yi

∣
∣
∣

p

(
n

∑
k=1

∂xk

∂y j

∣
∣
∣
∣

p

∂

∂xk

)

(iii)
(iv)
=

n

∑
k=1

(

∂ 2xk

∂yi∂y j

∣
∣
∣
∣
y(p)

· ∂

∂xk
+

∂xk

∂y j

∣
∣
∣
∣
y(p)

∇ ∂
∂ yi

∣
∣
∣

p

∂

∂xk

)

(ii)
=

n

∑
k=1

∂ 2xk

∂yi∂y j

∣
∣
∣
∣
y(p)

· ∂

∂xk
+

n

∑
k,l=1

∂xk

∂y j

∣
∣
∣
∣
y(p)

· ∂xl

∂yi

∣
∣
∣
∣
y(p)

∇ ∂
∂ xl

∣
∣
∣

p

∂

∂xk
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The first summand is symmetric in i and j due to Schwarz’ Theorem. Concerning the second

summand we have:

n

∑
k,l=1

∂xk

∂y j

∣
∣
∣
∣
y(p)

· ∂xl

∂yi

∣
∣
∣
∣
y(p)

∇ ∂
∂ xl

∣
∣
∣

p

∂

∂xk

(vi)
=

n

∑
k,l=1

∂xk

∂y j

∣
∣
∣
∣
y(p)

· ∂xl

∂yi

∣
∣
∣
∣
y(p)

∇ ∂
∂ xk

∣
∣
∣

p

∂

∂xl

change of

indices
=

n

∑
l,k=1

∂xl

∂y j

∣
∣
∣
∣
y(p)

· ∂xk

∂yi

∣
∣
∣
∣
y(p)

∇ ∂

∂ xl

∣
∣
∣

p

∂

∂xk

Hence the second summand is also symmetric in i and j.

(3) In general, for non-coordinate fields ξ and η we have

∇ξ η , ∇η ξ .

As an example we can choose ξ = ∂
∂x1 and η = f · ∂

∂x1 with ∂ξ f , 0.

Definition 2.3.5. Let x : U →V be a chart. Write

∇ ∂
∂ xi

∣
∣
∣

p

∂

∂x j
=

n

∑
k=1

Γk
i j

(
x(p)

)
· ∂

∂xk

∣
∣
∣
∣

p

(2.4)

The Γk
i j are called Christoffel symbols.

Remark 2.3.6. The Christoffel symbols determine ∇. Namely, let ξ = ∑n
i=1 ξ i ∂

∂xi

∣
∣
∣

p
∈ TpM and

η = ∑n
j=1 η j ∂

∂x j ∈ Ξp. Then we compute:

∇
∑n

i=1 ξ i ∂
∂ xi

∣
∣
∣

p

(
n

∑
j=1

η j ∂

∂x j

)
(ii)
(iii)
=

n

∑
i, j=1

ξ i∇ ∂
∂ xi

∣
∣
∣

p

(

η j ∂

∂x j

)

(iv)
=

n

∑
i, j=1

ξ i

(

∂η j

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂x j

∣
∣
∣
∣

p

+η j|x(p) ·∇ ∂
∂ xi

∣
∣
∣

p

∂

∂x j

)

=
n

∑
i, j=1

ξ i

(

∂η j

∂xi

∣
∣
∣
∣
x(p)

· ∂

∂x j

∣
∣
∣
∣

p

+η j|x(p) ·
n

∑
k=1

Γk
i j(x(p)) · ∂

∂xk

∣
∣
∣
∣

p

)

=
n

∑
i,k=1

ξ i

(

∂ηk

∂xi

∣
∣
∣
∣
x(p)

+
n

∑
j=1

η j|x(p) ·Γk
i j(x(p))

)

∂

∂xk

∣
∣
∣
∣

p

(2.5)

Remark 2.3.7. Torsion freeness is equivalent to the Christoffel symbols being symmetric in the

two lower indices:

Γk
i j = Γk

ji for all i, j,k.
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Theorem 2.3.8. Let (M,g) be a semi-Riemannian manifold and let p ∈ M. Then there is

exactly one Levi-Civita connection at p.

Proof. Uniqueness: Let x : U →V be a chart of M with p ∈U . We compute, using the Einstein

summation convention:

∂gi j

∂xk
=

∂

∂xk
g

(
∂

∂xi
,

∂

∂x j

)

(v)
= g

(

∇ ∂
∂ xk

∂

∂xi
,

∂

∂x j

)

+g

(
∂

∂xi
,∇ ∂

∂ xk

∂

∂x j

)

= g

(

Γl
ki

∂

∂xl
,

∂

∂x j

)

+g

(
∂

∂xi
,Γl

k j

∂

∂x j

)

= Γl
ki ·g

(
∂

∂xl
,

∂

∂x j

)

+Γl
k j ·g

(
∂

∂xi
,

∂

∂x j

)

= Γl
ki ·gl j +Γl

k j ·gil .

Renaming the indices we get the equations:

∂gi j

∂xk
= Γl

ki ·gl j +Γl
k j ·gil (2.6)

i→i

j→k

k→ j

∂gik

∂x j
= Γl

ji ·glk +Γl
jk ·gil (2.7)

i→k

j→ j

k→ i

∂gk j

∂xi
= Γl

ik ·gl j +Γl
i j ·gkl (2.8)

Equation (2.6)− (2.7)+ (2.8) together with the symmetry of the Christoffel symbols in the lower

indices yields:
∂gi j

∂xk
− ∂gik

∂x j
+

∂gk j

∂xi
= 2Γl

ki ·gl j.

Let (gi j)i, j=1,...,n be the inverse matrix of (gi j)i, j=1,...,n. This matrix exists because g|p is non-

degenerate. In other words, we have:

gi j ·g jk = δ i
k.

Therefore (
∂gi j

∂xk
− ∂gik

∂x j
+

∂gk j

∂xi

)

g jm = 2Γl
ki ·gl j ·g jm = 2Γl

ki ·δ m
l = 2Γm

ki

and hence

Γm
ki =

1

2

(
∂gi j

∂xk
− ∂gik

∂x j
+

∂gk j

∂xi

)

g jm .

Renaming indices (k → j,m → k, j → m) we obtain:

Γk
i j =

1

2

n

∑
m=1

gmk

(
∂gim

∂x j
+

∂g jm

∂xi
− ∂gi j

∂xm

)

(2.9)
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Consequently, the Christoffel symbols are uniquely determined and hence ∇ is uniquely deter-

mined by the components of the semi-Riemannian metric and its first derivatives.

Existence: Define Γk
i j by equation (2.9) and ∇ by equation (2.5). Then conditions (i), (ii), (iii),

and (vi) of the Levi-Civita connection are obvious. For the first product (iv) rule we have:

∇ξ ( f η) = ξ i

(
∂ ( f ·ηk)

∂xi
+ f η j Γk

i j

)
∂

∂xk

= f ·ξ i

(
∂ηk

∂xi
+η j Γk

i j

)
∂

∂xk
+ξ i ∂ f

∂xi
ηk ∂

∂xk

= f ·∇ξ η +∂ξ f ·η

We check the second product rule (v), using the Einstein summation convention and occasional

renaming of indices:

∂ζ g(ξ ,η)−g(∇ζ ξ ,η)−g(ξ ,∇ζ η)

= ζ k ∂

∂xk

(
gi j ξ iη j

)
−gi j ζ k

(
∂ξ i

∂xk
+ξ lΓi

lk

)

η j −gi j ξ i ζ k

(
∂η j

∂xk
+η lΓ

j
lk

)

= ζ k gi j

∂xk
ξ iη j −gi j ζ kξ lΓi

lkη j −gi j ξ iζ kη lΓ
j
lk

= ξ iη jζ k
( gi j

∂xk
−gl j Γl

ik −gil Γl
jk

)

(2.9)
= ξ iη jζ k

(

gi j

∂xk
− 1

2
gl j gml

︸   ︷︷   ︸

=δ m
j

(
∂gim

∂xk
+

∂gkm

∂xi
− ∂gik

∂xm

)

− 1

2
gil gml

︸  ︷︷  ︸

=δ m
i

(
∂g jm

∂xk
+

∂gkm

∂x j
− ∂g jk

∂xm

))

= ξ iη jζ k

(

gi j

∂xk
− 1

2

(
∂gi j

∂xk
+

∂gk j

∂xi
− ∂gik

∂x j

)

− 1

2

(
∂g ji

∂xk
+

∂gki

∂x j
− ∂g jk

∂xi

))

= 0. �

Remark 2.3.9. For any chart x : U →V on (M,g) the Christoffel symbols are smooth functions

Γk
i j =

1

2

n

∑
m=1

gmk ·
(

∂gim

∂x j
+

∂g jm

∂xi
− ∂gi j

∂xm

)

: V → R .

Remark 2.3.10. Our naive ansatz to differentiate vector fields by simply differentiating the co-

efficient functions corresponds to formula (2.5) with Γk
i j = 0. The problem was that this depends

on the choice of coordinates. When we use formula (2.5) with the correct definition (2.9) for the

Christoffel symbols, then we get the uniquely determined Levi-Civita connection. In particular,

this kind of differentiating vector fields is independent of the choice of chart.
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Note however, that the Levi-Civita connection depends on the semi-Riemannian metric. This

cannot only seen from (2.9) but also from the second product rule (v) in Definition 2.3.3 which

involves the metric. There is nothing we can do about this; different semi-Riemannian metrics

will in general lead to different Levi-Civita connections.

So the situation is somewhat curious: Differentiability and the derivative of a function are well

defined on a differentiable manifold. Differentiability of a vector field is also well defined on a

differentiable manifold. But in order to define the derivative of a vector field we need a semi-

Riemannian metric.

Definition 2.3.11. Let (M,g) be a semi-Riemannian manifold and let ∇ be its Levi-Civita

connection. Let p ∈ M, let ξ ∈ TpM and let η ∈ Ξp. Then

∇ξ η ∈ TpM

is also called the covariant derivative of η in direction ξ .

Example 2.3.12. Let (M,g) = (R2,geucl) be the 2-dimensional Euclidean space. In Cartesian

coordinates x1,x2 the gi j = δi j are constant. Therefore Γk
i j = 0. In this case, covariant differenti-

ation is indeed given by differentiation of the coordinate functions. For example,

∇ ∂
∂ ϕ

∂

∂ϕ
= ∇−x2 ∂

∂ x1 +x1 ∂
∂ x2

(

−x2 ∂

∂x1
+ x1 ∂

∂x2

)

=

(

−x2 ∂

∂x1
+ x1 ∂

∂x2

)

(−x2)
∂

∂x1
+

(

−x2 ∂

∂x1
+ x1 ∂

∂x2

)

(x1)
∂

∂x2

= −x1 ∂

∂x1
− x2 ∂

∂x2
= −r

∂

∂ r

In polar coordinates r,ϕ we have

(gi j)(r,ϕ) =

(
1 0

0 r2

)

and (gi j)(r,ϕ) =

(
1 0

0 1
r2

)

.

The Christoffel symbols with respect to polar coordinates are given by

Γ1
11 =

1

2

(
1 · (0+0−0)+0 · . . .

)
= 0.

and similarly

Γ1
11 = Γ2

11 = Γ1
12 = Γ1

21 = Γ2
22 = 0.

Moreover:

Γ2
12 = Γ2

21 =
1

2

(
1

r2

(
∂g12

∂ϕ
+

∂g22

∂ r
− ∂g12

∂ϕ

)

+0 · . . .
)

=
1

r
and Γ1

22 =−r.

Thus

∇ ∂
∂ ϕ

∂

∂ϕ
= Γ1

22

∂

∂ r
+Γ2

22

∂

∂ϕ
=−r

∂

∂ r
.
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Indeed, we obtained the same result for both computations, one in Cartesian and one in polar

coordinates.

Remark 2.3.13. We defined ∇ pointwise, i.e., as a map TpM ×Ξp → TpM. We may also con-

sider ∇ as a map

∇ : Ξ(M)×Ξ(M)→ Ξ(M),

where Ξ(M) denotes the set of all smooth vector fields defined on all of M. Namely, we put

(∇ξ η)(p) := ∇ξ (p)η .

We know

∇ξ (α1η1 +α2η2) = α1∇ξ η1 +α2∇ξ η2

for α1,α2 ∈ R and

∇ f1ξ1+ f2ξ2
η = f1∇ξ1

η + f2∇ξ2
η

for f1, f2 ∈C∞(M). This means that ∇ξ η is C∞(M)-linear in ξ but only R-linear in η .

Remark 2.3.14. To compute ∇ξ η with ξ = ċ(0) we only need to know η along the curve c.

Namely,

∇ċ(0)

(
n

∑
j=1

η j ∂

∂x j

)

= ∇
∑n

i=1 ċi(0) ∂
∂ xi

(
n

∑
j=1

η j ∂

∂x j

)

=
n

∑
i, j=1

ċi(0)∇ ∂
∂ xi

(

η j ∂

∂x j

)

=
n

∑
i, j=1

ċi(0)

(

∂η j

∂xi

∂

∂x j
+

n

∑
k=1

η j Γk
i j

∂

∂xk

)

=
n

∑
j=1

d

dt

(
η j ◦ c

)
|t=0

∂

∂x j
+

n

∑
i, j,k=1

ċi(0)η j(c(0))Γk
i j(x(c(0)))

∂

∂xk
.

2.4 Vector fields along maps

Definition 2.4.1. Let M and N be differentiable manifolds and ϕ : N → M a map. Then a map

ξ : N → T M is called a vector field along ϕ , if

πM ◦ξ = ϕ .

holds. Here πM : T M → M is the “footpoint map”.

Example 2.4.2. (1) Vector fields along curves. Let N = I ⊂ R be an open interval and c = ϕ :

N = I → M be a curve.
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N

M

ξ
c

An important special case is given by ξ (t) = ċ(t) := ċt(0) where ct(s) := c(t + s). This is

the velocity field of c.

N

M

ξ
c

(2) If N = M and ϕ = id then a vector field along id is just a vector field in the usual sense.

(3) Let ϕ be constant, i.e., ϕ(x)= p for all x∈N. Then a vector field along ϕ is a map N →TpM.

(4) Let ϕ be differentiable and let ξ be a vector field on N. Then

p 7→ dϕ |p
(
ξ (p)

)
∈ Tϕ(p)M

is a vector field along ϕ .

(5) If ξ is a vector field on M then

p 7→ ξ
(
ϕ(p)

)

is a vector field along ϕ .

Definition 2.4.3. Let N be a differentiable manifold and (M,g) a semi-Riemannian manifold.

Let ϕ : N → M be a differentiable map and η : N → T M a differentiable vector field along ϕ .

For p ∈ N and ξ ∈ TpN we define the covariant derivative ∇ξ η ∈ Tϕ(p)M as follows:

Choose a chart x : U →V of M with ϕ(p) ∈U and write

η(q) =
n

∑
j=1

η j(q) · ∂

∂x j

∣
∣
∣
∣
ϕ(q)

with differentiable functions η1, . . . ,ηn defined on ϕ−1(U). In addition, choose a curve c :

(−ε ,ε)→ N with ċ(0) = ξ and set

∇ξ η :=
n

∑
k=1

(

d

dt

(
ηk ◦ c

)∣
∣
t=0

+
n

∑
i, j=1

η j(p)
d

dt

(
ϕ i ◦ c

)∣
∣
t=0

Γk
i j

(
x
(
ϕ(p)

))

)

∂

∂xk

∣
∣
∣
∣
ϕ(p)

=
n

∑
k=1

(

∂ξ ηk +
n

∑
i, j=1

η j(p)dϕ(ξ )i Γk
i j

(
x
(
ϕ(p)

))

)

∂

∂xk

∣
∣
∣
∣
ϕ(p)

.
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Proposition 2.4.4. Let N be a differentiable manifold, (M,g) a semi-Riemannian manifold

and ϕ : N → M a differentiable map. Let η ,η1,η2 be differentiable vector fields along ϕ . Let

α1,α2 ∈ R and f : N → R be a differentiable function. Furthermore, let p ∈ N and ξ ,ξ1,ξ2 ∈
TpN.

Then the covariant derivative ∇ξ η is defined independently of the choice of chart x and the

choice of curve c with ċ(0) = ξ and we have:

(i) If η is the form η = ζ ◦ϕ where ζ is a differentiable vector field on M, then we have

∇ξ η = ∇dϕ |p(ξ )ζ .

(ii) Locality: If η1 and η2 coincide on a neighborhood of p, then ∇ξ η1 = ∇ξ η2.

(iii) Linearity in the first argument:

∇α1ξ1+α2ξ2
η = α1∇ξ1

η +α2∇ξ2
η .

(iv) Linearity in the second argument:

∇ξ (α1η1 +α2η2) = α1∇ξ η1 +α2∇ξ η2.

(v) Product rule I:

∇ξ ( f ·η) = ∂ξ f ·η(p)+ f (p)∇ξ η .

(vi) Product rule II:

∂ξ g(η1,η2) = g|ϕ(p)

(
∇ξ η1,η2(p)

)
+g|ϕ(p)

(
η1(p),∇ξ η2

)
.

(vii) Torsion freeness: For all charts y of N and all i, j = 1, . . . ,dim(N) we have:

∇ ∂
∂ yi

dϕ

(
∂

∂y j

)

= ∇ ∂
∂ y j

dϕ

(
∂

∂yi

)

.

Proof. The assertions follow directly from the definition and the corresponding statements for

the Levi-Civita connection. �

Notation 2.4.5. For local coordinates y on N we write

∇η

∂yl
(p) := ∇ ∂

∂ yl

∣
∣
∣

p

η =
n

∑
k=1

(

∂ηk

∂yl

∣
∣
∣
∣
y(p)

+
n

∑
i, j

∂ϕ i

∂yl
(p) ·η j

(
y(p)

)
·Γk

i j

(
x
(
ϕ(p)

))

)

∂

∂xk
(p).
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If N is one-dimensional, we also write

∇η

∂ t
=:

∇η

dt
.

Remark 2.4.6. For a vector field along a curve c : I → M we have the following formula in local

coordinates on M:

∇η

dt
(t) =

n

∑
k=1

(

η̇k(t)+
n

∑
i, j

ċi(t) ·η j(t) ·Γk
i j

(
x
(
c(t)
))

)

∂

∂xk

∣
∣
∣
∣
c(t)

.

In particular, for the velocity field we get

∇ċ

dt
(t) =

n

∑
k=1

(

c̈k(t)+
n

∑
i, j

ċi(t) · ċ j(t) ·Γk
i j

(
x
(
c(t)
))

)

∂

∂xk

∣
∣
∣
∣
c(t)

.

Example 2.4.7. Let (M,g) = (Rn,geucl) or (M,g) = (Rn,gMink). Then the gi j are constant in

Cartesian coordinates. Consequently, the Christoffel symbols with respect to Cartesian coordi-

nates vanish, Γk
i j = 0.

For a C1-curve c : I → M and a C1-vector field ξ along c with ξ (t) = ∑n
j=1 ξ j(t) ∂

∂x j |c(t) we have:

∇

dt
ξ (t) =

n

∑
j=1

ξ̇ j(t)
∂

∂x j

∣
∣
∣
∣
c(t)

.

Hence, in this case, covariant differentiation just consists of differentiation of the coefficient

functions. Note however, that this is no longer true in other coordinate systems such as polar

coordinates.

Example 2.4.8. In the Euclidean plane (M,g) = (R2,geucl) we consider the circle line c(t) =
(cos(t),sin(t)) and its velocity field

ξ (t) = ċ(t) =−sin(t)
∂

∂x1

∣
∣
∣
∣
c(t)

+ cos(t)
∂

∂x2

∣
∣
∣
∣
c(t)

.

In Cartesian coordinates we get by the previous example

∇

dt
ξ (t) =

∇

dt
ċ(t) =−cos(t)

∂

∂x1

∣
∣
∣
∣
c(t)

− sin(t)
∂

∂x2

∣
∣
∣
∣
c(t)

=− ∂

∂ r

∣
∣
∣
∣
c(t)

.

For the fun of it, let us also carry out the calculation in polar coordinates (r,ϕ). Now c1(t) =

r(t) = 1, c2(t) = ϕ(t) = t and ξ (t) = ∂
∂ϕ

∣
∣
∣
c(t)

, i.e., ξ 1(t) = 0 and ξ 2(t) = 1. This time there are

no derivatives of the coefficients of ξ but we have to take the Christoffel symbols into account.
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Recall from Example 2.3.12 that there are three non-vanishing Christoffel symbols for polar

coordinates,

Γ2
12 = Γ2

21 =
1

r
, Γ1

22 =−r.

Therefore we get

∇

dt
ξ (t) =

2

∑
i j=1

ċi(t)ξ j(t)Γ1
i j

(

r(t),ϕ(t)
) ∂

∂ r

∣
∣
∣
∣
c(t)

+
2

∑
i j=1

ċi(t)ξ j(t)Γ2
i j

(

r(t),ϕ(t)
) ∂

∂ϕ

∣
∣
∣
∣
c(t)

= ċ2(t)ξ 2(t)
(
− r(t)

) ∂

∂ r

∣
∣
∣
∣
c(t)

+

(

ċ1(t)ξ 2(t)
1

r(t)
+ ċ2(t)ξ 1(t)

1

r(t)

)
∂

∂ϕ

∣
∣
∣
∣
c(t)

= 1 ·1 · (−1)
∂

∂ r

∣
∣
∣
∣
c(t)

+(0 ·1 ·1+1 ·0 ·1) ∂

∂ϕ

∣
∣
∣
∣
c(t)

= − ∂

∂ r

∣
∣
∣
∣
c(t)

.

So indeed, we have obtained the same result.

2.5 Parallel transport

Definition 2.5.1. Let (M,g) be a semi-Riemannian manifold and c : I → M be a C1-curve. A

C1-vector field ξ along c is called parallel, if

∇

dt
ξ ≡ 0.

Example 2.5.2. Let (M,g) = (Rn,geucl) or (Rn,gMink). In Cartesian coordinates, a vector field

ξ (t) = ∑n
j=1 ξ j(t) ∂

∂x j

∣
∣
∣
c(t)

along a curve c is parallel if and only if ξ̇ j(t) = 0 for all t ∈ I, i.e., if

and only if the ξ j are constant.

Example 2.5.3. Let (M,g) = (R2,geucl). Recall from Example 2.3.12 that the Christoffel sym-

bols in polar coordinates (r,ϕ) are given by:

Γ1
11 = Γ2

11 = Γ1
12 = Γ1

21 = Γ2
22 = 0, Γ2

12 = Γ2
21 =

1

r
, Γ1

22 =−r.
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Thus ξ = ξ 1 ∂
∂ r

+ξ 2 ∂
∂ϕ is parallel along a curve c if and only if

0 =
∇

dt
ξ

= ξ̇ 1 ∂

∂ r
+ξ 1 ∇

ċ1 ∂
∂ r
+ċ2 ∂

∂ ϕ

∂

∂ r
+ ξ̇ 2 ∂

∂ϕ
+ξ 2 ∇

ċ1 ∂
∂ r
+ċ2 ∂

∂ ϕ

∂

∂ϕ

= ξ̇ 1 ∂

∂ r
+ξ 1

(

ċ1 ·0+ ċ2 · 1

c1

∂

∂ϕ

)

+ ξ̇ 2 ∂

∂ϕ
+ξ 2

(

ċ1 1

c1

∂

∂ϕ
+ ċ2(−c1)

∂

∂ r

)

=
(

ξ̇ 1 − c1 ċ2 ξ 2
) ∂

∂ r
+

(

ξ̇ 2 +
ċ2

c1
ξ 1 +

ċ1

c1
ξ 2

)
∂

∂ϕ
.

This is equivalent to:

ξ̇ 1 − c1 ċ2 ξ 2 = 0, ξ̇ 2 +
ċ2

c1
ξ 1 +

ċ1

c1
ξ 2 = 0,

that is
(

ξ̇ 1

ξ̇ 2

)

=

(

0 c1ċ2

− ċ2

c1 − ċ1

c1

)(
ξ 1

ξ 2

)

.

This is a system of linear first order ordinary differential equations for (ξ 1,ξ 2).

Proposition 2.5.4. Let (M,g) be a semi-Riemannian manifold

and c : I → M be a C1-curve and t0 ∈ I.

For any ξ0 ∈ Tc(t0)M there exists exactly one

parallel vector field ξ along c with ξ (t0) =
ξ0.

b c

ξ0

c(t0)
ξ

M

Proof. Case 1: Let c(I) be contained in one chart and let x : U →V be such a chart. Then the

condition ∇
dt

ξ = 0 is equivalent to

ξ̇ k =−
n

∑
i, j=1

(
Γk

i j ◦ x◦ c
)

ċi ·ξ j ,

which is a system of linear ordinary equations of first order. Hence there exists a unique solution

with initial condition
(
ξ 1(t0), . . . ,ξ

n(t0)
)
= (ξ 1

0 , . . . ,ξ
n
0 ).
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Since the system is linear, the solution is defined on all of I.

Case 2: Suppose c(I) is not contained in one chart.

Existence: The interval I can be open, closed or half-open. We restrict ourselves to open inter-

vals, the other cases being slightly simpler. Write I = (a,b) where −∞ ≤ a < b ≤ ∞. Choose

a < ai < t0 < bi < b with ai → a and bi → b monotonically. Then c([ai,bi]) is compact and

can be covered by finitely many charts x1 : U1 →V1, . . . ,xN : UN →VN . W.l.o.g. we assume that

Ui ∩ c([a1,b1]) is connected.

Ui

c

Not something like this!

bc

bc

bc
bc

c(a1)

c(b1)
c(t0)

c(t1)

ξ0

W.l.o.g. let c(t0) ∈ U1, otherwise renumber the charts. We solve the equation
∇

dt
ξ = 0 as in

Case 1 with ξ (t0) = ξ0 in U1.

If the solution is not defined on the whole of [a1,b1], we choose t1 ∈ (a1,b1) with c(t1) ∈U1 ∩U2.

Then we solve the equation in the chart x2 with the initial condition ξ (t1), given by the previous

solution.

