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The Lanzcos method

Problem

» Eigenproblem for A € C™", A = AT:
Az = Az.
> let the eigenvalues be
Al = Ao = - = |An]

> associated eigenvectors x1,xs, ..., Ty

» A is large and sparse, need iterative methods.
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The Lanzcos method

Idea behind Lanczos

> keep iterates from Power method v, Av, ..., A*¥~1vy which form a
Krylov subspace associated with A and v

K;(A,v) = span{v, Av,..., AT~ v}
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The Lanzcos method

Idea behind Lanczos

> keep iterates from Power method v, Av, ..., A*¥~1vy which form a
Krylov subspace associated with A and v

K;(A,v) = span{v, Av,..., AT~ v}

» v, Av, ..., A¥=1v are usually ill-conditioned

» orthogonalise the vectors v, Av, ..., A*~1v in the Krylov space using
a modified Gram-Schmidt process
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The Lanzcos method

Lanczos algorithm

» choose initial vector v and normalise v1 = ——

[oll2
» On subsequent steps k =1, 2,... take
k
Vg1 = Avg, — Zvjtjk
j=1

where 23, is the Gram-Schmidt coefficient #;, =< Avy,v; >.

» normalise

Vg1 = ——— where tp11 % = ||Ger1ll2
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The Lanzcos method

Matrix formulation and calculation of eigenvalues

Lanczos in matrix form
The Lanczos process can be written in the form

ar B

T 1 o
AVm - Vtme = Um—+1 ﬁme

‘m

where T, =
ﬂm—l

ﬁmfl O
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The Lanzcos method

Matrix formulation and calculation of eigenvalues

Lanczos in matrix form
The Lanczos process can be written in the form

ar B

T B az
AVm = Ve lin <7 7#’771+1¢3m6m where T}, =

ﬁmfl
Theorem
Let Vi, T, and (,, generated by the Lanczos process and
Tons = s, |lslla = 1.

Let y =V, s € C", then
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The Lanzcos method

An example

first 10 Lanczos steps

10 steps of Lanczos (no reorthogonalization) applied to A
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The Lanzcos method

An example

first 20 Lanczos steps

20 steps of Lanczos (no reorthogonalization) applied to A
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The Lanzcos method

An example

Eigenvalues

4

first 30 Lanczos steps

30 steps of Lanczos (no reorthogonalization) applied to A
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Motivation

The constraint eigenvalue problem

» Computation of the smallest non-zero eigenvalues and corresponding
eigenvectors of
Ax =AMz

where M = M7 positive definite and A = A” positive semidefinite.
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Motivation

The constraint eigenvalue problem

» Computation of the smallest non-zero eigenvalues and corresponding
eigenvectors of
Ax =AMz
where M = M7 positive definite and A = A” positive semidefinite.
» assume sparse basis C' for null-space of A is available

» dimension of the null-space is high compared with the problem
dimension
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Motivation

The constraint eigenvalue problem

» Computation of the smallest non-zero eigenvalues and corresponding
eigenvectors of

Ax =AMz
where M = M7 positive definite and A = A” positive semidefinite.
» assume sparse basis C' for null-space of A is available
» dimension of the null-space is high compared with the problem
dimension

» constraint in terms of the null-space orthogonality, for smallest
non-zero eigenvalue:

. 2T Az

min ———

T Ma=0 T Mx
0#z€R
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Motivation

Application areas

Electromagnetic cavity resonator

curl(u~teurlu) = w?u
div(eu) =0
uxn=20

Modified form  Some numerics  Conclusions  References

in Q
in Q
on o0

where u is the electric field, n denotes the outward normal vector, u the
magnetic permeability, € the electric permittivity.
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Motivation

Application areas

Electromagnetic cavity resonator

curl(u~teurlu) = w?u
div(eu) =0
uxn=20

Modified form  Some numerics  Conclusions  Re

in Q
in Q
on o0

where u is the electric field, n denotes the outward normal vector, u the
magnetic permeability, € the electric permittivity.

