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Problem

Find a few eigenvalues and eigenvectors of A ∈ C
n,n:

Av = λv .

let the eigenvalues be

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|

associated eigenvectors v1, v2, . . . , vn.

Melina Freitag Arnoldi’s method and IRA



Outline
Motivation

Arnoldi’s method
Implicitly Restarted Arnoldi (IRA)

Lanczos’ method

Problem

Find a few eigenvalues and eigenvectors of A ∈ C
n,n:

Av = λv .

let the eigenvalues be

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|

associated eigenvectors v1, v2, . . . , vn.

Melina Freitag Arnoldi’s method and IRA



Outline
Motivation

Arnoldi’s method
Implicitly Restarted Arnoldi (IRA)

Lanczos’ method

Large sparse matrices

Most large matrices that occur in applications are sparse

Example: Matlab test matrix west0479
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nz = 1887

number of elements of A: 229441, 0.8 per cent filled
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Fill-in
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Figure: Hessenberg Reduction
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Figure: One step of QR algorithm
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Eigenvalue algorithms for large sparse matrices

Need methods that do not alter the matrix!

Recall: Power method (Rayleigh quotient iteration): pick a
vector q and form the sequence

q,Aq,A2q,A3q, ...

Then span{Amq} → span{v1}, v1 dominant eigenvector

Simultaneous iteration: choose subspace S with

S = span{q
(0)
1 , . . . , q0

k} and form the sequence

S,AS,A2S,A3S, ...

Then span{AmS} → span{v1, . . . , vk} dominant invariant
subspace

Arnoldi’s method, Lanczos method
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Matrix representations of the Arnoldi process
Example
Convergence theory

Motivation

recall - power method with initial vector q computes
q,Aq, . . . ,Akq

but: information from the past is lost, only Akq at step k

idea of Arnoldi: retain past information: after k steps we have
k + 1 vectors q,Aq, . . . ,Akq

look for good eigenvector approximations in the
k + 1-dimensional subspace spanned by these vectors
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The Arnoldi process I

q,Aq, . . . ,Akq usually ill-conditioned

therefore: replace these vectors by orthogonal vectors
q1, . . . , qk+1 that span the same subspace

Gram-Schmidt process with slight modification

theory: orthogonalise Akq against q1, . . . , qk

praxis: orthogonalise Aqk against q1, . . . , qk

produces exactly the same sequence of vectors as the
Gram-Schmidt process applied to q,Aq, . . . ,Akq
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The Arnoldi process II

Normalisation
q1 =

q

‖q‖2

On subsequent steps k = 1, 2, . . . take

q̃k+1 = Aqk −

k∑

j=1

qjhjk

where hjk is the Gram-Schmidt coefficient hjk =< Aqk , qj >.
Normalisation

qk+1 =
q̃k+1

hk+1,k

where hk+1,k = ‖q̃k+1‖2
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The Arnoldi algorithm

q1 =
q

‖q‖2
for k = 1 to m − 1 do

qk+1 ← Aqk

for j = 1 to k do
hjk ← q∗

j qk+1

qk+1 ← qk+1 − qjhjk

end for
reorthogonalise
hk+1,k ← ‖qk+1‖2
if hk+1,k = 0 then

span{q1, . . . , qk} is invariant under A
end if
qk+1 =

qk+1

hk+1,k

end for
Melina Freitag Arnoldi’s method and IRA
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Krylov subspaces

Definition

For any j the space span{q,Aq, . . . ,Aj−1q} is called the jth Krylov
subspace associated with A and q and is denoted by Kj(A, q).

Theorem

Suppose q,Aq, . . . ,Am−1q are linearly independent and q1, . . . , qm

are generated by the Arnoldi process. Then

1 span{q1, . . . , qk} = Kk (A, q) for k = 1, . . . ,m.

2 For k = 1, . . . ,m − 1, hk+1,k > 0.

3 hm+1,m = 0 iff q,Aq, . . . ,Amq are linearly dependent which
holds in turn iff the Krylov subspace Km(A, q) is invariant
under A.

