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Data Assimilation in NWP

Truth

Find an estimate x; at time ¢ for the true state of the atmosphere x

Observations y;

o Satellites
e Ships and buoys
o Surface stations

o Aeroplanes
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Data Assimilation in NWP

Find an estimate x; at time i for the true state of the atmosphere x;rruth.

A priori information x? Observations y;
e background state (previous * Satellites
forecast) e Ships and buoys
e Surface stations
Models o Aecroplanes
e an operator linking state space and
observation space (imperfect) Assimilation algorithms
vi = H;i(x;) e find an (approximate) state of the
atmosphere x; at times ¢ (usually
e a model for the atmosphere i=0)
(imperfect)

o x#': Analysis (estimation of the
true state after the DA)

o forecast future states of the
atmosphere

Xit1 = Mit1,i(x3)
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Observations

ECMWF Data Coverage (All obs DA) - SYNOP/SHIP ECMWF Data Coverage (All obs DA) - BUOY
21/APR/2008; 00 UTC 21/APR/2008; 00 UTC
_:I'ota_lwnurg‘her .Of OE = 2_?583

ECMWF Data Coverage (All obs DA) - AIRCRAFT ECMWF Data Coverage (All obs DA) - ATOVS
21/APR/2008; 00 UTC 21/APR:2008; 00 UTC
Total number of obs = 341239
o .

e




Schematics of Data Assimilation

State x

time

Figure: Background state x?
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Schematics of Data Assimilation

State x

time

Figure: Observations y
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Schematics of Data Assimilation

State x

time

Figure: Analysis xA (consistent with observations and model dynamics)
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Data Assimilation in NWP

Under-determinacy

o Size of the state vector x: 432 x 320 x 50 x 7 = O(107)
o Number of observations (size of y): O(10° — 106)
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Data Assimilation in NWP

Under-determinacy

o Size of the state vector x: 432 x 320 x 50 x 7 = O(107)
o Number of observations (size of y): O(10° — 106)

Assumptions

o background error eB = xB — xTruth

B = (¢B —&B)(eB —eB)T
o

and covariance matrix

o observation error €€ =y — H(xTth) and covariance matrix
R = (60 _ 50)(60 _ EO)T

o Non-trivial errors: B, R are positive definite

e Unbiased errors: xB — xTruth — y _ fj(xTruth) — @

e Uncorrelated errors: (xB — xTruth)(y — H(xTruth))T' = o
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Optimal least-squares estimator

Cost function

Solution to the optimisation problem x4

= arg min J(x) where

T = L= xP) B x—xP) + Ly~ HG)TR My — H(x)
= Jp(x)+Jo(x)

=Three-dimensional variational data assimilation (3DVar)
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Optimal least-squares estimator

Cost function

Solution to the optimisation problem x4

= arg min J(x) where
1 1
Jx) = Sx—xP)TB = xP) + Sy - He)TRH(y - H))
= Jp(x)+Jo(x)
=Three-dimensional variational data assimilation (3DVar)
Interpolation equations
x4 =xP + K(y — H(x")), where

K =BHTHBHT + R)"! K...gain matrix

= Optimal interpolation
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Four-dimensional variational assimilation (4DVar)

Minimise the cost function

J(x0) = %(XO —x§)TB  (x0 —x§) + = D _(vi — Hi(x:)) "R (yi — Hi(x:))
i=0

N | =

subject to model dynamics x; = Mp—;Xo-

X
A
o
———
,//analysis B
o "‘-—____
s
corrected

/ I i forecast

-
" _ -
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T

T T T
oz B5Z oz 12z 15z time

assimilati on window

Figure: Copyright: ECMWF
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Four-dimensional variational assimilation (4DVar)
Minimise the cost function
1 3 1 n . Wy |
T(xo) = 5 (x0 = %) BT (xo = x5) + , > (ve — Hi(x) R (vi = M)
i=0

subject to model dynamics x; = Mp—;Xo-

>
A
o
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,// analysis
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Four-dimensional variational assimilation (4DVar)