Network problems

Ax = Az,

with Ac=0
where A = AT SPD, M = I and the eigenpair (0, c) is known, look
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Motivation

Simplify the problem

» Consider smallest non-zero eigenvalues and corresponding

eigenvectors of
Ax = Xz

where M = I positive definite and A = AT positive semidefinite.

» the null-space is one-dimensional
Ac=0

» Constraint in terms of the null-space orthogonality, for smallest
non-zero eigenvalue:
o 2T Ax
min T
cTe=0 T
0#z€R
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Motivation

Different formulations of the problem

» Az =Xz, Tz=0
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Motivation

Different formulations of the problem

> Az =Xz, Lfx=0

» Shifting the null eigenvalue

(A+cH M)z = ne,

1 . .
H = —c"c shifts zero eigenvalue to ~.

v
Smallest eigenvalues coincide.

References
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o
Motivation

Different formulations of the problem

> Az =Xz, Lfx=0

» Shifting the null eigenvalue
(A+cH M)z = ne,

1 . .
H = —c"c shifts zero eigenvalue to ~.

v
Smallest eigenvalues coincide.
» Enforce constraint with augmented system

TR 1

Smallest eigenvalues coincide.
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Outline

The Sl-Lanczos process on the constraint problem
Shift-and-Invert Lanczos
Inexact Shift-and-Invert Lanczos
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Shift-and-Invert Lanczos

Shift-and-Invert Lanczos for generalised eigenproblem

» Consider

Az =2z, A=A",

» apply Lanczos to spectrally transformed problem

(A-—0D) Tz =nz, n=N—-0)""!
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Shift-and-Invert Lanczos

Shift-and-Invert Lanczos for generalised eigenproblem

» Consider

Az =2z, A=A",

» apply Lanczos to spectrally transformed problem
(A-—0D) Tz =nz, n=N—-0)""!
» basic recursion for Sl-Lanczos

(A= 0D)7V; = ViT; + vjatjre;

where V; = [v1,...,v;] is an orthogonal basis, T} tridiagonal with
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Shift-and-Invert Lanczos

Shift-and-Invert Lanczos for generalised eigenproblem

» Consider

Az =Tz, A=AT,
» apply Lanczos to spectrally transformed problem
(A-—0D) Tz =nz, n=N—-0)""!
» basic recursion for Sl-Lanczos
(A= 0D)7V; = ViT; + vjatjre;

where V; = [v1,...,v;] is an orthogonal basis, T} tridiagonal with
T, = Vi (A—oT)"1Y,

> If Tjsél) = J(l) Sgl) we get eigenpairs for A by (1/7751) + o, ‘ngl”%%ﬁx’irm
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Shift-and-Invert Lanczos

Shift-and-Invert Lanczos and constraints

» (A—o)"lz=nz, Lz=0.

» start iteration with vy such that ¢fvy =0 and v{v; =1
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Shift-and-Invert Lanczos

Shift-and-Invert Lanczos and constraints

» (A—o)"lz=nz, Lz=0.
» start iteration with vy such that ¢fvy =0 and v{v; =1

T

» ¢’ x is automatically satisfied by exact eigenvectors

» finite precision arithmetic orthogonality constraint not satisfied
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Shift-and-Invert Lanczos

Shift-and-Invert Lanczos and constraints

>
>
>
>
| 2

(A-—ol)"tz=nz, cfz=0.

start iteration with vy such that ¢c’v; = 0 and vTv; =1

¢’z is automatically satisfied by exact eigenvectors

finite precision arithmetic orthogonality constraint not satisfied

let 7 = c(cT'c)~1c?, then I — 7 projects onto R™ orthogonal to the

null-space of A

» modify Lanczos algorithm to enforce orthogonality constraint

T, . _ 0.
c*v; =0:

7 = (I-7m)(A—ol) v,
viritir; = 0-ViT; T,;=V]0
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Inexact Shift-and-Invert Lanczos

Inexact Shift-and-Invert Lanczos and constraints

> let z; be approximate solution to the system

(A—ol)z =v;
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@00
Inexact Shift-and-Invert Lanczos