Melina Freitag Arnoldi’s method and IRA
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Matrix representation I

Arnoldi process:

Aqk =

k+1∑

j=1

qjhjk

⇒ AQm = Qm+1Hm+1,m

where
Qm = [q1, . . . , qm] ∈ C

n,m and

Hm+1,m =












h11 h22 · · · h1,m−1 h1m

h21 h22 · · · h2,m−1 h2m

0 h32 · · · h3,m−1 h3m
...

. . .
...

0 hm,m−1 hmm

0 0 0 hm+1,m












∈ C
m+1,m

Melina Freitag Arnoldi’s method and IRA
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Matrix representation II

Arnoldi in matrix form

The Arnoldi process can be written in the form

AQm = QmHm + qm+1hm+1,meT
m (1)

where Hm is square upper Hessenberg.

Proposition

Suppose q1, . . . qm+1 are orthonormal vectors

Qm = [q1, . . . , qm]

and Hm is an upper Hessenberg matrix with hj+1,j > 0 for
j = 1, . . . ,m. If they satisfy (1) they must be vectors produced by
the Arnoldi process.

Melina Freitag Arnoldi’s method and IRA
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How can Arnoldi deliver eigenvalues?

Theorem

If hm+1,m = 0 then q,Aq, . . . ,Amq are linearly dependent, i.e.
span{Qm} is invariant under A and

AQm = QmHm

and the eigenvalues of Hm are the eigenvalues of A.

Remarks

1 for n steps we get q1, . . . , qn is an orthonormal basis of C
n

and Q−1
n AQn = Hn is a unitary similarity transform

2 want to stop after m steps m << n

3 hm+1,m = 0 only if we are lucky

Melina Freitag Arnoldi’s method and IRA
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Error estimates (Ritz values and Ritz vectors)

Theorem

Let Qm, Hm and hm+1,m be generated by the Arnoldi process. Let
µ be an eigenvalue of Hm with associated eigenvector x normalised
so that ‖x‖2=1. Let y = Qmx ∈ C

n (also with ‖y‖2=1). Then

‖Ay − µy‖2 = |hm+1,m||xm|,

where xm denotes the mth (and last) component of x.

Definition

The vector y is called Ritz-vector of A associated with the
subspace Km(A, q) and the µ is called Ritz value.

Melina Freitag Arnoldi’s method and IRA
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Example

random complex matrix of dimension n = 144 generated in
Matlab:
G=numgrid(’N’,14);B=delsq(G);A=sprandn(B)+i*sprandn(B)

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

eigenvalues of A

Melina Freitag Arnoldi’s method and IRA
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after 5 Arnoldi steps

−4 −3 −2 −1 0 1 2 3 4
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−1
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3

Arnoldi after 5 steps
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after 10 Arnoldi steps
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Arnoldi after 10 steps
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after 15 Arnoldi steps
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after 20 Arnoldi steps
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after 25 Arnoldi steps
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after 30 Arnoldi steps
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Error estimates and true error

residual |h41,40||x40| true error

2.0 · 10−6 1.1 · 10−7

7.6 · 10−4 1.1 · 10−4

2.1 · 10−4 4.1 · 10−5

3.9 · 10−4 1.4 · 10−5

3.4 · 10−4 4.7 · 10−5

5.1 · 10−3 7.7 · 10−4

Table: Best six Ritz pair residuals and corresponding Ritz value errors,

h41,40 ≈ 2.8
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Why does Arnoldi approximate the outer eigenvalues?

