

Fast computation of the stability radius of a matrix

Melina Freitag and Alastair Spence

Department of Mathematical Sciences
University of Bath

37th South African Symposium on Numerical and
Applied Mathematics
Stellenbosch University
4th April 2013

Outline

Introduction

Background

Implicit Determinant Method

Examples

A simple example

- Consider the 10×10 matrix

$$A = \begin{bmatrix} J_9(-0.1) & 0 \\ 0 & -0.001 \end{bmatrix}$$

$J_9(-0.1)$ is a Jordan block of size 9, associated with the eigenvalue -0.1 .

A simple example

- Consider the 10×10 matrix

$$A = \begin{bmatrix} J_9(-0.1) & 0 \\ 0 & -0.001 \end{bmatrix}$$

$J_9(-0.1)$ is a Jordan block of size 9, associated with the eigenvalue -0.1 .

- What are the eigenvalues of this matrix?

A simple example

- Consider the 10×10 matrix

$$A = \begin{bmatrix} J_9(-0.1) & 0 \\ 0 & -0.001 \end{bmatrix}$$

$J_9(-0.1)$ is a Jordan block of size 9, associated with the eigenvalue -0.1 .

- What are the eigenvalues of this matrix?

$$\lambda_1 = -0.1 \quad \text{and} \quad \lambda_2 = -0.001$$

The matrix is **stable**.

A simple example

- Consider the 10×10 matrix

$$A = \begin{bmatrix} J_9(-0.1) & 0 \\ 0 & -0.001 \end{bmatrix}$$

$J_9(-0.1)$ is a Jordan block of size 9, associated with the eigenvalue -0.1 .
Replace the $(9, 1)$ entry by 10^{-9}

A simple example

- Consider the 10×10 matrix

$$A = \begin{bmatrix} J_9(-0.1) & 0 \\ 0 & -0.001 \end{bmatrix}$$

$J_9(-0.1)$ is a Jordan block of size 9, associated with the eigenvalue -0.1 .

Replace the $(9, 1)$ entry by 10^{-9}

- What are the eigenvalues of this matrix?

A simple example

- Consider the 10×10 matrix

$$A = \begin{bmatrix} J_9(-0.1) & 0 \\ 0 & -0.001 \end{bmatrix}$$

$J_9(-0.1)$ is a Jordan block of size 9, associated with the eigenvalue -0.1 .

Replace the $(9, 1)$ entry by 10^{-9}

- What are the eigenvalues of this matrix?

$\lambda_1 = 0$ and all the other eigenvalues are still in the open left half plane.

The matrix is **unstable**.

A simple example

- Consider the 10×10 matrix

$$A = \begin{bmatrix} J_9(-0.1) & 0 \\ 0 & -0.001 \end{bmatrix}$$

$J_9(-0.1)$ is a Jordan block of size 9, associated with the eigenvalue -0.1 .
Replace the $(9, 1)$ entry by 10^{-9}

- What are the eigenvalues of this matrix?

$\lambda_1 = 0$ and all the other eigenvalues are still in the open left half plane.

The matrix is **unstable**.

Observation

Matrix A is **stable**, with all the eigenvalues well away from the imaginary axis $\lambda_2 = -0.001$. But $A + E$ is **unstable**, where perturbation is only $\|E\| = 10^{-9}$!

Distance to instability - definition

- Stability of matrix $A \in \mathbb{C}^{n \times n}$: $\Lambda(A)$ in open left half plane

Distance to instability - definition

- Stability of matrix $A \in \mathbb{C}^{n \times n}$: $\Lambda(A)$ in open left half plane
- Define **spectral abscissa**

$$\eta(A) := \max\{\operatorname{Re}(\lambda) \mid \lambda \in \Lambda(A)\}$$

Distance to instability - definition

- Stability of matrix $A \in \mathbb{C}^{n \times n}$: $\Lambda(A)$ in open left half plane
- Define **spectral abscissa**

$$\eta(A) := \max\{\operatorname{Re}(\lambda) \mid \lambda \in \Lambda(A)\}$$

- If $\eta(A) < 0$, A is **stable**.