Due to uniqueness in Case 1 both parallel vector fields coincide on U1 ∩U2. After finitely many

steps we get a parallel vector field which is defined on [a1,b1].

The same holds true for the next compact subinterval [a2,b2] and we obtain a parallel vector field

on [a2,b2] which extends the one on [a1,b1]. By induction, we then find a parallel vector field

on every [ai,bi] extending the one on the smaller interval[ai−1 ,bi−1]. Since
⋃N

i=1[ai,bi] = (a,b)
we obtain a parallel vector field ξ on (a,b) with ξ (t0) = ξ0.

Uniqueness: Let ξ and ξ̃ be two parallel vector fields along c with ξ (t0) = ξ̃ (t0) = ξ0. Write

I = Igood ⊔ Ibad where

Igood =
{

t ∈ I | ξ (t) = ξ̃ (t)
}

Ibad =
{

t ∈ I | ξ (t) , ξ̃ (t)
}

Since ξ and ξ̃ are continuous, Igood is closed in I. For t1 ∈ Igood choose a chart x : U →V which

contains c(t1). By uniqueness in Case 1 we then have ξ (t) = ξ̃ (t) for all t ∈ I with c(t) ∈ U .

Therefore a neighborhood of t1 is contained in Igood. Hence Igood is open in I.

We have seen that Igood is open and closed in I. It is also non-empty because t0 ∈ Igood. Since I

is connected, we have I = Igood and therefore ξ (t) = ξ̃ (t) for all t ∈ I. �
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Definition 2.5.5. Let M be a semi-Riemannian manifold and let c : I → M be a C1-curve. Let

t0, t1 ∈ I. The map

Pc,t0,t1 : Tc(t0)M → Tc(t1)M,

ξ0 7→ ξ (t1),

is called parallel transport along c. Here ξ (t) is the parallel vector field along c with ξ (t0) =
ξ0.

Proposition 2.5.6. Let M, c, t0, and t1 as in Definition 2.5.5 and let t2 ∈ I. Then we have:

(a) Pc,t0,t1 : (Tc(t0)M,g|c(t0))→ (Tc(t1)M,g|c(t1)) is a linear isometry;

(b) Pc,t0,t2 = Pc,t1,t2 ◦Pc,t0,t1 .

Proof. (a) Let ξ0,η0 ∈ Tc(t0)M. Let ξ ,η the corresponding parallel vector fields along c. Then

d

dt
g(ξ ,η) = g

(
∇

dt
ξ

︸︷︷︸

=0

,η

)

+g

(

ξ ,
∇

dt
η

︸ ︷︷ ︸

=0

)

= 0.

Therefore g(ξ ,η) is constant, hence

g
(
Pc,t0,t1(ξ0),Pc,t0 ,t1(η0)

)
= g

(
ξ (t1),η(t1)

)

= g
(
ξ (t0),η(t0)

)

= g(ξ0,η0).

This proves that parallel transport is a linear isometry.

(b) is obvious. �

Remark 2.5.7. For ξ0 ∈ Tc(t0)M the parallel vector field ξ with ξ (t0) = ξ0 is given by

ξ (t) = Pc,t0,t(ξ0).

We can reconstruct the Levi-Civita connection ∇ from parallel transport:
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Proposition 2.5.8. Let (M,g) be a semi-Riemannian manifold, let c : I → M be a C1-curve,

and let t0 ∈ I. Then for every C1-vector field ξ along c we get:

∇

dt
ξ

∣
∣
∣
∣
t0

= lim
t→t0

Pc,t,t0

(
ξ (t)

)
−ξ (t0)

t − t0
.

Proof. Let e1(t0), . . . ,en(t0) be a basis of Tc(t0)M. Let e1(t), . . . ,en(t) be the corresponding par-

allel vector fields along c.

By Proposition 2.5.6 (a), we know that e1(t), . . . ,en(t) form a basis of Tc(t)M for every t ∈ I.

Write ξ (t) = ∑n
j=1 ξ j(t)e j(t). Then

Pc,t,t0(ξ (t))−ξ (t0)

t − t0
=

∑n
j=1 ξ j(t)

=e j(t0)
︷          ︸︸          ︷

Pc,t,t0(e j(t))−∑n
j=1 ξ j(t0)e j(t0)

t − t0

=
n

∑
j=1

ξ j(t)−ξ j(t0)

t − t0
e j(t0)

t→t0−→
n

∑
j=1

ξ̇ j(t0)e j(t0).

On the other hand, we have

∇

dt
ξ |t0 =

∇

dt

(
n

∑
j=1

ξ je j

)∣
∣
∣
∣
t=0

=
n

∑
j=1

(

ξ̇ j(t0)e j(t0)+ξ j(t0)
∇

dt
e j|t0

︸    ︷︷    ︸

=0

)

=
n

∑
j=1

ξ̇ j(t0)e j(t0). �

We have the following scheme of geometric structures:

semi-Riemannian
metric

covariant
derivative ∇

parallel
transport P

Remark 2.5.9. If ψ : M → M̃ is a local isometry and if c : I → M is a C1-curve, consider the

image curve c̃ := ψ ◦ c. Then we have for every C1-vector field ξ along c:

ξ parallel along c ⇐⇒ ξ̃ := dψ ◦ξ parallel along c̃.
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In particular, the following diagram commutes:

Tc(t0)M Tc(t1)M

Tc̃(t0)M̃ Tc̃(t1)M̃

Pc,t0,t1

dψ |c(t0) dψ |c(t1)
Pc̃,t0,t1

Remark 2.5.10. In general, parallel transport depends on the curve joining two given points.

This means, in general we have Pc,t0,t1 , Pĉ,s0,s1
if c and ĉ are two curves in M with c(t0) = ĉ(s0)

and c(t1) = ĉ(s1). In this respect, Euclidean space is not typical.

2.6 Geodesics

Definition 2.6.1. Let (M,g) be a semi-Riemannian manifold and c : [a,b]→ M a C1-curve.

Then we call

E[c] :=
1

2

b∫

a

g
(
ċ(t), ċ(t)

)
dt

the energy of c.

Remark 2.6.2. If (M,g) is Riemannian, then g(ċ, ċ)≥ 0 and therefore E[c]≥ 0 (and equal to 0

if and only if c is constant).

Question. Are there curves with minimal energy joining two given endpoints? More generally,

are there curves with “stationary energy”?

Definition 2.6.3. Let M be a differentiable manifold and c : [a,b] → M a smooth curve. A

variation of c is a smooth map

c : (−ε ,ε)× [a,b]→ M

with c(0, t) = c(t) for all t ∈ [a,b]. If c(s,a) = c(a) and c(s,b) = c(b) for all s ∈ (−ε ,ε) then

we call c(s, t) a variation with fixed endpoints.
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b

b

c

c(t)

c(s, t)

M

b

b c

M

ξ

The vector field ξ (t) :=
∂c

∂ s
(0, t) is called the variational vector field.

Remark 2.6.4. The variational vector field ξ of a variation with fixed endpoints satisfies

ξ (a) = 0 and ξ (b) = 0.

Theorem 2.6.5 (First variation of the energy). Let (M,g) be a semi-Riemannian manifold,

let c : [a,b] → M be a smooth curve and let c : (−ε ,ε)× [a,b]→ M be a variation of this

curve. Let ξ be the variational vector field. Write cs(t) = c(s, t). Then

d

ds
E[cs]

∣
∣
s=0

=−
b∫

a

g

(

ξ (t),
∇

dt
ċ(t)

)

dt +g
(
ξ (b), ċ(b)

)
−g
(
ξ (a), ċ(a)

)
.

Proof. We compute:

d

ds
E[cs]

∣
∣
s=0

=
1

2

d

ds

∣
∣
∣
∣
s=0

b∫

a

g
(
ċs(t), ċs(t)

)
dt

=
1

2

b∫

a

∂

∂ s

∣
∣
∣
∣
s=0

g

(
∂c

∂ t
(s, t),

∂c

∂ t
(s, t)

)

dt

=
1

2

b∫

a

[

g

(
∇

∂ s

∂c

∂ t
(0, t),

∂c

∂ t
(0, t)

)

+g

(
∂c

∂ t
(0, t),

∇

∂ s

∂c

∂ t
(0, t)

)]

dt

=

b∫

a

g

(
∇

∂ s

∂c

∂ t
(0, t),

∂c

∂ t
(0, t)

)

dt

(∗)
=

b∫

a

g

(
∇

∂ t

∂c

∂ s
(0, t),

∂c

∂ t
(0, t)

)

dt
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=

b∫

a

g

(
∇

dt
ξ (t), ċ(t)

)

dt

=

b∫

a

[
d

dt
g(ξ (t), ċ(t))−g

(

ξ (t),
∇

dt
ċ(t)

)]

dt

= g
(
ξ (b), ċ(b)

)
−g
(
ξ (a), ċ(a)

)
−

b∫

a

g

(

ξ (t),
∇

dt
ċ(t)

)

dt.

Equality (∗) holds because of torsion-freeness of the Levi-Civita connection. �

Corollary 2.6.6. If the variation has fixed endpoints then

d

ds
E[cs]

∣
∣
s=0

=−
b∫

a

g

(

ξ (t),
∇

dt
ċ(t)

)

dt.

Lemma 2.6.7. Let c : [a,b]→ M be a smooth curve and ξ a smooth vector field along c. Then

there exists a variation c of c with variational vector field ξ . If ξ (a) = 0 and ξ (b) = 0, then

we can choose the variation with fixed endpoints.

Proof. a) We first consider the case that supp(ξ ) is contained in a chart x : U →V , i.e., c(t) ∈U

whenever ξ (t) , 0.

Mc

U

ξ

R
n ⊃V

(c1, . . . ,cn)

x

We write ξ (t) =
n

∑
j=1

ξ j(t)
∂

∂x j

∣
∣
∣
∣
c(t)

and we set

c(s, t) :=

{

x−1
((

c1(t), . . . ,cn(t)
)
+ s
(
ξ 1(t), . . . ,ξ n(t)

))

, c(t) ∈U

c(t), c(t) <U
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Then we have for the corresponding variational vector field:

(
∂c

∂ s
(0, t)

) j

= dx j

(
∂c

∂ s
(0, t)

)

=
∂ (x j ◦ c)

∂ s
(0, t)

=
∂
(
c j(t)+ sξ j(t)

)

∂ s

∣
∣
∣
∣
∣
s=0

= ξ j(t).

Hence the variation c has the variational vector field ξ . Moreover, if ξ vanishes at the endpoints,

then c has fixed endpoints.

b) In the general case, cover the compact set c([a,b]) with finitely many charts and construct the

variation piecewise. �

Remark 2.6.8. Later, when we have the Riemannian exponential map at our disposal, we will

be able to directly write down a suitable variation without usage of charts.

Notation 2.6.9. Let M be a differentiable manifold and p,q ∈ M. Then we set

Ωp,q(M) :=
{

smooth curves c : [a,b]→ M with c(a) = p and c(b) = q
}
.

Corollary 2.6.10. Let (M,g) be a semi-Riemannian manifold and c ∈ Ωp,q(M). Then the

following are equivalent:

(i) The curve c is a “critical point” of the energy functional, i.e.,

d

ds
E[cs]

∣
∣
s=0

= 0

for all variations cs of c with fixed endpoints;

(ii) For all t we have
∇

dt
ċ(t) = 0.

Proof. The implication “(ii)⇒(i)” is directly clear by Corollary 2.6.6. We show “(i)⇒(ii)”.

Let [a,b] be the parameter interval of c. Assume there exists a t0 ∈ (a,b) with ∇
dt

ċ(t0) , 0. Then
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there exists a ξ0 ∈ Tc(t0)M with

g

(

ξ0,
∇

dt
ċ(t0)

)

> 0

because g is non-degenerate. Let ξ̃ be the parallel vector field along c with ξ̃ (t0) = ξ0. By

continuity there exists an ε > 0 such that (t0 − ε , t0 + ε)⊂ (a,b) and

g

(

ξ̃ (t),
∇

dt
ċ(t)

)

> 0

holds for all t ∈ (t0 − ε , t0+ ε). We choose a smooth

function ρ : [a,b]→R with ρ(t)> 0 for all t ∈ (t0 −
ε , t0 + ε) and ρ(t) = 0 otherwise.

a bt0

ρ

Set ξ (t) := ρ(t) · ξ̃ (t). Then we have:

g

(

ξ (t),
∇

dt
ċ(t)

)

= ρ(t) ·g
(

ξ̃ (t),
∇

dt
ċ(t)

){

> 0 for t ∈ (t0 − ε , t0 + ε)

= 0 otherwise
.

By Lemma 2.6.7 we can choose a variation of c with fixed endpoints and variational vector field

ξ . Then we have for this variation

d

ds
E[cs]

∣
∣
s=0

=−
b∫

a

g

(

ξ (t),
∇

dt
ċ(t)

)

dt < 0

which contradicts the assumption. Hence we have ∇
dt

ċ = 0 on (a,b) and by continuity also on

the whole of [a,b]. �

Definition 2.6.11. A smooth curve c with ∇
dt

ċ = 0 is called a geodesic.

Example 2.6.12. Let (M,g) = (Rn,geucl) or (Rn,gMink). In Cartesian coordinates x1, . . . ,xn we

have:

∇

dt
ċ = 0 ⇐⇒ c̈1 = 0, . . . , c̈n = 0

⇐⇒ c j(t) = p j + tv j

⇐⇒ c(t) = p+ tv.

Hence geodesics are straight lines, parametrized with constant speed.
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Lemma 2.6.13. For any geodesic c the quantity g
(
ċ, ċ
)

is constant.

Proof. We compute
d
dt

g
(
ċ, ċ
)
= 2 ·g

(
∇
dt

ċ
︸︷︷︸

= 0

, ċ
)

= 0.

Λ

Definition 2.6.14. A smooth curve c is called

• parametrized by arc-length , if g(ċ, ċ)≡ 1,

• parametrized by proper time , if g(ċ, ċ)≡−1

• parametrized proportional to arc-length , if g(ċ, ċ)≡ α > 0,

• parametrized proportional proper time , if g(ċ, ċ)≡−α < 0 and

• a null curve, if g(ċ, ċ)≡ 0.

Theorem 2.6.15 (Existence and uniqueness of geodesics). Let (M,g) be a semi-

Riemannian manifold.

For any p ∈ M and ξ ∈ TpM there exists an open inter-

val I with 0 ∈ I and a geodesic c : I → M with c(0) = p

and ċ(0) = ξ . M

b

ξ
p c

If c : I → M and c̃ : Ĩ → M are two such geodesics with c(0) = c̃(0) and ċ(0) = ˙̃c(0), then c

and c̃ coincide on their common domain I∩ Ĩ.

Proof. In a chart x : U →V in p we consider the equation for a geodesic

∇

dt
ċ = 0 ⇐⇒ c̈k +

n

∑
i, j=1

Γk
i j

(
c1, . . . ,cn

)
· ċi · ċ j = 0

for k = 1, . . . ,n and ck = xk ◦ c. This is a system of ordinary differential equations of second

order. By the Theorem of Picard-Lindelöf the we get the assertion. �

Remark 2.6.16. The system of differential equations is non-linear. Therefore we do not have

a-priori control over the maximal domain of definition I of the geodesic.
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Remark 2.6.17. If ψ : M → M̃ is a local isometry, then

c : I → M is a geodesic ⇐⇒ ψ ◦ c : I → M̃ is a geodesic.

Example 2.6.18. Let M = (R2 \{0},geucl) be the Euclidean plane with the origin removed and

let M̃ = {(x,y,z) ∈R3 |x2+y2 = z2/3, z< 0)} be a cone with the cone tip removed and equipped

with the first fundamental form g̃. Now ψ : M → M̃, ψ(u,v) = 1

2
√

u2+v2
(u2 − v2,2uv,−

√
3(u2 +

v2)), can be checked to be a local isometry. Hence ψ maps straight lines in M onto geodesics in

M̃.

bc

R
2 \{0}

bc

ψ

Definition 2.6.19. Let ψ : M → M be a diffeomorphism. Then we call

Fix(ψ) := {p ∈ M |ψ(p) = p}

the fixed point set of ψ .

Proposition 2.6.20. Let (M,g) be a semi-Riemannian manifold and ψ ∈ Isom(M,g).
Then for any p ∈ Fix(ψ) and any ξ ∈ TpM with dψ |p(ξ ) = ξ the geodesic c : I → M with

c(0) = p and ċ(0) = ξ

is entirely contained in Fix(ψ), i.e., for all t ∈ I we have c(t) ∈ Fix(ψ).

Proof. Set c̃(t) := ψ ◦ c(t). Since ψ is an isometry, c̃ is also a geodesic. Furthermore, we have:

c̃(0) = ψ
(
c(0)

)
= ψ(p) = p = c(0) and

˙̃c(0) = dψ |c(0)
(
ċ(0)

)
= dψ |p(ξ ) = ξ = ċ(0).

Applying the uniqueness part of Theorem 2.6.15 we get for all t ∈ I:

c(t) = c̃(t) = ψ
(
c(t)
)
.

This means c(t) ∈ Fix(ψ) for all t. �
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Example 2.6.21. We use Proposition 2.6.20 to determine the geodesics of the sphere (Sn,gstd).
Let p ∈ Sn and ξ ∈ TpSn. Let E ⊂ Rn+1 be the two-dimensional vector subspace spanned by p

and Φp(ξ ). Let A : Rn+1 → Rn+1 be the reflection about E . Then A ∈ O(n+1). Hence

ψ := A|Sn ∈ Isom(Sn,gstd).

Then Fix(A) = E and therefore Fix(ψ) = E ∩Sn is a great circle.

b

bc

0Sn

E

p

Φp(ξ )

Proposition 2.6.20 implies that c(t)∈ E∩Sn for all t. Since geodesics on a Riemannian manifold

are parametrized proportional to arc-length we seek an arc-length parametrization of this great

circle:

c(t) = p · cos(αt)+
Φp(ξ )

||Φp(ξ )||
· sin(αt).

We have to satisfy the initial conditions:

c(0) = p is satisfied.

d

dt
c(0) =

Φp(ξ )

||Φp(ξ )||
·α and therefore α = ||Φp(ξ )||= ||ξ || .

Then we get d
dt

c(0) = Φp(ξ ), i.e., ċ(0) = ξ . Thus the geodesic c with initial conditions c(0) = p

and ċ(0) = ξ is given by

c(t) = p · cos
(
||ξ || t

)
+

Φp(ξ )

||ξ || · sin
(
||ξ || t

)
.

Remark 2.6.22. Let (M,g) be a semi-Riemannian manifold and p ∈ M. For ξ ∈ TpM let cξ be

the geodesic with

cξ (0) = p and ċξ (0) = ξ .

For α ∈ R set c̃(t) := cξ (αt). Then

∇

dt
˙̃c(t) =

∇

dt

(
α · ċξ (αt)

)
= α2

(
∇

dt
ċξ

)

(αt) = 0.
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Hence c̃ is also a geodesic. Since its initial conditions are

c̃(0) = cξ (0) = p,

˙̃c(0) = α · ċξ (0) = αξ ,

we conclude c̃ = cαξ . In particular, cξ (α) = cαξ (1).

Definition 2.6.23. Let M be a semi-Riemannian manifold and p ∈ M. For ξ ∈ TpM set

expp(ξ ) := cξ (1)

if the maximal domain of the geodesic cξ contains 1. Furthermore, set

Dp := {ξ ∈ TpM |1 is contained in the maximal domain of cξ}.

Then we call expp : Dp → M the Riemannian exponential map (at the point p).

Remark 2.6.24. (1) By Remark 2.6.22 we know expp(t · ξ ) = ctξ (1) = cξ (t). Thus t 7→
expp(tξ ) is the geodesic with initial values p and ξ .

(2) For any p ∈ M we have expp(0) = p because c0 is the constant curve c0(t) = p.

(3) Let ξ ∈ Dp. Then cξ is defined on [0,1]. Let

0 ≤ α ≤ 1. From cαξ (t) = cξ (αt) we see that cαξ

is defined on
[
0, 1

α

]
⊃ [0,1]. Therefore αξ ∈ Dp.

This shows that Dp is star-shaped with respect to

0 ∈ TpM. TpM

b 0

Dp

(4) Set D :=
⋃

p∈M Dp ⊂ T M and exp : D → M, exp(ξ ) := expπ(ξ )(ξ ). The theory of ordi-

nary differential equations implies that D is open and that exp is a smooth map (smooth

dependence of solutions of the initial values). In particular, Dp = D ∩TpM is open in TpM.

Example 2.6.25. (1) Let (M,g) = (Rn,geucl) or (Rn,gMink). Then we have:

expp(ξ ) = p+1 ·Φp(ξ ) = p+Φp(ξ ).

Here Dp = TpR
n.

(2) Let (M,g) = (R2 \{0},geucl). Then

Dp = TpM \
{
− t ·Φp

−1(p) | t ≥ 1
}
.

R
2

b

bc0
p

ξ
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(3) Let (M,g) = (Sn,gstd). Then we have Dp = TpM

and

expp(ξ ) = p · cos (||ξ ||)+ Φp(ξ )

||ξ || · sin(||ξ ||).

bb

Dp

ξ

p

TpM

M

Lemma 2.6.26. The differential of the map expp : Dp → M at 0 is given by the canonical

isomorphism

d expp |0 = Φ0 : T0Dp = T0TpM → TpM.

Proof. Let ξ ∈ TpM. Then we have:

d expp

∣
∣
0

(
Φ0

−1(ξ )
)
= d expp

∣
∣
0

(
d

dt
(tξ )

∣
∣
t=0

)

=
d

dt
expp(tξ )

∣
∣
t=0

= ξ . �

In the literature Lemma 2.6.26 is sometimes formulated slightly imprecisely as follows

idTpM = d expp

∣
∣
0

: TpM → TpM.

Corollary 2.6.27. For p ∈ M there exists an open neighborhood Vp ⊂ Dp ⊂ TpM of 0, such

that

expp |Vp
: Vp → expp(Vp) =: Up

is a diffeomorphism.

Proof. By Lemma 2.6.26 d expp |0 is invertible. The inverse function theorem yields the claim.�

Remark 2.6.28. In general, expp : Dp → expp(Dp)⊂ M is not a diffeomorphism because expp

is not injective in general. Moreover, d expp |ξ is not necessarily invertible for ξ , 0.

Example 2.6.29. Let (M,g) = (Sn,gstd). For p ∈ Sn we have Dp = TpM and

expp(ξ ) = p · cos
(
||ξ ||

)
+

Φp(ξ )

||ξ || · sin
(
||ξ ||

)
.

In particular, for any ξ ∈ TpM with ||ξ || = π we

have

expp(ξ ) = p · cos(π) =−p.

b
b

b−p

p TpSn

Sn

{ξ ∈ TpM | ||ξ ||= π}
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For ξ ∈ TpM with ||ξ ||= π the differential d expp |ξ has the (n−1)-dimensional kernel

{η ∈ Tξ TpSn |Φξ (η)⊥ ξ}.

Now we construct coordinates which are well adapted to the geometry and to this end we choose

a generalized orthonormal basis E1, . . . ,En of TpM regarding g|p, that is

g|p(Ei,E j) = εi δi j, εi ∈ {±1}.

We get a linear isomorphism A : Rn → TpM, (α1, . . . ,αn) 7→
n

∑
i=1

α iEi.

TpM⊃Vp Up ⊂ M

R
n⊃Vp

expp

≈

� A
≈

We put Vp := A−1(Vp). Then expp ◦A : Vp → Up is a diffeomorphism. Set x := (expp ◦A)−1.

Then x : Up →Vp is a chart.

Definition 2.6.30. The coordinates we just defined are called Riemannian normal coordi-

nates around the point p.

In which sense are these coordinates well adapted to the geometry?

Proposition 2.6.31. Let (M,g) be a semi-Riemannian manifold and p ∈ M. Let gi j : Vp → R
be the metric coefficients and Γk

i j : Vp → R be the Christoffel symbols in Riemannian normal

coordinates around p. Then we have:

x(p) = 0, gi j(0) = εi δi j, Γk
i j(0) = 0.

Proof. a) Clearly, we have x(p) = A−1
(
expp

−1(p)
)
= A−1(0) = 0.

b) Let e1, . . . ,en be the standard basis of Rn. Then

gi j(0) = g|p
(
dx−1|0(ei),dx−1|p(e j)

)

= g|p
(
d(expp ◦A)|0(ei),d(expp ◦A)|0(ei)

)

= g|p
(
d expp |0(Ei),d expp |0(E j)

)

L. 2.6.26
= g|p(Ei,E j)

= εi δi j
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CHAPTER 2. SEMI-RIEMANNIAN GEOMETRY

c) Let v = (v1, . . . ,vn) ∈ Rn. Then c(t) = x−1(tv) = expp(tAv) is a geodesic with c(0) = p and

ċ(0) = Av. In Riemannian normal coordinates the equation for a geodesic is in this case

0 = c̈k(t)+
n

∑
i, j=1

Γk
i j

(
c1(t), . . . ,cn(t)

)
· ċi(t) · ċ j(t).

Here ck(t) = xk(c(t)) = tvk, ċk(t) = vk and c̈k(t) = 0. For t = 0 we get

0 = 0+
n

∑
i, j=1

Γk
i j(0, . . . ,0) · vi · v j.

For each k we define a bilinear form β k on Rn by β k(y,z) := ∑n
i, j=1 Γk

i, j(0)yi z j. These bilinear

forms are symmetric because:

β k(z,y) =
n

∑
i, j=1

Γk
i j(0)zi y j=

n

∑
j,i=1

Γk
ji(0)z j yi=

n

∑
i, j=1

Γk
i j(0)yi z j = β k(y,z).

Exchanging

indices

∇ free of

torsion

Since we know that β k(v,v) = 0 for all v∈Rn, polarization yields β k(y,z) = 0 for all y,z∈Rn.

This means Γk
i j(0) = 0 for all i, j,k.

b

b

M

TpM

0

p

geodesics in

M through p

straight lines in Rn through 0

�

Example 2.6.32. Let (M,g) = (Rn,geucl) or (Rn,gMink) and p ∈ M. Choose

A = Φp = canonical isomorphism Rn → TpR
n.

