

# A Tuned Preconditioner for Inexact Inverse Iteration Applied to Hermitian Eigenvalue Problems

Melina Freitag and Alastair Spence

Department of Mathematical Sciences  
University of Bath

21st Biennial Conference on Numerical Analysis  
University of Dundee, Scotland, UK  
30th June 2005

- 1 Outline
- 2 Inverse Iteration (large sparse matrices)
- 3 Inexact Inverse Iteration
- 4 Preconditioned Inexact Inverse Iteration
- 5 Tuning the preconditioner
- 6 Numerical Results

# Problem and Inverse Iteration

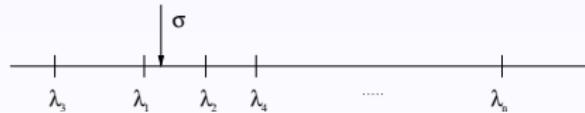
- Find an eigenvalue and eigenvector of s.p.d.  $A$ :

$$Ax = \lambda x,$$

- Inverse Iteration:

$$(A - \sigma I)y = x$$

$A$  large, sparse.



# Inexact Inverse Iteration

**for**  $i = 1$  to  $\dots$  **do**

choose  $\tau^{(i)}$

solve

$$\|(A - \sigma I)y^{(i)} - x^{(i)}\| \leq \tau^{(i)},$$

Rescale  $x^{(i+1)} = \frac{y^{(i)}}{\|y^{(i)}\|}$ ,

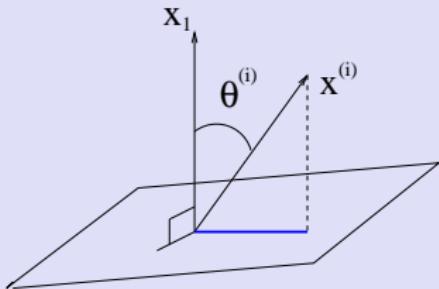
Update  $\lambda^{(i+1)} = x^{(i+1)T} A x^{(i+1)}$ ,

Eigenvalue residual  $r^{(i+1)} = (A - \lambda^{(i+1)} I)x^{(i+1)}$ .

**end for**

# Error indicator

## Error indicator (orthogonal decomposition, Parlett)



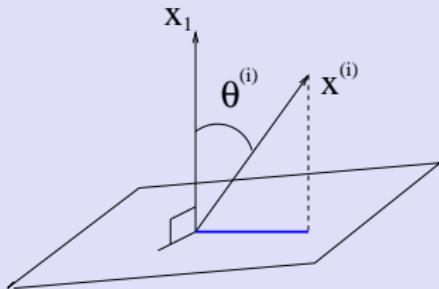
$$P_{\perp} x^{(i)} = O(\sin \theta^{(i)}) \quad \text{measure for the error}$$

## Eigenvalue residual

$$C |\sin \theta^{(i)}| \leq \|r^{(i)}\| \leq C' |\sin \theta^{(i)}|$$

## Error indicator

### Error indicator (orthogonal decomposition, Parlett)



$$P_{\perp} x^{(i)} = O(\sin \theta^{(i)}) \quad \text{measure for the error}$$

### Eigenvalue residual

$$C |\sin \theta^{(i)}| \leq \|r^{(i)}\| \leq C' |\sin \theta^{(i)}|$$

# Convergence rates of inexact inverse iteration

Decreasing tolerance  $\tau^{(i)} \leq C\|r^{(i)}\| = \mathcal{O}(\sin \theta^{(i)})$

- ① For decreasing tolerance  $\tau^{(i)} \leq C\|r^{(i)}\| = \mathcal{O}(\sin \theta^{(i)})$  the inexact method recovers the rate of convergence achieved by exact solves.
- ② **Fixed shift  $\sigma$ : linear convergence.** [see Golub/Ye 2000, Berns-Müller/Graham/Spence 2005]
- ③ **Rayleigh quotient shift  $\sigma^{(i)} = \rho(x^{(i)}) = \frac{x^{(i)T} Ax^{(i)}}{x^{(i)T} x^{(i)}}$ : cubic convergence.** [see Smit/Paardekooper 1999, Berns-Müller/Graham/Spence 2005]