Distance to instability - definition

- Stability of matrix $A \in \mathbb{C}^{n \times n}$: $\Lambda(A)$ in open left half plane
- Define **spectral abscissa**

$$\eta(A) := \max\{\operatorname{Re}(\lambda) \mid \lambda \in \Lambda(A)\}$$

- If $\eta(A) < 0$, A is **stable**.
- Better measure of stability: **distance of A to instability**

Distance to instability - definition

- Stability of matrix $A \in \mathbb{C}^{n \times n}$: $\Lambda(A)$ in open left half plane
- Define **spectral abscissa**

$$\eta(A) := \max\{\operatorname{Re}(\lambda) \mid \lambda \in \Lambda(A)\}$$

- If $\eta(A) < 0$, A is **stable**.
- Better measure of stability: **distance of A to instability**

Distance to instability

Distance of a stable matrix A to instability

$$\beta(A) = \min\{\|E\| \mid \eta(A + E) = 0, E \in \mathbb{C}^{n \times n}\}$$

Distance to instability - definition

- Stability of matrix $A \in \mathbb{C}^{n \times n}$: $\Lambda(A)$ in open left half plane
- Define **spectral abscissa**

$$\eta(A) := \max\{\operatorname{Re}(\lambda) \mid \lambda \in \Lambda(A)\}$$

- If $\eta(A) < 0$, A is **stable**.
- Better measure of stability: **distance of A to instability**

Distance to instability

Distance of a stable matrix A to instability

$$\beta(A) = \min\{\|E\| \mid \eta(A + E) = 0, E \in \mathbb{C}^{n \times n}\}$$

- If $A + E$ has an eigenvalue on the imaginary axis, E is *destabilising perturbation*

Distance to instability - known results

- For a destabilising perturbation E

$$(A + E - \omega i I)z = 0,$$

for some $\omega \in \mathbb{R}$ and $z \in \mathbb{C}^n$.

Distance to instability - known results

- For a destabilising perturbation E

$$(A + E - \omega iI)z = 0,$$

for some $\omega \in \mathbb{R}$ and $z \in \mathbb{C}^n$.

- Consider the singular value decomposition of $A - \omega iI$:

$$A - \omega iI = U\Sigma V^H.$$

The minimising destabilising perturbation is given by $E_{\min} = -\sigma_{\min} u_n v_n^H$, where σ_{\min} is the minimum singular value of $A - \omega iI$.

Distance to instability - known results

- For a destabilising perturbation E

$$(A + E - \omega iI)z = 0,$$

for some $\omega \in \mathbb{R}$ and $z \in \mathbb{C}^n$.

- Consider the singular value decomposition of $A - \omega iI$:

$$A - \omega iI = U\Sigma V^H.$$

The minimising destabilising perturbation is given by $E_{\min} = -\sigma_{\min} u_n v_n^H$, where σ_{\min} is the minimum singular value of $A - \omega iI$.

- Measure for **distance to instability** of a matrix (Van Loan 1984),

$$\beta(A) = \min_{\omega \in \mathbb{R}} \sigma_{\min}(A - \omega iI),$$

where $\sigma_{\min}(A - \omega iI)$ is the smallest singular value of $A - \omega iI$.

Distance to instability - known results

Consider the singular values of $A - \omega iI$:

$$(A - \omega iI)v = \alpha u \quad \text{and} \quad (A - \omega iI)^H u = \alpha v.$$

Distance to instability - known results

Consider the singular values of $A - \omega iI$:

$$(A - \omega iI)v = \alpha u \quad \text{and} \quad (A - \omega iI)^H u = \alpha v.$$

$$\underbrace{\begin{bmatrix} A & -\alpha I \\ \alpha I & -A^H \end{bmatrix}}_{H(\alpha)} \begin{bmatrix} v \\ u \end{bmatrix} = \omega i \begin{bmatrix} v \\ u \end{bmatrix}$$

$H(\alpha)$ has a pure imaginary eigenvalue ωi

Results on $H(\alpha)$

Theorem (Byers 1988)

The $2n \times 2n$ Hamiltonian matrix

$$H(\alpha) = \begin{bmatrix} A & -\alpha I \\ \alpha I & -A^H \end{bmatrix}.$$

has an eigenvalue on the imaginary axis if and only if $\alpha \geq \beta(A)$.

Results on $H(\alpha)$

Theorem (Byers 1988)

The $2n \times 2n$ Hamiltonian matrix

$$H(\alpha) = \begin{bmatrix} A & -\alpha I \\ \alpha I & -A^H \end{bmatrix}.$$

has an eigenvalue on the imaginary axis if and only if $\alpha \geq \beta(A)$.

If α^* is the minimum value of α at which $H(\alpha)$ has a pure imaginary eigenvalue ω^*i with corresponding $x^* = \begin{bmatrix} v^* \\ u^* \end{bmatrix}$ then $\alpha^* = \beta(A)$.