Then we have expp(Av) = p+ v, thus Riemannian normal coordinates around p are given by

x : Rn → Rn, x(q) = q− p.

Up to translation by −p, Riemannian normal coordinates coincide with Cartesian coordinates.

Corollary 2.6.33. In Riemannian normal coordinates we have for the Taylor expansion of

gi j : Vp → R around 0:

gi j(x) = εi δi j +O(||x||2).
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Proof. Expanding gi j into a Taylor series at 0 yields

gi j(x) = gi j(0)+
n

∑
k=1

∂gi j

∂xk
(0) · xk +O

(
||x||2

)
.

In the proof of Theorem 2.3.8 we found

∂gi j

∂xk
(0) =

n

∑
l=1

(

Γl
ki(0)gl j(0)+Γl

k j(0)gil(0)
)

which is zero in our situation because the Christoffel symbols vanish at 0. �
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3 Curvature

We now come to one of the central concepts of differential geometry, that of curvature. We will

see that there are various inequivalent notions of curvature. We start with the most basic one.

3.1 The Riemannian curvature tensor

Definition 3.1.1. Let (M,g) be a semi-Riemannian manifold and p ∈ M.

Let ξ ∈ TpM and η ,ζ ∈ Ξp(M). Then we have ∇η ζ ∈ Ξp(M) and

∇2
ξ ,η ζ := ∇ξ ∇ηζ −∇∇ξ η ζ ∈ TpM

is called the second covariant derivative of ζ in the direction ξ and η .

Lemma 3.1.2. The second covariant derivative ∇2
ξ ,η ζ depends on η only via η |p, i.e., if

η , η̃ ∈ Ξp(M) with η |p = η̃ |p then

∇2
ξ ,η ζ = ∇2

ξ ,η̃ ζ .

Proof. We choose Riemannian normal coordinates x around p. In these coordinates we write

(using the Einstein summation convention) the vector fields locally as:

ξ = ξ i ∂

∂xi

∣
∣
∣
∣

p

, η = η j ∂

∂x j
, ζ = ζ k ∂

∂xk
.

Since the Christoffel symbols vanish at 0 we get

∇ξ η = ∇
ξ i ∂

∂ xi

∣
∣
∣

p

(

η j ∂

∂x j

)

= ξ i ∂η j

∂xi
(0)

∂

∂x j

∣
∣
∣
∣

p

and therefore

∇∇ξ η ζ = ξ i ∂η j

∂xi
(0)∇ ∂

∂ x j

∣
∣
∣

p

(

ζ k ∂

∂xk

)

= ξ i ∂η j

∂xi
(0)

∂ζ k

∂x j
(0)

∂

∂xk

∣
∣
∣
∣

p

. (3.1)

Moreover,

∇η ζ = ∇η j ∂
∂ x j

(

ζ k ∂

∂xk

)

= η j

(
∂ζ k

∂x j

∂

∂xk
+ζ k Γm

jk

∂

∂xm

)
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and hence (again using that the Christoffel symbols vanish)

∇ξ ∇η ζ = ∇
ξ i ∂

∂ xi

∣
∣
∣

p

(

η j ∂ζ k

∂x j

∂

∂xk
+η jζ kΓm

jk

∂

∂xm

)

= ξ i ∂η j

∂xi
(0)

∂ζ k

∂x j
(0)

∂

∂xk

∣
∣
∣
∣

p

+ξ iη j(0)
∂ 2ζ k

∂x j∂xi
(0)

∂

∂xk

∣
∣
∣
∣

p

+ξ iη j(0)ζ k
∂Γm

jk

∂xi
(0)

∂

∂xm

∣
∣
∣
∣

p

.

(3.2)

Subtracting (3.1) from (3.2) we see that the terms containing a derivative of the η j cancel and

we are left with

∇2
ξ ,η ζ =

[

ξ iη j(0)
∂ 2ζ k

∂xi∂x j
(0)+ξ iη j(0)ζ m(0)

∂Γk
im

∂xi
(0)

]
∂

∂xk

∣
∣
∣
∣

p

. (3.3)

This expression depends on η only via the η j(0) which are the coefficients of η |p. �

Consequence. The expression ∇2
ξ ,η ζ is well defined for ξ ,η ∈ TpM and ζ ∈ Ξp.

Lemma 3.1.4. For ξ ,η ∈ TpM and ζ ∈ Ξp(M)

R(ξ ,η)ζ := ∇2
ξ ,η ζ −∇2

η ,ξ ζ

depends only on ζ via ζ |p. Thus R(ξ ,η)ζ ∈ TpM is well defined for ξ ,η ,ζ ∈ TpM.

Proof. Again we choose Riemann normal coordinates around p and recall (3.3):

∇2
ξ ,η ζ = ξ iη j

(

∂ 2ζ k

∂xi∂x j
(0)+ζ m(0)

∂Γk
jm

∂xi
(0)

)

∂

∂xk

∣
∣
∣
∣

p

.

Relabeling summation indices and using the Schwarz theorem we get

R(ξ ,η)ζ =
(

ξ iη j −ξ jη i
)
(

∂ 2ζ k

∂xi∂x j
(0)+ζ m(0)

∂Γk
jm

∂xi
(0)

)

∂

∂xk

∣
∣
∣
∣

p

= ξ iη j

(

∂ 2ζ k

∂xi∂x j
(0)− ∂ 2ζ k

∂x j∂xi
(0)+ζ m(0)

∂Γk
jm

∂xi
(0)−ζ m(0)

∂Γk
im

∂x j
(0)

)

∂

∂xk

∣
∣
∣
∣

p

= ξ iη jζ m(0)

(

∂Γk
jm

∂xi
(0)− ∂Γk

im

∂x j
(0)

)

∂

∂xk

∣
∣
∣
∣

p

. �
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3.1. THE RIEMANNIAN CURVATURE TENSOR

Definition 3.1.5. The map

R : TpM×TpM×TpM → TpM

(ξ ,η ,ζ ) 7→ R(ξ ,η)ζ

is called the Riemann curvature tensor at the point p.

Representation in local coordinates.

Let x : U → V be a chart on M. Then R is determined on U by smooth functions Rl
ki j : V → R,

defined by

R

(
∂

∂xi
,

∂

∂x j

)
∂

∂xk
=

n

∑
l=1

Rl
ki j

∂

∂xl
. (3.4)

As we have already seen, we have in Riemann normal coordinates:

Rl
ki j(0) =

∂Γl
jk

∂xi
(0)− ∂Γl

ik

∂x j
(0)

Remark 3.1.6. One can check (not difficult but tedious) that we have in arbitrary coordinates

Rl
ki j =

∂Γl
jk

∂xi
− ∂Γl

ik

∂x j
+

n

∑
m=1

(Γm
k jΓ

l
mi −Γm

kiΓ
l
m j)

In particular, if the curvature tensor R : TpM ×TpM ×TpM → TpM does not vanish at the point

p, then there does not exist a chart containing p for which Γk
i j ≡ 0.

Proposition 3.1.7 (Symmetries of the curvature tensor). Let (M,g) be a semi-Riemannian

manifold, p ∈ M and ξ ,η ,ζ ,ν ∈ TpM. Then we have:

(1) R : TpM×TpM×TpM → TpM is trilinear;

(2) R(ξ ,η)ζ =−R(η ,ξ )ζ ;

(3) g|p(R(ξ ,η)ζ ,ν) =−g|p(R(ξ ,η)ν ,ζ );

(4) First Bianchi identity:

R(ξ ,η)ζ +R(η ,ζ )ξ +R(ζ ,ξ )η = 0:

(5) g|p(R(ξ ,η)ζ ,ν) = g|p(R(ζ ,ν)ξ ,η).

Proof. (1) is obvious because ∇2
ξ ,η ζ is already R-linear in ξ , η and ζ .
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(2) is also clear by definition.

(3) We choose Riemannian normal coordinates around p and consider the special case

ξ =
∂

∂xi

∣
∣
∣
∣

p

, η =
∂

∂x j

∣
∣
∣
∣

p

, ζ =
∂

∂xk

∣
∣
∣
∣

p

, ν =
∂

∂xl

∣
∣
∣
∣

p

.

Then we find

g|p
(

R(ξ ,η)ζ ,ν
)

= g|p
(

R

(

∂

∂xi

∣
∣
∣
∣

p

,
∂

∂x j

∣
∣
∣
∣

p

)

∂

∂xk

∣
∣
∣
∣

p

,
∂

∂xl

∣
∣
∣
∣

p

)

= g|p
(

n

∑
m=1

Rm
ki j(0)

∂

∂xm

∣
∣
∣
∣

p

,
∂

∂xl

∣
∣
∣
∣

p

)

=
n

∑
m=1

Rm
ki j(0) ·g|p

(

∂

∂xm

∣
∣
∣
∣

p

,
∂

∂xl

∣
∣
∣
∣

p

)

=
n

∑
m=1

gml(0) ·Rm
ki j(0).

From the proof of Theorem 2.3.8 we recall

∂gi j

∂xk
=

n

∑
m=1

(gm jΓ
m
ki +gmiΓ

m
k j)

and thus, in Riemannian normal coordinates,

∂ 2gi j

∂xk∂xl
(0) =

n

∑
m=1

(

gm j(0)
∂Γm

ki

∂xl
(0)+gmi(0)

∂Γm
k j

∂xl
(0)

)

.

Thus

0 =
∂ 2gi j

∂xk∂xl
(0)− ∂ 2gi j

∂xl∂xk
(0)

=
n

∑
m=1

(

gm j(0)
∂Γm

ki

∂xl
(0)+gmi(0)

∂Γm
k j

∂xl
(0)−gm j(0)

∂Γm
li

∂xk
(0)−gmi(0)

∂Γm
l j

∂xk
(0)

)

=
n

∑
m=1

(

gm j(0)R
m
ilk(0)+gmi(0)R

m
jlk(0)

)

Renaming the indices via l 7→ i, k 7→ j, i 7→ k, j 7→ l leads to

0 =
n

∑
m=1

(

gml(0)R
m
ki j(0)+gmk(0)R

m
li j(0)

)

and therefore
n

∑
m=1

gml(0)R
m
ki j(0) =−

n

∑
m=1

gmk(0)R
m
li j(0).

This proves the assertion for coordinate fields ξ ,η ,ζ ,ν of Riemannian normal coordinates.

By multilinearity the assertion follows for general ξ , η , ζ and ν .
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(4) The first Bianchi identity is equivalent to

Rl
ki j +Rl

i jk +Rl
jki = 0.

We check this in Riemann normal coordinates:

Rl
ki j(0)+Rl

i jk(0)+Rl
jki(0)

=
∂Γl

jk

∂xi
(0)−

∂Γl
ik

∂x j
(0)+

∂Γl
ki

∂x j
(0)− ∂Γl

ji

∂xk
(0)+

∂Γl
i j

∂xk
(0)−

∂Γl
k j

∂xi
(0)

= 0.

(5) Proof by an explicit calculation:

0
(4)
=g|p(R(η ,ζ )ξ ,ν)+g|p(R(ζ ,ξ )η ,ν)+g|p(R(ξ ,η)ζ ,ν)

+g|p(R(ζ ,ξ )ν ,η)+g|p(R(ξ ,ν)ζ ,η)+g|p(R(ν ,ζ )ξ ,η)

+g|p(R(ξ ,ν)η ,ζ )+g|p(R(ν ,η)ξ ,ζ )+g|p(R(η ,ξ )ν ,ζ )

+g|p(R(ν ,η)ζ ,ξ )+g|p(R(η ,ζ )ν ,ξ )+g|p(R(ζ ,ν)η ,ξ )

(2),(3)
= 2g|p(R(ξ ,η)ζ ,ν)+2g|p(R(ζ ,ν)η ,ξ )

= 2(g|p(R(ξ ,η)ζ ,ν)−g|p(R(ζ ,ν)ξ ,η)) . �

Example 3.1.8. Let (M,g) = (Rn,geucl) or (Rn,gMink). In Cartesian coordinates we have Γk
i j =

0. Thus we get Rl
ki j = 0 for all i, j,k, l and therefore R ≡ 0.

Definition 3.1.9. A semi-Riemannian manifold with R ≡ 0 is called flat.

Warning. In the literature there are two different sign conventions for R: For example, our R is

the negative of the curvature tensor as defined in [ON83].

Lemma 3.1.11. Let (M,g) and (M̃, g̃) be semi-Riemannian manifolds and ψ : M → M̃ a local

isometry. Let p ∈ M. Then the curvature tensors R of M at p and R̃ of M̃ at ψ(p) are related

by:

dψ |p
(
R(ξ ,η)ζ

)
= R̃

(
dψ |p(ξ ),dψ |p(η)

)
dψ |p(ζ )

for all ξ ,η ,ζ ∈ TpM.
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Proof. Let x : U → V be a chart on M with p ∈ U . By making U smaller if necessary we can

assume that ψ : U → Ũ := ψ(U) is a diffeomorphism. Then x̃ := x◦ψ−1 : Ũ →V is a chart on

M̃.

Since ψ is a local isometry, it follows that gi j = g̃i j : V →R, where the gi j are the components of

g w.r.t. x and the g̃i j are the components of g̃ w.r.t. x̃. Therefore the Christoffel symbols coincide,

Γk
i j = Γ̃k

i j, hence so do the components of the curvature tensors, Rl
ki j = R̃l

ki j. From (3.4) we

conclude

dψ

(

R

(
∂

∂xi
,

∂

∂x j

)
∂

∂xk

)

=
n

∑
l=1

Rl
ki jdψ

( ∂

∂xl

)

=
n

∑
l=1

Rl
ki j

∂

∂ x̃l

=
n

∑
l=1

R̃l
ki j

∂

∂ x̃l

= R̃

(
∂

∂ x̃i
,

∂

∂ x̃ j

)
∂

∂ x̃k

= R̃

(

dψ
( ∂

∂xi

)

,dψ
( ∂

∂x j

))

dψ
( ∂

∂xk

)

.

This proves the lemma for the coordinate basis tangent vectors ∂
∂xi . By trilinearity of R it follows

for all tangent vectors. �

Alternatively one can define the curvature tensor as a multilinear map R : TpM×TpM ×TpM ×
TpM → R by

R(ξ ,η ,ζ ,ν) = g
(
R(ξ ,η)ζ ,ν

)
.

In this version, R is known as the Riemannian (4,0)-curvature tensor. In local coordinates

x : U →V around p, we define Ri jkl : V → R by

Ri jkl(x(p)) := R

(

∂

∂xi

∣
∣
∣
∣

p

,
∂

∂x j

∣
∣
∣
∣

p

,
∂

∂xk

∣
∣
∣
∣

p

,
∂

∂xl

∣
∣
∣
∣

p

)

.

Then we have

Ri jkl

Prop.

3.1.7(5)
= Rkli j

= g

(

R

(
∂

∂xk
,

∂

∂xl

)
∂

∂xi
,

∂

∂x j

)

= g

(
n

∑
m=1

Rm
ikl

∂

∂xm
,

∂

∂x j

)

=
n

∑
m=1

Rm
ikl g

(
∂

∂xm
,

∂

∂x j

)

=
n

∑
m=1

gm jR
m
ikl.
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Hence we have

Ri jkl =
n

∑
m=1

gm jR
m
ikl

We have lowered the upper index. On the other hand we have

Rl
ki j =

n

∑
m=1

δ l
mRm

ki j =
n

∑
a,m=1

galgmaRm
ki j,

hence

Rl
ki j =

n

∑
a=1

galRkai j

In this case we have raised the index.

Proposition 3.1.12. Let (M,g) be a semi-Riemannian manifold. In Riemannian normal coor-

dinates we have:

gi j(x) = εi δi j +
1

3

n

∑
k,l=1

Rik jl(0)x
kxl +O

(
||x||3

)
.

Proof. We already know that gi j (x) = εi δi j +O(||x||2) by Corollary 2.6.33. In the following we

will use the Einstein summation convention and the following abbreviations

f,k :=
∂ f

∂xk
and f,kℓ =

∂ 2 f

∂xk∂xℓ

for the first and the second partial derivatives. In the proof of Theorem 2.3.8 we have seen that

gi j,k = Γm
ki gm j +Γm

k j gmi .

We differentiate this equation with respect to xℓ , evaluate at 0 and use that the Christoffel sym-

bols vanish at 0:

gi j,kℓ (0) = Γm
ki,ℓ (0) ·gm j (0)+Γm

k j,ℓ (0)gmi (0) . (3.5)

Claim:

Γk
i j,ℓ (0)+Γk

ℓi, j (0)+Γk
jℓ,i (0) = 0 . (3.6)

Proof of the claim: In normal coordinates the straight lines t 7→ t ·x give geodesics. The equation

for geodesics then looks like:

0 = Γk
i j (t · x)xix j .

We differentiate this with respect to t and evaluate at t = 0:

0 =
d

dt

∣
∣
∣
∣
t=0

Γk
i j (tx)xix j = Γk

i j,ℓ (0)xℓxix j .
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Thus we have for every k a polynomial of third degree in x, namely Pk (x) := Γk
i j,ℓ (0)xix jxℓ ,

which vanished identically. Thus for every monomial xα xβ xγ the sum of coefficients Γk
i j,ℓ (0)

with xix jxℓ = xα xβ xγ has to vanish. The six permutations of the three lower indices yield

Γk
i j,ℓ (0)+Γk

ℓi, j (0)+Γk
jℓ,i (0)+Γk

ji,ℓ (0)+Γk
iℓ, j (0)+Γk

ℓ j,i (0) = 0.

The symmetry of the Christoffel symbols in their two lower indices implies the claim. ✓

From Rℓ
ki j (0) = Γℓ

jk,i (0)−Γℓ
ik, j (0) we conclude:

Rkℓi j (0) =
(
Γm

jk,i (0)−Γm
ik, j (0)

)
gmℓ (0)

(3.6)
= −

(
Γm

i j,k (0)+Γm
ki, j (0)+Γm

ik, j (0)
)

gmℓ (0)

= −
(
Γm

i j,k (0)+2Γm
ki, j (0)

)
gmℓ (0) . (3.7)

Thus we have:

2Rik jℓ (0)xkxℓ
Prop. 3.1.7

=
(
−Rki jℓ (0)−Rℓ jik (0)

)
xkxℓ

(3.7)
=

(
Γm

jℓ,k (0)+2Γm
k j,ℓ (0)

)
gmi (0)xkxℓ

+
(
Γm

ik,ℓ (0)+2Γm
ℓi,k (0)

)
gm j (0)xkxℓ

(∗)
=

(
Γm

jℓ,k (0)+2Γm
k j,ℓ (0)

)
gmi (0)xkxℓ

+
(
Γm

iℓ,k (0)+2Γm
ki,ℓ (0)

)
gm j (0)xℓxk

(3.5)
=

(
gi j,ℓk (0)+2gi j,kℓ (0)

)
· xkxℓ

= 3gi j,kℓ (0) · xkxℓ .

At equality (∗) we renamed the summation parameter k to ℓ and vice versa. Thus we get for the

second term in the Taylor expansion

1

2
gi j,kℓ (0)xkxℓ =

1

3
Rik jℓ (0) · xkxℓ . �

3.2 Sectional curvature

The Riemannian curvature tensor contains the full curvature information of a Riemannian mani-

fold but for many applications other curvature entities are more suitable. We will introduce the

sectional curvature, Ricci curvature and scalar curvature in this and the following sections.

We start with some linear algebra. Let V be a finite dimensional real vector space with a non-

degenerate symmetric bilinear form 〈·, ·〉. Later we will apply this to V = TpM and 〈·, ·〉 =
g|p(·, ·).
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Definition 3.2.1. A subvector space U ⊂ V is called non-degenerate, if

〈·, ·〉 |U×U : U ×U → R is a non-degenerate bilinear form on U . We define:

Gk

(
V,〈·, ·〉

)
:=
{

k-dimensional, non-degenerate subvector spaces of V
}
.

Note that every subvector space is non-degenerate if 〈·, ·〉 is definite. We set

Q : V ×V → R, Q(ξ ,η) := 〈ξ ,ξ 〉〈η ,η〉− 〈ξ ,η〉2 .

Lemma 3.2.2. For two-dimensional subvector spaces E ⊂ V the following assertions are

equivalent:

(i) E ∈ G2(V,〈·, ·〉);

(ii) there exists a basis ξ ,η of E with Q(ξ ,η) , 0;

(iii) for all basis ξ ,η of E we have Q(ξ ,η) , 0.

Proof. With respect to any basis ξ ,η of E , the bilinear form 〈·, ·〉 |E×E is represented by the

matrix

Aξ ,η :=

(
〈ξ ,ξ 〉 〈η ,ξ 〉
〈ξ ,η〉 〈η ,η〉

)

.

Then we have Q(ξ ,η) = detAξ ,η which proves the lemma. �

Remark 3.2.3. (a) If 〈·, ·〉 is positive definite, then

√

Q(ξ ,η) = area of the parallelogram spanned by ξ and η.

(b) The two-dimensional subvector space E ⊂V is degenerate if and only if there exists a basis

ξ ,η of E with 〈ξ ,ξ 〉= 〈ξ ,η〉= 0. Namely,

“⇐”: Q(ξ ,η) = 〈ξ ,ξ 〉
︸  ︷︷  ︸

=0

〈η ,η〉− 〈ξ ,η〉
︸   ︷︷   ︸

=0

2 = 0.

“⇒”: Let E be degenerate, i.e., 〈·, ·〉 |E×E is degenerate. Then there exists a

ξ ∈ E \ {0} with 〈ξ ,ζ 〉 = 0 for all ζ ∈ E . Now complete ξ by some η to a ba-

sis of E . ✓
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Example 3.2.4. Let V = R3 with the Minkowski product

〈〈ξ ,η〉〉=−ξ 0η0 +ξ 1η1 +ξ 2η2.

Consider the lightcone

C := {ξ ∈ R3 \{0}| 〈〈ξ ,ξ 〉〉= 0}.

Then the plane E ⊂ R3 is degenerate if and only if E =
TpC for some p ∈ C .

b

x0

x1,x2

C

Namely, assume c : (−ε ,ε)→ C is a smooth curve with c(0) = p and ċ(0) = ξ . Then we have:

〈〈c(t),c(t)〉〉= 0 ∀ t ∈ (−ε ,ε)

⇒ 0 =
d

dt

∣
∣
∣
∣
t=0

〈〈c(t),c(t)〉〉= 2〈〈ċ(0),c(0)〉〉= 2〈〈ξ , p〉〉

⇒ TpC ⊂ p⊥, where both are two-dimensional subvector spaces of R3

⇒ TpC = p⊥

⇒ for ξ = p and any η ∈ TpC which is not a multiple of ξ we obtain a basis of TpC with

〈〈ξ ,ξ 〉〉= 〈〈ξ ,η〉〉= 0

⇒ TpC is degenerate.

Conversely, if E is degenerate, then we choose a basis ξ ,η of E such that 〈〈ξ ,ξ 〉〉= 〈〈ξ ,η〉〉= 0.

We put p := ξ . Clearly p ∈ C . Now we have E ⊂ p⊥ = TpC . Since both E and TpC are two-

dimensional we conclude E = TpC . ✓
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b

p

p⊥

b b

degenerate non-degenerate non-degenerate

(indefinite) (definite)

Lemma 3.2.5. Let V be a finite-dimensional real vector space with non-degenerate symmetric

bilinear form 〈·, ·〉. Let R : V ×V ×V ×V → R be multilinear with

R(ξ ,η ,ζ ,ν) =−R(η ,ξ ,ζ ,ν) =−R(ξ ,η ,ν ,ζ )

for all ξ ,η ,ζ ,ν ∈V . Then for E ∈ G2(V,〈·, ·〉) and any basis ξ ,η of E the expression

K(E) :=
R(ξ ,η ,η ,ξ )

Q(ξ ,η)

does not depend on the choice of the basis ξ ,η of E, but only on E itself.

Proof. Let µ ,ν be another basis of E with µ = aξ +bη and ν = cξ +dη . Then we have:

R(µ ,ν ,ν ,µ) = R(aξ +bη ,cξ +dη ,cξ +dη ,aξ +bη)

= adcb ·R(ξ ,η ,ξ ,η)+adda ·R(ξ ,η ,η ,ξ )+bccb ·R(η ,ξ ,ξ ,η)

+bcda ·R(η ,ξ ,η ,ξ )

=
(
−abcd +a2d2 +b2c2 −abcd

)
·R(ξ ,η ,η ,ξ )

= (ad −bc)2 ·R(ξ ,η ,η ,ξ ) (3.8)

The map R1 : V ×V ×V ×V → R, defined by

R1(ξ ,η ,ζ ,ν) := 〈ξ ,ν〉〈η ,ζ 〉− 〈ξ ,ζ 〉 〈η ,ν〉
has all the symmetries of the curvature tensor as in Proposition 3.1.7. Hence we get

R1(µ ,ν ,ν ,µ)
︸              ︷︷              ︸

= Q(µ ,ν)

= (ad −bc)2 R1(ξ ,η ,η ,ξ )
︸              ︷︷              ︸

= Q(ξ ,η)

. (3.9)

Dividing (3.8) by (3.9) proves the lemma. �

Set G2(M,g) :=
⋃

p∈M

G2(TpM,g|p).
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Definition 3.2.6. The function K : G2(M,g)→ R, defined by

K(E) :=
R(ξ ,η ,η ,ξ )

Q(ξ ,η)
,

where ξ ,η is a basis of E , is called sectional curvature of (M,g). Here R is the Riemannian

(4,0)-curvature tensor.

Remark 3.2.7. The sectional curvature is only defined for manifolds of dimension at least 2. If

dim(M) = 1, then R(ξ ,η ,ζ ,ν) = 0 for all ξ ,η ,ζ ,ν ∈ TpM due to the skew-symmetry in ξ and

η .

Definition 3.2.8. If (M,g) is a two-dimensional semi-Riemannian manifold, then we call

K : M → R, K(p) := K(TpM)

the Gauß curvature of M.

