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A simple example

• Consider the 10× 10 matrix

A =

[
J9(−0.1) 0

0 −0.001

]

J9(−0.1) is a Jordan block of size 9, associated with the eigenvalue −0.1.
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A simple example

• Consider the 10× 10 matrix

A =

[
J9(−0.1) 0

0 −0.001

]

J9(−0.1) is a Jordan block of size 9, associated with the eigenvalue −0.1.

• What are the eigenvalues of this matrix?

λ1 = −0.1 and λ2 = −0.001

The matrix is stable.
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A simple example

• Consider the 10× 10 matrix

A =

[
J9(−0.1) 0

0 −0.001

]

J9(−0.1) is a Jordan block of size 9, associated with the eigenvalue −0.1.
Replace the (9, 1) entry by 10−9

• What are the eigenvalues of this matrix?

λ1 = 0 and all the other eigenvalues are still in the open left half plane.

The matrix is unstable.

Observation
Matrix A is stable, with all the eigenvalues well away from the imaginary axis
λ2 = −0.001. But A+ E is unstable, where perturbation is only ‖E‖ = 10−9!
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Distance to instability - definition

• Stability of matrix A ∈ C
n×n: Λ(A) in open left half plane
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Distance to instability - definition

• Stability of matrix A ∈ C
n×n: Λ(A) in open left half plane

• Define spectral abscissa

η(A) := max{Re(λ) |λ ∈ Λ(A)}

• If η(A) < 0, A is stable.

• Better measure of stability: distance of A to instability

Distance to instability

Distance of a stable matrix A to instability

β(A) = min{‖E‖ | η(A+ E) = 0, E ∈ C
n×n}

• If A+E has an eigenvalue on the imaginary axis, E is destabilising
perturbation
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Distance to instability - known results

• For a destabilising perturbation E

(A+ E − ωiI)z = 0,

for some ω ∈ R and z ∈ C
n.
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• Consider the singular value decomposition of A− ωiI :

A− ωiI = UΣV H
.

The minimising destabilising perturbation is given by Emin = −σminunv
H
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where σmin is the minimum singular value of A− ωiI .
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Distance to instability - known results

• For a destabilising perturbation E

(A+ E − ωiI)z = 0,

for some ω ∈ R and z ∈ C
n.

• Consider the singular value decomposition of A− ωiI :

A− ωiI = UΣV H
.

The minimising destabilising perturbation is given by Emin = −σminunv
H
n ,

where σmin is the minimum singular value of A− ωiI .

• Measure for distance to instability of a matrix (Van Loan 1984),

β(A) = min
ω∈R

σmin(A− ωiI),

where σmin(A− ωiI) is the smallest singular value of A− ωiI .
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Distance to instability - known results

Consider the singular values of A− ωiI :

(A− ωiI)v = αu and (A− ωiI)Hu = αv.
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Distance to instability - known results

Consider the singular values of A− ωiI :

(A− ωiI)v = αu and (A− ωiI)Hu = αv.

[
A −αI

αI −AH

]

︸ ︷︷ ︸

H(α)

[
v

u

]

= ωi

[
v

u

]

H(α) has a pure imaginary eigenvalue ωi
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Results on H(α)

Theorem (Byers 1988)

The 2n× 2n Hamiltonian matrix

H(α) =

[
A −αI

αI −AH

]

.

has an eigenvalue on the imaginary axis if and only if α ≥ β(A).
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Results on H(α)

Theorem (Byers 1988)

The 2n× 2n Hamiltonian matrix

H(α) =

[
A −αI

αI −AH

]

.

has an eigenvalue on the imaginary axis if and only if α ≥ β(A).