Inexact Shift-and-Invert Lanczos and constraints

> let z; be approximate solution to the system
(A—ol)z =v;
> Set Z; = [z1,..., 2]
(A= o)™V, = ViT; + vjatjr e ,

becomes - -
Z; = ViTj + vintjrge;, T =VZ;
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Inexact Shift-and-Invert Lanczos and constraints

> let z; be approximate solution to the system
(A—ol)z =v;
> Set Z; = [z1,..., 2]
(A= o)™V, = ViT; + vjatjr e ,

becomes - -
Z; = ViTj + vintjrge;, T =VZ;

» Problem: ¢Tz; = 0 7?7 depending on the iterative solver and

preconditioning strategy

& BATH

Melina Freitag University of Bath

Constrai igenproblems and Sl-Lanczos



Outline Introduction Sl-Lanczos Inner problem solution Augmented form Modified form Some numerics Conclusions Re
@00
Inexact Shift-and-Invert Lanczos

Inexact Shift-and-Invert Lanczos and constraints

> let z; be approximate solution to the system
(A—ol)z =v;
> Set Z; = [z1,..., 2]
(A= o)™V, = ViT; + vjatjr e ,

becomes

Z; =ViTj +visitjrze;, T =V]'Z;

T
70

» Problem: ¢Tz; = 0 7?7 depending on the iterative solver and

preconditioning strategy
» enforce the constraint in the outer Lanczos iteration:

I —mZ; =V;T; +Uj+1tj+1,j€?, Vi=—-m)V;
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@00
Inexact Shift-and-Invert Lanczos

Inexact Shift-and-Invert Lanczos and constraints

> let z; be approximate solution to the system
(A—ol)z =v;
> Set Z; = [z1,..., 2]
(A= o)™V, = ViT; + vjatjr e ,

becomes

Z; =ViTj +visitjrze;, T =V]'Z;

T

70

» Problem: ¢Tz; = 0 7?7 depending on the iterative solver and
preconditioning strategy

» enforce the constraint in the outer Lanczos iteration:
ap
(I —mZ; = V;Tj + vjritjrr 65, Vi=I —mV;

» enforce the constraint during the solution of the inner system %—
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Inexact Shift-and-Invert Lanczos

On Krylov subspace methods (for solving linear systems)

» want to solve
(A—olz=w

» using right preconditioner P we obtain

(A—o)P 'z =v

UNIVERSITY OF

BATH

University of Bath

t eigenproblems and



Outline v i Sl-Lanczos oblem solution Augmented form Modified form Some numerics Conclusions References
(e]
Inexact Shift-and-Invert Lanczos

On Krylov subspace methods (for solving linear systems)

» want to solve
(A—olz=w

» using right preconditioner P we obtain
(A—o)P 'z =v
» minimise the residual v — (A — oI)P~12 with zero starting guess
2m = p7izm with 20 € K, (A — oD)P7L,0)

» examples: CG, MINRES, GMRES
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Inexact Shift-and-Invert Lanczos

Original system - Augmented system

Some numerics

Conclusions  References

Augmented System
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Inexact Shi nd-Invert Lanczos

Original system - Augmented system

{A —ol C] P lz= H & (A—oT)P'2=1b
Vectors generating the subspace KC,,,((A — oZ)P~!, Zb)

(A —oZ) P~1)*Tb = [Gkv]

0
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ooe
Inexact Shift-and-Invert Lanczos

Original system - Augmented system

Augmented System

A—ol c
cT 0

] Plz= m & (A—ol)P'2=1b
Vectors generating the subspace KC,,,((A — oZ)P~!, Zb)

(A —oZ) P~1)*Tb = [Gkv]

0
Minimisation procedure

5 e K (A—-oZ)PL,Zb) 2™ = [2(™); 0]
optimal approximate solution of GZ = v in
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Outline

Solution of the constraint inner system
Block definite preconditioning
Block indefinite preconditioning
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Original system - Augmented system

» Original system:

(A—oDz=v with cfz=0
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Original system - Augmented system

Conclusions  References

» Original system:
(A—oDz=v with cfz=0

» Augmented system

5 -t

cT 0
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Original system - Augmented system

v

Original system:

(A—oDz=v with cfz=0

v

Augmented system

5 )

v

show that augmented system is not better than original system

v

analyse 2 preconditioning techniques
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Block definite preconditioning

The preconditioner and its properties

» structured symmetric definite preconditioner

K 0
PDz[Ol cTKl_lc}’ Ki=A -7, 7€R

where K7 = K{ nonsingular and Ajc=0so 7 # 0 (A4; = 0)
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Block definite preconditioning

The preconditioner and its properties

» structured symmetric definite preconditioner

K 0
PDz[Ol cTKl_lc}’ Ki=A -7, 7€R

where K7 = K{ nonsingular and Ajc=0so 7 # 0 (A4; = 0)
» We have 1
TE = 2T
T
T pr—1 L7 .
¢ K c:—;c c symplifies Pp

and with K = A — ol

(KK HE = 2T for k>0
T
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Conclusions  References

Block definite preconditioning

Equivalence of optimal solutions

Theorem
Let v satisfy c"v = 0. The optimal Krylov subspace solution of the
augmented system z(™) with right preconditioner Pp can be written as

20m = [z ],

where (™) js the optimal Krylov subspace solution of the original
(non-augmented) system with preconditioner K.
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Block definite preconditioni

Equivalence of optimal solutions

Theorem
Let v satisfy c"v = 0. The optimal Krylov subspace solution of the
augmented system z(™) with right preconditioner Pp can be written as

20m = [z ],

where (™) js the optimal Krylov subspace solution of the original
(non-augmented) system with preconditioner K.

Proof Idea
(A - oT)P5L)* m _ {(KK(l)_l)kv]

If 20m) € K, ((A — 0Z)Ppt, Zb) then 2™ € K,,, (KK ', v) both g
optimal approximate solutions.
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Block definite preconditioning

Orthogonality constraint satisfied

Some numerics

Conclusions  References

Remark
The solution z(™ = [2(™); 0], satisfies ¢”2("™) = 0.
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Block definite preconditioning

Orthogonality constraint satisfied

Some numerics  Conclusions  References

Remark
The solution z(™ = [2(™); 0], satisfies ¢”2("™) = 0.

Proof

> since 2(™) is optimal approximate solution in KC,,, (K K; ', v)

2™ = ¢ 1 (KKT v

and ¢T(KK;1)F = 7T we have ¢F30m = 0.
T

Melina Freitag
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Block definite preconditioning

Orthogonality constraint satisfied

Remark
The solution z(™ = [2(™); 0], satisfies ¢”2("™) = 0.

Proof

> since 2(™) is optimal approximate solution in KC,,, (K K; ', v)
2™ = ¢ 1 (KKT v

and ¢T(KK;1)F = 7T we have ¢F30m = 0.
T

» Then
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Block indefinite preconditioning

The preconditioner and its properties

» structured symmetric indefinite preconditioner

PI:E; 8] Ki=A —7I, T€R

where K1 = K{ nonsingular and Ajc=0so7 #0 (4; =0
possible)

References
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Block indefinite preconditioning

The preconditioner and its properties

» structured symmetric indefinite preconditioner

PI:E; 8] Ki=A —7I, T€R

where K1 = K{ nonsingular and Ajc=0so7 #0 (4; =0
possible)

» also possible K1 = A; — oM for general My = M
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Block indefinite preconditioning

Equivalence of optimal solutions

Melina Freitag

Theorem
Let v satisfy cT'v = 0. The optimal Krylov subspace solution of the
augmented system =) with right preconditioner Py can be written as

2 = [at™); 0],

where (™) s the optimal Krylov subspace solution of the original
(non-augmented) system with preconditioner K.
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Block indefinite preconditioning

Equivalence of optimal solutions

Theorem
Let v satisfy cT'v = 0. The optimal Krylov subspace solution of the
augmented system =) with right preconditioner Py can be written as

2 = [at™); 0],

where (™) s the optimal Krylov subspace solution of the original
(non-augmented) system with preconditioner K.