Remark 3.2.9. The sectional curvature determines the curvature tensor, as can be seen by

6R(ξ ,η ,ζ ,ν) = K(ξ +ν ,η +ζ )Q(ξ +ν ,η +ζ )−K(η +ν ,ξ +ζ )Q(η +ν ,ξ +ζ )

−K(ξ ,η +ζ )Q(ξ ,η +ζ )−K(η ,ξ +ν)Q(η ,ξ +ν)

−K(ζ ,ξ +ν)Q(ζ ,ξ +ν)−K(ν ,η +ζ )Q((ν ,η +ζ )

+K(ξ ,η +ν)Q(ξ ,η +ν)+K(η ,ζ +ξ )Q(η ,ζ +ξ )

+K(ζ ,η +ν)Q(ζ ,η +ν)+K(ν ,ξ +ζ )Q(ν ,ξ +ζ )

+K(ξ ,ζ )Q(ξ ,ζ )+K(η ,ν)Q(η ,ν)−K(ξ ,ν)Q(ξ ,ν)−K(η ,ζ )Q(η ,ζ )

for all ξ ,η ,ζ ,ν ∈ TpM, for which the corresponding sectional curvatures are defined. The set

of quadruples (ξ ,η ,ζ ,ν), that satisfies this, is open and dense in TpM×TpM×TpM×TpM. By

continuity this determines R on all of TpM×TpM×TpM×TpM.

Special case: If K(E) only depends on p but not on the particular plane E ⊂ TpM (satisfied

automatically if dim(M) = 2, but not in general if dim(M)≥ 3), then:

R(ξ ,η ,ζ ,ν) = K(p)
(
〈η ,ζ 〉 〈ξ ,ν〉− 〈ξ ,ζ 〉〈η ,ν〉

)
.

Moreover, we always have: K = 0 ⇔ R = 0.

3.3 Ricci- and scalar curvature

The Riemann curvature tensor and sectional curvature can be computed from one another. They

contain the same amount of information. Both are rather complicated objects. In this section we
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introduce two simplified curvature concepts which however contain less information than the

full curvature tensor.

Let (M,g) be a semi-Riemannian manifold and p ∈ M. The Riemann curvature tensor at the

point p ∈ M is a multilinear map

R : TpM×TpM×TpM → TpM.

For fixed ξ ,η ∈ TpM we get a linear map

R(ξ , ·)η : TpM → TpM, ζ 7→ R(ξ ,ζ )η .

Definition 3.3.1. The map ric : TpM×TpM → R,

ric(ξ ,η) := −tr(R(ξ , ·)η) = tr(R(·,ξ )η)

is called the Ricci curvature at the point p.

Remark 3.3.2. Let V be a n-dimensional R-vector space with non-degenerate symmetric bili-

near form g and E1, . . . ,En be a generalized orthonormal basis of (V,g), that is g(Ei,E j) = εiδi, j

with εi =±1. Then for every endomorphism A : V →V we have

tr(A) =
n

∑
i=1

εi ·g(A(Ei),Ei). (3.10)

Why? If we define ωi : V → R by ωi(ξ ) := εi ·g(ξ ,Ei) then ω1, . . . ,ωn is the dual basis of V ∗ to

E1, . . . ,En. Hence

tr(A) =
n

∑
i=1

ωi(A(Ei)) =
n

∑
i=1

εi ·g(A(Ei),Ei).

The local description of Ricci curvature is similar to that of the semi-Riemannian metric itself:

For any chart x : U →V of M we define the functions

rici j : V → R, rici j(x(p)) := ric

(
∂

∂xi

∣
∣
∣
∣

p

,
∂

∂x j

∣
∣
∣
∣

p

)

.

Lemma 3.3.3 (Properties of the Ricci curvature). (i) The map ric is bilinear and sym-

metric on TpM.

(ii) For any generalized orthonormal basis E1, . . . ,En of (TpM,g|p) we have:

ric(ξ ,η) =
n

∑
i=1

εi ·g(R(ξ ,Ei)Ei,η).

(iii) We have: rici j =
n

∑
k=1

Rk
ik j.
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Proof. (i) Bilinearity of ric follows directly from trilinearity of R. We show symmetry of ric:

ric(η ,ξ ) =
n

∑
i=1

εi ·g
(
R(η ,Ei)Ei,ξ

)

Prop.

3.1.7(5)
=

n

∑
i=1

εi ·g
(
R(Ei,ξ )η ,Ei

)

Prop.

3.1.7

(2),(3)
=

n

∑
i=1

εi ·g
(
R(ξ ,Ei)Ei,η

)

= ric(ξ ,η).

(ii) is clear from (3.10).

(iii) We fix i and j and we have rici j = ric
(

∂
∂xi ,

∂
∂x j

)

= tr
(

ζ 7→ −R
(

∂
∂xi ,ζ

)
∂

∂x j

)

. W.r.t. the

basis ∂
∂x1 , . . . ,

∂
∂xn the endomorphism ζ 7→ −R

(
∂

∂xi ,ζ
)

∂
∂x j has the matrix representation

(−Rl
jik)kl = (Rl

jki)kl .

Thus we get that rici j = ∑n
k=1 Rk

jki and because of (i) we have rici j = ric ji, which yields the

assertion. �

We defined Ricci curvature using the Riemann curvature tensor. Since the curvature tensor and

sectional curvature contain the same information, Ricci curvature should also be computable

in terms of sectional curvature. Indeed, Ricci curvature can can be computed by averaging the

sectional curvature of certain planes.

Lemma 3.3.4. Let (M,g) be a semi-Riemannian manifold and p ∈ M. If ξ ∈ TpM with

g(ξ ,ξ ) , 0 and if E2, . . . ,En is a generalized orthonormal basis of ξ⊥, then

ric(ξ ,ξ ) = g(ξ ,ξ ) ·
n

∑
j=2

K(span{ξ ,E j})
︸                     ︷︷                     ︸

This is essentially the

mean value of K on all

planes containing ξ .

E2

E3

ξ

Proof. W.l.o.g. let g(ξ ,ξ ) =±1. Write ξ =: E1. Then E1, . . . ,En forms a generalized orthonor-
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mal basis of TpM. Therefore

ric(ξ ,ξ ) =
n

∑
i=1

g(Ei,Ei) ·g
(
R(ξ ,Ei)Ei,ξ

)

=
n

∑
i=2

g(Ei,Ei) ·g
(
R(ξ ,Ei)Ei,ξ

)

=
n

∑
i=2

g(Ei,Ei) ·K
(
span{ξ ,Ei}

)
·
(
g(ξ ,ξ )g(Ei,Ei)−g(ξ ,Ei)

︸     ︷︷     ︸

= 0

2)

= g(ξ ,ξ ) ·
n

∑
i=2

K
(
span{ξ ,Ei}

)
. �

Remark 3.3.5. Lemma 3.3.4 expresses ric(ξ ,ξ ) in terms of sectional curvatures provided

g(ξ ,ξ ) , 0. Since g is non-degenerate the set of vectors ξ ∈ TpM with g(ξ ,ξ ) , 0 is dense

in TpM. By continuity, ric(ξ ,ξ ) is determined for all ξ ∈ TpM. By polarization, this determines

the values of ric(ξ ,η) for all ξ ,η ∈ TpM via

ric(ξ ,η) = 1
2

(
ric(ξ+η ,ξ+η)− ric(ξ ,ξ )− ric(η ,η)

)
.

Remark 3.3.6. Both maps ric : TpM×TpM → R and g : TpM×TpM → R are bilinear and sym-

metric. The second map g is in addition non-degenerate. Thus there exists a unique endomor-

phism Ric : TpM → TpM such that

ric(ξ ,η) = g
(
Ric(ξ ),η

)

for all ξ ,η ∈ TpM.

In local coordinates: For any chart x : U →V we get functions Ric
j
i : V → R by:

Ric

(

∂

∂xi

∣
∣
∣
∣

p

)

=
n

∑
j=1

Ric
j
i (x(p))

∂

∂x j

∣
∣
∣
∣

p

We compute:

rici j = ric

(
∂

∂xi
,

∂

∂x j

)

= g

(

Ric

(
∂

∂xi

)

,
∂

∂x j

)

= g

(
n

∑
k=1

Rick
i

∂

∂xk
,

∂

∂x j

)

=
n

∑
k=1

Rick
i ·g
(

∂

∂xk
,

∂

∂x j

)

.
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We have shown:

rici j =
n

∑
k=1

Rick
i ·gk j

The functions rici j are obtained from the functions Rick
i by lowering the upper index. Similarly,

the Rick
i can be obtained from the rici j by raising one index.

Definition 3.3.7. The map scal : M → R defined by

scal(p) := tr(Ric|p)

is called the scalar curvature of M.

Lemma 3.3.8. (i) In local coordinates we have

scal(p) =
n

∑
i=1

Rici
i

(
x(p)

)
=

n

∑
i, j=1

rici j

(
x(p)

)
·gi j
(
x(p)

)
.

(ii) For a generalized orthonormal basis E1, . . . ,En of TpM we have

scal(p) =
n

∑
i=1

εi · ric(Ei,Ei).

Proof. Clear. �

Remark 3.3.9. Let us consider the special case when dim(M)= 2. Let K be the Gauß curvature,

i.e., K(p) = K(TpM). Then the curvature tensor is given by

R(ξ ,η ,ζ ,ν) = K(p)
(
g(η ,ζ )g(ξ ,ν)−g(ξ ,ζ )g(η ,ν)

)
.

Thus we get for the Ricci curvature

ric(ξ ,η) =
2

∑
i=1

εi ·R(ξ ,Ei,Ei,η)

= K(p)
2

∑
i=1

εi

(
g(Ei,Ei)g(ξ ,η)−g(ξ ,Ei)g(Ei,η)

)

= K(p)
(
2g(ξ ,η)−g(ξ ,η)

)

= K(p) ·g(ξ ,η).
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This shows

ric = K ·g

and

scal = 2K.

In the case of surfaces the Riemann curvature tensor, sectional curvature (Gauß curvature), Ricci

curvature and scalar curvature all determine each other. In higher dimensions this is no longer

so.

Remark 3.3.10. The following table shows how the different notions of curvature depend on

each other:

dimM 2 3 ≥ 4

R

K
m m m

ric
m m ⇓

scal
m ⇓ ⇓

Remark 3.3.11. In the physics literature the following notation in local coordinates is often

used:

• for R and R ones writes: Rl
i jk and Ri jkl (as here),

• for Ric and ric one write: rici j = Ri j and Ric
j
i = R

j
i ,

• for scal one write: scal = R.

3.4 Jacobi fields

In order to better understand the behavior of geodesics we will linearize the geodesic equations.

This leads to the Jacobi fields and relates geodesics and curvature.

Definition 3.4.1. Let M be a semi-Riemannian manifold. A variation of curves

c : (−ε ,ε)× I → M is called a geodesic variation if for every s ∈ (−ε ,ε) the curve

t 7→ cs(t) := c(s, t)

is a geodesic.
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Let ξ (t) :=
∂

∂ s
c(0, t) be the corresponding variational vector field. Then we have:

(
∇

dt

)2

ξ (t) =
∇

∂ t

∇

∂ t

∂

∂ s
c(s, t)|s=0

=
∇

∂ t

∇

∂ s

∂

∂ t
c(s, t)|s=0

=
∇

∂ s

∇

∂ t

∂

∂ t
c(s, t)

︸          ︷︷          ︸

|s=0 +R

(
∂c

∂ t
(0, t),

∂c

∂ s
(0, t)

)
∂c

∂ t
(0, t)

≡0 since cs geodesic

= R(ċ0(t),ξ (t))ċ0(t)

Definition 3.4.2. The equation for vector fields ξ along a geodesic c0

(
∇

dt

)2

ξ = R(ċ0,ξ )ċ0

is called the Jacobi equation. Its solutions are called Jacobi fields.

The above computation shows that the variational vector field of a geodesic variation is a Jacobi

field.

Proposition 3.4.3. Let M be a n-dimensional semi-Riemannian manifold, c : I → M a

geodesic and t0 ∈ I.

For all ξ ,η ∈ Tc(t0)M there exists a unique Jacobi field J along c with

J(t0) = ξ and
∇

dt
J(t0) = η .

The set of Jacobi fields along c forms a 2n-dimensional vector space.

Proof. Let E1(t0), . . . ,En(t0) be a basis of Tc(t0)M. By parallel transport along c we obtain a

basis E1(t), . . . ,En(t) of Tc(t)M for all t ∈ I. Write J(t) = ∑n
j=1 v j(t)E j(t). Then

(
∇
dt

)2

J(t) =

∑n
j=1 v̈ j(t)E j(t) and

R(ċ(t),J(t))ċ(t) =
n

∑
j=1

v j(t)R(ċ(t),E j(t))ċ(t).

Write R(ċ(t),E j(t))ċ(t) = ∑n
k=1 ak

j(t)Ek(t). Then J is a Jacobi field if and only if

n

∑
k=1

v̈kEk =
n

∑
j,k=1

ak
jv

jEk,
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hence if and only if

v̈k =
n

∑
j=1

ak
jv

j for all k = 1, . . . ,n

This is a linear system of ordinary differential equations of second order. Thus solutions exist

(on all of I) and are uniquely determined by the initial data vk(t0) and v̇k(t0), i.e., by J(t0) and
∇
dt

J(t0).
The linearity of the Jacobi equation implies that its solution space forms a vector space. The

map {Jacobi fields} → Tc(t0)M⊕Tc(t0)M, J 7→ (J(t0),
∇
dt

J(t0)) is a vector space isomorphism. In

particular, the dimension of the space of Jacobi fields along c equals 2n. �

Example 3.4.4. If M is flat then the equation for Jacobi fields is simply given by

(
∇

dt

)2

J ≡ 0.

Hence

{Jacobi fields}=
{

ξ (t)+ t η(t) |ξ ,η parallel
}
.

Example 3.4.5. Let c be a geodesic in an arbitrary semi-Riemannian manifold. Then the vector

field J(t) := (a+bt)ċ(t) is a Jacobi field for any a,b ∈ R. Namely, we have:

(
∇

dt

)2

J(t) = 0, and R(ċ,J)ċ = (a+bt)R(ċ, ċ)ċ = 0.

Such a J is the variational vector field of the geodesic variation

c(s, t) = c(t + s(a+bt)) = c
(
(1+ sb)t + sa

)
.

This is a variation of c which is obtained by simply reparametrizing the geodesic. It contains

no geometric information. Therefore such a Jacobi field is uninteresting. Thus there is a two-

dimensional space of uninteresting Jacobi fields.

Remark 3.4.6. If a Jacobi field J : I → T M satisfies:

J(t0)⊥ ċ(t0) and
∇

dt
J(t0)⊥ ċ(t0) for a t0 ∈ I,

then we have

J(t)⊥ ċ(t) and
∇

dt
J(t)⊥ ċ(t) for all t ∈ I.

Namely,

d

dt

〈
∇

dt
J, ċ

〉

=

〈(
∇

dt

)2

J, ċ

〉

+

〈
∇

dt
J,

∇

dt
ċ

︸︷︷︸

=0

〉

= 〈R(ċ,J)ċ, ċ〉= 0
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implies
〈

∇
dt

J, ċ
〉

≡ 0 and from

d

dt
〈J, ċ〉=

〈
∇

dt
J, ċ

〉

≡ 0

we see that 〈J, ċ〉 ≡ 0.

Consequence. Let c be non light-like. In this case we have Tc(t)M = Rċ(t)⊕ ċ(t)⊥. Then

{Jacobi fields along c}= R · ċ⊕R · t ċ
︸           ︷︷           ︸

uninteresting

Jacobi fields

⊕{Jacobi fields J along c |J ⊥ ċ, ∇
dt

J ⊥ ċ}
︸                                                 ︷︷                                                 ︸

interesting Jacobi fields

.

Remark 3.4.8. For light-like geodesics c this is not true because ċ ⊥ ċ.

Example 3.4.9. Let (M,g) = (R2,gMink), let c be a light-like geodesic and let ξ be a light-like

parallel vector field along c which is linearly independent of ċ.

Since ξ is parallel and R = 0, the vector field ξ is also a Jacobi field and we have:

C

c

ξ

{Jacobi field along c} = R · ċ⊕R(tċ)
︸           ︷︷           ︸

⊕Rξ ⊕R(tξ )
=
{

Jacobi field J along c |J ⊥ ċ, ∇
dt

J ⊥ ċ
}

Definition 3.4.10. For κ ∈ R the generalized sine and cosine function sκ , cκ : R→ R are

defined by

sκ(r) :=







1√
κ

sin(
√

κ · r), κ > 0

r, κ = 0
1√
|κ | sinh(

√

|κ | · r), κ < 0

and cκ(r) :=







cos(
√

κ · r), κ > 0

1, κ = 0

cosh(
√

|κ | · r), κ < 0

respectively.

92



3.4. JACOBI FIELDS

It is easy to check that

κ s2κ + c
2
κ = 1,

s
′
κ = cκ and sκ(0) = 0,

c
′
κ =−κ sκ and cκ(0) = 1.

Example 3.4.11. Let (M,g) be a Riemannian manifold with constant sectional curvature K ≡ κ .

Let c be a geodesic, parametrized by arc-length. Let ξ be a parallel vector field along c with

ξ ⊥ ċ. Set

J(t) :=
(
asκ(t)+bcκ(t)

)
ξ (t) with a,b ∈ R.

Then

(
∇

dt

)2

J = (a s̈κ +b c̈κ)ξ =−κ(asκ +bcκ)ξ =−κJ.

For the curvature tensor we here have R(ξ ,η)ζ = κ(〈η ,ζ 〉ξ −〈ξ ,ζ 〉η). Thus

R(ċ,J)ċ = (asκ +bcκ) ·κ
(
〈ξ , ċ〉
︸  ︷︷  ︸

=0

ċ−〈ċ, ċ〉
︸ ︷︷ ︸

=1

ξ
)
=−κ

(
asκ +bcκ

)
ξ =−κJ.

Hence J is a Jacobi field and

{

Jacobi fields along c |J ⊥ ċ,
∇

dt
J ⊥ ċ

}

=
{
(asκ +bcκ)ξ |a,b ∈ R, ξ parallel along c,ξ ⊥ ċ

}
.

b b b b

Jκ > 0

b

κ = 0
J

b

κ < 0

J
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Proposition 3.4.12. Let M be a semi-Riemannian manifold and c : [a,b]→ M a geodesic. Let

ξ be a smooth vector field along c. Then

ξ is a Jacobi field ⇐⇒ ξ is the variational field of a geodesic variation.

Proof. The implication “⇐” is already known. We show “⇒”.

Let ξ be a Jacobi field along c. Choose a t0 ∈ [a,b] and

choose a smooth curve γ : (−ε ,ε) → M with γ(0) =
c(t0) and γ̇(0) = ξ (t0). Let η1 be the parallel vector

field along γ with η1(0) = ċ(t0). Let η2 be the parallel

vector field along γ with η2(0) =
∇
dt

ξ (t0).

b

γ η1

c(t0)

ξ (t0)

ξ

c

Set η(s) := η1(s)+ sη2(s) and

c(s, t) := expγ(s)

(
(t − t0)η(s)

)
.

Since the domain of definition of exp is open, c(s, t) is

defined for |s| sufficiently small and for all t ∈ [a,b].
Then we have

γ

η

c

c(0, t) = expγ(0)

(
(t − t0)η(0)

)
= expc(t0)

(
(t − t0)ċ(t0)

)
= c(t)

Hence c(s, t) is a geodesic variation of c(t). Let J(t) := ∂c
∂ s
(0, t) be the corresponding variational

field. Then J is a Jacobi field. We show:

ξ (t0) = J(t0) and
∇

dt
ξ (t0) =

∇

dt
J(t0).

Then we get ξ = J because Jacobi fields are uniquely determined by their initial data and hence

ξ is the variational field of the geodesic variation c(s, t).

We calculate

J(t0) =
∂c

∂ s
(0, t0) =

d

ds

∣
∣
∣
∣
s=0

expγ(s)(0) =
d

ds

∣
∣
∣
∣
s=0

γ(s) = γ̇(0) = ξ (t0)

and

∇

dt
J(t0) =

∇

∂ t

∂c

∂ s
(0, t0) =

∇

∂ s

∂c

∂ t
(0, t0) =

∇

ds
η(0) = η2(0) =

∇

dt
ξ (t0). �

We are now able to generalize Lemma 2.6.26 and can identify the differential of the exponential

at arbitrary points in its domain.
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Proposition 3.4.13. Let M be a semi-Riemannian manifold, p ∈ M and ξ ∈ TpM. We assume

that the geodesic γ(t) := expp(tξ ) is defined on [0,1], i.e., ξ lies in the domain of expp.

For η ∈ TpM(� Ttξ TpM) let J be the Jacobi field along γ with J(0) = 0 and ∇
dt

J(0) = η . Then

we have for all t ∈ (0,1]:

d expp |tξ (η) =
J(t)

t
.

Proof. Consider the geodesic variation c(s, t) := expp

(
t(ξ + sη)

)
.

b

b

expp

M

p

0

TpM

ξ

ξ

η

Let ζ := ∂c
∂ s
|s=0 be the corresponding variational Jacobi field. Then we have

ζ (0) =
∂c

∂ s
(0,0) =

d

ds
expp |s=0(0) = 0 = J(0)

and

∇

dt
ζ (0) =

∇

dt

∂c

∂ s
(0,0) =

∇

∂ s

∂c

∂ t
(0,0) =

∇

ds
(ξ + sη)|s=0 = η =

∇

dt
J(0)

Hence ζ = J. Now we compute for fixed t ∈ (0,1]:

d expp |tξ (η) =
∂

∂ s
expp(tξ + sη)|s=0 =

∂

∂ s
expp

(

t
(

ξ +
s

t
η
))∣
∣
∣
s=0

=
1

t
ζ (t) =

1

t
J(t). �

Corollary 3.4.14. Let M be a semi-Riemannian manifold, let p∈M and let ξ be in the domain

of expp. Then

ker(d expp |ξ ) �
{

Jacobi field along γ(t) = expp(tξ ) |J(0) = 0,J(1) = 0
}
.
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Definition 3.4.15. Let M be a semi-Riemannian manifold and γ : I → M a geodesic.

Then t1, t2 ∈ I, t1 , t2 are called conjugate points along γ , if there exists a non-trivial Jacobi

field J along γ with J(t1) = 0 and J(t2) = 0.

Consequence. d expp |ξ is non-invertible if and only if 0 and 1 are conjugate points along γ(t)=
expp(tξ ).

Example 3.4.17. Let M be a Riemannian manifold with constant sectional curvature K ≡ κ .

Case 1: κ ≤ 0. Every Jacobi field has at most one zero.

⇒ There are no conjugate points.

⇒ d expp |ξ is invertible for all ξ ∈ Dp.

⇒ The map expp : Dp → M is a local diffeomorphism.

Case 2: κ > 0.

For a geodesic parametrized by arc-length, the con-

jugate points belonging to t0 are the points t0+m π√
κ

for m∈ Z\{0}. Considering the case m= 1 we have

expp

(
{ξ ∈ TpSn | ||ξ ||= π}

)
= {−p}.

For ||ξ ||= π we obtain

kerd expp |ξ = ξ⊥.

b

b

ξ ′
ξ

ker d expp |ξ

Sn

p

−p

TpSn

Proposition 3.4.18. Let M be a semi-Riemannian manifold and let c : [t0, t1] → M be a

geodesic. Let t0 and t1 be not conjugate with each other along c.

Then for ξ ∈ Tc(t0)M and η ∈ Tc(t1)M there exists exactly one Jacobi field J along c with

J(t0) = ξ and J(t1) = η .

bb b

c(t0)

ξ

c(t1)

η

J
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Proof. The linear map

2n-dimensional
︷                        ︸︸                        ︷

{Jacobi field along c} →
(n+n)-dimensional
︷                 ︸︸                 ︷

Tc(t0)M⊕Tc(t1)M,

J 7→
(
J(t0),J(t1)

)
,

is injective since t0 and t1 are not conjugate to each other along c. For dimensional reasons, this

map is an isomorphism. �

Proposition 3.4.18 means that in the non-conjugate case we can also characterize Jacobi fields

by the boundary values J(t0) and J(t1) instead of the initial values J(t0) and ∇
dt

J(t0). In the

conjugate case this is certainly wrong.

Example 3.4.19. Let c be a geodesic emanating from

p ∈ Sn which is parametrized by arc-length. The set of

η ∈ T−pSn for which exists a Jacobi field J along c with

J(0) = 0 and J(π) = η is given by

{η = α · ċ(π) |α ∈ R}.

c

p = c(t0)

−p = c(t1)b

b
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4 Submanifolds

4.1 Submanifold of differentiable manifolds

Definition 4.1.1. Let M be an m-dimensional differentiable manifold. A subset N ⊂ M is

called an nnn-dimensional submanifold if for every p ∈ N there exists a chart x : U →V of M

with p ∈U such that

x(N ∩U) =V ∩ (Rn ×{0}).

b
b

U
x V ⊂ Rn

R
n
×
{0
}

{0}×Rm−n

M

N

p
x(p)

Such a chart is called submanifold chart of N. The number m−n is called the codimension

of N in M.

Example 4.1.2. (1) Codimension n = 0: A subset N ⊂ M is a submanifold of codimension 0 if

and only if N is open subset of M.

(2) Dimension n = 0: A subset N ⊂ M is a submanifold of dimension 0 if and only if N is a

discrete subset of M.

(3) Affine subspaces: Let N ⊂ M = Rm be an affine subspace, i.e., N is of the form N = N ′+ p,

where N ′ ⊂ Rm is an n-dimensional vector subspace and p ∈ Rm fixed. Choose A ∈ GL(m)
with AN ′ = Rn ×{0}. Then x : U = Rm →V = Rm, given by

x(q) := A(q− p),

is a submanifold chart.

(4) Graphs: Let M1 and M2 be differentiable manifolds and let f : M1 → M2 be a smooth map.