Let A have linearly independent eigenvectors v1, . . . , vn and
associated eigenvalues λ1, . . . , λn

starting vector q =
∑n

i=1 civi and

Km(A, q) = {p(A)q|q ∈ Pm−1}

⇒ v = p(A)q =

n∑

i=1

cip(λi)vi

if ∃p ∈ Pm−1 s.t. p(λj) is much larger than p(λi), i 6= j then
Km(A, q) will contain a vector close to the eigenvector vj
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Chebyshev polynomials

Tm(t) = cos(m cos−1(t)), |t| ≤ 1

Tm(t) =
1

2

[

(t +
√

t2 − 1)m + (t +
√

t2 − 1)−m
]

≥
1

2
tm, |t| ≥ 1
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Convergence theory I

Let
A = AT , λ1 > λ2 ≥ · · · ≥ λn

Then

v = pm−1(A)q =
n∑

i=1

cipm−1(λi )vi = c1pm−1(λ1)v1+
n∑

i=2

cipm−1(λi )vi

and

‖wm − v1‖ ≤

n∑

i=2

∥
∥
∥
∥

cipm−1(λi )

c1pm−1(λ1)

∥
∥
∥
∥

.

Find

min
p̃m−1∈Pm−1

p̃(λ1)=1

max
λi∈[λn,λ2]

p̃m−1(λ), p̃m−1(λ) =
pm−1(λ)

pm−1(λ1)
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Convergence theory II

Theorem (approximation theory)

The minimum

min
p̃m−1∈Pm−1

p̃(λ1)=1

max
λi∈[λn,λ2]

p̃m−1(λ), p̃m−1(λ) =
pm−1(λ)

pm−1(λ1)

is reached by the (scaled) Chebyshev polynomial

T̂m−1 =
Tm−1(1 + 2 λ−λ2

λ2−λn
)

Tm−1(1 + 2λ1−λ2
λ2−λn

)

‖wm−v1‖ ≤ C
Tm−1(1 + 2 λ−λ2

λ2−λn
)

Tm−1(1 + 2λ1−λ2
λ2−λn

)
≤ C

(

1 + 2
λ1 − λ2

λ2 − λn

)−m

,m = 1, 2, . . .
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Shift-and-invert strategy

can be used in conjunction with several iterative eigenvalue
methods

Power method, simultaneous iteration, Arnoldi and Lanzcos
methods compute eigenvalues of A of largest modulus

suppose we want eigenvalues near some target τ

use new matrix (A− τ I )−1 that has the same eigenvectors
and invariant subspaces as A, but different eigenvalues

largest eigenvalue of (A− τ I )−1 corresponds to the
eigenvalues of A that are closest to τ
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The implicitely restarted Arnoldi process

convergence depends very much on starting vector q
find a better starting vector q̂ (less storage)
assume A is semisimple with linearly independent eigenvectors
v1, . . . , vn and eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn| and
|λk | > |λk+1|.
Write q =

∑n
i=1 civi and find q̂, s.t. q̂ =

∑n
i=1 ĉivi where

ĉ1, . . . , ĉk have been augmented and ĉk+1, . . . , ĉn have been
diminished.
Suppose q̂ = p(A)q where p is some polynomial, then

q̂ =

n∑

i=1

cip(λi )vi

and choose p s.t. p(λ1), . . . , p(λk) are large in comparison
with p(λk+1), . . . , p(λn)
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Iteration of the IRA I

make Arnoldi runs of length m = k + j (to find k eigenvalues)

AQm = QmHm + qm+1hm+1,meT
m

find m eigenvalues |µ1| ≥ |µ2| ≥ . . . ≥ |µm| of Hm

largest ones |µ1| ≥ |µ2| ≥ . . . ≥ |µk | are estimates for the
largest eigenvalues of A, the smallest ones
|µk+1| ≥ | . . . ≥ |µm| approximate the undesired part of the
spectrum

perform j iterations of the QR algorithm on Hm using j shifts
ν1, . . . , νj in the region of the spectrum we want to suppress
(most popular choice is ν1 = µk+1, . . . , νj = µm)

Melina Freitag Arnoldi’s method and IRA
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Iteration of the IRA II

QR algorithm with shifts is given by

p(Hm) = VmRm, where p(z) = (z − ν1) · · · (z − νj)

combined effect is a similarity transform

Ĥm = V−1
m HmVm

Let Q̂m = QmVm and q̂1 be the first column of Q̂m.