Remark
The solution z(™ = [z(™); 0], satisfies ¢Tz(™) = 0.
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Outline

The Augmented formulation and inexact Sl-Lanczos
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Back to the solve of the outer system

» augmented formulation of the problem

& o [ =2 o ol )
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Back to the solve of the outer system

» augmented formulation of the problem

& o [ =2 o ol )

» n. = 1 zero eigenvalue of the original problem become infinite
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Back to the solve of the outer system

» augmented formulation of the problem

& o [ =2 o ol )

» n. = 1 zero eigenvalue of the original problem become infinite

» n. =1 more eigenvalues arise (corresponding) to the singular part of
Z; infinite
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Back to the solve of the outer system

» augmented formulation of the problem

& o [ =2 o ol )

» n. = 1 zero eigenvalue of the original problem become infinite

» n. =1 more eigenvalues arise (corresponding) to the singular part of
Z; infinite

» non-zero eigenvalues remain unchanged; find smallest eigenvalues of
the augmented system; eigenvectors are of the form [z; 0]
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Back to the solve of the outer system

» augmented formulation of the problem

& o [ =2 o ol )

» n. = 1 zero eigenvalue of the original problem become infinite

» n. =1 more eigenvalues arise (corresponding) to the singular part of
Z; infinite

» non-zero eigenvalues remain unchanged; find smallest eigenvalues of
the augmented system; eigenvectors are of the form [z; 0]

» exact Sl-Lanczos - inexact Sl Lanczos
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Preconditioning with Pp

Theorem
Let uy satisfy cTuy = 0. Inexact Sl-Lanczos with shift o applied to the
augmented formulation with staring vector vy = [u1;0] and inner right

preconditioner
K 0
Pp = |:01 CTK16:|’ Klel—TI, Alc:O, Ale]R"X”
1

with Ky = K{' nonsingular generates the same approximation iterates as
inexact Sl-Lanczos with shift o applied to the original problem with
starting vector ui and inner right preconditioner K .
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Preconditioning with Pp

Theorem
Let uy satisfy cTuy = 0. Inexact Sl-Lanczos with shift o applied to the
augmented formulation with staring vector vy = [u1;0] and inner right

preconditioner
K 0
Pp = |:01 CTK16:|’ Klel—TI, Alc:O, Ale]R"X”
1

with Ky = K{' nonsingular generates the same approximation iterates as
inexact Sl-Lanczos with shift o applied to the original problem with
starting vector ui and inner right preconditioner K .

Proof Idea

Uses results that optimal Krylov subspace approximate solution of in
systems are essentially the same. Induction.
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Preconditioning with P

Theorem
Let uy satisfy cTuy = 0. Inexact Sl-Lanczos with shift o applied to the
augmented formulation with staring vector vy = [u1;0] and inner right
preconditioner
K1 c
Pr = l:CrZ} 0:|, Klel—TI, AchO, Aq € R™*™
with K1 = K f nonsingular generates the same approximation iterates as

inexact Sl-Lanczos with shift o applied to the original problem with
starting vector ui and inner right preconditioner K .

Proof Idea

Uses results that optimal Krylov subspace approximate solution of in
systems are essentially the same. Induction.
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Remarks

» key condition is ¢' K| = B¢’ for 3 # 0
» here: K1 = A1 — 71
» could use K1 = aA; + cH 1T with H =c¢Te, a € R, Ajc = 0.
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Remarks

» also possible: higher dimensional null-spaces of A, where C'is a
basis of the null-space such that AC' =0
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Remarks

» also possible: higher dimensional null-spaces of A, where C'is a
basis of the null-space such that AC' =0

» also possible: generalised eigenproblem Ax = A\Mx
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Outline

The modified formulation
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Regularisation of the problem

» other than augmented formulation, a so-called regularised
formulation is available
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Regularisation of the problem

» other than augmented formulation, a so-called regularised
formulation is available

» move zero eigenvalues away from the origin and also (hopefully) far
away from the sought after eigenvalues
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Regularisation of the problem

» other than augmented formulation, a so-called regularised
formulation is available

