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Motivation

@ Find a few eigenvalues and eigenvectors of A € C™":

Av = A\v.
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Motivation

@ Find a few eigenvalues and eigenvectors of A € C™":
Av = Av.
@ let the eigenvalues be
(A1l = (Ao = -+ = [An]

@ associated eigenvectors vy, vo, ..., V.
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Motivation

Large sparse matrices

@ Most large matrices that occur in applications are sparse

o Example: MATLAB test matrix west0479

number of elements of A: 229441, 0.8 per cent filled
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Motivation

number of cemens: 228441 il-in 50 percent umberof lemenis: 26441, il-in 1 por cent

o I,
ne= 115426

Figure: Hessenberg Reduction  Figure: One step of QR algorithm
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Motivation

Eigenvalue algorithms for large sparse matrices

@ Need methods that do not alter the matrix!
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Motivation

Eigenvalue algorithms for large sparse matrices

@ Need methods that do not alter the matrix!

@ Recall: Power method (Rayleigh quotient iteration): pick a
vector g and form the sequence

q,Aq, A%q,A%q, ...

Then span{A™q} — span{vi}, vi dominant eigenvector
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Motivation

Eigenvalue algorithms for large sparse matrices

@ Need methods that do not alter the matrix!

@ Recall: Power method (Rayleigh quotient iteration): pick a
vector g and form the sequence

q,Aq, A%q,A%q, ...

Then span{A™q} — span{vi}, vi dominant eigenvector
@ Simultaneous iteration: choose subspace S with

S = span{qgo), e q2} and form the sequence
S,AS,A’S,A3S, ...

Then span{A™S} — span{vi, ..., vk} dominant invariant

subspace
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Motivation

Eigenvalue algorithms for large sparse matrices

@ Need methods that do not alter the matrix!

@ Recall: Power method (Rayleigh quotient iteration): pick a
vector g and form the sequence

q,Aq, A%q,A%q, ...

Then span{A™q} — span{vi}, vi dominant eigenvector
@ Simultaneous iteration: choose subspace S with

S = span{qgo), e q2} and form the sequence
S, AS, A28, A3S, ..
Then span{A™S} — span{vi, ..., vk} dominant invariant
subspace
I , Lanczos method
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

Motivation

@ recall - power method with initial vector g computes
a,Aq,..., Alq
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

Motivation

@ recall - power method with initial vector g computes
a,Aq,..., Alq

@ but: information from the past is lost, only AXq at step k

@ idea of Arnoldi: retain past information: after k steps we have
k + 1 vectors q,Aq, ..., AXq

@ look for good eigenvector approximations in the
k + 1-dimensional subspace spanned by these vectors
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

The Arnoldi process |

@ q,Aq,...,AXq usually ill-conditioned

UNIVERSITY OF

BATH

Melina Freitag Arnoldi’s method and IRA




The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

The Arnoldi process |

@ q,Aq,...,AXq usually ill-conditioned

@ therefore: replace these vectors by orthogonal vectors
g1,---,qk+1 that span the same subspace
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

The Arnoldi process |

@ q,Aq,...,AXq usually ill-conditioned

@ therefore: replace these vectors by orthogonal vectors
g1,---,qk+1 that span the same subspace

@ Gram-Schmidt process with slight modification
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

The Arnoldi process |

q,Aq, ..., A*q usually ill-conditioned

therefore: replace these vectors by orthogonal vectors
g1,---,qk+1 that span the same subspace

(]

Gram-Schmidt process with slight modification

theory: orthogonalise AKq against gy, ..., gk

praxis: orthogonalise Aqy against q1,..., gk
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The Arnoldi process

Matrix representations of the Arnoldi process
Example
Convergence theory

Arnoldi’s method

The Arnoldi process |

@ q,Aq,...,AXq usually ill-conditioned

therefore: replace these vectors by orthogonal vectors
g1,---,qk+1 that span the same subspace

Gram-Schmidt process with slight modification
theory: orthogonalise AKq against gy, ..., gk

praxis: orthogonalise Aqy against q1,..., gk

e © ¢ ¢

produces exactly the same sequence of vectors as the
Gram-Schmidt process applied to g, Aq, ..., AXq
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