Minimise the cost function

1 1 < i)
J(x0) = (x0 — x5 ) B~ (x0 —xt) . P Z — Hi(x3)) "R (v
subject to model dynamics x; = Mp—;Xo-
>
F 3
‘JG
P arla_.ly_;i-;_"“ _
“’OI T
corrected
//IJG forecast
i -
L “To
T T T T
= &z =73 12z 15z time

assimilati on window

Figure: Copyright: ECMWF
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Minimisation of the 4DVar cost function

e Use Newton’s method in order to solve VJ(xg) = 0, that is

VVJ(xE)AxE —VJ(xE)
x§+1 = xf+AxE
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Minimisation of the 4DVar cost function

e Use Newton’s method in order to solve VJ(xg) = 0, that is
vVJIEBAxE = —vJxE)
xg'H = xlg = Axlg
k>0

e Use approximate Hessian - GauB-Newton method
n
VJ(x0) =B (x0 —x5) = Y Mio(x0)"H R; ! (yi — Hi(xi)),
i=1
and

n
VVJ(xp) = B! + Z Mi70(x0)TH,LTRi_1HiMi,O(xo).
i=1
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4DVar and Tikhonov regularisation
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Relation between 4DVar and Tikhonov regularisation

4DVar minimises

l\'?b—l

Tox0) = 5 (x0 — <) B ! (x0 — xf) + 5 3 (s — Hil) R, (v — Hi(xi)
=0

subject to model dynamics x; = M;yxq
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Relation between 4DVar and Tikhonov regularisation

4DVar minimises

[y

1 B n
J(x0) = 5 (x0 — xBYT'B™ (%o — xF) i 5 + 2> (yi — Hi(x) "R (yi — Hi(xi))
i=0
subject to model dynamics x; = M;oxq

or

Tx0) = 5 00 = xE) B (x0 = x§) + 59 — Hxo) TR — F(x0))

where .
H = [H{ , (HiMio(t1,t0))7, ... (HnMno(tn,t0))T]"
y: [y%—'""’yn]T
and R is block diagonal with R4, i =0, ..., n on the diagonal.
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Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem
Cost function

Toxo) = 5 (x0 = %) "B (x0 = x§) + 53 = Hxo)) TR — H(x0))

GauB-Newton method

VVJI(xP)AxE = —VJ(xE)
x§+1 xk + AxE
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Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem
Cost function

GauB-Newton method

B+ ATR'MAxE = —B~!(xk —x8)+ ATR1(§ — f(x0))
k+1 k k
X, x5 + Axg
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

> o oW
|
Q
ml\)
@
=

=
Il
g

Gauf3-Newton method

(B~! + ATRH) Axk
Xt

-B7H(x§ —x¢) + HTR™(§ — H(x0))

xE + AxE
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Relation between 4DVar and Tikhonov regularisation

Variable transform

Set
B = o0%Cp
R = 0%Cp
F A "
b = CR - H(x)
21
A = CL7HCE
2 4 ¥
o
GauB-Newton method
_1 L’
W1+ ATA)C,ZAxE = —p?Ch2(xk —xB)+ ATb
ngrl = xt+Axk
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

-
2k = Cg? (xk —xE)
GauB-Newton method

([L2I+ATA)(Zk+1 _zk) = —[I,2Zk +ATb
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

1
z = Cp*® (x§ —x§)
GauB-Newton method
([L2I+ATA)(Zk+1 _zk) = —[I,2Zk +ATb

Normal equations
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

-
2" = Cp® (x§ —x§)
GauB-Newton method
([L2I+ATA)(Zk+1 _zk) = —[I,2Zk +ATb

Normal equations

Least squares solution

[ 4o 2]

at each GauB-Newton method step or

2
— min
2

|AZ*+! — (AZ" + b)|13 + 1?1213

Tikhonov regularisation
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Ill-posed problems
Given an operator A we wish to solve
Az =c

it is well-posed if
o solution exits
e solution is unique
o is stable (A~ continuous)
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Ill-posed problems
Given an operator A we wish to solve
Az =c
it is well-posed if
o solution exits

e solution is unique
o is stable (A~ continuous)

but ..

