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A simple example

e Consider the 10 x 10 matrix

- 0.1) 0

& 0 —0.001

Jo(—0.1) is a Jordan block of size 9, associated with the eigenvalue —0.1.
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A simple example

e Consider the 10 x 10 matrix

Js(—0.408 W 0

5 3 0 —0.001

Jo(—0.1) is a Jordan block of size 9, associated with the eigenvalue —0.1.
e What are the eigenvalues of this matrix?

A1 =-01 and A2 = —0.001

The matrix is stable.
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A simple example

e Consider the 10 x 10 matrix

Jo(—0.1) 0

&= 0 —0.001

Jo(—0.1) is a Jordan block of size 9, associated with the eigenvalue —0.1.
Replace the (9, 1) entry by 10~°
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A simple example

e Consider the 10 x 10 matrix

Jo(—0.1) 0

42 0 —0.001

Jo(—0.1) is a Jordan block of size 9, associated with the eigenvalue —0.1.
Replace the (9, 1) entry by 107°

e What are the eigenvalues of this matrix?

A1 =0 and all the other eigenvalues are still in the open left half plane.

The matrix is unstable.
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A simple example

e Consider the 10 x 10 matrix

Jo(—0.1) 0

42 0 —0.001

Jo(—0.1) is a Jordan block of size 9, associated with the eigenvalue —0.1.
Replace the (9, 1) entry by 107°

e What are the eigenvalues of this matrix?
A1 =0 and all the other eigenvalues are still in the open left half plane.

The matrix is unstable.

Observation
Matrix A is stable, with all the eigenvalues well away from the imaginary axis
A2 = —0.001. But A+ F is unstable, where perturbation is only || E| = 10!
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Distance to instability - definition

e Stability of matrix A € C"*™: A(A) in open left half plane
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Distance to instability - definition

e Stability of matrix A € C"*™: A(A) in open left half plane

e Define spectral abscissa
n(A) := max{Re(X) | A € A(A)}

e If n(A) < 0, A is stable.

e Better measure of stability: distance of A to instability

Distance to instability

Distance of a stable matrix A to instability

5(A) = min{|Bll|[n(A + B) = 0, B € C*"}

o If A+ E has an eigenvalue on the imaginary axis, F is destabilising
perturbation
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Distance to instability - known results

e For a destabilising perturbation £
(A+ E—wil)z=0,

for some w € R and z € C™.
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e For a destabilising perturbation £
(A+ E—wil)z=0,

for some w € R and z € C™.

e Consider the singular value decomposition of A — wil:
A—wil =UZVH,

The minimising destabilising perturbation is given by Fmin = —Omintnvl,
where omin is the minimum singular value of A — wil.
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Distance to instability - known results

e For a destabilising perturbation £
(A+ E—wil)z=0,

for some w € R and z € C™.

e Consider the singular value decomposition of A — wil:
A—wil =UZVH,

The minimising destabilising perturbation is given by Fmin = —Omintnvl,
where omin is the minimum singular value of A — wil.

e Measure for distance to instability of a matrix (Van Loan 1984),

B(A) o 131161% (7!11111(A — (/.)7/])7

where omin (A — wil) is the smallest singular value of A — wil.

8 of 32



Distance to instability - known results

Consider the singular values of A — wil:

(A—wil)v=ou and (A—wil)"u=aw.
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Distance to instability - known results

Consider the singular values of A — wil:

(A—wil)v=ou and (A—wil)"u=aw.