» move zero eigenvalues away from the origin and also (hopefully) far
away from the sought after eigenvalues

> let H € R"<*" (here H is just a scalar) be symmetric and
nonsingular, then the transformed generalised eigenvalue problem is
given by
(A+cH ')z =nz
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Shifting of the zero eigenvalue

Theorem
Let
Az =Xz and (A+cH 'z =nx
and \;, n; be eigenvalues.
> If X\; # 0 there exists j such that \; = n;.
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Shifting of the zero eigenvalue

Theorem
Let
Az =Xz and (A+cH 'z =nx
and \;, n; be eigenvalues.
> If X\; # 0 there exists j such that \; = n;.
» If \; = O there corresponds an eigenvalue n; with n; € A(cTc, H)
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Shifting of the zero eigenvalue

Theorem
Let
Az =Xz and (A+cH 'z =nx
and \;, n; be eigenvalues.
> If X\; # 0 there exists j such that \; = n;.
» If \; = O there corresponds an eigenvalue n; with n; € A(cTc, H)

Remarks
» no practical advantage

> inner solver (A + cH'cT)z = v produces the same Krylov subspace
as Az =w
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Some numerics
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Some numerics

2D computational model of an electromagnetic cavity
resonator

» variational formulation: Find wp, € Rs.t. 30 A up € ¥y, C X
(rotuy,, rotvy,) = wz(uh,vh) Vv € Xp,

where rot(v1,v2) = (v2)z — (v1)y,

Y ={veL*N)?:rotve L*Q),v- -t =00n90N} and t is the
counterclockwise oriented tangent unit vector to the boundary
FEM discretisation

size n = 3229, null-space dimension n. = 1036

solver: right preconditioned GMRES

preconditioner K1 = A1 — oM with Ay =0and 0 =0.8

inner tolerance 10~2 for the solve of the inner system

vV vV v v Yy
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Results

oblem solution

Augmented form Modified form Some numerics Conclusions

(A—oM)"*Mz=nz

Pp

Pr

NI

0.02426393067395
0.02898748221567
0.01156203523797
0.00000041284501
0.00000000158821
0.00000000158802

0.02426393067727
0.02898746782699
0.01156203705189
0.00000041284501
0.00000000158844
0.00000000158827

0.02426393066981
0.02898748572682
0.01156203467534
0.00000041283893
0.00000000158891
0.00000000158882

Table: Relative eigenvalue residual norm

Al’j — )\le‘]'

of approximate

J
smallest eigenpair in the inexact Sl-Lanczos method applied to different
formulations and different preconditioners

Melina Freitag

& BATH

University of Bath

Constraint eigenproblems and Sl-Lanczos



Outline  Introduction  Sl-Lanczos  Inner problem solution ~ Augmented form  Modified form  Some nume Conclusions

Outline

UNIVERSITY OF

Conclusions

Melina Freitag iversity of Bat

Constraint eigenproblems and S|



Outline  Introduction  Sl-Lanczos  Inner problem solution ~ Augmented form  Modified form  Some numerics  Conclusions  References

Conclusions

» different formulations for constraint eigenvalue problem (especially
augmented formulation)

» augmented schemes are equivalent to original formulation if inexact
Sl-Lanczos is used (for natural choices of the preconditioner for the
inner system)
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Conclusions

» different formulations for constraint eigenvalue problem (especially
augmented formulation)

» augmented schemes are equivalent to original formulation if inexact
Sl-Lanczos is used (for natural choices of the preconditioner for the
inner system)

» dependent on the fact that the constraint matrix C' is a basis for the
null-space of the problem
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Conclusions

» different formulations for constraint eigenvalue problem (especially
augmented formulation)

» augmented schemes are equivalent to original formulation if inexact
Sl-Lanczos is used (for natural choices of the preconditioner for the
inner system)

» dependent on the fact that the constraint matrix C' is a basis for the
null-space of the problem

> approximation space is maintained M-orthogonal to the null-space
without explicit orthogonalisation (constraint C* Mz = 0
automatically satisfied)

» inner accuracy influences the performance of the method
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