Set M = M1 ×M2 and

N = Γ f =
{
(ξ ,η) ∈ M1 ×M2 |η = f (ξ )

}
.
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b

M1

M2

U1

U2

U1 ×U2 p
b

V1 ×V2

Γx2◦ f◦x1
−1

b

x1 × x2

Ψ

Choose charts xi : Ui →Vi of Mi with p ∈U1 ×U2. W.l.o.g. let f (U1)⊂U2. For w ∈V1 and

z ∈V2 set

ψ(w,z) :=
(
w,z−

(
x2 ◦ f ◦ x1

−1
)
(w)
)
.

Then x := ψ ◦ (x1 × x2) is a submanifold chart, defined on U1 ×U2.

Theorem 4.1.3. Let M be an m-dimensional differentiable manifold. Let N ⊂ M be a subset.

Then the following assertions are equivalent:

(i) N is an n-dimensional submanifold.

(ii) For every p ∈ N there exists an open neighborhood U of p and smooth functions

f1, . . . , fm−n : U → R such that

(a) N ∩U = {q ∈U | f1(q) = . . .= fm−n(q) = 0};

(b) The differentials d f1|p, . . . ,d fm−n|p ∈ T ∗
p M are linearly independent.

(iii) For every p ∈ N there exists an open neighborhood U of p, an (m− n)-dimensional

differentiable manifold R and a smooth map f : U → R with

(a) N ∩U = f−1(q) where q = f (p);

(b) d f |p : TpM → TqR has maximal rank.

Proof. “(i)⇒(ii)”: Let p∈N and let x : U →V be a submanifold chart for N with p∈U . W.l.o.g.

let

(1) x(p) = 0 ∈ Rm (otherwise compose x with a suitable translation);

(2) V =V1 ×V2 where V1 ⊂ Rn and V2 ⊂ Rm−n (otherwise make U smaller).

Now f j : U → R, f j := xn+ j, do the job ( j = 1, . . . ,m−n).

“(ii)⇒(iii)” is obvious. Simply set R := Rm−n and f := ( f1, . . . , fm−n).
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“(iii)⇒(i)”:

b

U

M

N

p

b

V

ϕ(p)

b

R

q

Ũ

bṼ
ϕ̃(q)

f

ϕ

ϕ̃ ◦ f ◦ϕ−1

ϕ̃

Choose a chart ϕ : U →V of M around p and a chart ϕ̃ : Ũ → Ṽ of R around q := f (p). W.l.o.g.

we assume that f (U)⊂ Ũ . Since ϕ and ϕ̃ are diffeomorphisms, we have

rankD(ϕ̃ ◦ f ◦ϕ−1)|ϕ(p) = rank d f |p = m−n.

The implicit function theorem yields: One can shrink V and U to smaller neighborhoods of q

and p, respectively, such that V =V1 ×V2 and one can find a smooth map g : V1 →V2 such that

(ϕ̃ ◦ f ◦ϕ−1)−1(ϕ̃(q)) = ( f ◦ϕ−1)−1(q) = Γg.

If we compose ϕ with a submanifold chart for graphs as in the Example 4.1.2 (4) then we get a

submanifold chart for N in M around p. �

Definition 4.1.4. Let M and R be differentiable manifolds and let f : M → R be smooth. A

point p ∈ M is called a regular point of f if d f |p has maximal rank. Otherwise p is called a

critical point of f .

A point q ∈ R is called a regular value of f if all p ∈ f−1(q) are regular points. Otherwise q

is called a critical value of f .

Example 4.1.5. Let M =R=R and f (t) = t2. We have

d f |t(ξ ) = f ′(t) ·ξ .

Hence t is a critical point of f if and only if f ′(t) = 0. In

this example t = 0 is the only critical point and f (0) = 0

is the only critical value.

b b
M

R

0

regular points Punkte

regular values

critical

point critical

value

Example 4.1.6. Let M = R = R and

f (t) = t2(t −1). Here f has the critical

points t = 0 and t = 2
3
. The critical values

are f (0) = 0 and f (2
3
) =− 4

27
.

b b b

b

0
2
3M

R
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Example 4.1.7. Let M = R = R and

f (t) = 0. In this case all t ∈ R are critical

points but 0 is the only critical value.

b
M

R

The examples indicate that there may be many critical points but there are always only few

critical values. This is true in general:

Theorem 4.1.8 (Sard). Let M and R be differentiable manifolds and let f : M →R be smooth.

Then the set of critical values of f is a null set in R. In other words, for every chart x : U →V

of R the set x(U ∩{critical values of f}) ⊂V is a null set (in the sense of Lebesgue measure

theory).

For a proof see [M65, Chapter 3].

Corollary 4.1.9. If f : M → R is smooth and if q ∈ R is a regular value of f , then N = f−1(q)
is empty or a submanifold of M with codim(N) = dim(R).

Proof. This follows directly from Criterion (iii) in Theorem 4.1.3. �

Example 4.1.10. Let M = Rn+1 and R = R. Let f : Rn+1 → R be given by f (x) = ||x||2 =
(x0)2 + . . .+(xn)2. Then Sn = f−1(1) and for any x ∈ Rn+1 we have

D f |x = (2x0, . . . ,2xn).

⇒ rank(D f |x) =
{

1, x , 0

0, x = 0

⇒ For all x ∈ f−1(1) we have rank(D f |x) = 1.

⇒ 1 is a regular value of f .

4.1.9⇒ Sn ⊂ Rn+1 is a submanifold of codimension 1.

Remark 4.1.11. In this example all q ∈ R\{0} are regular values. We have

f−1(q) =

{
Sn(

√
q), q > 0

/0 , q < 0
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For the critical value q= 0 we have that f−1(0) = {0} is also (by coincidence) a submanifold, but

of the wrong codimension n+1. In general, the preimage of a critical value is not a submanifold.

Remark 4.1.12. Sometimes the set f−1(q) is a submanifold with codimension dimR even if q

is a critical value.

Example 4.1.13. Let g : Rn+1 → R, g(x) = (||x||2 − 1)2. Then 0 is critical value of g but Sn =
g−1(0) is a submanifold of codimension 1.

Remark 4.1.14. Submanifolds of differentiable manifolds are themselves differentiable mani-

folds. Namely:

Let N ⊂ M be a submanifold and p ∈ N and x : U →V a submanifold chart with x =
(x1, . . . ,xn,xn+1, . . . ,xm), then

(x1, . . . ,xn) : U ∩N →V ∩Rn

is a chart of N. The set of charts of N obtained in this manner by restricting submanifold charts

to N is a C∞-atlas for N.

Theorem 4.1.15. Let N ⊂M be a submanifold. Let ι : N ֒→ M be the inclusion map, ι(p)= p.

Then we have:

(i) ι is smooth and dι |p : TpN → TpM is injective.

(ii) If f : M → P is smooth then f |N : N → P is also smooth.

(iii) If g : Q → M is smooth with g(Q)⊂ N then g : Q → N is also smooth.

Proof. (i) Let x = (x1, . . . ,xm) be a submanifold chart of N in M and x̃ = (x1, . . . ,xn) the

corresponding chart of N. The following diagram commutes:

N ⊃ U ∩N U ⊂ M

V ∩Rn V

ι

x̃ x

ξ 7→(ξ ,0)

Obviously, ξ 7→ (ξ ,0) is smooth. Since this map is linear, it coincides with its differential,

such that the differential is in particular injective.

(ii) The function f |N = f ◦ ι is the composition of two smooth maps and therefore again

smooth.

(iii) Let q ∈ Q and x = (x1, . . . ,xm) be a submanifold chart of M around g(q). Since g is smooth

the functions gi := xi ◦ g are also smooth. From g(Q) ⊂ N we see that (g1, . . . ,gm) =
(g1, . . . ,gn,0, . . . ,0). Now (g1, . . . ,gn) is smooth and thus also g : Q → N. �
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Remark 4.1.16. One identifies TpN with dι |p(TpN) and thinks of it as a vector subspace of

TpM.

b

N

p
TpN

TpM

M

Remark 4.1.17. If M = Rm, i.e., N ⊂ Rm, then one often considers TpN as a vector subspace of

R
m via TpN ⊂ TpR

m �−→
canon.
isom.

R
m.

Example 4.1.18. For N = Sn ⊂ Rn+1 we have TpSn = p⊥.

4.2 Semi-Riemannian submanifolds

Definition 4.2.1. Let (M̄, ḡ) be a semi-Riemannian manifold. A submanifold M ⊂ M̄ is called

a semi-Riemannian submanifold, if for all p ∈ M

(ḡ|p)
∣
∣
TpM×TpM

=: g|p

is non-degenerate.

Example 4.2.2. If (M̄, ḡ) is Riemannian, then every submanifold is a semi-Riemannian subma-

nifold.

Example 4.2.3. Let (M̄, ḡ) = (R2,gMink) be 2-dimensional Minkowski space, i.e., gMink =
−dx0 ⊗dx0 +dx1 ⊗dx1. Then

N1 = {(x0,0) |x0 ∈ R} is semi-Riemannian (with negative-definite metric).

N2 = {(0,x1) |x1 ∈ R} is semi-Riemannian (with positive-definite metric).

N3 = {(t, t) | t ∈ R} is not semi-Riemannian, since the restriction of gMink on TpN3 van-

ishes.

N4 = S1 has 4 points at which the restriction of gMink degenerates.
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b

N1

N2

N3

x0

x1

M̄

b

bb

b b

+

+
−

−
M̄

N4

Definition 4.2.4. Let M ⊂ M̄ be a semi-Riemannian submanifold. Then we call

NpM := TpM⊥ =
{

ξ ∈ TpM̄ | ḡ|p(ξ ,η) = 0 ∀η ∈ TpM
}

the normal space of M at the point p.

b

M

p
TpM

NpM

TpM̄

M̄

Remark 4.2.5. We have TpM̄ = TpM⊕NpM since

(1) dimNpM ≥ dimTpM̄−dimTpM.

(2) If there existed a ξ ∈ TpM∩NpM with ξ , 0, then we would have ξ ∈ TpM with ḡ|P(ξ ,η) =
0 for all η ∈ TpM. Then (ḡ|p)|TpM×TpM would be degenerate, which is a contradiction.

Let M ⊂ M̄ be a semi-Riemannian submanifold and p ∈ M. Let

tan :TpM̄ → TpM,

nor :TpM̄ → NpM,

be the orthogonal projections. Both M and also M̄ have, when seen as semi-Riemannian man-

ifolds in their own rights, a Levi-Civita connection ∇ and ∇̄, respectively. Now we want to

investigate, how we can determine ∇ directly from ∇̄.

(M̄, ḡ) ∇̄ Levi-Civita connection

(M,g) ∇ Levi-Civita connection

?

Here g|p := (ḡ|p)TpM×TpM.
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Let p∈M, ξ ∈ TpM and η ∈C∞(U,T M), where U ⊂M

is an open neighborhood of p. Choose a smooth exten-

sion η̄ of η to an open neighborhood Ū of p in M̄. Then

∇̄ξ η̄ ∈ TpM̄ does not depend on the choice of continu-

ation η̄ .

Namely: the tangent vector ξ ∈ TpM is of the form ξ =
ċ(0) with a curve c : (−ε ,ε)→M. Hence ∇̄ξ η̄ depends

on η̄ only along c, that is, only on η .

M̄

M U

η

Ū
η̄

We can also write:

∇̄ξ η := ∇̄ξ η̄.

Example 4.2.6. Let M̄ = (R2,geucl) and M = S1. Set η(x1,x2) = (−x2,x1).
For c : R→ S1 with c(t) = (cos(t),sin(t)) we have

ċ(t) = η(c(t)).

Then we get:

∇̄η η =
∇̄

dt
ċ = c̈ =

(
− cos(t),−sin(t)

)

which is not tangent to S1.

b

η

∇̄η η

We set ∇ξ η := tan(∇̄ξ η).

Theorem 4.2.7. Let (M̄, ḡ) be a semi-Riemannian manifold and M ⊂ M̄ a semi-Riemannian

submanifold with induced semi-Riemannian metric g. Let ∇̄ be the Levi-Civita connection of

(M̄, ḡ). Then

∇ξ η = tan
(
∇̄ξ η

)

is the Levi-Civita connection of (M,g).

Proof. We check that ∇ satisfies the axioms of the Levi-Civita connection for (M,g). By the
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uniqueness statement in Theorem 2.3.8, ∇ must then be the Levi-Civita connection of (M,g).

(i) Locality is clear because ∇̄ is local.

(ii) Linearity in ξ is clear because tan is linear and ∇̄ is linear in ξ .

(iii) Linearity in η is clear by a similar argument.

(iv) Product rule I: Let f ∈C∞(U) and η ∈C∞(U,T M), where U ⊂M is an open neighborhood

of p and ξ ∈ TpM. Let η̄ and f̄ be smooth extensions of η and f to an open neighborhood

Ū of p in M̄. Then

∇ξ ( f ·η) = tan
(
∇̄ξ

(
f̄ · η̄

))

= tan
(
∂ξ f̄ · η̄ |p + f̄ (p) · ∇̄ξ η̄

)

= tan
(
∂ξ f · η̄ |p + f (p) · ∇̄ξ η̄

)

= ∂ξ f · tan
(
η̄ |p
)
+ f (p) · tan

(
∇̄ξ η̄

)

= ∂ξ f ·η |p + f (p)∇ξ η .

(v) Product rule II: Let ξ ∈ TpM and η1,η2 ∈C∞(U,T M). Choose smooth extensions η̄1, η̄2 ∈
C∞(Ū ,T M̄). Then

∂ξ g(η1,η2) = ∂ξ ḡ
(
η̄1, η̄2

)

= ḡ|p
(
∇̄ξ η̄1, η̄2|p

︸︷︷︸

)
+ ḡ|p

(
η̄1|p, ∇̄ξ η̄2

)

=η2|p, in particular tangent to M

= g|p
(

tan
(
∇̄ξ η̄1

)
,η2|p

)
+g|p

(
η1|p, tan

(
∇̄ξ η̄2

))

= g|p
(
∇ξ η1,η2|p

)
+g|p

(
η1|p,∇ξ η2

)
.

(vi) Freeness of torsion: Let x1, . . . ,xm,xm+1, . . . ,xm̄ be submanifold coordinates on M̄. Here

x1, . . . ,xm are coordinates on M. For 1 ≤ i, j ≤ m:

∇ ∂
∂ xi

∣
∣
∣

p

∂

∂x j
= tan

(

∇̄ ∂
∂ xi

∣
∣
∣

p

∂

∂x j

)

= tan

(

∇̄ ∂
∂ x j

∣
∣
∣

p

∂

∂xi

)

= ∇ ∂
∂ x j

∣
∣
∣

p

∂

∂xi
. �

Example 4.2.8. Let M = S1 ⊂ M̄ = R2 with ḡ = geucl. Set η(c(t)) = ċ(t) where

c(t) = (cos(t),sin(t)). Then

∇ηη = tan
(

∇̄η η
∣
∣

p

)

= tan(−p) = 0.

Hence c is a geodesic in S1 (but not in R2).

107



CHAPTER 4. SUBMANIFOLDS

Lemma 4.2.9. Let ξ ∈ TpM and η ∈C∞(U,T M), where U ⊂ M is an open neighborhood of

p. Then nor(∇̄ξ η) ∈ NpM only depends η via η |p.

Proof. Let x1, . . . ,xm,xm+1, . . . ,xm̄ be submanifold coordinates on M̄ around p. Let Γk
i j : U → R

be the Christoffel symbols of ∇, 1 ≤ i, j,k ≤ m, and Γ̄k
i j : U → R be the Christoffel symbols of

∇̄, 1 ≤ i, j,k ≤ m̄. On U we write η = ∑m
j=1 η j ∂

∂x j and we define on Ū :

η̄ j(x1, . . . ,xm̄) :=

{

η j(x1, . . . ,xm) for j = 1, . . . ,m

0 for j = m+1, . . . ,m̄
.

Set η̄ := ∑m̄
j=1 η̄ j ∂

∂x j . Furthermore, write ξ = ∑m
i=1 ξ i ∂

∂xi

∣
∣
∣

p
. Then we have:

nor(∇̄ξ η) = nor(∇̄ξ η̄)

= ∇̄ξ η̄ −∇ξ η

=
m

∑
i=1

ξ i
m̄

∑
k=1

(

∂ η̄k

∂xi

∣
∣
∣
∣
x(p)

+
m̄

∑
j=1

Γ̄k
i j|x(p) · η̄ j|x(p)

)

∂

∂xk

∣
∣
∣
∣

p

−
m

∑
i=1

ξ i
m

∑
k=1

(

∂ηk

∂xi

∣
∣
∣
∣
x(p)

+
m

∑
j=1

Γk
i j|x(p) ·η j|x(p)

)

∂

∂xk

∣
∣
∣
∣

p

=
m

∑
i=1

ξ i
m

∑
j=1

η j|x(p)

(
m̄

∑
k=1

Γ̄k
i j|x(p)

∂

∂xk

∣
∣
∣
∣

p

−
m

∑
k=1

Γk
i j|x(p)

∂

∂xk

∣
∣
∣
∣

p

)

.

This only depends on η j|x(p), i.e., only on η |p. �

Definition 4.2.10. The map II : TpM×TpM → NpM, given by

II(ξ ,η) = nor
(
∇̄ξ η

)
,

is called the second fundamental form of M in M̄ (at the point p ∈ M).

Lemma 4.2.11. The second fundamental form II is bilinear and symmetric.

Proof. In the previous proof we have shown that

II(ξ ,η) =
m

∑
i, j=1

(
m̄

∑
k=1

Γ̄k
i j

∂

∂xk

∣
∣
∣
∣

p

−
m

∑
k=1

Γk
i j

∂

∂xk

∣
∣
∣
∣

p

)

ξ iη j.
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Clearly, II is bilinear. By the symmetry of the Christoffel symbols in the lower indices, II is also

symmetric. �

Example 4.2.12. Let M = S1 ⊂ M̄ = R2 and η as in Example 4.2.8. The second fundamental

form is then given by II(η ,η) =−p.

Conclusion. The equation

∇̄ξ η = ∇ξ η + II(ξ ,η |p)

is the splitting of ∇̄ξ η into its tangential and normal parts.

Notation 4.2.13. For better readability we will from now on write 〈ξ ,η〉 instead of g(ξ ,η)
or ḡ(ξ ,η).

Since one can compute the Levi-Civita connection ∇ of the submanifold M from the Levi-Civita

connection ∇̄ of M̄, one should also be able to compute the curvature tensor R of M from that of

M̄. Indeed this is possible.

Theorem 4.2.14 (Gauß Formula). Let M ⊂ M̄ be a semi-Riemannian submanifold and p ∈
M. Let ξ ,η ,ζ ,ν ∈ TpM. Then we have

〈R(ζ ,ν)ξ ,η〉= 〈R̄(ζ ,ν)ξ ,η〉+ 〈II(ν ,ξ ), II(ζ ,η)〉− 〈II(ζ ,ξ ), II(ν ,η)〉 .

Proof. Let x1, . . . ,xm be coordinates of M around p coming from a submanifold chart

x1, . . . ,xm,xm+1, . . . ,xm̄. By multilinearity, it suffices to show the assertion for ξ = ∂
∂xi

∣
∣
∣

p
,

η = ∂
∂x j

∣
∣
∣

p
, ζ = ∂

∂xk

∣
∣
∣

p
and ν = ∂

∂xl

∣
∣
∣

p
. We have

〈R̄(ζ ,ν)ξ ,η〉=
〈

∇̄ζ ∇̄ ∂
∂ xl

∂

∂xi
− ∇̄∇̄ ∂

∂ xk
|p

∂
∂ xl

∂

∂xi
− ∇̄ν∇̄ ∂

∂ xk

∂

∂xi
+ ∇̄∇̄ ∂

∂ xl
|p

∂
∂ xk

∂

∂xi
,η

〉

torsion freeness =

〈

∇̄ζ ∇̄ ∂
∂ xl

∂

∂xi
− ∇̄ν∇̄ ∂

∂ xk

∂

∂xi
,η

〉

=

〈

∇̄ζ ∇ ∂
∂ xl

∂

∂xi
+ ∇̄ζ II

(
∂

∂xl
,

∂

∂xi

)

− ∇̄ν∇ ∂
∂ xk

∂

∂xi
− ∇̄νII

(
∂

∂xk
,

∂

∂xi

)

,η

〉

=

〈

∇ζ ∇ ∂
∂ xl

∂

∂xi
−∇ν∇ ∂

∂ xk

∂

∂xi
,η

〉
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+∂ζ

≡0
︷                           ︸︸                           ︷
〈

II

(
∂

∂xl
,

∂

∂xi

)

,
∂

∂x j

〉

−
〈

II

(
∂

∂xl
,

∂

∂xi

)

, ∇̄ζ
∂

∂x j

〉

−∂ν

≡0
︷                           ︸︸                           ︷
〈

II

(
∂

∂xk
,

∂

∂xi

)

,
∂

∂x j

〉

+

〈

II

(
∂

∂xk
,

∂

∂xi

)

, ∇̄ν
∂

∂x j

〉

= 〈R(ζ ,ν)ξ ,η〉+ 〈II(ζ ,ξ ), II(ν ,η)〉− 〈II(ν ,ξ ), II(ζ ,η)〉 . �

Corollary 4.2.15. If E ⊂ TpM is a non-degenerate plane with basis ξ ,η , then we have

K(E) = K̄(E)+
〈II(ξ ,ξ ), II(η ,η)〉− 〈II(ξ ,η), II(ξ ,η)〉

〈ξ ,ξ 〉〈η ,η〉− 〈ξ ,η〉2
.

Proof. This follows directly from the definition of sectional curvature and the Gauß formula. �

Lemma 4.2.16. Let M ⊂ M̄ be a semi-Riemannian submanifold. Let ϕ : M̄ → N̄ be a local

isometry. Set ϕ(M) =: N. For ξ ,η ∈ TpM we have

IIN

(
dϕ |p(ξ ),dϕ |p(η)

)
= dϕ |p

(
IIM(ξ ,η)

)
.

Proof. Local isometries preserve ∇ and ∇̄. Since II is the difference of ∇ and ∇̄ we get the

assertion. �

4.3 Totally geodesic submanifolds

Let M ⊂ M̄ be a semi-Riemannian submanifold and c : I → M a smooth curve. Let ξ be a smooth

vector field at M along c. Then the splitting in tangential and normal parts of the covariant

derivative is given by

∇̄

dt
ξ =

∇

dt
ξ + II(ξ , ċ).

In particular, we have for ξ = ċ

∇̄

dt
ċ =

∇

dt
ċ+ II(ċ, ċ).
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Therefore the curve c is a geodesic in M if and only if

∇̄

dt
ċ = II(ċ, ċ), i.e., if

∇̄

dt
ċ(t) ∈ Nc(t)M for all t ∈ I.

Example 4.3.1. Let M = Sn ⊂ M̄ =Rn+1 with Euclidean metric. Let c : I → Sn be a great circle,

c(t) = cos(t) · p+ sin(t) ·ξ .

with p ∈ Sn, ξ ∈ TpSn ⊂ Rn+1 and ‖ξ‖= 1. From this we get

∇̄

dt
ċ(t) = c̈(t) =−cos(t) · p− sin(t) ·ξ =−c(t) ∈ Nc(t)S

n.

Hence c is a geodesic in Sn.

Definition 4.3.2. A semi-Riemannian submanifold is called totally geodesic if II ≡ 0.

Theorem 4.3.3. For a semi-Riemannian submanifold M ⊂ M̄ the following statements are

equivalent:

(i) M ist totally geodesic.

(ii) Every geodesic in M is also a geodesic in M̄.

(iii) For any p ∈ M and ξ ∈ TpM there exists an ε > 0 such that the M̄-geodesic

c : (−ε ,ε)→ M̄ with c(0) = p and ċ(0) = ξ lies in M, i.e., c(t) ∈ M for all t ∈ (−ε ,ε).

(iv) Let c : I → M be a smooth curve. Then the parallel transport along c w.r.t. M and w.r.t.

M̄ coincide (for tangent vectors of M).

Proof. “(ii)⇒(iii)”: Let p ∈ M and ξ ∈ TpM. Let c be the M̄-geodesic with c(0) = p and

ċ(0) = ξ . Let c̃ be the M-geodesic with c̃(0) = p and ˙̃c(0) = ξ . By (ii), c̃ is also geodesic in

M̄. Since we have c̃(0) = c(0) and ˙̃c(0) = ċ(0), the two M̄-geodesics must coincide, c = c̃ on

(−ε ,ε) for a ε > 0. In particular, c lies in M.

“(iii)⇒(i)”: Let p ∈ M and ξ ∈ TpM. Let cξ be the M̄-geodesic with cξ (0) = p and ċξ (0) = ξ .

By (iii), cξ lies in M for t ∈ (−ε ,ε) with suitable ε > 0. On (−ε ,ε) we get:

0 =
∇̄

dt
ċξ =

∇

dt
ċξ

︸ ︷︷ ︸
tangential

+ II(ċξ , ċξ )
︸       ︷︷       ︸

normal

In particular, we have

II
(
ċξ (t), ċξ (t)

)
= 0 for all t ∈ (−ε ,ε).
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For t = 0 this means that II(ξ ,ξ ) = 0. Since ξ is arbitrary, polarization yields II ≡ 0.

“(i)⇒(iv)”: We have ∇
dt

ξ = ∇̄
dt

ξ . Hence ξ is parallel in M if and only if ξ is parallel in M̄.

“(iv)⇒(ii)”: Let c be a geodesic in M.

⇒ ċ is parallel in M.

(iv)⇒ ċ is parallel in M̄.

⇒ c ist geodesic in M̄. �

Example 4.3.4. Let M ⊂ M̄ =Rn be an affine subspace where Rn is equipped with geucl or gMink.

Criterion (iii) shows that M ⊂ Rn is totally geodesic.

Example 4.3.5. Let M̄ be an arbitrary semi-Riemannian manifold.

(1) All 0-dimensional submanifolds are totally geodesic.

(2) Every submanifold of codimension 0, i.e., every open subset of M̄, is totally geodesic.