If α∗ is the minimum value of α at which H(α) has a pure imaginary

eigenvalue ω∗i with corresponding x∗ =

[
v∗

u∗

]

then α∗ = β(A).
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Existing numerical methods

• Bisection approach by Byers
◦ choose lower and upper bound on α (0 and σmin(A))
◦ take mean value s and calculate all the eigenvalues of H(s), update lower and

upper bound according to pure imaginary eigenvalues of H(s)
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• Boyd/Balakrishnan method
◦ given an upper bound α ≥ β(A), compute all pure imaginary eigenvalues

iw1, iw2, . . . , iwl of H(α) ordered so that w1 ≤ w2 ≤ . . . ≤ wl

◦ set sk =
wk+wk+1

2
, k = 1, . . . l− 1 and update α = mink σmin(A− skiI)
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• Bisection approach by Byers
◦ choose lower and upper bound on α (0 and σmin(A))
◦ take mean value s and calculate all the eigenvalues of H(s), update lower and

upper bound according to pure imaginary eigenvalues of H(s)

• Boyd/Balakrishnan method
◦ given an upper bound α ≥ β(A), compute all pure imaginary eigenvalues

iw1, iw2, . . . , iwl of H(α) ordered so that w1 ≤ w2 ≤ . . . ≤ wl

◦ set sk =
wk+wk+1

2
, k = 1, . . . l− 1 and update α = mink σmin(A− skiI)

• He/Watson algorithm
◦ find the minimum of f(ω) = σmin(A− ωiI)
◦ uses inverse iteration algorithm to find a stationary ω
◦ check on all the corresponding eigenvalues of H(α)
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Results on H(α)

Assumption

(ωi, x) is a defective eigenpair of H(α) =

[
A −αI

αI −AH

]

of algebraic

multiplicity 2.
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Results on H(α)

Assumption

(ωi, x) is a defective eigenpair of H(α) =

[
A −αI

αI −AH

]

of algebraic

multiplicity 2.

(H(α)− ωiI)x = 0, x 6= 0, and dimker(H(α)− ωiI) = 1,

y
H(H(α)− ωiI) = 0, y 6= 0, and y

H
x = 0,

y = Jx, J =

[
0 In

−In 0

]

,

(H(α)− ωiI)x̂ = x, and y
H
x̂ 6= 0,

Jordan block of dimension 2 at the critical value of α
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Parameter dependent matrix eigenvalue problem H(ω,α)

Problem
How do we find a 2-dimensional Jordan block in H(α)?

(H(α)− ωiI)
︸ ︷︷ ︸

H(ω,α)

x = 0, x 6= 0,
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Bordered systems - a “new” method for finding eigenvalues

One-parameter problem B(λ)x = 0 or yHB(λ) = 0H (det(B(λ)) = 0)

Bordered system for rank(B(λ)) = n− 1

[
B(λ) b

cH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

is nonsingular if cHx 6= 0 and yHb 6= 0.
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Bordered systems - a “new” method for finding eigenvalues

One-parameter problem B(λ)x = 0 or yHB(λ) = 0H (det(B(λ)) = 0)

Bordered system for rank(B(λ)) = n− 1

[
B(λ) b

cH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

is nonsingular if cHx 6= 0 and yHb 6= 0. Cramer’s rule

f(λ) =
det(B(λ))

det(M(λ))
,

Solve
f(λ) = 0 instead of det(B(λ)) = 0.

At f(λ) = 0:
B(λ)x(λ) = 0.

Solve f(λ) = 0 using Newton’s method λ
+ = λ−

f(λ)

fλ(λ)
.
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Parameter dependent matrix eigenvalue problem H(ω,α)

Problem
How do we find a 2-dimensional Jordan block in H(α)?