Outline

Introduction

Background

Implicit Determinant Method

Examples

Existing numerical methods

- Bisection approach by Byers
 - choose lower and upper bound on α (0 and $\sigma_{\min}(A)$)
 - take mean value s and calculate **all** the eigenvalues of $H(s)$, update lower and upper bound according to pure imaginary eigenvalues of $H(s)$

Existing numerical methods

- Bisection approach by Byers
 - choose lower and upper bound on α (0 and $\sigma_{\min}(A)$)
 - take mean value s and calculate **all** the eigenvalues of $H(s)$, update lower and upper bound according to pure imaginary eigenvalues of $H(s)$
- Boyd/Balakrishnan method
 - given an upper bound $\alpha \geq \beta(A)$, compute **all** pure imaginary eigenvalues iw_1, iw_2, \dots, iw_l of $H(\alpha)$ ordered so that $w_1 \leq w_2 \leq \dots \leq w_l$
 - set $s_k = \frac{w_k + w_{k+1}}{2}$, $k = 1, \dots, l-1$ and update $\alpha = \min_k \sigma_{\min}(A - s_k iI)$

Existing numerical methods

- Bisection approach by Byers
 - choose lower and upper bound on α (0 and $\sigma_{\min}(A)$)
 - take mean value s and calculate **all** the eigenvalues of $H(s)$, update lower and upper bound according to pure imaginary eigenvalues of $H(s)$
- Boyd/Balakrishnan method
 - given an upper bound $\alpha \geq \beta(A)$, compute **all** pure imaginary eigenvalues iw_1, iw_2, \dots, iw_l of $H(\alpha)$ ordered so that $w_1 \leq w_2 \leq \dots \leq w_l$
 - set $s_k = \frac{w_k + w_{k+1}}{2}$, $k = 1, \dots, l-1$ and update $\alpha = \min_k \sigma_{\min}(A - s_k iI)$
- He/Watson algorithm
 - find the minimum of $f(\omega) = \sigma_{\min}(A - \omega iI)$
 - uses inverse iteration algorithm to find a stationary ω
 - check on **all** the corresponding eigenvalues of $H(\alpha)$

Results on $H(\alpha)$

Assumption

$(\omega i, x)$ is a **defective eigenpair** of $H(\alpha) = \begin{bmatrix} A & -\alpha I \\ \alpha I & -A^H \end{bmatrix}$ of algebraic multiplicity 2.

Results on $H(\alpha)$

Assumption

$(\omega i, x)$ is a **defective eigenpair** of $H(\alpha) = \begin{bmatrix} A & -\alpha I \\ \alpha I & -A^H \end{bmatrix}$ of algebraic multiplicity 2.

$$(H(\alpha) - \omega i I)x = 0, \quad x \neq 0, \quad \text{and} \quad \dim \ker(H(\alpha) - \omega i I) = 1,$$

$$y^H(H(\alpha) - \omega i I) = 0, \quad y \neq 0, \quad \text{and} \quad \color{red}y^H x = 0,$$

$$y = Jx, \quad J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix},$$

Results on $H(\alpha)$

Assumption

$(\omega i, x)$ is a **defective eigenpair** of $H(\alpha) = \begin{bmatrix} A & -\alpha I \\ \alpha I & -A^H \end{bmatrix}$ of algebraic multiplicity 2.

$$(H(\alpha) - \omega i I)x = 0, \quad x \neq 0, \quad \text{and} \quad \dim \ker(H(\alpha) - \omega i I) = 1,$$

$$y^H(H(\alpha) - \omega i I) = 0, \quad y \neq 0, \quad \text{and} \quad \textcolor{red}{y^H x = 0},$$

$$y = Jx, \quad J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix},$$

$$(H(\alpha) - \omega i I)\hat{x} = x, \quad \text{and} \quad \textcolor{red}{y^H \hat{x} \neq 0},$$

Jordan block of dimension 2 at the critical value of α

Parameter dependent matrix eigenvalue problem $H(\omega, \alpha)$

Problem

How do we find a 2-dimensional Jordan block in $H(\alpha)$?

$$\underbrace{(H(\alpha) - \omega i I)}_{H(\omega, \alpha)} x = 0, \quad x \neq 0,$$

Outline

Introduction

Background

Implicit Determinant Method

Examples

Bordered systems - a “new” method for finding eigenvalues

One-parameter problem $B(\lambda)x = 0$ or $y^H B(\lambda) = 0^H$ ($\det(B(\lambda)) = 0$)

Bordered system for $\text{rank}(B(\lambda)) = n - 1$

$$\underbrace{\begin{bmatrix} B(\lambda) & b \\ c^H & 0 \end{bmatrix}}_{M(\lambda)} \begin{bmatrix} x(\lambda) \\ f(\lambda) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

is nonsingular if $c^H x \neq 0$ and $y^H b \neq 0$.