The Arnoldi process Il

Normalisation q

lall2
On subsequent steps kK = 1,2,... take

q1

k

Gir1 = Agi — Y ajhjc
j=1

where hj is the Gram-Schmidt coefficient hj, =< Aqy, g; >.
Normalisation

1 ~
Gk+1 = —— where  hiiq k= |Gk ll2
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example
Convergence theory

The Arnoldi algorithm

q1 = 9
llql|2
for k=1tom—1do
Gk+1 < Adk

for j =1 to k do
hjk — a7 q+1
Gk+1 < Gk+1 — Gjhjk
end for
reorthogonalise
hes1k < llqr+ll2
if hk-l—l,k =0 then
span{qi,...,qx} is invariant under A

end if
Ghpr = ot ) BATH
* hit1,k —
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

Krylov subspaces

Definition

For any j the space span{q, Aq, ..., A/"1q} is called the jth Krylov
subspace associated with A and g and is denoted by C;(A, g).

RSITY OF

TH
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The Arnoldi process
Arnoldi’s method Matrix representations of the Arnoldi process

Example
Convergence theory

Krylov subspaces

For any j the space span{q, Aq, ..., A/"1q} is called the jth Krylov
subspace associated with A and g and is denoted by /C;(A, q).

Suppose q, Aq, ..., A" 1q are linearly independent and qz, . .

-5 dm
are generated by the Arnoldi process. Then

RSITY OF

Jlic!
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The Arnoldi process
Arnoldi’s method Matrix representations of the Arnoldi process

Example
Convergence theory

Krylov subspaces

For any j the space span{q, Aq, ..., A/"1q} is called the jth Krylov
subspace associated with A and g and is denoted by /C;(A, q).

Suppose q, Aq, ..., A" 1q are linearly independent and qz, . .
are generated by the Arnoldi process. Then

O span{qi,...,qx} = Kk(A,q) for k =1,...,m.

-y Aqm

RSITY OF

Jlic!
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The Arnoldi process
Arnoldi’s method Matrix representations of the Arnoldi process

Example
Convergence theory

Krylov subspaces

For any j the space span{q, Aq, ..., A/"1q} is called the jth Krylov
subspace associated with A and g and is denoted by /C;(A, q).

Suppose g, Aq, ..., A" 1q are linearly independent and qy, .

-y dm
are generated by the Arnoldi process. Then
O span{qi,...,qx} = Kk(A,q) for k =1,...,m.
Q Fork=1,...,m—1, hk—i—l,k > 0.
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The Arnoldi process
Arnoldi’s method Matrix representations of the Arnoldi process

Example
Convergence theory

Krylov subspaces

For any j the space span{q, Aq, ..., A/"1q} is called the jth Krylov
subspace associated with A and g and is denoted by /C;(A, q).

o
Suppose q, Aq, ..., A" "1q are linearly independent and qz, ..., qm
are generated by the Arnoldi process. Then
O span{qi,...,qx} = Kk(A,q) for k =1,...,m.
Q Fork=1,...,m—1, hk—i—l,k > 0.

Q hmi1,m=0iffq,Aq,...,A™q are linearly dependent which
holds in turn iff the Krylov subspace K,(A, q) is invariant
under A. JIH
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

Matrix representation |

Arnoldi process:
k+1

Aqx = Z gjhjk
=i

= AQm - Qm+1Hm+1,m

where

Qm = [CI17‘~7C7m] e C™™ and
(h1 hy -+ him—1 him |
hor hyp -+ homi1 hm

0 hx2 -+ h3mo1  h3m

Hm-l—l,m = : :

0 hm,m—l hmm

0 0 0 Amitm]
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

Matrix representation Il

Arnoldi in matrix form

The Arnoldi process can be written in the form

AQm — QmHm + qm+1hm+1,men77- (1)

where H,, is square upper Hessenberg.

RSITY OF

TH

Melina Freitag Arnoldi’s method and IRA



The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

Matrix representation Il

Arnoldi in matrix form

The Arnoldi process can be written in the form
AQm — QmHm + qm+1hm+1,men77— (1)

where H,, is square upper Hessenberg.