(H(α)− ωiI)
︸ ︷︷ ︸

H(ω,α)

x = 0, x 6= 0,
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The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0
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The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0

Bordered system

[
H(α)− ωiI Jc

cH 0

]

︸ ︷︷ ︸

M(ω,α)

[
x(ω,α)
f(ω, α)

]

=

[
0
1

]

is nonsingular if cHx 6= 0.
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The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0

Bordered system

[
H(α)− ωiI Jc

cH 0

]

︸ ︷︷ ︸

M(ω,α)

[
x(ω,α)
f(ω, α)

]

=

[
0
1

]

is nonsingular if cHx 6= 0. Cramer’s rule

f(ω, α) =
det(H(ω,α))

det(M(ω, α))
,

Solve
f(ω, α) = 0 instead of det(H(ω,α)) = 0,

where
f(ω, α) = x(ω,α)HJ(H(α)− ωiI)x(ω,α)

is real.18 of 32



The implicit determinant method

Differentiate the linear system

Differentiate

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.
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The implicit determinant method

Differentiate the linear system

Differentiate

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.

First row
fω(ω, α) = iy

H
x= 0,

because of Jordan block of dimension 2. Solve

g(ω,α) =

[
f(ω, α)
fω(ω,α)

]

= 0.
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The implicit determinant method

Differentiate the linear system

Differentiate

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.

First row
fω(ω, α) = iy

H
x= 0,

because of Jordan block of dimension 2. Solve

g(ω,α) =

[
f(ω, α)
fω(ω,α)

]

= 0.

Also,
(H(α)− ωiI)xω(ω,α) = ix,

and yHxω(ω, α) 6= 0, hence fωω(ω,α) 6= 0.
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Newton’s method for real function g in two real variables

Solve

g(ω,α) =

[
f(ω, α)
fω(ω,α)

]

= 0,

using Newton’s method:

G(ω(i)
, α

(i))

[
∆ω(i)

∆α(i)

]

= −g(ω(i)
, α

(i)),

[
ω(i+1)

α(i+1)

]

=

[
ω(i)

α(i)

]

+

[
∆ω(i)

∆α(i)

]

.
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Jacobian for Newton’s method

Jacobian

G(ω(i)
, α

(i)) =

[
fω(ω

(i), α(i)) fα(ω
(i), α(i))

fωω(ω
(i), α(i)) fωα(ω

(i), α(i))

]

.
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Jacobian for Newton’s method

Jacobian

G(ω(i)
, α

(i)) =

[
fω(ω

(i), α(i)) fα(ω
(i), α(i))

fωω(ω
(i), α(i)) fωα(ω

(i), α(i))

]

.

and the Jacobian elements are evaluated by differentiating the system

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

,

with respect to ω and α.
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Implementation

• one (sparse) LU factorisation of

[
H(α)− ωiI Jc

cH 0

]

• solve with bordered system matrix and 5 different right hand sides in order
to obtain f(ω, α) and entries for Jacobian

G(ω,α) =

[
fω(ω, α) fα(ω,α)
fωω(ω, α) fωα(ω, α)

]

• very fast quadratically convergent Newton method in 2 dimensions
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Remarks

• full-rank Jacobian G(ω∗, α∗) =

[
0 fα(ω

∗, α∗)
fωω(ω

∗, α∗) fωα(ω
∗, α∗)

]

,
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• full-rank Jacobian G(ω∗, α∗) =

[
0 fα(ω

∗, α∗)
fωω(ω

∗, α∗) fωα(ω
∗, α∗)

]

,

• fωω(ω
∗, α∗) < 0 and fα(ω

∗, α∗) > 0.

α

ω

ω*

ω
2

ω
1

αα*

f(ω,α)=0

Figure: Curve f(ω, α) = 0 in the (ω, α)-plane for fωω(ω∗, α∗) < 0
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Remarks

• full-rank Jacobian G(ω∗, α∗) =

[
0 fα(ω

∗, α∗)
fωω(ω

∗, α∗) fωα(ω
∗, α∗)

]

,

• fωω(ω
∗, α∗) < 0 and fα(ω

∗, α∗) > 0.