Bordered systems - a “new” method for finding eigenvalues

One-parameter problem $B(\lambda)x = 0$ or $y^H B(\lambda) = 0^H$ ($\det(B(\lambda)) = 0$)

Bordered system for $\text{rank}(B(\lambda)) = n - 1$

$$\underbrace{\begin{bmatrix} B(\lambda) & b \\ c^H & 0 \end{bmatrix}}_{M(\lambda)} \begin{bmatrix} x(\lambda) \\ f(\lambda) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

is nonsingular if $c^H x \neq 0$ and $y^H b \neq 0$. Cramer's rule

$$f(\lambda) = \frac{\det(B(\lambda))}{\det(M(\lambda))},$$

Bordered systems - a “new” method for finding eigenvalues

One-parameter problem $B(\lambda)x = 0$ or $y^H B(\lambda) = 0^H$ ($\det(B(\lambda)) = 0$)

Bordered system for $\text{rank}(B(\lambda)) = n - 1$

$$\underbrace{\begin{bmatrix} B(\lambda) & b \\ c^H & 0 \end{bmatrix}}_{M(\lambda)} \begin{bmatrix} x(\lambda) \\ f(\lambda) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

is nonsingular if $c^H x \neq 0$ and $y^H b \neq 0$. Cramer's rule

$$f(\lambda) = \frac{\det(B(\lambda))}{\det(M(\lambda))},$$

Solve

$$f(\lambda) = 0 \quad \text{instead of} \quad \det(B(\lambda)) = 0.$$

Bordered systems - a “new” method for finding eigenvalues

One-parameter problem $B(\lambda)x = 0$ or $y^H B(\lambda) = 0^H$ ($\det(B(\lambda)) = 0$)

Bordered system for $\text{rank}(B(\lambda)) = n - 1$

$$\underbrace{\begin{bmatrix} B(\lambda) & b \\ c^H & 0 \end{bmatrix}}_{M(\lambda)} \begin{bmatrix} x(\lambda) \\ f(\lambda) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

is nonsingular if $c^H x \neq 0$ and $y^H b \neq 0$. Cramer's rule

$$f(\lambda) = \frac{\det(B(\lambda))}{\det(M(\lambda))},$$

Solve

$$f(\lambda) = 0 \quad \text{instead of} \quad \det(B(\lambda)) = 0.$$

At $f(\lambda) = 0$:

$$B(\lambda)x(\lambda) = 0.$$

Bordered systems - a “new” method for finding eigenvalues

One-parameter problem $B(\lambda)x = 0$ or $y^H B(\lambda) = 0^H$ ($\det(B(\lambda)) = 0$)

Bordered system for $\text{rank}(B(\lambda)) = n - 1$

$$\underbrace{\begin{bmatrix} B(\lambda) & b \\ c^H & 0 \end{bmatrix}}_{M(\lambda)} \begin{bmatrix} x(\lambda) \\ f(\lambda) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

is nonsingular if $c^H x \neq 0$ and $y^H b \neq 0$. Cramer's rule

$$f(\lambda) = \frac{\det(B(\lambda))}{\det(M(\lambda))},$$

Solve

$$f(\lambda) = 0 \quad \text{instead of} \quad \det(B(\lambda)) = 0.$$

At $f(\lambda) = 0$:

$$B(\lambda)x(\lambda) = 0.$$

Solve $f(\lambda) = 0$ using Newton's method $\lambda^+ = \lambda - \frac{f(\lambda)}{f_\lambda(\lambda)}$.

Parameter dependent matrix eigenvalue problem $H(\omega, \alpha)$

Problem

How do we find a 2-dimensional Jordan block in $H(\alpha)$?

$$\underbrace{(H(\alpha) - \omega i I)}_{H(\omega, \alpha)} x = 0, \quad x \neq 0,$$

The implicit determinant method

Two-parameter problem

$$H(\omega, \alpha)x = 0 \quad \text{or} \quad \det(H(\omega, \alpha)) = 0$$

The implicit determinant method

Two-parameter problem

$$H(\omega, \alpha)x = 0 \quad \text{or} \quad \det(H(\omega, \alpha)) = 0$$

Bordered system

$$\underbrace{\begin{bmatrix} H(\alpha) - \omega iI & Jc \\ c^H & 0 \end{bmatrix}}_{M(\omega, \alpha)} \begin{bmatrix} x(\omega, \alpha) \\ f(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

is nonsingular if $c^H x \neq 0$.