In finite dimensions existence and uniqueness can be imposed, but
o discrete problem of underlying ill-posed problem becomes ill- conditioned
e singular values of A decay to zero

e Tikhonov regularization

z =arg min {||Az — c||* + 1% ||z]° }
=(ATA + 21 tATc
=v=TuTuzvT + ;FVVT)*lvaUTc

T

2
Ulec=12, = v-
2 utemn =3 o ue

=Vdiag (
+/A Si
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Application of Lj-norm regularisation in 4DVar
Motivation: Results from image processing
Li-norm regularisation in 4DVar
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Results from image deblurring: L; regularisation

Image

Figure: Blurred picture
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Results from image deblurring: L regularisation

Regularized solution

50 100 150 200 250 300 350 400 450 500

Figure: Tikhonov regularisation min {||Ar — 6|2 + «||z]|3}
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Results from image deblurring: L; regularisation

Reconstruction

400 4

sEf : e

' I i L L L L L L i}
80 100 150 200 250 300 350 400 450 500

Figure: Li-norm regularisation min {||Ar — 6|3 + af/z[1}
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3 Regularisation Methods

4DVar

min [|Az" ! —c|)3 + 4|25 3
2+l
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3 Regularisation Methods

4DVar

min [|Az" ! —c|)3 + 4|25 3
2+l

Li-norm regularisation
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3 Regularisation Methods

4DVar

min [|Az" ! —c|)3 + 4|25 3
2+l

Li-norm regularisation

. k41 _ 2 21, k+1
min'([§= cllz + p7(1z"" [l

Total Variation regularisation
. k
min 425+ — cfl3 + 22" 13 + BIDxH
z

1
where x’g = ng’”l + xgg and D is a matrix approximating the derivative of

the solution.
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Least mixed norm solutions

Solve
min [|AZF T — f3 4 4225+ 3
zk+1

using Least squares and

min | Az* L — |3 + 422" 13 + 6D [
z

using quadratic programming (see Fu/Ng/Nikolova/Barlow 2006).
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Least mixed norm solutions

Consider
min Az — c[3 + 8Dk s
zk+1

1
k+1 _ 2 k+1 B
where x5 = Cjz + xg
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Least mixed norm solutions

Consider
min Az — c[3 + 8Dk s
zk+1

1
k+1 _ 2 k+1 B
where x5 = Cjz + xg

1
min [[Az*+! — cf}3 + SIDCZ2* 1 + Dxf|l
z
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Least mixed norm solutions

Consider
min [|Az*+" — c|3 + FDxk+ s
z

1
where ngrl = Cfgz’€+1 + xg
a,
min [|Az*+! — el + BIDCE#*+! + Dxfll
z
Set

1
v = (DC};z" ! + gDxE.

and split v into its positive and negative part:

v=vt—v
where
vt = max(v,0)
v. = max(—v,0)

Melina Freitag



Least mixed norm solutions

With L
v = ﬁDnglchl + ﬁDx(})3

and

the solution to
a,
min [[Az*+! = cf}3 + 5|DCEZ" ! + Dxf |l
z

is equivalent to

Melina Freitag



Least mixed norm solutions

With L
v = ﬁDnglchl + ﬁDx(})3

and
the solution to

min |42+ — cf}3 + SIDC 24+ + DB
is equivalent to

min {].TV+ +1Tv™ 4 ||AZFFL — c||§}
zk+1 v+ v—

subject to

1
BDC2zF ! + pDxf
+

Il
<

v, v

v
=)

Melina Freitag



Least mixed norm solutions

min {ITVJr +1Tv™ 4 ||AZF — c||§}
zk+1 v+ v—

subject to

1
BDCZzF ! + pDxF = vt v~

vig, v & = ffo.

or
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Least mixed norm solutions

min {ITVJr +1Tv™ 4 ||AZF — c||§}
zk+1 v+ v—
subject to
1
BDCZzF ! + pDxF = vt v~
vig,vi & = o
or :
min {—WTGW + gTW}
w2
subject to
Ew=e and Fw >0.
where
2ATA —2ATpb 0
G = 0 2 2 F -1
0 —I
1 =B
E= [ﬂch -1 I] w=[z" vF v e=-gDx{
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Example 1 - Linear advection equation

ut+uz:07

on the interval z € [0, 1], with periodic boundary conditions. The initial solution is
a square wave defined by

w(z,0) = 05 025<z<0.5
T 1-05 2<025 or z>0.5.