Proposition

Suppose qi,...gm+1 are orthonormal vectors

Qm:[ql""aqm]

and H,, is an upper Hessenberg matrix with h;1;; > 0 for

Jj=1,...,m. If they satisfy (1) they must be vectors produced by | TH
the Arnoldi process. S
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

How can Arnoldi deliver eigenvalues?

If hpy1,m =0 then g, Aq,...,A™q are linearly dependent, i.e.
span{ @, } is invariant under A and

AQm — QmHm

and the eigenvalues of H,, are the eigenvalues of A.

RSITY OF

TH
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

How can Arnoldi deliver eigenvalues?

If hpy1,m =0 then g, Aq,...,A™q are linearly dependent, i.e.
span{ @, } is invariant under A and

AQm — QmHm

and the eigenvalues of H,, are the eigenvalues of A.

V.

RSITY OF

TH
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

How can Arnoldi deliver eigenvalues?

If hpy1,m =0 then g, Aq,...,A™q are linearly dependent, i.e.
span{ @, } is invariant under A and

AQm — QmHm

and the eigenvalues of H,, are the eigenvalues of A.

© for n steps we get g1, ..., g, is an orthonormal basis of C”
and Q. 'AQ, = H, is a unitary similarity transform

RSITY OF

TH

V.
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

How can Arnoldi deliver eigenvalues?

If hpy1,m =0 then g, Aq,...,A™q are linearly dependent, i.e.
span{ @, } is invariant under A and

AQm — QmHm

and the eigenvalues of H,, are the eigenvalues of A.

© for n steps we get g1, ..., g, is an orthonormal basis of C”

and Q. 'AQ, = H, is a unitary similarity transform
© want to stop after m steps m << n

RSITY OF

TH

V.
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

How can Arnoldi deliver eigenvalues?

If hpy1,m =0 then g, Aq,...,A™q are linearly dependent, i.e.
span{ @, } is invariant under A and

AQm — QmHm

and the eigenvalues of H,, are the eigenvalues of A.

© for n steps we get g1, ..., g, is an orthonormal basis of C”
and Qn_lAQ,, = H, is a unitary similarity transform
© want to stop after m steps m << n

RSITY OF

© hmt1,m = 0 only if we are lucky [ H

V.
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

Error estimates (Ritz values and Ritz vectors)

Let Qm, Hm and hpi1,m be generated by the Arnoldi process. Let
1 be an eigenvalue of H,,, with associated eigenvector x normalised
so that ||x|[2=1. Let y = Qmx € C" (also with |y|2=1). Then

HAy —pyl2 = |hm+1,m||Xm|7

where x., denotes the mth (and last) component of x.

Definition

The vector y is called Ritz-vector of A associated with the

subspace (A, q) and the i is called Ritz value.
. w=uTH
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

Example

random complex matrix of dimension n = 144 generated in
MATLAB:

G=numgrid (’N’,14) ;B=delsq(G) ; A=sprandn(B) +i*sprandn(B)

eigenvalues of A
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

after 5 Arnoldi steps

Arnoldi after 5 steps
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example
Convergence theory

after 10 Arnoldi steps
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

after 15 Arnoldi steps

Arnoldi after 15 steps
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

after 20 Arnoldi steps

Arnoldi after 20 steps
i
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

after 25 Arnoldi steps

Arnoldi after 25 steps
©
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

after 30 Arnoldi steps

Arnoldi after 30 steps
T
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

after 35 Arnoldi steps

Arnoldi after 35 steps
Py
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

after 40 Arnoldi step

Arnoldi after 40 steps
®
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

Error estimates and true error

| RESIDUAL |h4q 40[xa0| | TRUE ERROR |

2.0-10°° 1.1-10~7
76-107% 1.1-107%
2.1-107% 41-107°
3.9.107% 1.4-107°
3.4.107% 47-107°
5.1-1073 7.7-107%

Table: Best six Ritz pair residuals and corresponding Ritz value errors,
h41740 ~ 2.8
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

Why does Arnoldi approximate the outer eigenvalues?

@ Let A have linearly independent eigenvectors vy, ..., v, and
associated eigenvalues A1,..., A\,

A UNIVERSITY OF
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

Why does Arnoldi approximate the outer eigenvalues?