The implicit determinant method

Two-parameter problem

$$H(\omega, \alpha)x = 0 \quad \text{or} \quad \det(H(\omega, \alpha)) = 0$$

Bordered system

$$\underbrace{\begin{bmatrix} H(\alpha) - \omega iI & Jc \\ c^H & 0 \end{bmatrix}}_{M(\omega, \alpha)} \begin{bmatrix} x(\omega, \alpha) \\ f(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

is nonsingular if $c^H x \neq 0$. Cramer's rule

$$f(\omega, \alpha) = \frac{\det(H(\omega, \alpha))}{\det(M(\omega, \alpha))},$$

The implicit determinant method

Two-parameter problem

$$H(\omega, \alpha)x = 0 \quad \text{or} \quad \det(H(\omega, \alpha)) = 0$$

Bordered system

$$\underbrace{\begin{bmatrix} H(\alpha) - \omega i I & Jc \\ c^H & 0 \end{bmatrix}}_{M(\omega, \alpha)} \begin{bmatrix} x(\omega, \alpha) \\ f(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

is nonsingular if $c^H x \neq 0$. Cramer's rule

$$f(\omega, \alpha) = \frac{\det(H(\omega, \alpha))}{\det(M(\omega, \alpha))},$$

Solve

$$f(\omega, \alpha) = 0 \quad \text{instead of} \quad \det(H(\omega, \alpha)) = 0,$$

where

$$f(\omega, \alpha) = x(\omega, \alpha)^H J(H(\alpha) - \omega i I) x(\omega, \alpha)$$

The implicit determinant method

Differentiate the linear system

Differentiate
$$\begin{bmatrix} H(\alpha) - \omega i I & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x(\omega, \alpha) \\ f(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 with respect to ω :

$$\begin{bmatrix} H(\alpha) - \omega i I & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x_\omega(\omega, \alpha) \\ f_\omega(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} ix(\omega, \alpha) \\ 0 \end{bmatrix}.$$

The implicit determinant method

Differentiate the linear system

Differentiate $\begin{bmatrix} H(\alpha) - \omega iI & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x(\omega, \alpha) \\ f(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ with respect to ω :

$$\begin{bmatrix} H(\alpha) - \omega iI & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x_\omega(\omega, \alpha) \\ f_\omega(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} ix(\omega, \alpha) \\ 0 \end{bmatrix}.$$

First row

$$f_\omega(\omega, \alpha) = iy^H x$$

The implicit determinant method

Differentiate the linear system

Differentiate $\begin{bmatrix} H(\alpha) - \omega iI & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x(\omega, \alpha) \\ f(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ with respect to ω :

$$\begin{bmatrix} H(\alpha) - \omega iI & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x_\omega(\omega, \alpha) \\ f_\omega(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} ix(\omega, \alpha) \\ 0 \end{bmatrix}.$$

First row

$$f_\omega(\omega, \alpha) = iy^H x = 0,$$

because of Jordan block of dimension 2.

The implicit determinant method

Differentiate the linear system

Differentiate $\begin{bmatrix} H(\alpha) - \omega iI & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x(\omega, \alpha) \\ f(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ with respect to ω :

$$\begin{bmatrix} H(\alpha) - \omega iI & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x_\omega(\omega, \alpha) \\ f_\omega(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} ix(\omega, \alpha) \\ 0 \end{bmatrix}.$$

First row

$$f_\omega(\omega, \alpha) = iy^H x = 0,$$

because of Jordan block of dimension 2. Solve

$$g(\omega, \alpha) = \begin{bmatrix} f(\omega, \alpha) \\ f_\omega(\omega, \alpha) \end{bmatrix} = 0.$$

The implicit determinant method

Differentiate the linear system

Differentiate $\begin{bmatrix} H(\alpha) - \omega iI & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x(\omega, \alpha) \\ f(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ with respect to ω :

$$\begin{bmatrix} H(\alpha) - \omega iI & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x_\omega(\omega, \alpha) \\ f_\omega(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} ix(\omega, \alpha) \\ 0 \end{bmatrix}.$$

First row

$$f_\omega(\omega, \alpha) = iy^H x = 0,$$

because of Jordan block of dimension 2. Solve

$$g(\omega, \alpha) = \begin{bmatrix} f(\omega, \alpha) \\ f_\omega(\omega, \alpha) \end{bmatrix} = 0.$$

Also,

$$(H(\alpha) - \omega iI)x_\omega(\omega, \alpha) = ix,$$

and $y^H x_\omega(\omega, \alpha) \neq 0$, hence $f_{\omega\omega}(\omega, \alpha) \neq 0$.