A —al PP |
al —A" u | "9 w
——_— ———

H(a)

H(a) has a pure imaginary eigenvalue wi
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Results on H(a)

Theorem (Byers 1988)

The 2n x 2n Hamiltonian matrix

He)=| & an |

has an eigenvalue on the imaginary axis if and only if a > B(A).
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Results on H(a)

Theorem (Byers 1988)
The 2n x 2n Hamiltonian matrix

e =| 4 4 |

has an eigenvalue on the imaginary axis if and only if o > B(A).
If @* is the minimum value of o at which H(«) has a pure imaginary

eigenvalue w*i with corresponding z* = { u } then o* = (A).
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Existing numerical methods

e Bisection approach by Byers

o choose lower and upper bound on « (0 and opmin(A))
o take mean value s and calculate all the eigenvalues of H(s), update lower and
upper bound according to pure imaginary eigenvalues of H(s)
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e Boyd/Balakrishnan method
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Existing numerical methods

e Bisection approach by Byers
o choose lower and upper bound on « (0 and opmin(A))
o take mean value s and calculate all the eigenvalues of H(s), update lower and
upper bound according to pure imaginary eigenvalues of H(s)

e Boyd/Balakrishnan method

o given an upper bound a > $(A), compute all pure imaginary eigenvalues
w1, iwa, . .., 1w, of H(a) ordered so that w1 <ws < ... <wy
o set s = %,k:l,.

e He/Watson algorithm
o find the minimum of f(w) = omin(A — wil)
o uses inverse iteration algorithm to find a stationary w
o check on all the corresponding eigenvalues of H(a)

..l —1 and update oo = ming opmin(A — sgil)
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Results on H(a)

Assumption
A —al

FRNR.5 ] of algebraic

(wi, ) is a defective eigenpair of H(a) = {
multiplicity 2.
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FRNR.5 ] of algebraic
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multiplicity 2.
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y?(H(e) —wil) =0, y#0, and y"z=0,

0 In}

y=Jz, J:{_In 0

13 of 32



Results on H(a)

Assumption
A —al

FRNR.5 ] of algebraic

(wi, ) is a defective eigenpair of H(a) = {
multiplicity 2.

(H(a) —wil)z =0, xz#0, and dimker(H(a)—wil)=1,

y?(H(e) —wil) =0, y#0, and y"z=0,

0 In}

y=Jz, J:{_In 0

(H(a) —wil)z =z, and y"2#0,

Jordan block of dimension 2 at the critical value of «
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Parameter dependent matrix eigenvalue problem H(w. )

Problem
How do we find a 2-dimensional Jordan block in H(«)?

(H(a) —wil)z =0, x#0,
———
H(w,ax)
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Implicit Determinant Method
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Bordered systems - a “new” method for finding eigenvalues

One-parameter problem B(\)z = 0 or y? B(\) = 0% (det(B()\)) = 0)
Bordered system for rank(B(\)) =n — 1

Exlvas
M(N)

is nonsingular if ¢z # 0 and yb # 0.
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Bordered systems - a “new” method for finding eigenvalues
One-parameter problem B(\)z = 0 or y? B(\) = 0% (det(B()\)) = 0)
Bordered system for rank(B(\)) =n — 1
B(A) b z(A) | |0
o £y 1IF & %
————
M(N)

is nonsingular if ¢¥2 # 0 and y™b # 0. Cramer’s rule
_ det(B(V)
S det(M(N))’
Solve
Ff(A) =0 instead of det(B(\)) =0.
At f(A) =0:
B(MNz(A) =0.

Solve f()\) = 0 using Newton’s method At = \ — F 8
()
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Parameter dependent matrix eigenvalue problem H(w. )

Problem
How do we find a 2-dimensional Jordan block in H(«)?

(H(a) —wil)z =0, x#0,
———
H(w,ax)
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The implicit determinant method

Two-parameter problem

H(w,a)x =0 or det(H(w,a))=0
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The implicit determinant method

Two-parameter problem
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Bordered system

H(a) —wil Je ] { z(w, @) ] 4 {

il 0

M(w,a)

is nonsingular if ¢ # 0.
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Two-parameter problem
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Bordered system

H(a) —wil Je ] { z(w, @) ] 4 {

il 0

M(w,a)

is nonsingular if ¢F2 # 0. Cramer’s rule
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The implicit determinant method