# Unpreconditioned solves with MINRES

Convergence rates for solves with MINRES for simple eigenvalue

If  $A$  is positive definite and has a simple eigenvalue then

$$\|x^{(i)} - (A - \sigma I)y_k^{(i)}\|_2 \leq 2 \frac{|\lambda_1 - \lambda_n|}{|\lambda_1 - \sigma|} \left( \sqrt{\frac{\kappa_1 - 1}{\kappa_1 + 1}} \right)^{k-1} \|\mathcal{P}_1^\perp x^{(i)}\|_2.$$

Number of inner solves for each  $i$

$$k^{(i)} \geq C_1 + C_2 \log \left( \frac{\|\mathcal{P}_1^\perp x^{(i)}\|_2}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

# Unpreconditioned solves with MINRES

Convergence rates for solves with MINRES for simple eigenvalue

If  $A$  is positive definite and has a simple eigenvalue then

$$\|x^{(i)} - (A - \sigma I)y_k^{(i)}\|_2 \leq 2 \frac{|\lambda_1 - \lambda_n|}{|\lambda_1 - \sigma|} \left( \sqrt{\frac{\kappa_1 - 1}{\kappa_1 + 1}} \right)^{k-1} \|\mathcal{P}_1^\perp x^{(i)}\|_2.$$

Number of inner solves for each  $i$

$$k^{(i)} \geq C_1 + C_2 \log \left( \frac{\|\mathcal{P}_1^\perp x^{(i)}\|_2}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

# Unpreconditioned solves with MINRES

Convergence rates for solves with MINRES for simple eigenvalue

If  $A$  is positive definite and has a simple eigenvalue then

$$\|x^{(i)} - (A - \sigma I)y_k^{(i)}\|_2 \leq 2 \frac{|\lambda_1 - \lambda_n|}{|\lambda_1 - \sigma|} \left( \sqrt{\frac{\kappa_1 - 1}{\kappa_1 + 1}} \right)^{k-1} |\sin \theta^{(i)}|.$$

Number of inner solves for each  $i$

$$k^{(i)} \geq C_1 + C_2 \log \left( \frac{|\sin \theta^{(i)}|}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

# Unpreconditioned solves with MINRES

Number of inner solves for each  $i$

$$k^{(i)} \geq C_1 + C_2 \log \left( \frac{|\sin \theta^{(i)}|}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

Example

For fixed shift  $\sigma$ , and  $\tau^{(i)} \leq C \|r^{(i)}\| = \mathcal{O}(\sin \theta^{(i)})$  the number of inner solves  $k^{(i)}$  for each  $i$  does not increase with  $i$

# Preconditioning

## Incomplete Cholesky preconditioning

$$A = LL^T + E$$

symmetric preconditioning of  $(A - \sigma I)y^{(i)} = x^{(i)}$ :

$$L^{-1}(A - \sigma I)L^{-T}\tilde{y}^{(i)} = L^{-1}x^{(i)}, \quad y^{(i)} = L^{-T}\tilde{y}^{(i)}$$

## Remarks

① changes number of inner iterations

$$k^{(i)} \geq C_1 + C_2 \log \left( \frac{\|L^{-1}\|}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

②  $\tau^{(i)}$  increases with  $i$  for  $\tau^{(i)} \leq C\|x^{(i)}\|$

# Preconditioning

## Incomplete Cholesky preconditioning

$$A = LL^T + E$$

symmetric preconditioning of  $(A - \sigma I)y^{(i)} = x^{(i)}$ :

$$L^{-1}(A - \sigma I)L^{-T}\tilde{y}^{(i)} = L^{-1}x^{(i)}, \quad y^{(i)} = L^{-T}\tilde{y}^{(i)}$$

## Remarks

1 changes number of inner iterations

$$k^{(i)} \geq C_1 + C_2 \log \left( \frac{\|L^{-1}\|}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

2  $k^{(i)}$  increases with  $i$  for  $\tau^{(i)} \leq C\|r^{(i)}\|$ .