(3) Let M = {c(t)|t ∈ I}, where c : I → M̄ is a geodesic. If M is a semi-Riemannian submanifold

(has no self-intersection, for instance), then M is totally geodesic.

Remark 4.3.6. Most semi-Riemannian manifolds M̄ do not have totally geodesic submanifolds

of dimension m ∈ {2, . . . ,m̄−1}.

Theorem 4.3.7. Let M ⊂ M̄ be a semi-Riemannian submanifold. Assume that there exists an

isometry ϕ ∈ Isom(M̄), such that M is a connected component of

Fix(ϕ) = {p ∈ M̄ |ϕ(p) = p}.

Then M is totally geodesic.

Proof. We check Criterion (iii) in Theorem 4.3.3. Let p ∈ M and ξ ∈ TpM. We first show that

dϕ |p(ξ ) = ξ .

Namely, let γ : J → M be a smooth curve with γ(0) = p and γ̇(0) = ξ . Then

dϕ |p(ξ ) = dϕ |p(γ̇(0)) =
d

dt
(ϕ ◦ γ)
︸    ︷︷    ︸

= γ, since
M⊂Fix(ϕ)

|t=0 = γ̇(0) = ξ . ✓

Now if c is the geodesic in M̄ with c(0) = p and ċ(0) = ξ then, by Proposition 2.6.20, c lies

entirely in Fix(ϕ). Since c(I) is connected, c remains in M. �
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Example 4.3.8. Let M̄ = Sn. Let W ⊂ Rn+1 be a sub-

vector space. Let A ∈ O(n+ 1) be the reflection about

W .

⇒ ϕ := A|Sn ∈ Isom(Sn)

⇒ Fix(ϕ) =W ∩Sn is totally geodesic

Hence all “great subspheres” in Sn are totally geodesic

submanifolds. In particular, Sn admits totally geodesic

submanifolds of every codimension.

W

Sn

The Gauß Formula (Theorem 4.2.14) tells us that if M ⊂ M̄ is totally geodesic, then

R(ξ ,η)ζ = tan(R̄(ξ ,η)ζ )1 for all p ∈ M and ξ ,η ,ζ ∈ TpM,
K(E) = K̄(E) for all non-degenerate planes E ⊂ TpM.

4.4 Hypersurfaces

Definition 4.4.1. A semi-Riemannian submanifold M ⊂ M̄ is called a semi-Riemannian hy-

persurface if codimM = 1.

The signature of M is ε = +1 if (ḡ|p)|NpM×NpM is positive definite, and ε = −1 if

(ḡ|p)|NpM×NpM is negative definite.

Remark 4.4.2. For ε = +1 we have Index(M̄, ḡ) = Index(M,g) while for ε = −1 we get

Index(M̄, ḡ) = Index(M,g)+1.

Notation 4.4.3. For ξ ∈ TpM we write

|ξ | :=
√

| 〈ξ ,ξ 〉 |.

Caution! This does not define a norm unless 〈·, ·〉 is definite. In particular, it can occur that

|ξ |= 0 even if ξ , 0.

1This formula even holds without the tangential projector as a consequence of the Codazzi equation which we did

not treat.
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Gradient of a differentiable function

Let (M,g) be a semi-Riemannian manifold of dimension n. Let f : M → R be differentiable and

p ∈ M. Then d f |p ∈ T ∗
p M. In coordinates we have

d f =
n

∑
i=1

∂ f

∂xi
dxi.

Since g|p is non-degenerate there exists exactly one ξ ∈ TpM such that

d f |p(η) = g|p(ξ ,η) for all η ∈ TpM.

Write ξ =: grad f |p. In local coordinates, write grad f = ∑n
i=1 α i ∂

∂xi . Then we have:

∂ f

∂x j
=

n

∑
i=1

∂ f

∂xi
dxi

(
∂

∂x j

)

= d f

(
∂

∂x j

)

= g

(
n

∑
i=1

α i ∂

∂xi
,

∂

∂x j

)

=
n

∑
i=1

α ig

(
∂

∂xi
,

∂

∂x j

)

=
n

∑
i=1

α igi j.

Matrix multiplication with (gi j)i j yields α i =
n

∑
j=1

gi j ∂ f

∂x j
, thus

grad f =
n

∑
i, j=1

∂ f

∂x j
gi j ∂

∂xi

Lemma 4.4.4. Let M̄ be a semi-Riemannian manifold and f : M̄ → R smooth and c ∈ R be a

regular value of f . Then M := f−1(c) ⊂ M̄ is a semi-Riemannian hypersurface of signature

ε , if

〈grad f ,grad f 〉 · ε > 0.

Moreover, we have ν :=
grad f |p
|grad f |p|

∈ NpM and 〈ν ,ν〉= ε .

Proof. Since c is a regular value, M is a hypersurface. The lemma follows once we show

grad f |p ⊥ TpM.

Let ξ ∈ TpM. We choose γ : I → M with γ̇(0) = ξ and we obtain:

0 =
d

dt
f
(
γ(t)

)

︸     ︷︷     ︸

≡ c

|t=0 = d f |p(ξ ) = 〈grad f |p,ξ 〉 . �
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Definition 4.4.5. Let M ⊂ M̄ be a semi-Riemannian hypersurface and

p ∈ M. Let ν ∈ NpM with |ν |= 1.

The linear map Sν : TpM → TpM, characterized by

bc

NpM

M
p

ν

〈Sν(ξ ),η〉= 〈II(ξ ,η),ν〉 for all ξ ,η ∈ TpM,

is called the Weingarten map.

Lemma 4.4.6. The Weingarten map Sν is self-adjoint.

Proof. This is clear because II is symmetric. �

Remark 4.4.7. We have S−ν = −Sν . Without specifying the choice of ν , the Weingarten map

is only determined up to a sign.

Lemma 4.4.8. Let M ⊂ M̄ be a semi-Riemannian hypersurface and

p ∈ M. Let U ⊂ M be an open neighborhood of p and

ν ∈C∞(U,NM) with |ν |= 1. Then we have

Sν(ξ ) =−∇̄ξ ν .

M

bc

p

ν

U

Proof. For all η ∈C∞(U,T M) we have:

〈Sν(ξ ),η〉= 〈II(ξ ,η),ν〉=
〈
nor(∇̄ξ η),ν

〉
=
〈
∇̄ξ η ,ν

〉

= ∂ξ 〈η ,ν〉
︸   ︷︷   ︸

=0

−
〈
η , ∇̄ξ ν

〉
=−

〈
∇̄ξ ν ,η

〉
. �
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Gauß formula:

Let M ⊂ M̄ be a semi-Riemannian hypersurface with signature ε . Let ξ ,η ,ζ ∈ TpM. Then:

R(ξ ,η)ζ = tan(R̄(ξ ,η)ζ )+ ε
{
〈Sν(η),ζ 〉Sν(ξ )−〈Sν(ξ ),ζ 〉Sν(η)

}
.

For any non-degenerate plane E ⊂ TpM we have

K(E) = K̄(E)+ ε · 〈Sν(ξ ),ξ 〉〈Sν(η),η〉− 〈Sν(ξ ),η〉2

〈ξ ,ξ 〉〈η ,η〉− 〈ξ ,η〉2

where ξ ,η is a basis of E .

Pseudospheres and pseudo-hyperbolic spaces

Now consider M̄ = Rn+1 with ḡ = −∑k−1
i=0 dxi ⊗ dxi +∑n

i=k dxi ⊗ dxi in Cartesian coordinates

x0, . . . ,xn. Then (M̄, ḡ) is a semi-Riemannian manifold of index k. For k = 0 we have the

Euclidean metric and for k = 1 the Minkowski metric. For general k the representing matrix of

ḡ in Cartesian coordinates is given by

(ḡi j) =






−1. ..−1
0

0
1. . .

1




 .

In particular, all ḡi j are constant. Hence all Christoffel symbols vanish in Cartesian coordinates.

Therefore the curvature vanishes:

R̄ ≡ 0, K̄ ≡ 0, ric ≡ 0 and scal ≡ 0.

Now consider the function

f : Rn+1 → R, f (x0, . . . ,xn) =−
k−1

∑
i=0

(xi)2 +
n

∑
i=k

(xi)2 =
n

∑
i=0

εi(x
i)2.

For the gradient we get

grad f |x =
n

∑
i, j=0

∂ f

∂xi
(x) gi j

︸︷︷︸

∂

∂x j

=εi δ i j

=
n

∑
i=0

εi

∂ f

∂xi
(x)

∂

∂xi

= 2
n

∑
i=0

εi · εi x
i ∂

∂xi

= 2
n

∑
i=0

xi ∂

∂xi
.
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Thus grad f |x = 0 if and only if x = 0. Consequently, the only critical point of f is x = 0

and 0 = f (0) is the only critical value of f . If c , 0 then M := f−1(c) therefore defines a

differentiable submanifold of codimension 1. We compute:

〈grad f |x,grad f |x〉 = 4

〈
n

∑
i=0

xi ∂

∂xi
,

n

∑
i=0

xi ∂

∂xi

〉

= 4
n

∑
i, j=0

xix jgi j

= 4
n

∑
j=0

ε j(x
j)2

= 4 f (x).

Hence for c > 0 we have that f−1(c) is a semi-Riemannian hypersurface of signature ε = +1,

for c < 0 it is a semi-Riemannian hypersurface of signature ε =−1.

Definition 4.4.9. Let r > 0. The semi-Riemannian hypersurface

Sn
k(r) := f−1(r2)

of (Rn+1, ḡ) is called the pseudo-sphere of radius r and with index k. The semi-Riemannian

hypersurface

Hn
k−1(r) := f−1(−r2),

is called the pseudo-hyperbolic space of index k−1.

Example 4.4.10. Let k = 0 and ḡ = geucl.

Then Sn
0(r) = Sn(r) is the standard sphere of

radius r.

bc

r

Sn(r)

Example 4.4.11. The case k = 1 and ḡ =
gMink is also of great interest.

Hn
0 (r)

Sn
1(r)

f−1(0)
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Definition 4.4.12. The hypersurface Hn := {x ∈ Hn
0 (1) |x0 > 0} together with the induced

Riemannian metric ghyp is called the n-dimensional hyperbolic space.

Definition 4.4.13. The hypersurface S4
1(r) together with the induced Lorentzian metric is

called deSitter spacetime and H4
1 (r) is called anti-deSitter spacetime.

Remark 4.4.14. The pseudo-sphere Sn
k(r) is diffeomorphic to Rk × Sn−k while the pseudo-

hyperbolic space Hn
k (r) is diffeomorphic to Sk ×Rn−k. See the exercises or [ON83, page 111]

for a proof of this fact.

We determine the curvature of these hypersurfaces. For M = f−1(c) with c , 0 we recall

〈grad f |x,grad f |x〉= 4 f (x) = 4c,

hence

ν |x :=
grad f |x
√

|4c|
=

grad f |x
2r

=
1

r

n

∑
i=0

xi ∂

∂xi
.

By Lemma 4.4.8 we get

Sν =−1

r
id

Now the Gauß formula yields

R(ξ ,η)ζ =
ε

r2
(〈η ,ζ 〉ξ −〈ξ ,ζ 〉η) and K ≡ ε

r2

We compute

ric(ξ ,η) =
n

∑
i=1

εi 〈R(ξ ,ei)ei,η〉

=
ε

r2

n

∑
i=1

εi

〈
〈ei,ei〉
︸   ︷︷   ︸

=εi

ξ −〈ξ ,ei〉ei,η
〉

=
ε

r2
(n〈ξ ,η〉− 〈ξ ,η〉),

thus

ric =
ε(n−1)

r2
g and scal =

ε(n−1)n

r2

Remark 4.4.15. For the Einstein tensor of S4
1(r) or H4

1 (r) we get

G = ric− 1

2
scal ·g =

3ε

r2
g− 1

2

ε ·3 ·4
r2

g =−3
ε

r2
g.
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Thus deSitter and anti-deSitter spacetime are vacuum solutions of the Einstein field equations

with cosmological constant Λ = 3
r2 and Λ =− 3

r2 , respectively.

Next we determine the geodesics of the pseudo-spheres and pseudo-hyperbolic spaces. Let

p ∈ M where M = Sn
k(r) or M = Hn

k−1(r) and let ξ ∈ TpM ⊂ TpR
n+1
� R

n+1 with ξ , 0. What is

the geodesic c with c(0) = p and ċ(0) = ξ ?

Note that p , 0. Then p and ξ , considered as vectors in Rn+1, are linearly independent because

ξ ∈ TpM and p ∈ NpM. Let E ⊂ Rn+1 be the plane spanned by p and ξ . If ξ is space-like or

time-like, then E is non-degenerate for ḡ. Then the reflection (w.r.t. ḡ) about E is an isometry of

(Rn+1, ḡ). The restriction of the reflection to M yields an isometry ϕ of M, see the discussion of

isometries below. Now E ∩M is the fixed point set of ϕ , hence a 1-dimensional totally geodesic

submanifold. In other words, if we parametrize the connected component of E ∩M containing

p proportionally to arc-length or eigentime, respectively, in such a way that ċ(0) = ξ , then it is

the geodesic c we are after.

E

M

E

M

E

M

If ξ is light-like, then E is degenerate. But now E ∩M consists of two parallel straight lines. If

we take any affine parametrization of the straight line containing p, then we get a geodesic in

(Rn+1, ḡ) which contains p and lies entirely in M. Thus it is also a geodesic in M. When choose

the affine parametrization such that c(0) = p and ċ(0) = ξ , then we found the right geodesic

also in the light-like case.

In order to determine the isometry group of pseudo-spheres and pseudo-hyperbolic spaces we

define

O(n+1− k,k) := {A ∈ GL(n+1) | 〈Ax,Ay〉= 〈x,y〉 ∀x,y ∈ Rn+1}.
Here 〈x,y〉=−∑k−1

j=0 x jy j +∑n
j=k x jy j. We have O(n+1,0) = O(n+1) and O(n,1) is the Lorentz

group. For any A ∈ O(n+1− k,k) we have

A(Sn
k(r)) = Sn

k(r) and A(Hn
k−1(r)) = Hn

k−1(r).

Since the semi-Riemannian metric of M is obtained by restricting ḡ to M, the restriction of

isometries of (Rn+1, ḡ) to M are isometries of M. We have constructed an injective group homo-

morphism

O(n+1− k,k) → Isom(M),

A 7→ A|M.
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Next we show that this homomorphism is also surjective.

Proposition 4.4.16. Let M be a semi-Riemannian manifold, let p ∈ M and ϕ ,ψ ∈ Isom(M)
with ϕ(p) = ψ(p) and dϕ |p = dψ |p.

Then ϕ and ψ coincide on the set of all points which can be joined with p by a geodesic.

Proof: Let c : [0,1] → M be a geodesic with c(0) = p

and c(1) = q. Then c̃ := ϕ ◦ c and ĉ := ψ ◦ c are also

geodesics and we have c̃(0) = ϕ(p) = ψ(p) = ĉ(0) and
˙̃c(0) = dϕ |p(ċ(0)) = dψ |p(ċ(0)) = ˙̂c(0). Therefore c̃ = ĉ.

In particular, ϕ(q) = c̃(1) = ĉ(1) = ψ(q).
b

b

b

b

M

p

q

c

ċ(0)
ϕ(p)

ϕ(q)
ϕ ◦ c

dϕ |p(ċ(0))

Corollary 4.4.17. If all points of M can be joined by geodesics with p, then every isometry ϕ
of M is uniquely determined by ϕ(p) and dϕ |p.

Example 4.4.18. Let M = (Rn,geucl). We already know

{Euclidean motions} ⊂ Isom(M),

where a Euclidean motion ϕ :Rn →Rn has the form ϕ(x)=Ax+b with A∈O(n) and b∈Rn. We

can now use Proposition 4.4.16 to show that there are no further isometries of Euclidean space.

Let ϕ ∈ Isom(M). Put b := ϕ(0) and A := dϕ |0 ∈ O(n). Then the Euclidean motion ϕ̃(x) :=
Ax+b satisfies ϕ̃(0) = b = ϕ(0) and dϕ̃ |0 = A = dϕ |0. Since any two points in Euclidean space

can be joined by a straight line we can apply Corollary 4.4.17 and conclude ϕ = ϕ̃ . This proves

{Euclidean motions}= Isom(M).

Similarly one can show

Isom(Rn,gMink) = Poincaré group.

Remark 4.4.19. The assumption that the points can be joined with p by geodesics is necessary

for the statement of Corollary 4.4.17.
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Example 4.4.20. Let M = {p1, p2, p3} be a 0-dimensional manifold

consisting of 3 points. On a 0-dimensional manifold all tangent spaces

are trivial so g = 0 is a Riemannian metric. All bijective maps M → M

are isometries. Consider the following two maps:

ϕ1 := id, and ϕ2 :=







p1 7→ p1

p2 7→ p3

p3 7→ p2

Then ϕ1 , ϕ2 despite ϕ1(p1) = ϕ2(p1) and dϕ1|p1
= 0 = dϕ2|p1

.

b b

b

p1 p2

p3

Example 4.4.21. Here is a 1-dimensional example. Let M =
{(x,y) ∈ R2 | |y|= 1}= M+⊔M− where M± = {(x,y) ∈ R2 |y =
±1}. Let p = (0,1) ∈ M. We provide M with the Riemannian

metric induced by the Euclidean metric on R2. Put

ϕ1 := id, and ϕ2(x,y) :=

{
(x,y) on M+

(−x,y) on M−

Both ϕ1 and ϕ2 are isometries. Now ϕ1(p) = ϕ2(p) and dϕ1|p =
dϕ2|p but ϕ1 , ϕ2.

b
M+

M−

p

Lemma 4.4.22. On M = Sn
k(r) (where 0 ≤ k ≤ n−1), on M = Hn

k (r) (where 1 ≤ k ≤ n) and

on M = Hn(r) any two points can be joined by a geodesic.

Proof. W.l.o.g. we assume n ≥ 2. Let p,q ∈ M. Since M is connected we can choose a contin-

uous curve c : [0,1] → M with c(0) = p and c(1) = q. W.l.o.g. we assume c(t) < {p,−p} for

all t ∈ (0,1). Then p and c(t) are linearly independent for all t ∈ (0,1) and span a unique plane

E(t).

For any t ∈ (0,1) the intersection M∩E(t) consists of an ellipse or a pair of hyperbolas or a pair

of straight lines. For t → 0 the points c(t) converges to p; hence the points p and c(t) lie on the

same connected component of M∩E(t) for sufficiently small t.

For t ∈ (0,1) we choose X(t) ∈ Rn+1 depending continuously on t, which spans E(t) to-

gether with p and which, w.r.t. to the Euclidean skalar product 〈·, ·〉eukl, satisfies X(t) ⊥ p and

||X(t)||eukl = 1. Since Sn is compact there is a sequence ti ∈ (0,1) with ti → 1 such that X(ti)
converges. Put lim

i→∞
X(ti) =: X(1). By continuity, X(1) ⊥ p and ||X(1)||eukl = 1. Hence p and

X(1) are linearly independent and span a plane E(1). By continuity, p,q ∈ M ∩E(1) and they

lie in the same connected component of M∩E(1). �

Theorem 4.4.23. Restriction yields isomorphisms

Isom(Sn
k(r)) � O(n+1− k,k) for 0 ≤ k ≤ n−1
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Isom(Hn
k (r)) � O(n− k,k+1) for 1 ≤ k ≤ n

Isom(Hn(r)) � SO(n,1) := {A ∈ O(n,1) |A0
0 > 0}.

Proof. Put M = Sn
k(r), M = Hn

k (r) or M = Hn(r) and G = O(n+1− k,k), G = O(n− k,k+1),
or G = SO(n,1), respectively. We need to show: Every isometry of M is of the form

ϕ = A|M with A ∈ G.

a) We first show that G acts transitively on M. This means that for all p,q ∈ M there exists an

A ∈ G with Ap = q.

Namely: W.l.o.g. let p = r · e0 = (r,0, . . . ,0)T . From 〈q,q〉 = ±r2 we see that b0 := 1
r
q

satisfies 〈b0,b0〉=±1. We extend b0 to a generalized eigenbasis b0,b1, . . . ,bn of Rn+1. Now

A := (b0,b1, . . . ,bn) ∈ G and Ap = r Ae0 = rb0 = q.

b) Next we show: For any linear isometry B : Tp0
M → Tp0

M where p0 = re0, there exists an

A ∈ G such that ϕ = A|M satisfies ϕ(p0) = p0 and dϕ |p0
= B. Namely:

A :=







1 0 . . .0

0
...
0

B







does the job.

c) Let now ϕ ∈ Isom(M). Put p1 := ϕ(p0) where p0 = re0. By a) there exists an A1 ∈ G with

A1 p0 = p1. Hence ψ := A−1
1 |M ◦ϕ is an isometry of M with ψ(p0) = p0.

Moreover, B := dψ |p0
: Tp0

M → Tp0
M is a linear isometry. By b) there is an A2 ∈ G such that

χ := A2|M satisfies dχ |p0
= B. Lemma 4.4.22 and Corollary 4.4.17 imply χ = ψ . Thus

ϕ = A1|M ◦ψ = A1|M ◦χ = A1|M ◦A2|M = (A1 ◦A2)
︸      ︷︷      ︸

∈G

|M. �

4.5 Trigonometry in spaces of constant curvature

We want to extend the classical trigonometry of the Euclidean plane to 2-dimensional model

spaces of constant curvature. This means that we investigate length- and angular relations in

geodesic triangles.
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Notation 4.5.1. The model spaceMn
κ is defined as

M
n
κ :=







Sn( 1√
κ
) if κ > 0,

R
n if κ = 0,

Hn
(

1√
|κ |

)

if κ < 0.

ThusMn
κ is an n-dimensional Riemannian manifold with the constant sectional curvature κ .

Remark 4.5.2. Since for any given three points there exists a two-dimensional totally geodesic

submanifold ofMn
κ isometric toM2

κ which contains these points, it suffices to consider the case

n = 2.

Define the bilinear form on R3

〈x,y〉κ := x0y0 +κ(x1y1 + x2y2).

Set M̂κ := {x ∈ R3 | 〈x,x〉κ = 1} and put

Mκ :=

{

M̂κ if κ > 0,

{x ∈ M̂κ |x0 > 0} if κ ≤ 0.

In the case κ , 0, the metric 1
κ 〈·, ·〉κ on R3 induces a

Riemannian metric onMκ . In particular,

Mκ =

{

S2 if κ = 1,

H2 if κ =−1.

M̂0

M̂1

M̂−1

In the case κ = 0, every bilinear form on R3 of the form λ · x0y0 + x1y1 + x2y2 induces the same

Euclidean metric on M0, independent of λ ∈ R. We choose λ = 0 and in the case κ = 0 we

make the definition:
1
κ 〈x,y〉κ := x1y1 + x2y2.

Lemma 4.5.3. For every κ ∈ R, the isometry group ofMκ contains the subgroup

Gκ :=
{

ϕ | ϕ = A|Mκ where A ∈ GL(3) with 〈Ax,Ay〉κ = 〈x,y〉κ ,

1

κ
〈Ax,Ay〉κ =

1

κ
〈x,y〉κ ∀x,y ∈ R3 and A(Mκ) =Mκ

}
.

Remark 4.5.4. In the case κ , 0 the conditions 〈Ax,Ay〉κ = 〈x,y〉κ and 1
κ 〈Ax,Ay〉κ = 1

κ 〈x,y〉κ
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are of course equivalent and we could omit one of them. But in the case κ = 0 we need both of

them.

From 〈Ax,Ay〉κ = 〈x,y〉κ it already follows that A(M̂κ)= M̂κ . In the case κ ≤ 0, A could possibly

exchange the two connected components of M̂κ . This is ruled out by the condition A(Mκ) =Mκ .

In the case κ > 0 we could omit this condition.

Proof of the Lemma. Let A ∈ Gκ . Since ϕ = A|Mκ is the restriction of the linear map A, we get

that for p ∈Mκ the differential dϕ(p) : TpMκ → Tϕ(p)Mκ also is the restriction of A,

dϕ(p) = A|TpMκ .

Here, the tangent spaces of Mκ are viewed as subvector spaces of R3. Since A respects the

bilinear form 1
κ 〈·, ·〉κ , the differential dϕ(p) is a linear isometry for every p ∈Mκ . Thus ϕ is an

isometry of Riemannian manifolds. �

Remark 4.5.5. Indeed, we have Isom(Mκ) = Gκ but we will not need this fact.

For κ = 1 we have

Gκ � {A ∈ GL(3) | 〈Ax,Ay〉 = 〈x,y〉 ∀x,y ∈ R3}= O(3)

the group of orthogonal transformations. For κ = −1, Gκ is the group of time-orientation

preserving Lorentz transformations.

In case κ = 0, we have:

G0 = {A ∈ GL(3) | 〈Ax,Ay〉0 = 〈x,y〉0 ,
1
0
〈Ax,Ay〉0 =

1
0
〈x,y〉0∀x,y ∈ R3,AM0 =M0}

=






A =





1 0 0

b1

b2 B





∣
∣
∣
∣
∣
∣

b1,b2 ∈ R,B ∈ O(2)







This holds true since for any A ∈ G0,

x0y0 = (Ax)0(Ay)0 = (A0
0x0 +A0

1x1 +A0
2x2)(A0

0y0 +A0
1y1 +A0

2y2)

Thus 





For x = y =e0: 1=(A0
0)

2 ⇒ A0
0 =±1

A(M0)=M0⇒ A0
0=1.

For x = y =e1: 0=(A0
1)

2 ⇒ A0
1=0.

For x = y =e2: 0=(A0
2)

2 ⇒ A0
2=0.

For x̂, ŷ ∈ R2 we have with x = (0, x̂)⊤ and y = (0, ŷ)⊤:

〈x̂, ŷ〉
R2 = 1

0
〈x,y〉0 =

1
0
〈Ax,Ay〉0 =

1
0

〈(
0

Bx̂

)

,

(
0

Bŷ

)〉

0

= 〈Bx̂,Bŷ〉
R2 .
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Hence B ∈ O(2) and therefore

G0 ⊂
{

A =

(
1 0

b B

)∣
∣
∣
∣
b ∈ R2,B ∈ O(2)

}

.

