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The Lanzcos method

Problem

I Eigenproblem for A ∈ Cn,n, A = AT :

Ax = λx.

I let the eigenvalues be

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|

I associated eigenvectors x1, x2, . . . , xn

I A is large and sparse, need iterative methods.
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The Lanzcos method

Idea behind Lanczos

I keep iterates from Power method v, Av, . . . , Ak−1v which form a
Krylov subspace associated with A and v

Kj(A, v) = span{v, Av, . . . , Aj−1v}.

I v, Av, . . . , Ak−1v are usually ill-conditioned

I orthogonalise the vectors v, Av, . . . , Ak−1v in the Krylov space using
a modified Gram-Schmidt process

Melina Freitag University of Bath

Constraint eigenproblems and SI-Lanczos



Outline Introduction SI-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions References

The Lanzcos method

Idea behind Lanczos

I keep iterates from Power method v, Av, . . . , Ak−1v which form a
Krylov subspace associated with A and v

Kj(A, v) = span{v, Av, . . . , Aj−1v}.

I v, Av, . . . , Ak−1v are usually ill-conditioned

I orthogonalise the vectors v, Av, . . . , Ak−1v in the Krylov space using
a modified Gram-Schmidt process

Melina Freitag University of Bath

Constraint eigenproblems and SI-Lanczos



Outline Introduction SI-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions References

The Lanzcos method

Lanczos algorithm

I choose initial vector v and normalise v1 =
v

‖v‖2

I On subsequent steps k = 1, 2, . . . take

ṽk+1 = Avk −

k
∑

j=1

vjtjk

where tjk is the Gram-Schmidt coefficient tjk =< Avk, vj >.

I normalise

vk+1 =
ṽk+1

tk+1,k

where tk+1,k = ‖q̃k+1‖2
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The Lanzcos method

Matrix formulation and calculation of eigenvalues

Lanczos in matrix form
The Lanczos process can be written in the form

AVm = VmTm + vm+1βmeT
m where Tm =













α1 β1

β1 α2
. . .

. . .
. . . βm−1

βm−1 αm













Theorem
Let Vm, Tm and βm generated by the Lanczos process and

Tms = µs, ‖s‖2 = 1.

Let y = Vms ∈ C
n, then

‖Ay − µy‖2 = |βm||sm|,

where sm denotes the mth (and last) component of s.
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The Lanzcos method

An example

first 10 Lanczos steps
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The Lanzcos method

An example

first 20 Lanczos steps
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The Lanzcos method

An example

first 30 Lanczos steps

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8
30 steps of Lanczos (no reorthogonalization) applied to A

Lanczos step

E
ig

en
va

lu
es

Melina Freitag University of Bath

Constraint eigenproblems and SI-Lanczos



Outline Introduction SI-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions References

Motivation

The constraint eigenvalue problem

I Computation of the smallest non-zero eigenvalues and corresponding
eigenvectors of

Ax = λMx

where M = MT positive definite and A = AT positive semidefinite.

I assume sparse basis C for null-space of A is available

I dimension of the null-space is high compared with the problem
dimension

I constraint in terms of the null-space orthogonality, for smallest
non-zero eigenvalue:

min
CT Mx=0
06=x∈R

xT Ax

xT Mx
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Motivation

Application areas

Electromagnetic cavity resonator

curl(µ−1curlu) = ω2
u in Ω

div(εu) = 0 in Ω

u × n = 0 on ∂Ω

where u is the electric field, n denotes the outward normal vector, µ the
magnetic permeability, ε the electric permittivity.

Network problems

Ax = λx, with Ac = 0

where A = AT SPD, M = I and the eigenpair (0, c) is known, looking
for second smallest eigenvalue λ2 with the constraint cT x = 0.
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Motivation

Simplify the problem

I Consider smallest non-zero eigenvalues and corresponding
eigenvectors of

Ax = λx

where M = I positive definite and A = AT positive semidefinite.

I the null-space is one-dimensional

Ac = 0

I Constraint in terms of the null-space orthogonality, for smallest
non-zero eigenvalue:

min
cT x=0
06=x∈R

xT Ax

xT x
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Motivation

Different formulations of the problem

I Ax = λx, cT x = 0

I Shifting the null eigenvalue

(A + cH−1cT )x = ηx,

H =
1

γ
cT c shifts zero eigenvalue to γ.

Smallest eigenvalues coincide.