@ Let A have linearly independent eigenvectors vy, ..., v, and
associated eigenvalues A1,..., A\,

@ starting vector g = Y i_; ¢jv; and

Km(A, q) = {p(A)qlq € Pm-1}

= v=p(A)g=Y_cp(\i)v
i=1

UNIVERSITY OF
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

Why does Arnoldi approximate the outer eigenvalues?

@ Let A have linearly independent eigenvectors vy, ..., v, and
associated eigenvalues A1,..., A\,

@ starting vector g = Y i_; ¢jv; and

Km(A, q) = {p(A)qlq € Pm-1}

= v=p(A)g=Y_cp(\i)v
i=1

o if 3p € Pm_1 s.t. p()\j) is much larger than p();), i # j then
Km(A, q) will contain a vector close to the eigenvector v;

UNIVERSITY OF
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

Chebyshev polynomials

Trix)

Tm(t) = cos(mcos™1(t)), [t <1

= e+ V- D"+ e+ V-] >

tm

l\.)ln—l
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The Arnoldi process
Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

Convergence theory |

Let
A=AT AN>X>-- >,
Then

v = pm-1(A)g = ZC:Pm 1(A)vi = aapm-1(A1) V1+Z CiPm-1(Ai)Vi

=2
and
:Pm 1
Wm — V-
H 1” z; C1Pm— 1
Find
- Pm—l()‘)
min ma m—1(A), Pm—1(A) = —F=5
Pm— 1€I7>m 1)\6[)\;7),()\2]’0 1( ) P 1( ) Pm—l()\l)

B(A1)=1
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

Convergence theory Il

Theorem (approximation theory)

The minimum

~ pm—l()\)

min ma m—1(A), Pm-1(A\) = ——=

Pm (1A€I)77m 1)\6[)\n),(>\2]p 1( ) & 1( ) pm_l()\l)
1

is reached by the (scaled) Chebyshev polynomial

T 1(1+2A AZ)

T =
" R = )
v,
m1(1+2)‘)‘2) A1 — A2
Iwm=vill < €7 =5y S CUL 25 )
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

Shift-and-invert strategy

@ can be used in conjunction with several iterative eigenvalue
methods
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The Arnoldi process

Arnoldi’s method Matrix representations of the Arnoldi process
Example

Convergence theory

Shift-and-invert strategy

@ can be used in conjunction with several iterative eigenvalue
methods

@ Power method, simultaneous iteration, Arnoldi and Lanzcos
methods compute eigenvalues of A of largest modulus
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The Arnoldi process

Matrix representations of the Arnoldi process
Example

Convergence theory

Arnoldi’s method

Shift-and-invert strategy

@ can be used in conjunction with several iterative eigenvalue
methods

@ Power method, simultaneous iteration, Arnoldi and Lanzcos
methods compute eigenvalues of A of largest modulus

@ suppose we want eigenvalues near some target 7

@ use new matrix (A — 7/)~! that has the same eigenvectors
and invariant subspaces as A, but different eigenvalues

@ largest eigenvalue of (A — 7/)~! corresponds to the
eigenvalues of A that are closest to 7

Melina Freitag Arnoldi’s method and IRA



Implicitly Restarted Arnoldi (IRA)

The implicitely restarted Arnoldi process

@ convergence depends very much on starting vector g

@ find a better starting vector § (less storage)

@ assume A is semisimple with linearly independent eigenvectors
Vi, ..., Vv, and eigenvalues [A\1| > [\o| > -+ > |\,| and
| Akl > [ Akt
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Implicitly Restarted Arnoldi (IRA)

The implicitely restarted Arnoldi process

@ assume A is semisimple with linearly independent eigenvectors

Vi, ..., Vv, and eigenvalues [A\1| > [\o| > -+ > |\,| and
| Al > [Akgal.

@ Write g = )" ;¢jv; and find §, s.t. § =Y i, &V, where
C1,...,Ck have been augmented and ¢x41,...,C, have been
diminished.
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Implicitly Restarted Arnoldi (IRA)

The implicitely restarted Arnoldi process

@ assume A is semisimple with linearly independent eigenvectors

Vi, ..., Vv, and eigenvalues [A\1| > [\o| > -+ > |\,| and
| Al > [Akgal.