The other inclusion ”‘⊃”’ follows by a direct computation.

We now analyze, how G0 acts, if we identify M0 with R2 .

R
2 → M0

(
1 0
b B

)

−→ M0 → R
2

x̂ 7→
(

1

x̂

)

7→
(

1 0

bB

)(
1

x̂

)

=

(
1

b+Bx̂

)

7→ b+Bx̂

Hence the group G0 acts like the group of Euclidean motions.
As seen in the last paragraph, the geodesics inMκ , viewed

as a set of points, equal the sets of the form

Mκ ∩E,

where E ⊂ R3 is a two-dimensional subvector space.

b

b

M0

E 0

e0

Lemma 4.5.6. The geodesics parametrized by arc-length γ : R→Mκ with γ(0) = e0 are then

given by

γ(r) =





cκ(r)
sκ(r) · sin(ϕ)
sκ(r) · cos(ϕ)





where ϕ ∈ R is fixed.

Proof. The curve γ stays in M̂κ because

〈γ(r),γ(r)〉κ = cκ(r)
2 +κ

(
sκ(r)

2 sin(ϕ)2 + s2κ cos(ϕ)2
)
= cκ(r)

2 +κ sκ(r)
2 = 1.

Since γ(0) = e0 ∈Mκ and γ is continuous, γ remains in Mκ . Moreover, γ lies in the plane E ,

which is spanned by e0 and (0,sin(ϕ),cos(ϕ))⊤. Hence γ is contained inMκ ∩E . In addition, γ
is parametrized by arc-length because

1
κ 〈γ̇(r), γ̇(r)〉κ = 1

κ

〈



−κ sκ(r)
cκ(r)sin(ϕ)
cκ(r)cos(ϕ)



 ,





−κ sκ(r)
cκ(r)sin(ϕ)
cκ(r)cos(ϕ)





〉

κ

= 1
κ

(

κ2
sκ(r)

2 +κ
(
cκ(r)

2 sin(ϕ)2 + cκ(r)
2 cos(ϕ)2

))

= κ sκ(r)
2 + cκ(r)

2

= 1. �
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The generalized sine and cosine functions allow us to explicitly write down many isometries in

Gκ .

Example 4.5.7. Rotations about the e0-Axis are isometries,




1 0 0

0 cos(ϕ) −sin(ϕ)
0 sin(ϕ) cos(ϕ)



 ∈ Gκ

for any ϕ and any κ ∈ R. Using κ s2κ + c
2
κ = 1 one easily checks that





cκ(r) −κ sκ(r) 0

sκ(r) cκ(r) 0

0 0 1



 ∈ Gκ

for all r ∈ R. In the case κ = 1 this is a rotation about the e2-axis. For κ = 0 this is the identity,

hence uninteresting. In the case κ = −1 such isometries are called Lorentz boosts. Similarly,

one sees that

Lr :=





cκ(r) 0 κ sκ(r)
0 1 0

sκ(r) 0 −cκ(r)



 ∈ Gκ .

Before using these isometries we observe that

Lre0 =





cκ(r)
0

sκ(r)





and

Lr





cκ(r)
0

sκ(r)



=





cκ(r) 0 κsκ(r)
0 1 0

sκ(r) 0 −cκ(r)









cκ(r)
0

sκ(r)





=





cκ(r)
2 +κsκ(r)

2

0

sκ(r)cκ(r)− cκ(r)sκ(r)



=





1

0

0



= e0.

Thus Lr interchanges the points e0 and (cκ(r),0,sκ (r))
⊤.

Definition 4.5.8.

Let M be a Riemannian manifold. A geodesic triangle is a

6-tupel

(A,B,C,γA,γB,γC),

where A,B,C ∈ M are pairwise disjoint points, γA, γB and γC

geodesic segments with endpoints B and C, C and A or A and

B, respectively.

b

b

b

A

B

C

γA
γB

γC

The points A, B and C are the vertices, the geodesic segments γA, γB and γC are the sides of
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the geodesic triangle. The angle at a vertex is defined to be the angle of the tangent vectors of

the sides at that vertex.

Let (A,B,C,γA,γB,γC) a geodesic triangle in Mκ . The sides have the

lengths a, b and c, respectively, and the angles are denoted by α , β
and γ , respectively.

b

b

b

A

B

C

a
b

c
α

β

γ

Here the length of a geodesic segment γ is defined as the length of the parameter interval ×
the norm of γ̇ , which is constant. A more general definition of the length of a differentiable

curve in a Riemannian manifold will be introduced later. Since the isometry group of Mκ acts

transitively, we can assume w.l.o.g. that

A = e0 =





1

0

0



 .

Applying an isometry of the form





1 0 0

0 cos(ϕ) −sin(ϕ)
0 sin(ϕ) cos(ϕ)





(rotation about the e0-axis) we can rotate B in the e0-e2-plane without moving A = e0. The

formula from Lemma 4.5.6 for the geodesic γC with ϕ = 0 and r = c then tells us

B =





cκ(c)
0

sκ(c)





Lemma 4.5.6 for the geodesic γB with ϕ = α and r = b yields

C =





cκ(b)
sκ(b)sin(α)
sκ(b)cos(α)



 .

Hence the isometry Lc interchanges the points A and B

and we obtain a new geodesic triangle. On the one hand

one can compute LcC similarly as C itself and one obtains

b

b

b

A = LcB

B
=

L
c
A

LcC

b
a

cβ

α

γ

LcC =





cκ(a)
sκ(a)sin(β )
sκ(a)cos(β )



 .
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On the other hand

LcC =





cκ(c) 0 κsκ(c)
0 1 0

sκ(c) 0 −cκ(c)









cκ(b)
sκ(b)sin(α)
sκ(b)cos(α)





=





cκ(c)cκ(b)+κsκ(c)sκ(b)cos(α)
sκ(b)sin(α)

sκ(c)cκ(b)− cκ(c)sκ(b)cos(α)





Thus we obtain the equations:

cκ(a) = cκ(c)cκ(b)+κ sκ(c)sκ(b)cos(α) (Law of Cosines) (1)

sκ(a)sin(β ) = sκ(b)sin(α)

sκ(a)

sin(α)
=

sκ(b)

sin(β )
(Law of Sines) (2)

sκ(a)cos(β ) = sκ(c)cκ (b)− cκ(c)sκ(b)cos(α) (3)

Equation (3) with the roles of B and C interchanged yields

sκ(a)cos(γ) = sκ(b)cκ (c)− cκ(b)sκ(c)cos(α) (4)

Equation (3) · cos(α)− (2) · sin(α)2 · sin(β ) then yields

sκ(a)cos(β )cos(α)− sκ(a)sin(β )sin(α)

= sκ(c)cκ(b)cos(α)− cκ(c)sκ(b)cos(α)2 − sκ(b)sin(α)2

Hence

sκ(a)(cos(α)cos(β )− sin(α)sin(β ))

(4)
= sκ(b)cκ(c)− sκ(a)cos(γ)− sκ(b)cκ(c)cos(α)2 − sκ(b)sin(α)2

= sκ(b)cκ(c)sin(α)2 − sκ(a)cos(γ)− sκ(b)sin(α)2

(2)
= sκ(a)cκ(c)sin(α)sin(β )− sκ(a)cos(γ)− sκ(a)sin(α)sin(β )

and thus cos(α)cos(β ) = cκ(c)sin(α)sin(β )− cos(γ), hence

cos(γ) = cκ(c)sin(α)sin(β )− cos(α)cos(β ) (Cosine Rule for Angles).

We have proved

Theorem 4.5.9. Let κ ∈R. For a geodesic triangle inMκ with the side lengths a, b, c and the

angles α , β , γ we have

(1) Law of Sines:
sκ(a)

sin(α)
=
sκ(b)

sin(β )
=
sκ(c)

sin(γ)
.
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(2) Law of Cosines (Cosine Rule for Sides):

cκ(a) = cκ(b)cκ(c)+κsκ(b)sκ(c) · cos(α),

cκ(b) = cκ(a)cκ(c)+κsκ(a)sκ(c) · cos(β ),

cκ(c) = cκ(a)cκ(b)+κsκ(a)sκ(b) · cos(γ).

(3) Cosine Rule for Angles:

cos(α) = cκ(a)sin(β )sin(γ)− cos(β )cos(γ),

cos(β ) = cκ(b)sin(α)sin(γ)− cos(α)cos(γ),

cos(γ) = cκ(c)sin(α)sin(β )− cos(α)cos(β ).

Now we analyze the sum of angles in the model space of constant curvature.

Theorem 4.5.10. Let κ ∈ R. For the sum of angles α +β + γ of a geodesic triangle in Mκ

with the inner angles 0 < α ,β ,γ < π we have

α +β + γ







> π, if κ> 0

= π, if κ= 0

< π, if κ< 0

b

b

b

b

b

b

b

b

b

κ > 0 κ = 0 κ < 0

Proof. W.l.o.g. we assume that α ≥ β . For this proof we will use the notation “⋚” for “<”, if

κ > 0, for “=”, if κ = 0, and for “>”, if κ < 0. We have −κ ⋚ 0, for instance.

If is κ > 0, then Mκ is the sphere of radius 1√
κ

. Thus in this case the side lengths have to be

< 2π√
κ

. In the case κ ≤ 0, we do not have any bounds on the side lengths. We use the convention

1√
κ
= ∞, if κ ≤ 0. With this convention we have in all cases

cκ ⋚ 1

in the interval (0, 2π√
κ
). Since sin is positive on (0,π) the Cosine Rule for Angles yields

cos(α) = cκ(a)sin(β )sin(γ)− cos(β )cos(γ)
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⋚ sin(β )sin(γ)− cos(β )cos(γ)

= −cos(β + γ)

= cos(π − (β + γ))

= cos(β + γ −π).

Since 0 < β ,γ < π we have −π < π − (β + γ)< π .

First case: π − (β + γ)≥ 0.

Since cos is strictly monotonically decreasing on [0,π], the relation cos(α) ⋚ cos(π − (β + γ))
yields π − (β + γ) ⋚ α and thus π ⋚ α +β + γ . This is what we wanted to show.

Second Case: π − (β + γ)< 0.

If κ > 0, we obtain π < β + γ < α +β + γ directly, which proves the claim. Hence, let κ ≤ 0.

Then from cos(α)≥ cos(β + γ−π) we may deduce that α ≤ β + γ −π . Since α ≥ β and γ < π
this implies

α < α +π −π = α ,

giving a contradiction. �

Remark 4.5.11. Since the inner angles are < π , we always have for the sum of angles in a

geodesic triangle α +β + γ < 3π . It is easy to see that for Mκ with κ > 0 the sum of angles of

a geodesic triangle can take all values in (π,3π). For Mκ with κ < 0 all values of the interval

(0,π) occur.
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5 Riemannian Geometry

From now on we concentrate on Riemannian geometry, that is, on semi-Riemannian manifolds

whose metric is positive definite and hence defines a Euclidean scalar product on each tangent

space. One special feature of the Riemannian case is that each connected Riemannian manifold

naturally becomes a metric space.

5.1 The Riemannian distance function

General Assumption. Let M be a connected Riemannian manifold and let 〈·, ·〉 denote the

Riemannian metric.

Definition 5.1.1. Let c : [a,b]→ M be a continuous piecewise C1-curve. Then we call

L[c] :=

b∫

a

||ċ(t)|| dt

the length of c.

Remark 5.1.2. The length does not depend on the parametrization of the curve. Namely, if

ϕ : [a,b]→ [α ,β ] is a parameter transformation, then we have

L[c◦ϕ ] =

b∫

a

∣
∣
∣
∣

∣
∣
∣
∣

d

dt
(c◦ϕ)(t)

∣
∣
∣
∣

∣
∣
∣
∣

dt

=

b∫

a

||ċ(ϕ(t))|| · |ϕ̇(t)|dt

Substitution

s = ϕ(t) =

β∫

α

||ċ(s)|| ds

= L[c].
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Definition 5.1.3. Let p,q ∈ M. Then we call

d(p,q) = inf
{

L[c] |c : [a,b]→ M piecewise C1-curve with c(a) = p,c(b) = q
}

the Riemannian distance of p and q.

Remark 5.1.4. The infimum is, in general, not a minimum. In other words, there need not exist

a shortest curve connecting p and q.

Example 5.1.5. M = Rn \{0} and p =−q. We have d(p,q) = 2 ||p||, but every curve c from p

to q has length L[c]> 2 ||p||.

bc

b

b

q

p
0

R
n

Theorem 5.1.6 (Gauß lemma). Let p ∈ M and ξ ∈ TpM. The geodesic γ(t) = expp(tξ ) is

supposed to be defined on [0,b].
Then expp is defined on an open neighborhood of {tξ |0 ≤ t ≤ b} ⊂ TpM and we have

(i) d expp |tξ (ξ ) = γ̇(t).

(ii) For η ∈ Ttξ TpM � TpM we have

〈
d expp |tξ (η), γ̇(t)

〉
= 〈η ,ξ 〉 .

In particular, d expp |tξ (η)⊥ γ̇(t), if η ⊥ ξ .

b

b

b

b

b

b

M

TpM

p

0
tξ

ξ
ξ

η

d expp |tξ (η)

γ̇(t)
γ(t)

γ

expp
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Proof. (i) We compute d expp |tξ (ξ ) =
d

ds
expp(t ξ + sξ )|s=0 =

d

ds
γ(t + s)|s=0 = γ̇(t).

(ii) By (i) it suffices to consider the case η ⊥ ξ . Let J be the Jacobi field along γ with J(0) = 0

and ∇
dt

J(0) = η . Proposition 3.4.13 yields

d expp |tξ (η) =
J(t)

t
for t > 0.

Since both J and ∇
dt

J are perpendicular to γ̇ at t = 0, this holds for all t. We conclude

〈
d expp |tξ (η), γ̇(t)

〉
=

〈
J(t)

t
, γ̇(t)

〉

= 0 = 〈η ,ξ 〉 . �

We now consider the diffeomorphism

Φ : TpM \{0} −→ (0,∞)×Sn−1, x = t · y 7→ (t,y) = (‖x‖, x

‖x‖),

where Sn−1 ⊂ TpM is the unit sphere in the tangent space. There exists an r > 0, such that expp

maps B(0,r)⊂ TpM diffeomorphically onto a neighborhood U of p in M. Then the map

(0,r)×Sn−1 →U \{p}, (t,y) 7→ expp(ty),

is a diffeomorphism. Now let y2, . . . ,yn be local coordinates on an open set U1 ⊂ Sn−1. Then the

coordinates given by the diffeomorphism

expp(ty) 7→ (t,y2, . . . ,yn),

are called geodesic polar coordinates.

b

b

Φ≈

U

B(0,r)

0 r

Sn−1

U1

M

TpM

p

0

expp

The Gauß lemma says that in such coordinates the Riemannian metric takes the form

(gi j) =







1 0 · · · 0

0
...
0

∗






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Corollary 5.1.7. Let r > 0 so small that expp |B̄(0,r) is a diffeomorphism onto its image. Let

c : [a,b]→ M be a piecewise C1-curve with c(a) = p and c(b) < expp(B(0,r)). Then L[c]≥ r.

Proof. Let β ∈ (a,b) be minimal such that c(β ) ∈ ∂ expp(B(0,r)) = expp(S
n−1(r)). Let α ∈

[a,β ) maximal such that c(α) = p. Now it is ensured that for τ ∈ (α ,β ) the curve c(τ) lies in

expp(B(0,r))\{p}. For τ ∈ (α ,β ] we write

c̃(τ) := expp
−1(c(τ)) = t(τ) · y(τ)

where t(τ) := ‖c̃(τ)‖ ∈ (0,r] and y(τ) := c̃(τ)
‖c̃(τ)‖ ∈ Sn−1. Let ξ̃ be the unit vector field on TpM \

{0} which corresponds to ξ̃ (x) = x
‖x‖ under the canonical isomorphism TxTpM � TpM. Using the

diffeomorphism expp we transport this vector field to the manifold, that is, on expp(B̄(0,r))\{p}
we set

ξ (q) := d expp

(

ξ̃
(
expp

−1(q)
))

.

The first part of the Gauß lemma implies ||ξ || ≡ 1. Because of

d

dτ
c̃(τ) =

dt

dτ
· y(τ)
︸︷︷︸

= ξ̃ (c̃(τ))

+t(τ) · dy

dτ
(τ)

︸   ︷︷   ︸

⊥ ξ̃(c̃(τ))

part (ii) of the Gauß lemma yields

〈
ξ
(
c(τ)

)
, ċ(τ)

〉
=
〈

d expp

(
ξ̃
(
c̃(τ)

))
,d expp

(
˙̃c(τ)

)〉

=
〈

ξ̃
(
c̃(τ)

)
, ˙̃c(τ)

〉

=
dt

dτ
.

Thus we get

L[c] ≥ L[c|[α ,β ]]

=

β∫

α

||ċ(τ)|| dτ

Cauchy-Schwarz

inequality
≥

β∫

α

〈
ξ
(
c(τ)

)
, ċ(τ)

〉
dτ

=

β∫

α

dt

dτ
dτ

= t(β )− t(α)

= r−0 = r.

b

b

ξ̃

ξ

U

B(0,r)

M

TpM

p

0

expp

�
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Theorem 5.1.8. (M,d) is a metric space.

Proof. a) Obviously we have d(p,q) ≥ 0 and d(p, p) = 0 because the constant curve has length

0. Now let p , q. We have to show d(p,q) > 0. Choose r > 0 such that expp |B(0,r) is a

diffeomorphism and q < expp(B(0,r)). Then by Corollary 5.1.7 every curve from p to q has

length r at least. Hence d(p,q) ≥ r > 0.

b) Symmetry d(p,q) = d(q, p) is clear. Simply traverse the curves in the opposite direction.

c) It remains to show the triangle inequality d(p,q) ≤ d(p,r)+d(r,q).

Let ε > 0. Choose a continuous piecewise C1-curves c1

from p to r with L[c1] ≤ d(p,r)+ ε and c2 from r to q

with L[c2]≤ d(r,q)+ ε . Now concatenate c1 and c2 to a

continuous piecewise C1-curve c from p to q. Then we

have b

b

b

c1

c2

r

p

q

d(p,q) ≤ L[c] = L[c1]+L[c2]≤ d(p,r)+ ε +d(r,q)+ ε .

Taking the limit ε ց 0 yields the assertion. �

Notation 5.1.9. For p ∈ M and r > 0 set

B(p,r) := {q ∈ M |d(p,q) < r},
B̄(p,r) := {q ∈ M |d(p,q) ≤ r},
S(p,r) := {q ∈ M |d(p,q) = r}.

Definition 5.1.10. For p ∈ M

injrad(p) := sup{r | expp |B(0,r) : B(0,r)→ expp

(
B(0,r)

)
is diffeomorphism}

is called the injectivity radius of M at p.

Example 5.1.11. The injectivity radius depends on p.

here injrad is large

here injrad is small
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Remark 5.1.12. For 0 < r < injrad(p) we have expp(B(0,r)) = B(p,r). Namely:

“⊂”: Let q = expp(ξ ) with ||ξ ||< r. Then t 7→ expp(tξ ), t ∈ [0,1], is a curve from p to q with

length ||ξ ||< r. Hence d(q, p) < r, i.e., q ∈ B(p,r).

“⊃”: Corollary 5.1.7.

Theorem 5.1.13. The metric d induces the original topology on M.

Proof. For the moment we denote the open subsets w.r.t. d of M as “d-open”. We have to show:

d-open = open.

a) Claim: Every d-open set is open.

Let U ⊂M be d-open. For every p∈U there exists a r(p)> 0, such that B(p,r(p)) ⊂U . W.l.o.g.

let r(p)< injrad(p). Then B(p,r(p)) = expp(B(0,r(p))
︸        ︷︷        ︸

open in TpM

) is the diffeomorphic image of an open

subset of TpM. Hence it is open itself. Therefore U =
⋃

p∈M

B
(

p,r(p)
)

is the union of open subsets

of M and thus open.

b) Claim: Every open set is d-open. The proof is similar. �

Corollary 5.1.14. The map d : M×M → R is continuous.

Remark 5.1.15. If Φ ∈ Isom(M). Then we have L[Φ◦c] = L[c] and thus also d
(
Φ(p),Φ(q)

)
=

d(p,q).

Recall that E[c] = 1
2

b∫

a

||ċ(t)||2 dt is the energy of c.

Proposition 5.1.16. Let M be a Riemannian manifold and c : [a,b] → M be a continuous,

piecewise C1-curve. Then we have

L[c]2 ≤ 2(b−a) ·E[c].

Equality holds if and only if c is parametrized proportionally to arc-length.

Proof. With the Cauchy-Schwarz inequality for the L2-scalar product we obtain:

L[c]2 =





b∫

a

||ċ(t)|| ·1dt





2

≤
b∫

a

||ċ(t)||2 dt ·
b∫

a

12 dt = 2E[c] · (b−a).
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Equality holds if and only if ||ċ|| and 1are linearly dependent (as functions) . This means that ||ċ||
is constant, i.e., that c is parametrized proportionally to arc-length. �

Corollary 5.1.17. A curve c minimizes the energy in the set of all continuous piecewise C1-

curves connecting p and q if and only if c minimizes the length and is parametrized propor-

tionally to arc-length.

Remark 5.1.18. By Corollary 2.6.10 energy minimizing curves are geodesics.

Corollary 5.1.19. Every shortest curve c from p to q with ċ(t) , 0 for all t is a geodesic up to

parametrization. It is a geodesic if and only if it is parametrized proportionally to arc-length.

Caution! The converse is not true. Not every geodesic is a shortest curve connecting its end-

points.

Example 5.1.20. Great circles on Sn are geodesics connecting points to themselves. But the

only shortest curves connecting a point to itself are constant curves which have length 0.

Definition 5.1.21. A geodesic γ : [a,b]→ M with L[γ ] = d
(
γ(a),γ(b)

)
is called minimal.

5.2 The second variation of the energy

We recall: If cs is a C2-variation of c : [a,b]→ M with varia-

tional field ξ , then the first variation formula (Theorem 2.6.5)

says:

d
ds

E[cs]|s=0 =−
b∫

a

〈

ξ , ∇
dt

ċ
〉

dt + 〈ξ , ċ〉 |ba.

b

b c

ξ

cs

If cs is continuous and only piecewise C2, that is, there

exists a partition a = t0 < t1 < · · · < tN = b, such that

(s, t) 7→ cs(t) is continuous on (−ε ,ε)× [a,b] and C2 on

(−ε ,ε)× [ti−1, ti], then we have

b

b

b

c

c(
t i
+

1
)

c(ti)
c(ti−1)

ċ(t+i )

ċ(t−i )

d

ds
E[cs]|s=0 =

d

ds

N

∑
i=1

E[cs|[ti−1,ti]]|s=0
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=
N

∑
i=1

(

−
∫ ti

ti−1

〈

ξ ,
∇

dt
ċ

〉

dt +
〈
ξ (ti), ċ(t

−
i )
〉
−
〈
ξ (ti−1), ċ(t

+
i )
〉
)

= −
∫ b

a

〈

ξ ,
∇

dt
ċ

〉

dt +
〈
ξ (b), ċ(b−)

〉
−
〈
ξ (a), ċ(a+)

〉
+

N

∑
i=1

〈
ξ (ti), ċ(t

−
i )− ċ(t+i )

〉

Question: If c is a continuous and only piecewise C2-curve with d
ds

E[cs]|s=0 = 0 for all continu-

ous, piecewise C2-variations cs with fixed endpoints, does c then have to be a geodesic (and thus

in particular C∞)?

Answer: Yes. Namely: First of all, consider only such varia-

tions with ξ (ti) = 0 for all i ∈ {0, . . . ,N}, then it follows as in

the proof of Corollary 2.6.10 that ∇
dt

ċ ≡ 0 on every [ti−1, ti] for

i = 1, . . . ,N.

⇒ The curve c is piecewise a geodesic.
b

b

b

b

If ċ(t−i ) , ċ(t+i ) for an i ∈ {1, . . . ,N −1} then we can choose an η ∈ Tc(ti)M with

〈
η , ċ(t−i )− ċ(t+i )

〉
> 0.

Now continue η via parallel transport along c. Choose a smooth function ϕ : R → R with

ϕ(ti) = 1 and ϕ ≡ 0 on R\(ti−1, ti+1). Set ξ (t) := ϕ(t)η(t). Then we have ξ (a) = ξ (b) = 0 and

thus

0 =
d

ds
E[cs]|s=0 =

〈
ξ (ti), ċ(t

−
i )− ċ(t+i )

〉
=
〈
η , ċ(t−i )− ċ(t+i )

〉
> 0.

This is a contradiction. We summarize:

Theorem 5.2.1. Let M be a semi-Riemannian manifold and c : [a,b] → M be a continuous,

piecewise C2-curve. Then for every continuous piecewise C2-variation cs of c with variational

field ξ we have

d

ds
E[cs]

∣
∣
∣
∣
s=0

=−
b∫

a

〈

ξ ,
∇

dt
ċ

〉

dt + 〈ξ , ċ〉
∣
∣
∣
∣

b

a

+
N−1

∑
i=1

〈
ξ (ti), ċ(t

−
i )− ċ(t+i )

〉
,

where a = t0 < t1 < · · ·< tN = b is a partition for which both c and cs are C2 on the intervals

[ti−1, ti], i = 1, . . .N.

The curve c is a geodesic if and only if for all such variations with fixed endpoints we have

d

ds
E[cs]

∣
∣
∣
∣
s=0

= 0.

To investigate the minima of the energy, we have to consider the second variation of the energy.
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Theorem 5.2.2 (Second Variation of the energy). Let M be a semi-Riemannian manifold.

Let c : [a,b] → M be a geodesic. Let cs be a C3-variation of c with variational field ξ and

fixed endpoints. Then we have

d2

ds2
E[cs]

∣
∣
∣
∣
s=0

=

b∫

a

(〈
∇

dt
ξ ,

∇

dt
ξ

〉

−〈R(ξ , ċ)ċ,ξ 〉
)

dt.