Two-parameter problem
H(w,a)x =0 or det(H(w,a))=0

Bordered system

il 0

H(a) —wil Je ] { z(w, @) ] 4 {

M(w,a)

is nonsingular if ¢F2 # 0. Cramer’s rule

_ det(H(w, )

flw,a) = det(M(w, @)’
Solve
f(w,a) =0 instead of det(H(w,a)) =0,
where
f(w,0) = 2w, 0)" J(H(a) - wil)x(w,a)
188 et



The implicit determinant method

Differentiate the linear system
Differentiate [ H(aiH— wil {)C ] { (g

(o= %1123 )
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The implicit determinant method

Differentiate the linear system

Differentiate [ H(aiH— wil {)C ] { ?EZ:Z; ] = { 1 } with respect to w:
H(a) —wil Je To(w,a) | | iz(w,a)
cft 0 folw, ) | — 0 ’
First row
folw,a) =iy«



The implicit determinant method

Differentiate the linear system

Differentiate [ H(O‘ZH_ wil {)C ] { ?EZZ; ] ] { ) } with respect to w:
e 2zR]-[%7]

First row
folw,a) = inyg: 0,

because of Jordan block of dimension 2.
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The implicit determinant method

Differentiate the linear system
Differentiate [ H(aiH— wil {)C ] { (g

(o= %1123 )
First row A

because of Jordan block of dimension 2. Solve

i B { f(wﬂ)) } -0

folw,a

19 of 32



The implicit determinant method

Differentiate the linear system

Differentiate [ H(aiH— wil {)C ] { (e

(o= %1123 )
First row A

because of Jordan block of dimension 2. Solve

i B { f(wﬂ)) } -0

folw,a

Also,
(H(a) — wil)zw(w, o) = iz,

and y™z,,(w, @) # 0, hence fuu(w,a) # 0.
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Newton’s method for real function ¢ in two real variables

Solve

using Newton’s method:

i i Aw(i) i i
G(UJ( ),Ol( )) |: Aa(i) :| = _g(w( ),Ot( ))7

Sl T L
Q) | T @ An@ele
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Jacobian for Newton’s method

Jacobian
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Jacobian for Newton’s method

Jacobian

) . (@) (1) (@) (1)
@ @y _ | fe,a)  fa(wt,al™)
Gw, a) = { fww(w(i)7a(i)) fwa(w(i)7a(i))

and the Jacobian elements are evaluated by differentiating the system

et [ ]=10]

with respect to w and a.
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Implementation

e one (sparse) LU factorisation of

{ H(oz)c}; wil {)c }

e solve with bordered system matrix and 5 different right hand sides in order
to obtain f(w, ) and entries for Jacobian

s =[ Los) floe) ]

e very fast quadratically convergent Newton method in 2 dimensions
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Remarks

0 fa(w?, a")

e full-rank Jacobian G(w*,a™) = 7 R
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Remarks

e full-rank Jacobian G(w*,a™) = { f (o?* a*) fa(a*’ CL*)) }7

* fuw(w*,a*) <0and fo(w*, o) > 0.

w f (w, a) =0
@,
W -
o]
LS a a

Figure: Curve f(w,a) =0 in the (w, a)-plane for fuu(w*,a*) <0
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Remarks

e full-rank Jacobian G(w*,a™) = { f (o?* a*) fa(a*’ CL*)) }7

* fuw(w*,a*) <0and fo(w*, o) > 0.

w f (w, a) =0

@,
o -
@y

s a a

Figure: Curve f(w,a) =0 in the (w, a)-plane for fuu(w*,a*) <0
T -J 0 -
e Multiplication by H 4 leads to the Hermitian system

ct 0

e les -1
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Example 1
Consider
—0.4+ 61 1
3 1 —gris o 1N
A= 1 —-1-3: 1

1 —5+1
which has eigenvalues (rounded to 3 significant digits)

A(A) = {-0.41 + 5.80i, —0.04 + 0.95¢, —0.92 — 2.62¢, —5.13 4 0.874}
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Example 1
Consider
—0.4+ 61 1
3 1 g Tl 19
A= 1 —-1-3: 1