Carry out another m Arnoldi steps with q̂1 as starting vector
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Iteration of the IRA III

don’t need to start Arnoldi from scratch, since

AQ̂m = Q̂mĤm + qm+1hm+1,meT
mVm,

where eT
mVm has exactly m − j − 1 leading zeros.

drop last j entries to get

AQ̂k = Q̂k Ĥk + (q̂k+1ĥk+1,k + qm+1hm+1,mVm,k
︸ ︷︷ ︸

‖·‖=hnew
k+1,k

)eT
k ,

do another j steps of Arnoldi
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IRA Algorithm

take k Arnoldi steps to produce Hk , Qk

for ii = 1 to imax do
take another j Arnoldi steps to produce Hm, Qm, m = k + j
find j shifts ν1, . . . , νj

take j steps of the QR algorithm on Hm with shifts ν1, . . . , νj

to obtain the transformation matrix Vm

Hm ← V−1
m HmVm

Qm = QmVm

if |hk+1,k | ≤ tol then
span{q1, . . . , qk} is invariant under A

end if
end for
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Why IRA works

want new starting vector q̂ = p(A)q, where p is choosen to
suppress unwanted eigenvectors and enhance wanted ones

Recall
AQm = QmHm + qm+1hm+1,meT

m

and insert shift

(A− ν1I )Qm = Qm(Hm − ν1I ) + E1

where E1 is zero except for the last column,

(A− ν2I )(A− ν1I )Qm = Qm(Hm − ν1I )(Hm − ν1I ) + E2

where E2 is zero except for the last two columns.

Melina Freitag Arnoldi’s method and IRA
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Why IRA works continued

Theorem

Suppose AQm = QmHm + qm+1hm+1,meT
m and let p be a

polynomial of degree j ≤ m. Then

p(A)Qm = Qmp(Hm) + Ej ,

where Ej ∈ C
n,m is identically zero except in the last j columns.

new starting vector

p(A)Qm = QmVmRm + Ej

p(A)Qme1 = Q̂mRm

q̂1 = 1
r11

p(A)q1
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Why IRA works continued
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Tests

random complex matrix of dimension n = 144 generated in
Matlab:
G=numgrid(’N’,14);B=delsq(G);A=sprandn(B)+i*sprandn(B),

tol = 0.1
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eigenvalues of A
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first 10 Arnoldi steps
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another 10 Arnoldi steps
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first restart
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second restart
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third restart
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forth restart
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The Lanczos process

Arnoldi in matrix form

The Lanczos process can be written in the form

AQm = QmTm + qm+1βmeT
m

where Tm is square tridiagonal matrix:

Tm =









α1 β1

β1 α2
. . .

. . .
. . . βm−1

βm−1 αm









Thus we obtain only a three-term recurrence and therefore need to
store only three vectors at each step.
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The Lanczos algorithm

q1 =
q

‖q‖2
for k = 1 to m − 1 do

qk+1 ← Aqk

αk = q∗
kqk+1

qk+1 ← qk+1 − αkqk

if k > 1 then
qk+1 ← qk+1 − qk−1βk−1

end if
βk ← ‖qk+1‖2
if βk = 0 then

span{q1, . . . , qk} is invariant under A
end if
qk+1 =

qk+1

βk
end for
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Reorthogonalisation

store only three vectors qj−1, qj , qj+1 at each step

roundoff errors will lead to

q̃k+1 =
qk+1 + wk+1

βk

,

where wk+1 ≈ u‖A‖2 is the roundoff error.

check orthogonality

|q̃T
k+1qi | =

qT
k+1qi + u‖A‖2

|βk |

orthogonality is lost, especially for converged eigenvectors
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Examples without reorthogonalisation

first 10 Lanczos steps
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Examples without reorthogonalisation

first 20 Lanczos steps
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Examples without reorthogonalisation

first 30 Lanczos steps
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Examples without reorthogonalisation

after 120 Lanczos steps
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Examples without reorthogonalisation

after 120 Lanczos steps
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Examples without reorthogonalisation
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Figure: Error and error bounds
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Examples with reorthogonalisation

after 120 Lanczos steps
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Examples with reorthogonalisation

after 120 Lanczos steps
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