Newton's method for *real* function g in two real variables

Solve

$$g(\omega, \alpha) = \begin{bmatrix} f(\omega, \alpha) \\ f_\omega(\omega, \alpha) \end{bmatrix} = 0,$$

using Newton's method:

$$G(\omega^{(i)}, \alpha^{(i)}) \begin{bmatrix} \Delta\omega^{(i)} \\ \Delta\alpha^{(i)} \end{bmatrix} = -g(\omega^{(i)}, \alpha^{(i)}),$$

$$\begin{bmatrix} \omega^{(i+1)} \\ \alpha^{(i+1)} \end{bmatrix} = \begin{bmatrix} \omega^{(i)} \\ \alpha^{(i)} \end{bmatrix} + \begin{bmatrix} \Delta\omega^{(i)} \\ \Delta\alpha^{(i)} \end{bmatrix}.$$

Jacobian for Newton's method

Jacobian

$$G(\omega^{(i)}, \alpha^{(i)}) = \begin{bmatrix} f_\omega(\omega^{(i)}, \alpha^{(i)}) & f_\alpha(\omega^{(i)}, \alpha^{(i)}) \\ f_{\omega\omega}(\omega^{(i)}, \alpha^{(i)}) & f_{\omega\alpha}(\omega^{(i)}, \alpha^{(i)}) \end{bmatrix}.$$

Jacobian for Newton's method

Jacobian

$$G(\omega^{(i)}, \alpha^{(i)}) = \begin{bmatrix} f_\omega(\omega^{(i)}, \alpha^{(i)}) & f_\alpha(\omega^{(i)}, \alpha^{(i)}) \\ f_{\omega\omega}(\omega^{(i)}, \alpha^{(i)}) & f_{\omega\alpha}(\omega^{(i)}, \alpha^{(i)}) \end{bmatrix}.$$

and the Jacobian elements are evaluated by differentiating the system

$$\begin{bmatrix} H(\alpha) - \omega i I & Jc \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x(\omega, \alpha) \\ f(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

with respect to ω and α .

Implementation

- one (sparse) LU factorisation of

$$\begin{bmatrix} H(\alpha) - \omega i I & Jc \\ c^H & 0 \end{bmatrix}$$

- solve with bordered system matrix and 5 different right hand sides in order to obtain $f(\omega, \alpha)$ and entries for Jacobian

$$G(\omega, \alpha) = \begin{bmatrix} f_\omega(\omega, \alpha) & f_\alpha(\omega, \alpha) \\ f_{\omega\omega}(\omega, \alpha) & f_{\omega\alpha}(\omega, \alpha) \end{bmatrix}$$

- very fast **quadratically convergent** Newton method in 2 dimensions

Remarks

- full-rank Jacobian $G(\omega^*, \alpha^*) = \begin{bmatrix} 0 & f_\alpha(\omega^*, \alpha^*) \\ f_{\omega\omega}(\omega^*, \alpha^*) & f_{\omega\alpha}(\omega^*, \alpha^*) \end{bmatrix}$,

Remarks

- full-rank Jacobian $G(\omega^*, \alpha^*) = \begin{bmatrix} 0 & f_\alpha(\omega^*, \alpha^*) \\ f_{\omega\omega}(\omega^*, \alpha^*) & f_{\omega\alpha}(\omega^*, \alpha^*) \end{bmatrix}$,
- $f_{\omega\omega}(\omega^*, \alpha^*) < 0$ and $f_\alpha(\omega^*, \alpha^*) > 0$.

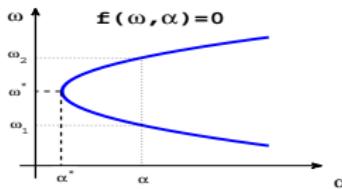


Figure: Curve $f(\omega, \alpha) = 0$ in the (ω, α) -plane for $f_{\omega\omega}(\omega^*, \alpha^*) < 0$

Remarks

- full-rank Jacobian $G(\omega^*, \alpha^*) = \begin{bmatrix} 0 & f_\alpha(\omega^*, \alpha^*) \\ f_{\omega\omega}(\omega^*, \alpha^*) & f_{\omega\alpha}(\omega^*, \alpha^*) \end{bmatrix}$,
- $f_{\omega\omega}(\omega^*, \alpha^*) < 0$ and $f_\alpha(\omega^*, \alpha^*) > 0$.