1 —5+1
which has eigenvalues (rounded to 3 significant digits)

A(A) = {-0.41 + 5.80i, —0.04 + 0.95¢, —0.92 — 2.62¢, —5.13 4 0.874}

Starting values:

(0) _
a'’ =0
w©: imaginary part of the eigenvalue of A closest to the imaginary axis
(0) (0
_ 0 _ | v ©) o, © 4O -
c=z" = [ w(w®, 0 ) ], where v(w'”, a'") and u(w'™, a'”) are right and

left singular vectors of A — w(®il
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Example 1
Table: Results for Example 1.
NEWTON METHOD

i | w® a® | lg(@@, @)

0 | 0.953057740164838 0 -

1 | 0.953036248966048 0.031887014318100 1.5949900020014e-02
2 | 0.953014724735990 0.031887009443620 2.2577279982423e-04
3 | 0.953014724704841 0.031887014303200 2.4473093206567e-09
4 | 0.953014724704841 0.031887014303200 8.2762961087551e-16
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Example 2

Orr-Sommerfeld operator

1 2
— L*v—4(UL—U")v=ALv, where L= and U=1-2z°

2
YR dz !
Discretise the operator on v € [—1,1] using finite differences with v =1,

R = 1000 and n = 1000.

Rightmost eigenvalues of the Orr-Sommerfeld matrix

“02 *
*
-03 *
*
-04
*
-05
* *
-0.6
*
T e
-0.7 * *
*
-08 * *
*
09 * *
*
*
15 z f o I 2
-10° -10 -10 -10 -10 -10

Figure: Eigenvalues of the Orr-Sommerfeld matrix in Example 2.
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Example 2

Convergence to w = 0.199755999447167 and o = 0.001978172281960 within 5

iterations.
Table: CPU times for Example 2.
“Outer” iterations
“Inner” iterations (Eigenvalue computation Total
Algorithm for Hamiltonian matrix) CPU
quantity | CPU time quantity | CPU time time
Boyd/Balakrishnan 6 3.49 s 6 63.28 s 66.77 s
He/Watson 1786 244.14 s 1 10.54 s 254.68 s
Newton 5 5.67 s 1] 10.33 s 16.00 s
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Example 3

Tolosa matrix tols340.mtx

Rightmost eigenvalues of the Tolosa matrix

500
400
300
200 -
. ok oy *
100 * F* :
ok,
* K%
* M x
0 e % 1
Yo F
-100 *, % *
K ek % *
200 St
-300
-400
-500
-10° -10° -10' -10° -107"

Figure: Eigenvalues of the Tolosa matrix in Example 3.
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Example 3

Convergence to w = 1.559998439945282 and o = 0.000019997968879 within 4

iterations.
Table: CPU times for Example 3.
“Outer” iterations

“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU

quantity | CPU time quantity | CPU time time
Boyd/Balakrishnan 3 67.52 s 3 5.27 s 72.79 s
He/Watson > 33000 > 2230 s > 11 > 18 s > 2248 s

Newton 4 2.01s 1 1.69 s 3.7s
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Final remarks

Conclusions

e new algorithm for computing the distance to unstable matrix
e relies on finding a 2-dimensional Jordan block in 2-parameter matrix

e only one LU decomposition per Newton step of bordered matrix M
necessary

e numerical results show that new method outperforms earlier algorithms
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Final remarks

Conclusions

e new algorithm for computing the distance to unstable matrix
e relies on finding a 2-dimensional Jordan block in 2-parameter matrix

e only one LU decomposition per Newton step of bordered matrix M
necessary

e numerical results show that new method outperforms earlier algorithms

Extensions
e structured stability radius
e discrete distance to instabilty (Giirblizbalaban et al)

o H_,-norm
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Thank you.

32 of 32



	Introduction
	Background
	Implicit Determinant Method
	Examples