# Preconditioning

## Incomplete Cholesky preconditioning

$$A = LL^T + E$$

symmetric preconditioning of  $(A - \sigma I)y^{(i)} = x^{(i)}$ :

$$L^{-1}(A - \sigma I)L^{-T}\tilde{y}^{(i)} = L^{-1}x^{(i)}, \quad y^{(i)} = L^{-T}\tilde{y}^{(i)}$$

## Remarks

- ① changes number of inner iterations

$$k^{(i)} \geq C_1 + C_2 \log \left( \frac{\|L^{-1}\|}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

- ②  $k^{(i)}$  increases with  $i$  for  $\tau^{(i)} \leq C\|r^{(i)}\|$ .

# Derivation

## Aims

- 1 modify  $L \rightarrow \mathbb{L}$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\tilde{y}^{(i)} = \mathbb{L}^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$$

- 2 minor extra computation cost for  $\mathbb{L}$
- 3 "nice" RHS  $\mathbb{L}^{-1}x^{(i)}$  (same behaviour as unpreconditioned solves, e.g. for fixed shifts  $k^{(i)}$  does not increase with  $i$ )

## Condition

$$\mathbb{L}^{-T}\mathbb{L}^{-1}x^{(i)} = x^{(i)} \quad \text{or} \quad \mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$$

# Derivation

## Aims

1 modify  $L \rightarrow \mathbb{L}$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\tilde{y}^{(i)} = \mathbb{L}^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$$

2 minor extra computation cost for  $\mathbb{L}$   
3 "nice" RHS  $\mathbb{L}^{-1}x^{(i)}$  (same behaviour as unpreconditioned solves, e.g. for fixed shifts  $k^{(i)}$  does not increase with  $i$ )

## Condition

$$\mathbb{L}^{-T}\mathbb{L}^{-1}x^{(i)} = x^{(i)} \quad \text{or} \quad \mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$$

# Derivation

## Aims

- 1 modify  $L \rightarrow \mathbb{L}$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\tilde{y}^{(i)} = \mathbb{L}^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$$

- 2 minor extra computation cost for  $\mathbb{L}$
- 3 "nice" RHS  $\mathbb{L}^{-1}x^{(i)}$  (same behaviour as unpreconditioned solves, e.g. for fixed shifts  $k^{(i)}$  does not increase with  $i$ )

## Condition

$$\mathbb{L}^{-T}\mathbb{L}^{-1}x^{(i)} = x^{(i)} \quad \text{or} \quad \mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$$

# Derivation

## Aims

- 1 modify  $L \rightarrow \mathbb{L}$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\tilde{y}^{(i)} = \mathbb{L}^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$$

- 2 minor extra computation cost for  $\mathbb{L}$
- 3 "nice" RHS  $\mathbb{L}^{-1}x^{(i)}$  (same behaviour as unpreconditioned solves, e.g. for fixed shifts  $k^{(i)}$  does not increase with  $i$ )

## Condition

$$\mathbb{L}^{-T}\mathbb{L}^{-1}x^{(i)} = x^{(i)} \quad \text{or} \quad \mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$$

# Choice of $\mathbb{L}$

## Theorem

With  $e^{(i)} = Ax^{(i)} - LL^T x^{(i)}$  (known) and  $\mathbb{L}$  chosen such that

$$\mathbb{L} = L + \alpha^{(i)} e^{(i)} e^{(i)T} L^{-T}$$

with  $\alpha^{(i)}$  root of quadratic function we get  $\mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$ .

$\mathbb{L}$  is a rank-one update of  $L$ .