@ Write g = )" ;¢jv; and find §, s.t. § =Y i, &V, where
C1,...,Ck have been augmented and ¢x41,...,C, have been
diminished.

@ Suppose § = p(A)g where p is some polynomial, then

g= Z cip(Ai)vi
=

UNIVERSITY OF

and choose p s.t. p(\1),...,p(Ak) are large in comparisog
with p(Axt1), -, p(An) \



Implicitly Restarted Arnoldi (IRA)

Iteration of the IRA |

@ make Arnoldi runs of length m = k + j (to find k eigenvalues)

AQm = QmHm + qm—i-lhm-l—l,merz;
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Implicitly Restarted Arnoldi (IRA)

Iteration of the IRA |

@ make Arnoldi runs of length m = k + j (to find k eigenvalues)
AQm = QmHm + qm—i-lhm-l—l,merz;

o find m eigenvalues |u1| > |u2| > ... > |um| of Hpy
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Implicitly Restarted Arnoldi (IRA)

Iteration of the IRA |

@ make Arnoldi runs of length m = k + j (to find k eigenvalues)
AQm = QmHm + qm—i-lhm-l—l,merz;

o find m eigenvalues |u1| > |u2| > ... > |um| of Hpy

@ largest ones 1| > |u2| > ... > |uk| are estimates for the
largest eigenvalues of A, the smallest ones
approximate the part of the
spectrum
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Implicitly Restarted Arnoldi (IRA)

Iteration of the IRA |

@ make Arnoldi runs of length m = k + j (to find k eigenvalues)
AQm = QmHm + qm—i-lhm-l—l,merz;

o find m eigenvalues |u1| > |u2| > ... > |um| of Hpy

@ largest ones 1| > |u2| > ... > |uk| are estimates for the
largest eigenvalues of A, the smallest ones
approximate the part of the
spectrum
@ perform j iterations of the QR algorithm on H,, using j shifts
V1,...,V; in the region of the spectrum we want to suppress
(most popular choice is v1 = pigs1,. .., Vj = fim)

UNIVERSITY OF
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Implicitly Restarted Arnoldi (IRA)

[teration of the IRA II

@ QR algorithm with shifts is given by

p(Hm) = VmRm, where p(z)=(z—1v1)---(z—vj)
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Implicitly Restarted Arnoldi (IRA)

[teration of the IRA II

@ QR algorithm with shifts is given by
P(Hm) = VimRm, where p(z)=(z—-1v1)---(z—v;)
@ combined effect is a similarity transform

Hp =V 1HpnVm
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Implicitly Restarted Arnoldi (IRA)

[teration of the IRA II

@ QR algorithm with shifts is given by
P(Hm) = VimRm, where p(z)=(z—-1v1)---(z—v;)
@ combined effect is a similarity transform
Hp =V 1HpnVm

o Let Qm = QmV,, and g1 be the first column of Qum.
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Implicitly Restarted Arnoldi (IRA)

[teration of the IRA II

@ QR algorithm with shifts is given by
P(Hm) = VimRm, where p(z)=(z—-1v1)---(z—v;)
@ combined effect is a similarity transform
Hp =V 1HpnVm

o Let Qm = QmV,, and g1 be the first column of Qum.

o Carry out another m Arnoldi steps with §; as starting vector

Melina Freitag Arnoldi’s method and IRA



Implicitly Restarted Arnoldi (IRA)

Iteration of the IRA IlI

@ don't need to start Arnoldi from scratch, since
~ AN L T
AQm - QmHm + qm—i-lhm—i-l,mem Vm7

where e V., has exactly m — j — 1 leading zeros.
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Implicitly Restarted Arnoldi (IRA)

Iteration of the IRA IlI

@ don't need to start Arnoldi from scratch, since
~ AN L T
AQm - QmHm + qm—i-lhm—i-l,mem Vm7

where e V., has exactly m — j — 1 leading zeros.

@ drop last j entries to get

AQk = QuFlik + (Grr1hks 1k + Gme1hmetm Vink)er ,

l=hge
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Implicitly Restarted Arnoldi (IRA)

Iteration of the IRA IlI

@ don't need to start Arnoldi from scratch, since
~ AN L T
AQm - QmHm + qm—i-lhm—i-l,mem Vm7

where e V., has exactly m — j — 1 leading zeros.