This wave moves through the time interval, the model equations are defined by
the upwind scheme

Uptt =Up = (O - ULy),

n+1 __ n+1
UO N UN ’

where j =1,...,N, Az W and n is the number of time steps. We take
N =100, At = 0 005

Melina Freitag



Setup

e length of the assimilation window: 40 time steps
o perfect observations, noisy and sparse observations
e R=0.01.
_ li—=jl
e B=Iand B=0.1le 2L?  where L =5

e use MATLAB quadprog.m

Melina Freitag



4DVar - perfect and full observations, B =1

Figure: t =0 Figure: t =20

Figure: t =40 Figure: t = 80
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L1 - perfect and full observations, B =1

Figure: t =0 Figure: t =20

Figure: t =40 Figure: t = 80
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4DVar - noisy and sparse observations, B =1

. .
—— ]

Tron
==~ Impertect model

o Erson | o soton
B B
o
A
01 0.2 03 04 05 06 0.7 o8 09 . 01 0.2 03 04 05 06 0.7 o8 09

Figure: t =0 Figure: t =20

periect model ¢ model
—— Finalsolution —— Finalsolution

Figure: t =40 Figure: t = 80
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L1 - noisy and sparse observations, B =1

i
perect modei
Fina solution

tect o
—— Finalsolution

pariect mo
Fina solution

Figure: t =40
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Figure: t = 80




_ li=4l

4DVar - noisy and sparse observations, B = 0.1e  2L?

imperiect model
Fina solution

Figure: t =40 Figure: t = 80
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_li=g

L1 - noisy and sparse observations, B = 0.1le 2?2

Figure: t = 20

o
= impertect model
Fina solution

of
- -
61 oz 03 04 os 06 o7 o8 09 61 oz 03 04 os 06 07 o8 09

Figure: t =40 Figure: t = 80
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Example 2 - Burgers’ equation

wb ot = ut f)e =0, )= o

o

with initial conditions

w(z, 0) = 2 0<z<25
T 105 25<az<10.

Discretising

2 0<a(j)<25

2(j) = 10 — 1/2)Az; U%(a(s)) = {0.5 2.5 < w(3) < 10.

where j =1,...,N, Az = % and n is the number of time steps. We take
N =100, At = 0.001.
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Exact solution and model error

Exact solution - method of characteristics
Riemann problem

w(w,t) = 2 0<x<25+st
T 105 254 st <x<10,

where s = 1.25

Numerical solution - model error

o the Lax-Friedrichs method (smearing out the shock)

U;Jrl (Un 1 +U +1) (f( ]+1) f( ()

o the Lax-Wendroff method (oscillations near the shock).
Uit =up- (f(U 1) — FUR )+

-
%(Aﬁé(f( 1) = FUF) = 4;_1(F(U}) -

Melina Freitag
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Visualisation - Truth trajectory and numerical solution
Lax-Friedrichs method

W
L

Lax-Wendroff method FFiguzeRt =0

W)
L

Figure: t =0
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Visualisation - Truth trajectory and numerical solution

Lax-Friedrichs method

W

Lax-Wendroff method Irigure:Rt,= 25

W)

Figure: t = 25
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Visualisation - Truth trajectory and numerical solution

Lax-Friedrichs method

W

W)

Figure: t = 50
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Visualisation - Truth trajectory and numerical solution

Lax-Friedrichs method

W

Lax-Wendroff method Higutea= 100

W)

Figure: ¢t = 100
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Visualisation - Truth trajectory and numerical solution

Lax-Friedrichs method

W

Lax-Wendroff method HigureRa= 200

)
.
oo

Figure: t = 200
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Setup

e length of the assimilation window: 100 time steps
* noisy and sparse observations
e R=0.01.
_ =4l
e B=0.le 2.2  where L=5

e use MATLAB quadprog.m
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Lax-Friedrichs method
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_ li=4l

4DVar - noisy and sparse observations, B = 0.1e  2£2

Figure: t = 100 Figure: ¢t = 200
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_li=g

L1 - noisy and sparse observations, B = 0.1le 2?2

Figure: t = 100 Figure: ¢t = 200
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Lax-Wendroff method
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_ li=4l

4DVar - noisy and sparse observations, B = 0.1e  2£2

2“{1 2
o o

Figure: t = 100 Figure: t = 200
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L1 - noisy and sparse observations, B = 0.1le 2?2

Figure: t =0 Figure: t = 50

Figure: t = 100 Figure: ¢t = 200

Melina Freitag



Conclusions, questions and further work

e [j1-norm regularisation recovers discontinuity better than 4DVar
o Further work: analysis of methods; tests in 2D, 3D

o multiscale methods, other regularisation approaches

Melina Freitag
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