# Convergence rates

## The tuned preconditioner

- ❶ retains outer convergence rates
- ❷ provides cheap inner solves

$$k^{(i)} \geq C_1 + C_2 \log \left( \gamma \frac{|\sin \theta^{(i)}|}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

- ❸ only a single extra back substitution with  $L$  per outer iteration needed

## Fixed shift solves

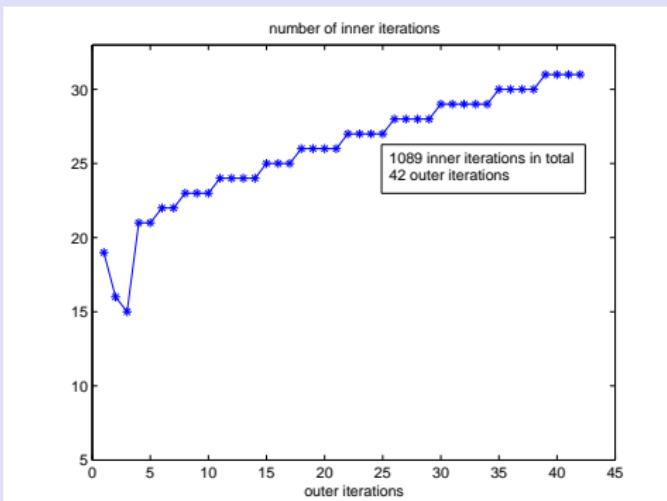
SPD matrix from the Matrix Market library `bscsstk10.mtx`

Setup:

- decreasing tolerance  $\tau^{(i)}$ ,
- drop tolerance  $10^{-3}$ ,
- stopping condition:  $\|r^{(i)}\| \leq 10^{-10}$ .

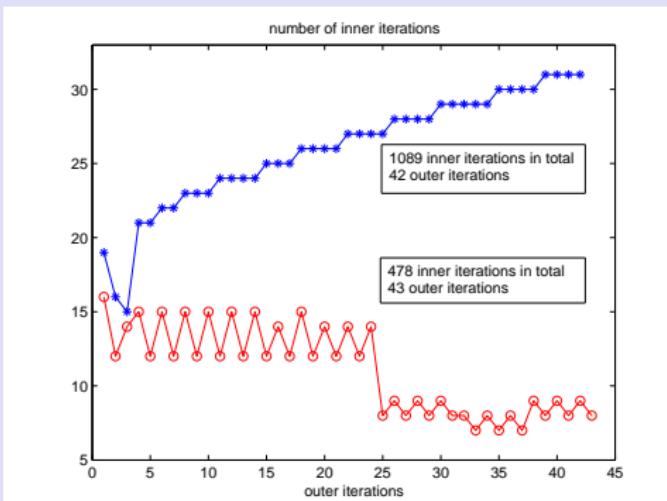
# Fixed shift solves

## Preconditioning with standard incomplete Cholesky



# Fixed shift solves

## Preconditioning with tuned incomplete Cholesky



## Solves with Rayleigh quotient shifts

Central finite difference approximation of the self-adjoint elliptic operator

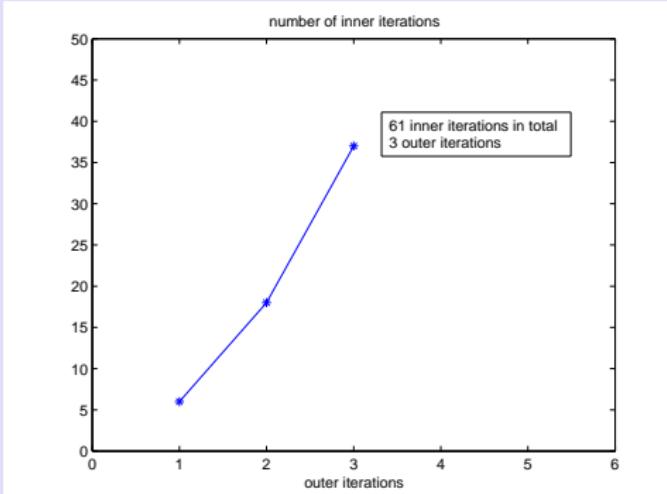
$$\mathcal{A}(t)u = ((1 + tx)u_x)_x + ((1 + ty)u_y)_y$$

on an equidistant grid on the unit square with Dirichlet boundary conditions and 50 nodes in each dimension. Setup:

- decreasing tolerance  $\tau^{(i)}$ ,
- drop tolerance  $10^{-2}$ ,
- stopping condition:  $\|r^{(i)}\| \leq 10^{-14}$ .