I Enforce constraint with augmented system

[

A c
cT 0

][

x
y

]

= λ

[

I 0
0 0

][

x
y

]

.

Smallest eigenvalues coincide.

Melina Freitag University of Bath

Constraint eigenproblems and SI-Lanczos



Outline Introduction SI-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions References

Motivation

Different formulations of the problem

I Ax = λx, cT x = 0

I Shifting the null eigenvalue

(A + cH−1cT )x = ηx,

H =
1

γ
cT c shifts zero eigenvalue to γ.

Smallest eigenvalues coincide.

I Enforce constraint with augmented system

[

A c
cT 0

][

x
y

]

= λ

[

I 0
0 0

][

x
y

]

.

Smallest eigenvalues coincide.

Melina Freitag University of Bath

Constraint eigenproblems and SI-Lanczos



Outline Introduction SI-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions References

Motivation

Different formulations of the problem

I Ax = λx, cT x = 0

I Shifting the null eigenvalue

(A + cH−1cT )x = ηx,

H =
1

γ
cT c shifts zero eigenvalue to γ.

Smallest eigenvalues coincide.

I Enforce constraint with augmented system

[

A c
cT 0

][

x
y

]

= λ

[

I 0
0 0

][

x
y

]

.

Smallest eigenvalues coincide.

Melina Freitag University of Bath

Constraint eigenproblems and SI-Lanczos



Outline Introduction SI-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions References

Outline

Introduction
The Lanzcos method
Motivation

The SI-Lanczos process on the constraint problem
Shift-and-Invert Lanczos
Inexact Shift-and-Invert Lanczos

Solution of the constraint inner system
Block definite preconditioning
Block indefinite preconditioning

The Augmented formulation and inexact SI-Lanczos

The modified formulation

Some numerics

Conclusions

Melina Freitag University of Bath

Constraint eigenproblems and SI-Lanczos



Outline Introduction SI-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions References

Shift-and-Invert Lanczos

Shift-and-Invert Lanczos for generalised eigenproblem

I Consider
Ax = λIx, A = AT ,

I apply Lanczos to spectrally transformed problem

(A− σI)−1Ix = ηx, η = (λ − σ)−1

I basic recursion for SI-Lanczos

(A− σI)−1Vj = VjTj + vj+1tj+1,je
T
j ,

where Vj = [v1, . . . , vj ] is an orthogonal basis, Tj tridiagonal with
Tj = V T

j (A− σI)−1Vj

I If Tjs
(i)
j = η

(i)
j s

(i)
j we get eigenpairs for A by (1/η

(i)
j + σ, Vjs

(i)
j ).
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Shift-and-Invert Lanczos

Shift-and-Invert Lanczos and constraints

I (A − σI)−1x = ηx, cT x = 0.

I start iteration with v1 such that cT v1 = 0 and vT
1 v1 = 1

I cT x is automatically satisfied by exact eigenvectors

I finite precision arithmetic orthogonality constraint not satisfied

I let π = c(cT c)−1cT , then I − π projects onto R
n orthogonal to the

null-space of A

I modify Lanczos algorithm to enforce orthogonality constraint
cT vj = 0:

ṽ = (I − π)(A − σI)−1vj

vj+1tj+1,j = ṽ − VjT:,j , T:,j = V T
j ṽ
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Inexact Shift-and-Invert Lanczos

Inexact Shift-and-Invert Lanczos and constraints

I let zj be approximate solution to the system

(A − σI)z = vj

I Set Zj = [z1, . . . , zj ]

(A − σI)−1Vj = VjTj + vj+1tj+1,je
T
j ,

becomes
Zj = Vj T̄j + vj+1tj+1,je

T
j , T̄j = V T

j Zj

I Problem: cT zj = 0 ??? depending on the iterative solver and
preconditioning strategy

I enforce the constraint in the outer Lanczos iteration:

(I − π)Zj = VjTj + vj+1tj+1,je
T
j , Vj = (I − π)Vj

I enforce the constraint during the solution of the inner system
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Inexact Shift-and-Invert Lanczos

On Krylov subspace methods (for solving linear systems)

I want to solve
(A − σI)z = v

I using right preconditioner P we obtain

(A − σI)P−1ẑ = v

I minimise the residual v − (A − σI)P−1ẑ with zero starting guess

z(m) = P−1ẑm with ẑ(m) ∈ Km((A − σI)P−1, v)