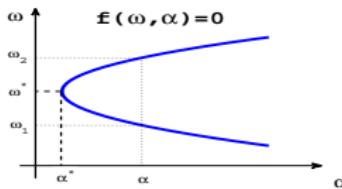


Figure: Curve $f(\omega, \alpha) = 0$ in the (ω, α) -plane for $f_{\omega\omega}(\omega^*, \alpha^*) < 0$

- Multiplication by $\begin{bmatrix} -J & 0 \\ 0^H & 1 \end{bmatrix}$ leads to the Hermitian system

$$\begin{bmatrix} -JH(\alpha) + \omega i J & c \\ c^H & 0 \end{bmatrix} \begin{bmatrix} x(\omega, \alpha) \\ f(\omega, \alpha) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Outline

Introduction

Background

Implicit Determinant Method

Examples

Example 1

Consider

$$A = \begin{bmatrix} -0.4 + 6i & 1 & & \\ 1 & -0.1 + i & 1 & \\ & 1 & -1 - 3i & 1 \\ & & 1 & -5 + i \end{bmatrix}$$

which has eigenvalues (rounded to 3 significant digits)

$$\Lambda(A) = \{-0.41 + 5.80i, -0.04 + 0.95i, -0.92 - 2.62i, -5.13 + 0.87i\}$$

Example 1

Consider

$$A = \begin{bmatrix} -0.4 + 6i & 1 & & \\ 1 & -0.1 + i & 1 & \\ & 1 & -1 - 3i & 1 \\ & & 1 & -5 + i \end{bmatrix}$$

which has eigenvalues (rounded to 3 significant digits)

$$\Lambda(A) = \{-0.41 + 5.80i, -0.04 + 0.95i, -0.92 - 2.62i, -5.13 + 0.87i\}$$

Starting values:

$$\alpha^{(0)} = 0$$

$\omega^{(0)}$: imaginary part of the eigenvalue of A closest to the imaginary axis

$c = x^{(0)} = \begin{bmatrix} v(\omega^{(0)}, \alpha^{(0)}) \\ u(\omega^{(0)}, \alpha^{(0)}) \end{bmatrix}$, where $v(\omega^{(0)}, \alpha^{(0)})$ and $u(\omega^{(0)}, \alpha^{(0)})$ are right and left singular vectors of $A - \omega^{(0)}iI$

Example 1

Table: Results for Example 1.

i	NEWTON METHOD		$\ g(\omega^{(i)}, \alpha^{(i)})\ $
	$\omega^{(i)}$	$\alpha^{(i)}$	
0	<u>0.953057740164838</u>	0	-
1	<u>0.953036248966048</u>	<u>0.031887014318100</u>	1.5949900020014e-02
2	<u>0.953014724735990</u>	<u>0.031887009443620</u>	2.2577279982423e-04
3	<u>0.953014724704841</u>	<u>0.031887014303200</u>	2.4473093206567e-09
4	<u>0.953014724704841</u>	<u>0.031887014303200</u>	8.2762961087551e-16

Example 2

Orr-Sommerfeld operator

$$\frac{1}{\gamma R} L^2 v - i(UL - U'')v = \lambda Lv, \quad \text{where} \quad L = \frac{d^2}{dx^2} - \gamma^2 \quad \text{and} \quad U = 1 - x^2.$$

Discretise the operator on $v \in [-1, 1]$ using finite differences with $\gamma = 1$, $R = 1000$ and $n = 1000$.

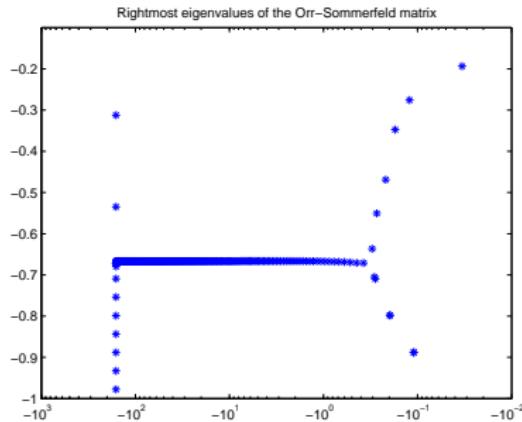


Figure: Eigenvalues of the Orr-Sommerfeld matrix in Example 2.