@ drop last j entries to get

AQk = QuFlik + (Grr1hks 1k + Gme1hmetm Vink)er ,

l=hge

@ do another j steps of Arnoldi

NIVERSITY OF
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Implicitly Restarted Arnoldi (IRA)

IRA Algorithm

take k Arnoldi steps to produce Hy, Q

for ii =1 to imax do
take another j Arnoldi steps to produce H,,, @m, m=k +j
find j shifts v1,...,y;
take j steps of the QR algorithm on H,, with shifts v4,...,v;
to obtain the transformation matrix V,,
Hp — V1H Vi,

Qm = Qm Vin
if ’hk+1,k| < tol then
span{qi,...,qx} is invariant under A
end if
end for

UNIVERSITY OF
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Implicitly Restarted Arnoldi (IRA)

Why IRA works

@ want new starting vector § = p(A)q, where p is choosen to
suppress unwanted eigenvectors and enhance wanted ones
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Implicitly Restarted Arnoldi (IRA)

Why IRA works

@ want new starting vector § = p(A)q, where p is choosen to
suppress unwanted eigenvectors and enhance wanted ones

@ Recall
AQm = QmHm + qm—i-lhm-l—l,merz;

and insert shift
(A - Vll)Qm = Qm(Hm - Vll) + B
where Ej is zero except for the last column,

(A = I/2I)(A = I/ll)Qm = Qm(Hm = I/ll)(Hm = 1/1/) + E

UNIVERSITY OF

where E> is zero except for the last two columns.
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Implicitly Restarted Arnoldi (IRA)

Why IRA works continued

Suppose AQm = QmHpm + qm+1hm+17me,z and let p be a
polynomial of degree j < m. Then

P(A)Qm = QmP(Hm) + EJ

where E; € C™'™ s identically zero except in the last j columns.

RSITY OF
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Implicitly Restarted Arnoldi (IRA)

Why IRA works continued

Suppose AQm = QmHpm + qm+1hm+17me,z and let p be a
polynomial of degree j < m. Then

P(A)Qm = QmP(Hm) + EJ

where E; € C™'™ s identically zero except in the last j columns.

.

new starting vector

RSITY OF
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Implicitly Restarted Arnoldi (IRA)

Why IRA works continued

Suppose AQm = QmHpm + qm+1hm+17me,z and let p be a
polynomial of degree j < m. Then

P(A)Qm = QmP(Hm) + EJ

where E; € C™'™ s identically zero except in the last j columns.

.

new starting vector
o P(A)Qm = @mVmRm + EJ
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Implicitly Restarted Arnoldi (IRA)

Why IRA works continued

Suppose AQm = QmHpm + qm+1hm+17me,z and let p be a
polynomial of degree j < m. Then

P(A)Qm = QmP(Hm) + EJ

where E; € C™'™ s identically zero except in the last j columns.

.

new starting vector
° p(A)Qm — QmeRm + E_j
o P(A)Qmel = QmRm

RSITY OF

LTH
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Implicitly Restarted Arnoldi (IRA)

Why IRA works continued

Suppose AQm = QmHpm + qm+1hm+17me,z and let p be a
polynomial of degree j < m. Then

P(A)Qm = QmP(Hm) + EJ

where E; € C™'™ s identically zero except in the last j columns.

.

new starting vector
o p(A)Qm = QmVmRm + Ej
o p(A)@mer = QmRum
° &1 = :p(A)gs T

V.