I examples: CG, MINRES, GMRES
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Inexact Shift-and-Invert Lanczos

Original system - Augmented system

Augmented System

[

A − σI c
cT 0

]

P−1ẑ =

[

v
0

]

⇔ (A− σI)P−1ẑ = Ib

Vectors generating the subspace K
m

((A− σI)P−1, Ib)

((A − σI)kP−1)kIb =

[

Gkv
0

]

Minimisation procedure

ẑ(m) ∈ Km((A− σI)P−1, Ib) ẑ(m) = [x̂(m); 0]

optimal approximate solution of Gx̂ = v in

x̂(m) ∈ Km(G, v)
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ẑ(m) ∈ Km((A− σI)P−1, Ib) ẑ(m) = [x̂(m); 0]
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Original system - Augmented system

I Original system:

(A − σI)x = v with cT x = 0

I Augmented system

[

A − σI c
cT 0

] [

x
y

]

=

[

v
0

]

⇔ (A− σI)z = Ib

I show that augmented system is not better than original system

I analyse 2 preconditioning techniques

Melina Freitag University of Bath

Constraint eigenproblems and SI-Lanczos



Outline Introduction SI-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions References

Original system - Augmented system

I Original system:

(A − σI)x = v with cT x = 0

I Augmented system

[

A − σI c
cT 0

] [

x
y

]

=

[

v
0

]

⇔ (A− σI)z = Ib

I show that augmented system is not better than original system

I analyse 2 preconditioning techniques

Melina Freitag University of Bath

Constraint eigenproblems and SI-Lanczos



Outline Introduction SI-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions References

Original system - Augmented system

I Original system:

(A − σI)x = v with cT x = 0

I Augmented system

[

A − σI c
cT 0

] [

x
y

]

=

[

v
0

]

⇔ (A− σI)z = Ib

I show that augmented system is not better than original system

I analyse 2 preconditioning techniques

Melina Freitag University of Bath

Constraint eigenproblems and SI-Lanczos



Outline Introduction SI-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions References

Block definite preconditioning

The preconditioner and its properties

I structured symmetric definite preconditioner

PD =

[

K1 0
0 cT K−1

1 c

]

, K1 = A1 − τI, τ ∈ R

where K1 = KT
1 nonsingular and A1c = 0 so τ 6= 0 (A1 = 0)

I We have

cT K−1
1 = −

1

τ
cT

cT K−1
1 c = −

1

τ
cT c symplifies PD

and with K = A − σI

cT (KK−1
1 )k =

σ

τ
cT for k ≥ 0
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Block definite preconditioning

Equivalence of optimal solutions

Theorem
Let v satisfy cT v = 0. The optimal Krylov subspace solution of the
augmented system z(m) with right preconditioner PD can be written as

z(m) = [x(m); 0],

where x(m) is the optimal Krylov subspace solution of the original
(non-augmented) system with preconditioner K1.

Proof Idea

((A − σI)P−1
D )k

[

v
0

]

=

[

(KK−1
1 )kv
0

]

If ẑ(m) ∈ Km((A − σI)P−1
D , Ib) then x̂(m) ∈ Km((KK−1

1 , v) both
optimal approximate solutions.
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Block definite preconditioning

Orthogonality constraint satisfied

Remark
The solution z(m) = [x(m); 0], satisfies cT x(m) = 0.

Proof

I since x̂(m) is optimal approximate solution in Km((KK−1
1 , v)

x̂(m) = φm−1(KK−1
1 )v

and cT (KK−1
1 )k =

σ

τ
cT we have cT x̂(m) = 0.

I Then

cT x(m) = −
1

τ
cT K1x

(m) = −
1

τ
cT x̂(m) = 0
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Block indefinite preconditioning

The preconditioner and its properties

I structured symmetric indefinite preconditioner

PI =

[

K1 c
cT 0

]

, K1 = A1 − τI, τ ∈ R

where K1 = KT
1 nonsingular and A1c = 0 so τ 6= 0 (A1 = 0

possible)

I also possible K1 = A1 − σM1 for general M1 = MT
1
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Block indefinite preconditioning

Equivalence of optimal solutions

Theorem
Let v satisfy cT v = 0. The optimal Krylov subspace solution of the
augmented system z(m) with right preconditioner PI can be written as

z(m) = [x(m); 0],

where x(m) is the optimal Krylov subspace solution of the original
(non-augmented) system with preconditioner K1.