Proof. In the proof of Theorem 2.6.5 we have already shown that

d

ds
E[cs] =

b∫

a

〈
∇

∂ t

∂cs

∂ s
,
∂cs

∂ t

〉

dt

holds for all s, not just for s = 0. Therefore

d2

ds2
E[cs]

∣
∣
∣
∣
s=0

=

b∫

a

(〈
∇

∂ s

∇

∂ t

∂cs

∂ s

∣
∣
∣
∣
s=0

, ċ

〉

+

〈
∇

dt
ξ ,

∇

∂ s

∂cs

∂ t

∣
∣
∣
∣
s=0

〉)

dt

=

b∫

a

〈
∇

∂ t

∇

∂ s

∂cs

∂ s

∣
∣
∣
∣
s=0

, ċ

〉

dt +

b∫

a

〈R(ξ , ċ)ξ , ċ〉 dt +

b∫

a

〈
∇

dt
ξ ,

∇

dt
ξ

〉

dt.

The assertion follows from

b∫

a

〈
∇

∂ t

∇

∂ s

∂cs

∂ s

∣
∣
∣
∣
s=0

, ċ

〉

dt =

b∫

a

(

∂

∂ t

〈
∇

∂ s

∂cs

∂ s

∣
∣
∣
∣
s=0

, ċ

〉

−
〈

∇

∂ s

∂cs

∂ s

∣
∣
∣
∣
s=0

,
∇

dt
ċ

︸︷︷︸

=0

〉)

dt

=

〈
∇

∂ s

∂cs

∂ s

∣
∣
∣
∣
s=0

, ċ

〉∣
∣
∣
∣

b

a

= 0,

because cs is a variation with fixed endpoints. �

5.3 Completeness

General Assumption. Throughout this section let M be a connected Riemannian manifold.

Definition 5.3.1. Let p ∈ M. Then M is called geodesically complete at p if expp is defined

on all of TpM, i.e., if all geodesics through p are defined on all of R.
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Theorem 5.3.2 (Hopf-Rinow). Let M be a connected Riemannian manifold and p∈ M. Then

the following assertions are equivalent:

(1) M is geodesically complete at p.

(2) M ist geodesically complete at all q ∈ M.

(3) The closed balls B̄(p,r) are compact for all r > 0.

(4) The closed balls B̄(q,r) are compact for all r > 0 and all q ∈ M.

(5) (M,d) is complete as a metric space, i.e., all d-Cauchy sequences converge.

All of these conditions imply in addition

(6) Every point q can be joined with p by a minimal geodesic.

Remark 5.3.3. Assertion (6) is weaker than (1) through (5).

Example 5.3.4. Let M = {x ∈ Rn | ||x||< 1} with the Euclidean met-

ric. Then M satisfies (6), but not (1)–(5).

bc

bc

Definition 5.3.5. If the equivalent conditions (1)–(5) in Theorem 5.3.2 hold, then one calls M

a complete Riemannian manifold.

Corollary 5.3.6. Every compact connected Riemannian manifold is complete.

Proof of Corollary 5.3.6. We check condition (3) in the Hopf-Rinow theorem. Indeed, B̄(p,r)⊂
M is a closed subset of the compact space M and thus compact itself. �

Proof of Theorem 5.3.2. We will prove this theorem in five steps. The structure of the proof is

as follows:

(5) (2) (1) (6)
︸         ︷︷         ︸

(4) (3)

(a) trivial (e)

(d)

(c)

(b)

a) Let γ : (α ,β ) → M be a geodesic with maximal domain of definition. W.l.o.g. we assume

that γ is parametrized by arc-length.
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We assume β < ∞ (the case α >−∞ is analogous). Then we have for a sequence ti ∈ (α ,β )

with ti
i→∞−→ β , that

d
(
γ(ti),γ(t j)

)
≤ L[γ |[ti,t j ]] = |ti − t j|.

Hence (γ(ti))i∈N is a d-Cauchy sequence. Since (M,d) is complete there exists a q ∈ M with

γ(ti)
i→∞−→ q.

1. Claim: The limit point q does not depend on the choice of the sequence (ti)i∈N with

ti
i→∞−→ β .

Proof. If (t ′i)i∈N is another such sequence with q′ = limi→∞ γ(t ′i), then also (t ′′i )i∈N is such a

sequence, where

t ′′i :=

{
t j, i =2 j

t ′j, i =2 j+1

The sequence (γ(t ′′i ))i∈N is a d-Cauchy sequence with accumulation points q and q′. We thus

have q = q′. This proves the first claim. ✓

Thus we obtain a continuous continuation γ̄ : (α ,β ]→ M of γ by

γ̄(t) =

{
γ(t), t ∈ (α ,β )

q , t = β

2. Claim: The velocity field γ̇ also has a continuous extension to (α ,β ].

Proof. Let x : U → V be a chart of M around q with x(q) = 0. Choose r > 0 such that

B̄(0,r) ⊂V . Since B̄(0,r) is compact, there exist constants C1,C2,C4 > 0 with

•

∣
∣
∣Γk

i j(y)
∣
∣
∣≤C1 for all y ∈ B̄(0,r).

• ||a||max ≤C2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n

∑
j=1

a j ∂
∂x j

(
x−1(y)

)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
g

for all a = (a1, . . . ,an) ∈ Rn and y ∈ B̄(0,r).

•

∣
∣
∣
∣

∂Γk
i j

∂xl (y)

∣
∣
∣
∣
≤C4 for all y ∈ B̄(0,r).

Choose ε > 0 small enough so that γ(t) ∈ x−1(B̄(0,r)) for t ∈ (β − ε ,β ). Write γk := xk ◦ γ
and ak := γ̇k. By the equations for geodesics we obtain:

ȧk = γ̈k =−
n

∑
i, j=1

Γk
i j(γ

1, . . . ,γn) · γ̇ iγ̇ j =−
n

∑
i, j=1

Γk
i j(γ

1, . . . ,γn)aia j

and hence
∣
∣ȧk
∣
∣≤ n2 ·C1 · ||a||2max .

This implies

∣
∣
∣
∣ȧ
∣
∣
∣
∣
max

≤ n2C1 · ||a||2max ≤ n2C1 ·C2
2 ||γ̇ ||g2

︸  ︷︷  ︸

=1

= n2C1C2
2 =: C3.
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We get

∣
∣
∣
∣a(ti)−a(t j)

∣
∣
∣
∣
max

=

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t j∫

ti

ȧ(t)dt

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
max

≤

∣
∣
∣
∣
∣
∣

t j∫

ti

||ȧ(t)||max dt

∣
∣
∣
∣
∣
∣

≤ C3

∣
∣ti − t j

∣
∣ .

Thus the a(ti) form a Cauchy sequence in Rn and hence converge to some A ∈ Rn. As before

A is independent of the special choice of the sequence (ti)i∈N with ti
i→∞−→ β . Thus we obtain

a continuous extension of a by

ā(t) :=

{

a(t), t ∈ (β − ε ,β )

A, t = β

Hence the velocity field γ̇ is extended continuously to t = β . This shows that the extension γ̄
of γ is C1. ✓

Differentiation of the geodesics equations yields

äk = −
n

∑
i, j=1

(
n

∑
l=1

∂Γk
i j

∂xl
alaia j +2Γk

i j ȧia j

)

This implies

||ä||max ≤ n3C4 ||a||3max +2n2C1 ||ȧ||max ||a||max

≤ n3C4C2
3 +2n2C1C3C2

=: C5

As before we see that (ȧ(ti))i∈N forms a d-Cauchy sequence in Rn. This shows that the

extension γ̄ is even a C2-curve. By continuity it satisfies the geodesic equation also at t = β .

Now let γ̂ : (β −δ ,β +δ )→ M be the geodesic with γ̂(β ) = γ̄(β ) and ˙̂γ(β ) = ˙̄γ(β ). Since

geodesics are uniquely determined by their initial values, γ̂ and γ̄ coincide on their common

domain of definition. This yields a continuation of γ as a geodesic on (α ,β + δ ). This

contradicts the maximality of β and thus shows (2).

b) Let all closed balls in M be compact. Let (pi)i∈N be a Cauchy sequence in M. Since Cauchy

sequences are bounded, there exists a R > 0 such that pi ∈ B̄(p,R) for all i ∈ N. Since

B̄(p,R) is compact, the Cauchy sequence (pi)i∈N has an accumulation point q ∈ B̄(p,R).
Since accumulation points of Cauchy sequences are unique, (pi)i∈N converges to q.

c) Let all B̄(p,r) be compact for all r > 0. Let q ∈ M and

let R > 0. Set r := R+d(p,q). Then

B̄(q,R)⊂ B̄(p,r),

because for x ∈ B̄(q,R) we have

d(x, p) ≤ d(x,q)+d(q, p) ≤ R+d(q, p) = r.

b

b

p

q
r

R

Hence B̄(q,R) is a closed subset of the compact set B̄(p,r) and therefore it is compact itself.
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d) Let (pi)i∈N be a sequence in B̄(p,r). We have to show that (pi)i∈N possesses a convergent

subsequence.

By (6) there exist minimal geodesics γi with γi(0) = p and γi(ti) = pi for suitable ti.

W.l.o.g. let γi be parametrized by to arc-length. Then ti = L[γi] =
d(p, pi)≤ r.

The γ̇i(0) are unit vectors in TpM. Since Sn−1(1) ⊂ TpM is com-

pact we have, after passing to a suitable subsequence,

γ̇i(0)
i→∞−→ X ∈ Sn−1(1)⊂ TpM.

b

b

b b

b

b

b

b

b

b

pi

γ̇i(0)
...p

X
q

B̄(p,r)

The ti lie in the compact interval [0,r]. After passing to a subsequence again, ti
i→∞−→ T ∈ [0,r]

converges too. Set q := expp(T ·X). This definition is possible because of (1). We now have

lim
i→∞

pi = lim
i→∞

expp

(
ti · γ̇i(0)

)
= expp

(
lim
i→∞

tiγ̇i(0)
)
= expp(T X) = q.

This proves (3).

e) Let q ∈ M. We already know, that we can find minimal geodesics from p to q, if q ∈
B(p, injrad(p)).

Let ck be continuous piecewise C1-curves from p

to q with L[ck] = d(p,q)+ εk with εk ց 0.

We assume q < B(p, injrad(p)) because otherwise

we are finished. Choose 0 < r0 < injrad(p). Then

S(p,r0) = expp

(
Sn−1(r0)

)

b

b

b

b

b

b
b
b

ckqk

q̄
p

B̄(p,r0)

γ
q

is compact. Let qk be the first intersection point of ck with S(p,r0). After passing to a

subsequence, qk possesses a limit q̄ ∈ S(p,r0). We have

d(p,q) ≤ d(p,qk)+d(qk,q)≤ L[ck]≤ d(p,q)+ εk

k→∞⇒ d(p,q) ≤ d(p, q̄)+d(q̄,q)≤ d(p,q)

⇒ d(p,q) = d(p, q̄)+d(q̄,q)

Let γ be the unique minimal geodesic that connects p with q̄. We parametrize γ by arc-length.

With (1) we can extend γ to [0,d(p,q)].

It remains to show that γ : [0,d(p,q)] → M is a minimal geodesic from p to q. Set

I :=
{

t ∈ [0,d(p,q)] |d(p,γ(t)) = t and d(p,γ(t))+d(γ(t),q) = d(p,q)
}
.

We have seen that [0,r0] ⊂ I. Set t0 := sup(I). We have to show that t0 = d(p,q) because

then

d
(
γ(t0),q

)
= d(p,q)−d

(
γ(t0), p

)
= d(p,q)− t0 = 0,
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which implies γ(t0) = q and that γ is a minimal geodesic from p to q.

We therefore assume that t0 < d(p,q) from which we

have to derive a contradiction. Set q′ := γ(t0). Choose

0 < r1 < d(p,q)− t0 such that B(q′,r1) is a normal

coordinate neighborhood. As above, there exists a

q̄′ ∈ ∂B(q′,r1) with

d(q′, q̄′)+d(q̄′,q) = d(q′,q).

b

b

b

b

γ(t0) = q′

q̄′
γ1

r1

p

qγ

Now let γ1 be a minimal geodesic, parametrized by arc-length, with γ1(t0) = q′ and γ(t0 +
r1) = q̄′.

⇒ d(p, q̄′) ≤ d(p,q′)+d(q′, q̄′)
= d(p,q′)+d(q′,q)−d(q̄′,q)
= d(p,q)−d(q′,q)+d(q′,q)−d(q̄′,q)
= d(p,q)−d(q̄′,q)
≤ d(p, q̄′)

⇒ d(p, q̄′) = d(p,q′)+d(q′, q̄′)

⇒ The curve γ |[0,t0 ]∪ γ1|[t0,t0+r1] is a shortest one.

⇒ t0 + r1 ∈ I. This contradicts the maximality of t0. We have proved (6). �

5.4 The Bonnet-Myers theorem

Definition 5.4.1. Let M be a connected Riemannian manifold. Then we call

diam(M) := sup{d(p,q) | p,q ∈ M} ∈ (0,∞]

the diameter of M.

Example 5.4.2. For M = Sn equipped with the standard metric g = gstd we have diam(Sn) = π .

For M = Rn with the Euclidean metric g = geucl and for hyperbolic space M = Hn with g = ghyp

we have diam(Rn) = diam(Hn) = ∞.

Remark 5.4.3. If M is complete then

diam(M)< ∞ ⇔ M is compact.

Namely:

“⇐”: M is compact ⇒ M × M is compact ⇒ d : M × M → R is bounded and attains its

maximum C ⇒ diam(M) =C < ∞.
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“⇒”: If diam(M) =: R < ∞, then for arbitrary p ∈ M we have M = B̄(p,R). Hence M is

compact by the Hopf-Rinow Theorem 5.3.2.

Theorem 5.4.4 (Bonnet-Myers). Let M be a complete connected Riemannian manifold of

dimension n. Assume there exists a κ > 0 such that

ric ≥ κ(n−1)g.

This means that ric(ξ ,ξ )≥ κ(n−1)g(ξ ,ξ ) for all ξ ∈ T M. Then M is compact and we have:

diam(M)≤ π√
κ
.

Example 5.4.5. (1) Let M = Sn with g = α2 ·gstd where α is a positive constant. Then we have

diam(M) = α π, K ≡ 1

α2
, ric ≡ n−1

α2
g

⇒ diam(M) =
π√

κ
and ric = κ(n−1)g with κ =

1

α2
.

This shows that the estimate in the Bonnet-Myers theorem is optimal and cannot be im-

proved.

(2) Now let M = RPn with g = gstd. Since RPn is locally isometric to Sn, we have as for the

sphere ric = (n−1)g. But diam(RPn) = π
2

. Here we find diam(M)< π√
κ

where κ = 1.

Proof of Theorem 5.4.4. Let p,q ∈ M with p , q. Set δ := d(p,q). Since M is complete, there

exists a minimal geodesic from p to q by the Hopf-Rinow theorem. W.l.o.g. let γ : [0,δ ] → M

be parametrized by arc-length with γ(0) = p and γ(δ ) = q.

Let e ∈ TpM with e ⊥ γ̇(0) and ||e|| = 1. Let e(t) be the vector field along γ obtained from e by

parallel transport. Set

ξ (t) := sin
(π

δ
t
)

· e(t).

Let γs(t) be a variation of γ with fixed endpoints and variational

field ξ , for example

γs(t) = expc(t)(s ·ξ (t)).
b

b

p

q
γe

ξ

Since γ is a minimal geodesic, we have

0 =
d

ds
E[γs]|s=0
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and

0 ≤ d2

ds2
E[γs]|s=0

=

δ∫

0

(∣
∣
∣
∣

∣
∣
∣
∣

∇

dt
ξ

∣
∣
∣
∣

∣
∣
∣
∣

2

−〈R(ξ , γ̇)γ̇ ,ξ 〉
)

dt

=

δ∫

0

(∣
∣
∣

∣
∣
∣
π

δ
cos
(π

δ
t
)

e(t)
∣
∣
∣

∣
∣
∣

2

− sin
(π

δ
t
)2

〈R(e, γ̇)γ̇ ,e〉
)

dt

=

δ∫

0

(
π2

δ 2
cos
(π

δ
t
)2

·1− sin
(π

δ
t
)2

K(e, γ̇)

)

dt.

If e1, . . . ,en−1 is a orthonormal basis of γ̇(0)⊥, we obtain with e = ei and summation over i:

0 ≤
δ∫

0

(

(n−1)
π2

δ 2
cos
(π

δ
t
)2

− sin
(π

δ
t
)2

ric(γ̇ , γ̇)
︸     ︷︷     ︸

≥(n−1)κ ·1

)

dt

≤ (n−1)

δ∫

0

(
π2

δ 2
cos
(π

δ
t
)2

− sin
(π

δ
t
)2

·κ
)

dt

= (n−1) · 1

2

π2 −κδ 2

δ
.

Therefore 0 ≤ π2 − κδ 2 and hence δ ≤ π√
κ

. Since this holds for all choices of p and q we

conclude

diam(M)≤ π√
κ
.

By Remark 5.4.3, M is compact. �

The theorem tells us that the larger the Ricci curvature of a Riemannian manifold, the smaller

the manifold.

Note that the following general implications hold:

K ≥ κ ⇒ ric ≥ (n−1)κ ·g ⇒ scal ≥ n(n−1)κ . (1)

Thus the Bonnet-Myers theorem also holds if the sectional curvature is bounded from below

by a postive constant, K ≥ κ > 0. Does the Bonnet-Myers theorem also hold under the weaker

condition scal ≥ n(n−1)κ?
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The answer is “no” as we see by the following counterexample.

If M1 and M2 are Riemannian manifolds and if M := M1 ×M2

carries the product metric, then

gM(ξ1 +ξ2
︸    ︷︷    ︸

,η1 +η2) = gM1
(ξ1,η1)+gM2

(ξ2,η2).

∈Tp1
M1⊕Tp2

M2

=T(p1,p2)
M

b

b

b

p1

p2

M1

M2

(p1, p2)
T(p1,p2)M

⇒ RM(ξ1 +ξ2,η1 +η2) =

(
RM1(ξ1,η1) 0

0 RM2(ξ2,η2)

)

⇒ ricM =

(
ricM1 0

0 ricM2

)

⇒ scalM = scalM1 + scalM2 .

For n ≥ 3 we obtain with M = Sn−1 ×R that

scalM = (n−1)(n−2)+0 = (n−1)(n−2),

but diam(M) = ∞. Thus the Bonnet-Myers theorem does not hold under the weaker condition

scal ≥ n(n−1)κ if n ≥ 3.

For n = 2 on the other hand, the three conditions in (1) are equivalent.
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B̄(p,r), 135

CPn, complex-projective space, 10

Ck(U), 21

Ck(U,T M), 44

C∞
p , 21
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diam(M), diameter, 144

dx|p, 16

E[c], energy of the curve c, 59

ε , Signum, 113

expp(ξ ), exponential map, 67

Fix(ψ), fixed set of ψ , 65

g, metric, 33, 35

G2(M,g), 83

gi j, coefficients of g, 33, 35

gMink, Minkowski metric, 40

ghyp, 118

GK(V,〈·, ·〉), 81

gstd , standard metric of Sn, 39

Gκ , 124

Γk
i j, Christoffel symbols, 46

Gκ , 124

grad f , 114

Hn, hyperbolic space, 118

H4
1 (r), anti-deSitter spacetime, 118

Hn
k−1(r), pseudo-hyperbolic space, 117

II, second fundamental form, 108

Index(g), 34

injrad(p), injectivity radius in p, 135

Isom(M,g), isometry group of M, 41

K, Gauß-curvature, 84

K(E), sectional curvature, 83, 84

L[c], length of the curve c, 131

Lr, 126

M
n
κ , model space, 123

M̂κ , 123

NpM, normal space, 105

∇, connection, 44
∇η
∂yl , 52

∇η
dt

, 53

∇ξ η , 51

nor, 105

ν , 114

O , topology, 1

Ωp,q(M), 62

Pc,t0,t1 , parallel transport, 57

ϕ∗g, pullback of g, 41

Q, 81

R, Riemannian curvature tensor, 75

RPn, real-projective space, 7

(Rn+1,gMink), Minkowski space, 40

Ric, Ricci-tensor, 87

ric, Ricci curvature, 85

rici j, 85

S(p,r), 135

S4
1(r), deSitter spacetime, 118

Sn
k(r), pseudosphere, 117
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Sν , Weingarten map, 115

sκ , generalized Sinfunction, 92

scal, Scalar curvature, 88

T M, tangent bundle, 28

TpM, tangent space of M at the point p, 16

T ∗
p M, cotangent space, 36

TpU , 18

tan, 105

V ∗, 33

Ξ(M), 50

Ξp, 44

ξ , variational vector field, 60

〈·, ·〉κ , 123

〈·, ·〉, 109, 131

〈〈·, ·〉〉, Minkowski-scalar produkt, 40

| · |, 113

angles, cosine rule, 129

anti-deSitter spacetime, 118

atlas, 11

atlas, maximal, 13

Bianchi identity, first, 75

bilinear form, 33

Bonnet-Myers, Theorem of, 145

by arc-length, parametrized, 64

chain rule, 19

chart, 4

Christoffel symbols, 46

C∞-compatibility of charts, 11

C∞-atlas, 11

Ck-diffeomorphism, 15

Ck-map, 13

closed, 1

codimension, 99

complete manifold, 140

complex-projective space, 10

conjugate points, 96

connected, 4

continuous map, 1

contravariant vector, 26

coordinate system, local, 4

cosine function, generalized, 92

cosine rule for angles, 129

cosine rule for sides, 129

cosines, law of, 129

cotangent space, 36

countable basis, 1

covariant derivative, 51

covariant derivative of a vector field, 49

covariant derivative, second, 73

critical point, 62, 101

critical value, 101

curvature tensor, Riemann, 75

derivation, 21

deSitter spacetime, 118

diameter of a Riemannian manifold, 144

diffeomorphic, 15

diffeomorphism, 15

diffeomorphism, local, 19

differentiable structure, 13

differential of a map, 18

directional derivative, 21

distance, Riemannian, 132

double cone, 3

Einstein summation convention, 27

Einstein tensor, 118

energy functional

critical point, 62

energy of a curve, 59

exponential map, Riemannian, 67

first fundamental form, 38

fixed point set, 65

flat manifold, 77

fundamental form, first, 38

fundamental form, second, 108

Gauß curvature, 84

Gauß formula, 109

Gauß formula for hypersurfaces, 116

Gauß lemma, 132

generalized cosine function, 92

generalized orthonormal basis, 34, 69

generalized sine function, 92

geodesic, 63

geodesic polar coordinates, 133
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geodesic triangle, 126

geodesic variation, 89

geodesic, minimal, 137

geodesically complete, 139

geodesics

existence and uniqueness of, 64

gradient, 114

homeomorphic, locally, 2

homeomorphism, 1

Hopf-Rinow, Theorem of, 140

hyperbolic space, 118

hypersurface, semi-Riemannian, 113

index, 34

injectivity radius, 135

inverse function theorem, 20

isometry, 41

isometry group, 41

isometry, linear, 35

isometry, local, 41

Jacobi equation, 90

Jacobi field, 90

interesting, 92

uninteresting, 91

law of cosines, 129

law of sines, 128

length of a curve, 131

Levi-Civita connection, 44

lightcone, 82

local coordinate system, 4

local diffeomorphism, 19

locally homeomorphic, 2

Lorentz boost, 126

Lorentz group, 119

Lorentz transformations, time-orientation

preserving, 124

Lorentzian manifold, 39

Lorentzian metric, 39

manifold, (semi-)Riemannian, 39

manifold, differentiable, 13

manifold, Riemannian, 39

manifold, topological, 1

map, differentiable, 13

maximal atlas, 13

metric, Lorentzian, 39

metric, Riemannian, 39

metric, semi-Riemannian, 35

minimal geodesic, 137

Minkowski scalar product, 40

Minkowski space, 40

model space, 123

motion, Euclidean, 41

non-degenerate bilinear form, 33

non-degenerate subvector space, 81

normal coordinates, Riemannian, 69

normal space, 105

null curve, 64

open, 1

orthonormal basis, generalized, 34, 69

parallel transport, 57

parallel vector field along a curve, 54

parametrization of a curve

by arc-length, 64

by proper time, 64

proportional to arc-length, 64

proportional to proper time, 64

Poincaré transformations, 42

polar coordinates, 30

polar coordinates, geodesic, 133

proper time, 64

pseudo-hyperbolic space, 116, 117

pseudo-sphere, 117

Pseudosphere, 116

pullback of a metric, 41

real-projective space, 7

regular point, 101

regular value, 101

Ricci curvature, 85

Riemann curvature tensor, 75

Riemannian (4,0)-curvature tensor, 78

Riemannian distance, 132

Riemannian exponential map, 67
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Riemannian metric, 39

Riemannian normal coordinates, 69

Sard, theorem of, 102

scalar curvature, 88

second covariant derivative, 73

second fundamental form, 108

sectional curvature, 84

semi-Riemannian metric, 35

side of a geodesic triangle, 126

signature of a hypersurface, 113

sine function, generalized, 92

sines, law of, 128

standard metric, 39

stereographic projection, 3

submanifold chart, 99

submanifold, differentiable, 99

submanifold, semi-Riemannian, 104

submanifold, totally geodesic, 111

symmetric bilinear form, 33

tangent bundle, 28

tangent space, 16

tangent vector, 15

topological space, 1

topology, 1

torsion freeness, 46, 52

torsion-free, 45

totally geodesic submanifold, 111

transformation of principal axes, 34

triangle, geodesic, 126

variation of a curve, 59

variation of the energy, second, 139

variation of the energy, first, 60

variation, geodesic, 89

variational vector field, 60

vector field, 30

vector field along a map, 50

velocity field, 51

vertex of a geodesic triangle, 126

Weingarten map, 115
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