Example 2

Convergence to $\omega = 0.199755999447167$ and $\alpha = 0.001978172281960$ within 5 iterations.

Table: CPU times for Example 2.

Algorithm	“Inner” iterations		“Outer” iterations (Eigenvalue computation for Hamiltonian matrix)		Total CPU time
	quantity	CPU time	quantity	CPU time	
Boyd/Balakrishnan	6	3.49 s	6	63.28 s	66.77 s
He/Watson	1786	244.14 s	1	10.54 s	254.68 s
Newton	5	5.67 s	1	10.33 s	16.00 s

Example 3

Tolosa matrix `tolss340.mtx`

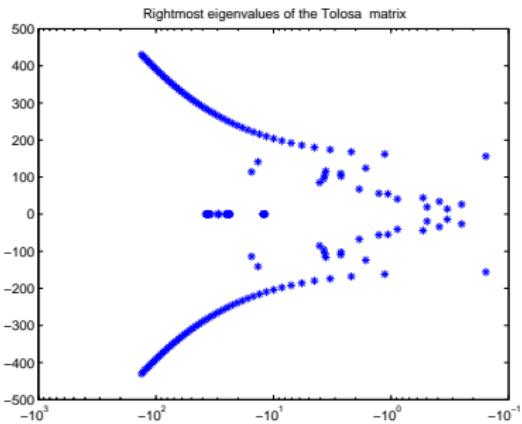


Figure: Eigenvalues of the Tolosa matrix in Example 3.

Example 3

Convergence to $\omega = 1.559998439945282$ and $\alpha = 0.000019997968879$ within 4 iterations.

Table: CPU times for Example 3.

Algorithm	“Inner” iterations		“Outer” iterations (Eigenvalue computation for Hamiltonian matrix)		Total CPU time
	quantity	CPU time	quantity	CPU time	
Boyd/Balakrishnan	3	67.52 s	3	5.27 s	72.79 s
He/Watson	> 33000	> 2230 s	> 11	> 18 s	> 2248 s
Newton	4	2.01 s	1	1.69 s	3.7 s

Final remarks

Conclusions

- new algorithm for computing the distance to unstable matrix
- **relies on finding a 2-dimensional Jordan block in 2-parameter matrix**
- only one LU decomposition per Newton step of bordered matrix M necessary
- numerical results show that new method outperforms earlier algorithms

Final remarks

Conclusions

- new algorithm for computing the distance to unstable matrix
- **relies on finding a 2-dimensional Jordan block in 2-parameter matrix**
- only one LU decomposition per Newton step of bordered matrix M necessary
- numerical results show that new method outperforms earlier algorithms

Extensions

- structured stability radius
- discrete distance to instability (Gürbüzbalaban et al)
- H_∞ -norm

- S. BOYD AND V. BALAKRISHNAN, *A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its \mathbf{L}_∞ -norm*, Systems Control Lett., 15 (1990), pp. 1–7.
- N. A. BRUINSMA AND M. STEINBUCH, *A fast algorithm to compute the H_∞ -norm of a transfer function matrix*, Systems Control Lett., 14 (1990), pp. 287–293.
- R. BYERS, *A bisection method for measuring the distance of a stable matrix to the unstable matrices*, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 875–881.
- M. A. FREITAG AND A. SPENCE, *A Newton-based method for the calculation of the distance to instability*, Linear Algebra Appl., 435 (2011), pp. 3189–3205.
- ———, *A new fast Newton-based method for calculating the real stability radius*, (2012).
Submitted.
- M. GÜRBÜZBALABAN, *Algorithms to compute the distance to instability and the numerical radius*, (2012).
In preparation.

- C. HE AND G. A. WATSON, *An algorithm for computing the distance to instability*, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 101–116.
- D. KRESSNER, *Finding the distance to instability of a large sparse matrix*, in Computer Aided Control System Design, IEEE Int. Conf. on Contr. Appl., Munich, Germany, IEEE, 2006, pp. 31–36.
- L. QIU, B. BERNHARDSSON, A. RANTZER, E. DAVISON, P. YOUNG, AND J. DOYLE, *A formula for computation of the real stability radius*, Automatica, 31 (1995), pp. 879–890.
- A. SPENCE AND C. POULTON, *Photonic band structure calculations using nonlinear eigenvalue techniques*, J. Comput. Phys., 204 (2005), pp. 65–81.
- C. F. VAN LOAN, *How near is a stable matrix to an unstable matrix?*, in Linear algebra and its role in systems theory (Brunswick, Maine, 1984), vol. 47 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1985, pp. 465–478.

Thank you.