Melina Freitag Arnoldi’s method and IRA



Implicitly Restarted Arnoldi (IRA)

random complex matrix of dimension n = 144 generated in
MATLAB:

G=numgrid(’N’,14) ;B=delsq(G) ; A=sprandn(B)+i*sprandn(B),
tol = 0.1

eigenvalues of A

UNIVERSITY OF
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Implicitly Restarted Arnoldi (IRA)

first 10 Arnoldi steps
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Implicitly Restarted Arnoldi (IRA)

another 10 Arnoldi steps
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Implicitly Restarted Arnoldi (IRA)

first restart
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Implicitly Restarted Arnoldi (IRA)

second restart
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Implicitly Restarted Arnoldi (IRA)

third restart
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Implicitly Restarted Arnoldi (IRA)

forth restart
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Lanczos’ method

The Lanczos process

Arnoldi in matrix form

The Lanczos process can be written in the form

AQm = QmTm + qm—&-l/))menc
where T, is square tridiagonal matrix:

a1 fr

T, — B1 a2
. ﬁm—l

Bm—-1 Om

Thus we obtain only a three-term recurrence and therefore negf

store only three vectors at each step.

b UNIVERSITY OF
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Lanczos’ method

The Lanczos algorithm

q1 = 9
llql|2
for k=1tom—1do
Gk+1 < Adk

Ok = Giqk+1
Gk+1 < Gk+1 — Xk qk
if kK > 1 then
Gk+1 < Gk+1 — Gk—10k—1
end if
Br — llgr+1ll2
if 0x = 0 then
span{qi,...,qx} is invariant under A

end if
N B

end for
Melina Freitag Arnoldi’s method and IRA




Lanczos’ method

Reorthogonalisation

@ store only three vectors g;_1, qj, gj+1 at each step
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Lanczos’ method

Reorthogonalisation

@ store only three vectors g;_1, qj, gj+1 at each step

@ roundoff errors will lead to

Qi1 T Wi

Bk ’

where w11 =~ ul|Al|2 is the roundoff error.

Gk+1
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Lanczos’ method

Reorthogonalisation

@ store only three vectors g;_1, qj, gj+1 at each step

@ roundoff errors will lead to

Qi1 T Wi

Bk ’

where w11 =~ ul|Al|2 is the roundoff error.

Gk+1

@ check orthogonality

91Gi + ul|All2
| Bk|

Tl
|qk+1Qi‘ =
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Lanczos’ method

Reorthogonalisation

@ store only three vectors g;_1, qj, gj+1 at each step

@ roundoff errors will lead to

Qi1 T Wi

Bk ’

where w11 =~ ul|Al|2 is the roundoff error.

Gk+1

@ check orthogonality

91Gi + ul|All2
| Bk|

@ orthogonality is lost, especially for converged eigenvectors,

Tl
|qk+1Qi‘ =

UNIVERSITY OF
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Lanczos’ method

Examples without reorthogonalisation

first 10 Lanczos steps

10 steps of Lanczos (no reorthogonalization) applied to A
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Lanczos step
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Lanczos’ method

Examples without reorthogonalisation

first 20 Lanczos steps

20 steps of Lanczos (no reorthogonalization) applied to A
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Lanczos’ method

Examples without reorthogonalisation

first 30 Lanczos steps

30 steps of Lanczos (no reorthogonalization) applied to A
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Lanczos’ method

Examples without reorthogonalisation

after 120 Lanczos steps

120 steps of Lanczos (no reorthogonalization) applied to A

Eigenvalues
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Lanczos step
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Lanczos’ method

Examples without reorthogonalisation

after 120 Lanczos steps

120 steps of Lanczos (no reorthogonalization) applied to A
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Lanczos’ method

Examples without reorthogonalisation

N ‘True errors and error bounds, in eigenvalues 110 4 “; 9
10
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Lanczos step (no reorthogonalization)
Figure: Error and error bounds Figure: Loss of orthogonality
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Lanczos’ method

Examples with reorthogonalisation

after 120 Lanczos steps

120 steps of Lanczos (full reorthogonalization) applied to A
T

Eigenvalues
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Lanczos step
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Lanczos’ method

Examples with reorthogonalisation

after 120 Lanczos steps

120 steps of Lanczos (full reorthogonalization) applied to A
T T T
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Lanczos’ method

Examples with reorthogonalisation

T
“True errors and erfor bounds, i eigenvalues 1t0 4 x10" Lt

10

107 4
g . 2
210
)
g 0
ERL
8 2|
FEd
g -4
5 107
i 5
§ 107
3 -8

10 -10)

VN
10 H H H MY PR
0 2 [ 60 8 100 120 0 2 @ E E) 100 120
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Figure: Error and error bounds Figure: No loss of orthogonality
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Lanczos’ method
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Lanczos’ method
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