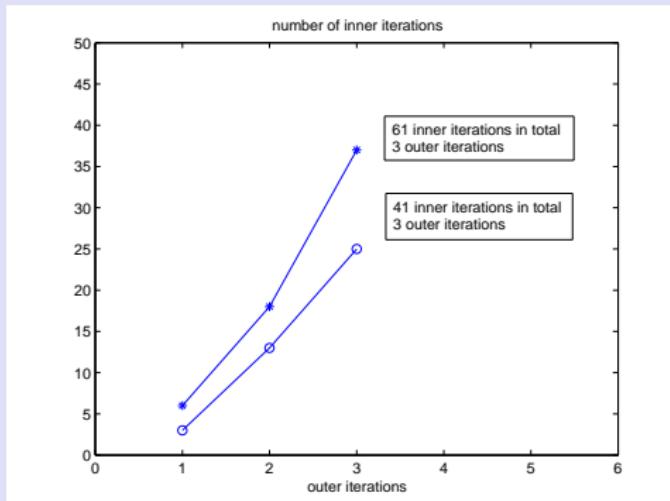
# Solves with Rayleigh quotient shifts

## Preconditioning with standard incomplete Cholesky



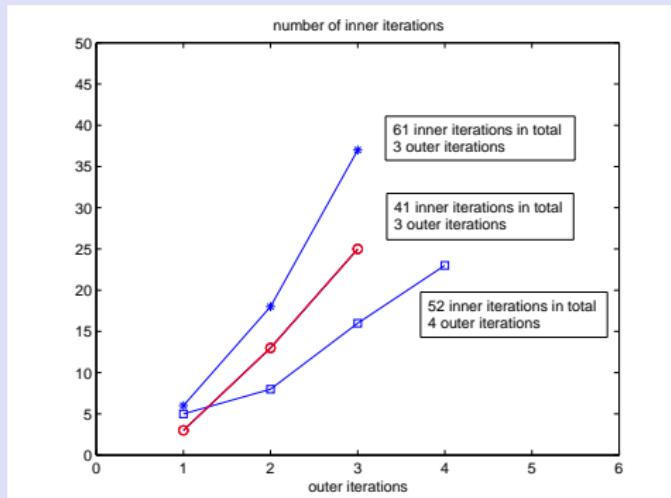
# Solves with Rayleigh quotient shifts

## Preconditioning with tuned incomplete Cholesky



# Solves with Rayleigh quotient shifts

## Preconditioning with Simoncini & Eldén incomplete Cholesky



# Solves with Rayleigh quotient shifts

Iteration numbers and error  $\|Ax^{(i)} - \lambda^{(i)}x^{(i)}\|_2$

|       | <i>Incompl. Cholesky</i> |         | <i>Tuned precond.</i> |         | <i>Simoncini &amp; Eldén</i> |        |
|-------|--------------------------|---------|-----------------------|---------|------------------------------|--------|
|       | DROP TOLERANCES          |         |                       |         |                              |        |
|       | IT.                      |         | IT.                   |         | IT.                          |        |
| 1     | 6                        | 1.0e-2  | 3                     | 1.0e-2  | 5                            | 1.0e-2 |
| 2     | 18                       | 1.2e-3  | 13                    | 2.8e-3  | 8                            | 2.1e-3 |
| 3     | 37                       | 1.9e-6  | 25                    | 1.9e-6  | 16                           | 2.5e-5 |
| 4     |                          | 8.6e-15 |                       | 5.1e-15 | 23                           | 2.6e-9 |
| total | 61                       |         | 41                    |         | 52                           |        |

 M. A. FREITAG AND A. SPENCE, *Convergence rates for inexact inverse iteration with application to preconditioned iterative solves*, 2005.

Submitted to BIT.

 —, *A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems*, 2005.

In preparation.