Remark
The solution z(m) = [x(m); 0], satisfies cT x(m) = 0.
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Back to the solve of the outer system

I augmented formulation of the problem

[

A c
cT 0

][

x
y

]

= λ

[

I 0
0T 0

][

x
y

]

I nc = 1 zero eigenvalue of the original problem become infinite

I nc = 1 more eigenvalues arise (corresponding) to the singular part of
I; infinite

I non-zero eigenvalues remain unchanged; find smallest eigenvalues of
the augmented system; eigenvectors are of the form [x; 0]

I exact SI-Lanczos - inexact SI Lanczos
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Preconditioning with PD

Theorem
Let u1 satisfy cT u1 = 0. Inexact SI-Lanczos with shift σ applied to the
augmented formulation with staring vector v1 = [u1; 0] and inner right
preconditioner

PD =

[

K1 0
0 cT K−1

1 c

]

, K1 = A1 − τI, A1c = 0, A1 ∈ R
n×n

with K1 = KT
1 nonsingular generates the same approximation iterates as

inexact SI-Lanczos with shift σ applied to the original problem with
starting vector u1 and inner right preconditioner K1.

Proof Idea
Uses results that optimal Krylov subspace approximate solution of inner
systems are essentially the same. Induction.
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Remarks

I key condition is cT K1 = βcT for β 6= 0

I here: K1 = A1 − τI

I could use K1 = αA1 + cH−1cT with H = cT c, α ∈ R, A1c = 0.
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Remarks

I also possible: higher dimensional null-spaces of A, where C is a
basis of the null-space such that AC = 0

I also possible: generalised eigenproblem Ax = λMx
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Regularisation of the problem

I other than augmented formulation, a so-called regularised
formulation is available

I move zero eigenvalues away from the origin and also (hopefully) far
away from the sought after eigenvalues

I let H ∈ R
nc×nc (here H is just a scalar) be symmetric and

nonsingular, then the transformed generalised eigenvalue problem is
given by

(A + cH−1cT )x = ηx
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Shifting of the zero eigenvalue

Theorem
Let

Ax = λx and (A + cH−1cT )x = ηx

and λi, ηi be eigenvalues.

I If λi 6= 0 there exists j such that λi = ηj .

I If λi = 0 there corresponds an eigenvalue ηj with ηj ∈ Λ(cT c, H)

Remarks

I no practical advantage

I inner solver (A + cH−1cT )z = v produces the same Krylov subspace
as Az = v
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2D computational model of an electromagnetic cavity
resonator

I variational formulation: Find ωh ∈ R s.t. ∃0 6= uh ∈ Σh ⊂ Σ

(rotuh, rotvh) = ω2
h(uh,vh) ∀vh ∈ Σh,

where rot(v1, v2) = (v2)x − (v1)y,
Σ = {v ∈ L2(Ω)2 : rotv ∈ L2(Ω),v · t = 0 on∂Ω} and t is the
counterclockwise oriented tangent unit vector to the boundary

I FEM discretisation

I size n = 3229, null-space dimension nc = 1036

I solver: right preconditioned GMRES

I preconditioner K1 = A1 − σM with A1 = 0 and σ = 0.8

I inner tolerance 10−8 for the solve of the inner system
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Results

(A − σM)−1Mx = ηx (A− σM)−1Mz = ηz
j K1 PD PI

4 0.02426393067395 0.02426393067727 0.02426393066981
6 0.02898748221567 0.02898746782699 0.02898748572682
8 0.01156203523797 0.01156203705189 0.01156203467534
10 0.00000041284501 0.00000041284501 0.00000041283893
12 0.00000000158821 0.00000000158844 0.00000000158891
14 0.00000000158802 0.00000000158827 0.00000000158882

Table: Relative eigenvalue residual norm
Axj − λjMxj

λj

of approximate

smallest eigenpair in the inexact SI-Lanczos method applied to different

formulations and different preconditioners
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Conclusions

I different formulations for constraint eigenvalue problem (especially
augmented formulation)

I augmented schemes are equivalent to original formulation if inexact
SI-Lanczos is used (for natural choices of the preconditioner for the
inner system)

I dependent on the fact that the constraint matrix C is a basis for the
null-space of the problem

I approximation space is maintained M -orthogonal to the null-space
without explicit orthogonalisation (constraint CT Mx = 0
automatically satisfied)

I inner accuracy influences the performance of the method
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