α

ω

ω*

ω
2

ω
1

αα*

f(ω,α)=0

Figure: Curve f(ω, α) = 0 in the (ω, α)-plane for fωω(ω∗, α∗) < 0

• Multiplication by

[
−J 0
0H 1

]

leads to the Hermitian system

[
−JH(α) + ωiJ c

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

.
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Example 1

Consider

A =







−0.4 + 6i 1
1 −0.1 + i 1

1 −1− 3i 1
1 −5 + i







which has eigenvalues (rounded to 3 significant digits)

Λ(A) = {−0.41 + 5.80i,−0.04 + 0.95i,−0.92 − 2.62i,−5.13 + 0.87i}

25 of 32



Example 1

Consider

A =







−0.4 + 6i 1
1 −0.1 + i 1

1 −1− 3i 1
1 −5 + i







which has eigenvalues (rounded to 3 significant digits)

Λ(A) = {−0.41 + 5.80i,−0.04 + 0.95i,−0.92 − 2.62i,−5.13 + 0.87i}

Starting values:

α(0) = 0
ω(0): imaginary part of the eigenvalue of A closest to the imaginary axis

c = x(0) =

[
v(ω(0), α(0))

u(ω(0), α(0))

]

, where v(ω(0), α(0)) and u(ω(0), α(0)) are right and

left singular vectors of A− ω(0)iI
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Example 1

Table: Results for Example 1.

Newton method

i ω(i) α(i) ‖g(ω(i), α(i))‖

0 0.953057740164838 0 -
1 0.953036248966048 0.031887014318100 1.5949900020014e-02
2 0.953014724735990 0.031887009443620 2.2577279982423e-04
3 0.953014724704841 0.031887014303200 2.4473093206567e-09
4 0.953014724704841 0.031887014303200 8.2762961087551e-16
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Example 2

Orr-Sommerfeld operator

1

γR
L

2
v − i(UL− U

′′)v = λLv, where L =
d2

dx2
− γ

2 and U = 1− x
2
.

Discretise the operator on v ∈ [−1, 1] using finite differences with γ = 1,
R = 1000 and n = 1000.

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Rightmost eigenvalues of the Orr−Sommerfeld matrix

Figure: Eigenvalues of the Orr-Sommerfeld matrix in Example 2.
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Example 2

Convergence to ω = 0.199755999447167 and α = 0.001978172281960 within 5
iterations.

Table: CPU times for Example 2.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity CPU time quantity CPU time time

Boyd/Balakrishnan 6 3.49 s 6 63.28 s 66.77 s
He/Watson 1786 244.14 s 1 10.54 s 254.68 s
Newton 5 5.67 s 1 10.33 s 16.00 s
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Example 3

Tolosa matrix tols340.mtx

−10
3

−10
2

−10
1

−10
0

−10
−1

−500

−400

−300

−200

−100

0

100

200

300

400

500
Rightmost eigenvalues of the Tolosa  matrix

Figure: Eigenvalues of the Tolosa matrix in Example 3.
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Example 3

Convergence to ω = 1.559998439945282 and α = 0.000019997968879 within 4
iterations.

Table: CPU times for Example 3.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity CPU time quantity CPU time time

Boyd/Balakrishnan 3 67.52 s 3 5.27 s 72.79 s
He/Watson > 33000 > 2230 s > 11 > 18 s > 2248 s
Newton 4 2.01 s 1 1.69 s 3.7 s
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Final remarks

Conclusions

• new algorithm for computing the distance to unstable matrix

• relies on finding a 2-dimensional Jordan block in 2-parameter matrix

• only one LU decomposition per Newton step of bordered matrix M

necessary

• numerical results show that new method outperforms earlier algorithms
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Conclusions

• new algorithm for computing the distance to unstable matrix

• relies on finding a 2-dimensional Jordan block in 2-parameter matrix

• only one LU decomposition per Newton step of bordered matrix M

necessary

• numerical results show that new method outperforms earlier algorithms

Extensions

• structured stability radius

• discrete distance to instabilty (Gürbüzbalaban et al)

• H∞-norm
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Thank you.
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